TW400391B - Method for avoiding the delamination of the dielectrics on the copper film - Google Patents

Method for avoiding the delamination of the dielectrics on the copper film Download PDF

Info

Publication number
TW400391B
TW400391B TW88102267A TW88102267A TW400391B TW 400391 B TW400391 B TW 400391B TW 88102267 A TW88102267 A TW 88102267A TW 88102267 A TW88102267 A TW 88102267A TW 400391 B TW400391 B TW 400391B
Authority
TW
Taiwan
Prior art keywords
dielectric layer
copper
layer
metal
silicon nitride
Prior art date
Application number
TW88102267A
Other languages
Chinese (zh)
Inventor
Chung-Shi Liou
Jen-Hua Yu
Original Assignee
Taiwan Semiconductor Mfg
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiwan Semiconductor Mfg filed Critical Taiwan Semiconductor Mfg
Priority to TW88102267A priority Critical patent/TW400391B/en
Application granted granted Critical
Publication of TW400391B publication Critical patent/TW400391B/en

Links

Landscapes

  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)

Abstract

This invention discloses a method for avoiding the delamination of the dielectrics on the copper film. Such method is to proceed reduction treatment on the copper film before the copper film deposited the dielectrics to improve the adhesion between the copper film and the subsequent dielectric material. The above-mentioned reduction procedure can be done by any of the following methods. (1) Put the wafer into the furnace or the rapid thermal annealing system and anneal the wafers at the environment containing N2/H2 gas. (2) Place the wafers into a plasma deposition chamber and proceed the reduction treatment in-situ using NH3 plasma before the dielectrics deposition.

Description

五、發明說明(1) 本發明是有關於半導體製程技術,且特別是有關於一 種避免介電層從銅膜上剝離的方法。 近年來’為配合元件尺寸縮小化的發展以及提高元件 操作速度的需求’具有低電阻常數和高電子遷移阻抗的銅 金屬’已逐漸被應用來作為金屬内連線的材質,取代以往 的銘金屬製程技術。 金屬銅本身具有許多先天上的優勢,例如:(1)低電 阻特性’其阻值為I 7 " 〇_cm,而鋁則為2. 7 " D cm ; (2) 良好的抗電子遷移性,比鋁高了四個數量級(〇rder); (3) 良好的抗應力導致的空洞形成性質(stress_induced void f〇rmation)等等。上述優點對於元件的特性有很大 的幫助,例如較快的速度;可降低Cr〇ss Talk ;以及具有 較小的RC時間常數。 雖然銅的物理性質對於應用在元件上具有很大的優 勢’但是它在一些化學反應的特性上卻阻礙了銅在元件上 的應用’因為銅在低溫時便極易與許多元素反應。另外, 銅膜的容易受到腐蝕且極易氧化,而且無法像鋁一般形成 自我保護氧化膜,因此只要在含氧的環境下,銅膜就會持 續不斷的進行氧化作用,而形成的Cu〇或⑶…不僅會形成 在銅線的表面,也會出現在鋼導線的内部,更嚴重影響到 内連線金屬的品質。 目前在銅導線的製作上是以鑲喪式(damascene)製程 為主’以解決銅金屬的蝕刻不易的問題,其方法是先在一 平坦的介電上蝕刻出金屬線的溝槽(或更包括蝕刻介層窗) 第4頁 五、發明說明(2) 後,進行全面性的銅沈積,最後再以化學機械研磨法將多 餘的金屬移去,而得到一具有金屬錶散於介電層中的平垣 結構,如第1圖所示,其中標號10為内金屬介電層(IMD), 12為銅金屬層。接著參照第2圖,完成銅導線的製作後, 接下來必須先以氣化砍覆蓋層(cap layer)14將導線封 住’然後才繼續沈積另一介電層16以進行後序的多重内連 線製程’或者沈積護層(passivation)來保護底下的元 件。然而,銅導線在經過研磨後清洗(p〇st CMP clean), 尚未沈積覆蓋層的這段期間,容易受到濕氣氧化而在表面 出,氣泡狀的缺陷(如圖中13),這會使後績沈積的介電層 附著能力下降,而發生如圖中17所示的剝離 (delamination)現象。 層從本發明的主要目的就是提供-種避免介電 丨離的方法,以提高銅製程的可靠度。 研磨後ii述目$,本發明的方法係在銅膜經化學機械 言之,藉以改善介電材與銅導線附著力。簡 體基底法包括下列主要步驟,提供-半導 機械研磨:以銅金屬層;(b)對上述基底進行化學 面進行還原處理;以及m=c)對殘餘之銅金屬表 處理之鋼金屬層。()沈積一介電層於上述經過還原 列兩種ίΐ::::法,上述步驟(c)之還原處理可依下 第5頁 五、發明說明(3) ----- 一、 將晶圓移至熱爐管或快速熱回火系統中,在含有 \/112的氣體環境下進行熱回火;或者 二、 將晶圓置於一電漿沈積室中,在介電層尚未沈積 以前,臨場(in-si tu)以NH3電漿對晶圓進行還原處理。 由於在元成銅導線的製作後’一般會將晶圓移送至電 漿化學氣相沈積室中,利用Sil與NH3為反應氣體,以形成 敗化碎覆蓋層(cap layer)將導線封住。因此上述的第二 種方法’即是將晶圓移至氮化梦的沈積室中,在進行沈積 以前,只通入NHa氣體(將Si &的氣閥保持關閉),利用該氣 體所產生的電漿對銅膜進行還原處理,以還原銅膜上的氧 化銅,待處理完畢後再將S i扎的氣閥打開,便可隨即進行 氮化矽的沈積。由於此種方式將銅膜的還原處理整合在氣 化矽的沈積程序,因此在製程上非常容易執行,而且對產 能也不會造成太大影響。 為讓本發明之上述和其他目的、特徵、和優點能更明 顯易懂’下文特舉一較佳實施例,並配合所附圖式,作詳 細說明如下: 圖式之簡單說明 第卜2圖為一系列剖面圖,用以說明習知之金屬化製 程。 第3〜5圖為一系列刮面圖,用以說明本發明較佳實施 例之金屬化製程。 符號說明 10、20〜介電層;V. Description of the Invention (1) The present invention relates to semiconductor process technology, and in particular, to a method for preventing the dielectric layer from peeling from a copper film. In recent years, 'in order to meet the development of component size reduction and increase the operation speed of components' copper metal with low resistance constant and high electron migration resistance' has gradually been used as the material of metal interconnects, replacing the previous Ming metal Process technology. Copper metal itself has many inherent advantages, such as: (1) low resistance characteristics' its resistance value is I 7 " 〇_cm, and aluminum is 2. 7 " D cm; (2) good anti-electron Migration, four orders of magnitude higher than aluminum (〇rder); (3) good stress-induced void formation properties (stress_induced void fοrmation) and so on. The above advantages greatly help the characteristics of the component, such as faster speed; can reduce Cross Talk; and have a smaller RC time constant. Although the physical properties of copper have great advantages for its application to components ', its characteristics of some chemical reactions have hindered the application of copper to components' because copper can easily react with many elements at low temperatures. In addition, the copper film is easily corroded and easily oxidized, and can not form a self-protective oxide film like aluminum. Therefore, as long as the oxygen-containing environment, the copper film will continue to oxidize, and the Cu or (3) It will not only form on the surface of copper wires, but also on the inside of steel wires, which will seriously affect the quality of the interconnecting metal. At present, in the production of copper wires, a damascene process is mainly used to solve the problem of difficult etching of copper metal. The method is to first etch the grooves (or more) of the metal wires on a flat dielectric. Including the etched interlayer window) Page 4 V. Description of the invention (2), a comprehensive copper deposition is performed, and finally the excess metal is removed by chemical mechanical polishing to obtain a metal surface dispersed in the dielectric layer. As shown in FIG. 1, the flat-walled structure in FIG. 2 is an inner metal dielectric layer (IMD), and 12 is a copper metal layer. Next, referring to FIG. 2, after the copper wire is completed, the wire must be sealed with a cap layer 14 before vaporization, and then another dielectric layer 16 can be deposited for subsequent multiple layers. The wiring process' or deposition is used to protect the underlying components. However, copper wires are cleaned after grinding (p0st CMP clean), and during the period when the cover layer has not been deposited, they are susceptible to moisture oxidation and bubble-like defects on the surface (as shown in Figure 13). The adhesion of the deposited dielectric layer decreases, and a delamination phenomenon as shown in FIG. 17 occurs. The main purpose of the layer from the present invention is to provide a method for avoiding dielectric ionization to improve the reliability of the copper process. After grinding, the heading is $. The method of the present invention is to chemically mechanically apply the copper film to improve the adhesion between the dielectric material and the copper wire. The simplified substrate method includes the following main steps: -Semiconductor mechanical polishing: a copper metal layer; (b) chemical reduction of the above substrate; and m = c) a steel metal layer for the remaining copper metal surface treatment. () Depositing a dielectric layer on the above-mentioned two reduction methods ::::, the reduction treatment of the above step (c) can be carried out according to page 5. V. Description of the invention (3) ----- 1. The wafer is moved to a hot furnace tube or a rapid thermal tempering system, and thermal tempering is performed in a gas environment containing \ / 112; or 2. The wafer is placed in a plasma deposition chamber, and the dielectric layer has not been deposited yet. Previously, wafers were reduced in-situ with NH3 plasma. After the Yuancheng copper wire is produced, the wafer is generally transferred to a plasma chemical vapor deposition chamber, and Sil and NH3 are used as reaction gases to form a cap layer to seal the wire. Therefore, the above-mentioned second method 'is to move the wafer to the deposition chamber of the nitriding dream. Before the deposition, only the NHa gas is passed (the gas valve of Si & is kept closed), and the gas generated by the gas is used. The plasma film is subjected to reduction treatment to reduce the copper oxide on the copper film. After the treatment is completed, the Si valve is opened, and then the silicon nitride can be deposited. Because this method integrates the reduction process of the copper film into the silicon dioxide deposition process, it is very easy to perform in the process, and it will not affect the production capacity. In order to make the above and other objects, features, and advantages of the present invention more comprehensible, a preferred embodiment is given below, and in conjunction with the accompanying drawings, the detailed description is as follows: Brief description of the drawings FIG. 2 A series of cross-sectional views illustrating the conventional metallization process. Figures 3 to 5 are a series of scraped views for explaining the metallization process of the preferred embodiment of the present invention. Explanation of symbols 10, 20 ~ dielectric layer;

第6頁Page 6

12、22〜銅導線; 13〜氣泡狀缺陷; 14、24~頂蓋層; 16、26~内金屬介電層或護層; 、 17〜介電層剝離; 23〜熱回火; 25〜電漿還原處理。 實施例 首先請參照第3圖,其顯示本實施例之起始步驟。 内金屬介電層20以下的部分,可能包含數層金屬内連線I 數個電性上相互連接的半導體元件,如M〇s電晶體、電、、 阻、邏輯元件等’為方面起見,圖中僅繪出内金屬介電 20以上的部分,而内金屬介電層2〇以下的半導體基底輿 體電路元件由於非關本發明之重點,在此予以省略。 在内金屬介電層中具有一銅導線22,此銅導線可依下 述方式形成:首先’以微影與蝕刻技術在介電層20中定義 出内連線溝槽的圖案(或更包括定義介層窗)。接著,以化 學氣相沈積法(CVD)、物理氣相沈積法(PVD)或電鍍沈積法 (Electroplating)在介電層上進行全面性的銅沈積。例如 可利用離子化金屬電漿(IMP)先沈積一層晶種層,然後再 ( 以電鍍法完成銅導電層的沈積。此外,在銅導線22與介電 層20之間可更提供一擴散阻障層(未顯示)以幫助金屬銅的 附著並阻止其擴散;適當的擴散阻障層材料,包括鈕 (Ta),氮化钽(TaN),氮化鎢(WN)或氮化鈦(TiN)等。12, 22 ~ copper wires; 13 ~ bubble-like defects; 14, 24 ~ capping layer; 16, 26 ~ inner metal dielectric layer or protective layer; 17 ~ dielectric layer peeling; 23 ~ thermal tempering; 25 ~ Plasma reduction treatment. Example First, please refer to FIG. 3, which shows the initial steps of this example. The part below the inner metal dielectric layer 20 may include several layers of metal interconnects I, and several electrically connected semiconductor elements, such as Mos transistors, resistors, logic elements, etc. In the figure, only the part with the inner metal dielectric layer of 20 or more is drawn, and the semiconductor substrate and bulk circuit elements with the inner metal dielectric layer of 20 or less are omitted because they are not the focus of the present invention. A copper wire 22 is provided in the inner metal dielectric layer, and the copper wire can be formed in the following manner: First, a pattern of interconnecting trenches (or including Defining the interstitial window). Next, a comprehensive copper deposition is performed on the dielectric layer by chemical vapor deposition (CVD), physical vapor deposition (PVD), or electroplating. For example, an ionized metal plasma (IMP) can be used to deposit a seed layer, and then (the electroplating method is used to complete the deposition of the copper conductive layer. In addition, a diffusion resistance can be provided between the copper wire 22 and the dielectric layer 20 Barrier (not shown) to help metal copper adhere and prevent its diffusion; suitable diffusion barrier materials include buttons (Ta), tantalum nitride (TaN), tungsten nitride (WN) or titanium nitride (TiN )Wait.

第7頁Page 7

回火系統中,在含有N/H2的氣體環境下進行熱回火,回火 完成銅金屬的沈積後, 學機械研磨將多餘的金屬移 介電層20的平坦結構。研磨 驟’將晶圓上大量的細微粉 結成固態殘除物。一般可利 合噴洗或超音波清洗等方式 接下來,根據本發明的 行一道銅導線的還原處理, 圖標號23代表一回火程序, 以介電層2 0為研磨終點進行化 去’即可得到銅導線22鑲嵌於 完畢後’立即進行一道清洗步 末清除’否則會在晶片表面凝 用溶液先於晶片上刷除,再配 進行。 方法’在沈積復蓋層以前先進 如第4A圖或第4B圖所示。第4A 係將晶圓移至熱爐管或快速熱 約在200-400 °C下持續10-60 min,即可達到所需的還原效 果。請參照5圖’經上述處理後的銅導線,由於表面上的 Γ 氧化銅已還原成金屬銅’因此後續沈積的覆蓋層24與介電 層(或護層)26會有較佳的附著效果’可避免發生剝離的現 象。 第4B圖標號25代表一電漿還原程序,根據本發明的較 佳實施例,係將研磨清洗後的晶圓移至沈積覆蓋層的反應 室中直接以臨場(in-situ)方式進行電漿還原處理。由於 覆蓋層24的材質通常為氮化矽,係以Si H4及NH3為反應氣體 沈積而成,因此該方法只需在沈積進行以前,利用NH3電 漿對銅膜進行還原處理,待處理完畢後再通入Si H4進行氮 化矽的沈積’便可在銅導線上形成附著性的良好的覆蓋 層。應注意的是,雖然上述是以NH3電槳來進行還原反 應,但熟悉此技藝者亦可使用其它如l/He 4H2/N2電漿來In the tempering system, thermal tempering is performed in a gas environment containing N / H2, and the tempering is completed. After the copper metal is deposited, mechanical polishing is performed to transfer the excess metal to the flat structure of the dielectric layer 20. Grinding step 'forms a large amount of fine powder on the wafer into a solid residue. Generally, spray cleaning or ultrasonic cleaning can be combined. Next, according to the present invention, a copper wire is subjected to a reduction treatment, and the icon number 23 represents a tempering process, and the dielectric layer 20 is used as the polishing end point. It can be obtained that after the copper wire 22 is embedded, the “cleaning at the end of a cleaning step is performed immediately”, otherwise the solution for condensing on the wafer surface is brushed on the wafer before preparation. The method 'is advanced before the sedimentary overlay is shown in Figure 4A or 4B. In the 4A system, the wafer is moved to a hot furnace tube or rapidly heated at about 200-400 ° C for 10-60 minutes, and the desired reduction effect can be achieved. Please refer to Figure 5 'the copper wire after the above treatment, because the Γ copper oxide on the surface has been reduced to metallic copper', the subsequent deposition of the cover layer 24 and the dielectric layer (or protective layer) 26 will have a better adhesion effect 'It can avoid peeling. Icon number 4B 25 represents a plasma reduction process. According to a preferred embodiment of the present invention, the wafer after grinding and cleaning is moved to a reaction chamber in which a coating layer is deposited, and the plasma is directly performed in-situ. Restore processing. Because the material of the cover layer 24 is usually silicon nitride, which is deposited using Si H4 and NH3 as the reaction gas, the method only needs to use a NH3 plasma to reduce the copper film before the deposition, and after the processing is completed, Then pass through Si H4 to deposit silicon nitride 'to form a good coating on the copper wire. It should be noted that although the reduction reaction is carried out with NH3 electric paddles as described above, those skilled in the art can also use other such as l / He 4H2 / N2 plasma to

第8頁Page 8

.yX a]L -jtr jLl申請專利範圍I 1.-種避免銅膜上之介電層剝離的方法,包括下列步 (a) 提供一半導體基底,其上具有一銅金屬層 (b) 對上述基底進行化學機械研磨’以去除部分該銅 (c) 對殘餘之銅金屬表面進行還原處理 (d) 沈積一介電層於上述經過還原處理 2·如申請專利範圍第1項所述之方法, 步驟(c )之間更包括一研磨後清洗的步驟。 3·如申請專利範圍第1項所述之方法, 在含有A/H2的氣體環境下進行熱回火。 ;以及 之銅金屬層。 其中步驟(b)與 其中步驟(c)係 r 在 理 4.如申請專利範圍第1項所 步驟(d)的沈積室中以nh3電衆 述之方法,其中步驟(c)係 對上述銅金屬進行還原處 5. 如申請專利範圍第1頊裕 為氣化梦層。 項所达之方法,其中該介電層 6. 如申請專利範圍第5項 更包括-内金屬介電層或護層〜 ,、中該介電層 驟: Λ一種避免鋼膜上之介電層剝離的方法,包括下列步 (a)提供一覆有介電層夕、丄 „ a . & $ 層之+導體基底,該介電層經定 槽之銅金屬層; 該介電層上覆有一填滿上述溝 (b)以該介電層為研磨終點,對上述基底進行化學機.yX a] L -jtr jLl Patent Application Scope I 1.-A method for preventing the dielectric layer on the copper film from peeling off, including the following steps (a) providing a semiconductor substrate with a copper metal layer (b) The above substrate is subjected to chemical mechanical polishing 'to remove part of the copper (c) Reduction treatment of the remaining copper metal surface (d) Depositing a dielectric layer on the above-mentioned reduction treatment 2. The method described in item 1 of the scope of patent application The step (c) further includes a cleaning step after grinding. 3. The method as described in item 1 of the scope of patent application, in which the heat is tempered in a gas environment containing A / H2. ; And a copper metal layer. Wherein step (b) and step (c) are r. The method described by nh3 in the deposition chamber of step (d) as described in item 1 of the scope of patent application, wherein step (c) is for the above copper. The metal is reduced. 5. If the scope of patent application No. 1 Yuyu is a gasification dream layer. The method reached by item, wherein the dielectric layer 6. If the scope of the patent application, item 5 further includes-an inner metal dielectric layer or a protective layer ~, the dielectric layer step: Λ a method to avoid the dielectric on the steel film A method for layer peeling includes the following steps (a): providing a dielectric layer covered with a dielectric layer, and a conductive layer, the dielectric layer passing through a copper metal layer in a slot; and on the dielectric layer Covering the groove (b) with the dielectric layer as the polishing end point, performing chemical processing on the substrate

Claims (1)

六、申請專利範圍 " ---- 械研磨’以在該介電層中形成一銅金屬内連線; (C )進行一研磨後清洗程序; ’ , (d) 將該基底置於含ί^/Η2的氣體環境下進行熱回火;·. (e) 沈積一氮化矽層於該介電層與該銅導線上;以及 (f) 沈積另一介電層於該氮化矽層上。 8. 如申請專利範圍第7項所述之方法,其中步驟(f)該 介電層為内金屬介電層或護層。 9. 一種避免銅膜上之介電層剝離的方法,包括下列步 驟: (a) 提供一覆有介電層之半導體基底,該介電層經定 , 義後具有一内連線溝槽’且該介電層上覆有一填滿上述溝 槽之銅金屬層; (b) 以該介電層為研磨終點,對上述基底進行化學機 械研磨’以在該介電層中形成一銅金屬内連線; (c) 進行一研磨後清洗程序; (d) 將該基底置於一預定沈積氮化矽的沈積室中,在 沈積尚未進行以前,先以NH3電漿對上述銅導線進行還原 處理; (e) 於該沈積室中,沈積一氮化矽層於該介電層與該 銅導線上;以及 (Ο沈積另一介電層於該氮化矽層上。 10. 如申請專利範圍第9項所述之方法,其中步驟(f) 該介電層為内金屬介電層或護層。Sixth, the scope of patent application " ---- mechanical grinding 'to form a copper metal interconnect in the dielectric layer; (C) a cleaning process after grinding;', (d) placing the substrate ί ^ / Η2 for thermal tempering; (e) depositing a silicon nitride layer on the dielectric layer and the copper wire; and (f) depositing another dielectric layer on the silicon nitride On the floor. 8. The method according to item 7 of the scope of patent application, wherein in step (f), the dielectric layer is an inner metal dielectric layer or a protective layer. 9. A method for avoiding the peeling of a dielectric layer on a copper film, comprising the following steps: (a) providing a semiconductor substrate covered with a dielectric layer, the dielectric layer being defined and having an interconnecting trench after definition ' And the dielectric layer is overlaid with a copper metal layer filling the trench; (b) using the dielectric layer as a polishing end point, performing chemical mechanical polishing on the substrate to form a copper metal in the dielectric layer; Wiring; (c) performing a post-milling cleaning procedure; (d) placing the substrate in a deposition chamber where silicon nitride is intended to be deposited, and before the deposition has been performed, first reducing the above-mentioned copper wire with NH3 plasma (E) depositing a silicon nitride layer on the dielectric layer and the copper wire in the deposition chamber; and (0) depositing another dielectric layer on the silicon nitride layer. The method according to item 9, wherein in step (f) the dielectric layer is an inner metal dielectric layer or a protective layer. 第11頁Page 11
TW88102267A 1999-02-12 1999-02-12 Method for avoiding the delamination of the dielectrics on the copper film TW400391B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW88102267A TW400391B (en) 1999-02-12 1999-02-12 Method for avoiding the delamination of the dielectrics on the copper film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW88102267A TW400391B (en) 1999-02-12 1999-02-12 Method for avoiding the delamination of the dielectrics on the copper film

Publications (1)

Publication Number Publication Date
TW400391B true TW400391B (en) 2000-08-01

Family

ID=21639714

Family Applications (1)

Application Number Title Priority Date Filing Date
TW88102267A TW400391B (en) 1999-02-12 1999-02-12 Method for avoiding the delamination of the dielectrics on the copper film

Country Status (1)

Country Link
TW (1) TW400391B (en)

Similar Documents

Publication Publication Date Title
US6974768B1 (en) Methods of providing an adhesion layer for adhesion of barrier and/or seed layers to dielectric films
TW483105B (en) A semiconductor integrated circuit device and a method of manufacturing the same
US6521523B2 (en) Method for forming selective protection layers on copper interconnects
US6255217B1 (en) Plasma treatment to enhance inorganic dielectric adhesion to copper
US7215024B2 (en) Barrier-less integration with copper alloy
TWI446487B (en) Increasing reliability of copper-based metallization structures in a microstructure device by using aluminum nitride
TWI478281B (en) Interconnect structure and method of manufacturing a damascene structure
TW541659B (en) Method of fabricating contact plug
EP0596364A2 (en) Method of producing semiconductor device having buried contact structure
US7241696B2 (en) Method for depositing a metal layer on a semiconductor interconnect structure having a capping layer
US20050263902A1 (en) Barrier free copper interconnect by multi-layer copper seed
US20090117731A1 (en) Semiconductor interconnection structure and method for making the same
JP2003017496A (en) Semiconductor device and method for manufacturing the same
JP2809196B2 (en) Method for manufacturing semiconductor device
US7939421B2 (en) Method for fabricating integrated circuit structures
JP2007165428A (en) Process for fabricating semiconductor device
JP4007822B2 (en) Method for forming wiring structure
US20010018273A1 (en) Method of fabricating copper interconnecting line
US20120273948A1 (en) Integrated circuit structure including a copper-aluminum interconnect and method for fabricating the same
TW400391B (en) Method for avoiding the delamination of the dielectrics on the copper film
US6867135B1 (en) Via bottom copper/barrier interface improvement to resolve via electromigration and stress migration
CN114946018A (en) Selective tungsten deposition at low temperature
JP2006024668A (en) Process for fabricating semiconductor device
KR100467495B1 (en) Method for forming metal line of semiconductor device
TW413895B (en) Method for improving stability of copper processing

Legal Events

Date Code Title Description
GD4A Issue of patent certificate for granted invention patent
MK4A Expiration of patent term of an invention patent