US6281115B1 - Sidewall protection for a via hole formed in a photosensitive, low dielectric constant layer - Google Patents

Sidewall protection for a via hole formed in a photosensitive, low dielectric constant layer Download PDF

Info

Publication number
US6281115B1
US6281115B1 US09/192,450 US19245098A US6281115B1 US 6281115 B1 US6281115 B1 US 6281115B1 US 19245098 A US19245098 A US 19245098A US 6281115 B1 US6281115 B1 US 6281115B1
Authority
US
United States
Prior art keywords
layer
low dielectric
dielectric constant
via hole
silicon oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US09/192,450
Inventor
Chung Liang Chang
Lai-Juh Chen
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Industrial Technology Research Institute ITRI
Original Assignee
Industrial Technology Research Institute ITRI
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Industrial Technology Research Institute ITRI filed Critical Industrial Technology Research Institute ITRI
Priority to US09/192,450 priority Critical patent/US6281115B1/en
Assigned to INDUSTRIAL TECHNOLOGY RESEARCH INSTITUTE reassignment INDUSTRIAL TECHNOLOGY RESEARCH INSTITUTE ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: CHANG, CHUNG LIANG, CHEN, LAI-JUH
Application granted granted Critical
Publication of US6281115B1 publication Critical patent/US6281115B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02118Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer carbon based polymeric organic or inorganic material, e.g. polyimides, poly cyclobutene or PVC
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/312Organic layers, e.g. photoresist
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76801Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing
    • H01L21/76802Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing by forming openings in dielectrics
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76801Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing
    • H01L21/76829Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing characterised by the formation of thin functional dielectric layers, e.g. dielectric etch-stop, barrier, capping or liner layers
    • H01L21/76831Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing characterised by the formation of thin functional dielectric layers, e.g. dielectric etch-stop, barrier, capping or liner layers in via holes or trenches, e.g. non-conductive sidewall liners
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02123Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon
    • H01L21/02164Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material being a silicon oxide, e.g. SiO2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/022Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being a laminate, i.e. composed of sublayers, e.g. stacks of alternating high-k metal oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • H01L21/02263Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase
    • H01L21/02271Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition
    • H01L21/02274Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition in the presence of a plasma [PECVD]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3105After-treatment
    • H01L21/31051Planarisation of the insulating layers
    • H01L21/31053Planarisation of the insulating layers involving a dielectric removal step
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3105After-treatment
    • H01L21/311Etching the insulating layers by chemical or physical means
    • H01L21/31105Etching inorganic layers
    • H01L21/31111Etching inorganic layers by chemical means
    • H01L21/31116Etching inorganic layers by chemical means by dry-etching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3105After-treatment
    • H01L21/311Etching the insulating layers by chemical or physical means
    • H01L21/31127Etching organic layers
    • H01L21/31133Etching organic layers by chemical means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/314Inorganic layers
    • H01L21/316Inorganic layers composed of oxides or glassy oxides or oxide based glass
    • H01L21/31604Deposition from a gas or vapour
    • H01L21/31608Deposition of SiO2
    • H01L21/31612Deposition of SiO2 on a silicon body

Definitions

  • the present invention relates to processes used to fabricate semiconductor devices, and more specifically to a process used to create a via hole, in a dielectric layer, exposing an underlying conductive structure.
  • the semiconductor industry is continually striving to increase the performance of semiconductor devices, while still maintaining, or even reducing the manufacturing costs of these higher performing semiconductor devices.
  • the ability of the industry to fabricate devices with sub-micron features, or micro-miniaturization, has allowed the performance and cost objectives to be successfully addressed. Smaller device features allow a reduction of performance degrading resistances and capacitances to be realized, resulting in performance improvements.
  • the use of sub-micron device features allows a greater number of smaller semiconductor chips, still possessing device densities comparable to device densities obtained with larger counterparts, to be obtained from a specific size starting substrate, thus resulting in a reduction of the processing cost for a specific semiconductor chip.
  • micro-miniaturization has been attributed to advances in specific semiconductor fabrication disciplines, such as photolithography and dry etching.
  • semiconductor fabrication disciplines such as photolithography and dry etching.
  • the use of more sophisticated exposure cameras, as well as the development of more sensitive photosensitive materials, have allowed sub-micron images to be routinely formed in photoresist layers.
  • the development of more advanced dry etching tools, and processes have allowed the sub-micron images in photoresist layers, to be successfully transferred to underlying materials, used to create advanced semiconductor devices.
  • optimization of specific fabrication sequences are still needed to further reduce the manufacturing costs for semiconductor devices.
  • a via hole is formed in a photosensitive, low dielectric constant layer, using direct exposure, and selective removal of the exposed region.
  • the photosensitive, low dielectric constant layer is not removed, and after filling the via hole with metal, the photosensitive, low dielectric constant layer remains to function as an interlevel dielectric layer, located between underlying and overlying, metal interconnect structures.
  • An option offered in this invention is the creation of chemically vapor deposited, insulator spacers, on the sides of the via hole, to protect the exposed sides of the photosensitive, low dielectric constant layer, from subsequent processing steps.
  • 5,559,055 describe the use of low dielectric constant materials to fill spaces between metal lines, however they do not describe the use of a photosensitive, low dielectric constant layer, used as an interlevel dielectric layer, as well as a material used for via hole formation, without the use of photosensitive photoresist materials.
  • a process for forming a via hole in a photosensitive, low dielectric constant layer, without the use of photoresist processing.
  • An underlying interconnect metal structure is provided, followed by the application of a photosensitive, low dielectric constant layer.
  • a desired via hole pattern is created in a region of the photosensitive, low dielectric layer, via direct exposure.
  • the unexposed region of the photosensitive, low dielectric constant layer is than selectively removed, using wet solvent solutions, resulting in the desired via hole, exposing the top surface of an underlying interconnect metal structure.
  • An chemically deposited insulator layer is next deposited, planarized, and subjected to an anisotropic reactive ion etching, (RIE), procedure, resulting in insulator spacers, on the sides of the via hole, in addition to a remaining portion of the insulator layer, overlying the top surface of the photosensitive, low dielectric constant layer.
  • RIE reactive ion etching
  • a second iteration of this invention features the planarization step, performed after deposition of the photosensitive, low dielectric constant layer, followed by patterning procedures comprised of direct exposure and development of the unexposed region of the photosensitive, low dielectric constant layer, resulting in the creation of the via hole. Insulator spacers are again formed on the sides of the via hole, using the same deposition and anisotropic RIE procedures, used with the previous embodiment.
  • FIGS. 1-8 which schematically, in cross-sectional style, describe a first embodiment of this invention, in which a via hole, protected with insulator spacers, is created in a photosensitive, low dielectric constant layer, without the use of photoresist processing.
  • FIGS. 9-11 which schematically, in cross-sectional style, describe a second embodiment of this invention, in which the planarization of the photosensitive, low dielectric constant layer, is performed prior to creation of the via hole.
  • FIG. 1 schematically shows interconnect metal structures 3 , overlying insulator layer 2 , on a semiconductor substrate 1 .
  • Interconnect metal structures 3 can be used to contact active device regions (not shown in drawings), such as metal oxide semiconductor field effect transistor, (MOSFET), source and drain regions in semiconductor substrate 1 , via contact holes, (not shown in drawings), in insulator layer 2 .
  • Interconnect metal structures 3 can also be used to contact underlying, interconnect metal structures, (not shown in drawings), underlying insulator layer 2 , via use of via holes in insulator layer 2 .
  • Insulator layer 2 is comprised of P type, single crystalline silicon, with a ⁇ 100> crystallographic orientation.
  • Insulator layer 2 can be a silicon oxide layer, obtained using low pressure chemical vapor deposition, (LPCVD), or plasma enhanced chemical vapor deposition, (PECVD), procedures.
  • Insulator layer 2 can also be a boro-phosphosilicate, (BPSG), or a phosphosilicate, (PSG), layer.
  • Interconnect metal structures 3 can be comprised of an aluminum based metal, or a refractory type metal, such as tungsten, formed via plasma deposited, or chemically vapor deposited procedures, followed by patterning procedures consisting of photolithographic and etching procedures.
  • a photosensitive, low dielectric constant layer 4 a is next applied, to a thickness between about 2000 to 8000 Angstroms.
  • Photosensitive, low dielectric constant layer 4 a can be comprised of either an organic-inorganic hybrid polymer, called “CHEMAT-B”, (manufactured by Chemat Technology Inc., Northridge Calif.), or benzocylobutene, (BCB), with the BCB layer being a negative photosensitive layer, that is exposed regions, or cross-linked regions, remain insoluble in a specific solvent, while the non-exposed regions, are removable in the same solvent.
  • CHEMAT-B organic-inorganic hybrid polymer
  • BCB benzocylobutene
  • a direct exposure procedure is performed to a region of layer 4 a , exposed in the openings in chromium photo plate, using deep UV for CHEMAT-B layer, at a wavelength between about 190 to 195 nanometers, while a I Line exposure, at a wavelength between about 360 to 370 nanometers, is used for BCB layer, both layers exposed using a dose between about 0 to 800 millijoules/cm 2 , resulting in the cross-linking of exposed regions of layer 4 a , leaving a non-exposed, and non-cross-linked, region 4 b , shown schematically in FIG. 3 .
  • Non-cross-linked region 4 b is now more soluble in toluene, than the exposed regions of layer 4 a , for the CHEMAT-B layer, (and non-crossed-linked region 4 b , is now more soluble in mesitylene, than the exposed regions of layer 4 a , for the BCB layer). Therefore selective removal of non-cross-linked region 4 b , is accomplished using either mesitylene, or toluene, resulting in the creation of via hole 5 , shown schematically in FIG. 4 . Via hole 5 exposing the top surface of interconnect metal structure 3 , was created without the use of photoresist masking.
  • Previously used conventional photoresist processing comprises creation of the desired via hole image in a photoresist layer, followed by the transfer of this image to an underlying insulator layer, via a dry etching procedure. This costly process is than continued with the removal of the masking photoresist layer, using plasma oxygen ashing procedures. The ashing procedure can result in unwanted oxidation, as well as damage to, the underlying interconnect metal structure, now exposed at the bottom of the via hole.
  • the use of a photosensitive, low dielectric constant layer, that remains as part of the structure reduces the cost of photoresist processing, as well as eliminating deleterious oxidation, and damage, to exposed metal structures.
  • FIGS. 5-8 Procedures used to passivate and protect photosensitive, low dielectric constant layer 4 a , from interfacing materials and processes, are next addressed and schematically shown in FIGS. 5-8.
  • An insulator layer comprised of silicon oxide, is next deposited using PECVD or high density plasma chemical vapor deposition, (HDPCVD), procedures.
  • Insulator layer 6 a is deposited on the top surface of photosensitive, low dielectric layer 4 a , at a thickness between about 2000 to 8000 Angstroms, while the same CVD procedure results in the deposition of insulator layer 6 b , at a thickness between about 200 to 1000 Angstroms, on the exposed surfaces of photosensitive, low dielectric layer 4 a , in via hole 5 . This is schematically shown in FIG. 5.
  • CMP chemical mechanical polishing
  • An anisotropic RIE procedure using CHF 3 as an etchant, is used to remove insulator 6 b , from the bottom of via hole 5 , forming insulator spacers 6 b , on the sides of via hole 5 , and exposing the top surface of interconnect metal structure 3 .
  • This is shown schematically in FIG. 7 .
  • An overlying interconnect metal structure 7 shown schematically in FIG. 8, is next formed, contacting underlying interconnect metal structure 3 , in via hole 5 .
  • Overlying interconnect metal structure 7 can be comprised of an aluminum based layer, deposited using R.F. sputtering procedures, and patterned using conventional photolithographic and RIE procedures, using Cl 2 as an etchant.
  • Interconnect metal structure 7 can also be a refractory type metal, such as tungsten, deposited using LPCVD procedures, and again patterned via conventional photolithographic and RIE procedures. All regions of photosensitive, low dielectric constant layer 4 a , are now protected from interconnect metal structure 7 , and from the process steps used to create interconnect metal structure 7 , by insulator spacers 6 b , in via hole 5 , and by insulator layer 6 a , on the top surface of photosensitive, low dielectric constant layer 4 a.
  • a refractory type metal such as tungsten
  • FIG. 9 schematically shows the result of a CMP procedure, applied to photosensitive, low dielectric constant layer 4 a , after creation of via hole 5 .
  • the thickness of the silicon oxide layer 6 a is between about 2000 to 8000 Angstroms, while the thickness of silicon oxide layer 6 b , on the sides of via hole 5 , is between about 200 to 1000 Angstroms.
  • Interconnect metal structure 7 is formed using the identical materials and processes used for the first embodiment of this invention.

Abstract

A method for forming a via hole, in an insulator layer, without the use of photoresist procedures, has been developed. A photosensitive, low dielectric constant layer, is used as an interlevel insulator layer, between metal interconnect structures. Direct exposure, of a specific region of the photosensitive, low dielectric constant layer, converts the a specific region of the photosensitive, low dielectric constant layer, to a material that remains insoluble in a specific solution, while an unexposed region, of the same layer, can be selectively removed, creating the desired via hole. A silicon oxide deposition, and an anisotropic dry etch procedure, are employed to protect exposed surfaces of the photosensitive, low dielectric constant layer, in the form of silicon oxide spacers, formed on the sides of the via hole, and a silicon oxide layer, overlaying the top surface of the photosensitive, low dielectric constant layer.

Description

BACKGROUND OF THE INVENTION
(1) Field of the Invention
The present invention relates to processes used to fabricate semiconductor devices, and more specifically to a process used to create a via hole, in a dielectric layer, exposing an underlying conductive structure.
(2) Description of Prior Art
The semiconductor industry is continually striving to increase the performance of semiconductor devices, while still maintaining, or even reducing the manufacturing costs of these higher performing semiconductor devices. The ability of the industry to fabricate devices with sub-micron features, or micro-miniaturization, has allowed the performance and cost objectives to be successfully addressed. Smaller device features allow a reduction of performance degrading resistances and capacitances to be realized, resulting in performance improvements. In addition the use of sub-micron device features, allows a greater number of smaller semiconductor chips, still possessing device densities comparable to device densities obtained with larger counterparts, to be obtained from a specific size starting substrate, thus resulting in a reduction of the processing cost for a specific semiconductor chip.
The arrival of micro-miniaturization has been attributed to advances in specific semiconductor fabrication disciplines, such as photolithography and dry etching. The use of more sophisticated exposure cameras, as well as the development of more sensitive photosensitive materials, have allowed sub-micron images to be routinely formed in photoresist layers. In addition the development of more advanced dry etching tools, and processes, have allowed the sub-micron images in photoresist layers, to be successfully transferred to underlying materials, used to create advanced semiconductor devices. However in addition to advances in semiconductor fabrication disciplines, optimization of specific fabrication sequences are still needed to further reduce the manufacturing costs for semiconductor devices.
One area of semiconductor fabrication, via hole formation, has been addressed regarding cost and performance optimization. As device dimensions shrink, processes used to open sub-micron via holes in dielectric layers, become more difficult to achieve. Sub-micron images in photoresist layers, used as masks for subsequent dry etching of the sub-micron via holes, are costly process steps, and can result in unwanted damage to exposed metal surfaces, occurring from processes, and reactants, used to remove the masking photoresist shape, at the conclusion of via hole formation. This invention will describe a novel process for forming a via hole in a dielectric layer, exposing an underlying metal interconnect structure, however this invention will feature a via hole opening procedure, without the use of costly photoresist procedures. A via hole is formed in a photosensitive, low dielectric constant layer, using direct exposure, and selective removal of the exposed region. However unlike the conventional photoresist processes, the photosensitive, low dielectric constant layer is not removed, and after filling the via hole with metal, the photosensitive, low dielectric constant layer remains to function as an interlevel dielectric layer, located between underlying and overlying, metal interconnect structures. An option offered in this invention is the creation of chemically vapor deposited, insulator spacers, on the sides of the via hole, to protect the exposed sides of the photosensitive, low dielectric constant layer, from subsequent processing steps. Prior art, such as Chang et al, in U.S. Pat No. 5,559,055, describe the use of low dielectric constant materials to fill spaces between metal lines, however they do not describe the use of a photosensitive, low dielectric constant layer, used as an interlevel dielectric layer, as well as a material used for via hole formation, without the use of photosensitive photoresist materials.
SUMMARY OF THE INVENTION
It is an object of this invention to form a via hole in a dielectric layer, exposing the top surface of an underlying interconnect metal structure.
It is another object of this invention to form a via hole in a photosensitive, low dielectric constant layer, using direct exposure and development, with the use of masking photoresist shapes.
It is still another object of this invention to form protecting, insulator spacer, on the sides of the via hole that was formed in the photosensitive, low dielectric constant layer.
In accordance with the present invention a process is described for forming a via hole in a photosensitive, low dielectric constant layer, without the use of photoresist processing. An underlying interconnect metal structure is provided, followed by the application of a photosensitive, low dielectric constant layer. A desired via hole pattern is created in a region of the photosensitive, low dielectric layer, via direct exposure. The unexposed region of the photosensitive, low dielectric constant layer is than selectively removed, using wet solvent solutions, resulting in the desired via hole, exposing the top surface of an underlying interconnect metal structure. An chemically deposited insulator layer is next deposited, planarized, and subjected to an anisotropic reactive ion etching, (RIE), procedure, resulting in insulator spacers, on the sides of the via hole, in addition to a remaining portion of the insulator layer, overlying the top surface of the photosensitive, low dielectric constant layer. A metal deposition, used to fill the via hole, now protected with insulator spacers, is than performed.
A second iteration of this invention features the planarization step, performed after deposition of the photosensitive, low dielectric constant layer, followed by patterning procedures comprised of direct exposure and development of the unexposed region of the photosensitive, low dielectric constant layer, resulting in the creation of the via hole. Insulator spacers are again formed on the sides of the via hole, using the same deposition and anisotropic RIE procedures, used with the previous embodiment.
BRIEF DESCRIPTION OF THE DRAWINGS
The object and other advantages of this invention are best described in the preferred embodiment with reference to the attached drawings that include:
FIGS. 1-8, which schematically, in cross-sectional style, describe a first embodiment of this invention, in which a via hole, protected with insulator spacers, is created in a photosensitive, low dielectric constant layer, without the use of photoresist processing.
FIGS. 9-11, which schematically, in cross-sectional style, describe a second embodiment of this invention, in which the planarization of the photosensitive, low dielectric constant layer, is performed prior to creation of the via hole.
DESCRIPTION OF THE PREFERRED EMBODIMENTS
The method of forming a via hole, in a photosensitive, low dielectric constant layer, without the use of photoresist masking, will now be described in detail. FIG. 1, schematically shows interconnect metal structures 3, overlying insulator layer 2, on a semiconductor substrate 1. Interconnect metal structures 3, can be used to contact active device regions (not shown in drawings), such as metal oxide semiconductor field effect transistor, (MOSFET), source and drain regions in semiconductor substrate 1, via contact holes, (not shown in drawings), in insulator layer 2. Interconnect metal structures 3, can also be used to contact underlying, interconnect metal structures, (not shown in drawings), underlying insulator layer 2, via use of via holes in insulator layer 2. Semiconductor substrate 1, is comprised of P type, single crystalline silicon, with a <100> crystallographic orientation. Insulator layer 2, can be a silicon oxide layer, obtained using low pressure chemical vapor deposition, (LPCVD), or plasma enhanced chemical vapor deposition, (PECVD), procedures. Insulator layer 2, can also be a boro-phosphosilicate, (BPSG), or a phosphosilicate, (PSG), layer. Interconnect metal structures 3, can be comprised of an aluminum based metal, or a refractory type metal, such as tungsten, formed via plasma deposited, or chemically vapor deposited procedures, followed by patterning procedures consisting of photolithographic and etching procedures.
A photosensitive, low dielectric constant layer 4 a, shown schematically in FIG. 2, is next applied, to a thickness between about 2000 to 8000 Angstroms. Photosensitive, low dielectric constant layer 4 a, can be comprised of either an organic-inorganic hybrid polymer, called “CHEMAT-B”, (manufactured by Chemat Technology Inc., Northridge Calif.), or benzocylobutene, (BCB), with the BCB layer being a negative photosensitive layer, that is exposed regions, or cross-linked regions, remain insoluble in a specific solvent, while the non-exposed regions, are removable in the same solvent. These materials, with a dielectric constant between about 2.5 to 3.0, can also be used for insulation between levels of interconnect metal structures. Using the desired chromium photo plate, for each material, CHEMAT-B, or BCB, a direct exposure procedure is performed to a region of layer 4 a, exposed in the openings in chromium photo plate, using deep UV for CHEMAT-B layer, at a wavelength between about 190 to 195 nanometers, while a I Line exposure, at a wavelength between about 360 to 370 nanometers, is used for BCB layer, both layers exposed using a dose between about 0 to 800 millijoules/cm2, resulting in the cross-linking of exposed regions of layer 4 a, leaving a non-exposed, and non-cross-linked, region 4 b, shown schematically in FIG. 3. Non-cross-linked region 4 b, is now more soluble in toluene, than the exposed regions of layer 4 a, for the CHEMAT-B layer, (and non-crossed-linked region 4 b, is now more soluble in mesitylene, than the exposed regions of layer 4 a, for the BCB layer). Therefore selective removal of non-cross-linked region 4 b, is accomplished using either mesitylene, or toluene, resulting in the creation of via hole 5, shown schematically in FIG. 4. Via hole 5 exposing the top surface of interconnect metal structure 3, was created without the use of photoresist masking. Previously used conventional photoresist processing comprises creation of the desired via hole image in a photoresist layer, followed by the transfer of this image to an underlying insulator layer, via a dry etching procedure. This costly process is than continued with the removal of the masking photoresist layer, using plasma oxygen ashing procedures. The ashing procedure can result in unwanted oxidation, as well as damage to, the underlying interconnect metal structure, now exposed at the bottom of the via hole. The use of a photosensitive, low dielectric constant layer, that remains as part of the structure, reduces the cost of photoresist processing, as well as eliminating deleterious oxidation, and damage, to exposed metal structures.
Procedures used to passivate and protect photosensitive, low dielectric constant layer 4 a, from interfacing materials and processes, are next addressed and schematically shown in FIGS. 5-8. An insulator layer, comprised of silicon oxide, is next deposited using PECVD or high density plasma chemical vapor deposition, (HDPCVD), procedures. Insulator layer 6 a, is deposited on the top surface of photosensitive, low dielectric layer 4 a, at a thickness between about 2000 to 8000 Angstroms, while the same CVD procedure results in the deposition of insulator layer 6 b, at a thickness between about 200 to 1000 Angstroms, on the exposed surfaces of photosensitive, low dielectric layer 4 a, in via hole 5. This is schematically shown in FIG. 5. A chemical mechanical polishing, (CMP), procedure is next used for surface planarization, resulting in the smooth top surface of insulator layer 6 a, with insulator layer 6 a, also filling the low spaces in the uneven topography creating by photosensitive, low dielectric constant layer 4 a, traversing underlying interconnect metal structures 3. This is schematically shown in FIG. 6.
An anisotropic RIE procedure, using CHF3 as an etchant, is used to remove insulator 6 b, from the bottom of via hole 5, forming insulator spacers 6 b, on the sides of via hole 5, and exposing the top surface of interconnect metal structure 3. This is shown schematically in FIG. 7. An overlying interconnect metal structure 7, shown schematically in FIG. 8, is next formed, contacting underlying interconnect metal structure 3, in via hole 5. Overlying interconnect metal structure 7, can be comprised of an aluminum based layer, deposited using R.F. sputtering procedures, and patterned using conventional photolithographic and RIE procedures, using Cl2 as an etchant. Overlying interconnect metal structure 7, can also be a refractory type metal, such as tungsten, deposited using LPCVD procedures, and again patterned via conventional photolithographic and RIE procedures. All regions of photosensitive, low dielectric constant layer 4 a, are now protected from interconnect metal structure 7, and from the process steps used to create interconnect metal structure 7, by insulator spacers 6 b, in via hole 5, and by insulator layer 6 a, on the top surface of photosensitive, low dielectric constant layer 4 a.
A second embodiment of this invention, featuring the planarization of photosensitive, low dielectric constant layer 4 a, prior to insulator deposition, and formation of insulator spacers, in via hole 5, is described schematically using FIGS. 9-11. FIG. 9, schematically shows the result of a CMP procedure, applied to photosensitive, low dielectric constant layer 4 a, after creation of via hole 5. The uneven top surface topography, created by the application of photosensitive, low dielectric constant layer 4 a, traversing underlying interconnect metal structures 3, and the spaces between these structures, is now smoothed via the CMP procedure. The deposition of a silicon oxide layer, on the sides of via hole 5, again using PECVD or HDPCVD procedures, followed by an anisotropic RIE procedure, again using CHF3 as an etchant, is used to create insulator spacers 6 b, on the sides of via hole 5, and result in insulator layer 6 a, residing on the top surface of the planarized, photosensitive, low dielectric constant layer 4 a. This is schematically shown in FIG. 10. The thickness of the silicon oxide layer 6 a, deposited on the top surface of photosensitive, low dielectric constant layer 4 a, is between about 2000 to 8000 Angstroms, while the thickness of silicon oxide layer 6 b, on the sides of via hole 5, is between about 200 to 1000 Angstroms. The formation of overlying interconnect metal structure 7, contacting underlying interconnect metal structure 3, in via hole 5, is schematically shown in FIG. 11. Interconnect metal structure 7, is formed using the identical materials and processes used for the first embodiment of this invention. Again the advantage of gained using a non-photoresist process, for creation of via hole 5, is not compromised by exposure of the material, photosensitive, low dielectric constant layer 4 a, to subsequent overlying materials and processes, via the use of insulator spacers 6 b, and insulator layer 6 a.
While this invention has been particularly shown and described with reference to, the preferred embodiments thereof, it will be understood by those skilled in the art that various changes in form and details may be made without departing from the spirit and scope of this invention.

Claims (18)

What is claimed is:
1. A method for forming a via hole in a photosensitive low dielectric constant layer, on a semiconductor substrate, with said via hole formed without the use of photoresist patterning procedures, and with said via hole then protected with silicon oxide spacers, comprising:
providing said semiconductor substrate containing active device regions and providing a dielectric layer, overlying active device regions;
forming a first interconnect metal structure on said dielectric layer;
applying said photosensitive low dielectric constant layer on said first interconnect metal structure and on said dielectric layer, in regions in which said underlying dielectric layer is not covered by said first interconnect metal structure;
directly exposing a first portion of said photosensitive low dielectric constant layer to a light source, forming a non-soluble material in said first portion of said low dielectric constant layer, leaving a non-exposed, soluble region in a second portion of said photosensitive low dielectric constant layer, directly overlying said first metal interconnect structure;
selectively removing soluble material from said second portion of said photosensitive low dielectric constant layer, creating said via hole in said photosensitive low dielectric constant layer, exposing the top surface of said first interconnect metal structure;
depositing a silicon oxide layer, with a thick portion of said silicon oxide layer deposited on the top surface of said photosensitive low dielectric constant layer, and with a thin portion of said silicon oxide layer deposited on the sides of the photosensitive low dielectric constant layer exposed in said via hole, and on the top surface of said first interconnect metal structure exposed in said via hole;
planarizing to create a smooth top surface topography in regions in which said silicon oxide layer overlays said photosensitive low dielectric constant layer;
performing a blanket, anisotropic dry etching to remove said thin portion of said silicon oxide layer from the top surface of said first interconnect metal structure exposed in said via hole, forming said silicon oxide spacers on the sides of said via hole, while leaving a segment of said thick portion of said silicon oxide layer remaining on the top surface of said photosensitive low dielectric layer, creating a silicon oxide protected via hole, located in said photosensitive low dielectric constant layer; and
forming a second interconnect metal structure, with a first portion of said second interconnect metal structure in said silicon oxide protected via hole, and with a second portion of said second interconnect metal structure on said silicon oxide layer, in a region in which said silicon oxide layer overlays the top surface of said photosensitive low dielectric layer.
2. The method of claim 1, wherein said active device regions can be source drain regions in said semiconductor substrate.
3. The method of claim 1, wherein said active device regions are metal structures.
4. The method of claim 1, wherein said first interconnect metal structure can be an aluminum based metal structure, or a tungsten metal structure.
5. The method of claim 1, wherein said photosensitive low dielectric constant layer is a benzocylobutene layer, applied to a thickness between about 2000 to 8000 Angstroms, and with a dielectric constant between about 2.5 to 3.0.
6. The method of claim 1, wherein direct exposure of said photosensitive low dielectric layer, is performed at a wavelength between about, and at a wavelength between 360 to 370 nanometers for BCB, and exposed at a dose between about 0 to 800 millijoules, creating said non-soluble material.
7. The method of claim 1, wherein said soluble material is selectively removed using mesitylene as a solvent, for the non-exposed regions of the BCB layer, creating said via hole.
8. The method of claim 1, wherein said silicon oxide layer is deposited using PECVD or HDPCVD procedures, to a thickness between about 2000 to 8000 Angstroms, on the top surface of said photosensitive low dielectric constant layer, and to a thickness between about 200 to 1000 Angstroms, on said photosensitive low dielectric constant layer, exposed on the sides of said via hole.
9. The method of claim 1, wherein silicon oxide spacers are formed, on the sides of said via hole, using an anisotropic RIE procedure, using CHF3 as an etchant.
10. The method of claim 1, wherein said second interconnect metal structure can be an aluminum based metal structure, or a tungsten metal structure.
11. A method of fabricating a silicon oxide protected via hole in a photosensitive low dielectric constant layer, via initial creation of a via hole in said photosensitive low dielectric constant layer, formed without using photoresist procedures, and finalized with silicon oxide spacers, formed on the sides of said via hole in said photosensitive low dielectric constant layer, comprising:
forming a first metal interconnect structure on an underlying insulator layer;
depositing said photosensitive low dielectric constant layer on said first metal interconnect structure and on regions of said underlying insulator layer not covered by said first metal interconnect structure;
chemical mechanical polishing creating a smooth top surface topography for said photosensitive low dielectric constant layer;
exposing a first region of said photosensitive low dielectric constant layer to a light source, forming a non-soluble material in said first region of said photosensitive low dielectric constant layer while leaving a second region of said photosensitive low dielectric constant layer unexposed, wherein said second region is directly overlying said first interconnect metal structure;
selectively removing unexposed, said second region of said photosensitive low dielectric constant layer creating said via hole in said photosensitive low dielectric constant layer, exposing the top surface of said first interconnect metal structure;
depositing a silicon oxide layer wherein the thickness of a first portion of said silicon oxide layer deposited on the top surface of said photosensitive low dielectric constant layer is 2000 to 8000 Angstroms, while the thickness of a second portion of said silicon oxide layer deposited on the sides of said photosensitive low dielectric layer, exposed in said via hole, and deposited on the top surface of said first interconnect metal structure, exposed in said via hole, is only between about 200 to 1000 Angstroms;
blanket, anisotropic etching removing said second portion of said silicon oxide layer from the top surface of said first interconnect structure, creating said silicon oxide spacers on the sides of said via hole, while leaving a segment of said first portion of said silicon oxide layer on the top surface of said photosensitive low dielectric constant layer, resulting in the formation of said silicon oxide protected via hole; and
forming a second interconnect metal structure contacting the top surface of said first interconnect metal structure, in said silicon oxide protected via hole.
12. The method of claim 11, wherein said first interconnect metal structure can be an aluminum based metal structure, or a tungsten metal structure.
13. The method of claim 11, wherein said photosensitive low dielectric constant layer is benzocylobutene, with a dielectric constant between about 2.5 to 3.0, applied at a thickness between about 2000 to 8000 Angstroms.
14. The method of claim 11, wherein said soluble material is created via direct exposure of a region of said photosensitive low dielectric constant layer, at a wavelength between about 360 to 370 nanometers for BCB, using a dose of between about 0 to 800 millijoules.
15. The method of claim 11, wherein said via hole in said photosensitive low dielectric layer is formed via select removal of said soluble material, using mesitylene as a solvent for non-exposed regions of BCB.
16. The method of claim 11, wherein said silicon oxide layer, on the sides of said via hole, is obtained using PECVD or HDPCVD procedures, to a thickness between about 200 to 1000 Angstroms.
17. The method of claim 11, wherein said silicon oxide spacers are formed on the sides of said via hole, via an anisotropic RIE procedure, applied to said silicon oxide layer, using CHF3 as an etchant.
18. The method of claim 11, wherein said second interconnect metal structure is a aluminum based metal structure, or a tungsten metal structure.
US09/192,450 1998-11-16 1998-11-16 Sidewall protection for a via hole formed in a photosensitive, low dielectric constant layer Expired - Lifetime US6281115B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US09/192,450 US6281115B1 (en) 1998-11-16 1998-11-16 Sidewall protection for a via hole formed in a photosensitive, low dielectric constant layer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US09/192,450 US6281115B1 (en) 1998-11-16 1998-11-16 Sidewall protection for a via hole formed in a photosensitive, low dielectric constant layer

Publications (1)

Publication Number Publication Date
US6281115B1 true US6281115B1 (en) 2001-08-28

Family

ID=22709704

Family Applications (1)

Application Number Title Priority Date Filing Date
US09/192,450 Expired - Lifetime US6281115B1 (en) 1998-11-16 1998-11-16 Sidewall protection for a via hole formed in a photosensitive, low dielectric constant layer

Country Status (1)

Country Link
US (1) US6281115B1 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020056914A1 (en) * 1999-09-01 2002-05-16 Salman Akram Metallization structures for semiconductor device interconnects, methods for making same, and semiconductor devices including same
US20030232499A1 (en) * 2002-06-18 2003-12-18 Ebrahim Andideh Method of making a semiconductor device that includes a dual damascene interconnect
EP1490454A2 (en) * 2002-01-17 2004-12-29 Silecs OY Poly(organosiloxane) materials and methods for hybrid organic-inorganic dielectrics for integrated circuit applications
US6955939B1 (en) 2003-11-03 2005-10-18 Advanced Micro Devices, Inc. Memory element formation with photosensitive polymer dielectric
US20060079025A1 (en) * 2004-10-12 2006-04-13 Agency For Science, Technology And Research Polymer encapsulated dicing lane (PEDL) technology for Cu/low/ultra-low k devices
US20060223222A1 (en) * 2005-03-29 2006-10-05 Samsung Electronics Co., Ltd. Organic thin film transistor array panel and method of manufacturing the same
US7192867B1 (en) * 2002-06-26 2007-03-20 Cypress Semiconductor Corporation Protection of low-k dielectric in a passivation level
US20150255302A1 (en) * 2014-03-07 2015-09-10 Samsung Electronics Co., Ltd. Method of manufacturing semiconductor device
US20160190002A1 (en) * 2014-12-26 2016-06-30 Taiwan Semiconductor Manufacturing Company, Ltd. High Boiling Temperature Solvent Additives for Semiconductor Processing

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5284801A (en) * 1992-07-22 1994-02-08 Vlsi Technology, Inc. Methods of moisture protection in semiconductor devices utilizing polyimides for inter-metal dielectric
US5370904A (en) 1992-12-10 1994-12-06 Dow Corning Toray Silicone Co., Ltd. Method for the formation of silicon oxide films
US5393702A (en) 1993-07-06 1995-02-28 United Microelectronics Corporation Via sidewall SOG nitridation for via filling
US5459086A (en) 1994-11-07 1995-10-17 United Microelectronics Corporation Metal via sidewall tilt angle implant for SOG
US5472913A (en) * 1994-08-05 1995-12-05 Texas Instruments Incorporated Method of fabricating porous dielectric material with a passivation layer for electronics applications
US5552344A (en) * 1995-11-16 1996-09-03 Taiwan Semiconductor Manufacturing Company Non-etchback self-aligned via size reduction method employing ozone assisted chemical vapor deposited silicon oxide
US5559055A (en) 1994-12-21 1996-09-24 Advanced Micro Devices, Inc. Method of decreased interlayer dielectric constant in a multilayer interconnect structure to increase device speed performance
US5854302A (en) * 1993-04-29 1998-12-29 The Dow Chemical Company Partially polymerized divinylsiloxane linked bisbenzocyclobutene resins and methods for making said resins

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5284801A (en) * 1992-07-22 1994-02-08 Vlsi Technology, Inc. Methods of moisture protection in semiconductor devices utilizing polyimides for inter-metal dielectric
US5370904A (en) 1992-12-10 1994-12-06 Dow Corning Toray Silicone Co., Ltd. Method for the formation of silicon oxide films
US5854302A (en) * 1993-04-29 1998-12-29 The Dow Chemical Company Partially polymerized divinylsiloxane linked bisbenzocyclobutene resins and methods for making said resins
US5393702A (en) 1993-07-06 1995-02-28 United Microelectronics Corporation Via sidewall SOG nitridation for via filling
US5472913A (en) * 1994-08-05 1995-12-05 Texas Instruments Incorporated Method of fabricating porous dielectric material with a passivation layer for electronics applications
US5459086A (en) 1994-11-07 1995-10-17 United Microelectronics Corporation Metal via sidewall tilt angle implant for SOG
US5559055A (en) 1994-12-21 1996-09-24 Advanced Micro Devices, Inc. Method of decreased interlayer dielectric constant in a multilayer interconnect structure to increase device speed performance
US5552344A (en) * 1995-11-16 1996-09-03 Taiwan Semiconductor Manufacturing Company Non-etchback self-aligned via size reduction method employing ozone assisted chemical vapor deposited silicon oxide

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
Chu et al, Direct Patterning low-k Material for Damascene Process, DUMIC Conference 1997, Library of Congress No. 89-644090, pp. 93-97, Feb. 11, 1997.*
Kim et al, Modeling of Via Formation by photosensitive Dielectric Materials for MCM Applications, Proceedings of the 5th International Conference on Properties and Applications of Dielectric Materials, pp. 930-933, Feb. 11, 1997.*
Korczynski, "Low K dielectric integration cost modeling", Solid State Technology Oct. 1997, pp. 123-128.
Strandjord et al, Photosensitive Benzocyclobutene for Stress Buffer and Passivation Applications (One Mask Manufacturing Process), 1997, Electronic Components and Technology Conference, pp. 1260-1268, May 21, 1997.*

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050181595A1 (en) * 1999-09-01 2005-08-18 Salman Akram Metallization structures for semiconductor device interconnects
US20020106879A1 (en) * 1999-09-01 2002-08-08 Salman Akram Metallization structures for semiconductor device interconnects, methods for making same, and semiconductor devices including same
US7071557B2 (en) * 1999-09-01 2006-07-04 Micron Technology, Inc. Metallization structures for semiconductor device interconnects, methods for making same, and semiconductor devices including same
US6955979B2 (en) 1999-09-01 2005-10-18 Micron Technology, Inc. Methods for making metallization structures for semiconductor device interconnects
US20020056914A1 (en) * 1999-09-01 2002-05-16 Salman Akram Metallization structures for semiconductor device interconnects, methods for making same, and semiconductor devices including same
US6893961B2 (en) 1999-09-01 2005-05-17 Micron Technology, Inc. Methods for making metallization structures for semiconductor device interconnects
EP1490454A2 (en) * 2002-01-17 2004-12-29 Silecs OY Poly(organosiloxane) materials and methods for hybrid organic-inorganic dielectrics for integrated circuit applications
EP1490454A4 (en) * 2002-01-17 2010-03-17 Silecs Oy Poly(organosiloxane) materials and methods for hybrid organic-inorganic dielectrics for integrated circuit applications
US6740579B2 (en) * 2002-06-18 2004-05-25 Intel Corporation Method of making a semiconductor device that includes a dual damascene interconnect
US20030232499A1 (en) * 2002-06-18 2003-12-18 Ebrahim Andideh Method of making a semiconductor device that includes a dual damascene interconnect
US7192867B1 (en) * 2002-06-26 2007-03-20 Cypress Semiconductor Corporation Protection of low-k dielectric in a passivation level
US6955939B1 (en) 2003-11-03 2005-10-18 Advanced Micro Devices, Inc. Memory element formation with photosensitive polymer dielectric
US20060079025A1 (en) * 2004-10-12 2006-04-13 Agency For Science, Technology And Research Polymer encapsulated dicing lane (PEDL) technology for Cu/low/ultra-low k devices
US7160756B2 (en) 2004-10-12 2007-01-09 Agency For Science, Techology And Research Polymer encapsulated dicing lane (PEDL) technology for Cu/low/ultra-low k devices
US20060223222A1 (en) * 2005-03-29 2006-10-05 Samsung Electronics Co., Ltd. Organic thin film transistor array panel and method of manufacturing the same
US20150255302A1 (en) * 2014-03-07 2015-09-10 Samsung Electronics Co., Ltd. Method of manufacturing semiconductor device
US20160190002A1 (en) * 2014-12-26 2016-06-30 Taiwan Semiconductor Manufacturing Company, Ltd. High Boiling Temperature Solvent Additives for Semiconductor Processing
US9905457B2 (en) * 2014-12-26 2018-02-27 Taiwan Semiconductor Manufacturing Company, Ltd. High boiling temperature solvent additives for semiconductor processing

Similar Documents

Publication Publication Date Title
US6579757B2 (en) Method for fabricating semiconductor device which prevents gates of a peripheral region from being oxidized
US6664191B1 (en) Non self-aligned shallow trench isolation process with disposable space to define sub-lithographic poly space
US5158910A (en) Process for forming a contact structure
US6137182A (en) Method of reducing via and contact dimensions beyond photolithography equipment limits
US6063702A (en) Global planarization method for inter level dielectric layers using IDL blocks
US5534462A (en) Method for forming a plug and semiconductor device having the same
KR100301599B1 (en) Semiconductor device and its manufacturing method
JP2622059B2 (en) Method for manufacturing semiconductor integrated circuit
US5323047A (en) Structure formed by a method of patterning a submicron semiconductor layer
US5958800A (en) Method for post planarization metal photolithography
US20090035584A1 (en) Methods for device fabrication using pitch reduction and associated structures
US6033962A (en) Method of fabricating sidewall spacers for a self-aligned contact hole
US5792707A (en) Global planarization method for inter level dielectric layers of integrated circuits
US5792705A (en) Optimized planarization process for SOG filled vias
US6596609B2 (en) Method of fabricating a feature in an integrated circuit using two edge definition layers and a spacer
JPH09107028A (en) Element isolation method for semiconductor device
US5283208A (en) Method of making a submicrometer local structure using an organic mandrel
US6521542B1 (en) Method for forming dual damascene structure
US6281115B1 (en) Sidewall protection for a via hole formed in a photosensitive, low dielectric constant layer
JPH09312336A (en) Connection hole formation method
US6114235A (en) Multipurpose cap layer dielectric
EP0573996B1 (en) Method of manufacturing a semiconductor memory device
US5827780A (en) Additive metalization using photosensitive polymer as RIE mask and part of composite insulator
US6579791B1 (en) Method to form dual damascene structure
US6180537B1 (en) Method of fabricating dielectric layer in alignment marker area

Legal Events

Date Code Title Description
AS Assignment

Owner name: INDUSTRIAL TECHNOLOGY RESEARCH INSTITUTE, TAIWAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:CHANG, CHUNG LIANG;CHEN, LAI-JUH;REEL/FRAME:009607/0821

Effective date: 19981022

STCF Information on status: patent grant

Free format text: PATENTED CASE

FPAY Fee payment

Year of fee payment: 4

FPAY Fee payment

Year of fee payment: 8

FPAY Fee payment

Year of fee payment: 12