TW417291B - Manufacture method of crown-type DRAM capacitor - Google Patents

Manufacture method of crown-type DRAM capacitor Download PDF

Info

Publication number
TW417291B
TW417291B TW088109096A TW88109096A TW417291B TW 417291 B TW417291 B TW 417291B TW 088109096 A TW088109096 A TW 088109096A TW 88109096 A TW88109096 A TW 88109096A TW 417291 B TW417291 B TW 417291B
Authority
TW
Taiwan
Prior art keywords
layer
manufacturing
capacitor
spacer
conductive layer
Prior art date
Application number
TW088109096A
Other languages
Chinese (zh)
Inventor
Yi-Nan Chen
Feng-Chiuan Lin
Original Assignee
Nanya Technology Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanya Technology Corp filed Critical Nanya Technology Corp
Priority to TW088109096A priority Critical patent/TW417291B/en
Application granted granted Critical
Publication of TW417291B publication Critical patent/TW417291B/en

Links

Landscapes

  • Semiconductor Integrated Circuits (AREA)

Abstract

A manufacture method of crown-type DRAM capacitor suitable for a semiconductor substrate with switch device on it is disclosed. It comprises the following steps. (1) Sequentially form insulated and barrier layers on the above mentioned substrate and make a contact connected to the switch device through the insulated and cover layers. (2) Form the first conduction layer on the barrier layer and contact to link the switch device. (3) Make a groove to divide each memory cell area. Form a divider on the said groove sidewall and anisotropically etch the first conduction layer to barrier layer by using the sidewall as etch mask. The bottom electrode of the capacitor is formed. (4) Selectively etch the divider and form a dielectric layer smoothly covered the bottom electrode and insulated layer. (5) Form the second conduction layer as the capacitor top electrode.

Description

-HK91-- 五、發明說明(1) 本發明係有關於半導體記憶元件的製造方法,特別是 有關於一種動態隨機存取記憶單元(dynamic random access memory, DRAM)之冠狀電容之製造方法。 動態隨機存取記憶體為一廣泛應用的積體電路元件, 特別在現今的資訊電子產業中更有不可或缺的地位。隨著 技術的演進,目前生產線上常見的DRAM記憶單元大多是由 一電晶體T和一電容C所構成,如第1圖的電路示意圖所 示。電晶體T的源極(s 〇 u r c e )係連接到一對應的位元線 (bit line, BL)和汲極(drain)連接到一電容C的下電極 (bottom electrode),而閘極(gate)則連接到一對應的字 元線(word line,WL),電容C的一上電極(top electrode)係連接到一固定電壓源,而在下電極和上電極 間隔著一介電層。 電容C是用來儲存電子資訊的,其應具備足夠大的電 容量’以避免資料的流失並減低充電更新(refresh)的頻 率。可由兩個方向著手來增加電容C的電容量,一為減少 介電層的厚度’一為增加下電極的表面積。在減少介電層 的厚度方面’現今製造的電容均已使用極薄的介電層,然 而其厚度並非無限制的縮小,當介電層的厚度小於5 〇埃 時·極可%因為直接載子隨穿(direct carrier tunnel ing)而產生過大的漏電流,影響元件的性質。因此 目岫許多研發都致力於增加下電極的表面積,藉以提 容的電容量。 在傳統少於一百萬位元(1 MB)的DRAM製程中,一般多-HK91-- V. Description of the invention (1) The present invention relates to a method for manufacturing a semiconductor memory element, and particularly to a method for manufacturing a crown capacitor of a dynamic random access memory (DRAM). Dynamic random access memory is a widely used integrated circuit component, especially in today's information electronics industry. With the evolution of technology, the DRAM memory cells commonly used in production lines are mostly composed of a transistor T and a capacitor C, as shown in the circuit diagram in Figure 1. The source of the transistor T is connected to a corresponding bit line (BL) and the drain is connected to a bottom electrode of a capacitor C, and the gate ) Is connected to a corresponding word line (WL), a top electrode of the capacitor C is connected to a fixed voltage source, and a dielectric layer is separated between the lower electrode and the upper electrode. Capacitor C is used to store electronic information. It should have a sufficiently large capacitance ′ to avoid data loss and reduce the frequency of charge refresh. There are two directions to increase the capacitance of the capacitor C, one is to reduce the thickness of the dielectric layer ', and the other is to increase the surface area of the lower electrode. In terms of reducing the thickness of the dielectric layer, the capacitors manufactured today have used extremely thin dielectric layers, but their thickness is not unlimitedly reduced. When the thickness of the dielectric layer is less than 50 angstroms, it is extremely possible because of direct loading. The direct carrier tunnel ing causes excessive leakage current, which affects the properties of the device. Therefore, many researches and developments are focused on increasing the surface area of the lower electrode to increase the capacitance. In traditional DRAM processes with less than one million bits (1 MB), more

_ 417291____ 五 '發明說明(2) 利用二度空間的電容來儲存資料’亦即泛稱的平面型電容 (planar-type capacitor)。然而,平面型電容需利用基 底一相當大的面積來形成下電極C ,才可提供足夠的電容 量’所以並不適用於目前曰益高度積集化之⑽趨元件的 製程要求。 通常’高度積集化的DRAM ’例如具有大於1 6M位元的 儲存容量者,需要利用三度空間的電容結構,例如凹槽型 (trench type)或堆疊型(stack type)的電容記憶元件。 而由於蝕刻凹槽來製作電容時會不可避免地在基底產生晶 格缺陷(defects),造成漏電流的增加而影響元件性質, 且隨著凹槽縱橫比(aspect rati〇)的增加,其蝕刻速率將 遞減,不僅增加製程的困難度,也影響了生產效率,因此 凹槽型電容的製程在實際生產線上的應用有其困難度。相 反的,堆疊型電容的製程並不會產生上述缺點,因此許多 技術均係針對此—形式的記憶元件進行改良以達到在元 件尺寸縮小時仍可以確保提供足夠大之電容量之目的。 在各種堆疊型電容的記憶元件中,電極 部分的一冠狀電容(cr〇wn_type capacit〇r),由於其卜 提:有效的電容面積’相當適合於製造高度積 、 ,特別是大於64MB位元的記憶元件。 > ΪίΪ,造動態隨機存取記憶單元之冠狀電容的方 Ϊ程:加製程的複雜度’ S此影響生產效率。 :也簡不:於製程條件控制上的要 嚴可,所U並不利於生產線上的實施。_ 417291____ 5 'Explanation of the invention (2) Storage of data by using second-degree capacitors', also known as planar-type capacitors. However, planar capacitors need to use a relatively large area of the substrate to form the lower electrode C in order to provide a sufficient amount of capacitance ', so they are not suitable for the current process requirements of highly integrated trending components. Generally, 'highly integrated DRAM', for example, having a storage capacity greater than 16M bits, requires a three-dimensional space capacitor structure, such as a trench-type or stack-type capacitor memory element. As the grooves are etched to make capacitors, lattice defects will inevitably be generated on the substrate, which will increase the leakage current and affect the properties of the elements. As the aspect ratio of the grooves increases, the etching will The speed will decrease, which not only increases the difficulty of the process, but also affects the production efficiency. Therefore, the application of the process of the groove type capacitor in the actual production line has its difficulty. In contrast, the manufacturing process of stacked capacitors does not produce the above disadvantages, so many technologies are improved for this form of memory elements to achieve the purpose of ensuring a sufficient capacitance when the size of the elements is reduced. In the memory elements of various stacked capacitors, a crown capacitor (cr0wn_typecapacitr) of the electrode part, because of its quotation: the effective capacitance area is quite suitable for manufacturing a high product, especially larger than 64MB bits. Memory element. > How to make a crown capacitor of a dynamic random access memory cell? Process: Adding the complexity of the process ′ This affects production efficiency. : Also simple and not: It is necessary to be strict in the control of process conditions, so it is not conducive to the implementation of the production line.

417291 五、發明說明(3) 為了更清楚說明起見,請參見第2A圖至第2C圖,來說 明一習知具冠狀電容之動態隨機存取記憶單元的製造流 程。如第2A圖所示,於一半導體基底210上形成一場氧化 層212以界定出元件區(actiVe region)。接著依序形成— 閘氧化層2 1 4、一複晶矽層2 1 5、一矽化鎢(WS ix)層2 1 6、 及一絕緣層218 ’並經蝕刻定義圖案形成一閘極(gate electrode)構造g。利用此閘極構造G當作罩幕,佈植雜質 進入半導體基底2 1 0中以形成淡摻雜源極/汲極區。在閘電 極構造G的側壁上以沈積和回蝕程序形成一閘極間隔物 220,再以閘極構造g和絕緣間隔物220當作罩幕,佈植較 高濃度雜質進入半導體基底210中以完成源極/汲極區 2 22 ’至此完成一電晶體元件的製程。 接著’沈積一絕緣層2 2 4覆蓋在上述電晶體元件表面 上,之後再平坦化絕緣層2 2 4 ’以形成利於後續製程之平 垣表面。接著以微影成像(micr〇lithographyH〇#刻程序 在絕緣層224中形成一接觸開口 228,暴露出電晶體的源極 /及極區222。接著形成第一導電層230覆蓋在絕緣層224表 面上並填滿接觸開口 228 ’藉以和源極/没極區222形成電 性連接。 然後’利用微影成像和蝕刻程序在第一導電層2 3 〇上 形成複數個淺凹槽232,露出用以分隔各記憶單元的區 域。然後,在淺凹槽232的側壁上形成絕緣間隔物234。 接下來,如第2 B圖所示,利用絕緣間隔物2 3 4當作罩 幕,以一非等向性蝕刻方法蝕刻第一導電層2 3 〇,使得其417291 V. Description of the invention (3) For a clearer explanation, please refer to Figs. 2A to 2C to explain the manufacturing process of a dynamic random access memory unit with a crown capacitor. As shown in FIG. 2A, an oxide layer 212 is formed on a semiconductor substrate 210 to define an actiVe region. Then it is sequentially formed—gate oxide layer 2 1 4, a polycrystalline silicon layer 2 1 5, a tungsten silicide (WS ix) layer 2 1 6, and an insulating layer 218 ′, and a gate is formed by etching to define a pattern. electrode) Structure g. Using this gate structure G as a mask, implanted impurities enter the semiconductor substrate 210 to form a lightly doped source / drain region. A gate spacer 220 is formed on the sidewall of the gate electrode structure G by a deposition and etch-back procedure, and then the gate structure g and the insulating spacer 220 are used as a mask, and a higher concentration of impurities is implanted into the semiconductor substrate 210 to The source / drain region 2 22 ′ is completed, and thus a transistor device is completed. Next, an insulating layer 2 2 4 is deposited on the surface of the transistor element, and then the insulating layer 2 2 4 ′ is planarized to form a planar surface which is favorable for subsequent processes. Then, a contact opening 228 is formed in the insulating layer 224 by a microlithography (lithography imaging procedure) to expose the source / and region 222 of the transistor. A first conductive layer 230 is then formed to cover the surface of the insulating layer 224 The contact opening 228 is formed and filled ′, thereby forming an electrical connection with the source / non-electrode region 222. Then, a plurality of shallow grooves 232 are formed on the first conductive layer 23 by using a lithography imaging and etching process, and exposed for use. To separate the regions of the memory cells. Then, an insulating spacer 234 is formed on the side wall of the shallow groove 232. Next, as shown in FIG. 2B, the insulating spacer 2 3 4 is used as a cover, and a non- The isotropic etching method etches the first conductive layer 2 3 0 so that it

第7頁 五、發明說明(4) 位於淺凹槽2 3 2下方的部分完全去除,以分隔出各個電容' 的範圍,形成冠狀的下電極230’ 。 . 接著請參見第2 C圖,以非等向性银刻程序去除絕綠門 隔物234。在下電極2 30’的表面上依序形成一介電質層 238 ’以及一上電極2 40,共同構成一電容元件。 很明顯地,前述習知方法中製作冠狀電容構造的步 驟’主要係利用一絕緣間隔物234當作蝕刻罩幕來形成冠 狀電容後,再以一蝕刻程序去除上述絕緣間隔物234。為 了確保絕緣間隔物2 3 4被完全去除,此钱刻步驟通常會姓 刻到絕緣層2 2 4 ’造成絕緣層2 2 4之平坦表面被破壞,影塑 元件的性質。此外由於該蝕刻程序通常採用非等向性触刻 法’使間隔物234之形狀會轉移到冠狀下電極230’上,形 成如圖2C所示之尖銳構造,容易造成冠狀電容產生尖端放 電的問題。Page 7 V. Description of the invention (4) The portion below the shallow groove 2 3 2 is completely removed to separate the range of each capacitor ', forming a crown-shaped lower electrode 230'. Then refer to Figure 2C to remove the green door spacer 234 using an anisotropic silver engraving procedure. A dielectric layer 238 'and an upper electrode 2 40 are sequentially formed on the surface of the lower electrode 2 30', and together form a capacitor. Obviously, the step of manufacturing the crown capacitor structure in the conventional method is to form a crown capacitor by using an insulating spacer 234 as an etching mask, and then removing the insulating spacer 234 by an etching process. In order to ensure that the insulating spacers 2 3 4 are completely removed, this money engraving step is usually engraved on the insulating layer 2 2 4 ′, which causes the flat surface of the insulating layer 2 2 4 to be damaged, which affects the properties of the component. In addition, because this etching process usually uses an anisotropic touch method, the shape of the spacer 234 will be transferred to the crown-shaped lower electrode 230, forming a sharp structure as shown in FIG. 2C, which easily causes the problem of the tip discharge of the crown capacitor. .

有鑑於此’本發明提出一種具冠狀電容的動態隨機存 取記憶單元的製造方法,其主要將前述習知方法作改良, 在第一絕緣層上再沈積一與絕緣間隔物材質不同之遮蔽 層。所以在移除絕緣間隔物之步驟中,因為有遮蔽層之保 護可以使絕緣層不被蝕刻,所以仍可保持表面之平坦D 依照本發明之一種動態隨機存取記憶單元之冠狀電容 的製造方法,適用於一具有開關元件之半導體基底上製造 電容’而上述製造方法包括下列步騍:依序於上述基底 上形成一絕緣層和遮蔽層;在上述絕緣層和遮蔽層中形成 一可連通至上述開關元件之接觸開口;在上述遮蔽層上和In view of this, the present invention proposes a method for manufacturing a dynamic random access memory unit with a crown capacitor, which mainly improves the aforementioned conventional method, and further deposits a shielding layer on the first insulating layer different from the insulating spacer material. . Therefore, in the step of removing the insulating spacer, the protection of the shielding layer can prevent the insulating layer from being etched, so that the surface can be kept flat. It is suitable for manufacturing capacitors on a semiconductor substrate with a switching element ', and the above manufacturing method includes the following steps: sequentially forming an insulating layer and a shielding layer on the substrate; forming an accessible layer in the insulating layer and the shielding layer. The contact opening of the switching element; on the shielding layer and

第8頁 417291 五、發明說明(5) 上述接觸開口内形成一第一導電層’藉以和上述開關元件 形成電性連接;在上述第一導電層中形成一凹槽,以界定 出用以分隔各記憶單元單元之區域;在上述凹槽之侧壁上 形成一間隔物;以上述間隔物為罩幕,非等向性地钱刻上 述第一導電層至上述遮蔽層,而形成上述電容之下電極; 選擇地去除上述間隔物;形成一介電層以順應性地覆蓋在 上述下電極和上述絕緣層上;在上述介電層上形成一第二 導電層,作為上述電容之上電極。 為了讓本發明之上述目的和特點更明顯易懂,下文特 舉若干較佳實施例,並配合所附圖式,做詳細說明如下: 圖式之簡單說明 第1圖係一般動態隨機存取記憶單元的電路示意圖; 第2A至第2C圖均為剖面示意圖’用以說明習知製造冠 狀電容之的製造流程。 第3A至第3E圖及第4圖均為剖面示意圖,用以說明依 據本發明的一較佳實施例的製造流程。 符號說明 〈習知技術〉 21 0〜基底、2 2 2〜源極和沒極區、g〜閘極、2 2 〇〜閘極間 隔物、22[第一絕緣層、230〜第一導電層、232〜四槽、 234〜凹槽間隔物、230’〜下電極、238〜介電層、24〇~上電 極 〈實施例〉 300〜基底、322〜源極和汲極區、H〜間極l閉極間Page 8 417291 V. Description of the invention (5) A first conductive layer is formed in the contact opening to form an electrical connection with the switching element; a groove is formed in the first conductive layer to define a space for separation A region of each memory cell unit; a spacer is formed on a side wall of the groove; the spacer is used as a cover, and the first conductive layer to the shielding layer are engraved anisotropically to form the capacitor A lower electrode; selectively removing the spacer; forming a dielectric layer to cover the lower electrode and the insulating layer compliantly; forming a second conductive layer on the dielectric layer as the capacitor upper electrode. In order to make the above-mentioned objects and features of the present invention more comprehensible, several preferred embodiments are exemplified below and described in detail with the accompanying drawings as follows: Brief Description of the Drawings Figure 1 is a general dynamic random access memory The circuit diagram of the unit; Figures 2A to 2C are cross-sectional schematic diagrams' to explain the conventional manufacturing process of manufacturing a crown capacitor. 3A to 3E and 4 are schematic cross-sectional views for explaining a manufacturing process according to a preferred embodiment of the present invention. Explanation of symbols <Known technology> 21 0 to substrate, 2 2 2 to source and non-electrode regions, g to gate, 2 2 to gate spacers, 22 [first insulating layer, 230 to first conductive layer , 232 to four slots, 234 to groove spacers, 230 'to lower electrodes, 238 to dielectric layers, 24 to upper electrodes <Example> 300 to substrate, 322 to source and drain regions, H to Interpolar

第9頁 417291 五、發明說明(6) 隔物、324〜第一絕緣層、326〜遮蔽層、330〜第一導電層、 332〜凹槽'334〜凹槽隔物、330’〜下電極、338〜介電層、, 340〜上電極。 實施例之說明 請先參見第3A圖,其顯示本發明之起始步驟。提供一 半導體基底3 1 0 ’在此以一晶格方位為&lt; 1 〇 〇 &gt;之p型發基底 為例。在基底31 0上以一熱氧化製程,如局部氧化法 (LOCOS)形成一場氧化層312以界定出將形成記憶單元的元 件區(active area)。接著依序在基底上沈積一閘氧化層 31 4、一複晶矽層31 5、 一矽化鎢層(WSix)316及一氧化矽 層3 1 8後,用微影技術和非等向性姓刻程序定義上述各層 圖案,以形成一閘極構造Η。接著在閘極構造11旁形成一淡 摻雜的源極和汲極區。例如以閘極構造Η為罩幕,佈植如 磺或砷之Ν型摻源進入半導體基底3丨〇而形成。然後在閘極 構造Η的側壁上形成一閘極間隔物3 2〇, 向性地回姓-絕緣層來完成。之後形成』接雜 極區以元成源極和汲極區3 2 2製造。例如以閘極間隔物 320和閘極構造η為罩幕,佈植入較高濃度的之^型摻源, 如填或珅’進入半導體基底3 1〇而形成。至此,完成一電 晶體元件的製造。 接著在上述包含電晶體元件的基底3 1〇上沈積至少一 層絕緣層,以隔離電晶體和後續形成之導電層並提供有 利於後續製程之平坦表面,其中還可依不同的元件設計製 作必須的導線於其間。例如在基底上沈積一第一絕緣層Page 9 417291 V. Description of the invention (6) Spacer, 324 ~ first insulation layer, 326 ~ shielding layer, 330 ~ first conductive layer, 332 ~ groove '334 ~ groove spacer, 330' ~ lower electrode 338 ~ dielectric layer, 340 ~ upper electrode. Explanation of Examples Please refer to FIG. 3A, which shows the initial steps of the present invention. A semiconductor substrate 3 1 0 'is provided. Here, a p-type hair substrate having a lattice orientation of &lt; 100 is used as an example. An oxide layer 312 is formed on the substrate 310 by a thermal oxidation process, such as a local oxidation method (LOCOS), to define an active area that will form a memory cell. Next, a gate oxide layer 31 4, a polycrystalline silicon layer 31 5, a tungsten silicide layer (WSix) 316 and a silicon oxide layer 3 1 8 are sequentially deposited on the substrate, and then a photolithography technique and an anisotropic surname are used. The engraving procedure defines the above-mentioned layer patterns to form a gate structure. Next, a lightly doped source and drain region is formed next to the gate structure 11. For example, the gate structure is used as a mask, and an N-type dopant such as sulfon or arsenic is implanted into the semiconductor substrate 3 and formed. Then, a gate spacer 3 2 0 is formed on the side wall of the gate structure Η, and the surname-insulating layer is returned to complete it. The formation of "hybrid" pole regions is made by forming source and drain regions 3 2 2. For example, the gate spacer 320 and the gate structure η are used as a mask, and a high-concentration ^ -type dopant is implanted in the cloth, such as filling or 珅 'into the semiconductor substrate 3 10 to form. So far, the manufacture of a transistor element is completed. Next, at least one insulating layer is deposited on the substrate 3 10 including the transistor element to isolate the transistor from the subsequent conductive layer and provide a flat surface that is conducive to the subsequent process. The necessary components can also be manufactured according to different element designs. The lead is in between. For example depositing a first insulating layer on a substrate

第10頁 五、發明說明(7) 3 2 4後,施行一平坦化程序使之表面平坦,如第3 a圖令所 示。第一絕緣層可以是硼磷矽玻璃層,其可採用以四乙氧 基矽酸鹽(tetraethoxysilane,TEOS)、03/02、三乙基蝴 酸鹽(triethylborate,TEB)及三甲基碟酸鹽 (tr i me thy 1 phosphate,TMP)為反應物的常壓化學氣相沈 積法(APCVD)沈積。而該平坦化技術可為化學機械研磨法 (Chemical-Mechanical Polishing) ° 之後,為了確保絕緣層在後續移除凹槽間隔物之製程 中不被蝕刻,便於第一絕緣層324上再沈積一遮蔽層326, 其中遮蔽層326與之後形成之凹槽間隔物334材質不同,所 以採用一選擇性蝕刻程序移除凹槽間隔物334時,藉由上 述選擇性蝕刻程序對凹槽間隔物334和遮蔽層326蝕刻率之 差異’所以遮蔽層3 2 6可不被钮刻,因而具有保護第一絕 緣層完整性之作用。遮蔽層326可以是氮化矽(Si3N4)層, 其可採用以SiH2Cl2和NHS為主反應物之低壓化學氣相沈積 法產生’並沈積至厚度介於約4〇〇埃至8〇〇埃之間較佳。 之後’以微影技術和非等向性钱刻程序定義遮蔽層 3 26和第一絕緣層324,以形成一接觸開口 328,其露出電 晶體的源極和::及極區3 2 2。該蝕刻程序可採用如以氟化碳 (CFO為主#刻反應氣體之反應性離子蝕刻法(reactive ion etch,RIE)來進行。 接著’形成一第一導電層330覆蓋在遮蔽層326表面上 並填滿接觸開口 3 2 8 ’藉此使後續的元件可和源極區形成 電性連接。第一導電層330可為一複晶矽層,可採用以矽Page 10 V. Description of the invention (7) After 3 2 4, a flattening procedure is performed to make the surface flat, as shown in Figure 3a. The first insulating layer may be a borophosphosilicate glass layer, which may be made of tetraethoxysilane (TEOS), 03/02, triethylborate (TEB), and trimethylsuccinic acid. Salt (tr i me thy 1 phosphate, TMP) was deposited by atmospheric pressure chemical vapor deposition (APCVD) of the reactants. The planarization technology may be after chemical-mechanical polishing. In order to ensure that the insulating layer is not etched during the subsequent process of removing the groove spacers, it is convenient to deposit a mask on the first insulating layer 324. Layer 326, in which the shielding layer 326 and the groove spacer 334 formed later are made of different materials, so when the groove spacer 334 is removed using a selective etching process, the groove spacer 334 and the mask are masked by the selective etching process described above. The difference in the etch rate of the layer 326 'so the shielding layer 3 2 6 can not be etched, and therefore has the effect of protecting the integrity of the first insulating layer. The shielding layer 326 may be a silicon nitride (Si3N4) layer, which may be produced by a low-pressure chemical vapor deposition method using SiH2Cl2 and NHS as the main reactants, and deposited to a thickness between about 400 angstroms and 800 angstroms. Better. After that, the masking layer 3 26 and the first insulating layer 324 are defined by a lithography technique and an anisotropic money engraving process to form a contact opening 328, which exposes the source and the transistor of the transistor: and the electrode region 3 2 2. The etching process may be performed using a reactive ion etch (RIE) method using carbon fluoride (CFO as the main etched reactive gas). Then, a first conductive layer 330 is formed to cover the surface of the shielding layer 326. And fill the contact opening 3 2 8 ′, so that subsequent components can form an electrical connection with the source region. The first conductive layer 330 may be a polycrystalline silicon layer, and silicon may be used.

第U頁 417291 五、發明說明(8) ' —- 甲烷(S1H4)為主反應物之低壓化學氣相沈積法(LpcVD)產 生’並沈積至厚度介於約15〇〇埃至3〇〇〇埃之間較佳。為使 第‘電層具有導電性’可使用擴散、離子植入砷或碟離 子’或使用同步摻雜法。 之後請參見第3B圖,其顯示進行製作本發明之冠狀電 容之重要步驟。首先,形成一光阻層(未顯示),以定義各 電容之範圍。然後以此光阻層為罩幕,非等向性地蝕刻第 一導電層至一深度tl ’以形成一淺凹槽332,其可界定出 用以分隔各電容之區域’且其深度可決定後來形成之下 電極之厚度。其中凹槽332之深度需小於第一導電層330之 厚度。上述蝕刻程序可採用以氟化碳(Cf3 )為主蝕刻反應 狄體之反應性離子钱刻法(reactiVe ion etch, RIE)來完 成。 之後’請參見第3C圖,其顯示在凹槽332之側壁上製 作一凹槽間隔物334之結果。形成一第二絕緣層以順應性 覆蓋凹槽332和第一導電層330後,回蝕第二絕緣層至第一 導電層330,只留下第二絕緣層在凹槽332側壁上之部分’ 其形成凹槽間隔物334。第二絕緣層可以是未摻雜之矽玻 璃層(non-doped silicon glass, NSG),其可採用以四乙 氧基石夕酸鹽(161^36'1:11〇乂75丨13116,了£08)為主反應物的低 壓化學氣相沈積法(LPCVD)沈積,並沈積至厚度介於約 1 000埃至1 500埃之間較佳。 之後,請參見第3D圖,其顯示形成下電極之重要步 驟。以凹槽間隔物3 3 4為罩幕,非等向性地蝕刻第一導電Page U 417291 V. Description of the invention (8) '--- Methane (S1H4) is produced by low pressure chemical vapor deposition (LpcVD) as the main reactant' and is deposited to a thickness of about 15,000 angstroms to 3,000 Better between Egypt. To make the "electrical layer conductive", diffusion, ion implantation of arsenic or disk ions can be used, or synchronous doping can be used. Please refer to FIG. 3B, which shows the important steps for making the crown capacitor of the present invention. First, a photoresist layer (not shown) is formed to define the range of each capacitor. Then using this photoresist layer as a mask, the first conductive layer is anisotropically etched to a depth t1 'to form a shallow groove 332, which can define the area to separate the capacitors' and its depth can be determined Later the thickness of the lower electrode is formed. The depth of the groove 332 needs to be smaller than the thickness of the first conductive layer 330. The above-mentioned etching process can be performed using a reactive etch method (RIE) using carbon fluoride (Cf3) as the main etching reaction. After that, please refer to FIG. 3C, which shows the result of making a groove spacer 334 on the side wall of the groove 332. After forming a second insulating layer to conformably cover the groove 332 and the first conductive layer 330, the second insulating layer is etched back to the first conductive layer 330, leaving only the portion of the second insulating layer on the sidewall of the groove 332 ' It forms a groove spacer 334. The second insulating layer may be a non-doped silicon glass (NSG) layer, which may be made of tetraethoxy oxalate (161 ^ 36'1: 11〇75 丨 13116). 08) Low pressure chemical vapor deposition (LPCVD) deposition as the main reactant, and it is preferably deposited to a thickness between about 1,000 angstroms and 1,500 angstroms. After that, please refer to Fig. 3D, which shows the important steps for forming the lower electrode. Using the groove spacer 3 3 4 as a mask, the first conductive is anisotropically etched

417291 五、發明說明(9) 層330至遮蔽層326 ’使得位於凹槽332下方之第一導電層 330完全被去除’形成用以分隔各電容之區域3 32,e同時, 留下部分第一導電層334,形成冠狀下電極330,。該蝕刻 程序可採用以氣(Cl2)、鹽酸(HC1)或氯化矽(SiCl2)為蝕刻 反應氣體之反應性離子蝕刻法來進行。 由於本發明同時結合遮蔽層3 2 6 '凹槽3 3 2、凹槽間隔 物334 ’所以可用一次蝕刻步驟來移除不需要之第一導電 層’形成冠狀之下電極330’ ’並維持基底之平坦表面不被 破壞。因此可減少製程步驟及降低製程花費。 之後’請參見第3E圖。以一選擇性蝕刻程序去除凹槽 間隔物334。其中該選擇性蝕刻程序對凹槽間隔物334之蝕 刻率需遠大於遮蔽層,以保護第一絕緣層324。例如以〇. 5 -1 %之氫氟酸為主蝕刻反應物之濕蝕刻程序來選擇性地移 除間隔物。由於該氫氟酸蝕刻液體對氮化矽(遮蔽層)和 NSG(凹槽間隔物)之蝕刻選擇性極高(&gt;3〇〇),所以可以用 來選擇性地去除NSG之凹槽間隔物3 34。 由於習知技術大多採用非等向性蝕刻法來移除凹槽間 隔物334 ’這樣會將凹槽間隔物334之尖銳構造轉移至下電 極’而此尖銳構造會造成尖端放電,影響元件性質。所以 本發明避免採用習知非等向性蝕刻法移除間隔物所造成尖 銳頂部之問題,而改採用一選擇性之濕蝕刻程序移除凹槽 間隔物’使下電極之向上凸起仍保留完整之頂部表面。 接著’形成一介電層338以順應性地覆蓋在下電極 330’和第一絕緣層330上。之後再於介電層338上形成一第417291 V. Description of the invention (9) The layer 330 to the shielding layer 326 'make the first conductive layer 330 below the groove 332 completely removed' to form a region 3 for separating the capacitors 3 32, e At the same time, leaving a part of the first The conductive layer 334 forms a crown-shaped lower electrode 330 ′. This etching process can be performed by a reactive ion etching method using gas (Cl2), hydrochloric acid (HC1) or silicon chloride (SiCl2) as an etching reaction gas. Since the present invention is combined with the shielding layer 3 2 6 'groove 3 3 2 and the groove spacer 334', an unnecessary first conductive layer can be removed in one etching step to form a crown-shaped lower electrode 330 'and maintain the substrate. The flat surface is not damaged. Therefore, the number of process steps and process costs can be reduced. Afterwards', please refer to FIG. 3E. The groove spacers 334 are removed in a selective etching process. The selective etching process needs to etch the groove spacers 334 much more than the shielding layer to protect the first insulating layer 324. For example, a wet etching process with 0.5-1% hydrofluoric acid as the main etching reactant is used to selectively remove the spacers. Because the hydrofluoric acid etching liquid has a very high etching selectivity (&gt; 300) for silicon nitride (shielding layer) and NSG (groove spacer), it can be used to selectively remove the groove space of NSG Article 3 34. Since conventional techniques mostly use anisotropic etching to remove the recessed spacer 334 ', this will transfer the sharp structure of the recessed spacer 334 to the lower electrode', and this sharp structure will cause the tip to discharge and affect the properties of the element. Therefore, the present invention avoids the problem of sharp tops caused by removing spacers by the conventional anisotropic etching method, and instead uses a selective wet etching process to remove the groove spacers so that the upward protrusion of the lower electrode remains. Complete top surface. Next, a dielectric layer 338 is formed to conformably cover the lower electrode 330 'and the first insulating layer 330. A first layer is then formed on the dielectric layer 338

第13頁 417291Page 13 417291

發明說明(10) 三導電層340,作為上電極。至此,下電極33q, 3 38和上電極340即可組合成本發明之冠狀電容。 曰 338可為氧化碎/氮化砂/氧化$夕層(〇N〇 : 電層 =具冋^電係數之材質。其中以氧化矽/氮化矽/氧化矽較 佳,可採化學氣相沈積法沈積至厚度介於約5 〇埃至7 〇埃 之間。第三導電層340可為一複晶矽層,其可採用以矽甲 烷為主反應物之低壓化學氣相沈積法沈積至厚度介於約 2 0 0 0埃至3 0 0 〇埃之間。為使複晶矽層具有導電性,其能使 用擴散、離子植入砷(As)或磷離子(p),或使用同步摻雜 法。 上述具冠狀電容之動態隨機存取記憶單元,應可提供 足夠之電容量以應用於高度積集化元件製程。而基於上述 製程’也可很容易地增加其電極表面積,提供更大的電容 量。如第4圖所示者,可於形成介電層33 8之前,以習用的 程序先在下電極330’露出的表面上形成複數個半球形矽晶 粒(hemi-spherical silicon grain, HSG),或是以低壓 氣相沈積法(LPCVD)形成縐褶狀複晶矽(rugged polysilicon)構造339,均可有效增加下電極330’的表面 積。之後,依序形成介電質層338和上電極340便完成動態 隨機存取記憶單元的之冠狀電容。 由於本發明所提出之動態隨機存取記憶單元之冠狀電 容的製造方法有下列特性:(1)不受限於微影製程所需之 臨界尺寸大小;(2)利用凹槽和間隔物,可以一次蝕刻步DESCRIPTION OF THE INVENTION (10) The three conductive layers 340 serve as upper electrodes. So far, the lower electrodes 33q, 3 38 and the upper electrode 340 can be combined into the crown capacitor of the present invention. Said 338 can be oxidized crushed / nitrided sand / oxidized layer (〇N〇: electric layer = material with electric coefficient). Among them, silicon oxide / silicon nitride / silicon oxide is preferred, and chemical vapor phase can be adopted. The deposition method is deposited to a thickness between about 50 angstroms and 70 angstroms. The third conductive layer 340 may be a polycrystalline silicon layer, which may be deposited to The thickness is between about 2000 angstroms and 300 angstroms. To make the polycrystalline silicon layer conductive, it can use diffusion, ion implantation of arsenic (As) or phosphorus ions (p), or synchronization Doping method. The above-mentioned dynamic random access memory cells with a crown capacitor should provide sufficient capacitance to be used in the process of highly integrated components. Based on the above process, the surface area of the electrodes can also be easily increased to provide more Large capacitance. As shown in FIG. 4, a plurality of hemi-spherical silicon grains (hemi-spherical silicon grains) can be formed on the exposed surface of the lower electrode 330 'by a conventional procedure before forming the dielectric layer 338. , HSG), or pleated compound crystals formed by low pressure vapor deposition (LPCVD) The (rugged polysilicon) structure 339 can effectively increase the surface area of the lower electrode 330 '. After that, the dielectric layer 338 and the upper electrode 340 are sequentially formed to complete the crown capacitance of the dynamic random access memory cell. The manufacturing method of the crown capacitor of the dynamic random access memory cell has the following characteristics: (1) it is not limited to the critical size required for the lithography process; (2) the use of grooves and spacers can be etched in one step

第14頁 417C31__ 五、發明說明(11) 驟形成冠狀下電極,可減少製程步驟及降低製程花費; (3 )可利用凹槽之深度來控制下電極之厚度;以及(4)加入' 一遮蔽層,以保護平坦絕緣層°所以可達到下一世代之高 記憶體需求及有效之空間利用。因此,本發明之冠狀電容 結構可應用於動態隨機存取記憶體,使其可在有限之物質 材料下,大幅增加相當之電容量。同時,熟知此技藝者應 可瞭解,本發明可用之物質材料並不限於實施例中所引述 者,其能由各種恰當特性之物質和形成方法所置換,並且 本發明之結構空間亦不限於實施例所引用之尺寸大小。 雖然本發明已以較佳實施例揭露如上,然其並非用以 限定本發明,任何熟習此技藝者,在不脫離本發明之精神 和範圍内,當可作各種之更動與潤飾,因此本發明之保護 範圍當視後附之申請專利範圍所界定者為準。Page 14 417C31__ 5. Description of the invention (11) The step of forming a crown-shaped lower electrode can reduce the process steps and the cost of the process; (3) the depth of the groove can be used to control the thickness of the lower electrode; Layer to protect the flat insulation layer, so it can meet the high memory requirements and effective space utilization of the next generation. Therefore, the crown capacitor structure of the present invention can be applied to a dynamic random access memory, which can greatly increase the equivalent capacitance under a limited material. At the same time, those skilled in the art should understand that the material materials usable in the present invention are not limited to those cited in the examples, they can be replaced by various appropriate characteristics of materials and forming methods, and the structural space of the present invention is not limited to implementation. The size of the example. Although the present invention has been disclosed in the preferred embodiment as above, it is not intended to limit the present invention. Any person skilled in the art can make various modifications and retouches without departing from the spirit and scope of the present invention. The scope of protection shall be determined by the scope of the attached patent application.

第15頁Page 15

Claims (1)

417291 六'申請專利範圍 '' ~ 1. 一種動態隨機存取記憶單元之冠狀電容的製造方 法’適用於一具有開關元件之半導體基底上製造電容,而-上述製造方法包括下列步驟: 依序於上述基底上形成一絕緣層和遮蔽層; 在上述絕緣層和遮蔽層中形成一可連通至上述開關元 件之接觸開口; 在上述遮蔽層上和上述接觸開口内形成一第—導電 層,藉以和上述開關元件形成電性連接; 在上述第一導電層中形成一凹槽,以界定出用以分隔 各記憶單元單元之區域; 在上述凹槽之側壁上形成一間隔物; 以上述間隔物為罩幕,非等向性地蝕刻上述第—導電 層至上述遮蔽層’而形成上述電容之下電極; 去除上述間隔物; 在上述下電極和上述遮蔽層上形成一介電層; 在上述介電層上形成上述電容之上電極。 2. 如申請專利範圍第1項所述之製造方法,其中上述 遮蔽層之厚度介於3 00埃至600埃之間。 3. 如申請專利範圍第1項所述之製造方法’其中上述 第一導電層為一複晶矽層,其庳度介於1500埃至3000埃 之間。 4. 如申請專利範圍第丨項所述之製造方法,其中上述 間隔物係以一對上述間隔物之餘刻率遠大於上述遮蔽層之 選擇性钱刻程序來去除。417291 Six 'Scope of Patent Application' ~ 1. A method for manufacturing a crown capacitor of a dynamic random access memory cell 'is suitable for manufacturing a capacitor on a semiconductor substrate with a switching element, and the above-mentioned manufacturing method includes the following steps: An insulating layer and a shielding layer are formed on the substrate; a contact opening that can communicate with the switching element is formed in the insulating layer and the shielding layer; a first conductive layer is formed on the shielding layer and in the contact opening, and The switching element is electrically connected; a groove is formed in the first conductive layer to define a region for separating each memory cell unit; a spacer is formed on a side wall of the groove; and the spacer is used as A mask, anisotropically etching the first conductive layer to the shielding layer to form the capacitor lower electrode; removing the spacer; forming a dielectric layer on the lower electrode and the shielding layer; on the dielectric An electrode above the capacitor is formed on the electrical layer. 2. The manufacturing method according to item 1 of the scope of patent application, wherein the thickness of the shielding layer is between 300 angstroms and 600 angstroms. 3. The manufacturing method according to item 1 of the scope of the patent application, wherein the first conductive layer is a polycrystalline silicon layer, and the degree of angulation is between 1500 and 3000 angstroms. 4. The manufacturing method as described in item 丨 of the patent application scope, wherein the spacers are removed by a selective money engraving process with a pair of the spacers having a far greater etching rate than the masking layer. 第16茛 417291 --------------------- ---、 六、申請專利範圍 5. 如申請專利範圍第1項所述之製造方法,其中上迷 上電極係由複晶矽構成,厚度介於5 0 0埃至1 0 0 0埃之間。 6. —種動態隨機存取記憶單元之冠狀電容的製造方 法,適用於一具有開關元件之半導體基底上製造電容,而 上述製造方法包括下列步驟: 於上述基底上形成一絕緣層和遮蔽層; 在上述絕緣層中形成一可連通至上述開關元件之接觸 開口 ’’ 在上述絕緣層和上述接觸開口上形成一第一導電層, 藉以和上述開關元件形成電性連接; 在上述第一導電層中形成一凹槽,以界定出用以分隔 各記憶單元單元之區域,其中上述凹槽之深度小於上迷第 一導電層之厚度; 在上述凹槽之側壁上形成一絕緣間隔物; 以上述間隔物為罩幕,非等向性地蝕刻上述第一導電 層至上述遮蔽層,以形成上述電容之下電極; 以一濕蝕刻程序去除上述間隔物; 在上述下電極和上述絕緣層上形成一介電層; 在上述介電層上形成上述電容之上電極。 7. 如申請專利範圍第6項所述之製造方法,其中上述 形成下電極之蝕刻程序使得位於上述凹槽下方之上述第一 導電層被完全去除,暴露出部分遮蔽層’並且留下在上述 間隔物下方之上述第一導電層和部分在上述凹槽間之上述 第一導電層,而形成上述電容之下電極。No. 16 buttercup 417291 --------------------- --- 6. Application for patent scope 5. The manufacturing method described in item 1 of the scope of patent application, where The upper electrode is composed of polycrystalline silicon and has a thickness between 500 angstroms and 100 angstroms. 6. —A method for manufacturing a crown capacitor of a dynamic random access memory unit, which is suitable for manufacturing a capacitor on a semiconductor substrate having a switching element, and the above manufacturing method includes the following steps: forming an insulating layer and a shielding layer on the substrate; Forming a contact opening in the insulating layer that can communicate with the switching element '' forming a first conductive layer on the insulating layer and the contact opening to form an electrical connection with the switching element; in the first conductive layer A groove is formed to define a region for separating each memory cell unit, wherein the depth of the groove is smaller than the thickness of the first conductive layer; an insulating spacer is formed on a side wall of the groove; The spacer is a mask, and the first conductive layer to the shielding layer are anisotropically etched to form the lower electrode of the capacitor; the spacer is removed by a wet etching process; the lower electrode and the insulating layer are formed A dielectric layer; forming the above capacitor electrode on the dielectric layer. 7. The manufacturing method according to item 6 of the scope of patent application, wherein the above-mentioned etching process for forming the lower electrode completely removes the first conductive layer located below the groove, exposing a part of the shielding layer and leaving it in the above. The first conductive layer under the spacer and the first conductive layer partially between the grooves form the lower electrode of the capacitor. 第17頁Page 17 遮蔽層為ί利圍第6項所述之製造方法,其中上述 9.如化妙層’其厚度介於3⑽埃至6⑽埃之間。 絕緣間隔物^ g 範圍第6項所述之製造方法’其中上述 1 〇.如申請專利範圍、厚度介於6000埃至8 0 0 0埃之間。 絕緣間隔物之去除第6項所述之製造方法,其中上述 之濕蝕刻程序來^行序採用以稀釋氫氟酸為主蝕刻反應物 介電層為擇自由氧1&amp; ^ f6項所述之製造方法,其中上述 石夕和氮化石夕所構成之二氣化石夕/氧化石夕層、氧化组、氧化 &lt;秩中之物質所形成。The masking layer is the manufacturing method described in Item 6 of the above, wherein the thickness of the above 9. Ruhuamiao layer is between 3 ⑽ and 6 ⑽. The manufacturing method described in item 6 of the insulating spacer ^ g range, wherein the above-mentioned 10. The thickness is in the range of 6000 angstroms to 800 angstroms as described in the patent application. The manufacturing method described in item 6 of removing the insulating spacers, wherein the wet etching procedure described above uses the dilute hydrofluoric acid as the main etching reactant dielectric layer as the free oxygen 1 &amp; ^ f6 A manufacturing method in which the two gaseous stone / oxidized stone layers composed of the above-mentioned stone and nitride stone are formed by a substance in an oxide &lt; rank. 第18頁Page 18
TW088109096A 1999-06-02 1999-06-02 Manufacture method of crown-type DRAM capacitor TW417291B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW088109096A TW417291B (en) 1999-06-02 1999-06-02 Manufacture method of crown-type DRAM capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW088109096A TW417291B (en) 1999-06-02 1999-06-02 Manufacture method of crown-type DRAM capacitor

Publications (1)

Publication Number Publication Date
TW417291B true TW417291B (en) 2001-01-01

Family

ID=21640935

Family Applications (1)

Application Number Title Priority Date Filing Date
TW088109096A TW417291B (en) 1999-06-02 1999-06-02 Manufacture method of crown-type DRAM capacitor

Country Status (1)

Country Link
TW (1) TW417291B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11061064B2 (en) 2019-05-15 2021-07-13 Nanya Technology Corporation Semiconductor device and method for detecting cracks

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11061064B2 (en) 2019-05-15 2021-07-13 Nanya Technology Corporation Semiconductor device and method for detecting cracks
TWI741330B (en) * 2019-05-15 2021-10-01 南亞科技股份有限公司 Semiconductor device and method for detecting cracks

Similar Documents

Publication Publication Date Title
US11251199B2 (en) Three-dimensional NOR array including active region pillars and method of making the same
US5436186A (en) Process for fabricating a stacked capacitor
JP3589791B2 (en) DRAM cell manufacturing method
KR20200060524A (en) 3D memory device and manufacturing methods using alternate drain select gate electrodes
US6037213A (en) Method for making cylinder-shaped capacitors for dynamic random access memory
US6664167B2 (en) Memory with trench capacitor and selection transistor and method for fabricating it
US6271079B1 (en) Method of forming a trench capacitor
US6127220A (en) Manufacturing method for a capacitor in an integrated storage circuit
TW406405B (en) Manufacture method of the trench-type capacitor
US6319787B1 (en) Method for forming a high surface area trench capacitor
US5665626A (en) Method of making a chimney capacitor
US7030442B2 (en) Stack-film trench capacitor and method for manufacturing the same
US8044449B2 (en) Memory device with a length-controllable channel
TW388984B (en) Dynamic random access memory manufacturing
US5879987A (en) Method of fabricating dynamic random access memory having a stacked capacitor
US7358557B2 (en) Capacitor for semiconductor device and method of forming the same
US5976977A (en) Process for DRAM capacitor formation
US6100135A (en) Method of forming a crown-fin shaped capacitor for a high density DRAM cell
US6376326B1 (en) Method of manufacturing DRAM capacitor
TW417291B (en) Manufacture method of crown-type DRAM capacitor
US6232648B1 (en) Extended self-aligned crown-shaped rugged capacitor for high density DRAM cells
US6171924B1 (en) Method of fabricating a dynamic random access memory capacitor
JP2000101047A (en) Capacitor arranged in semiconductor device on carrier and manufacture thereof
TW200423168A (en) Method of forming bottle-shaped trench capacitors
TW409410B (en) Manufacture method of crown type capacitor in DRAM cell

Legal Events

Date Code Title Description
GD4A Issue of patent certificate for granted invention patent
MK4A Expiration of patent term of an invention patent