TW416138B - Manufacturing process for notch-free polycide gate of integrated circuit - Google Patents

Manufacturing process for notch-free polycide gate of integrated circuit Download PDF

Info

Publication number
TW416138B
TW416138B TW84100086A TW84100086A TW416138B TW 416138 B TW416138 B TW 416138B TW 84100086 A TW84100086 A TW 84100086A TW 84100086 A TW84100086 A TW 84100086A TW 416138 B TW416138 B TW 416138B
Authority
TW
Taiwan
Prior art keywords
layer
silicon
polycide
amorphous silicon
amorphous
Prior art date
Application number
TW84100086A
Other languages
Chinese (zh)
Inventor
Chang-Ming Dai
Jau-Huang He
Shuen-He Liou
Original Assignee
Ind Tech Res Inst
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ind Tech Res Inst filed Critical Ind Tech Res Inst
Priority to TW84100086A priority Critical patent/TW416138B/en
Application granted granted Critical
Publication of TW416138B publication Critical patent/TW416138B/en

Links

Landscapes

  • Drying Of Semiconductors (AREA)

Abstract

The present invention provides a manufacturing process for notch-free polycide gate of integrated circuit. It is characterized: depositing a layer of rough amorphous silicon film on the silicon dioxide layer on top of polycide gate; using the rough amorphous silicon film surface to scatter the reflection light during the exposure in the microlithography and forming destructive interference to reduce the optical notching of polycide. The major process of the present invention includes the following steps : firstly forming field oxide and gate oxide on the silicon semiconductor substrate; depositing polycide layer, salicide layer, silicon dioxide layer and amorphous silicon layer; then, spraying photoresist on the amorphous silicon layer and using microlithography to create the photoresist pattern; thereafter, using plasma etching technology for anisotropically creating the pattern of the said salicide layer, silicon dioxide layer and amorphous layer simultaneously and followed by using oxide plasma to remove the photoresist; lastly, using the silicon dioxide on top of the said polycide layer as the etching protection layer and using the plasma etching to etch out the polycide layer below the salicide layer; then, completing the manufacturing process for notch-free polycide gate of metal oxide semiconductor transistor.

Description

416138__^_ 五、發明説明(1 ) (一) 技術領域 本發明所掲露的是一種消强積体電路(Integrated Circuit : 1C) 復晶砂閑 (Polycide gate) 線條凹 陷(Notching)的製程.此製程解決了傳統金氣半電晶 体(Metal Oxide Semiconductor' ; MQS)之複晶砂閑 線條凹陷的問題,吾人得以制定次微米金氣半電晶f本 元件(Submicron MOS device)之複晶砂閑線燦。 (二) 發明背景416138 __ ^ _ V. Description of the Invention (1) (1) Technical Field The present invention discloses a process of a polycide gate (Notched) line with a composite circuit (Integrated Circuit: 1C). This process solves the problem of recession of the complex crystal sand of traditional metal gas semi-transistors (Metal Oxide Semiconductor '; MQS), and we were able to formulate the sub-micron gold gas semi-transistor f. Free line Can. (II) Background of the invention

傳统金氣半電晶体(MOS)製程在形成複晶矽閛時 ,首先形成場氧化層(Field oxide)接著,再形成複 晶δ夕層、金藤矽化物凝和二氣化矽層,然後,利周微 影技術(Lithography)制定光阻圖案,最後,利Μ電 策註刻(Plasma Etch)技術垂直單向性地(Anisotro-picaJ ly) 制定所述夜晶砂層、 金展砂化樹層和二氯化 5夕層的圖案,並旋5卩利用氣氣電疲(Qxysen plasraa.) 去除光阻,然而,由於場氣化層造成的平滑聚焦面, 在制定光阻圖案時,此平滑聚焦面所産生之光學反射 作用,造成理晶矽閘之光阻圖案愛細的凹陷現铼,導 致金氣半電晶体毀癍(Fail U (三) 發明的簡要説明 本發明的主要目的是提供一種無凹陷的積体電路 複晶矽閛製程方法。此方法首先在矽半導体基板上形 成場氣化層(Field Oxide)和閑氣化® (Gate Oxide) 本纸尺度遴Λ t國a家捸準(CMS ) A4此袼 ( 210x297公釐) —-Ί--,------裝------訂 .f線 (請光閱讀背云之注意;項再填寫工頁) 416138 A7 B7_ 五'發明説明(2 ) ,接著沉積複晶砂層、金屬砂化物廢、二氣化砂層和 非晶5夕層(Amorphous Silicon),然後.塗f布光阻於 非晶矽層上•並利用徹影技術制定光阻圔案,接箸. 利兩電资独刻(Plasma Etch)技術同時垂直單向性地 制定所述金屬矽化物曆、二氯化砂歷和非晶砂層的圖 案.並旋即利用氧氣電漿去除光阻,最後.以所述復 晶矽層上方的二氧化矽厣為蝕刻保護罩(Etch Mask) ,利用電漿蝕刻技術独去金屬矽化物層下方的複晶矽 層,一種無凹陷(Notch ins Free)的複晶砂閑金氣半 電晶体製程於焉完成。 (四)圖示的簡要說明 圖1是完成場氣化層和閑氣化靥後的製程剖面圖; 圖2是完成複晶矽層沈稹後的製程剖面圖; 圖3是完成金屬矽化物層後的裂程剖面圖 圖4是完成二氣化矽廢後的製程剖面圖。 圖5是完成非晶矽層後的製程剖面圖。 圖6是完成光阻塗怖並利用微影技淅制定所述光阻圖 案後的製程剖面画; 疆7是利甩電榮蝕刻技術垂直單向性地制定所述金屬 5夕化物靥、二氣化砂層和非晶砂層的圖案後的製 程剖面圖; 圖8是利用氣氣電漿去除光阻圖案後的製程剖面圖; 圖9是利用霣漿蝕刻技術垂直單向性地制定所述祓晶 本紙伕足度遑用中8S家梯率(CNS ) ( Π0Χ297公* > -4 — I--.------.—裝------訂 成 (請先閎讀背面之注意事項再填寫本頁) __87 _ 416138 A7 五、發明説明(]) 5夕廢後的製程剖面圖。 (五)發明的詳細說明 參考圖1 ,首先形成場氣化層12和閑氣化® (圖 中未盖出於半導体矽基板10上.接著沈積一®複晶矽 層16.如圖2所示β形成場氣化原12的技術靥於傳统 , .-, 裝In the traditional gold gas semi-transistor (MOS) process, when a polycrystalline silicon wafer is formed, a field oxide is first formed, and then a polycrystalline delta layer, a gold vine silicide, and a two-gas-silicon layer are formed. Then, Lithography developed a photoresist pattern. Finally, Plasma Etch technology developed an isotropic-picaJ ly vertical development of the nocturnal sand layer, the golden sanding tree layer and the second Chlorinate the pattern of the 5th layer and spin the 5th layer to remove the photoresist using Qxysen plasraa. However, due to the smooth focus surface caused by the field gasification layer, when the photoresist pattern is formulated, this smooth focus surface The resulting optical reflection effect causes fine recesses in the photoresist pattern of the Ricoh silicon gate to appear, leading to the destruction of gold gas semi-transistors (Fail U (III) Brief description of the invention The main purpose of the present invention is to provide a A recessed integrated circuit polycrystalline silicon wafer manufacturing method. This method first forms a field oxide layer (Gate Oxide) and a gate gasification (Gate Oxide) on a silicon semiconductor substrate. CMS) A4 this 袼 (210x297 mm) —-Ί- -, ------ install ------ order the .f line (please read the note of back cloud; fill in the sheet again) 416138 A7 B7_ Five 'invention description (2), and then deposit the polycrystalline sand layer , Metal sanding waste, second gasification sand layer and amorphous silicon layer (Amorphous Silicon), and then apply f cloth photoresist on the amorphous silicon layer • and use photo-imaging technology to formulate a photoresistance solution, then. The two electric equipment (Plasma Etch) technology simultaneously and unidirectionally formulates the pattern of the metal silicide calendar, dichlorinated sand calendar and amorphous sand layer. The photoresist is removed by oxygen plasma immediately, and finally The silicon dioxide layer above the polycrystalline silicon layer is an Etch Mask. Plasma etching technology is used to remove the polycrystalline silicon layer under the metal silicide layer. It is a kind of polycrystalline sand without depression (Notch ins Free). The fabrication process of the idle gas semi-transistor is completed in 焉. (4) Brief description of the figure. Figure 1 is a cross-sectional view of the process after the completion of the field gasification layer and the idle gasification layer; Process sectional view; FIG. 3 is a sectional view of the cracking process after the metal silicide layer is completed. FIG. 4 is a sectional view of the process after the completion of the second gasified silicon waste. 5 is a cross-sectional view of the process after the amorphous silicon layer is completed. FIG. 6 is a cross-sectional view of the process after the photoresist coating is completed and the photoresist pattern is developed by using photolithography technology; The process cross-section view after the pattern of the metal oxide compound, the second gasification sand layer, and the amorphous sand layer is drawn directionally; FIG. 8 is a process cross-section view after removing the photoresist pattern by using a gas-gas plasma; The mortar etching technology develops the unidirectionality of the crystal paper in a vertical unidirectional manner. The 8S home gradient (CNS) (Π0 × 297 公 * > -4 — I --.------.— install ------ Customized (please read the precautions on the back before filling out this page) __87 _ 416138 A7 V. Description of the invention (]) Process sectional view after 5th night waste. (5) Detailed description of the invention Referring to FIG. 1, firstly, a field gasification layer 12 and an idle gasification® are formed (not shown on the semiconductor silicon substrate 10), and then a® polycrystalline silicon layer 16 is deposited. As shown in FIG. 2 The technique of β formation field gasification primitive 12 is shown in the traditional, .-, equipment

.ΤΓII 技廷.故此處不予詳述。例如,B. Davari等人在 IEDM 1983第92頁便提出了淺凹溝隔離技術(Shallow Trench Isolation ; STI),利用淺凹溝形成場氣化 箱介菜隔離區。E. Kooi在美國專利第3970486號也 掲露了一種選擇性氣化技術.選择性的在矽基板上形 成抗氣化保護罩(Mask Asainst Oxidation),抗氣化 保護革以外的區域則以熱成長的方式形成二氣化矽膜 ,做為場氣化層12,電性元件在抗氣化保護罩區域的 石夕基板上製造;場氣化層12厚度約介於3500埃到5500 \ 揉苷部'夹揉这易身-省费合作枝^龙ΤΓII 技 廷. Therefore it will not be described in detail here. For example, B. Davari et al., In IEDM 1983, page 92, proposed shallow trench isolation technology (Shallow Trench Isolation; STI), which uses shallow trenches to form a field gasification box-cage isolation zone. E. Kooi also discloses a selective gasification technology in U.S. Patent No. 3970486. Selectively forms a Mask Asainst Oxidation on the silicon substrate. The thermal growth method forms a two-vaporized silicon film, which is used as the field gasification layer 12, and the electrical components are manufactured on the Shixi substrate in the region of the anti-gasification protective cover; the thickness of the field gasification layer 12 is about 3500 angstroms to 5500 \ Kneading glycosides' pin kneading this easy-change-cost-saving cooperation branch ^ Long

----1 I 埃之間。閘氣化層通常以熱氣化方式形成,溫度介於 900X:〜1200eC之間,厚度則約介於50〜200埃之間 »後晶δ夕層16通常由低IS化學氣相ί%積法(Low Pres-surs Chemica 1 Vapor Depos ition ; LPCVD)之同步(In -Situ)碟接雜沉積法來形成,反應氣体是15% PH5 和85% SiH4及5% L的混合氣体,溫度 為570X;,以摻雜碟原子等雜質原子.且混合氣体中 的5% PH』和95% ,目的在於精密調整晶片間接 雜濃度的均勻性,其厚度介於500至2000埃之間。 現在參考圖3,沈横一層金屬砂化物18,其厚度 介於500到1500埃之間,此層通常為以CVD形成之砂 衣紙ίΙΛΑ遴用中B B家禚準(CNS)成4狀Uiox 297公釐) ~ 416138 7 A7 B7 五、發明説明(4 ) 化、铸(Tungsten silicide VS〖x),以Genus 8500沈積 設備為例,反應氣体為抓6和5【》4時,可形成二矽化 錄WSU。接著形成二氯化砂層20,如圖4所示。二氣 化砂層20通常以低壓化學氣相沉積法(Low Pressure Chemical Vapor Deposition ; LPCVD)所形成,.反應 氣体為Si(CH3)4_、NjQ和0;_,溫度為7203C ,反應歷 力為200〜300 mTo「「.厚度约介於500〜1500埃之間 。接著,再形成一層粗:插的非晶矽層22,如圖5所示 。層22通常為以CVD形成,反應氣体為SiHt,流置 350 seem,溫度為570°C ,反應歷力為0.1〜0.3Torr ,厚度約介於300〜1000埃之間。 接著,形成光阻24的塗佈,如圖S所示,然後利 用傳统的微影技術制定所述光阻24圖案,如圖6所示 。再接箸利用電漿蛀刻技術或活化離子銓刻技術垂直 單向桂地制定所述金屬砂化物® 13、二氣化砂層20和 非晶砂層22的圖案,如圖7所示。以美國Lam Resea-rch公司所生産之RAINBOW 442S霉窺独刻機器為例, 反應氣 ί本流置 Cb 420 seem、HBr 80 seem、He 160 seem時.對金屬矽化物層13之独刻能逹到垂直箪向性 的独刻效果。以美國LamResearch公司所生産之RAIN-B0W4520電漿胜刻機器為例,蛀刻筷件設定為反應室 歷力250 mTorr、射頻功率300 watts反應氣体流置 Ar350 seem N CF4 20sccnu CHF3 20 seem 時.對二 氣化矽層20之蛀刻速率約為2500埃/tain ,且能逹到 垂直單向性的蝕刻效果。接箸利用氣氣霣漿去除光阻 本纸浪尺度遑用令國困家#車(CNS ) A4規格(210X297公釐) -6 — (請先Μ.讀背面之注意項异填寫未I ) 装 订 it 416138 五、發明説明(5 ) 24的圖案,如圖8所示。 最後,以所述複晶矽層16上方的二氧化矽層20爲蝕刻保護 罩(Etch Mask),利用電漿鈾刻技術或活化離子蝕刻蝕去露出來的 複晶矽層16,及非晶矽層22及部分二氧化较層2〇,留下複晶矽 閘的部位,如圖9所示,一種無凹陷(Notching Free)的複晶矽聞金 氧半電晶體製程於焉完成。以美國Lam Research公司所生產之 RAINBOW 4400電策蝕刻機器爲例,蝕刻條件設定爲反應室壓力 525 mTorr、射頻功率 450 watts、反應氣體流量 He 18〇 sccm、cl2 420 seem、Hbr 80sccm時,對複晶砂層16之飽刻速率約爲38〇〇 埃/min,且能達到垂直單向性的蝕刻效果。 ^ (請先a讀背面之注意箏項耳填寫夂">---- 1 I between Egypt. The gate gasification layer is usually formed by thermal gasification, the temperature is between 900X: ~ 1200eC, and the thickness is about 50 ~ 200 angstroms. (Low Pres-surs Chemica 1 Vapor Deposition; LPCVD) is formed by the in-situ hybrid deposition method. The reaction gas is a mixed gas of 15% PH5 and 85% SiH4 and 5% L at a temperature of 570X; In order to dope impurity atoms such as dish atoms, and 5% PH ”and 95% in the mixed gas, the purpose is to precisely adjust the uniformity of the indirect impurity concentration of the wafer, and its thickness is between 500 and 2000 Angstroms. Referring now to FIG. 3, a layer of metal sand 18 is formed in a thickness of between 500 and 1500 angstroms. This layer is usually a sandpaper formed by CVD. ΙΙΛΑ is used in a 4-shaped Uiox. 297mm) ~ 416138 7 A7 B7 V. Description of the invention (4) Chemical conversion and casting (Tungsten silicide VS〗 〖x), using Genus 8500 deposition equipment as an example, the reaction gas is 6 and 5 ["4, can form two Siliconized WSU. Next, a dichlorinated sand layer 20 is formed, as shown in FIG. 4. The two-gasification sand layer 20 is usually formed by a Low Pressure Chemical Vapor Deposition (LPCVD) method. The reaction gases are Si (CH3) 4_, NjQ, and 0; _, the temperature is 7203C, and the reaction power is 200. ~ 300 mTo ". The thickness is between 500 and 1500 Angstroms. Next, a thick: intercalated amorphous silicon layer 22 is formed, as shown in Figure 5. The layer 22 is usually formed by CVD, and the reaction gas is SiHt. The flow is 350 seem, the temperature is 570 ° C, the reaction history is 0.1 ~ 0.3Torr, and the thickness is about 300 ~ 1000 angstroms. Next, a coating of photoresist 24 is formed, as shown in FIG. The traditional photolithographic technique is used to formulate the photoresist 24 pattern, as shown in Fig. 6. Then, the metal sanding compound is formed using plasma etching technology or activated ion engraving technology. The patterns of the sand layer 20 and the amorphous sand layer 22 are shown in Fig. 7. Taking the RAINBOW 442S mold peeking and engraving machine produced by the American company Lam Resea-rch as an example, the reaction gas is Cb 420 seem, HBr 80 seem, In He 160 seem, the unique effect of the metal silicide layer 13 can achieve the effect of vertical orientation. As an example, the RAIN-B0W4520 plasma winning engraving machine produced by LamResearch Co., Ltd. is set to engraving chopsticks with a reaction chamber power of 250 mTorr and RF power of 300 watts. Reaction gas flow Ar350 seem N CF4 20sccnu CHF3 20 seem. The etched rate of the vaporized silicon layer 20 is about 2500 angstroms / tain, and it can achieve the vertical unidirectional etching effect. Then use the gas-gas slurry to remove the photoresist on the paper scale. Use Linguojiajia # 车(CNS) A4 specification (210X297 mm) -6 — (Please read the note on the back and fill in the difference I) Binding it 416138 V. Description of the invention (5) 24, as shown in Figure 8. Finally, The silicon dioxide layer 20 above the polycrystalline silicon layer 16 is used as an etching protection mask (Etch Mask), and the exposed polycrystalline silicon layer 16 and the amorphous silicon layer are etched by plasma uranium etching technology or activated ion etching. 22 and a part of the dioxide layer 20, leaving the part of the polycrystalline silicon gate, as shown in Figure 9, a notching free (notching free) polycrystalline silicon metal oxide semiconductor semi-transistor manufacturing process was completed in Lam. Lam, USA As an example, the RAINBOW 4400 electro-etching machine manufactured by Research Company is set to an inverse etching condition. When the chamber pressure is 525 mTorr, RF power is 450 watts, and the flow rate of the reaction gas is He 18〇cm, cl2 420 seem, Hbr 80sccm, the saturation rate of the polycrystalline sand layer 16 is about 3800 angstroms / min, and it can achieve vertical unidirectional Etching effect. ^ (Please read the note on the back first and fill in 夂 " >

T 本紙法尺度逋用中國《家朝t準(CNS > A4规格(210X297公^ ) -7T paper method scale uses China's "Home Dynasty t standard (CNS > A4 size (210X297 cm ^) -7

Claims (1)

416138 C8 六、申請專利範圍 1. 一種無凹陷的積体電路複晶矽閑製程,偽包含: 在一個半導体基板上滢擇性地形或場隔雛區域,留下待 製作場效元件的元件區域; 在所述之元件區域的基板上形成一層閛極介電層; 在所述之元件區域及所述之場隔離區域上沈積一層複晶 砂廢; .在所述複晶砂層表面形成一層金屬砂化物; 在所述金屬砂化物®表面形成一層二氣化矽層; 在所述二氧化矽層表面形成一層非晶矽層; 上述非晶矽層係以LPCVD法’溫度在540~600°C完成; 選擇性地去除部分所述的非晶矽層、二氧化矽層和金屬矽化物 層,留下待製作之所述的複晶矽閘的部分; 垂直蝕刻所述的複晶矽層,及非晶矽層和部分的二氧化砂層’留 下所述的複晶矽閘的部分· 2-如申諳專利範圍第1項的翠程,其中所述之選擇性地去 除非晶砂等層的步驟,尚包括: 在所述之非晶矽層上形成光阻; 利用徹影技術制定所述之光阻圖案; 姓刻所述之非晶砂層、二氣化砂層和金屬矽化物®; 去除所述之光阻。 3. 如申請專利範圍第2項的製程,其中所述之独刻是垂直 電漿蝕刻或活化離子蝕刻。 4. 如申請專利範圍第1項的製程,其中所述之形成場隅離 區域的方法是熱生長厚二氯化矽層。 本紙張尺度遴用中a a家標準(CNS)A4規格(210X 297公¢) —---^--------------------------- (請先閲筇背面之主意事項再鳩寫太頁) 416138 βλ Cq 六、申請專利範圍 5. 如申請專利範圍第1項的製程,其中所述複晶矽層的厚 度介於1500至3000埃之間。 6. 如申請專利範圍第1項的製程,其中所述金屬矽化物 層,其厚度約在500至2000埃之間。 7. 如申請專利範圍第1項的製程,其中所述非晶矽層,其 厚度約在300至1000埃之間。 (諳先閱讀背δ之..VJ意事項再填寫本頁) 本纸張尺度逋用中a画家標举(CNS)A4规格(210X 297公釐)416138 C8 VI. Application for patent scope 1. A recessed integrated circuit polycrystalline silicon idle process, pseudo-comprising: Selective topography or field isolation region on a semiconductor substrate, leaving the element area of the field effect device to be produced Forming a dynode dielectric layer on the substrate of the element region; depositing a layer of polycrystalline sand waste on the element region and the field isolation region; forming a layer of metal on the surface of the polycrystalline sand layer Sanding material; forming a silicon dioxide layer on the surface of the metal sanding material®; forming an amorphous silicon layer on the surface of the silicon dioxide layer; the amorphous silicon layer is 540 ~ 600 ° by LPCVD method C is completed; selectively removing part of the amorphous silicon layer, silicon dioxide layer, and metal silicide layer, leaving a portion of the polycrystalline silicon gate to be fabricated; and vertically etching the polycrystalline silicon layer And the amorphous silicon layer and part of the sand dioxide layer 'leave the part of the complex crystalline silicon gate 2- as described in the process of claim 1 in the patent process, wherein the amorphous sand is selectively removed Steps to equal layers include: Said layer of amorphous silicon is formed on the photoresist; using a photoresist pattern developed the technique of Toru Movies; engraved the name of the amorphous sand, sand and two vaporized metal silicide ®; the removal of the photoresist. 3. The process according to item 2 of the patent application, wherein the unique engraving is vertical plasma etching or activated ion etching. 4. The process according to item 1 of the patent application scope, wherein the method for forming the field separation region is to thermally grow a thick silicon dichloride layer. The paper standard is selected in the aa home standard (CNS) A4 specification (210X 297 male ¢) ------- ^ ------------------------- -(Please read the idea on the back of the book before writing the page) 416138 βλ Cq 6. Application for patent scope 5. For the process of applying for the scope of item 1 of the patent scope, the thickness of the polycrystalline silicon layer is between 1500 and Between 3000 Angstroms. 6. The process of claim 1, wherein the thickness of the metal silicide layer is between 500 and 2000 angstroms. 7. The process of claim 1 in which the thickness of the amorphous silicon layer is about 300 to 1000 angstroms. (Please read the δ..VJ notice before filling out this page.) This paper size is in Chinese painter's mark (CNS) A4 specification (210X 297 mm)
TW84100086A 1995-01-04 1995-01-04 Manufacturing process for notch-free polycide gate of integrated circuit TW416138B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW84100086A TW416138B (en) 1995-01-04 1995-01-04 Manufacturing process for notch-free polycide gate of integrated circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW84100086A TW416138B (en) 1995-01-04 1995-01-04 Manufacturing process for notch-free polycide gate of integrated circuit

Publications (1)

Publication Number Publication Date
TW416138B true TW416138B (en) 2000-12-21

Family

ID=21624764

Family Applications (1)

Application Number Title Priority Date Filing Date
TW84100086A TW416138B (en) 1995-01-04 1995-01-04 Manufacturing process for notch-free polycide gate of integrated circuit

Country Status (1)

Country Link
TW (1) TW416138B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102820298A (en) * 2011-06-08 2012-12-12 无锡华润上华半导体有限公司 IC (integrated circuit) comprising multiple MOS (metal oxide semiconductor) tubes, and photoetching method and preparation method for aluminum line of IC

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102820298A (en) * 2011-06-08 2012-12-12 无锡华润上华半导体有限公司 IC (integrated circuit) comprising multiple MOS (metal oxide semiconductor) tubes, and photoetching method and preparation method for aluminum line of IC
CN102820298B (en) * 2011-06-08 2016-03-23 无锡华润上华科技有限公司 Comprise the IC of multiple metal-oxide-semiconductor and photoetching method, the preparation method of aluminum steel thereof

Similar Documents

Publication Publication Date Title
JP3978310B2 (en) Isolation methods in integrated circuit fabrication using antireflective coatings.
US5433823A (en) Selective dry-etching of bi-layer passivation films
KR101140534B1 (en) Frequency doubling using a photo-resist template mask
KR100991295B1 (en) Frequency doubling using spacer mask
US7141460B2 (en) Method of forming trenches in a substrate by etching and trimming both hard mask and a photosensitive layers
EP0054164B1 (en) Method for planarizing non-level silicon dioxide in semiconductor devices
TW200416818A (en) A method for forming a sublithographic opening in a semiconductor process
TW200929358A (en) Method of manufacturing semiconductor device, apparatus for manufacturing semiconductor device, control program, and program storage medium
US6861367B2 (en) Semiconductor processing method using photoresist and an antireflective coating
CN102478763A (en) Photoetching method
JP2003511857A (en) Method for uniform shallow trench etch profile
TW416138B (en) Manufacturing process for notch-free polycide gate of integrated circuit
US5880005A (en) Method for forming a tapered profile insulator shape
JPH0513384A (en) Formation of fine pattern
US6924196B1 (en) Anti-reflective coating and process using an anti-reflective coating
JPH10189731A (en) Contact hole forming method
US20060138085A1 (en) Plasma etching method with reduced particles production
JP2003229577A5 (en)
TWI285915B (en) Method of treating surface of photoresist layer and method of forming patterned photoresist layer
KR100753097B1 (en) A fabricating method of semiconductor device using ArF photolithography
KR100798802B1 (en) Method of forming isolation of semiconductor device
TW508724B (en) Manufacturing process of hard mark with shallow trench etching of round top corner
KR20020049807A (en) Isolation method for a semiconductor device
US7205243B2 (en) Process for producing a mask on a substrate
Monget et al. Optimization of Plasma Polymerized Methylsilane process for 248 and 193 nm lithography applications

Legal Events

Date Code Title Description
GD4A Issue of patent certificate for granted invention patent
MM4A Annulment or lapse of patent due to non-payment of fees