TW413907B - Method for manufacturing crown-type capacitor of DRAM cell - Google Patents

Method for manufacturing crown-type capacitor of DRAM cell Download PDF

Info

Publication number
TW413907B
TW413907B TW88104740A TW88104740A TW413907B TW 413907 B TW413907 B TW 413907B TW 88104740 A TW88104740 A TW 88104740A TW 88104740 A TW88104740 A TW 88104740A TW 413907 B TW413907 B TW 413907B
Authority
TW
Taiwan
Prior art keywords
layer
forming
manufacturing
angstroms
capacitor
Prior art date
Application number
TW88104740A
Other languages
Chinese (zh)
Inventor
Tze-Yau Huang
Yi-Nan Chen
Shr-Chi Shiu
Shing-Chuan Tsai
Original Assignee
Nanya Technology Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanya Technology Corp filed Critical Nanya Technology Corp
Priority to TW88104740A priority Critical patent/TW413907B/en
Application granted granted Critical
Publication of TW413907B publication Critical patent/TW413907B/en

Links

Landscapes

  • Semiconductor Memories (AREA)

Abstract

The present invention discloses a method for manufacturing crown-type capacitor of DRAM cell, on a semiconductor substrate having switching elements. The manufacturing method comprises the steps of: forming an insulation layer on the substrate; forming a contact opening on the insulation layer for connecting to the switching element; forming a first conductive layer on the contact opening for electrically connecting to the switching element; forming a sacrificial layer on the first conductive layer, wherein the material of the sacrificial layer is different from that of the insulation layer; defining the sacrificial layer and the first conductive layer to form a stack structure; forming a conductive spacer on the sidewall of the stack structure; selectively removing the sacrificial layer to form the bottom electrode of the capacitor; forming a dielectric layer on the bottom electrode; and forming the top electrode of the capacitor on the dielectric layer.

Description

413907* 五、發明說明(1) 本發明係有關於半導體記憶元件的製造方法,特別是 有關於一種動態隨機存取記憶單元(dynamic random access memory, DRAM)之冠狀電容之製造方法。 動態隨機存取記憶體為一廣泛應用的積體電路元件, 特別在現今的資訊電子產業中更有不可或缺的地位。隨著 技術的演進’目前生產線上常見的DRAM記憶單元大多是由 一電晶體T和一電容C所構成,如第1圖的電路示意圖所 示。電晶體T的源極(source )係連接到一對應的位元線 (bit line, !51〇和没極((11&丨11)連接到一電容C的下電極 (bottom electrode),而閘極(gate)則連接到一對應的字 元線(word line, ffL) ’電容C的一上電極(top e 1 e c t r 〇 d e j係連接到一固定電壓源,而在下電極和上電極 間隔著一介電層。 電容C是用來儲存電子資訊的,其應具備足夠大的電 容量’以避免資料的流失並減低充電更新(refresh)的頻 率。可由兩個方向著手來增加電容C的電容量,一為減少 介電層的厚度’一為增加下電極的表面積。在減少介電層 的厚度方面’現今製造的電容均已使用極薄的介電層,然 而其厚度並非無限制的縮小,當介電層的厚度小於5 〇埃 時,極可能因為直接載子隨穿(direct carrier tunneling)而產生過大的漏電流,影響元件的性質。因此 目前許多研發都致力於增加下電極的表面積,藉以提升電 容的電容量。 在傳統少於一百萬位元(1MB)的DRAM製程中,一般多413907 * V. Description of the Invention (1) The present invention relates to a method for manufacturing a semiconductor memory element, and more particularly to a method for manufacturing a crown capacitor of a dynamic random access memory (DRAM). Dynamic random access memory is a widely used integrated circuit component, especially in today's information electronics industry. With the evolution of technology ', the common DRAM memory cells on the current production line are mostly composed of a transistor T and a capacitor C, as shown in the circuit diagram in Figure 1. The source of the transistor T is connected to a corresponding bit line (! 51 °) and the pole ((11 & 丨 11) is connected to a bottom electrode of a capacitor C, and the gate The gate is connected to a corresponding word line (ffL) 'an upper electrode (top e 1 ectr 〇dej of the capacitor C is connected to a fixed voltage source, and the lower electrode and the upper electrode are separated by a Dielectric layer. Capacitor C is used to store electronic information. It should have sufficient capacitance to avoid data loss and reduce the frequency of charge refresh. There are two directions to increase the capacitance of capacitor C. One is to reduce the thickness of the dielectric layer. The other is to increase the surface area of the lower electrode. In terms of reducing the thickness of the dielectric layer, the capacitors manufactured today have used extremely thin dielectric layers, but their thickness is not reduced indefinitely. When the thickness of the dielectric layer is less than 50 angstroms, it is very likely that direct carrier tunneling will cause excessive leakage current, which will affect the properties of the element. Therefore, many current research and development efforts are focused on increasing the surface area of the lower electrode. To enhance the capacity of the capacitor. In the conventional less than one million yuan (1MB) of the DRAM manufacturing process, and more generally

413907 五、發明說明(2) 利用一度空間的電容來儲存資料,亦即泛稱的平面型電容 (planar_type capacit〇r)。然而,平面型電容需利用基 =一相當大的面積來形成下電極c,才可提供足夠的電容 量,所以並不適用於目前日益高度積集化之DRM元件的 製程要求。 通常’面度積集化的DRAM,例如具有大於16M位元的 儲存容量者,需要利用三度空間的電容結構,例如凹槽型 (trench type)或堆疊型(stack type)的電容記憶元件。 而由於钱刻凹槽來製作電容時會不可避免地在基底產生晶 格缺陷(defects) ’造成漏電流的增加而影響元件性質, 且卩边著凹槽縱橫比(aSpect ratio)的增加,其触刻速率將 遞減’不僅增加製程的困難度,也影響了生產效率,因此 凹槽型電容的製程在實際生產線上的應用有其困難度。相 反的’堆疊型電容的製程並不會產生上述缺點,因此許多 技術均係針對此一形式的記憶元件進行改良,以達到在元 件尺寸縮小時仍可以確保提供足夠大之電容量之目的。 在各種堆疊型電容的記憶元件中,電極具有向上突出 部分的冠狀電容(crown-type capacitor),由於其内外側 表面均可提供有效的電容面積,相當適合於製造高度積集 化的元件,特別是大於64MB位元的記憶元件。 但習知動態隨機存取記憶單元之冠狀電容的製造方 法’主要係在具有開關元件之半導體基底上先沈積可提供 利於後續製程之平坦表面的絕緣層後,再於絕緣層上形成 可連通至上述開關元件之電容。但在形成上述電容之蝕刻413907 V. Description of the invention (2) Use one-degree space capacitor to store data, which is generally called planar_type capacitor. However, planar capacitors need to use a relatively large area to form the lower electrode c in order to provide sufficient capacitance, so they are not suitable for the current process requirements of increasingly integrated DRM devices. Generally, DRAMs with integrated area, such as those with a storage capacity greater than 16M bits, need to use a three-dimensional capacitor structure, such as a trench-type or stack-type capacitor memory element. However, due to money engraved grooves to make capacitors, lattice defects (ineffects) will inevitably be generated on the substrate, which will increase the leakage current and affect the properties of the device. Furthermore, the aspect ratio will increase along the groove. The engraving rate will decrease. Not only does it increase the difficulty of the process, but it also affects the production efficiency. Therefore, the application of the process of the groove type capacitor in the actual production line has its difficulty. The opposite process of the 'stacked capacitor' does not produce the above disadvantages, so many technologies are improved for this type of memory element to achieve the purpose of ensuring a sufficient capacitance when the size of the element is reduced. Among the memory elements of various stacked capacitors, the electrodes have crown-type capacitors that protrude upwards. Since the inner and outer surfaces can provide an effective capacitance area, they are quite suitable for manufacturing highly integrated components, especially It is a memory element larger than 64MB. However, the conventional method for manufacturing a crown capacitor of a dynamic random access memory cell is mainly to deposit an insulating layer on a semiconductor substrate having a switching element, which can provide a flat surface favorable for subsequent processes, and then form an insulating layer on the insulating layer that can be connected to The capacitance of the switching element. But in the formation of the above capacitor etch

第5頁 413907 五、發明說明(3) 步驟中,通常會破壞上述絕緣層之平坦表面。為了改善此 問題’也可於上述絕緣層上再多沈積一遮蔽層’以確保後 續形成電容之製程不會蝕刻到上述絕緣層,維持表面平 坦,但如此會增加製程步驟,影響生產效率。 有鑑於此,本發明提供一種動態隨機存取記憶單凡之 私狀電容的製造方法,其特徵為省略習知之遮蔽層,但仍 能保持絕緣層之平坦表面不被破壞。上述方法並適用於一 具有開關元件之半導體基底上製造電容,包括下列步驟·· 於上述基底上形成一絕緣層;在上述絕緣層中形成一可連 通至上述開關元件之接觸開口;在上述接觸開口上形成一 第一導電層’藉以和上述開關元件形成電性連接;在上述 第一導電層上形成一犧牲層,其中上述犧牲層之材質與上 述絕緣層不同;界定上述犧牲層和第—導電層以形成一堆 叠結構;在上述堆疊結構側壁上形成一導電間隔物;選擇 性地移除上述犧牲層,以形成上述電容之下電極;在上述 下電極上形成一介電層;在上述介電層上形成上述電容之 上電極。 且依據本發明所提出之冠狀電容之製程步驟,更可進 一步形成一種動態隨機存取記憶體。 為了讓本發明之上述目的和特點更明顯易懂,下文特 舉若干較佳實施例’並配合所附圖式’做詳細說明如下: 圖式之簡單說明 第1圖係一般動態隨機存取記憶單元的電路示意圖; 第2至第5圖均為剖面示意圖,用以說明依據本發明的Page 5 413907 V. Description of the Invention (3) In the step (3), the flat surface of the insulating layer is usually damaged. In order to improve this problem, an additional shielding layer can be deposited on the above-mentioned insulating layer to ensure that the subsequent process of forming a capacitor will not etch the above-mentioned insulating layer and maintain a flat surface, but this will increase the number of manufacturing steps and affect production efficiency. In view of this, the present invention provides a method for manufacturing a private capacitor of a dynamic random access memory, which is characterized by omitting a conventional shielding layer, but still keeping the flat surface of the insulating layer from being damaged. The above method is also suitable for manufacturing a capacitor on a semiconductor substrate having a switching element, and includes the following steps: forming an insulating layer on the substrate; forming a contact opening in the insulating layer that can communicate with the switching element; and in the contact A first conductive layer is formed on the opening to form an electrical connection with the switching element; a sacrificial layer is formed on the first conductive layer, wherein the material of the sacrificial layer is different from the insulating layer; the sacrificial layer and the first- A conductive layer is formed to form a stacked structure; a conductive spacer is formed on the side wall of the stacked structure; the sacrificial layer is selectively removed to form the capacitor lower electrode; a dielectric layer is formed on the lower electrode; The above capacitor electrode is formed on the dielectric layer. Furthermore, according to the process steps of the crown capacitor provided by the present invention, a dynamic random access memory can be further formed. In order to make the above-mentioned objects and features of the present invention more comprehensible, several preferred embodiments are described below in detail in conjunction with the accompanying drawings, as follows: Brief description of the drawings FIG. 1 is a general dynamic random access memory Schematic diagram of the unit; Figures 2 to 5 are cross-sectional schematic diagrams to illustrate the

4139G7 五、發明說明(4) 一敉佳貫施例來形成冠狀電容之的製造流程。 符號說明 1〇~基底、12〜場氧化層、H〜閘極、22〜閘極間隔物、 24~源極和汲極區、26〜絕緣層、30〜第一導電層、32〜犧牲 層、34〜導電間隔物、36〜下電極、38介電層、4〇~上電極 實施例 .叫先參見第2圖,其顯示本發明之起始步驟。提供一 半導體基底10,在此以一晶格方位為<1〇〇>之p型矽基底為 例。在基底ίο上以一熱氧化製程,如局部氧化法(L〇c〇s) 形成一場氧化層12以界定出將形成記憶單元的元件區 (一acUve area)。接著依序在基底上沈積一閘氧化層14、 :複晶碎層16、1化鎢層(WSix)18及-氧切層20 f :用微影技術和非等向性蝕刻程序定義上述各層圖案, “:ί 一開極構造Η。接著在閘極構造Η旁形成-淡摻雜的 或L t 區。例如以開極構造Η為罩幕,離子植入如磷 造钟之Μ摻源進人半導體基底1G而形成。然後在間極構 、側壁上形成一閘極間隔物22 ’例如以沈積及非等向 區,回,二絕緣層來完成。之後形成濃摻雜的源極和汲極 描、i,以完成源極和汲極區24製造。例如以間隔物22和閘極 kH為罩幕,離子植入較高濃度的之N型摻源,如磷或 的製it半導體基底1〇而形成。至此,完成-電晶體元件 絕絲ί著在上述包含電晶體元件的基底10上沈積至少一層 、s ,以隔離電晶體和後續形成之導電層,並提供有利 413907 五、發明說明(5) — 於後續製程之平坦表面’其中還可依不同的元件設計製作 必須的導線於其間。例如在基底1 〇上沈積___絕緣异2 6後, 施行一平坦化程序使絕緣層26之表面平坦,如第/圖中所 示。絕緣層26可以是硼磷矽玻璃或氧化矽,其中以蝴填石夕 玻璃較佳’可採用以四乙氧基矽酸鹽 (tetraethoxysilane,TE0S)、03/02、三乙基硼酸鹽 (triethylborate,TEB)及三甲基磷酸鹽 (trimethylphosphate,TMP)為反應物的常壓化學氣相沈 積法(APCVD)沈積。而該平坦化技術可為化學機械研磨法 (Chemical-Mechanical Polishing)。 在習知技術中’為了確保絕緣層26在後續移除犧牲層 之製程中不被蝕刻’通常會於絕緣層26之上沈積一遮蔽 層。但在本發明之製造方法中,由於採用不同材質之絕緣 層和犧牲層’以及對犧牲層之蝕刻率遠大於絕緣層之選擇 性蝕刻法來移除犧牲層’所以便可以可省略製造遮蔽層之 步驟。因此根據本發明所提出之冠狀電容的製造方法,在 完成絕緣層之平坦化之後,便直接可以進行後續電性 之製造。 之後’以微影技術和非等向性蝕刻程序定義第一絕緣 層2 6,以形成一接觸開口 28,其露出電晶體的源極和汲極 h 區24。該敍刻程序可採用如以氟化碳(Cf3)為主蝕刻反應 氣體之反應性離子蝕刻法(reactive i〇I1 etch,RIE)來進 行。 接著’形成一第一導電層3〇覆蓋在絕緣層26表面上並4139G7 V. Description of the Invention (4) The manufacturing process of forming a crown capacitor by a good example. DESCRIPTION OF SYMBOLS 10 ~ substrate, 12 ~ field oxide layer, H ~ gate, 22 ~ gate spacer, 24 ~ source and drain region, 26 ~ insulating layer, 30 ~ first conductive layer, 32 ~ sacrificial layer , 34 ~ conductive spacer, 36 ~ lower electrode, 38 dielectric layer, 40 ~ upper electrode embodiment. Refer to FIG. 2 first, which shows the initial steps of the present invention. A semiconductor substrate 10 is provided. Here, a p-type silicon substrate with a lattice orientation of < 100 > is taken as an example. An oxide layer 12 is formed on the substrate by a thermal oxidation process, such as a local oxidation method (LoCos), to define an acUve area that will form a memory cell. Next, a gate oxide layer 14, a complex crystal fragment layer 16, a tungsten oxide layer (WSix) 18, and an oxygen-cutting layer 20 are sequentially deposited on the substrate.The above layers are defined by lithography and anisotropic etching procedures. Pattern, ": an open-pole structure. Then, a lightly-doped or L t region is formed next to the gate structure. For example, using the open-structure structure as a mask, ion implantation, such as a phosphorus doped M source. It is formed by entering the semiconductor substrate 1G. Then, a gate spacer 22 ′ is formed on the interlayer structure and the sidewall, for example, it is completed by a deposition and an anisotropic region, a back, and two insulating layers. Then, a heavily doped source electrode and Drain trace, i, to complete the manufacture of source and drain region 24. For example, using spacer 22 and gate kH as a mask, ion implantation of a higher concentration of an N-type dopant source, such as phosphorous or it semiconductor The substrate 10 is formed. At this point, the complete-transistor element must be deposited on the substrate 10 containing the transistor element to deposit at least one layer, s, to isolate the transistor from the conductive layer formed later, and provide a favorable 413907. Description of the Invention (5) — Flat surface in subsequent processes Make the necessary wires in between. For example, after depositing _____________ on the substrate 10, a planarization process is performed to make the surface of the insulating layer 26 flat, as shown in the figure / figure. The insulating layer 26 may be boron. Phosphosilicate glass or silicon oxide, of which glass filled with stone is more preferred. Tetraethoxysilane (TE0S), 03/02, triethylborate (TEB), and trimethyl Trimethylphosphate (TMP) is the atmospheric pressure chemical vapor deposition (APCVD) deposition of reactants. The planarization technology may be chemical-mechanical polishing. In the conventional technology, 'to ensure The insulating layer 26 is not etched during the subsequent process of removing the sacrificial layer. 'A shielding layer is usually deposited on the insulating layer 26. However, in the manufacturing method of the present invention, because an insulating layer and a sacrificial layer of different materials are used' and The selective etching method for the sacrificial layer is much larger than the selective etching method of the insulating layer to remove the sacrificial layer, so that the step of manufacturing the shielding layer can be omitted. Therefore, according to the method for manufacturing a crown capacitor according to the present invention, After the planarization of the insulating layer is completed, the subsequent electrical manufacturing can be directly performed. After that, the first insulating layer 26 is defined by lithography technology and anisotropic etching process to form a contact opening 28 that exposes the transistor Source and drain regions 24. The etch process can be performed using reactive ion etching (RIE) using carbon fluoride (Cf3) as the main etching reaction gas. A first conductive layer 30 covers the surface of the insulating layer 26 and

413907 五、發明說明(6) ΪΪ = :28产使後續的元件可和源極和没極區“ 形成電性連接。第—導電層3 I I ^ ^ ^ ^^LPCVO) 述雜早七你田、有導電生可使用擴散、離子植入砷或 〜離二或=同步摻雜法(in sUu d〇ped 。 層32之材質層3〇上形成一犧牲層32,其中犧牲 ^加祐仆與::、第—導電層3〇和絕緣層26不同。例如以電 強化子氣相沈積法(PECVD)沈積氮化矽至厚度介於 6000埃至8000埃之間來形成犧牲層3 化’ 氣相沈積法具有可調整氣化石夕之拉伸應力(tensue強化予 Stress)及低溫之特性,所 成之犧牲層32。 ^且用來沈積由氮化石夕組 之後請參見第3圖’其顯示進行製作本發明之冠 容之重要步驟。首先’形成一光阻層(未顯示) 電容在第-導電層30上之範圍。然後以此光阻層為^各 非等向性地蝕刻犧牲層32和第一導電層3〇至絕緣層26。 接著,在已定義之犧牲層32和第一導電層3〇之側辟 形成-導電間隔物34,*第3圖所示。例如在已定土 層32和第一導電層30和絕緣層26上順應性地 (conformally)沈積一第二導電層後,再非等向性地 第二導電層至絕緣層26,便可形成導電間隔物34。复 二導電層可為複晶矽層,以及該蝕刻程序可採用以^ (C12)、鹽酸(HC1)或氣化#(SiC12)為蝕刻反應氣體之反應 第9頁 413907413907 V. Description of the invention (6) ΪΪ =: 28 so that subsequent components can form an electrical connection with the source and non-electrode regions. The first conductive layer 3 II ^ ^ ^ ^ ^ LPCVO) For conductive materials, diffusion, ion implantation of arsenic, or ~ 2 or = simultaneous doping method (in sudo doped method). Material 32 of layer 32 is formed with a sacrificial layer 32, where sacrifices are added to ::: The first conductive layer 30 is different from the insulating layer 26. For example, silicon nitride is deposited by PECVD to a thickness between 6000 angstroms and 8000 angstroms to form a sacrificial layer. The facies deposition method has the characteristics of adjusting the tensile stress of the gasified stone and strengthening it to a low temperature. The sacrificial layer 32 is formed. ^ And it is used to deposit the nitrided stone group. Please refer to FIG. 3 for its display. An important step for making the crown of the present invention is performed. First, a photoresist layer (not shown) is formed on the first conductive layer 30. Then the photoresist layer is used to etch the sacrificial layer anisotropically. 32 and the first conductive layer 30 to the insulating layer 26. Next, in the defined sacrificial layer 32 and the first conductive layer 3 The side is formed-conductive spacer 34, * shown in Figure 3. For example, a second conductive layer is conformally deposited on the fixed soil layer 32, the first conductive layer 30 and the insulating layer 26, and then Anisotropically the second conductive layer to the insulating layer 26 can form a conductive spacer 34. The complex second conductive layer can be a polycrystalline silicon layer, and the etching process can be performed using ^ (C12), hydrochloric acid (HC1) or Gasification # (SiC12) is the reaction of etching reaction gas Page 9 413907

性離子#刻法來 之後,請參 之犧牲層32,留 冠狀電容之下電 之蝕刻率需遠大 犧牲層32為氮化 主餘刻液體來選 化石夕、複晶矽和 ’所以可在不破 移除氮化石夕之犧 進行。Sex ion #etching method, please refer to the sacrificial layer 32, leaving the electrical etching rate under the crown capacitor needs to be large. The sacrificial layer 32 is a nitrided main etching liquid to select fossils, polycrystalline silicon, and so on. The sacrifice of the removal of nitrided stone is carried out.

見第4圖。以一選擇性蝕刻程序去除剩下 下之第一導電層30和導電間隔物34便形成 極3 6。其中該選擇性蝕刻程序對犧牲層3 2 於第一、第二導電層和絕緣層。例如,若 石夕’可在約1 5 〇 °c之溫度下採用以磷酸為 擇性地移除犧牲層3 2。由於熱磷酸,對氮 蝴破石夕玻璃之蝕刻選擇率為1〇 :〇(H 壞絕緣層2 6之平坦表面下,用來選擇性地 牲層32。 接著,形成一介電層38以順應性地覆蓋在下電極36 j :之後再於介電層38上形成一第三導電層,作為上電極 至此,下電極36 '介電層38和上電極即可組合成本 X明之冠狀電容,結果如第4圖所示。介電層38可為氧化 夕/氮化矽/氧化矽層(ON〇:〇xide/nitride/oxide)或氮化 =/氧化矽(N0)、氧化鈕(Ta2〇5)、氧化矽或氮化矽等具高 ,係數之絕緣層。其中以氧化矽/氮化矽/氧化矽(〇N〇) 或氮化矽/氧化矽較佳,可採用低壓化學氣相沈積法沈積 至厚度介於約5 0埃至6 0埃之間。 基於上述製程’也可很容易地增加其電極表面積,提 供f大的電容量。如第5圖所示者’可於形成介電質層38 之前’以習知程序先在下電極36露出的表面上形成複數個 半球形石夕晶粒(hemi-spherical silicon grain, HSG), 或是以低壓氣相沈積法(LPCVD)形成縐褶狀複晶矽(ruggedSee Figure 4. The remaining first conductive layer 30 and the conductive spacers 34 are removed by a selective etching process to form the electrodes 36. The selective etching process aligns the sacrificial layer 32 to the first and second conductive layers and the insulating layer. For example, if Shi Xi 'is used, the sacrificial layer 32 may be selectively removed using phosphoric acid at a temperature of about 150 ° C. Due to the thermal phosphoric acid, the etch selectivity for the nitrogen-breaking glass is 10: 0 (H under the flat surface of the bad insulating layer 26, which is used to selectively coat the layer 32. Next, a dielectric layer 38 is formed to Compliantly cover the lower electrode 36 j: Then a third conductive layer is formed on the dielectric layer 38. As the upper electrode, the lower electrode 36 ′ dielectric layer 38 and the upper electrode can be combined to form a crown capacitor of X Ming. As shown in Figure 4. The dielectric layer 38 can be an oxide / silicon nitride / silicon oxide layer (ON0: oxide / nitride / oxide) or nitride = / silicon oxide (N0), an oxide button (Ta2〇 5), silicon oxide or silicon nitride and other insulating layers with high coefficients. Among them, silicon oxide / silicon nitride / silicon oxide (0N〇) or silicon nitride / silicon oxide is preferred. Low-pressure chemical vapor phase can be used. The deposition method is used to deposit a thickness of about 50 angstroms to 60 angstroms. Based on the above process, the surface area of the electrode can also be easily increased to provide a large capacitance. As shown in FIG. Before the dielectric layer 38, a plurality of hemi-spherica grains (hemi-spherica) are formed on the exposed surface of the lower electrode 36 by a conventional procedure. l silicon grain (HSG), or rugged polycrystalline silicon (LPCVD)

第10頁 413907 五、發明說明(8) po1ys i 1 i con) 之後,依序形 憶單元的之冠 同時,熟 料並不限於實 質和形成方法 施例所引用之 雖然本發 限定本發明, 和範圍内,當 範圍當視後附 構造42, 成介電層 狀電容。 知此技藝 施例中所 所置換, 尺寸大小 明已以較 任何熟習 可作各種 之申請專 岣可有效增加下電極36的表面積。 和上電極便完成一動態隨機存取記 者應可瞭解,本發明可用之物質材 弓丨述者’其能由各種恰當特性之物 並且本發明之結構空間亦不限於實 〇 佳實施例揭露如上,然其並非用以 此技藝者’在不脫離本發明之精神 之更動與潤飾,因此本發明之保護 利範圍所界定者為準。 、Page 10 413907 V. Description of the invention (8) After the po1ys i 1 i con), the crown of the sequential shape memory unit. At the same time, the clinker is not limited to the substance and the method of formation. Although the present invention limits the invention, Within the range, when the range is viewed as the attachment structure 42, a dielectric layered capacitor is formed. Knowing the replacement of this technique in the embodiment, the size has been more familiar with any application, and can be used for various applications, which can effectively increase the surface area of the lower electrode 36. A dynamic random access reporter and the upper electrode can complete a dynamic random access. The reporter should be able to understand that the material materials available in the present invention can be described by various suitable characteristics and the structure space of the present invention is not limited to the actual embodiments. However, it is not intended to be used by those skilled in the art to make changes and decorations without departing from the spirit of the present invention. Therefore, the scope of protection of the present invention shall prevail. ,

Claims (1)

413907 六、申請專利範圍 1 · 一種動態隨機存取記憶單元之冠狀電容的製造方 法’適用於一具有開關元件之半導體基底上製造電容,而 上述製造方法包括下列步驟: 於上述基底上形成一絕緣層; 在上述絕緣層中形成一可連通至上述開關元件之接觸 開口; 在上述接觸開口上形成一第—導電層,藉以和上述開 關元件形成電性連接; 在上述第一導電層上形成一犧牲層,其中上述犧牲層 之材質與上述絕緣層不同; 界定上述犧牲層和第一導電層; 在上述犧牲層和第一導電層之側壁上形成一導電間隔 物; 選擇性地移除上述犧牲層,以形成上述電容之下電 極; 在上述下電極上形成一介電層; 在上述介電層上形成上述電容之上電極。 2·如申請專利範圍第1項所述之製造方法,其中上述 絕緣層為硼磷矽玻璃層,其厚度介於8〇〇〇埃至1〇〇〇〇埃 間。 、 3.如申請專利範圍第1項所述之製造方法,其中上述 第—導電層為一複晶矽層’其厚度介於15〇〇埃至3〇 Pal 〇 ’ < 4.如申請專利範圍第1項所述之製造方法,其中上述413907 VI. Scope of patent application1. A method for manufacturing a crown capacitor of a dynamic random access memory cell is suitable for manufacturing a capacitor on a semiconductor substrate with a switching element, and the above manufacturing method includes the following steps: forming an insulation on the substrate Forming a contact opening that can communicate with the switching element in the insulating layer; forming a first conductive layer on the contact opening to form an electrical connection with the switching element; forming a contact layer on the first conductive layer Sacrificial layer, wherein the material of the sacrificial layer is different from the insulating layer; defining the sacrificial layer and the first conductive layer; forming a conductive spacer on the sidewall of the sacrificial layer and the first conductive layer; selectively removing the sacrificial layer Layer to form the capacitor lower electrode; forming a dielectric layer on the lower electrode; forming the capacitor upper electrode on the dielectric layer. 2. The manufacturing method according to item 1 of the scope of the patent application, wherein the above-mentioned insulating layer is a borophosphosilicate glass layer having a thickness between 8000 angstroms and 10,000 angstroms. 3. The manufacturing method as described in item 1 of the scope of the patent application, wherein the above-mentioned conductive layer is a polycrystalline silicon layer having a thickness of 1 500 angstroms to 3 palals 0 '< 4. The manufacturing method of item 1 in the above range, wherein 第12頁 413907Page 12 413907 六'申請專利範圍 導電層間隔物為複晶矽,其厚度介於50〇埃至7〇〇埃之間。 5. —種動態隨機存取記憶單元之冠狀電容的製造方 法’適用於一具有開關元件之半導體基底上製造電^, 上述製造方法包括下列步驟: 而 於上述基底上形成一絕緣層; 在上述絕緣層中形成一可連通至上述開關元件之接觸 在上述接觸開口上形成一第一導電層,藉以和上述 關元件形成電性連接; ,L野 在上述第一導電層上形成一氮化矽層; 界定上述第一導電層和上述氮化矽層,以形成— 結構; 且 在上述堆疊結構之側壁上形成一導電間隔物; 選擇性地移除上述氮化矽層’以形成上述電容之 極; 电 在上述下電極上形成一介電層; 在上述介電層上形成上述電容之上電極。 6.如申請專利範圍第5項所述之製造方法,其中上述 絕緣層為爛磷矽玻璃層,其厚度介於8 000埃至1〇〇〇〇埃“ 第—7.如申請專利範圍第5項所述之製造方法,其中上述 導電層為一複晶矽層,其厚度介於1〇〇〇埃至15〇〇埃之 如申請專利範圍第5項所述之製造方法,其中上述Six 'patent application scope The conductive layer spacer is polycrystalline silicon, and its thickness is between 50 angstroms and 700 angstroms. 5. —A method for manufacturing a crown capacitor of a dynamic random access memory unit 'is suitable for manufacturing electricity on a semiconductor substrate having a switching element. The above manufacturing method includes the following steps: forming an insulating layer on the substrate; and Forming a contact in the insulating layer that can communicate with the switching element, forming a first conductive layer on the contact opening, thereby forming an electrical connection with the closing element; and forming a silicon nitride on the first conductive layer Layer; defining the first conductive layer and the silicon nitride layer to form a structure; and forming a conductive spacer on a sidewall of the stacked structure; selectively removing the silicon nitride layer to form the capacitor Forming a dielectric layer on the lower electrode; forming the capacitor upper electrode on the dielectric layer. 6. The manufacturing method as described in item 5 of the scope of patent application, wherein the above-mentioned insulating layer is a rotten phosphorous silicon glass layer having a thickness ranging from 8 000 Angstroms to 10,000 Angstroms. "-7. The manufacturing method according to item 5, wherein the conductive layer is a polycrystalline silicon layer having a thickness between 1000 angstroms and 15,000 angstroms. The manufacturing method according to item 5 of the patent application range, wherein 第13頁 413907 六、申請專利範圍 導電層間隔物為複晶矽’其厚度介於5 〇 〇埃至7 〇 〇埃之間。 9.如申请專利範圍第5項所述之製造方法,其中以電 聚化學氣相沈積法(PECVD)將上述氮化矽沈積至厚度介於 600 0埃至8000埃之間。 1 0 ·如申請專利範圍第5項所述之製造方法,其兔以一 含鱗酸之姓刻液體來選擇性地移除上述氣化妙^ 、U‘ 一種動態隨機存取記憶單元之冠狀電容的製造方 法、,適用於一具有開關元件之半導體基底上製造電容’而 上述製造方法包括下列步驟: 於上述基底上形成一絕緣層; 在上述絕緣層中形成一可連通至上述開關元件之接觸 開口 ; 在上述接觸開口上形成一第一導電層,藉以和上述開 關疋件形成電性連接; 以電漿化學氣相沈積法在上述第一導電層上形成一氣 化石夕層; 界定上述第一導電層和上述氮化矽層,以形成一堆疊 結構; 在上述堆疊結構之側壁上形成一導電間隔物; . .選擇性地移除上述氮化矽層,以形成上述電容之下電 在上述下電極上形成一介電層; 在上述介電層上形成上述電容之上電極。 12.如申請專利範圍第11項所述之製造方法,其中上Page 13 413907 6. Scope of patent application The conductive layer spacer is polycrystalline silicon, and its thickness is between 500 angstroms and 700 angstroms. 9. The manufacturing method according to item 5 of the scope of the patent application, wherein the silicon nitride is deposited to a thickness between 600 angstroms and 8000 angstroms by a polymer chemical vapor deposition (PECVD) method. 10 · The manufacturing method as described in item 5 of the scope of the patent application, wherein the rabbit selectively removes the above-mentioned gasification with a liquid containing a scaly acid surname ^, U 'A crown of a dynamic random access memory unit The manufacturing method of a capacitor is suitable for manufacturing a capacitor on a semiconductor substrate having a switching element, and the manufacturing method includes the following steps: forming an insulating layer on the substrate; and forming an insulating layer in the insulating layer that can be connected to the switching element. A contact opening; forming a first conductive layer on the contact opening to form an electrical connection with the switch element; forming a gasified stone layer on the first conductive layer by a plasma chemical vapor deposition method; defining the first A conductive layer and the silicon nitride layer to form a stacked structure; a conductive spacer is formed on the sidewall of the stacked structure;.. The silicon nitride layer is selectively removed to form a capacitor under the capacitor; A dielectric layer is formed on the lower electrode, and the capacitor upper electrode is formed on the dielectric layer. 12. The manufacturing method described in item 11 of the scope of patent application, wherein the above 第14頁 _- 413907 六、申請專利範圍 述絕緣層為硼磷矽玻璃層,其厚度介於8 000埃至10000埃 之間。 1 3.如申請專利範圍第1 1項所述之製造方法,其中以 一含磷酸之蝕刻液體來選擇性地移除上述電漿氮化矽 層。Page 14 _- 413907 VI. Scope of patent application The insulating layer is a borophosphosilicate glass layer with a thickness between 8 000 Angstroms and 10,000 Angstroms. 1 3. The manufacturing method as described in item 11 of the scope of patent application, wherein an etching liquid containing phosphoric acid is used to selectively remove the plasma silicon nitride layer. 第15頁Page 15
TW88104740A 1999-03-25 1999-03-25 Method for manufacturing crown-type capacitor of DRAM cell TW413907B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW88104740A TW413907B (en) 1999-03-25 1999-03-25 Method for manufacturing crown-type capacitor of DRAM cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW88104740A TW413907B (en) 1999-03-25 1999-03-25 Method for manufacturing crown-type capacitor of DRAM cell

Publications (1)

Publication Number Publication Date
TW413907B true TW413907B (en) 2000-12-01

Family

ID=21640070

Family Applications (1)

Application Number Title Priority Date Filing Date
TW88104740A TW413907B (en) 1999-03-25 1999-03-25 Method for manufacturing crown-type capacitor of DRAM cell

Country Status (1)

Country Link
TW (1) TW413907B (en)

Similar Documents

Publication Publication Date Title
US11711924B2 (en) Methods of forming structures containing leaker-devices and memory configurations incorporating leaker-devices
KR100560583B1 (en) Hemispherical grained polysilicon semicondonductor capacitor structure and method
TWI455250B (en) Low parasitic capacitance contact and gate structure and process for dynamic random access memory
US20210242209A1 (en) Dynamic random access memory device and manufacturing method thereof
CN114256240A (en) Capacitor and preparation method thereof
TW406405B (en) Manufacture method of the trench-type capacitor
US11587938B2 (en) Methods of incorporating leaker devices into capacitor configurations to reduce cell disturb, and capacitor configurations incorporating leaker devices
US6660611B2 (en) Method to form a corrugated structure for enhanced capacitance with plurality of boro-phospho silicate glass including germanium
US20060249772A1 (en) Memory circuitry
US5976977A (en) Process for DRAM capacitor formation
TW413907B (en) Method for manufacturing crown-type capacitor of DRAM cell
CN114400287A (en) Semiconductor device and preparation method thereof
TW200423168A (en) Method of forming bottle-shaped trench capacitors
US6232648B1 (en) Extended self-aligned crown-shaped rugged capacitor for high density DRAM cells
TW409410B (en) Manufacture method of crown type capacitor in DRAM cell
US8138572B2 (en) Semiconductor device and method for fabricating the same
CN100373623C (en) Dynamic random access memory unit and its array, and method of making the same
TW417291B (en) Manufacture method of crown-type DRAM capacitor
US6150207A (en) Method for fabricating a crown capacitor with rough surface
US5866454A (en) Method of fabricating a capacitor structure for a dynamic random access memory cell with cellular voids
KR20000044884A (en) Method for forming capacitor of semiconductor device
US20050014332A1 (en) Method to improve bitline contact formation using a line mask
US6528436B1 (en) Method of forming silicon nitride layer directly on HSG polysilicon
KR100431739B1 (en) Method of forming capacitor in memory device
KR20010003252A (en) Fabricating method for capacitor of semiconductor device

Legal Events

Date Code Title Description
GD4A Issue of patent certificate for granted invention patent
MK4A Expiration of patent term of an invention patent