TW202431945A - Method of forming semiconductor structure - Google Patents
Method of forming semiconductor structure Download PDFInfo
- Publication number
- TW202431945A TW202431945A TW113106831A TW113106831A TW202431945A TW 202431945 A TW202431945 A TW 202431945A TW 113106831 A TW113106831 A TW 113106831A TW 113106831 A TW113106831 A TW 113106831A TW 202431945 A TW202431945 A TW 202431945A
- Authority
- TW
- Taiwan
- Prior art keywords
- layer
- lower electrode
- electrode layer
- opening
- dielectric stack
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 63
- 239000004065 semiconductor Substances 0.000 title claims abstract description 36
- 238000005530 etching Methods 0.000 claims abstract description 29
- 239000000758 substrate Substances 0.000 claims abstract description 21
- 239000003990 capacitor Substances 0.000 claims description 24
- 239000010410 layer Substances 0.000 description 307
- 239000008186 active pharmaceutical agent Substances 0.000 description 28
- 239000000463 material Substances 0.000 description 17
- 229920002120 photoresistant polymer Polymers 0.000 description 10
- 230000002093 peripheral effect Effects 0.000 description 7
- 229910052581 Si3N4 Inorganic materials 0.000 description 4
- 239000004020 conductor Substances 0.000 description 4
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 4
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 3
- NRTOMJZYCJJWKI-UHFFFAOYSA-N Titanium nitride Chemical compound [Ti]#N NRTOMJZYCJJWKI-UHFFFAOYSA-N 0.000 description 3
- 239000007789 gas Substances 0.000 description 3
- 150000004767 nitrides Chemical class 0.000 description 3
- 229910052814 silicon oxide Inorganic materials 0.000 description 3
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 2
- KRHYYFGTRYWZRS-UHFFFAOYSA-N Fluorane Chemical compound F KRHYYFGTRYWZRS-UHFFFAOYSA-N 0.000 description 2
- XPDWGBQVDMORPB-UHFFFAOYSA-N Fluoroform Chemical compound FC(F)F XPDWGBQVDMORPB-UHFFFAOYSA-N 0.000 description 2
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 2
- BOTDANWDWHJENH-UHFFFAOYSA-N Tetraethyl orthosilicate Chemical compound CCO[Si](OCC)(OCC)OCC BOTDANWDWHJENH-UHFFFAOYSA-N 0.000 description 2
- 229910052796 boron Inorganic materials 0.000 description 2
- 239000005380 borophosphosilicate glass Substances 0.000 description 2
- 239000003989 dielectric material Substances 0.000 description 2
- 239000002019 doping agent Substances 0.000 description 2
- 238000001312 dry etching Methods 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 229910052698 phosphorus Inorganic materials 0.000 description 2
- 239000011574 phosphorus Substances 0.000 description 2
- -1 silicon nitride) Chemical class 0.000 description 2
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 2
- 229910052721 tungsten Inorganic materials 0.000 description 2
- 239000010937 tungsten Substances 0.000 description 2
- 238000001039 wet etching Methods 0.000 description 2
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 1
- 229910000838 Al alloy Inorganic materials 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 229910000881 Cu alloy Inorganic materials 0.000 description 1
- 229910004129 HfSiO Inorganic materials 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- 230000002159 abnormal effect Effects 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 229910003481 amorphous carbon Inorganic materials 0.000 description 1
- 239000006117 anti-reflective coating Substances 0.000 description 1
- 239000010941 cobalt Substances 0.000 description 1
- 229910017052 cobalt Inorganic materials 0.000 description 1
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 230000005669 field effect Effects 0.000 description 1
- 239000011229 interlayer Substances 0.000 description 1
- 238000001459 lithography Methods 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 239000011368 organic material Substances 0.000 description 1
- 238000000059 patterning Methods 0.000 description 1
- 238000001020 plasma etching Methods 0.000 description 1
- 238000005498 polishing Methods 0.000 description 1
- 229910021420 polycrystalline silicon Inorganic materials 0.000 description 1
- 229920005591 polysilicon Polymers 0.000 description 1
- 230000003362 replicative effect Effects 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 229910052715 tantalum Inorganic materials 0.000 description 1
- GUVRBAGPIYLISA-UHFFFAOYSA-N tantalum atom Chemical compound [Ta] GUVRBAGPIYLISA-UHFFFAOYSA-N 0.000 description 1
- MZLGASXMSKOWSE-UHFFFAOYSA-N tantalum nitride Chemical compound [Ta]#N MZLGASXMSKOWSE-UHFFFAOYSA-N 0.000 description 1
- 239000010936 titanium Substances 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 229910000859 α-Fe Inorganic materials 0.000 description 1
Abstract
Description
本揭露內容是有關於一種形成半導體結構之方法。The present disclosure relates to a method of forming a semiconductor structure.
電容器可以被用於各種不同的半導體電路中。舉例來說,電容器可被用於動態隨機存取記憶體(dynamic random access memory;DRAM)之記憶體電路或任何其他類型的記憶體電路中。DRAM記憶體電路可通過在單個半導體晶圓上複製數百萬個相同的電路元件(稱為DRAM單元)來製造。DRAM單元是一個可尋址的位置,其可以儲存數據的位元(二進制位)。在DRAM單元常見的形式,可包括兩個電路組件:一個存儲電容器(storage capacitor)與一個訪問場效電晶體(access field effect transistor)。Capacitors can be used in a variety of different semiconductor circuits. For example, capacitors can be used in dynamic random access memory (DRAM) memory circuits or any other type of memory circuit. DRAM memory circuits can be manufactured by replicating millions of identical circuit elements (called DRAM cells) on a single semiconductor wafer. A DRAM cell is an addressable location that can store bits of data (binary bits). In its common form, a DRAM cell can include two circuit components: a storage capacitor and an access field effect transistor.
半導體電路的發展是為了實現更大的電容器,因此,期望開發出具有較高電容的半導體結構。The development of semiconductor circuits is aimed at achieving larger capacitors, therefore, it is desirable to develop semiconductor structures with higher capacitance.
本揭露之技術態樣為一種形成半導體結構之方法。The present invention discloses a method for forming a semiconductor structure.
根據本揭露一些實施方式,一種形成半導體結構之方法包括形成介電堆疊於基板上。形成一下電極層,下電極層包括位於介電堆疊上方的水平部分與位於介電堆疊中的垂直部分。對下電極層執行平坦化製程,以移除下電極層的水平部分並保留下電極層的垂直部分。在執行平坦化製程之後,形成遮罩層於下電極層上。蝕刻遮罩層與介電堆疊以形成第一開口。According to some embodiments of the present disclosure, a method for forming a semiconductor structure includes forming a dielectric stack on a substrate. Forming a lower electrode layer, the lower electrode layer including a horizontal portion located above the dielectric stack and a vertical portion located in the dielectric stack. Performing a planarization process on the lower electrode layer to remove the horizontal portion of the lower electrode layer and retain the vertical portion of the lower electrode layer. After performing the planarization process, forming a mask layer on the lower electrode layer. Etching the mask layer and the dielectric stack to form a first opening.
在本揭露一些實施方式中,執行平坦化製程使得介電堆疊的頂面被暴露。In some embodiments of the present disclosure, a planarization process is performed such that the top surface of the dielectric stack is exposed.
在本揭露一些實施方式中,執行平坦化製程使得下電極層的頂面與介電堆疊的頂面大致齊平。In some embodiments of the present disclosure, a planarization process is performed to make the top surface of the bottom electrode layer substantially flush with the top surface of the dielectric stack.
在本揭露一些實施方式中,第一開口具有在遮罩層中的第一寬度與在介電堆疊中的第二寬度,且第一寬度大於第二寬度。In some embodiments of the present disclosure, the first opening has a first width in the mask layer and a second width in the dielectric stack, and the first width is greater than the second width.
在本揭露一些實施方式中,第一寬度與第二寬度之比值在1.5至2.5的範圍間。In some embodiments of the present disclosure, the ratio of the first width to the second width is in the range of 1.5 to 2.5.
在本揭露一些實施方式中,下電極層具有被第一開口暴露的頂面與側壁,且下電極層的頂面連接下電極層的側壁。In some embodiments of the present disclosure, the lower electrode layer has a top surface and a side wall exposed by the first opening, and the top surface of the lower electrode layer is connected to the side wall of the lower electrode layer.
在本揭露一些實施方式中,下電極層的側壁從下電極層的頂面向下延伸,且下電極層的側壁垂直於下電極層的頂面。In some embodiments of the present disclosure, the sidewall of the lower electrode layer extends downward from the top surface of the lower electrode layer, and the sidewall of the lower electrode layer is perpendicular to the top surface of the lower electrode layer.
在本揭露一些實施方式中,形成半導體結構之方法更包括沿第一開口繼續蝕刻介電堆疊以形成第二開口。In some embodiments of the present disclosure, the method of forming a semiconductor structure further includes continuing to etch the dielectric stack along the first opening to form a second opening.
在本揭露一些實施方式中,第二開口在介電堆疊中的寬度等於第一開口在介電堆疊中的寬度。In some embodiments of the present disclosure, the width of the second opening in the dielectric stack is equal to the width of the first opening in the dielectric stack.
在本揭露一些實施方式中,形成半導體結構之方法更包括形成高介電常數介電層沿著下電極層的側壁。形成上電極層沿著高介電常數介電層的側壁,以定義包含下電極層、高介電常數介電層及上電極層的電容器於第二開口中。In some embodiments of the present disclosure, the method of forming a semiconductor structure further includes forming a high-k dielectric layer along a sidewall of the lower electrode layer, and forming an upper electrode layer along the sidewall of the high-k dielectric layer to define a capacitor including the lower electrode layer, the high-k dielectric layer, and the upper electrode layer in the second opening.
根據本揭露上述實施方式,由於執行平坦化製程以移除下電極層的一部分並執行蝕刻製程以形成第一開口,使得下電極層在形成第一開口時不會被蝕刻,故下電極層的面積不會減少,可避免降低半導體結構的電容值。According to the above-mentioned implementation method of the present disclosure, since a planarization process is performed to remove a portion of the lower electrode layer and an etching process is performed to form the first opening, the lower electrode layer will not be etched when forming the first opening, so the area of the lower electrode layer will not be reduced, which can avoid reducing the capacitance value of the semiconductor structure.
以下將以圖式揭露本揭露之複數個實施方式,為明確說明起見,許多實務上的細節將在以下敘述中一併說明。然而,應瞭解到,這些實務上的細節不應用以限制本揭露。也就是說,在本揭露部分實施方式中,這些實務上的細節是非必要的,因此不應用以限制本揭露。此外,為簡化圖式起見,一些習知慣用的結構與元件在圖式中將以簡單示意的方式繪示之。另外,為了便於讀者觀看,圖式中各元件的尺寸並非依實際比例繪示。The following will disclose multiple embodiments of the present disclosure with drawings. For the purpose of clarity, many practical details will be described together in the following description. However, it should be understood that these practical details should not be used to limit the present disclosure. In other words, in some embodiments of the present disclosure, these practical details are not necessary and therefore should not be used to limit the present disclosure. In addition, in order to simplify the drawings, some commonly used structures and components will be depicted in the drawings in a simple schematic manner. In addition, in order to facilitate the reader's viewing, the size of each component in the drawings is not drawn according to the actual scale.
本揭露所用「約」、「近似」或「實質上」應通常是指給定值或範圍的百分之二十以內,優選地為百分之十以內,且更優選地為百分之五以內。在此給出的數值是近似的,意味著若沒有明確說明,則術語「約」、「近似」或「實質上」的涵意可被推斷出來。As used herein, "about", "approximately" or "substantially" shall generally refer to within 20%, preferably within 10%, and more preferably within 5% of a given value or range. The numerical values given herein are approximate, meaning that if not explicitly stated, the meaning of the term "about", "approximately" or "substantially" can be inferred.
第1圖至第10圖繪示根據本揭露一些實施方式之形成半導體結構之方法在各步驟的剖面圖。參閱第1圖,在基板110上形成介電堆疊DS。詳細來說,形成介電堆疊DS包含在基板110上形成第一支撐層120、在第一支撐層120上形成第一犧牲層130、在第一犧牲層130上形成第二支撐層140、在第二支撐層140上形成第二犧牲層150,以及在第二犧牲層150上形成第三支撐層160。也就是說,介電堆疊DS包含依序形成的第一支撐層120、第一犧牲層130、第二支撐層140、第二犧牲層150以及第三支撐層160。FIG. 1 to FIG. 10 are cross-sectional views of various steps of a method for forming a semiconductor structure according to some embodiments of the present disclosure. Referring to FIG. 1 , a dielectric stack DS is formed on a substrate 110. In detail, forming the dielectric stack DS includes forming a first supporting layer 120 on the substrate 110, forming a first sacrificial layer 130 on the first supporting layer 120, forming a second supporting layer 140 on the first sacrificial layer 130, forming a second sacrificial layer 150 on the second supporting layer 140, and forming a third supporting layer 160 on the second sacrificial layer 150. That is, the dielectric stack DS includes a first supporting layer 120, a first sacrificial layer 130, a second supporting layer 140, a second sacrificial layer 150, and a third supporting layer 160 formed in sequence.
基板110具有元件區域DR與周邊區域PR,其中元件區域DR是形成半導體結構(例如電容器)的區域。周邊區域PR鄰接元件區域DR。舉例來說,周邊區域PR環繞元件區域DR。基板110包含介電層112,其中介電層112可以是層間介電(ILD)層或金屬間介電(IMD)層。介電層112可以是由低介電常數(k)材料、極低k材料或其組合製成的低k介電層。在一些實施方式中,介電層112包含氮化物(例如氮化矽),或其他合適的介電材料。基板110更包含形成於介電層112中的連接墊114與位元線接觸116,其中連接墊114與位元線接觸116位於基板110的元件區域DR上方。連接墊114及/或位元線接觸116可包含鋁、鋁合金、銅、銅合金、鈦、氮化鈦、鉭、氮化鉭、鎢、鈷等,或其組合。在一些實施方式中,基板110更包含電晶體或其他類似組件。如此一來,隨後形成在介電堆疊DS中的電容器(例如,第10圖中的電容器Ca)通過連接墊114連接到基板110中的其他組件(例如電晶體)。The substrate 110 has a device region DR and a peripheral region PR, wherein the device region DR is a region where a semiconductor structure (e.g., a capacitor) is formed. The peripheral region PR is adjacent to the device region DR. For example, the peripheral region PR surrounds the device region DR. The substrate 110 includes a dielectric layer 112, wherein the dielectric layer 112 may be an interlayer dielectric (ILD) layer or an intermetallic dielectric (IMD) layer. The dielectric layer 112 may be a low-k dielectric layer made of a low dielectric constant (k) material, an ultra-low-k material, or a combination thereof. In some embodiments, the dielectric layer 112 includes a nitride (e.g., silicon nitride), or other suitable dielectric materials. The substrate 110 further includes a connection pad 114 and a bit line contact 116 formed in the dielectric layer 112, wherein the connection pad 114 and the bit line contact 116 are located above the device region DR of the substrate 110. The connection pad 114 and/or the bit line contact 116 may include aluminum, aluminum alloy, copper, copper alloy, titanium, titanium nitride, tantalum, tantalum nitride, tungsten, cobalt, etc., or a combination thereof. In some embodiments, the substrate 110 further includes a transistor or other similar component. In this way, a capacitor (e.g., capacitor Ca in FIG. 10 ) subsequently formed in the dielectric stack DS is connected to other components (e.g., transistors) in the substrate 110 through the connection pad 114.
在一些實施方式中,第一支撐層120、第二支撐層140及第三支撐層160包含氮化物(例如氮化矽)。在一些實施方式中,第一犧牲層130與第二犧牲層150包含氧化物。第一犧牲層130與第二犧牲層150可以由不同的材料製成。在形成第一犧牲層130時,在第一犧牲層130中加入摻雜劑,摻雜劑包含硼、磷或其組合。例如,第一犧牲層130由硼磷矽玻璃(BPSG)製成,BPSG是摻雜有硼和磷的氧化矽。在一些實施方式中,第二犧牲層150由四乙氧基矽烷(TEOS)製成或其他合適的介電材料製成。In some embodiments, the first supporting layer 120, the second supporting layer 140, and the third supporting layer 160 include nitrides (e.g., silicon nitride). In some embodiments, the first sacrificial layer 130 and the second sacrificial layer 150 include oxides. The first sacrificial layer 130 and the second sacrificial layer 150 may be made of different materials. When forming the first sacrificial layer 130, a dopant is added to the first sacrificial layer 130, and the dopant includes boron, phosphorus, or a combination thereof. For example, the first sacrificial layer 130 is made of borophosphosilicate glass (BPSG), which is silicon oxide doped with boron and phosphorus. In some embodiments, the second sacrificial layer 150 is made of tetraethoxysilane (TEOS) or other suitable dielectric materials.
參閱第2圖,在介電堆疊DS中與介電堆疊DS上方形成下電極層170。形成下電極層170的方法可以先在基板110的元件區域DR上方的介電堆疊DS中形成開口165,且開口165穿透第一支撐層120、第一犧牲層130、第二支撐層140、第二犧牲層150以及第三支撐層160並暴露基板110的連接墊114,接著在開口165中填入導電材料以形成下電極層170。在一些實施方式中,下電極層170包含位於介電堆疊DS上方的水平部分172與位於介電堆疊DS中的垂直部分174。下電極層170的垂直部分174形成於基板110的元件區域DR上方,且接觸介電堆疊DS的側壁DS1。下電極層170的垂直部分174從基板110的連接墊114向上延伸。換句話說,下電極層170的垂直部分174位於周邊區域PR。在一些實施方式中,下電極層170包含氮化鈦(TiN)或其他合適的導電材料。Referring to FIG. 2 , a lower electrode layer 170 is formed in and above the dielectric stack DS. The method for forming the lower electrode layer 170 may first form an opening 165 in the dielectric stack DS above the device region DR of the substrate 110, and the opening 165 penetrates the first supporting layer 120, the first sacrificial layer 130, the second supporting layer 140, the second sacrificial layer 150, and the third supporting layer 160 and exposes the connection pad 114 of the substrate 110, and then fills the opening 165 with a conductive material to form the lower electrode layer 170. In some embodiments, the lower electrode layer 170 includes a horizontal portion 172 located above the dielectric stack DS and a vertical portion 174 located in the dielectric stack DS. The vertical portion 174 of the lower electrode layer 170 is formed above the device region DR of the substrate 110 and contacts the sidewall DS1 of the dielectric stack DS. The vertical portion 174 of the lower electrode layer 170 extends upward from the connection pad 114 of the substrate 110. In other words, the vertical portion 174 of the lower electrode layer 170 is located in the peripheral region PR. In some embodiments, the lower electrode layer 170 includes titanium nitride (TiN) or other suitable conductive materials.
參閱第2圖與第3圖,執行平坦化製程以移除下電極層170的水平部分172,使得下電極層170的頂面171與介電堆疊DS的頂面DST大致齊平。執行平坦化製程使得介電堆疊DS的第三支撐層160被暴露。在一些實施方式中,執行平坦化製程以完全移除下電極層170的水平部分172,使得在基板110的元件區域DR上方保持下電極層170的垂直部分174完整(不變),且在基板110的周邊區域PR上方無下電極層170。在一些實施方式中,平坦化製程可例如化學機械研磨(chemical-mechanical polishing;CMP)製程。Referring to FIGS. 2 and 3 , a planarization process is performed to remove the horizontal portion 172 of the lower electrode layer 170 so that the top surface 171 of the lower electrode layer 170 is substantially flush with the top surface DST of the dielectric stack DS. The planarization process is performed so that the third support layer 160 of the dielectric stack DS is exposed. In some embodiments, the planarization process is performed to completely remove the horizontal portion 172 of the lower electrode layer 170 so that the vertical portion 174 of the lower electrode layer 170 remains intact (unchanged) above the device region DR of the substrate 110, and there is no lower electrode layer 170 above the peripheral region PR of the substrate 110. In some embodiments, the planarization process may be, for example, a chemical-mechanical polishing (CMP) process.
參閱第4圖,在執行平坦化製程之後,在介電堆疊DS上形成第四支撐層180。第四支撐層180接觸下電極層170與介電堆疊DS的第三支撐層160。在一些實施方式中,第四支撐層180與第三支撐層160包含相同的材料,例如氮化矽。4 , after performing a planarization process, a fourth supporting layer 180 is formed on the dielectric stack DS. The fourth supporting layer 180 contacts the lower electrode layer 170 and the third supporting layer 160 of the dielectric stack DS. In some embodiments, the fourth supporting layer 180 and the third supporting layer 160 include the same material, such as silicon nitride.
在第四支撐層180形成之後,在第四支撐層180上形成第三犧牲層190。第三犧牲層190接觸第四支撐層180。在一些實施方式中,第三犧牲層190包含氧化物,例如氧化矽或其他合適的材料。在一些其他的實施方式中,第三犧牲層190與第一犧牲層130或第二犧牲層150包含相同的材料。After the fourth supporting layer 180 is formed, a third sacrificial layer 190 is formed on the fourth supporting layer 180. The third sacrificial layer 190 contacts the fourth supporting layer 180. In some embodiments, the third sacrificial layer 190 includes an oxide, such as silicon oxide or other suitable materials. In some other embodiments, the third sacrificial layer 190 includes the same material as the first sacrificial layer 130 or the second sacrificial layer 150.
在形成第三犧牲層190之後,依序形成第一遮罩層200與第二遮罩層210。詳細來說,第一遮罩層200形成於第三犧牲層190上,以及第二遮罩層210形成於第一遮罩層200。在一些實施方式中,第一遮罩層200及第二遮罩層210包含彼此不同的材料。在一些實施方式中,第一遮罩層200及第二遮罩層210包含相同的材料。例如,第一遮罩層200及/或第二遮罩層210包含有機材料。第一遮罩層200及/或第二遮罩層210是底部抗反射塗料(bottom anti-reflective coating,BARC)層。替代地,第一遮罩層200及/或第二遮罩層210可包含氮化矽、無定形碳(α-C)、氮氧化矽、氧化矽,或其他合適的材料。在一些實施方式中,第四支撐層180、第三犧牲層190第一遮罩層200及第二遮罩層210可共同視為介電堆疊DS上的複數個遮罩層。After forming the third sacrificial layer 190, a first mask layer 200 and a second mask layer 210 are sequentially formed. In detail, the first mask layer 200 is formed on the third sacrificial layer 190, and the second mask layer 210 is formed on the first mask layer 200. In some embodiments, the first mask layer 200 and the second mask layer 210 include materials different from each other. In some embodiments, the first mask layer 200 and the second mask layer 210 include the same material. For example, the first mask layer 200 and/or the second mask layer 210 include an organic material. The first mask layer 200 and/or the second mask layer 210 is a bottom anti-reflective coating (BARC) layer. Alternatively, the first mask layer 200 and/or the second mask layer 210 may include silicon nitride, amorphous carbon (α-C), silicon oxynitride, silicon oxide, or other suitable materials. In some embodiments, the fourth supporting layer 180, the third sacrificial layer 190, the first mask layer 200, and the second mask layer 210 may be collectively considered as a plurality of mask layers on the dielectric stack DS.
在形成第一遮罩層200及第二遮罩層210之後,在第二遮罩層210上形成圖案化光阻220。形成圖案化光阻220的方法可包含在先在第二遮罩層210上形成光阻層,然後使用合適的微影製程將光阻層圖案化,以形成圖案化光阻220,使得第二遮罩層210的部分被圖案化光阻220暴露。After forming the first mask layer 200 and the second mask layer 210, a patterned photoresist 220 is formed on the second mask layer 210. The method of forming the patterned photoresist 220 may include first forming a photoresist layer on the second mask layer 210, and then patterning the photoresist layer using a suitable lithography process to form the patterned photoresist 220, so that a portion of the second mask layer 210 is exposed by the patterned photoresist 220.
參閱第5圖,執行蝕刻製程以至少移除介電堆疊DS的第三支撐層160的一部分並形成第一開口230,使得第一開口230暴露第二犧牲層150。由於在形成第一開口230之前已執行平坦化製程以移除下電極層170的垂直部分174(見第2圖與第3圖),使得下電極層170在形成第一開口230時不會被蝕刻,故下電極層170的面積不會減少,可避免降低半導體結構的電容值。形成第一開口230使得下電極層170具有被第一開口230暴露的頂面171與連接頂面171的側壁173。下電極層170的側壁173從頂面171向下延伸,且側壁173實質上垂直於頂面171。Referring to FIG. 5 , an etching process is performed to remove at least a portion of the third support layer 160 of the dielectric stack DS and form a first opening 230, so that the first opening 230 exposes the second sacrificial layer 150. Since a planarization process has been performed to remove the vertical portion 174 of the lower electrode layer 170 (see FIGS. 2 and 3 ) before forming the first opening 230, the lower electrode layer 170 will not be etched when the first opening 230 is formed, so the area of the lower electrode layer 170 will not be reduced, and the capacitance value of the semiconductor structure can be avoided from being reduced. The first opening 230 is formed so that the lower electrode layer 170 has a top surface 171 exposed by the first opening 230 and a side wall 173 connected to the top surface 171. The sidewall 173 of the lower electrode layer 170 extends downward from the top surface 171 , and the sidewall 173 is substantially perpendicular to the top surface 171 .
在一些實施方式中,執行蝕刻製程以形成第一開口230包含多次蝕刻步驟。舉例來說,使用圖案化光阻220作為蝕刻遮罩蝕刻第二遮罩層210的一部分,以暴露第一遮罩層200。接著,依序蝕刻第一遮罩層200的一部分以暴露第三犧牲層190、蝕刻第三犧牲層190的一部分以暴露第四支撐層180、蝕刻第四支撐層180的一部分以暴露第三支撐層160,以及蝕刻第三支撐層160的部分以暴露第二犧牲層150。隨後,依序移除圖案化光阻220、第二遮罩層210及第一遮罩層200,以暴露第三犧牲層190的頂面。在一些實施方式中,蝕刻第四支撐層180的部分與蝕刻第三支撐層160的部分由單一蝕刻步驟進行。亦即,第四支撐層180的部分與第三支撐層160的部分同時被蝕刻。In some embodiments, performing an etching process to form the first opening 230 includes a plurality of etching steps. For example, a portion of the second mask layer 210 is etched using the patterned photoresist 220 as an etching mask to expose the first mask layer 200. Then, a portion of the first mask layer 200 is sequentially etched to expose the third sacrificial layer 190, a portion of the third sacrificial layer 190 is etched to expose the fourth supporting layer 180, a portion of the fourth supporting layer 180 is etched to expose the third supporting layer 160, and a portion of the third supporting layer 160 is etched to expose the second sacrificial layer 150. Subsequently, the patterned photoresist 220, the second mask layer 210, and the first mask layer 200 are removed in sequence to expose the top surface of the third sacrificial layer 190. In some embodiments, etching a portion of the fourth supporting layer 180 and etching a portion of the third supporting layer 160 are performed by a single etching step. That is, a portion of the fourth supporting layer 180 and a portion of the third supporting layer 160 are etched at the same time.
在一些實施方式中,蝕刻製程包含乾式蝕刻製程,例如電漿蝕刻製程。在一些實施方式中,蝕刻製程包含各向異性蝕刻(anisotropic etching)製程,前述的各向異性蝕刻製程使用在第三支撐層160與下電極層170之間具有蝕刻選擇性之蝕刻氣體,使得第三支撐層160的部分被移除且下電極層170不被移除。舉例來說,蝕刻氣體可包括三氟甲烷(CHF 3)或其他合適的蝕刻氣體。換句話說,第三支撐層160在蝕刻製程中具有比下電極層170較高的蝕刻速率,如此將導致在第三支撐層160的部分被移除並暴露下面的第二犧牲層150,且下電極層170保持實質上完整(不變)。如此一來,可以提高下電極層170的平衡性並減少圖案不正常(pattern abnormal)的問題產生。例如,可以避免不同的下電極層170之間(或後續形成的電容器之間)合併(merge)進而導致短路的問題。 In some embodiments, the etching process includes a dry etching process, such as a plasma etching process. In some embodiments, the etching process includes an anisotropic etching process, wherein the anisotropic etching process uses an etching gas having etching selectivity between the third supporting layer 160 and the lower electrode layer 170, so that a portion of the third supporting layer 160 is removed and the lower electrode layer 170 is not removed. For example, the etching gas may include trifluoromethane (CHF 3 ) or other suitable etching gases. In other words, the third supporting layer 160 has a higher etching rate than the lower electrode layer 170 during the etching process, which will result in a portion of the third supporting layer 160 being removed and exposing the second sacrificial layer 150 below, while the lower electrode layer 170 remains substantially intact (unchanged). In this way, the balance of the lower electrode layer 170 can be improved and the problem of abnormal pattern can be reduced. For example, the problem of merging between different lower electrode layers 170 (or between capacitors formed subsequently) and causing a short circuit can be avoided.
在一些實施方式中,下電極層170的被第一開口230暴露的側壁173具有深度D1,其中深度D1介於約100奈米至約200奈米的範圍間(例如110奈米),且深度D1實質上等於第三支撐層160的厚度。若深度D1大於約200奈米,下電極層170可能佔太大的面積,使得蝕刻機台無法容納;若深度D1小於約100奈米,可能導致下電極層170或第三支撐層160無法支撐電容器,且電容器與電容器之間可能發生短路。In some embodiments, the sidewall 173 of the lower electrode layer 170 exposed by the first opening 230 has a depth D1, wherein the depth D1 is in a range of about 100 nm to about 200 nm (e.g., 110 nm), and the depth D1 is substantially equal to the thickness of the third supporting layer 160. If the depth D1 is greater than about 200 nm, the lower electrode layer 170 may occupy too large an area, making it impossible for an etching machine to accommodate; if the depth D1 is less than about 100 nm, the lower electrode layer 170 or the third supporting layer 160 may be unable to support the capacitor, and a short circuit may occur between capacitors.
在一些實施方式中,第一開口230在第四支撐層180(或第三犧牲層190)中具有最大寬度W1且在第三支撐層160(或下電極層170之間)具有最小寬度W2。第一開口230的最大寬度W1與最小寬度W2之比值可以是約1.5至約2.5的範圍間(例如2)。例如,第一開口230的最大寬度W1介於約55奈米至約65奈米的範圍間(例如約60奈米),且第一開口230的最小寬度W2介於約25奈米至約35奈米的範圍間(例如約30奈米)。In some embodiments, the first opening 230 has a maximum width W1 in the fourth supporting layer 180 (or the third sacrificial layer 190) and a minimum width W2 in the third supporting layer 160 (or between the lower electrode layers 170). The ratio of the maximum width W1 to the minimum width W2 of the first opening 230 may be in a range of about 1.5 to about 2.5 (e.g., 2). For example, the maximum width W1 of the first opening 230 is in a range of about 55 nanometers to about 65 nanometers (e.g., about 60 nanometers), and the minimum width W2 of the first opening 230 is in a range of about 25 nanometers to about 35 nanometers (e.g., about 30 nanometers).
參閱第5圖與第6圖,執行蝕刻製程以移除介電堆疊DS的第二犧牲層150的全體,使得第二支撐層140被暴露。在一些實施方式中,通過使用溼式蝕刻製程移除第二犧牲層150,並且蝕刻劑可包含氟化氫(HF)或其他合適的蝕刻劑。在一些實施方式中,執行蝕刻製程以移除介電堆疊DS的第二犧牲層150的期間,同時移除第三犧牲層190,以暴露第四支撐層180的頂面。Referring to FIGS. 5 and 6 , an etching process is performed to remove the entire second sacrificial layer 150 of the dielectric stack DS, so that the second supporting layer 140 is exposed. In some embodiments, the second sacrificial layer 150 is removed by using a wet etching process, and the etchant may include hydrogen fluoride (HF) or other suitable etchants. In some embodiments, during the etching process performed to remove the second sacrificial layer 150 of the dielectric stack DS, the third sacrificial layer 190 is removed simultaneously to expose the top surface of the fourth supporting layer 180.
參閱第7圖,移除第二支撐層140的一部分,以暴露第一犧牲層130。詳細來說,在基板110的元件區域DR上方的第二支撐層140中形成孔洞H1,以暴露第一犧牲層130的一部分。在一些實施方式中,通過乾式蝕刻製程來蝕刻第二支撐層140,以形成孔洞H1。7 , a portion of the second supporting layer 140 is removed to expose the first sacrificial layer 130. In detail, a hole H1 is formed in the second supporting layer 140 above the device region DR of the substrate 110 to expose a portion of the first sacrificial layer 130. In some embodiments, the second supporting layer 140 is etched by a dry etching process to form the hole H1.
參閱第7圖與第8圖,從孔洞H1移除介電堆疊DS的第一犧牲層130的全體。在一些實施方式中,執行蝕刻製程以移除第一犧牲層130。例如,通過使用濕式蝕刻製程移除第一犧牲層130,並且蝕刻劑包含氟化氫(HF)或其他合適的蝕刻劑。在一些實施方式中,移除第二犧牲層150(第6圖)、移除第二支撐層140的一部分(第7圖)以及移除第一犧牲層130以在介電堆疊DS中形成/定義第二開口240。在一些實施方式中,第6圖至第8圖的蝕刻製程是沿第一開口230(第5圖)繼續蝕刻介電堆疊DS,以形成第二開口240。亦即,第二開口240是由第一開口230(第5圖)連續向下形成,因此第二開口240的寬度W3實質上等於第一開口230的最小寬度W2。在介電堆疊DS中形成第二開口240更使得介電堆疊DS的第一支撐層120以及下電極層170的側壁175被第二開口240暴露。在一些實施方式中,第一支撐層120、第二支撐層140及第三支撐層160通過下電極層170連接。Referring to FIGS. 7 and 8 , the entire first sacrificial layer 130 of the dielectric stack DS is removed from the hole H1. In some embodiments, an etching process is performed to remove the first sacrificial layer 130. For example, the first sacrificial layer 130 is removed by using a wet etching process, and the etchant includes hydrogen fluoride (HF) or other suitable etchants. In some embodiments, the second sacrificial layer 150 ( FIG. 6 ), a portion of the second supporting layer 140 ( FIG. 7 ), and the first sacrificial layer 130 are removed to form/define a second opening 240 in the dielectric stack DS. In some embodiments, the etching process of FIGS. 6 to 8 is to continue etching the dielectric stack DS along the first opening 230 (FIG. 5) to form a second opening 240. That is, the second opening 240 is formed continuously downward from the first opening 230 (FIG. 5), so that the width W3 of the second opening 240 is substantially equal to the minimum width W2 of the first opening 230. Forming the second opening 240 in the dielectric stack DS further allows the first supporting layer 120 of the dielectric stack DS and the sidewall 175 of the lower electrode layer 170 to be exposed by the second opening 240. In some embodiments, the first supporting layer 120 , the second supporting layer 140 , and the third supporting layer 160 are connected via the lower electrode layer 170 .
參閱第9圖,高介電常數(k)介電層250沿著下電極層170的側壁175形成。高k介電層250可以沿著下電極層170面對介電堆疊DS的第二開口240的側壁175形成,並且也可以沿著下電極層170背對介電堆疊DS的第二開口240的另一側壁形成。此外,高k介電層250可以沿著第二支撐層140與第三支撐層160的側壁、頂面及底面以及第一支撐層120的頂面形成。在一些實施方式中,高k介電層250包含氧化鉿(HfO)。在各種示例中,高k介電層250包含金屬氧化物(例如HfSiO 2、ZnO、ZrO 2、Ta 2O 5、Al 2O 3等)、金屬氮化物或其組合。 9, a high-k dielectric layer 250 is formed along the sidewall 175 of the lower electrode layer 170. The high-k dielectric layer 250 may be formed along the sidewall 175 of the lower electrode layer 170 facing the second opening 240 of the dielectric stack DS, and may also be formed along the other sidewall of the lower electrode layer 170 facing away from the second opening 240 of the dielectric stack DS. In addition, the high-k dielectric layer 250 may be formed along the sidewalls, top surfaces, and bottom surfaces of the second supporting layer 140 and the third supporting layer 160, and the top surface of the first supporting layer 120. In some embodiments, the high-k dielectric layer 250 includes ferrite (HfO). In various examples, high-k dielectric layer 250 includes metal oxide (eg, HfSiO 2 , ZnO, ZrO 2 , Ta 2 O 5 , Al 2 O 3 , etc.), metal nitride, or a combination thereof.
參閱第10圖,形成第一導電層260沿著高k介電層250的側壁253形成。在一些實施方式中,第一導電層260位於高k介電層250的水平表面之上。第一導電層260可以包含氮化鈦(TiN)或其他合適的導電材料。在一些實施方式中,第一導電層260與下電極層170包含相同的材料。10 , a first conductive layer 260 is formed along the sidewall 253 of the high-k dielectric layer 250. In some embodiments, the first conductive layer 260 is located above the horizontal surface of the high-k dielectric layer 250. The first conductive layer 260 may include titanium nitride (TiN) or other suitable conductive materials. In some embodiments, the first conductive layer 260 and the lower electrode layer 170 include the same material.
半導體層270形成於第一導電層260上。詳細來說,半導體層270形成於第一支撐層120與第二支撐層140之間以及第二支撐層140與第三支撐層160之間。半導體層270可完全填充介電堆疊DS的第二開口240。半導體層270可包含多晶矽或其他合適的半導體材料。半導體層270的材料不同於第一導電層260的材料,也不同於下電極層170的材料。The semiconductor layer 270 is formed on the first conductive layer 260. Specifically, the semiconductor layer 270 is formed between the first supporting layer 120 and the second supporting layer 140 and between the second supporting layer 140 and the third supporting layer 160. The semiconductor layer 270 may completely fill the second opening 240 of the dielectric stack DS. The semiconductor layer 270 may include polysilicon or other suitable semiconductor materials. The material of the semiconductor layer 270 is different from the material of the first conductive layer 260 and the material of the lower electrode layer 170.
在形成半導體層270之後,在半導體層270上形成第二導電層280。第二導電層280沿著半導體層270的頂面與側壁形成。第二導電層280可包含金屬(例如鎢)或其他合適的導電材料。第二導電層280的材料不同於第一導電層260的材料,也不同於下電極層170的材料形成。第一導電層260、半導體層270及第二導電層280具有相同的電位。在一些實施方式中,第一導電層260視為電容器Ca的上電極層。在一些其他的實施方式中,第一導電層260與半導體層270視為電容器Ca的上電極層。替代地,第一導電層260、半導體層270及第二導電層280視為電容器Ca的上電極層。在上電極層(即第一導電層260、半導體層270及/或第二導電層280)形成之後,包含下電極層170、高k介電層250以及上電極層的電容器Ca被定義於介電堆疊DS的第二開口240中。After forming the semiconductor layer 270, a second conductive layer 280 is formed on the semiconductor layer 270. The second conductive layer 280 is formed along the top surface and sidewalls of the semiconductor layer 270. The second conductive layer 280 may include a metal (e.g., tungsten) or other suitable conductive materials. The material of the second conductive layer 280 is different from the material of the first conductive layer 260 and is also different from the material of the lower electrode layer 170. The first conductive layer 260, the semiconductor layer 270, and the second conductive layer 280 have the same potential. In some embodiments, the first conductive layer 260 is regarded as the upper electrode layer of the capacitor Ca. In some other embodiments, the first conductive layer 260 and the semiconductor layer 270 are regarded as the upper electrode layer of the capacitor Ca. Alternatively, the first conductive layer 260, the semiconductor layer 270 and the second conductive layer 280 are considered as the upper electrode layer of the capacitor Ca. After the upper electrode layer (i.e., the first conductive layer 260, the semiconductor layer 270 and/or the second conductive layer 280) is formed, the capacitor Ca including the lower electrode layer 170, the high-k dielectric layer 250 and the upper electrode layer is defined in the second opening 240 of the dielectric stack DS.
本揭露之一些實施方式之形成半導體結構的方法是先在第3圖執行平坦化製程以移除下電極層170的一部分,接著再執行後續製程,諸如形成第四支撐層180、第三犧牲層190、第一遮罩層200、第二遮罩層210及圖案化光阻220(第4圖)、形成第一開口230(第5圖)以及形成第二開口240等,因此在蝕刻製程(例如第5圖執行的蝕刻製程)不會額外蝕刻下電極層170,故可避免下電極層170的面積不必要的減少,從而避免降低半導體結構(電容器Ca)的電容值。In some embodiments of the present disclosure, a method for forming a semiconductor structure is to first perform a planarization process in FIG. 3 to remove a portion of the lower electrode layer 170, and then perform subsequent processes, such as forming a fourth support layer 180, a third sacrificial layer 190, a first mask layer 200, a second mask layer 210 and a patterned photoresist 220 (FIG. 4), forming a first opening 230 (FIG. 5) and forming a second opening 240, etc. Therefore, the lower electrode layer 170 will not be additionally etched in the etching process (for example, the etching process performed in FIG. 5), thereby avoiding unnecessary reduction in the area of the lower electrode layer 170, thereby avoiding reducing the capacitance value of the semiconductor structure (capacitor Ca).
在一些實施方式中,半導體結構包含基板110、複數個支撐層(即第一支撐層120、第二支撐層140及第三支撐層160)以及電容器Ca。第一支撐層120、第二支撐層140及第三支撐層160自下而上排列,第一支撐層120、第二支撐層140及第三支撐層160相互間隔。換句話說,第三支撐層160位於第二支撐層140上方,且第二支撐層140位於第一支撐層120上方。電容器Ca的每一者包含下電極層170、高k介電層250及上電極層(即第一導電層260、半導體層270及/或第二導電層280)。下電極層170具有頂面171與連接頂面171且連續向下延伸的側壁175。下電極層170的頂面171與第三支撐層160的頂面大致齊平,且被高k介電層250覆蓋。下電極層170的側壁175實質上垂直於頂面171。值得注意的是,第10圖中的電容器Ca是說明性的,電容器Ca不限於第10圖所示的結構。例如,電容器Ca中可包含其他的附加層。In some embodiments, the semiconductor structure includes a substrate 110, a plurality of supporting layers (i.e., a first supporting layer 120, a second supporting layer 140, and a third supporting layer 160), and a capacitor Ca. The first supporting layer 120, the second supporting layer 140, and the third supporting layer 160 are arranged from bottom to top, and the first supporting layer 120, the second supporting layer 140, and the third supporting layer 160 are spaced apart from each other. In other words, the third supporting layer 160 is located above the second supporting layer 140, and the second supporting layer 140 is located above the first supporting layer 120. Each of the capacitors Ca includes a lower electrode layer 170, a high-k dielectric layer 250, and an upper electrode layer (i.e., a first conductive layer 260, a semiconductor layer 270, and/or a second conductive layer 280). The lower electrode layer 170 has a top surface 171 and a side wall 175 connected to the top surface 171 and extending continuously downward. The top surface 171 of the lower electrode layer 170 is substantially flush with the top surface of the third supporting layer 160 and is covered by the high-k dielectric layer 250. The side wall 175 of the lower electrode layer 170 is substantially perpendicular to the top surface 171. It is worth noting that the capacitor Ca in FIG. 10 is illustrative, and the capacitor Ca is not limited to the structure shown in FIG. 10. For example, the capacitor Ca may include other additional layers.
雖然本揭露已以實施方式揭露如上,然其並非用以限定本揭露,任何熟習此技藝者,在不脫離本揭露之精神和範圍內,當可作各種之更動與潤飾,因此本揭露之保護範圍當視後附之申請專利範圍所界定者為準。Although the present disclosure has been disclosed in the above implementation form, it is not intended to limit the present disclosure. Anyone skilled in the art can make various changes and modifications without departing from the spirit and scope of the present disclosure. Therefore, the protection scope of the present disclosure shall be determined by the scope of the attached patent application.
110:基板 112:介電層 114:連接墊 116:位元線接觸 120:第一支撐層 130:第一犧牲層 140:第二支撐層 150:第二犧牲層 160:第三支撐層 165:開口 170:下電極層 171:頂面 172:水平部分 173:側壁 174:垂直部分 175:側壁 180:第四支撐層 190:第三犧牲層 200:第一遮罩層 210:第二遮罩層 220:圖案化光阻 230:第一開口 240:第二開口 250:高介電常數介電層(高k介電層) 253:側壁 260:第一導電層 270:半導體層 280:第二導電層 Ca:電容器 D1:深度 DS:介電堆疊 DS1:側壁 DST:頂面 DR:元件區域 H1:孔洞 PR:周邊區域 W1:最大寬度 W2:最小寬度 W3:寬度 110: substrate 112: dielectric layer 114: connection pad 116: bit line contact 120: first support layer 130: first sacrificial layer 140: second support layer 150: second sacrificial layer 160: third support layer 165: opening 170: lower electrode layer 171: top surface 172: horizontal portion 173: side wall 174: vertical portion 175: side wall 180: fourth support layer 190: third sacrificial layer 200: first mask layer 210: second mask layer 220: patterned photoresist 230: First opening 240: Second opening 250: High-k dielectric layer 253: Sidewall 260: First conductive layer 270: Semiconductor layer 280: Second conductive layer Ca: Capacitor D1: Depth DS: Dielectric stack DS1: Sidewall DST: Top surface DR: Component region H1: Hole PR: Peripheral region W1: Maximum width W2: Minimum width W3: Width
為讓本揭露之上述和其他目的、特徵、優點與實施例能更明顯易懂,所附圖式之說明如下: 第1圖至第10圖繪示根據本揭露一些實施方式之形成半導體結構之方法在各步驟的剖面圖。 In order to make the above and other purposes, features, advantages and embodiments of the present disclosure more clearly understandable, the attached drawings are described as follows: Figures 1 to 10 show cross-sectional views of various steps of the method for forming a semiconductor structure according to some embodiments of the present disclosure.
國內寄存資訊(請依寄存機構、日期、號碼順序註記) 無 國外寄存資訊(請依寄存國家、機構、日期、號碼順序註記) 無 Domestic storage information (please note in the order of storage institution, date, and number) None Foreign storage information (please note in the order of storage country, institution, date, and number) None
110:基板 110: Substrate
112:介電層 112: Dielectric layer
114:連接墊 114:Connection pad
116:位元線接觸 116: Bit line contact
120:第一支撐層 120: The first support layer
140:第二支撐層 140: The second support layer
160:第三支撐層 160: The third support layer
170:下電極層 170: Lower electrode layer
171:頂面 171: Top
175:側壁 175: Side wall
240:第二開口 240: Second opening
250:高介電常數介電層(高k介電層) 250: High dielectric constant dielectric layer (high-k dielectric layer)
253:側壁 253: Side wall
260:第一導電層 260: First conductive layer
270:半導體層 270:Semiconductor layer
280:第二導電層 280: Second conductive layer
Ca:電容器 Ca:Capacitor
DS:介電堆疊 DS: Dielectric Stack
DR:元件區域 DR: Component area
PR:周邊區域 PR: Peripheral area
Claims (10)
Publications (1)
Publication Number | Publication Date |
---|---|
TW202431945A true TW202431945A (en) | 2024-08-01 |
Family
ID=
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20050263814A1 (en) | Bottom electrode of capacitor of semiconductor device and method of forming the same | |
JP2005183918A (en) | Method of forming bit-line of semiconductor device | |
TWI250579B (en) | Method for fabricating semiconductor device | |
JP2005019988A (en) | Semiconductor device and manufacturing method therefor | |
US6897159B1 (en) | Method for fabricating semiconductor device | |
US20050167724A1 (en) | Semiconductor memory device with cylindrical storage electrode and method of manufacturing the same | |
US7842593B2 (en) | Semiconductor device and method for fabricating the same | |
KR100744672B1 (en) | Method for fabricating contact hole in semiconductor device | |
US7736972B2 (en) | Method for forming storage electrode of semiconductor memory device | |
US8129251B2 (en) | Metal-insulator-metal-structured capacitor formed with polysilicon | |
JP3527175B2 (en) | Etching gas composition for simultaneously etching silicon oxide and polysilicon, etching method using the same, and method of manufacturing semiconductor memory device using the same | |
US7413950B2 (en) | Methods of forming capacitors having storage electrodes including cylindrical conductive patterns | |
JP2006148052A (en) | Method for forming storage electrode of semiconductor element | |
TWI833380B (en) | Method of forming semiconductor structure | |
TW202431945A (en) | Method of forming semiconductor structure | |
US20060292498A1 (en) | Method for forming contact hole in semiconductor device | |
TWI833463B (en) | Method of forming semiconductor structure | |
KR100762869B1 (en) | A method for fabricating capacitor | |
KR100696774B1 (en) | A method for forming a capacitor of a semiconductor device | |
KR100546111B1 (en) | Manufacturing Method of Semiconductor Device | |
TW202425742A (en) | Semiconductor structure and method of forming the same | |
KR20060068993A (en) | Semiconductor memory device and method for fabricating the same | |
KR20040005075A (en) | Method for manufacturing capacitor and bit line in semiconductor device using the same | |
KR20050073053A (en) | Method for forming storage node contact of capacitor | |
JP2002026291A (en) | Method of manufacturing semiconductor device |