TW391951B - Low-fire and low-dielectric-constant ceramic compositions - Google Patents

Low-fire and low-dielectric-constant ceramic compositions Download PDF

Info

Publication number
TW391951B
TW391951B TW87120848A TW87120848A TW391951B TW 391951 B TW391951 B TW 391951B TW 87120848 A TW87120848 A TW 87120848A TW 87120848 A TW87120848 A TW 87120848A TW 391951 B TW391951 B TW 391951B
Authority
TW
Taiwan
Prior art keywords
oxide
dielectric
scope
patent application
item
Prior art date
Application number
TW87120848A
Other languages
Chinese (zh)
Inventor
Chau-He Jian
Jia-Ruei Jang
Original Assignee
Advanced Ceramic X Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Advanced Ceramic X Corp filed Critical Advanced Ceramic X Corp
Priority to TW87120848A priority Critical patent/TW391951B/en
Application granted granted Critical
Publication of TW391951B publication Critical patent/TW391951B/en

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)

Abstract

A ceramic composition for forming a multilayer ceramic substrate which can be densified up to 95% at 800-1000DEG C for 240 min. The ceramic composition comprises a mixture of finely divided particles of 30-60vol% borosilicate glass (BSG), 40-70vol% titanium silicate glass (TSG) and 0.5-30 vol% oxide. The multilayer ceramic substrate composition can be used with organic solvents, polymeric binder and plasticizer to produce an unfired green tape which is cofirable with high electrical conductivity metals such as gold, copper and silver-palladium.

Description

五、發明說明(1) 【發明領域】 本發明乃 於積層陶瓷基 在低溫下燒結 【發明背景】 由於電子 體電路(VLSI 構裝基板材料 可罪度等特性 在電性方 在傳遞過程中 ,如:銀、銀 共燒,基板必 此外,由於訊 列關係: 與介電陶奢;bf·极上、 板或元件m ♦的$分相關,特別是針對應用 緻密,变㈣,此陶竟成分可: 擁有低介電係數與低介電損失。 系統朝輕薄短小 高集積密度、in:配合超大型積 二八侑间訊唬傳遞速率、高線路密度以及^ 面,為了提高訊號傳遞速率,避免訊號強声 減弱構裝中導體材料需選用高導電性金屬 赵σ金'金、鋼等;而為了能與上述金屬 須能在800-1 0 0(TC燒結緻密。 號延遲(td)與基板材料的介電常數(k)有下V. Description of the invention (1) [Field of the invention] The present invention is to sinter a multilayer ceramic substrate at a low temperature. [Background of the invention] Due to the characteristics of the electronic body circuit (VLSI structure substrate material guilty degree, etc.) during the electrical transmission process, Such as: silver and silver co-firing, the substrate must be in addition, due to the relationship between the signal and the dielectric ceramic luxury; bf · pole, board or component m 相关 is related to the dollar points, especially for the application of compact, variable, this ceramic The components can: Have a low dielectric constant and a low dielectric loss. The system is designed to be light, thin, short, and have a high accumulation density, in: in conjunction with the ultra-large product, the transmission rate between the two and eight wires, the high line density, and the plane. In order to improve the signal transmission rate, In order to avoid the weakening of strong signals, the conductive materials in the construction need to use the highly conductive metal Zhao σ gold 'gold, steel, etc .; and in order to be able to sinter dense with the above metals at 800-1 0 0 (TC. Number delay (td) and The dielectric constant (k) of the substrate material has the following

td = k1/2 L/C 其中,C為光速,L為線路長度。因此降低基板材料的 介電常數’即可減少訊號延遲的時間。同時,降低基板材 料的介電損失(tan6),可避免訊號間的相互干擾,進而 提尚基板上的線路密度。 在可罪度方面’隨著晶片的尺寸不斷增加,且有8〇% 左右的晶片是以表面黏著技術(Surface Mount Techno logy ’ SMT)將晶片與基板材料直搂結合在一起,由td = k1 / 2 L / C where C is the speed of light and L is the length of the line. Therefore, reducing the dielectric constant of the substrate material can reduce the signal delay time. At the same time, reducing the dielectric loss (tan6) of the base material can avoid mutual interference between signals, thereby improving the circuit density on the substrate. In terms of guilt, as the size of the wafer continues to increase, and about 80% of the wafers are bonded directly to the substrate material by Surface Mount Technology (SMT).

C:\path\0582-4215-E. ptd 第5頁 五、發明說明(2) 於兩者熱膨脹差異產生的熱應力問題將 ;應力過大造成基板與晶片發生龜裂或剝離,:板;;免 電子元件在高集積化與高速運作下,會產生大。又 為防止因過熱損壞基板上的電子元件, 能也是基板材料必須具備的條件。 艮好的機械性 總體而言,在選擇陶瓷構裝基板材料時, 的特性包括:低介電係數、低介電損*、熱膨脹係以: 配I/及?結溫度在1〇00。。以下使能夠和銀、銀-她、 二.,、、>、銅等金屬導體共燒,並有高熱 、· 機械強度。 α年千興迥田的 另外,由於介電材料的共振頻率皆很高,可作 ^ 的高頻材料,製作300MHz以上到微波(GHz)範圍的元件/ 本發明即針對上述發展趨勢提出,目的為發展低溫、 低介電係數及低介電損失的介電陶瓷成分,使其燒結兩 的溫度在950 -1 0 00。。間’並可在24〇分鐘内完成'緻密。化,而 如此將可與傳統厚膜製程相容並使用其既有之嗖備。 【先前技術】 在美國專利46 421 48號公報内提到的低介電陶瓷成分 含有l〇-75wt%氧化鋁、5-70wt%非結晶氧化矽與2〇_6〇以% 石夕刪酸玻璃,此介電系統擁有4· 8_9. 6的介電係數。 在美國專利46 72 1 52號公報所示的低介電陶瓷成分含C: \ path \ 0582-4215-E. Ptd Page 5 V. Description of the invention (2) The thermal stress problem caused by the difference in thermal expansion between the two will cause; the excessive stress will cause the substrate and wafer to crack or peel off: board; Electronic-free components will be large under high integration and high-speed operation. In addition, in order to prevent damage to electronic components on the substrate due to overheating, it can also be a condition that the substrate material must have. Good mechanical properties In general, when selecting ceramic substrate materials, the characteristics include: low dielectric constant, low dielectric loss *, thermal expansion: I / I? The junction temperature is 10,000. . In the following, it can be co-fired with silver, silver-her, two ,,, >, copper and other metal conductors, and has high heat and mechanical strength. In addition, since the resonance frequency of the dielectric material is very high, it can be used as a high-frequency material for making components in the range of more than 300MHz to the microwave (GHz). In order to develop a low-temperature, low-dielectric-constant, and low-dielectric-loss dielectric ceramic composition, the sintering temperature is 950 to 1 00. . It can be completed in 24 minutes. It will be compatible with traditional thick film processes and use its existing equipment. [Prior art] The low-dielectric ceramic component mentioned in US Patent No. 46 421 48 contains 10-75 wt% alumina, 5-70 wt% amorphous silicon oxide, and 20-60% by weight Glass, this dielectric system has a dielectric constant of 4 · 8_9.6. The low dielectric ceramic composition shown in U.S. Patent No. 46 72 1 52 contains

五、發明說明(3) 有50-9 5wt%結晶玻璃與5_5〇w 右ς 1 - r η沾人& J尤材枓’此介電系統擁 二=/氣::係數。結晶破璃成分為5,爾化鍾、 鹼金族氧。二,Wt%氧化銘與"Wt%除氧化鐘外的 广充材料則包括氧化銘與氧化矽。 含有ί:2Γ926648號公報所示的低介電陶堯成分僅 ί 5 2的了曰/Λ :玻璃在燒、结中形成堇青石、结晶相並擁 有5. 2的;丨電係數與卜2χ1〇_6 κ_!的線熱膨脹係數。 有】二美國”專/⑷55490號公報所示的低介電陶竟成分含 2(0-50 wU氧化銘、0-30wt%非結晶氧化石夕及5〇6〇wt%玻 ί。Ϊ ^ 則含有4Wt%氧化鈣、12WU氡化鎂、29wt%氧 4.5 1間’線熱膨脹係數則在3. 9-4. 2x1 〇-< 化硼與42wt%氧化矽。燒結溫度低s1〇〇{rc,介電係數 ^ C Ί 198 ,上 t . .. ' K-1間 在美國專利4788046號公報所示的低介電陶瓷成分中 含有石英與玻璃。為提升介電系統的緻密性,先將石英粉 末鍍上一層玻璃,然後再與玻璃粉末混合。此介電材料擁 有4. 5的介電係數與大於5. 5χ1 o-iM的線熱膨脹係數。 在美國專利4879261號公報所示的低介電陶兗成分中 含有70-85wt%氧化矽與i5-30wt%硼鋅玻璃,此系統的燒結 溫度低於1065 °C並擁有介電係數在5-5.5間。 【發明目的】 由以上先前技術得知,工業界急需具有可低溫燒結與 低介電係數特性之介電陶瓷材料。 、 本發明的主要目的即提供一種低溫燒結的介電陶瓷成V. Description of the invention (3) There are 50-9 5wt% crystallized glass and 5_5〇w right 1-r η 人 person & J Youcai 枓 This dielectric system has two = / qi :: coefficient. The crystalline glass-breaking composition is 5, Erhuazhong, alkali gold group oxygen. Second, Wt% oxide and "Wt%" materials except oxide bell include oxide oxide and silicon oxide. Containing ί: 2Γ926648 low-dielectric Tao Yao component only ί 5 2 / Λ: glass forms cordierite, crystalline phase and has 5.2 in firing and junction; 丨 electric coefficient and BU 2χ1 〇_6 The linear thermal expansion coefficient of κ_ !. There are two low-dielectric ceramics shown in the "United States" patent / ⑷55490, which contains 2 (0-50 wU oxide oxide, 0-30wt% amorphous oxide stone, and 5600wt% glass. Ϊ ^ It contains 4Wt% calcium oxide, 12WU magnesium oxide, 4.5wt% oxygen, and the linear thermal expansion coefficient is between 3.9-4. 2x1 〇- < boron and 42wt% silicon oxide. Sintering temperature is low s1〇〇 { rc, dielectric coefficient ^ C Ί 198, above t... 'K-1 contains quartz and glass in the low dielectric ceramic composition shown in US Patent No. 4,878,046. To improve the density of the dielectric system, first Quartz powder is coated with glass, and then mixed with the glass powder. This dielectric material has a dielectric constant of 4.5 and a linear thermal expansion coefficient greater than 5.5 × 1 o-iM. Low as shown in US Patent No. 4,898,261 The composition of dielectric ceramic tincture contains 70-85wt% silicon oxide and i5-30wt% boro-zinc glass. The sintering temperature of this system is lower than 1065 ° C and the dielectric coefficient is between 5-5.5. [Objective of the Invention] From the previous It is known from the technology that the industrial community urgently needs a dielectric ceramic material that can be sintered at a low temperature and has a low dielectric constant. The main object of the present invention is For low temperature sintered dielectric ceramic

分,其擁有介於4. 4〜5. 2間的介電係數及低介電損失。 本發明的另一目的在提供一介電基板或元件的成分,„ 可在低溫燒結,例如800-1 0 00 〇c、24〇分鐘内達到95% 的緻密度。 上 【發明之詳細敘述】 本發明的主要特點在依不同比例混合三陶瓷材料包括 低溫玻璃與高溫陶瓷相,經低溫燒結(8004 〇〇〇。〇製程, 該陶瓷混合物可以在240分鐘達到95%以上的緻密度,^陶 瓷材料的比例並無特別限制,主要視所需成品的性質^Minutes, which has a dielectric coefficient and a low dielectric loss of between 4.4 and 5.2. Another object of the present invention is to provide a composition of a dielectric substrate or a component, which can be sintered at a low temperature, for example, to achieve a density of 95% in 800-1 00c, 24 minutes. [Detailed description of the invention] The main feature of the present invention is that three ceramic materials including low-temperature glass and high-temperature ceramic phases are mixed in different proportions. After low-temperature sintering (800,000.00) process, the ceramic mixture can reach a density of more than 95% in 240 minutes. There is no particular limitation on the proportion of materials, mainly depending on the nature of the finished product ^

整。 n J "低溫玻璃"在本發明裏被定義為低軟化點非結晶 璃如硼矽酸玻璃(6 00〜8〇(rc),主要成分為19_3〇 wt% 化硼、60-80wt%氧化矽、氧化鋁、〇.Wwt% 鈣以及0·卜4wt%鹼金族氧化物如氧化鋰、氧化鈉與氡化鉀 "高溫陶瓷相"在本發明裏被定義為高軟化點之曰 t . 7 厂、、Ό 白 Θ 玻璃如鈦矽酸玻璃(>14〇〇。〇,主要成分為卜2〇耐%氧化鈦 、8 0-9 9wt%氧化矽;以及高熔點之結晶或非結晶氧化物如 ^化鍺或氧化矽等。其他氧化物包含鈣長石、莫萊石、堇 月石、氧化鈣、鎂撖欖石以及上述二種以上氧化物之混合 物亦適用於本發明者。 根據本發明之介電陶瓷成分,其中硼矽酸玻璃約佔3〇 -60vol% ’欽破酸玻璃約佔4〇_7〇¥〇1%,氧化物約佔〇5_whole. n J " Low temperature glass " is defined in the present invention as a low softening point non-crystalline glass such as borosilicate glass (600 ~ 80 (rc), the main component is 19_30 wt% boron, 60-80 wt% Silicon oxide, aluminum oxide, 0.5 wt% calcium, and 0.4 wt% alkali metal oxides such as lithium oxide, sodium oxide, and potassium halide " high-temperature ceramic phase " are defined as high softening points in the present invention. Said t. 7 factory, Ό white Θ glass such as titanosilicate glass (> 140,000), the main components are 20% titanium oxide resistant, 80-9-9wt% silicon oxide; and high melting point crystal Or non-crystalline oxides such as germanium or silicon oxide, etc. Other oxides include feldspar, mullite, cordierite, calcium oxide, magnesite and mixtures of the above two oxides are also suitable for use in the present invention. According to the composition of the dielectric ceramic according to the present invention, borosilicate glass accounts for about 30-60 vol%, chin-acid glass accounts for about 40-70%, and oxides account for about 0.05%.

五、發明說明(5) 3 Ονο 1% 本發明主要應用積層陶瓷基板與元件,因此上述的陶 兗材料混合物必須與有機溶劑如甲苯與乙醇,有機黏結劑 如聚乙烯丁醛(p〇lyVinyl butyral,PVB),以及塑化劑如 苯二甲酸二丁酯(D ibuty 1 phthalate ’ DBP)混合形成聚料 ’利用刮刀成型製作生胚薄片,經網印導體膏如銀—把或 金’最後疊壓、共燒製成成品。 < 本發明之積層陶瓷元件的製造方法包括下列步驟:( a)將70-85wt%之陶瓷粉末與30-1 5wt%有機載體混合形成供 剖刀成形製程所需的漿料;其中,上述陶瓷粉末之成分包 括:30 -60voU硼矽酸玻璃、40-70vol%鈦矽酸玻璃、與 〇. 5-30v〇i%氧化物;(b)以一刮刀成形製程,將上述毁料 製成一生胚薄片;(c)在該生胚薄片上網印出導體線路; (d)將網印有導體線路之生胚薄片,經疊壓製成一積層陶 竟生胚;以及(e )將積層陶瓷生胚在空氣氣氛中經脫脂與 共燒,完成緻密化。 為讓本發明之上述說明與其他目的、特徵、優點能更 明顯易懂,下文特舉一較佳實施例,作詳細說明如下: 【實施例一】 量取硼矽酸與鈦矽酸玻璃粉末6 2 5g,分別加入已裝有 5000g 氧化銘磨球’及775cc.異丙醇(2-propyl alcohol) 的5公升氧化鋁球磨罐中球磨,球磨完的漿液過325 mesh 師網後’放入烘箱,在8 0 °C烘乾1 6小時,再以研钵與杵研V. Description of the invention (5) 3 Ονο 1% The present invention is mainly applied to laminated ceramic substrates and components. Therefore, the above-mentioned ceramic material mixture must be mixed with organic solvents such as toluene and ethanol, and organic binders such as polyvinyl butyral (polyvinyl butyral). , PVB), and plasticizers such as dibutyl phthalate (D ibuty 1 phthalate 'DBP) are mixed to form a polymer material. The raw embryo flakes are formed by doctor blade molding, and the conductor paste such as silver-silver or gold is finally laminated by screen printing. Compression and co-firing into finished products. < The method for manufacturing a laminated ceramic element of the present invention includes the following steps: (a) mixing 70-85wt% of ceramic powder with 30-15% by weight of an organic carrier to form a slurry required for a cutting blade forming process; wherein, the above The composition of the ceramic powder includes: 30-60voU borosilicate glass, 40-70vol% titanosilicate glass, and 0.5-30voi% oxide; (b) a scraper forming process is used to make the above materials A raw embryo sheet; (c) printed conductor lines on the raw embryo sheet; (d) a green embryo sheet with a conductor line printed on the screen, and laminated to form a laminated ceramic embryo; and (e) a laminated ceramic embryo on Densification and co-firing are performed in the air atmosphere to complete densification. In order to make the above description and other objects, features, and advantages of the present invention more comprehensible, a preferred embodiment is hereinafter described in detail as follows: [Example 1] Measure borosilicate acid and titanosilicate glass powder 6 2 5g, respectively add 5000g of oxidized oxide grinding balls' and 775cc. 2-propyl alcohol in a 5 liter alumina ball mill tank, ball mill the slurry after passing through the 325 mesh division mesh. Oven, dry at 80 ° C for 16 hours, and then grind with mortar and pestle

C:\path\0582-4215-E. ptd 第9頁C: \ path \ 0582-4215-E. Ptd p. 9

分才、-i二=秦束的粒徑大小(〇50)為i〜5从111,經x_ ray繞射 :斤判疋粉末為非晶質相。選商用氧化鍺陶瓷粉末其粒徑 大小(D50)為 〇.6〜5〇 。 在此實施例中,按2〇vol°/。硼矽酸玻璃、75vol%鈦矽酸 璃和5v〇1%氧化鍺比例混合後再與5wt%聚乙二醇 j°^yethylene Wycol 200, PEG 200)及 50wt% 正丙醇 此口’利用二度空間懸臂混粉機混合2小時。均勻混合的 '尼裝經乾燥、過篩後得到乾燥粉末,再經1 3000 ps i將粉 末乾壓得到尚〇. 3公分、直徑丨.3公分的生胚。將準備好的 生胚分成五組’分別在90(TC(1A)、925 °C(1B)、95 0 t:(lC )、975 °C(1D)、i〇00 〇C(1E)燒結24〇分鐘。燒結製程主要 刀成兩I%#又。第一階段為脫脂。生胚在5°c/min的加熱速 度下’緩慢清除生胚内的有機黏結劑,為確實完全清除1 溫度在50 0 °C停留一小時。第二階段則以5 〇c/min由5〇〇 加溫至900-1 000 °c ’然後再停留240分鐘進行緻密化。 利用阿基米德原理量得燒結體的密度,在此實施例中 得到的結果列於表一。五個不同燒結溫度均得到相對燒結 密度低於95% ’此結果亦由燒結體斷裂面的掃瞄式電子顯 微照片得到印證。X-ray繞射分析發現燒結體内存在氧化 鍺結晶相。且隨著燒結溫度的增加,沒有明顯的結晶相 化。 【實施例二】 本實施例除了陶瓷成分改為30vol%硼矽酸玻璃、65Fencai, -i 2 = Qin Shu's particle size (0 50) is i ~ 5 from 111, after x_ray diffraction: the powder is judged to be an amorphous phase. Selected commercial germanium oxide ceramic powder has a particle size (D50) of 0.6 to 50. In this example, press 20 vol ° /. Borosilicate glass, 75vol% titanosilicate glass and 5v〇1% germanium oxide are mixed and then mixed with 5wt% polyethylene glycol j ° ^ yethylene Wycol 200 (PEG 200) and 50wt% n-propanol. Degree space cantilever mixer for 2 hours. The uniformly-mixed Nissan was dried and sieved to obtain a dry powder, and the powder was then dry-pressed to obtain a green embryo with a diameter of 0.3 cm and a diameter of 1.3 cm. The prepared raw embryos were divided into five groups, which were sintered at 90 (TC (1A), 925 ° C (1B), 95 0 t: (lC), 975 ° C (1D), and 〇00〇C (1E), respectively. 24 minutes. The sintering process is mainly divided into two I% # again. The first stage is degreasing. The green embryos' slowly remove the organic binder in the green embryos at a heating rate of 5 ° c / min, and it is completely cleared. 1 temperature It stays at 500 ° C for one hour. The second stage is heated from 500 ° C to 900-1 000 ° c 'at 500 ° C / min, and then stays for 240 minutes for densification. Measured by Archimedes' principle The density of the sintered body. The results obtained in this example are listed in Table 1. The relative sintered density was less than 95% at five different sintering temperatures. This result is also obtained from the scanning electron micrograph of the fracture surface of the sintered body. This is confirmed by X-ray diffraction analysis. The germanium oxide crystal phase is found in the sintered body. With the increase of the sintering temperature, there is no obvious crystal phase. [Example 2] In this example, except that the ceramic component is changed to 30 vol% borosilicate Acid glass, 65

五、發明說明(7) v ο 1 %鈦矽酸玻璃與5 v ο 1 %氧化錄外,其餘製程與量測程序 均與實施例一相同。準備好的生胚仍分別在900 °C( 2A)、 925 °C(2B)、9 50 °C(2C)、975°C(2D)、100(TC(2E)燒結 240 分鐘。利用阿基米德原理量得燒結體的密度,在此實施例 中得到的結果列於表一。五個不同燒結溫度均得到相對燒 結密度低於9 5% ’此結果亦由燒結體斷裂面的掃瞄式電子 顯微照片得到印證。X-ray繞射分析發現燒結體内存在氧 化鍺結晶相。且隨著燒結溫度的增加,沒有明顯的結晶相 變化。 【實施例三】 本實施例除了陶瓷成分改為40v〇1%硼矽酸玻璃、55 vol%鈦矽酸玻璃與5vol%氧化鍺外,其餘製程與量測程序 均與實施例一相同。準備好的生胚仍分別在9〇〇 ( 3A)、 925 °C(3B)、950 °C(3C)、975°C(3D)、1 0 0 0 °C(3E)燒結 240 分鐘。其燒結密度結果亦列於表一中e 95〇_1〇〇〇 〇c的燒結 溫度下可得到尚於95%以上的相對燒結密度,此結果亦由 燒結體斷裂面的掃瞄式電子顯微照片得到印證。x_ray繞 射分析發現燒結體内存在氧化鍺結晶相,且隨著燒結溫度 的增加,氧化鍺結晶相並無明顯變化。取95〇下燒結緻 密的試片,量測其介電性質與熱膨脹係數,結果如表二所 不.在1MHz下介電係數和介電損失分別為4 46和〇 28%, 而熱膨脹係數則為2. 〇3ppm/ t。V. Description of the invention (7) Except for v ο 1% titanosilicate glass and 5 v ο 1% oxidation record, the remaining processes and measurement procedures are the same as those in the first embodiment. The prepared raw embryos are still sintered at 900 ° C (2A), 925 ° C (2B), 9 50 ° C (2C), 975 ° C (2D), and 100 (TC (2E)) for 240 minutes. The Mead principle was used to measure the density of the sintered body. The results obtained in this example are shown in Table 1. The relative sintered density was less than 9 5% at five different sintering temperatures. This result is also scanned by the fracture surface of the sintered body. This type of electron micrograph has been confirmed. X-ray diffraction analysis found that the germanium oxide crystal phase exists in the sintered body. And with the increase of sintering temperature, there is no obvious crystal phase change. [Example 3] This example except ceramic components Except 40v〇1% borosilicate glass, 55 vol% titanosilicate glass and 5vol% germanium oxide, the remaining processes and measurement procedures are the same as in Example 1. The prepared raw embryos are still at 900 ( 3A), 925 ° C (3B), 950 ° C (3C), 975 ° C (3D), 100 ° C (3E) for 240 minutes. The sintered density results are also listed in Table 1 e 95. The relative sintering density of more than 95% can be obtained at the sintering temperature of _1〇00〇c. This result is also obtained from the scanning electron micrograph of the fracture surface of the sintered body. The x_ray diffraction analysis found that the germanium oxide crystal phase existed in the sintered body, and the germanium oxide crystal phase did not change significantly with the increase of the sintering temperature. A dense test piece was sintered at 95 ° C, and its dielectric properties were measured. The coefficient of thermal expansion is as shown in Table 2. The dielectric coefficient and dielectric loss at 1 MHz are 4 46 and 〇28%, and the coefficient of thermal expansion is 2.03 ppm / t.

第11頁 五、發明說明(8) 表一 實绝例 組成 相對密度(%) ⑲不同溫度fC)燒結240分舞 Ϊ BSG TSG GaA 900(A) 925(B) 950(C) 975(D) 1000(E) 1 20 75 5 70 73 75 92 92 2 30 65 5 77 S3 84 94 95 3 40 55 5 90 93 97 98 98 4 40 50 10 89 92 % 97 98 5 40 40 20 89 91 95 96 96 6 40 30 30 80 82 88 91 92 表二 實施例 組成 試片之電、熱性質 @95(TC、240分錄燒結 BSG TSG Ga2〇3 相對密度 (%) 介電常數 (k) 介電損失 (%) 熱澎脹係數 (ppmiC) 3 40 55 5 97 4.46 0.28 '2.03 4 40 50 10 96 4.69 0.20 1.23 5 40 40 20 95 5.18 0.15 2.32 1111_ 第12頁 C:\path\0582-4215-E. ptd 五、發明說明(9) 【實施例四】 本實施例除了陶瓷成分改為40vol%硼矽酸玻璃、50 vo 1 %鈦矽酸玻璃與1 〇v〇 1 %氧化鍺外,其餘製程與量測程序 均與實施例一相同。準備好的生胚仍分別在900 °C(4A)、 925 °C(4B)、95(TC(4C)、97 5 °C(4D)、100(TC(4E)燒結 240 〇 分鐘。其燒結密度結果亦列於表一中。9 5 〇 -1 〇 〇 〇 °C的燒結 溫度下可得到高於95%以上的相對燒結密度,此結果亦由 燒結體斷裂面的掃瞄式電子顯微照片得到印證。X_ray繞 射分析發現燒結體内存在氧化鍺結晶相,且隨著燒結溫度 的增加,氧化鍺結晶相並無明顯變化。取95〇 <=>c下燒結緻 密的試片’量測其介電性質與熱膨脹係數,結果如表二所 示:在1MHz下介電係數和介電損失分別為4. 69和0.20 %, 而熱膨脹係數則為1.23ρριπ/°(:。 【實施例五】 本實施例除 VO 1 %鈦矽酸玻璃 均與實施例一相 925 °C(5B)、950 分鐘。其燒結密 溫度下可得到高 燒結體斷裂面的 射分析發現燒結 的增加,氡化錯 了陶甍成分改為4〇ν〇ι%硼矽酸玻璃、40 與2Ovol%氧化鍺外,其餘製程與量測程序 ,。準備好的生胚仍分別在9〇(rc(5A)、 CC5C:)、97 5 °C(5D)、l〇〇〇°c(5E)燒結 240 度結果亦列於表—中。95〇_1〇〇〇〇c的燒結 =95%以上的相對燒結密度,此結果亦由 知瞒式電子顯微照片得到印證。X - r a y繞 =内存在氧化鍺結晶相,且隨著燒結溫度 結晶相並無明顯變化。取950。(:下燒結緻Page 11 V. Description of the invention (8) Table 1 Exemplary composition Relative density (%) ⑲ Different temperatures fC) Sintering 240 minutes 分 BSG TSG GaA 900 (A) 925 (B) 950 (C) 975 (D) 1000 (E) 1 20 75 5 70 73 75 92 92 2 30 65 5 77 S3 84 94 95 3 40 55 5 90 93 97 98 98 4 40 50 10 89 92% 97 98 5 40 40 20 89 91 95 96 96 6 40 30 30 80 82 88 91 92 Table 2 Examples of electrical and thermal properties of the composition test piece @ 95 (TC, 240 entries sintered BSG TSG Ga203) Relative density (%) Dielectric constant (k) Dielectric loss (% ) Thermal inflation coefficient (ppmiC) 3 40 55 5 97 4.46 0.28 '2.03 4 40 50 10 96 4.69 0.20 1.23 5 40 40 20 95 5.18 0.15 2.32 1111_ Page 12 C: \ path \ 0582-4215-E. Ptd 5 Explanation of the invention (9) [Example 4] In this example, except that the ceramic composition is changed to 40 vol% borosilicate glass, 50 vo 1% titanosilicate glass and 10 vol% 1% germanium oxide, the rest of the process and measurement The procedures are the same as in Example 1. The prepared raw embryos are still at 900 ° C (4A), 925 ° C (4B), 95 (TC (4C), 97 5 ° C (4D), 100 (TC (4E)). ) Sintering for 240 minutes. The results of sintering density are also listed in Table 1. 9 5 Relative sintering density higher than 95% can be obtained at a sintering temperature of -1 00 ° C. This result is also confirmed by the scanning electron micrograph of the fracture surface of the sintered body. X-ray diffraction analysis found that the sintered body has a memory In the crystalline phase of germanium oxide, and with the increase of the sintering temperature, the crystalline phase of germanium oxide has not changed significantly. Take the sintered compact test piece at 95 ° C and measure its dielectric properties and coefficient of thermal expansion. Results As shown in Table II, the dielectric coefficient and dielectric loss are 4.69 and 0.20% at 1MHz, respectively, and the coefficient of thermal expansion is 1.23ρριπ / ° (: [Example 5] This example removes VO 1% titanium The silicate glass is 925 ° C (5B) and 950 minutes in the first example. The sintering temperature can obtain a high sintered body fracture surface analysis and found that the increase in sintering, the chemical composition is changed to 4. ν〇ι% borosilicate glass, 40 and 2Ovol% germanium oxide, the remaining processes and measurement procedures. The prepared raw embryos were still sintered at 90 ° (rc (5A), CC5C :), 97 5 ° C (5D), and 1000 ° c (5E). The results are also listed in Table-. The sintering of 950-1001c = a relative sintering density of more than 95%. This result is also confirmed by known concealed electron micrographs. X-r a y around = there is a crystal phase of germanium oxide, and the crystal phase does not change significantly with the sintering temperature. Take 950. (: Caused by sintering

C:\path\0582-4215-E_ptd 第13頁 密的試片’量測其介電性質與熱膨脹係數,結果如表二所 不:在1MHz下介電係數和介電損失分別為5. 18和〇. 15%, 而熱膨脹係數則為2. 32ppm/ t:。 【實施例六】 本實施例除了陶瓷成分改為4 0 v ο 1 %硼矽酸玻璃、3 0 v〇U鈦梦酸玻璃與3(^〇1%氧化鍺外,其餘製程與量測程序 均與實施例一相同。準備好的生胚仍分別在9 〇 〇 t ( 6 A )、 925 1(6Β)、950 °C(6C)、975°C(6D)、l〇〇〇t(6E)燒結 240 分鐘。利用阿基米德原理量得燒結體的密度,在此實施例 中得到的結果列於表一。五個不同燒結溫度均得到相對燒 結密度低於9 5% ’此結果亦由燒結體斷裂面的掃瞄式電子 顯微照片得到印證。x — ray繞射分析發現燒結體内存在氧一 化鍺結晶相。且隨著燒結溫度的增加,沒有明顯的結晶相 變化。 在上述。的實施例三、四、五中的陶瓷成分均可在低溫 5 0 1 0 0 0 C )與2 4 0分鐘完成9 5 %以上的緻密度,而且燒結 是在空氣氣氛中完成。由於完成高緻密化所需的燒結溫度 與低 '溶點低阻抗的導體如金與銀-絶均能相容,因此在 實施例三-五中所有的介電成分均可與金或銀-鈀導體共燒 _。另=,在實施例中的介電成分均擁有低介電係數(4. 46 低介電損失(〇.15_〇.28%)。而所有成分的熱膨脹 係數均在1.23-2.32ppm/°C之間。 在上述的實施例三_五中,所有的介電成分均可與低 —發明說明(11) 低阻抗的導體如銀_鈀或金共燒製成積層基板或元 愈,製程上首先必須將上述的介電成分與有機溶劑如甲 判醇,有機黏結劑如polyvinyl butyal (ρνβ)及塑化 i制=mhthaiate (dbp)混合形成漿料’經刮刀成 u度約為125微米的生胚薄片1後經沖 二微半薄片。以模具在生胚薄片上打孔,孔徑約 ^125—微未,經網印將導體膏如銀—鈀填入孔中。另外,在 好亦由網印技術製成。將網印與填孔 溥片序堆登,經疊壓製成積層陶瓷生胚,疊壓 的條件為60- 1 00。〇;與1 00 0__30〇() 兔生胚广& :燒(9 50,00 t)完成緻密化。 壓可經由傳統製程如乾壓、冷均 壓為例’陶瓷粉末可與水與黏結 :陶无體 '乾 、脫脂與燒結即可製成成品。如體的流動性,再經乾壓 雖然本發明已以較佳實施例揣 p艮定本發明,&何熟習此技藝者上’然其並非用以 和範圍内’當可作各種之更動 $不脫離本發明之精神 範圍當視後附之申請專利範圍;斤界J者:二本發明之保護C: \ path \ 0582-4215-E_ptd The dense test piece on page 13 was used to measure its dielectric properties and coefficient of thermal expansion. The results are as shown in Table 2. The dielectric coefficient and dielectric loss are 5.18 at 1 MHz. And 0.15%, and the coefficient of thermal expansion is 2.32ppm / t :. [Example 6] In this example, except that the ceramic composition is changed to 40 v ο 1% borosilicate glass, 30 v〇U titanic acid glass and 3 (^ 〇1% germanium oxide), the remaining processes and measurement procedures All are the same as in Example 1. The prepared raw embryos are still at 900 t (6 A), 925 1 (6B), 950 ° C (6C), 975 ° C (6D), and 1000 t ( 6E) Sintering for 240 minutes. The density of the sintered body was measured using the Archimedes principle. The results obtained in this example are shown in Table 1. Relative sintering densities of less than 9 5% were obtained at five different sintering temperatures. Scanning electron micrographs of the fractured surface of the sintered body have also been confirmed. X-ray diffraction analysis found that the crystalline phase of germanium oxide is present in the sintered body. With the increase of the sintering temperature, there is no obvious change in the crystal phase. The ceramic components in the third, fourth, and fifth embodiments described above can all achieve a density of more than 95% at a low temperature of 50 1 0 0 C) and 240 minutes, and the sintering is completed in an air atmosphere. Since the sintering temperature required to complete high densification is compatible with both low melting point and low-impedance conductors such as gold and silver-, all the dielectric components in Examples 3-5 can be compatible with gold or silver- Co-fired palladium conductor. In addition, the dielectric components in the examples all have a low dielectric coefficient (4. 46 low dielectric loss (0.15.0.28%). The thermal expansion coefficients of all the components are in the range of 1.23-2.32 ppm / ° C. In the third to fifth embodiments described above, all the dielectric components can be co-fired with low-impedance conductors such as silver_palladium or gold to make multilayer substrates or elementary alloys. First, the above-mentioned dielectric components must be mixed with an organic solvent such as methyl alcohol, an organic binder such as polyvinyl butyal (ρνβ), and plasticized product = mhthaiate (dbp) to form a slurry, which is scraped to a degree of about 125 microns. After the green embryo sheet 1 was punched, two micro halves were punched. The green embryo sheet was punched with a mold with a hole diameter of about 125-micron, and the conductor paste such as silver-palladium was filled into the hole by screen printing. In addition, the good It is also made by screen printing technology. Screen printing and hole-filling cymbals are sequentially stacked, and laminated ceramic green embryos are made by lamination, and the lamination conditions are 60- 100. 00; and 1 00 0__30〇 () Rabbit Health Embryo &: Burning (9 50,00 t) to complete the densification. Pressing can be done through traditional processes such as dry pressing and cold equalizing. 'Ceramic powder can be bonded with water and: The body can be made into a finished product by drying, degreasing and sintering. For example, the fluidity of the body can be made by dry pressing. Although the present invention has been described in a preferred embodiment, & It is not intended to be used within the scope '. Various changes can be made. Without departing from the spirit of the present invention, the scope of patents attached to it should be considered;

Claims (1)

391951 六、申請專利範圍 1. 一種介電陶瓷成分,其組成包括: 3 0 - 6 0 v ο 1 %棚;ε夕酸玻璃.; 40-70vol%鈦石夕酸玻璃;以及 0.5-30vol% 氧化物。 2. 如申請專利範園第1項养—述之.众電、陶、竟喊分,其 該硼矽酸玻璃之主要成分包括: '〜 19-30wt%氧化硼、60-8廿wt%氧化石夕'〇1_4wt%氧 化鋁、0.)-4wt%氧化鈣、以及〇. i-4wt%擇自氡化鐘0Ά 化鈉與氧化鉀之'驗—金族氧化物。 氣 其中 3. 如申請專利範圍第1項辦一述之介電陶莞成分 該鈦』夕酸玻璃之主要成分包括: 1 - 2 0 w t %氧化鈦.與ω - 9 9 w t % -氧化石厂 4. 如申請專利範圍第1項所述之介電陶替 該氧化物為氧化鍺。 成刀 其中 每長石、屢 種以上氧β 5..,如申.諝專利範.,圍.第.1.項-所-述.....之...介電陶、魏成分 該氧化物逃擇自下列所組成.之族群:氧化石夕 77 來石堇青石..、_氧.化舞、..旗.撤揽石.以及上述 物之混合物。 6· ‘一種陶瓷成品的製造方法,包括下列步驟· (弓)將7 0-8 5wt%之'陶直粉末與1 5- 形成供刮刀成形製程所需的—漿斜」其L 成分包括:3〇-6〇vol>,矽酸玻璃、4〇-7n了d。/ 璃、與0 .〜5二3 0 vo 1¾ '氧化物; ~ (\)以一刮刀成形製程,將該漿料匍 7泉或一生胚薄片;391951 VI. Scope of patent application 1. A dielectric ceramic composition whose composition includes: 3 0-60 v v 1% shed; ε evening acid glass .; 40-70vol% titanium stone evening acid glass; and 0.5-30vol% Oxide. 2. If the patent application of Fanyuan No. 1 is raised-described in the following: Zhongdian, Tao, and Jinghuafen, the main components of the borosilicate glass include: '~ 19-30wt% boron oxide, 60-8 廿 wt% Oxide stone '〇1_4wt% alumina, 0.)-4wt% calcium oxide, and 0.1-4wt% are selected from the 验 test of sodium sulfide and potassium oxide-gold group oxide. 3. Among them, the dielectric ceramic composition described in item 1 of the scope of the patent application, the main components of the titanium acid glass include: 1-2 0 wt% titanium oxide; and ω-9 9 wt%-oxide stone Plant 4. The dielectric ceramic described in item 1 of the scope of patent application replaces the oxide with germanium oxide. For each of the feldspars, more than one kind of oxygen β5., Such as Shen. 谞 Patent Patent., Wai. No.1.-Description-Description ..... The dielectric ceramics, Wei composition should The oxide escapes from the following groups: oxidized stone eve 77 to stone cordierite., _ Oxygen. Chemical dance, .. flag, withdrawal stone, and a mixture of the above. 6. "A method of manufacturing a ceramic finished product, including the following steps. (Bow) 7 0-8 5wt% of" Tao straight powder and 1 5- to form the slurry slant required for the blade forming process "The L component includes: 30-60 vol >, silicate glass, 40-7n and d. / Glass, and 0. ~ 5 2 30 vo 1¾ 'oxide; ~ (\) using a doctor blade forming process, the slurry 匍 7 springs or a raw embryo sheet; C:\path\0582-4215-E. ptdC: \ path \ 0582-4215-E. Ptd 39I95i 六、申請專利範圍 積 (C)在該生胚薄片上網印出導體線路; (d) ‘將網印有導體線路之生胚薄片,經疊壓製成 層〜陶瓷生胚;以及 (e) 將該積層陶竟生胚在空氣氣.氛中經脫脂—與共燒 完成緻密化。 7. 如申請專利範圍第6項所述之製造方法’其中該删 矽酸玻璃之主要成分包括: 19-3 0wt% 氧化鄉.、.6q_8. 〇.wt%_ 氧化碎 乳... 化銘、0. l-4wt%氧化鈣、以及〇· ;l-4wt%擇自氧化鋰、氧 化納與氧化鉀之鹼金族氧化物。 8. 如申請專利範圍-第6項所述之製造方法,其中該欽 矽酸玻璃之主要成分包括: l-20wti乳化欽與氧〜化〜破。· 9. 如申請專利範圍第6項所述之製造方法,其中該氧 化物為氧化鍺。 10. 如申請專利範圍第6項所述之製造方法,其中該氧 化物^擇自下列所組成之族群:氧化矽、转長石、莫來石 、堇青石,'、.氧彳匕1二数撖〜欖石以及上述二·種以上氧化物之 混合物。 ' 11. 知申請夸利範圍第6項所述之製造方法,其中步驟 (& If有機翁體包括:有機溶劑、有機黏結劑、及有機塑 12. 如申請專利範圍第6項所述之製造方法,其中步雜 (e)的燒結溫度為8 00- 1 0 00,所維持的時'間為240分鐘。 I ]39I95i 6. The scope of patent application (C) Print the conductor circuit on the green embryo sheet; (d) 'The green embryo sheet printed with the conductor circuit on the screen is laminated to a ceramic green embryo; and (e) The laminated pottery embryo is densified in air atmosphere and densified by co-firing. 7. The manufacturing method described in item 6 of the scope of the patent application, wherein the main components of the deleted silicate glass include: 19-3 0wt% oxidized township, .6q_8. 〇.wt% _ oxidized crushed milk ... Ming, 0.1 to 4% by weight of calcium oxide, and 0 ;; 1 to 4% by weight is selected from the basic oxides of lithium oxide, sodium oxide and potassium oxide. 8. The manufacturing method as described in the scope of the patent application-item 6, wherein the main components of the cyanosilicate glass include: l-20wti emulsified cyanide and oxygen ~ chemical ~ broken. · 9. The manufacturing method according to item 6 of the scope of patent application, wherein the oxide is germanium oxide. 10. The manufacturing method as described in item 6 of the scope of patent application, wherein the oxide ^ is selected from the group consisting of silicon oxide, feldspar, mullite, cordierite, ',.撖 ~ Lambolite and a mixture of two or more of the above oxides. '11. Know the manufacturing method described in item 6 of the Quarry range, wherein the steps (& If the organic substance includes: organic solvents, organic binders, and organic plastics. 12. As described in item 6 of the scope of patent applications Manufacturing method, wherein the sintering temperature of step impurity (e) is 8 00- 1 00, and the maintained time is 240 minutes. I] 第17頁 C:\path\0582-4215-E. ptd _391951_ 六、申請專利範圍 1 3.如申請專利範圍第6項所述之製造方法,其中該積 蜃陶瓷元件之介電係數在4.46-5.18之間,介電镇 失(勉1MHz)在0—.丄5-1 28%之間,熱膨脹係數在1. 2-2. 3ppm/ °C之間。Page 17 C: \ path \ 0582-4215-E. Ptd _391951_ VI. Application scope 1 3. The manufacturing method described in item 6 of the scope of patent application, wherein the dielectric coefficient of the accumulated ceramic element is 4.46- Between 5.18, the dielectric loss (1MHz) is between 0—. 丄 5-1 28%, and the coefficient of thermal expansion is between 1.2-2. 3ppm / ° C. C:\path\0582-4215-E. ptd 第18頁C: \ path \ 0582-4215-E. Ptd page 18
TW87120848A 1998-12-15 1998-12-15 Low-fire and low-dielectric-constant ceramic compositions TW391951B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW87120848A TW391951B (en) 1998-12-15 1998-12-15 Low-fire and low-dielectric-constant ceramic compositions

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW87120848A TW391951B (en) 1998-12-15 1998-12-15 Low-fire and low-dielectric-constant ceramic compositions

Publications (1)

Publication Number Publication Date
TW391951B true TW391951B (en) 2000-06-01

Family

ID=21632314

Family Applications (1)

Application Number Title Priority Date Filing Date
TW87120848A TW391951B (en) 1998-12-15 1998-12-15 Low-fire and low-dielectric-constant ceramic compositions

Country Status (1)

Country Link
TW (1) TW391951B (en)

Similar Documents

Publication Publication Date Title
JPH0649594B2 (en) Crystallizable low dielectric constant low dielectric loss composition
JPH05254923A (en) Ceramic composition and ceramic circuit board
JPH05211005A (en) Dielectric composition
JP6728859B2 (en) Ceramic substrate and manufacturing method thereof
JP4802039B2 (en) Ceramic composition and multilayer ceramic circuit device
TW391951B (en) Low-fire and low-dielectric-constant ceramic compositions
WO1989001461A1 (en) Co-sinterable metal-ceramic packages and materials therefor
JP4606115B2 (en) Multilayer substrate and manufacturing method thereof
JP2004256384A (en) Oxide ceramic material, and ceramic substrate, laminated ceramic device, and power amplifier module using the material
JP5175791B2 (en) Low-temperature fired high-strength low-thermal-expansion porcelain and method for producing the same
JP4473099B2 (en) Ceramic composition for LTCC
US5786288A (en) Low dielectric ceramic compositions for multilayer ceramic package
TW460430B (en) Low-fire, low-dielectric-constant and low-loss ceramic compositions
JP2018008863A (en) Dielectric ceramic material and dielectric ceramic composition
TW202112692A (en) Glass powder, dielectric material, sintered body, and high frequency circuit member
JP5004548B2 (en) Low-temperature fired porcelain, method for producing the same, and wiring board using the same
TW440555B (en) Low-fire, low-dielectric-constant and low-loss ceramic formulations
KR100632393B1 (en) High-permittivity dielectric ceramic compositions for low-fire ceramic multilayer packages
JP4534413B2 (en) Method for producing low dielectric constant porcelain composition for high frequency component
TW440554B (en) Low-fire, low-dielectric ceramic compositions and process for manufacturing ceramic articles using said compositions
TWI830048B (en) Glass ceramic dielectric materials, sintered bodies and circuit components for high frequency
JP2004055557A (en) Copper paste, wiring board using the same and manufacturing method of wiring board
JP7472653B2 (en) Composite powder, granular powder, tablet, sintered sheet and sintered body
JP2710311B2 (en) Ceramic insulation material
JP4442077B2 (en) Porcelain composition for high frequency components

Legal Events

Date Code Title Description
GD4A Issue of patent certificate for granted invention patent
MM4A Annulment or lapse of patent due to non-payment of fees