TW208757B - - Google Patents

Download PDF

Info

Publication number
TW208757B
TW208757B TW081101268A TW81101268A TW208757B TW 208757 B TW208757 B TW 208757B TW 081101268 A TW081101268 A TW 081101268A TW 81101268 A TW81101268 A TW 81101268A TW 208757 B TW208757 B TW 208757B
Authority
TW
Taiwan
Prior art keywords
electron beam
crystal
optical
alignment
ebl
Prior art date
Application number
TW081101268A
Other languages
Chinese (zh)
Original Assignee
Samsung Electronics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Samsung Electronics Co Ltd filed Critical Samsung Electronics Co Ltd
Application granted granted Critical
Publication of TW208757B publication Critical patent/TW208757B/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/30Electron-beam or ion-beam tubes for localised treatment of objects
    • H01J37/317Electron-beam or ion-beam tubes for localised treatment of objects for changing properties of the objects or for applying thin layers thereon, e.g. for ion implantation
    • H01J37/3174Particle-beam lithography, e.g. electron beam lithography
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y10/00Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/26Measuring arrangements characterised by the use of optical techniques for measuring angles or tapers; for testing the alignment of axes
    • G01B11/27Measuring arrangements characterised by the use of optical techniques for measuring angles or tapers; for testing the alignment of axes for testing the alignment of axes
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70425Imaging strategies, e.g. for increasing throughput or resolution, printing product fields larger than the image field or compensating lithography- or non-lithography errors, e.g. proximity correction, mix-and-match, stitching or double patterning
    • G03F7/7045Hybrid exposures, i.e. multiple exposures of the same area using different types of exposure apparatus, e.g. combining projection, proximity, direct write, interferometric, UV, x-ray or particle beam
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F9/00Registration or positioning of originals, masks, frames, photographic sheets or textured or patterned surfaces, e.g. automatically
    • G03F9/70Registration or positioning of originals, masks, frames, photographic sheets or textured or patterned surfaces, e.g. automatically for microlithography
    • G03F9/7073Alignment marks and their environment
    • G03F9/7076Mark details, e.g. phase grating mark, temporary mark
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/30Electron-beam or ion-beam tubes for localised treatment of objects
    • H01J37/304Controlling tubes by information coming from the objects or from the beam, e.g. correction signals
    • H01J37/3045Object or beam position registration
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/30Electron or ion beam tubes for processing objects
    • H01J2237/304Controlling tubes
    • H01J2237/30433System calibration
    • H01J2237/30438Registration
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/30Electron or ion beam tubes for processing objects
    • H01J2237/317Processing objects on a microscale
    • H01J2237/3175Lithography

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Nanotechnology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Mathematical Physics (AREA)
  • Theoretical Computer Science (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Manufacturing & Machinery (AREA)
  • Electron Beam Exposure (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Description

經濟部中央櫺準局β工消費合作社印¾ Λ 6 \) 6__ 五、發明説明(丨) 〈發明之背景〉 本發明是有關電子束独刻術及其糸統,特別是有關以 光學對準標記來對準整個晶Η的電子束独亥(1術和一個,包含 有光學對準樣記檢測器的電子束蝕刻糸統。 在製造一個半導體元件時,把光阻層做成所需的取狀 極為重要。在触刻的過程中,有許多種光阻可用為触刻時 的保護層。例如:把半導體基板上的絕緣層選擇性的開個 洞以作為擴散的區域,或者把連接半導髏元件的細金屬線 独刻出來。 ' 此處所提的圖案是以紫外線或遠紫外線透過光罩對光 阻作選擇性的曝光後,再顯影做出來的。此種技術稱為光 學蝕刻。 可是以前述的紫外線或遠紫外線的光學蝕刻所産生的 圖形的解析度被限制在一個微米左右。最近,有別於光學 蝕刻而能産生次微米的圖形,進而增加半導體元件的密度 的技術已經被開發出來;這些技術包括電子束独刻, 線触刻和離子束註刻等。 電子束触刻術(以下簡稱為F.BU是以聚焦的電子束以 産生電路圖案的製程。利用電子束可以直接地把比1微米 還細微的圖案直接地寫在半導體晶片表面的光阻上,或寫 在光學蝕刻所需的光軍表面的光阻上。 佈局時所産生的圖案是以影像的方式存於電腦中,再 以電腦的訊號調整電子折射鏡來控制電子束。因此EBL不 需要光罩就能夠直接地在晶Μ上寫出比一微米還小的圖案 -3- (請先閲讀背面之注意事項再蜞窝本頁) 裝&lt; 線- 本紙張尺度边用中8 Η家«準(CNS)甲4規格(210x297公龙)Printed by the β-Consumer Cooperative Society of the Central Bureau of Economic Development of the Ministry of Economic Affairs ¾ Λ 6 \) 6__ V. Description of the Invention (丨) <Background of the Invention> The present invention is related to electron beam monolithography and its system, especially related to optical alignment Mark to align the electron beam of the entire crystal Η Duhai (one technique and one, including an optical alignment sample detector electron beam etching system. When manufacturing a semiconductor element, the photoresist layer is made into the required The shape is extremely important. In the process of contact etching, there are many kinds of photoresist that can be used as a protective layer during contact etching. For example: the insulating layer on the semiconductor substrate is selectively opened to serve as a diffusion area, or the connection The thin metal wire of the semi-conducting skull element is carved out separately. The pattern mentioned here is made by selectively exposing ultraviolet or far ultraviolet through the photomask to the photoresist and then developing it. This technique is called optics. Etching. The resolution of the pattern produced by the above-mentioned ultraviolet or far-ultraviolet optical etching is limited to about one micron. Recently, unlike optical etching, a sub-micron pattern can be generated, which further increases the semiconducting The technology of the density of components has been developed; these technologies include electron beam single engraving, line contact engraving and ion beam injection engraving, etc. electron beam contact engraving (hereinafter referred to as F.BU is a focused electron beam to generate circuit patterns The process of using electron beams can directly write patterns finer than 1 micrometer directly on the photoresist on the surface of the semiconductor wafer, or on the photoresist on the surface of the optical army required for optical etching. The pattern is stored in the computer in the form of an image, and the electronic refractor is adjusted by the signal of the computer to control the electron beam. Therefore, EBL can directly write a pattern smaller than one micrometer on the crystal M without a mask. -(Please read the precautions on the back before you fold this page) Install & Thread-This paper is used in the standard 8 Η home «quasi (CNS) A 4 specifications (210x297 male dragon)

經濟部中央標準局员工消费合作社印製 Λ 6 Π6_ 五、發明説明(2) 。此技術使得層與曆間的對準有了極高的準確度,甚而比 0·1微米還細微的圖案都可藉此技術做出來。雖然電子也 具有波動的性質,不過相對於EBL糸統中所使用的能量, 電子的波長大約是0: 2到0· 5埃之間(1 u m等於10000埃)。 如此就可以避免掉限制了光學蝕刻解析度的繞射現象。所 以用EBL製程産生圖案的方法吸引了廣泛的注意,而使EBL 製程商業化的實際應用上也不斷地投入了許多心力。 —般的半導體元件的製造過程中,需要多次的蝕刻製 程才能産生所需的圖案和結構。而每一步驟中將産生的圖 案必須與先前已形成的圖案作極為準確的對準才行。EBL 的速度相對於傳統的光學蝕刻是相當慢的。所以,在産生 —般的圖案時,可以用較快的傳統的光學独刻製程來産生 光阻的圖案,至於極小的圖案才藉電子束寫在光阻上。如 此可以縮短製造半導體元件所需的時間。以上所提的EBL 製程中的電子束糸統包含一個電子束的光學糸統和一個自 動的機槭台架。 如上所述的,在多次的光學蝕刻以産生圖案的製程中 ,如有一層圖案需用到EBL製程,則在前面數個光學独刻 的步驟完成後,接箸再以EBL製程使光阻曝光,完成後在 繼缅其他未完成的光學蝕刻製程。 早期的EBL都是在晶Η上做對準標記,然後利用此標 記以準確地確定電子束在晶Μ上的相關位置。以這種方法 就可以使電子束的位置在每次寫的過程前得以準確地重新 校正。在定位的步驟中,罨子束均對校正標記的X和y座標 -Λ ~ (請先閲讀背面之注意事項再项寫本頁) 裝- *1Τ_ 線· 本紙張尺度边用中a a家橒準(CNS) Τ 4規格(210 X 297公Ji) ΛΠ 經濟部中央標準局貝工消t合作社印¾ 五、發明説明(3) 做掃描。由偵測從這些標記反射回來的電子,據以産生ig 訊號。基於這些電訊號就可以把電子束準確地定位在晶Μ 上。 假如晶片是藉由能生産非常快的積體電路的機器來寫 ,通常都會包含用來對準整個晶Η的第一個校正標記和用 來對準電子束正在掃描的區域或晶元的第二傾校正標記。 -校正標記可能是由重金靥做成的基座或者是触刻在矽或玻 璃上的圖案。而校正和對準就是藉由偵測從這些檫記反射 回來的電子做到的。 目前,用在EBL的第一個校正標記所佔的面積約1平方 毫米,此面積比光學触刻所用的校正標記的面積大上數百 倍,原因在於避免電子束掃描和尋找到校正標記前,意夕卜 地使元件谭的光阻曝光。 其結果是需要大面積的第一個校正標記沒辦法做在隔 離晶元的切割道中。為此,製造第一個校正標記需要一道 額外的製程。例如,在美國第四四〇七九三三號專利中提 到在晶Μ兩端做出以賴的二矽化物(二矽化银)製成的校正〜 標記來配合以電子束使光阻曝光的方法。 上述的第二個校正標記一般都是做成十字型而擺在晶 元之間。第一圖是預備以電子束來曝光,而表面上有第一 和第二種校正標記的晶Η,其中數字1代表晶Η,數字2 代表第一種校正標記,數字3代表一個區域,數字4代表 第二種校正標記。 第一圖中的晶Μ在傳統的光學蝕刻後,若接著要再以 -5- (請先閲讀背面之注意事項再填寫本頁) 裝. 訂- -線. 本紙尺度逍用中8國家捣準(CNS)f 4規格(210x297公龙) 〇bί^ ' Λ 6 _Π_6_ 五、發明説明(4) 電子束使塗佈在晶Η上的光阻曝光,則首先以«子束掃描 晶片1找到第一種校正標記2。然後可以旋轉和移動整個 晶&gt;=!來對準。接下來要用電子束使晶Η上的某些區域或晶 元曝光,則先以電子束找到第二種校正標記4做更好的對 準後,再用電子束使一個區域或晶元曝光。在一個區域或 晶元上的光阻曝過光後,在曝光另一個區域或晶元上的光 阻之前,先找到相對應的第二種校正標記後,憑此利用自 動機槭台架再對準晶Η—次。 若依照上述的方法,EBL;必先利用電子束去尋找第一 種校正標記,則塗佈在晶Η上的光阻就可能在電子束掃描 晶片時被曝光了。再者,因為晶片一開始未被準確的放置 ,整個晶&gt;=!的四周就必須被浪費掉寬達一毫米的空間而沒 辦法在上面做半導體元件。 除了上述的缺點夕卜,第一種校正標記必須額外地以電 子束的製程做出來,如此,晶Η的生産置就降低了。 〈發明之總論〉 因此,本發明之一目的像提供一種不需以EBL來製造 第一種校正標記或不需以電子束來偵測第一種校正標記的 電子束曝光方法。 、 ' 經濟部中央標準局S工消伢合作社印3i 本發明之另一目的在提供一種配合此新的電子束曝光 方法的糸統。 簡潔的a,依照本5$明,提供了一種使晶Κ上的光阻 以電子束曝光的方法。此方法首先以偵測光學蝕刻所用的 校正標記來對準晶H,接著再偵測晶Η上EBL用的校正標 -6- 81. 2. 20,000 (請先閲讀肾而之注意事項再填窍本1{ 線 本紙張尺度边用中a ffl家樣準(CHS) 規怙(210x29/公龙)Printed by the Employee Consumer Cooperative of the Central Bureau of Standards of the Ministry of Economic Affairs Λ 6 Π6_ V. Description of the invention (2). This technique makes the alignment between the layer and the calendar extremely accurate, and even patterns finer than 0.1 microns can be made with this technique. Although electrons also have the nature of fluctuations, the wavelength of electrons is about 0: 2 to 0.5 Angstroms relative to the energy used in the EBL system (1 um is equal to 10,000 Angstroms). In this way, the diffraction phenomenon that limits the resolution of optical etching can be avoided. Therefore, the method of generating patterns using the EBL process has attracted extensive attention, and many practical efforts have been continuously put into the practical application of commercializing the EBL process. In the manufacturing process of general semiconductor components, multiple etching processes are required to produce the desired patterns and structures. The pattern to be generated in each step must be aligned with the pattern that has been formed very accurately. The speed of EBL is relatively slow compared to traditional optical etching. Therefore, when creating a general pattern, a faster traditional optical single-engraving process can be used to generate a photoresist pattern. As for the very small pattern, an electron beam is written on the photoresist. In this way, the time required for manufacturing the semiconductor element can be shortened. The electron beam system in the EBL process mentioned above includes an electron beam optical system and an automatic mechanical maple stand. As mentioned above, in the process of multiple optical etching to generate a pattern, if a layer of pattern needs to be used in the EBL process, after the completion of the previous several optical engraving steps, then use the EBL process to make the photoresist After exposure, after completion of other unfinished optical etching process in Myanmar. In the early EBL, an alignment mark was made on the crystal H, and then the mark was used to accurately determine the relative position of the electron beam on the crystal M. In this way, the position of the electron beam can be accurately recalibrated before each writing process. In the positioning step, the knot beams are aligned to the X and y coordinates of the correction mark-Λ ~ (please read the precautions on the back side before writing this page). Install-* 1Τ_ line Standard (CNS) Τ 4 specifications (210 X 297 Gong Ji) ΛΠ Printed by Beigongxiaot Cooperative Society, Central Bureau of Standards, Ministry of Economic Affairs ⑤ V. Invention description (3) Scan. By detecting the electrons reflected from these marks, ig signals are generated accordingly. Based on these electrical signals, the electron beam can be accurately positioned on the crystal M. If the wafer is written by a machine that can produce very fast integrated circuits, it usually contains the first calibration mark for aligning the entire crystal H and the first calibration mark for aligning the area or wafer that the electron beam is scanning. Two tilt correction marks. -The correction mark may be a base made of heavy gold or a pattern engraved on silicon or glass. The correction and alignment are done by detecting the electrons reflected from these Sassafras. At present, the area of the first correction mark used in EBL is about 1 square millimeter, which is hundreds of times larger than the area of the correction mark used for optical lithography, because the electron beam scanning and the search for the correction mark are avoided , Expose the photoresist of the element Tan. As a result, the first correction mark that requires a large area cannot be made in the cutting lane separating the wafers. For this reason, an additional process is required to make the first calibration mark. For example, in the US Patent No. 4407793, it is mentioned to make corrections made of disilicide (silver disilicide) on both ends of the crystal M to cooperate with the electron beam to expose the photoresist Methods. The above-mentioned second correction mark is generally made into a cross shape and placed between the crystal elements. The first picture is the crystal H prepared for exposure with an electron beam, and the first and second types of correction marks on the surface, where the number 1 represents the crystal H, the number 2 represents the first type of correction mark, and the number 3 represents an area. 4 represents the second correction mark. In the first picture, after the traditional optical etching, if you want to install it with -5- (please read the precautions on the back before filling out this page). Order--line. This paper standard is used in 8 countries. Quasi (CNS) f 4 specifications (210x297 male dragon) 〇bί ^ 'Λ 6 _Π_6_ V. Description of the invention (4) The electron beam exposes the photoresist coated on the crystal Η, then first find the «sub-beam scanning wafer 1 The first kind of correction mark 2. You can then rotate and move the entire crystal> =! To align. Next, to use electron beam to expose certain areas or wafers on the crystal H, first use the electron beam to find the second correction mark 4 for better alignment, and then use the electron beam to expose a region or wafer . After the photoresist on one area or wafer is exposed, before the photoresist on another area or wafer is exposed, first find the corresponding second correction mark, and then use the automatic machine maple stand. Align the crystal H-times. If according to the above method, EBL; must first use the electron beam to find the first correction mark, the photoresist coated on the crystal H may be exposed when the electron beam scans the wafer. Furthermore, because the wafer was not accurately placed at the beginning, the entire crystal> =! Must be wasted with a space as wide as one millimeter to make semiconductor components on it. In addition to the disadvantages mentioned above, the first correction mark must be additionally made by the electron beam process, so that the production of crystal H is reduced. <Overview of the Invention> Therefore, an object of the present invention is to provide an electron beam exposure method that does not require the use of EBL to manufacture the first calibration mark or the electron beam to detect the first calibration mark. , 'The Ministry of Economic Affairs, Central Bureau of Standards, S Industry and Consumer Cooperation Co., Ltd. printed 3i. Another object of the present invention is to provide a system compatible with this new electron beam exposure method. Concise a, according to this 5 $, provides a method of exposing the photoresist on the crystal K with an electron beam. This method first aligns the crystal H with the calibration marks used to detect the optical etching, and then detects the calibration marks for EBL on the crystal H-6-81. 2. 20,000 (please read the precautions of the kidney before filling in the tips This 1 {line paper size standard use a ffl home sample standard (CHS) regulations (210x29 / male dragon)

66 五、發明説明(5) 記再次對準晶然後就可以用電子束使光阻曝光。在多 次的光學独刻和EBL的配合下,就可以産生所需的圖案和 結構。 再者,依照本發明,提供了一種EBL糸統,包含了能 對晶Η做電子束掃描的電子束糸統,在電子束下放置和移 動晶Η的自動機槭台架,和一個光學對準記號的偵測器以 做晶Η的初次對準。 〈圃式的簡單說明〉 以下將對本發明作詳細的描述,而熟悉此領域的人將 從而清楚地瞭解到本發明的更多的特點和好處,一並參照 所附之圖示: 第一圖是要做傳統的EBL晶Η,在晶Μ上需做有第一 和第二校正標記。 第二圖是依據本發明所做成EBL晶Η。 第三圖是依據本發明所完成的EBL糸統,具有光學對 準標記的偵測器。 〈較佳具體實施例之詳細描述〉 第二圖是依據本發明來做電子束独刻的晶Κ ,所標示 的數字代表的意義和第一圖相同。 經濟部中央楳準局β工消#合作社印31 (請先閲讀背面之注意事項#填寫本頁) 在傳統的光學蝕刻中,其所使用的對準標記是用光線 使晶Η上的光阻曝光而事先做在晶片上的。再偵測此標記 以産生電訊號。根據此訊號就可以決定光罩對晶Η的相關 位置。 曝光機可對晶片做整片的或局部的對準。整Η的對準 -7 — 本紙张尺度边用中8國家炸準(CNS)肀4規格(210x297公¢) 經濟部屮央榀準局貞工消伢合作社印5i 五、發明説明(s ) 是以旋轉和移動來對準晶Η。局部的對準則是對將要曝光 的晶元中的校正標記做進一步的對準,所以也稱為一個晶 元一個晶元的對準或一個區域一個區域的對準。整個晶Μ 的對準通常是在送晶Μ到投射的鏡片底下做曝光前,就在 另一値地方的對準台上做好了。如果可以允許較大的重曼 誤差(例如:0.7微米或更多),則馬上可以進行晶Η的曝 光不需要再次的局部校正。 當需要做局部的校正時,則在每次的局部校正前,都 先做一次個晶片的對5^。 本發明所用的方法的特點就在於電子束曝光的步驟前 ,晶Η就先用上述的光學對準方法做初次的對準。 也就是說,首先以偵測光學對準標記的光學對準方法 來對正整値晶Η,然後以電子束掃描晶Η,藉由EBLM正 標記反射回來的電子來做局部的對準,爾後再做EBL。 一開始,第二圖中的晶Η 1藉由偵測晶Η上的光學對 準標記(未標繪出來)來做螯個晶Η的校正。完成此步驟後 重β的誤差大約是5微米或更少。在上述的第一次對準後 ,就以電子束來偵測第二種校正標記來做局部的對準。局 部對準後,重璺的誤差只有0*1微米或更小。 第三圖是依據本發明的包含有光學對準標記偵測器的 糸統。在同一張圖中,數宇11代表電子束糸統,數字12代 表電子束,數字 13代表光學對準標記的偵測器,數字14 代表電子的聚焦鏡,數字15代表一組光學鏡Μ,數字16代 表晶Η,數字17代表一個自動的機械台架。 _8~ (請先閲渰背而之注意事項孙填荈本/ 裝. 31. 2. 20,000 Λ 6 \\ 6 五、發明説明(/) 以上所提的光學對準記號偵測器包括一個感測器13和 一組光學鏡Η15。而這個光學對準記號偵測器可以放在電 子束糸統11的旁邊或裡邊。 要用電子束使晶Μ上的光阻曝光時,如第二圖所示, 感測器13先透過光學鏡Η15偵測到半導體晶Η 1上的光學 對準記號,然後根據此感測器13所産生的訊號就可以對這 個半導體晶Η 1做初次的對準。接箸以電子束1¾¾描此晶 Η 1,再偵測由電子束校正標記反射回來的電子,依據此 結果就可以對晶Η 1做第二次的校正(也就是局部的對準) 請 先 •閲-讀. 背. 之 注 念 項 m % 本 2k 經濟部中央楳準局员工消伢合作社印¾. 以電子束使晶&gt;4上的光阻曝光時,因為不需要像傳統 上的EBLSS程依靠額外地做在晶Η上的校正標記來對準整 個晶Η,所以光阻就可以避免掉不必要的曝光,而半導體 晶Η的産能也將因此而增加。 再者,假如以包括有光學校正記號偵測器的EBL糸統 來做EBL製程,則無需額外的步驟(例如,製造在EBL中校 正整個晶Η用的校正標記的步驟和以電子束來對準整個晶 Μ的步驟。)則在形成圖案和結構的多重步驟中,就可以 一起使用EBL製程和光學蝕刻製程。因此,可以簡作蝕刻 的製程,用時使用EBL製程和光學蝕刻製程不會遇到困難 -9- 本尺度通用中a Η家樣準(CNS)平4規岱(2丨0χΜ7公度) V. 2. 20,000 裝 訂 線66 5. Description of the invention (5) Remember to align the crystal again and then use the electron beam to expose the photoresist. With the combination of multiple optical engravings and EBL, the desired pattern and structure can be generated. Furthermore, according to the present invention, there is provided an EBL system including an electron beam system capable of electron beam scanning of crystal H, an automatic maple stand for placing and moving crystal H under the electron beam, and an optical pair The quasi-marked detector is used for the initial alignment of the crystal H. <Simple description of the garden style> The following will describe the present invention in detail, and those familiar with this field will clearly understand more features and benefits of the present invention, and refer to the attached drawings: To make the traditional EBL crystal H, the first and second correction marks need to be made on the crystal M. The second figure is the EBL crystal H made according to the present invention. The third figure is the EBL system completed according to the present invention, with a detector for optical alignment marks. <Detailed description of the preferred embodiment> The second figure is a crystal K for electron beam unique engraving according to the present invention, and the numbers indicated have the same meaning as the first figure. The Ministry of Economic Affairs, Central Bureau of Standardization, β 工 消 # Cooperative Society Seal 31 (please read the notes on the back # fill in this page) In traditional optical etching, the alignment mark used is to use light to make the photoresist on the crystal Η The exposure is done on the wafer in advance. Then detect this mark to generate a signal. Based on this signal, the relative position of the mask to the crystal H can be determined. The exposure machine can align the wafer in whole or in part. Alignment of the whole -7-This paper is used in the 8 National Standards (CNS) 4 specifications (210x297 gm). Printed by the Ministry of Economic Affairs, Central Bureau of Economic Affairs and Industry Cooperative Society 5i V. Description of Invention (s) The crystal H is aligned with rotation and movement. The local alignment criterion is to further align the correction marks in the wafers to be exposed, so it is also referred to as wafer-by-wafer alignment or area-by-area alignment. The alignment of the entire crystal M is usually done on the alignment table in another place before sending the crystal M to the projection lens for exposure. If it is possible to tolerate a larger error of heavy Mann (for example: 0.7 microns or more), the exposure of the crystal H can be performed immediately without the need for local correction again. When the local correction is needed, before each local correction, the first pair of chips is made 5 ^ at a time. The feature of the method used in the present invention is that before the step of electron beam exposure, the crystal H is first aligned by the above-mentioned optical alignment method. That is to say, first, the optical alignment method of detecting the optical alignment mark is used to align the crystal Η, then the crystal Η is scanned by an electron beam, and the electrons reflected by the EBLM positive mark are used for local alignment, and then Do EBL again. Initially, the crystal H 1 in the second image is corrected by detecting the optical alignment mark (not plotted) on the crystal H. After completing this step, the error of the weight β is about 5 microns or less. After the above-mentioned first alignment, the second correction mark is detected by the electron beam for local alignment. After local alignment, the weight error is only 0 * 1 micron or less. The third figure is a system including an optical alignment mark detector according to the present invention. In the same figure, the number 11 represents the electron beam system, the number 12 represents the electron beam, the number 13 represents the optical alignment mark detector, the number 14 represents the electron focusing mirror, the number 15 represents a group of optical mirrors M, the number 16 Represents crystal Η, the number 17 represents an automatic mechanical bench. _8 ~ (Please read the notes on the back of the page for the first time. Sun Hung-sung / installation. 31. 2. 20,000 Λ 6 \\ 6 5. Description of the invention (/) The optical alignment mark detector mentioned above includes a sensor Detector 13 and a set of optical mirrors Η15. This optical alignment mark detector can be placed beside or inside the electron beam system 11. When using an electron beam to expose the photoresist on the crystal M, as shown in the second figure As shown, the sensor 13 first detects the optical alignment mark on the semiconductor crystal H1 through the optical mirror H15, and then can perform the initial alignment of the semiconductor crystal H1 according to the signal generated by the sensor 13 。According to the electron beam 1 ¾¾ trace this crystal H 1, and then detect the electrons reflected by the electron beam correction mark, according to this result, the crystal H 1 can be corrected for the second time (that is, local alignment). First • Read-Read. Back. Remembrance item m% This is 2k printed by the Ministry of Economic Affairs, Central Bureau of Industry and Commerce Cooperatives ¾. When the photoresist on the crystal &gt; 4 is exposed with an electron beam, it does not need to be as traditional The EBLSS process relies on additional correction marks on the crystal H to align the entire crystal H, so the photoresist can be Eliminate unnecessary exposure, and the production capacity of the semiconductor crystal H will also increase accordingly. Furthermore, if the EBL system including the optical correction mark detector is used for the EBL process, no additional steps are required (for example, manufacturing In the EBL, the step of correcting the correction mark for the entire crystal H and the step of aligning the entire crystal M with an electron beam.) In the multiple steps of forming patterns and structures, the EBL process and the optical etching process can be used together. Therefore , Can be simplified as the etching process, when using the EBL process and optical etching process will not encounter difficulties -9- This standard is generally used in a standard home (CNS) Ping 4 gauge Dai (2 丨 0χΜ7 degrees) V. 2. 20,000 gutter

Claims (1)

AT B7 C7 D7_ 六、申锖專利範園 1.—種電子束触刻術,偽在同時使用光學触刻和EBL做出 圖案和結構的多重步驟中,以電子束使晶;=1 1上的光阻 曝光,此方法包含下列步驟: 首先以偵測光學触刻所用的校正標記來對準整個晶Μ。 其次,藉由偵測晶Η上的EBL用的校正標記4來對準晶 Μ 1〇 接著就以電子束使光阻曝光。 2·如申請專利範圍第1項之方法,在其中的第一次對準後 ,晶片的重曼誤差不超過5微米。 3. 如申請專利範圍第1項之方法,其中晶Μ第二次對準後 ,重昼的誤差不超過0·1微米。 4. —種電子束独刻術糸統,其包含有能夠以電子束12掃描 晶Η的電子束糸統11、12、14 ; 一能在電子束12下移位 ,放置晶Μ16的自動機械台架17;和以光學校正標記對 準整個晶Μ的偵測機構13、15者。 5*如申請專利範圍第4項之電子束触刻糸統,其中所述偵 測機構13、15是由一組光學鏡JH15和一個感測器13來偵 測光學校正標記。 經濟部中央標準局Μ工消赀合作社印54 6.如申請專利範圍第4項之電子束触刻糸統,其中所述的 偵測機構13、15是放在所謂的電子束条統11、12、14的 旁邊或裡邊者。 -10- 本紙張尺度適/丨】中Η國家#苹(CNS) Τ4规格(210x297公货)AT B7 C7 D7_ 六 、 Shen Yong Patent Fan Garden 1.—A kind of electron beam lithography, pseudo in multiple steps using optical lithography and EBL at the same time to make patterns and structures, using electron beam to make crystals; = 1 1 For photoresist exposure, this method includes the following steps: First, the alignment marks used to detect the optical lithography are used to align the entire crystal M. Next, the alignment mark 4 for detecting EBL on the crystal H is aligned with the crystal M 10 and then the photoresist is exposed with an electron beam. 2. As in the method of item 1 of the patent application scope, after the first alignment in it, the wafer's double-man error does not exceed 5 microns. 3. The method as described in item 1 of the patent application, in which after the second alignment of the crystal M, the error of heavy daylight does not exceed 0.1 micron. 4. An electron beam engraving system, which contains electron beam systems 11, 12, and 14 that can scan crystal H with electron beam 12; an automatic machine that can be shifted under electron beam 12 and place crystal M16 The stage 17; and the detection mechanism 13, 15 that aligns the entire crystal M with an optical correction mark. 5 * The electron beam contact engraving system according to item 4 of the patent application scope, wherein the detection mechanism 13, 15 is a set of optical mirrors JH15 and a sensor 13 to detect optical correction marks. Printed by the Cooperative Society of the Central Bureau of Standards of the Ministry of Economic Affairs 54 54. For example, the electronic beam touch system of item 4 of the patent application scope, in which the detection mechanism 13, 15 is placed on the so-called electron beam system 11, Beside or inside of 12,14. -10- The size of the paper is suitable /】】 中 Η 国家 # Ping (CNS) Τ4 specifications (210x297 public goods)
TW081101268A 1992-01-09 1992-02-20 TW208757B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR920000208 1992-01-09

Publications (1)

Publication Number Publication Date
TW208757B true TW208757B (en) 1993-07-01

Family

ID=19327690

Family Applications (1)

Application Number Title Priority Date Filing Date
TW081101268A TW208757B (en) 1992-01-09 1992-02-20

Country Status (4)

Country Link
JP (1) JPH05259046A (en)
GB (1) GB2263335A (en)
IT (1) IT1254518B (en)
TW (1) TW208757B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104122758A (en) * 2013-04-26 2014-10-29 佳能株式会社 Drawing apparatus and method of manufacturing article

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3141732B2 (en) * 1995-07-05 2001-03-05 株式会社日立製作所 Charged particle beam equipment
JP2000114137A (en) * 1998-09-30 2000-04-21 Advantest Corp Electron beam exposure system and aligning method
FR2792065B1 (en) * 1999-04-09 2001-07-13 Centre Nat Etd Spatiales INSTALLATION AND METHOD FOR OBSERVING TWO IDENTICAL SPECIMENS
DE102019128860A1 (en) * 2019-10-25 2020-11-26 Carl Zeiss Smt Gmbh Method for measuring a structure and substrate for semiconductor lithography

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1291575A (en) * 1969-07-03 1972-10-04 Texas Instruments Ltd Methods and apparatus for the production of semiconductor devices by electron-beam patterning and devices produced thereby
DE2702448C2 (en) * 1977-01-20 1982-12-16 Siemens AG, 1000 Berlin und 8000 München Method for positioning a workpiece provided with a mark relative to a scanning field or to a mask
US4385838A (en) * 1980-01-19 1983-05-31 Nippon Kogaku K. K. Alignment device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104122758A (en) * 2013-04-26 2014-10-29 佳能株式会社 Drawing apparatus and method of manufacturing article
US9236224B2 (en) 2013-04-26 2016-01-12 Canon Kabushiki Kaisha Drawing apparatus and method of manufacturing article
TWI572971B (en) * 2013-04-26 2017-03-01 佳能股份有限公司 Drawing apparatus for performing drawing on a substrate with a charge particle beam and semiconductor device manufacturing method
CN104122758B (en) * 2013-04-26 2017-04-12 佳能株式会社 Drawing apparatus and method of manufacturing article

Also Published As

Publication number Publication date
IT1254518B (en) 1995-09-25
JPH05259046A (en) 1993-10-08
GB9204703D0 (en) 1992-04-15
ITMI920530A1 (en) 1993-09-06
GB2263335A (en) 1993-07-21
ITMI920530A0 (en) 1992-03-06

Similar Documents

Publication Publication Date Title
JP4166810B2 (en) Lithographic marker structure, lithographic projection apparatus comprising such a lithographic marker structure and method for aligning a substrate using such a lithographic marker structure
CN101592871B (en) Manufacturing method of semiconductor integrated circuit device
EP1463096B1 (en) Exposure device, exposure method, and method of producing semiconductor device
JP4611329B2 (en) Alignment mark storage method and self-alignment alignment mark structure
JP2012104853A (en) Lithographic apparatus and device manufacturing method with double exposure overlay control
JP2002141268A (en) Manufacturing method of electronic device, and semiconductor integrated circuit apparatus
TWI246111B (en) Composite patterning with trenches
CN109313405A (en) The method and apparatus of position for determining the method and apparatus of the position of object construction on substrate, for determining substrate
JP3047863B2 (en) Alignment method
JPH0831407B2 (en) X-ray lithographic mask and X-ray lithographic method
TW208757B (en)
US8252491B2 (en) Method of forming a marker, substrate having a marker and device manufacturing method
JP2004170948A (en) Pattern transfer mask, method for manufacturing mask and exposure method
JP3097620B2 (en) Scanning reduction projection exposure equipment
US20070070318A1 (en) Lithographic process
JP2002217100A (en) Mask for electron beam proximity exposure and method of manufacturing the same
US20130070226A1 (en) Marker structure and method of forming the same
JP2993419B2 (en) Exposure method and exposure apparatus
US7494828B2 (en) Substrate holder and device manufacturing method
JP2006319369A (en) Method for manufacturing semiconductor integrated circuit device
JP2006303541A (en) Method for manufacturing semiconductor integrated circuit device
JP3140516B2 (en) Drawing method of pattern plate having alignment pattern and pattern plate drawn by the method
US6662145B1 (en) Method, equipment, and recording medium for controlling exposure accuracy
JPH0869958A (en) Method and device for manufacturing x-ray mask
JP2964978B2 (en) Semiconductor manufacturing method, semiconductor manufacturing system, and semiconductor device manufactured thereby