TW202433547A - 半導體裝置及其製造方法 - Google Patents

半導體裝置及其製造方法 Download PDF

Info

Publication number
TW202433547A
TW202433547A TW112109132A TW112109132A TW202433547A TW 202433547 A TW202433547 A TW 202433547A TW 112109132 A TW112109132 A TW 112109132A TW 112109132 A TW112109132 A TW 112109132A TW 202433547 A TW202433547 A TW 202433547A
Authority
TW
Taiwan
Prior art keywords
layer
conductive feature
dielectric layer
redistribution
redistributed
Prior art date
Application number
TW112109132A
Other languages
English (en)
Inventor
沈香谷
黃鎮球
林嘉男
吳曼筠
陳玟慈
楊竣翔
陳殿豪
張祺澔
林敬偉
張文苓
Original Assignee
台灣積體電路製造股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 台灣積體電路製造股份有限公司 filed Critical 台灣積體電路製造股份有限公司
Publication of TW202433547A publication Critical patent/TW202433547A/zh

Links

Images

Abstract

本揭露之一些實施例提供一種半導體裝置及其製造方法。方法包括接收一工件。工件包括設置於一互連結構的上方並電性耦接至互連結構的一重分佈層。方法包括圖案化重分佈層以形成在重分佈層之一第一導電特徵與一第二導電特徵之間並分隔第一導電特徵與第二導電特徵的一凹槽。第一導電特徵以及第二導電特徵之角落界定為鄰近於凹槽且在凹槽之任一側上。方法包括在第一導電特徵以及第二導電特徵的上方以及凹槽內沉積一第一介電層,在第一介電層的上方沉積一氮化物層,並移除位於第一導電特徵以及第二導電特徵之角落的上方的氮化物層之部分。

Description

半導體裝置及其製造方法
本揭露之一些實施例是關於半導體裝置,特別是關於包括鈍化層(passivation layer)的半導體裝置。
半導體積體電路(integrated circuit,IC)產業經歷了快速增長。半導體材料以及設計中的科技進展產生了積體電路之數個世代,其中每一個世代相較先前的世代具有更小以及更複雜的電路。然而,這些進展增加了積體電路之生產以及製造之複雜性,而且,為了實現這些進展,積體電路之生產以及製造需要類似的發展。在積體電路變革之過程中,功能性密度(即,每晶片面積的互連裝置數量)通常增加,而幾何尺寸(即,使用製造製程可產生的最小部件)降低。
例如,積體電路形成在半導體基板上,且半導體基板可被切割為單獨的裝置晶粒或積體電路晶片。每一個積體電路晶片可被進一步附接(例如藉由接合)至中介基板(interposer)、重構晶圓(reconstituted wafer)、電路板或另一晶粒,以形成封裝或裝置。為了滿足各種佈線(routing)需求,可在積體電路晶片上形成導電金屬線之重分佈層(redistribution layer,RDL),以將接合連線(bond connections)自晶片之邊緣重新佈線至晶片之中心或通常地將接合連線分散至大於積體電路晶片之面積的面積。在重分佈層的周圍設置一層或多層鈍化層,以保護半導體表面免於電性短路、應力以及化學汙染。然而,一些鈍化層傾向於在隨後的退火製程的期間遭受應力以及裂痕,並可能在相鄰的金屬接點之間導致空隙或裂痕。因此,儘管現有的鈍化層及其製造通常適於它們的所欲目的,它們可能並非在所有方面都令人完全滿意。
本揭露之一些實施例提供一種製造半導體裝置之方法。方法包括接收一工件,工件包括設置於一互連結構的上方並電性耦接至互連結構的一重分佈層。方法亦包括圖案化重分佈層,以形成在重分佈層之一第一導電特徵與重分佈層之一第二導電特徵之間並分隔第一導電特徵與第二導電特徵的一凹槽,其中第一導電特徵以及第二導電特徵之複數個角落界定為鄰近於凹槽且在凹槽之任一側上。方法更包括在第一導電特徵以及第二導電特徵的上方以及凹槽內沉積一第一介電層,在第一介電層的上方沉積一氮化物層,並移除位於第一導電特徵以及第二導電特徵之角落的上方的氮化物層之複數個部分。
本揭露之一些實施例提供一種製造半導體裝置之方法。方法包括提供一基板,基板包括設置於一多層互連結構的上方的一重分佈層。方法亦包括在重分佈層的上方沉積一氮化物層,並形成延伸穿過氮化物層以及重分佈層之一凹槽,其中凹槽分隔重分佈層之一第一部分與重分佈層之一第二部分。在形成凹槽之後,氮化物層餘留設置於重分佈層之第一部分以及重分佈層之第二部分之複數個頂面的上方,而重分佈層之第一部分以及重分佈層之第二部分之複數個側壁表面並未具有氮化物層。
本揭露之一些實施例提供一種半導體裝置。半導體裝置包括一重分佈層、一鈍化層以及一接點特徵。重分佈層包括藉由一凹槽分隔開的一第一導電特徵以及一第二導電特徵,其中第一導電特徵以及第二導電特徵之複數個角落界定為鄰近於凹槽且在凹槽之任一側上。鈍化層設置於重分佈層的上方並位於凹槽內。接點特徵延伸穿過鈍化層並電性耦接至第一導電特徵。鈍化層包括具有一不連續區域的一氮化物層,不連續區域大致上與第一導電特徵以及第二導電特徵之角落對齊。第一導電特徵之一頂面界定一第一平面,其中第一導電特徵之與凹槽相鄰的一側壁界定相交於第一平面的一第二平面,而且,其中藉由第一平面以及第二平面之一交點與第一導電特徵之角落之一表面之間的一距離至少部分地界定第一導電特徵之角落之圓角化。
可理解的是,以下的揭露內容提供許多不同的實施例或示例,以實施本揭露之不同特徵。以下敘述組件以及排列方式之特定示例,以簡化本揭露。當然,這些僅作為示例且意欲不限於此。例如,若說明書敘述了第一特徵形成在第二特徵的上方或形成在第二特徵上,即表示可包括第一特徵與第二特徵直接接觸的實施例,亦可包括有額外特徵形成在第一特徵與第二特徵之間而使第一特徵與第二特徵可未直接接觸的實施例。此外,在各種示例中,本揭露可能使用重複的符號和/或字母。這樣的重複是為了簡化以及清楚之目的,並不表示所討論之各種實施例和/或配置之間的關聯。又,為了簡化以及清楚之目的,各種特徵可能任意地以不同比例繪製。
此外,所使用的空間相關用語,例如,:「在…下方」、「的下方」、「較低的」、「的上方」、「較高的」等,是為了便於描述圖式中一個組件或特徵與另一個(些)組件或特徵之間的關係。除了在圖式中繪示的方位外,這些空間相關用語意欲包括使用中或操作中的裝置之不同方位。例如,如果圖式中的裝置被顛倒,則描述為在其他元件或特徵「的下方」或「在…下方」的元件會被轉向為在其他元件或特徵「的上方」。因此,示例性用語「下方」可涵蓋上方的方位以及下方的方位兩者。設備可被轉向不同方位(旋轉90度或其他方位),且在此使用的空間相關用語亦可依此同樣地解釋。
此外,當數值或數值範圍以「大約」、「實質上」等用語描述時,用語意欲涵蓋包括所描述的數字的合理範圍,例如,在所描述的數字的±10%以內,或者,本技術領域中具有通常知識者理解的其他值。例如,用語「約5nm」可涵蓋從4.5nm至5.5nm的尺寸範圍。
在許多積體電路晶片上形成導電金屬線之重分佈層,以將接合連線自晶片之邊緣重新佈線至晶片之中心或通常地將接合連線分散至大於積體電路晶片之面積的面積。在重分佈層的周圍設置藉由各種介電層形成的一層或多層鈍化層,以提供保護半導體表面免於電性短路、機械應力以及化學汙染。舉例而言,可在第一鈍化層的上方形成重分佈層,並可在重分佈層以及第一鈍化層的上方形成第二鈍化層。在一些情形下,重分佈層(其為金屬層)之熱膨脹係數(coefficient of thermal expansion,CTE)遠大於周圍的第一鈍化層以及第二鈍化層之熱膨脹係數。此外,一層或多層鈍化層可包括氮化物層(例如,諸如為SiN),其具有高楊氏模數。因此,當重分佈層在隨後的退火製程的期間膨脹或收縮時,一層或多層鈍化層之氮化物層可能限制重分佈層並導致來自重分佈層的殘餘應力施加至一層或多層鈍化層上。在一些示例中,這樣的應力可能集中在裝置形貌不平坦的位置,例如,在重分佈層與鈍化層之間的界面的附近的角落處(例如,在第二鈍化層形成在重分佈層的上方的角落處)。在這些角落處的集中應力可能自重分佈層藉由一層或多層鈍化層傳播,從而降低裝置可靠性。
本揭露之一些實施例提供優於先前技術的優點,不過,應理解的是,其他實施例可提供不同的優點,並非所有優點都必須在本說明書中討論,而且,所有實施例並不需要特定的優點。例如,本說明書討論的實施例包括為了解決上述問題的具有多層鈍化結構的半導體裝置及其製造方法。在一些實施例中,在圖案化重分佈層之後,可執行角落圓角化製程(corner rounding process),以釋放來自應力可能集中的重分佈層角落處的應力。角落圓角化製程可包括主蝕刻步驟(至少有一些過度蝕刻(over-etching)),然後是氬(Ar)轟擊步驟。在一些示例中,使用氯氣(Cl 2)以及三氯化硼氣體(BCl 3)執行主要蝕刻步驟,其中Cl 2/BCl 3氣體比率小於大約2。取決於重分佈層之圖案密度(pattern density,PD),可執行大約10-30秒的氬轟擊步驟。在一些實施例中,在執行蝕刻以及氬轟擊步驟之後,可藉由調節重分佈層之沉積速率而進一步調整角落圓角化製程。在一些示例中,可執行介電沉積以及蝕刻製程,以在第二鈍化層形成於重分佈層的上方的角落處切除第二鈍化層之部分(第二鈍化層可包括氮化物層),以進一步釋放來自重分佈層角落的應力。在一些進一步的實施例中,第二鈍化層可形成為使得第二鈍化層之包括氮化物層的部分僅形成在重分佈層之頂面的上方,且並未形成在重分佈層之側壁的上方。因此,將顯著降低氮化物層對重分佈層的限制,並將釋放來自重分佈層的殘餘應力。在某些情形下,這亦可能有助於降低在重分佈層中形成孔洞。藉由實施一個或多個上述製程而降低殘餘的重分佈層應力,可避免鈍化層中的裂痕,從而提高裝置良率以及可靠性,並改進後續的晶粒至晶粒堆疊製程。對於本技術領域中具有通常知識者而言,在閱讀本揭露內容之後,其他實施例以及優點將是顯然的。
現在將參考所附圖式更詳細地描述本揭露之各方面。就此而言,第1圖提供根據本揭露之一些實施例的製造半導體裝置之方法100之流程圖。方法100僅為示例,並不意欲將本揭露限制於方法100中明確說明的內容。可在方法100之前、期間、之後提供額外的步驟,並可在方法之其他實施例中替換、刪除、移動所描述的一些步驟。為了簡化,本說明書並未詳細描述所有步驟。以下結合第2圖至第13圖描述方法100,第2圖至第13圖提供根據本揭露之一些實施例在不同製造階段的工件200之剖面圖。因為工件200將成為或包括半導體裝置,為了簡化,工件200有時可被稱為半導體裝置200。
請參考第1圖以及第2圖,方法100包括方塊102,其中接收包括重分佈層216的工件200。如第2圖之示例所示,工件200包括基板202、在基板202的上方的互連結構204、在互連結構204的上方的蝕刻停止層210、第一鈍化層212、阻障層214、位於互連結構204的上方並電性耦接至互連結構204的重分佈層216。在一些實施例中,基板202可藉由矽或諸如為鍺的其他半導體材料製成。在一些其他實施例中,基板202可包括諸如為碳化矽、砷化鎵、砷化銦或磷化銦的化合物半導體。在又一些其他實施例中,基板202可包括諸如為矽鍺、碳化矽鍺、磷化鎵砷或磷化鎵銦的合金半導體。在一些替代實施例中,基板202可包括覆蓋塊狀(bulk)半導體的磊晶層。可在基板202中或基板202上形成各種微電子組件,例如,包括源極/汲極特徵和/或閘極結構的電晶體組件、包括淺溝槽隔離(shallow trench isolation,STI)結構的隔離結構、被動組件或任何其他合適的組件。
互連結構204可為多層互連(multi-layer interconnect,MLI)結構,其形成在基板202的上方,並可包括埋入多個金屬間介電(inter-metal dielectric,IMD)層206中的接點導孔2081以及導線2082,以在已經或將要形成在工件200上的各種微電子組件之間提供互連(例如,佈線)。在互連結構204與基板202之間可設置中間層或組件,不過,為了簡化,並未示出這些層或組件。金屬間介電層206可包括氧化矽或低介電常數(low-K)介電材料,其K值(介電常數)小於二氧化矽之K值(大約為3.9)。在一些實施例中,低K介電材料包括多孔有機矽酸鹽薄膜,例如SiOCH、四乙氧基矽烷(tetraethylorthosilicate,TEOS)氧化物、未摻雜的矽酸鹽玻璃、摻雜的氧化矽(例如硼磷矽酸鹽玻璃(borophosphosilicate glass,BPSG)、氟矽酸鹽玻璃(fluorosilicate galss,FSG)、磷矽酸鹽玻璃(phosphosilicate glass,PSG)、摻氟二氧化矽、摻碳二氧化矽、多孔二氧化矽、多孔摻碳二氧化矽、碳氮化矽(SiCN)、氮碳氧化矽(SiOCN)、氫倍半矽氧烷(hydrogen silsesquioxane,HSQ)、甲基倍半矽氧烷(methylsilsesquioxane,MSQ)或其組合。
在金屬間介電層206中形成接點導孔2081以及導線2082。接點導孔2081以及導線2082之形成製程可包括單鑲嵌和/或雙鑲嵌製程。在單鑲嵌製程中,首先在金屬間介電層206之一者中形成溝槽,隨後以導電材料填充溝槽。然後,執行諸如為化學機械研磨(chemical mechanical polishing,CMP)製程的平坦化製程,以移除高於金屬間介電層之頂面的導電材料之多餘部分,從而在溝槽中留下金屬線。在雙鑲嵌製程中,在金屬間介電層中形成溝槽以及導孔開口兩者,導孔開口位於溝槽下方並連接至溝槽。然後,將導電材料沉積至溝槽以及導孔開口內,以分別形成金屬線以及金屬導孔。導電材料可包括擴散阻障層以及在擴散阻障層的上方的含銅金屬材料。擴散阻障層可包括鈦、氮化鈦、鉭、氮化鉭、鎢、鈷、氮化鈷、氮化鎢、釕、氮化釕、其他金屬或其他金屬氮化物。含銅金屬材料可包括銅、白銅或銅-鋁合金。同一層的導線2082可統稱為金屬層,且不同金屬層藉由一個或多個接點導孔2081互連。在第2圖之示例中,工件200包括頂部金屬層208,其作為重分佈層216之分界。
工件200亦包括在重分佈層216之前形成的蝕刻停止層210以及第一鈍化層212。在一些實施例中,蝕刻停止層210可包括碳氮化矽(SiCN)、氮碳氧化矽(SiOCN)、碳氧化矽(SiOC)、碳化矽(SiC)或氮化矽(SiN)或其組合。第一鈍化層212形成在蝕刻停止層210的上方。第一鈍化層212可為單層或複合層,並可藉由無孔材料形成。在一些情形下,第一鈍化層212可為包括氧化矽的單層。在至少一些實施例中,第一鈍化層212包括未摻雜的矽酸鹽玻璃(undoped silicate glass,USG)層。
重分佈層216藉由穿過蝕刻停止層210以及第一鈍化層212的開口電性耦接至互連結構204。在一些實施例中,在形成開口之後,阻障層214沉積在工件200的上方,以自第一鈍化層212絕緣待形成的重分佈層216。阻障層214用作擴散阻障,以阻止銅或鋁擴散至第一鈍化層212中,並在隨後的退火製程中阻止氧擴散至重分佈層216中。阻障層214可包括鈦、氮化鈦、鉭、氮化鉭、鎢、鈷、氮化鈷、氮化鎢、釕、氮化釕、其他金屬或其他金屬氮化物。儘管未單獨示出,不過,亦可在阻障層214的上方形成毯覆銅晶種層(blanket copper seed layer),使得重分佈層216可使用電鍍而形成。重分佈層216可藉由銅或鋁銅合金形成。在第2圖表示的一些實施例中,重分佈層216藉由鋁銅合金形成。
現在請參考第1圖、第3圖、第3A圖、第3B圖、第3C圖、第3D圖,方法100包括方塊104,其中圖案化重分佈層216並圓角化重分佈層216之角落319。第3A圖以及第3B圖提供在圖案化重分佈層216的期間的工件200之一部分之剖面圖(例如,沿著X方向或Y方向延伸),而第3C圖以及第3D圖提供在圖案化重分佈層216之後第3圖中所繪示的工件200之一部分311之放大圖。初始地,如第3A圖所示,在重分佈層216的上方沉積氮化物層302(例如,諸如為SiON),並在氮化物層302的上方形成光阻層304。儘管在所有圖式中並未明確示出,不過,在工件200之整個製程中,氮化物302可餘留在重分佈層216之頂面上(如第3B圖所示)。在各種示例中,對光阻層304進行曝光(例如,藉由遮罩)以及顯影,以在光阻層304中形成圖案,隨後藉由蝕刻製程315將圖案轉移至重分佈層216以形成凹槽218。如第3圖以及第3C圖所示,凹槽218延伸穿過重分佈層216,以將重分佈層216電性隔絕為第一導電特徵216-1以及第二導電特徵216-2。第一導電特徵216-1以及第二導電特徵216-2中的每一者可進一步沿著Y方向延伸。在一些實例中以及如第3圖以及第3C圖所示,凹槽218不僅延伸穿過重分佈層216,而且延伸穿過阻障層214,並進入第一鈍化層212。在圖案化重分佈層216之後,自經圖案化的重分佈層216的上方移除光阻層304。
在一些實施例中,圖案化以及圓角化重分佈層216之角落319的蝕刻製程315可包括一個或多個蝕刻步驟。例如,蝕刻製程315可包括主要蝕刻步驟315A(具有至少一些過度蝕刻),其蝕刻穿過氮化物層302並大致上穿過所有重分佈層216,其中使用第一Cl 2/BCl 3氣體比率執行主要蝕刻步驟315A(以及至少一些過度蝕刻)。之後,亦作為蝕刻製程315之一部分,可執行進一步的過度蝕刻步驟315B,以蝕刻穿過阻障層214以及第一鈍化層212之部分,其中使用不同於第一Cl 2/BCl 3氣體比率的第二Cl 2/BCl 3氣體比率執行過度蝕刻步驟315B。在一些示例中,藉由將Cl 2/BCl 3氣體比率從第一Cl 2/BCl 3氣體比率改變為第二Cl 2/BCl 3氣體比率將蝕刻製程315從主蝕刻步驟315A過渡至進一步的過度蝕刻步驟315B。在一些實施例中,主蝕刻步驟315A之第一Cl 2/BCl 3氣體比率小於大約2,而且,進一步過度蝕刻步驟315B之第二Cl 2/BCl 3氣體比率在介於大約2至3之間的範圍內。在一些示例中,藉由確保光阻層304被蝕刻以形成圓頂形狀317而達成蝕刻製程315對角落319之圓角化,如第3A圖所示。這是藉由確保主蝕刻步驟315A之第一Cl 2/BCl 3氣體比率小於大約2而完成的,這導致光阻層304被消耗得更快,尤其是沿著側端,以形成圓頂形狀317。藉由提供圓頂形狀317,角落319將更加暴露並更易於藉由蝕刻製程315達成圓角化。相對地,對於至少一些使用主要蝕刻步驟315A之Cl 2/BCl 3氣體比率等於或大於2的先前技術而言,角落319可能維持大致上方形並因此不易圓角化。在方塊104之蝕刻製程315之後,移除光阻層304之任何剩餘部分,並同時保留氮化物層302。
請依然參考第1圖、第3圖、第3A圖、第3B圖、第3C圖、第3D圖,方法100包括方塊105,其中進一步圓角化重分佈層216之角落319。具體而言,在移除光阻層304之任何剩餘部分之後,藉由執行氬離子轟擊步驟321而進一步圓角化重分佈層216之角落319。在一些示例中,氬離子轟擊步驟321主要針對角落319,如第3B圖所示。氬離子轟擊步驟321可執行大約10-30秒,例如,取決於重分佈層216之圖案密度。例如,對於具有較低圖案密度的重分佈層216,可執行較短時間的氬離子轟擊步驟321,又,對於具有較高圖案密度的重分佈層216,可執行較長時間的氬離子轟擊步驟321。僅作為一些示例,對於具有低圖案密度的重分佈層216,可執行大約10秒的氬離子轟擊步驟321,又,對於具有高圖案密度的重分佈層216,可執行大約30秒的氬離子轟擊步驟321。在各種實施例中,氬離子轟擊步驟321做為進一步提升重分佈層216之角落319之圓角化。應進一步注意的是,在一些示例中,可調整原先沉積的重分佈層216之密度(例如,藉由調整重分佈層216之沉積速率),因此,可改進藉由蝕刻製程315(方塊104)以及氬離子轟擊步驟321(方塊105)提供的重分佈層216之圓角化。
如以上所描述的,第3C圖提供在圖案化重分佈層216之後第3圖中所繪示的工件200之一部分311之放大圖(例如,在方塊105之氬離子轟擊步驟321之後)。具體而言,第3C圖之示例提供用於測量重分佈層216之角落319之圓角化程度之示例性技術。如圖所示,可繪製圓使得經圓角化的角落319之表面與所繪製的圓之周緣(弧形「S」)之一部分重疊。弧形「S」之長度可根據以下公式確定:弧長=2πR*(θ/360),其中R為圓之半徑,θ為弧形「S」之圓心角。在所示出的示例中,圓心角θ大約等於90度,且半徑R在大約200nm至210nm的範圍內。因此,在第3C圖之示例中,弧形「S」之長度在大約314nm至330nm的範圍內。弧形「S」之長度因此可等效地稱為重分佈層216之角落319之圓角化部分之長度。
如以上所描述的,第3D圖亦提供在圖案化重分佈層216之後第3圖中所繪示的工件200之一部分311之放大圖(例如,在方塊105之氬離子轟擊步驟321之後)。第3D圖之示例提供用於測量重分佈層216之角落319之圓角化程度之示例性替代技術。如圖所示,可繪製多條切線,包括與圖案化重分佈層216之側壁表面相切的切線(切線A)以及與圖案化重分佈層216之頂面相切(切線B)的切線。如圖所示,切線A與切線B在點C相交。在一些示例中,角落圓角化可被描述為相交點C與重分佈層216之經圓角化的表面之間的距離D。在一些實施例中,這亦可被描述為經圖案化的重分佈層216之角落因為角落圓角化而從相交點C「退讓(withdrawn)」的距離D。在各種實施例中,距離D可大於或等於大約70nm。
現在,請參考第1圖以及第4圖,方法100包括方塊106,其中在包括第一導電特徵216-1以及第二導電特徵216-2的經圖案化的重分佈層216的上方沉積第一介電層220,包括在凹槽218內沉積第一介電層220。如以上所描述的以及在一些實施例中,因為氮化物層302餘留在重分佈層216的上方,所以第一介電層220可沉積在氮化物層302的上方。在一些實施例中,第一介電層220包括氧化矽,而且,可使用化學氣相沉積(chemical vapor deposition,CVD)、亞大氣壓化學氣相沉積(sub-atmospheric CVD,SACVD)或電漿增強化學氣相沉積(plasma-enhanced CVD,PECVD)沉積第一介電層220。在一些實施方式中,第一介電層220可為未摻雜的矽酸鹽玻璃層,其形成為具有在大約1500埃與大約5000埃之間的厚度。在至少一些示例中,第一介電層220具有大約4000埃的厚度。如第4圖之示例所示,在一些實施例中以及因為凹槽218之寬高比和/或用於沉積第一介電層220的沉積製程,經沉積的第一介電層220可能在重分佈層216之與凹槽218相鄰的角落319的上方累積而形成懸突(overhang)區域419。因此,第一介電層220之原先沉積厚度可能是非共形的。例如,第一介電層220可具有沿著重分佈層216之頂面(在懸突區域419之第一側上)在大約3000埃與大約5000埃之間的厚度「T1」以及沿著凹槽218內的重分佈層216之側壁表面(在懸突區域419之第二側上)在大約2000埃與大約4000埃之間的厚度「T2」。
現在請參考第1圖以及第5圖,方法100包括方塊107,其中在第一介電層220的上方沉積氮化物層227,包括在凹槽218內以及懸突區域419的上方沉積氮化物層227。在一些實施例中,氮化物層227包括氮化矽(SiN),而且,可使用化學氣相沉積、亞大氣壓化學氣相沉積或電漿增強化學氣相沉積形成氮化物層227。在一些實施方案中,氮化物層227可形成為具有大約675埃與大約825埃之間的厚度。在至少一些情形下,氮化物層227可形成為具有大約750埃的厚度。在一些示例中,氮化物層227可作為蝕刻停止層。此外,因為氮化物層227具有高楊氏模數,所以氮化物層227可在隨後的退火製程的期間限制重分佈層216並導致在重分佈層216中形成殘餘應力。根據一些實施例以及如以下將進一步描述的,可移除(或切除)在懸突區域419處(以及在角落319的上方)的氮化物層227之一部分,以便從重分佈層216之可能累積應力的角落319處釋放殘餘應力。
現在請參考第1圖、第6圖、第7圖、第8圖,方法100包括方塊108,其中形成第二介電層222。使用不同於用於沉積第一介電層220的沉積技術形成第二介電層222。在一些實施例中,第二介電層222包括氧化矽,而且,可使用高密度電漿化學氣相沉積(high-density plasma CVD,HPCVD)沉積製程(以下稱為HPCVD沉積製程)沉積第二介電層222。在各種示例中,第二介電層222之HPCVD沉積製程包括交替沉積以及回蝕循環,以切除氮化物層227之在懸突區域419中的部分,從而從重分佈層216之角落319釋放殘餘應力。HPCVD沉積製程亦提供出色的間隙填充(例如,凹槽218之間隙填充)以及在重分佈層216的上方的無空隙介電層(第二介電層222)。在一些情形下,可在不同的射頻(radio frequency,RF)功率值和/或不同的壓力下執行各種沉積以及回蝕循環,如以下將描述的。此外,在一些實施例中,沉積以及回蝕循環可藉由具有淨正沉積速率(net positive deposition rate)的方式同時發生。
舉例而言以及如第6圖所示,第二介電層222之HPCVD沉積製程始於在氮化物層227的上方進行第二介電層222(在第7圖中標示為222-1)之第一沉積,包括在凹槽218內以及懸突區域419的上方進行第二介電層222之第一沉積。在一些示例中,可在大約4.7kW與大約6.7kW之間(例如,大約5.7kW)的射頻功率下以及在大約4E-3Torr與5E-3Torr之間的範圍內的壓力下執行第二介電層222之第一沉積。在一些實施方式中,第二介電層222-1之第一沉積可形成為具有沿著工件200之頂面602大約250nm與大約350nm之間的厚度。在至少一些示例中,第二介電層222-1之第一沉積可具有大約300nm的厚度。應注意的是,因為懸突區域419之存在,與頂面602相較,第二介電層222-1之第一沉積在凹槽218內(例如,沿著凹槽218之側壁)可較薄。
在第二介電層222-1之第一沉積之後,高密度電漿化學氣相沉積製程繼續進行回蝕製程。請參考第7圖,執行回蝕製程(例如,使用含氧物質,諸如為高能氧原子)以移除先前沉積的第二介電層222-1之第一沉積之一部分。在一些實施例中,在大約8kW的高射頻功率以及大約9E-3Torr的壓力下執行回蝕製程。在一些實施例中,可在大約7kW與大約9kW之間的射頻功率以及在大約10E-2Torr與10E-3Torr之間的範圍內的壓力下執行回蝕製程。在一些情形下,回蝕製程可能導致第二介電層222-1之第一沉積沿著頂面602的厚度變薄。更具體地,回蝕製程可優先在懸突區域419處或在懸突區域419的附近蝕刻工件200。因此,回蝕製程可移除(或切除)在懸突區域419中的第二介電層222-1之第一沉積、氮化物層227、第一介電層220之角落,以形成經蝕刻的表面719,其界定氮化物層227中的不連續區域721。如圖所示,氮化物層227中的不連續區域721與重分佈層216之角落319大致上對齊,從而提供釋放來自重分佈層216之角落319的殘餘應力。
在執行回蝕製程以形成經蝕刻的表面719之後以及如第8圖所示,高密度電漿化學氣相沉積製程繼續在第二介電層222-1之第一沉積的上方(在頂面602以及凹槽218內)以及在包括氮化物層227中的不連續區域721的經蝕刻的表面719的上方進行第二介電層222之第二沉積。在一些實施例中,以大約5.7kW的低射頻功率以及大約4.5E-3Torr的壓力執行第二介電層222之第二沉積。在一些實施例中,可在大約4.7kW與大約6.7kW之間的射頻功率下以及在大約4E-3Torr與5E-3Torr之間的範圍內的壓力下執行第二介電層222之第二沉積。在一些實施方式中,第二介電層222之第二沉積可形成為具有大約2,225nm與大約2,750nm之間的厚度。在至少一些示例中,第二介電層222之第二沉積可具有大約2,500nm的厚度。在一些示例中,包括第二介電層222之第一沉積以及第二沉積的淨沉積的第二介電層222之總厚度「T3」可為大約2,700nm。
應注意的是,雖然在第二介電層222之第二沉積之後凹槽218大致上被填充,不過,因為工件200之形貌,凹陷218’仍然存在。在一些實施例中,沉積第二介電層222直到厚度「T3」,以確保凹陷218’之底面221高於(離基板202更遠)重分佈層216之頂面219。當底面221高於(離基板202更遠)頂面219時,藉由第一介電層220、氮化物層227、第二介電層222之部分將第一導電特徵216-1與第二導電特徵216-2分隔(如第9圖所示),而且,第三介電層224不在第一導電特徵216-1與第二導電特徵216-2之間延伸。這代表第一導電特徵216-1與第二導電特徵216-2主要是被第二介電層222分隔,第二介電層222可包括使用HPCVD沉積製程沉積的高品質且大致上無孔隙的氧化矽。
現在請參考第1圖以及第9圖,方法100包括方塊110,其中在第二介電層222的上方沉積第三介電層224。使用不同於用於沉積第二介電層222的沉積技術而沉積第三介電層224。在一些實施例中,第三介電層224包括氧化矽,而且,可使用化學氣相沉積、亞大氣壓化學氣相沉積或電漿增強化學氣相沉積沉積第三介電層224。在一些實施方式中,第三介電層224可為未摻雜的矽酸鹽玻璃層,其形成為具有大約8,000埃與大約10,000埃之間的厚度「T4」。厚度「T4」可被選擇成使得第三介電層224之最低頂面高於(離基板202更遠)第二介電層222之頂面。這種排列方式有助於確保在方塊112之平坦化製程(如以下將描述的)之後,工件200將包括水平頂面。
現在請參考第1圖以及第10圖,方法100包括方塊112,其中平坦化工件200之頂面以提供水平頂面226。在一些實施例中,使用化學機械研磨平坦化工件200。在方塊112移除第三介電層224之一部分以及第二介電層222之一部分,以產生水平頂面226。在一些實施例中,而且,在化學機械研磨製程之後,第二介電層222之總厚度「T3」可為在大約900nm以及大約1,500nm之間。如第10圖所示,水平頂面226包括第三介電層224之一部分以及第二介電層222之一部分。
請參考第1圖以及第11圖,方法100包括方塊114,其中在水平頂面226的上方沉積第四介電層228。在一些實施例中,第四介電層228可為含氮介電材料,例如氮化矽或碳氮化矽,而且,可使用化學氣相沉積、電漿增強化學氣相沉積、高密度電漿化學氣相沉積、亞大氣壓化學氣相沉積或合適的沉積技術沉積第四介電層228。在一些實施例中,第四介電層228藉由氮化矽形成。因為第四介電層228沉積在水平頂面226的上方並直接接觸水平頂面226,所以第四介電層228是平坦的且並未向下(朝向基板202)延伸進入第三介電層224或第二介電層中222。在一些實施方案中,第四介電層228形成為具有介於大約4,000埃與大約10,000埃之間的厚度,包括大約7,000埃。在一些情形下,第四介電層228是阻障層,例如,防止水分或其他汙染物,以保護工件200的下面的元件。第一介電層220、氮化物層227、經平坦化的第二介電層222、經平坦化的第三介電層224、第四介電層228可被視為第二鈍化層230。如第11圖所示,重分佈層216(例如,第一導電特徵216-1以及第二導電特徵216-2)因此被夾在下面的第一鈍化層212與上面的第二鈍化層230之間。
請參考第1圖以及第12圖,方法100包括方塊116,其中在第四介電層228的上方形成接合層250。在一些實施例中,接合層250可包括氧化物或含氮介電材料,例如,SiO 2、SiN、SiON、SiCN或SiOCN,而且,可使用化學氣相沉積、電將增強化學氣相沉積、高密度電漿化學氣相沉積、亞大氣壓化學氣相沉積或合適的沉積技術沉積接合層250。在一些實施例中,接合層250藉由SiON形成。在一些情形下,接合層250提供工件200(其可包括第一晶粒)與另一工件(其可包括第二晶粒)之間的改進的接合,例如,作為後續晶粒至晶粒堆疊製程之一部分。
請仍然參考第1圖以及第12圖,方法100包括方塊118,其中形成接點特徵,例如,包括導電導孔部分240A以及導線部分240B的接點特徵240。初始地,可形成穿過接合層250、第四介電層228、第二介電層222、氮化物層227、第一介電層220的接點凹槽,以暴露第一導電特徵216-1。在形成接點凹槽之後,在其中沉積金屬層以形成接點特徵240。可藉由銅、鎳、鈷、鋁、金、銀、鈀、錫、鉍或其合金形成諸如為接點特徵240的接點特徵,又,可藉由電鍍、蒸發、化學鍍、濺射沉積或其他合適的技術沉積諸如為接點特徵240的接點特徵。在一些示例中,接點特徵240藉由銅形成。在形成接點特徵240之後,可執行化學機械研磨製程以移除多餘的材料,並平坦化工件200之頂面。在一些實施例中,第一導電特徵216-1因此作為接點墊,以接合形成在其上的接點特徵240。在一些示例中,可類似地形成接點特徵,以接合第二導電特徵216-2,而且,亦可形成其他接點特徵,以接合並未明確示出的其他導電特徵(例如,重分佈層216之導電特徵)。
請參考第1圖以及第13圖,方法100包括方塊120,其中執行接合製程。在一些示例中,接合製程可為混合接合製程,其包括兩個積體電路晶片(晶粒)、兩個晶圓或一個晶粒以及一個晶圓之金屬墊(例如,接點特徵240之導線部分240B)以及周圍的介電材料(例如,接合層250)的接合,以在彼此之間產生薄型(low profile)、低寄生、高表現互連。在第13圖之示例中,工件200提供第一晶粒200(或積體電路晶片),而且,可根據方法100類似地處理另一工件201以提供第二晶粒201(或積體電路晶片),其可作為接合過程之一部分而被接合至第一晶粒。在所示示例中,第二晶粒201可顛倒放置,使得第一晶粒200之前側205面向並接觸第二晶粒201之前側205-1。應注意的是,在第一晶粒200接觸第二晶粒201之前,可對第一晶粒200之前側205以及第二晶粒201之前側205-1中的每一者執行表面活化製程。在一些實施例中,表面活化可包括電漿處理製程(例如,諸如為使用氬電漿),以增加第一晶粒200之接合層250與第二晶粒201之接合層250-1之接合能量。
在表面活化製程之後以及使用高精度對準製程可促使第一晶粒200之前側205沿著界面207接觸第二晶粒201之前側205-1,使得第一晶粒200之導線部分240B與第二晶粒201之導線部分240B-1大致上對齊。在一些實施例中,接合層250之表面與接合層250-1之表面(此刻沿著界面207彼此接觸)可形成共價鍵和/或可藉由凡得瓦爾力(van der Walls force)相互吸引。在一些情形下,接合層250之表面與接合層250-1之表面之接合可在室溫下發生。一旦促使第一晶粒200之前側205接觸第二晶粒201之前側205-1,便可執行退火製程以在第一晶粒200之導線部分240B與第二晶粒201之導線部分240B-1之間形成電性連接。在一些情形下,可在大約200℃與大約400℃之間的溫度下執行退火製程。例如,當接點特徵240藉由銅形成時,退火製程可導致銅之體積膨脹,包括填充在導線部分240B與導線部分240B-1之間可能存在的任何間隙 (例如,因為化學機械研磨凹入(dishing)),從而完成導線部分240B與導線部分240B-1之間的電性連接。應注意的是,根據提供釋放來自重分佈層216的殘餘應力的各種實施例,可在形成導線部分240B與導線部分240B-1之間的電性連接的退火製程的期間以及在製造第一晶粒200以及第二晶粒201的期間可能執行的其他退火製程的期間大致上避免形成裂痕(例如,在第二鈍化層230中)。因此,提高了裝置良率以及可靠性,並改進將第一晶粒200接合至第二晶粒201的製程。
現在請參考第14圖,其中繪示根據本揭露之一些替代實施例製造半導體裝置之方法150之流程圖。方法150僅為示例,並不意欲將本揭露限制於方法150中明確說明的內容。可在方法150之前、期間、之後提供額外的步驟,並可在方法之其他實施例中替換、刪除、移動所描述的一些步驟。為了簡化,本說明書並未詳細描述所有步驟。以下結合第15圖至第22圖描述方法150,第15圖至第22圖至第13圖提供根據本揭露之一些實施例在不同製造階段的工件200之剖面圖。應注意的是,方法150大致上類似於以上所描述的方法100。因此,以下提供的方法150之討論主要集中在方法100與方法150之間的差異。此外,除非另有說明,否則圖式中相似的符號可代表以上所描述的相同特徵或元件。
請參考第14圖以及第15圖,方法150包括方塊102,其中接收包括重分佈層216的工件200。在一些實施例中,工件200可大致上相同於以上參考第2圖之示例所描述的工件200。請繼續參考第14圖以及第15圖,與方法100初始地圖案化重分佈層216不同,方法150首先進行至方塊106,其中在重分佈層216的上方沉積第一介電層220。在沉積第一介電層220之後(而且,請仍然參考第14圖以及第15圖),方法150進行至方塊107,其中在第一介電層220的上方沉積氮化物層227。應注意的是,在至少一些實施例中,可並未形成第一介電層220,而且,可在餘留在重分佈層216的上方的氮化物層302(例如,SiON)的上方(例如,如第3B圖所示)直接形成氮化物層227。
請參考第14圖以及第16圖,方法150包括方塊104’,其中為了形成凹槽218而圖案化重分佈層216、介電層220、氮化物層227,並圓角化重分佈層216之角落319。如第16圖所示,凹槽218延伸穿過氮化物層227、介電層220、重分佈層216,以將重分佈層216電性隔絕為第一導電特徵216-1以及第二導電特徵216-2。如以上所描述的,蝕刻製程315可用於圖案化並圓角化重分佈層216之角落319。然而,在方法150之一些實施例中,因為在圖案化以及圓角化製程之前沉積介電層220以及氮化物層227,可類似地藉由蝕刻製程315圓角化(直接設置於重分佈層216之角落319的上方的)介電層220之角落以及氮化物層227之角落。更具體地,因為在方塊104’之圖案化以及圓角化製程之前沉積氮化物層227,所以,氮化物層227並未存在於凹槽218中(並因此並未存在於重分佈層216之側壁),這與方法100相異。換句話說,氮化物層227僅形成在重分佈層216之頂面的上方而並未形成在重分佈層216之側壁的上方。因此,將顯著降低氮化物層227對重分佈層216的限制,並將釋放來自重分佈層216的殘餘應力。此外,因為氮化物層227可作為蝕刻停止層,僅在重分佈層216之頂面上形成氮化物層227將使蝕刻停止層面積降低大於大約20%,包括大約24%。在一些情形下,這亦可能有助於降低在重分佈層216中或在鄰近於重分佈層216處形成孔洞。
在方塊104’之圖案化以及圓角化製程之後,方法150包括方塊105,其中進一步圓角化重分佈層216之角落319(而且,在一些實施例中,直接設置於重分佈層216之角落319的上方的介電層220之角落以及氮化物層227之角落)。在一些實施例中,可藉由使用以上所描述的氬離子轟擊步驟321而執行進一步的圓角化。
請參考第14圖以及第17圖,方法150包括方塊108,其中形成第二介電層222。如以上所描述的,第二介電層222可包括氧化矽,而且,可使用高密度電漿化學氣相沉積製程形成第二介電層222。在方法150中,而且,在一些實施例中,因為氮化物層227並未沿著重分佈層216之側壁形成,所以可能不需要(或者至少是可選步驟)切割氮化物層227之靠近角落319的部分。因此,在方法150之一些示例中,可在大致上恆定的射頻功率值以及壓力下執行高密度電漿化學氣相沉積之各種沉積以及回蝕循環。例如,在一些實施例中,可在大約5.7kW的低射頻功率下以及在大約4.5E-3Torr的壓力下沉積第二介電層222。在一些實施例中,可在大約4.7kW與大約6.7kW之間的射頻功率下以及在大約4E-3Torr與5E-3Torr之間的範圍內的壓力下沉積第二介電層222。在一些實施方式中,第二介電層222可形成為具有大約2,700nm的厚度。
現在請參考第14圖以及第18圖,方法150包括方塊110,其中在第二介電層222的上方沉積第三介電層224。在一些實施例中,第三介電層224可大致上相同於以上所描述的第三介電層224。請參考第14圖以及第19圖,方法150更包括方塊112,其中平坦化(例如,使用化學機械研磨)工件200之頂面以提供水平頂面226。在一些實施例中,而且,在化學機械研磨製程之後,第二介電層222之總厚度「T3」可為在大約900nm以及大約1,500nm之間。如第19圖所示,水平頂面226包括第三介電層224之一部分以及第二介電層222之一部分。
請參考第14圖以及第20圖,方法150進一步包括方塊114,其中在水平頂面226的上方沉積第四介電層228。在一些實施例中,第四介電層228可大致上相同於以上所描述的第四介電層228。請參考第14圖以及第21圖,方法150包括方塊116,其中在第四介電層228的上方形成接合層250。在一些實施例中,接合層250可大致上相同於以上所描述的接合層250。
請仍然參考第14圖以及第21圖,方法150包括方塊118,其中形成接點特徵,例如,包括導電導孔部分240A以及導線部分240B的接點特徵240。在一些示例中,接點特徵240可大致上相同於以上所描述的接點特徵240。在形成接點特徵240之後,可執行化學機械研磨製程,以移除多餘的材料並平坦化工件200之頂面。
請參考第14圖以及第22圖,方法150更包括方塊120,其中執行接合製程。在一些情形下,接合製程可為混合接合製程,如以上所描述的。在第22圖之示例中,工件200提供第一晶粒200(或積體電路晶片),而且,可根據方法150類似地處理另一工件201以提供第二晶粒201(或積體電路晶片),其可作為接合過程之一部分而被接合至第一晶粒。可如以上所討論的執行方塊120之接合製程。例如,可對第一晶粒200之前側205以及第二晶粒201之前側205-1中的每一者執行表面活化製程。之後,可促使第一晶粒200之前側205沿著界面207接觸第二晶粒201之前側205-1,使得第一晶粒200之導線部分240B與第二晶粒201之導線部分240B-1大致上對齊。然後,可執行退火製程以在第一晶粒200之導線部分240B與第二晶粒201之導線部分240B-1之間形成電性連接。應注意的是,根據方法150之實施例,藉由並未沿著重分佈層216之側壁形成氮化物層227提供釋放來自重分佈層216的殘餘應力,可在各種退火製程的期間避免形成裂痕(例如,在第二鈍化層230中)。因此,提高了裝置良率以及可靠性,並改進將第一晶粒200接合至第二晶粒201的製程。
參考本說明書提供的描述揭露了具有多層鈍化結構的半導體裝置及其製造方法之實施例,以解決與至少一些現有實施方式相關的各種問題。在一些實施例中,在圖案化重分佈層之後,可執行角落圓角化製程,以釋放來自應力可能集中的重分佈層角落處的應力。圓角化製程可包括複數個蝕刻步驟,然後是氬轟擊步驟。在一些示例中,使用氯氣以及三氯化硼氣體執行主蝕刻步驟,其中Cl 2/BCl 3氣體比率小於大約2。取決於重分佈層之圖案密度,可執行大約10-30秒的氬轟擊步驟。在一些實施例中,在執行蝕刻以及氬轟擊步驟之後,可藉由調節重分佈層之沉積速率而進一步調整角落圓角化製程。在一些示例中,可執行介電沉積以及蝕刻製程,以在第二鈍化層形成於重分佈層的上方的角落處切除第二鈍化層之部分(第二鈍化層可包括氮化物層),以進一步釋放來自重分佈層角落的應力。在一些進一步的實施例中,第二鈍化層可形成為使得第二鈍化層之包括氮化物層的部分僅形成在重分佈層之頂面的上方,且並未形成在重分佈層之側壁的上方。因此,將顯著降低氮化物層對重分佈層的限制,並將釋放來自重分佈層的殘餘應力。在某些情形下,這亦可能有助於降低在重分佈層中形成孔洞。藉由實施一個或多個上述製程而降低殘餘的重分佈層應力,可避免鈍化層中的裂痕,從而提高裝置良率以及可靠性,並改進後續的晶粒至晶粒堆疊製程。
本揭露之一些實施例提供一種製造半導體裝置之方法。方法包括接收一工件,工件包括設置於一互連結構的上方並電性耦接至互連結構的一重分佈層。方法亦包括圖案化重分佈層,以形成在重分佈層之一第一導電特徵與重分佈層之一第二導電特徵之間並分隔第一導電特徵與第二導電特徵的一凹槽,其中第一導電特徵以及第二導電特徵之複數個角落界定為鄰近於凹槽且在凹槽之任一側上。方法更包括在第一導電特徵以及第二導電特徵的上方以及凹槽內沉積一第一介電層,在第一介電層的上方沉積一氮化物層,並移除位於第一導電特徵以及第二導電特徵之角落的上方的氮化物層之複數個部分。
在一些實施例中,圖案化重分佈層包括一蝕刻製程,蝕刻製程提供第一導電特徵以及第二導電特徵之角落之圓角化。在一些實施例中,蝕刻製程包括一第一蝕刻步驟以及一第二蝕刻步驟,其中使用一第一Cl 2/BCl 3氣體比率進行第一蝕刻步驟,而且,其中使用不同於第一Cl 2/BCl 3氣體比率的一第二Cl 2/BCl 3氣體比率進行第二蝕刻步驟。在一些實施例中,第一Cl 2/BCl 3氣體比率小於大約2,而且,其中第二Cl 2/BCl 3氣體比率在大約2與大約3之間的範圍內。在一些實施例中,方法更包括在圖案化重分佈層之後以及沉積第一介電層之前執行一氬離子轟擊步驟,氬離子轟擊步驟主要針對第一導電特徵以及第二導電特徵之角落,以提供第一導電特徵以及第二導電特徵之角落之額外圓角化。在一些實施例中,基於重分佈層之一圖案密度決定執行氬離子轟擊步驟之一持續時間。
在一些實施例中,移除位於第一導電特徵以及第二導電特徵之角落的上方的氮化物層之部分是作為在氮化物層的上方沉積一第二介電層之一部分而執行。在一些實施例中,沉積第二介電層包括使用一高密度電漿化學氣相沉積製程而沉積第二介電層。在一些實施例中,高密度電漿化學氣相沉積製程包括在不同偏差值下以及不同壓力下執行的交替沉積以及回蝕循環。在一些實施例中,使用不同的沉積技術沉積第一介電層以及第二介電層。
本揭露之一些實施例提供一種製造半導體裝置之方法。方法包括提供一基板,基板包括設置於一多層互連結構的上方的一重分佈層。方法亦包括在重分佈層的上方沉積一氮化物層,並形成延伸穿過氮化物層以及重分佈層之一凹槽,其中凹槽分隔重分佈層之一第一部分與重分佈層之一第二部分。在形成凹槽之後,氮化物層餘留設置於重分佈層之第一部分以及重分佈層之第二部分之複數個頂面的上方,而重分佈層之第一部分以及重分佈層之第二部分之複數個側壁表面並未具有氮化物層。
在一些實施例中,方法更包括在沉積氮化物層之前,在重分佈層的上方沉積一第一介電層。在第一介電層的上方沉積氮化物層,並形成延伸穿過氮化物層、第一介電層以及重分佈層的凹槽。在一些實施例中,形成凹槽包括一蝕刻製程,蝕刻製程在凹槽之任一側上提供重分佈層之第一部分以及重分佈層之第二部分之複數個角落之圓角化。在一些實施例中,蝕刻製程包括一第一蝕刻步驟以及一第二蝕刻步驟,其中使用一第一Cl 2/BCl 3氣體比率進行第一蝕刻步驟,而且,其中使用不同於第一Cl 2/BCl 3氣體比率的一第二Cl 2/BCl 3氣體比率進行第二蝕刻步驟。在一些實施例中,第一Cl 2/BCl 3氣體比率小於第二Cl 2/BCl 3氣體比率。在一些實施例中,方法更包括在形成凹槽之後執行一氬離子轟擊步驟,氬離子轟擊步驟主要針對重分佈層之第一部分以及重分佈層之第二部分之角落,以提供重分佈層之第一部分以及重分佈層之第二部分之角落之額外圓角化。在一些實施例中,基於重分佈層之一圖案密度決定執行氬離子轟擊步驟之一持續時間。
本揭露之一些實施例提供一種半導體裝置。半導體裝置包括一重分佈層、一鈍化層以及一接點特徵。重分佈層包括藉由一凹槽分隔開的一第一導電特徵以及一第二導電特徵,其中第一導電特徵以及第二導電特徵之複數個角落界定為鄰近於凹槽且在凹槽之任一側上。鈍化層設置於重分佈層的上方並位於凹槽內。接點特徵延伸穿過鈍化層並電性耦接至第一導電特徵。鈍化層包括具有一不連續區域的一氮化物層,不連續區域大致上與第一導電特徵以及第二導電特徵之角落對齊。第一導電特徵之一頂面界定一第一平面,其中第一導電特徵之與凹槽相鄰的一側壁界定相交於第一平面的一第二平面,而且,其中藉由第一平面以及第二平面之一交點與第一導電特徵之角落之一表面之間的一距離至少部分地界定第一導電特徵之角落之圓角化。
在一些實施例中,鈍化層更包括介於重分佈層與氮化物層之間的一第一介電層以及設置於氮化物層的上方的一第二介電層。在一些實施例中,第一介電層以及第二介電層藉由不同材料形成。
以上概述數個實施例之特徵,使得本技術領域中具有通常知識者可更佳地理解本揭露之各方面。本技術領域中具有通常知識者應理解的是,可輕易地使用本揭露作為設計或修改其他製程以及結構的基礎,以實行在此介紹的實施例之相同目的及/或達成相同優點。本技術領域中具有通常知識者亦應理解的是,這樣的等同配置並不背離本揭露之精神以及範疇,且在不背離本揭露之精神以及範疇的情形下,可對本揭露進行各種改變、替換以及更改。
100,150:方法 102,104,104’,105,106,107,108,110,112,114,116,118, 120:方塊 200,201:工件 202:基板 204:互連結構 205,205-1:前側 206:金屬間介電層 207:界面 208:金屬層 210:蝕刻停止層 212:第一鈍化層 214:阻障層 216:重分佈層 216-1:第一導電特徵 216-2:第二導電特徵 218:凹槽 218’:凹陷 219:頂面 220,222,222-1,224,228:介電層 221:底面 226:水平頂面 227,302:氮化物層 230:鈍化層 240:接點特徵 240A,240A-1:導電導孔部分 240B,240B-1:導線部分 250,250-1:接合層 304:光阻層 311:工件之一部分 315:蝕刻製程 315A,315B:蝕刻步驟 317:圓頂形狀 319:角落 321:氬離子轟擊步驟 419:懸突區域 602:頂面 719:經蝕刻的表面 721:不連續區域 2081:接點導孔 2082:導線 R:半徑 S:弧形 T1,T2,T3,T4:厚度 θ:圓心角
當閱讀所所附圖式時,藉由以下的詳細描述能最佳理解本揭露之各方面。應注意的是,根據本產業的標準做法,各種特徵並不一定按照比例繪製。事實上,可能任意地放大或縮小各種特徵之尺寸,以做清楚的說明。 第1圖是根據本揭露之一些實施例的製造半導體裝置之方法之流程圖。 第2圖、第3圖、第4圖、第5圖、第6圖、第7圖、第8圖、第9圖、第10圖、第11圖、第12圖、第13圖是根據一些實施例根據第1圖之方法在不同製造階段的工件之剖面圖。 第3A圖以及第3B圖提供根據一些實施例在圖案化重分佈層的期間的工件之一部分之剖面圖。 第3C圖以及第3D圖提供根據一些實施例的在圖案化重分佈層之後第3圖中所繪示的工件之一部分之放大圖。 第14圖是根據本揭露之一些替代實施例的製造半導體裝置之方法之流程圖。 第15圖、第16圖、第17圖、第18圖、第19圖、第20圖、第21圖、第22圖是根據一些實施例根據第14圖之方法在不同製造階段的工件之剖面圖。
100:方法
102,104,105,106,107,108,110,112,114,116,118,120:方塊

Claims (20)

  1. 一種製造半導體裝置之方法,包括: 接收一工件,該工件包括設置於一互連結構的上方並電性耦接至該互連結構的一重分佈層; 圖案化該重分佈層,以形成在該重分佈層之一第一導電特徵與該重分佈層之一第二導電特徵之間並分隔該第一導電特徵與該第二導電特徵的一凹槽,其中該第一導電特徵以及該第二導電特徵之複數個角落界定為鄰近於該凹槽且在該凹槽之任一側上; 在該第一導電特徵以及該第二導電特徵的上方以及該凹槽內沉積一第一介電層; 在該第一介電層的上方沉積一氮化物層;以及 移除位於該第一導電特徵以及該第二導電特徵之該等角落的上方的該氮化物層之複數個部分。
  2. 如請求項1之方法,其中圖案化該重分佈層包括一蝕刻製程,該蝕刻製程提供該第一導電特徵以及該第二導電特徵之該等角落之圓角化。
  3. 如請求項2之方法,其中該蝕刻製程包括一第一蝕刻步驟以及一第二蝕刻步驟,其中使用一第一Cl 2/BCl 3氣體比率進行該第一蝕刻步驟,而且,其中使用不同於該第一Cl 2/BCl 3氣體比率的一第二Cl 2/BCl 3氣體比率進行該第二蝕刻步驟。
  4. 如請求項3之方法,其中該第一Cl 2/BCl 3氣體比率小於大約2,而且,其中該第二Cl 2/BCl 3氣體比率在大約2與大約3之間的範圍內。
  5. 如請求項2之方法,更包括在圖案化該重分佈層之後以及沉積該第一介電層之前執行一氬離子轟擊步驟,該氬離子轟擊步驟主要針對該第一導電特徵以及該第二導電特徵之該等角落,以提供該第一導電特徵以及該第二導電特徵之該等角落之額外圓角化。
  6. 如請求項5之方法,其中基於該重分佈層之一圖案密度決定執行該氬離子轟擊步驟之一持續時間。
  7. 如請求項1之方法,其中移除位於該第一導電特徵以及該第二導電特徵之該等角落的上方的該氮化物層之該等部分是作為在該氮化物層的上方沉積一第二介電層之一部分而執行。
  8. 如請求項7之方法,其中沉積該第二介電層包括使用一高密度電漿化學氣相沉積製程而沉積該第二介電層。
  9. 如請求項8之方法,其中該高密度電漿化學氣相沉積製程包括在不同偏差值下以及不同壓力下執行的交替沉積以及回蝕循環。
  10. 如請求項7之方法,其中使用不同的沉積技術沉積該第一介電層以及該第二介電層。
  11. 一種製造半導體裝置之方法,包括: 提供一基板,該基板包括設置於一多層互連結構的上方的一重分佈層; 在該重分佈層的上方沉積一氮化物層;以及 形成延伸穿過該氮化物層以及該重分佈層之一凹槽,其中該凹槽分隔該重分佈層之一第一部分與該重分佈層之一第二部分; 其中在形成該凹槽之後,該氮化物層餘留設置於該重分佈層之該第一部分以及該重分佈層之該第二部分之複數個頂面的上方,而該重分佈層之該第一部分以及該重分佈層之該第二部分之複數個側壁表面並未具有該氮化物層。
  12. 如請求項11之方法,更包括: 在沉積該氮化物層之前,在該重分佈層的上方沉積一第一介電層; 在該第一介電層的上方沉積該氮化物層;以及 形成延伸穿過該氮化物層、該第一介電層以及該重分佈層的該凹槽。
  13. 如請求項11之方法,其中形成該凹槽包括一蝕刻製程,該蝕刻製程在該凹槽之任一側上提供該重分佈層之該第一部分以及該重分佈層之該第二部分之複數個角落之圓角化。
  14. 如請求項13之方法,其中該蝕刻製程包括一第一蝕刻步驟以及一第二蝕刻步驟,其中使用一第一Cl 2/BCl 3氣體比率進行該第一蝕刻步驟,而且,其中使用不同於該第一Cl 2/BCl 3氣體比率的一第二Cl 2/BCl 3氣體比率進行該第二蝕刻步驟。
  15. 如請求項14之方法,其中該第一Cl 2/BCl 3氣體比率小於該第二Cl 2/BCl 3氣體比率。
  16. 如請求項13之方法,更包括在形成該凹槽之後執行一氬離子轟擊步驟,該氬離子轟擊步驟主要針對該重分佈層之該第一部分以及該重分佈層之該第二部分之該等角落,以提供該重分佈層之該第一部分以及該重分佈層之該第二部分之該等角落之額外圓角化。
  17. 如請求項16之方法,其中基於該重分佈層之一圖案密度決定執行該氬離子轟擊步驟之一持續時間。
  18. 一種半導體裝置,包括: 一重分佈層,包括藉由一凹槽分隔開的一第一導電特徵以及一第二導電特徵,其中該第一導電特徵以及該第二導電特徵之複數個角落界定為鄰近於該凹槽且在該凹槽之任一側上; 一鈍化層,設置於該重分佈層的上方並位於該凹槽內;以及 一接點特徵,延伸穿過該鈍化層並電性耦接至該第一導電特徵; 其中該鈍化層包括具有一不連續區域的一氮化物層,該不連續區域大致上與該第一導電特徵以及該第二導電特徵之該等角落對齊;以及 其中該第一導電特徵之一頂面界定一第一平面,其中該第一導電特徵之與該凹槽相鄰的一側壁界定相交於該第一平面的一第二平面,而且,其中藉由該第一平面以及該第二平面之一交點與該第一導電特徵之該角落之一表面之間的一距離至少部分地界定該第一導電特徵之該角落之圓角化。
  19. 如請求項18之半導體裝置,其中該鈍化層更包括介於該重分佈層與該氮化物層之間的一第一介電層以及設置於該氮化物層的上方的一第二介電層。
  20. 如請求項19之半導體裝置,其中該第一介電層以及該第二介電層藉由不同材料形成。
TW112109132A 2022-10-24 2023-03-13 半導體裝置及其製造方法 TW202433547A (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US63/380,688 2022-10-24
US18/153,912 2023-01-12

Publications (1)

Publication Number Publication Date
TW202433547A true TW202433547A (zh) 2024-08-16

Family

ID=

Similar Documents

Publication Publication Date Title
US10707149B2 (en) Through-silicon via with low-K dielectric liner
US20220059403A1 (en) Removing Polymer Through Treatment
US8816491B2 (en) Stacked integrated chips and methods of fabrication thereof
US9269651B2 (en) Hybrid TSV and method for forming the same
TWI648839B (zh) 具有內連結構的裝置及其製造方法
US8822331B2 (en) Anchored damascene structures
TWI441308B (zh) 用於3d整合的堆疊晶圓
US12074064B2 (en) TSV structure and method forming same
US11996356B2 (en) Low-stress passivation layer
TWI807638B (zh) 封裝及其形成方法
TW201351587A (zh) 穿矽通孔及其製作方法
KR20220010412A (ko) 다중 라이너 tsv 구조 및 그 제조 방법
TW202410150A (zh) 半導體裝置及其製造方法
TWI830201B (zh) 半導體封裝結構及其形成方法
CN221102083U (zh) 半导体装置
TW202433547A (zh) 半導體裝置及其製造方法
CN220934056U (zh) 封装体
TWI840964B (zh) 形成半導體結構的方法
TWI809823B (zh) 半導體元件的製作方法
TWI775321B (zh) 半導體結構及其形成方法
US20240312952A1 (en) Bonding Semiconductor Dies Through Wafer Bonding Processes
US20240047216A1 (en) Trimming Through Etching in Wafer to Wafer Bonding
US20240363411A1 (en) Tsv structure and method forming same