TW202418482A - 連接柱及其製造方法 - Google Patents

連接柱及其製造方法 Download PDF

Info

Publication number
TW202418482A
TW202418482A TW112133066A TW112133066A TW202418482A TW 202418482 A TW202418482 A TW 202418482A TW 112133066 A TW112133066 A TW 112133066A TW 112133066 A TW112133066 A TW 112133066A TW 202418482 A TW202418482 A TW 202418482A
Authority
TW
Taiwan
Prior art keywords
column
metal
solder layer
connecting column
metal column
Prior art date
Application number
TW112133066A
Other languages
English (en)
Inventor
殷東珍
李炫奎
金庚泰
裵成文
朴恩光
金成澤
金振圭
秋龍喆
吳熙奉
Original Assignee
南韓商德山金屬股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南韓商德山金屬股份有限公司 filed Critical 南韓商德山金屬股份有限公司
Publication of TW202418482A publication Critical patent/TW202418482A/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/10Bump connectors ; Manufacturing methods related thereto
    • H01L24/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L24/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/63Connectors not provided for in any of the groups H01L24/10 - H01L24/50 and subgroups; Manufacturing methods related thereto
    • H01L24/65Structure, shape, material or disposition of the connectors prior to the connecting process
    • H01L24/66Structure, shape, material or disposition of the connectors prior to the connecting process of an individual connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/49Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions wire-like arrangements or pins or rods
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/48Manufacture or treatment of parts, e.g. containers, prior to assembly of the devices, using processes not provided for in a single one of the subgroups H01L21/06 - H01L21/326
    • H01L21/4814Conductive parts
    • H01L21/4885Wire-like parts or pins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/367Cooling facilitated by shape of device
    • H01L23/3677Wire-like or pin-like cooling fins or heat sinks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/10Bump connectors ; Manufacturing methods related thereto
    • H01L24/11Manufacturing methods
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/63Connectors not provided for in any of the groups H01L24/10 - H01L24/50 and subgroups; Manufacturing methods related thereto
    • H01L24/64Manufacturing methods
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/11Manufacturing methods
    • H01L2224/111Manufacture and pre-treatment of the bump connector preform
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/11Manufacturing methods
    • H01L2224/118Post-treatment of the bump connector
    • H01L2224/1182Applying permanent coating, e.g. in-situ coating
    • H01L2224/11825Plating, e.g. electroplating, electroless plating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • H01L2224/1354Coating
    • H01L2224/13575Plural coating layers
    • H01L2224/1358Plural coating layers being stacked
    • H01L2224/13582Two-layer coating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • H01L2224/1354Coating
    • H01L2224/13599Material
    • H01L2224/136Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/13638Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/13639Silver [Ag] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/63Connectors not provided for in any of the groups H01L2224/10 - H01L2224/50 and subgroups; Manufacturing methods related thereto
    • H01L2224/64Manufacturing methods
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/63Connectors not provided for in any of the groups H01L2224/10 - H01L2224/50 and subgroups; Manufacturing methods related thereto
    • H01L2224/65Structure, shape, material or disposition of the connectors prior to the connecting process
    • H01L2224/66Structure, shape, material or disposition of the connectors prior to the connecting process of an individual connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01029Copper [Cu]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01047Silver [Ag]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/0105Tin [Sn]

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Electric Connection Of Electric Components To Printed Circuits (AREA)
  • Lead Frames For Integrated Circuits (AREA)
  • Electroplating Methods And Accessories (AREA)

Abstract

本發明的一方面提供一種金屬柱,通過切割金屬線的兩端形成一定長度,該切割面的毛刺長度為0.1微米至0.5微米,且呈柱狀;以及該金屬柱的外側至少在一個區域上具有包含Sn、Cu和Ag的焊錫層的連接柱。

Description

連接柱及其製造方法
本發明涉及連接柱,更具體地說,涉及一種包含金屬和焊料以實現電氣連接和物理連接的連接柱。
從來半導體裝配中使用的連接材料,隨著電極間距的減小,對新概念的連接材料開發提出了需求。作為柱狀的連接材料,正在研究使用金屬柱或具導電連接功能的金屬柱上鍍有焊錫層的導電連接柱以實現穩定的連接。
當使用金屬柱或連接柱時,即使間距很狹窄,也能安全使用而不會出現短路的風險,並且由於金屬柱或連接柱由導熱性較高的金屬製成,因此還具有將半導體產生的熱量排出到基板的散熱效應。
然而,至今對於傳統的金屬柱及其製造方法,以及鍍焊錫層的導電連接柱及其製造方法,連接柱的運輸方式,以及連接柱的連接方法等方面尚未進行具體研究,因此對於這些方面的開發工作非常迫切。 [先前技術文獻] [專利文獻] 專利文獻1:韓國公示第10-2007-0101157號。
[想要解決的問題]
本發明的一個方面是希望提供能夠最小化金屬線切割時產生的毛邊的金屬柱及其製造方法作為目標。
本發明的其他方面旨在提供具有優異的電氣傳導度和熱傳導度,在高長寬比下也具有優秀的連接可靠性的連接柱以及該連接柱的製造方法。
本發明的其他方面旨在提供能有效地輸送連接柱的連接柱輸送卡匣以及連接柱的附著方法。
本發明的其他方面旨在提供一種使用外部傳輸的連接柱在半導體封裝內穩定連接電極之間的電接觸方法。
本發明的其他方面旨在提供解決連接柱崩塌問題的雙錫層連接柱。 [解決問題的手段]
根據本發明的一方面是一種連接柱,包括:金屬線的兩端被切割成一定長度形成柱狀的金屬柱;以及
金屬柱外面至少的一個區域包含Sn,Cu和Ag的銲錫層。此時,該焊錫層宜包含1.5至4.0重量%的銀(Ag)、0.2至2.0重量%的銅(Cu),以及餘量的錫(Sn)。
此外,該焊錫層宜具有1至10μm的厚度。
此時,宜在該金屬柱與該焊錫層之間,加入更多的金屬原子擴散層,以促進該金屬柱和該焊錫層之間的金屬原子擴散。
此時,該金屬柱的切割面毛邊長度宜在0.1μm至0.5μm之間,其電氣傳導度宜在11至101%IACS之間,維氏硬度宜在150至300HV之間。
此時,該金屬柱的直徑宜在50至300μm之間,其高度宜在60至3,000μm之間。
此時,該金屬柱的長徑比(Length/Diameter)宜在1.1至15之間。
此時,該金屬柱宜具有500至1000℃的熔點。
此時,該焊錫層宜完全包覆該金屬柱的外部表面。此外,該焊錫層宜包圍該金屬柱的上部和下部。
根據本發明的另一方面,連接柱的製造方法包括以下步驟:
主要金屬熔液中加入添加元素熔化的熔融過程;
熔化過程後,通過軋製、壓製或拉伸將熔體製成股線或薄片的擠壓和成型過程;
將線狀或薄片拉拔成線材的拉拔過程;
將拉拔後的線材進行熱處理,溫度範圍為160至300度的熱處理過程;
將線材切割成一定長度,製成直徑為50至300μm,高度為60至3,000μm的金屬柱的切割過程;以及
通過該在金屬柱表面電鍍含Sn的金屬形成焊錫層形焊錫層形成過程。
此時,該切割過程後,包括去除金屬柱表面的有機物或污染物的脫脂過程和去除金屬柱表面氧化層的酸洗過程的預處理過程這可以做到。
此時,該預處理過程後,包括在金屬柱表面進行電鍍或無電鍍的擴散層形成過程這可以做到。此外,理想情況下,該擴散層的厚度應為1至5μm。此外,該金屬柱應具有11至101%IACS的電導率和150至300HV的維氏硬度。 [發明的效果]
根據本發明的一方面,金屬柱及其製造方法可以最小化在切割金屬線時的切口缺陷。
此外,根據本發明的另一方面,連接柱及其製造方法具有優異的電氣傳導度和熱傳導度,並且在高纖維比率下具有出色的連接可靠性。相較於傳統連接元件,焊錫層的體積減少,從而提高了連接柱的熱傳導能力,使其能夠將產生的熱量有效地散發到基板中,具有散熱效果。
此發明的其他方面涉及連接柱的傳輸卡匣和連接柱的附著方法,可以有效地傳送並安裝連接柱,以實現高效率。
此發明的其他方面涉及電氣連接方法,通過使用外部傳輸的連接柱,可以實現半導體封裝內電極的穩定連接效果。此發明的其他方面涉及具有雙層焊錫層的連接柱,提供穩定的連接可靠性。
以下所描述的本發明具有多種變形可能性,可以具備多種實施例,通過示意圖顯示特定的實施例,並對其進行詳細說明。然而,這並不意味著將本發明限制在特定的實施例上,應理解為包括在本發明技術範圍內的所有變形,等效物或替代物。
以下使用的術語僅用於描述特定的實施例,並不意味著限定本發明的範圍。除非在語境中明確指出不同的意思,單數表達包含了複數的含義。在下文中,“包括”或“具有”等術語是指在規範中所列出的特徵、數字、階段、操作、組件、部件、成分、材料或其組合的存在,並不預先排除其他特徵、數字、階段、操作、組件、部件、成分、材料或其組合的存在或可能性。
圖式中為了清楚地表示多個層次和區域,對厚度進行了放大或縮小的顯示。整份說明書中,對於相似的部分使用了相同的符號標記。
在整份說明書中,當談到層、膜、區域、板等部分存在於其他不同部分的“上方”或“之上”時,這不僅僅指存在於其他部分正上方的情況,還包括存在於中間還可能有其他部分的情況。在整份說明書中,“第一”、“第二”等術語可以用於描述各種組成要素,但是組成要素不應該受到這些術語的限制。這些術語僅用於區分一個組成要素與其他組成要素之間的目的。
雖然第一、第二等術語可以用於描述各種元素、成分、區域、層次和/或地區,但應理解這些元素、成分、區域、層次和/或地區不應受這些術語的限制。
此外,本發明所描述的方法不一定必須按照順序應用。例如,即使提及了第一步和第二步,並不意味著第一步必須在第二步之前執行,可以理解為不是必須按照順序執行。在本說明書中,金屬一詞除了指金屬元素外,通常還可以表示金屬合金等金屬類的總體含義。
<第一方面>
金屬柱的製造過程通常是先將金屬熔化,然後供應到連續鑄造設備中進行硬化,形成線狀。然後將這些金屬線狀進行成型(根據應用例子可能進行壓延、壓鑄、拉拔等),最終得到具有規定直徑的銅線。
通常,銅線需要具有盡可能高的電導率,因此需要提供盡可能純淨的銅熔液,以盡量排除可能的添加元素。減少銅熔體中添加元素含量的方法是在銅熔體中設置適當的氧氣含量,並使其中所含的添加元素凝固。由此形成的添加元素的氧化物可以去除,因為其中一些會以熔渣的形式浮到銅熔體的表面。
然而,由高純度的銅熔液製造的銅線材在材料純度提高的同時,會面臨一個問題,即由於晶粒的增大,當切割銅線時會產生毛刺。毛刺可以定義為在切割面上殘留一些未完全剪斷的銅,這是使用刀片等切割銅線時的一個不完整的整齊度問題。
這種毛刺問題會使得在將銅線材剪斷並用作連接柱用於半導體封裝時,難以正確安裝連接柱。因此,本發明的第一方面提供了金屬柱和金屬柱的製造方法。在本發明的實施例中,金屬柱是由金屬線剪斷製成的柱狀金屬柱,具有特定的直徑和高度。在本發明的實施例中,金屬柱是用於電氣連接基板與基板、基板與半導體晶片上的螺帽或電極的金屬柱,其連接用金屬柱的電氣傳導度需要具有高達11%至101%IACS的優異電導性。
為了具有上述所述的優異電導性,連接用金屬柱至少包含一種由Cu、Ag、Au、Pt和Pd等主要成分組成的金屬。此外,在本實施例中,連接用金屬柱作為連接材料時,其熱傳導度應為50至450W/mK,更理想的是320至450W/mK。這是因為連接材料需要具有向基板傳遞熱量的散熱效應。
此外,本實施例的金屬柱最好具有160至300HV的維氏硬度。這是因為如果超過上述範圍,就很難切割銷釘,會出現斷裂或彎曲的問題;如果低於上述範圍,切割表面就會出現毛刺。
此外,由於金屬柱是由金屬線剪斷而成,因此在切割面上不可避免地產生毛刺。在這種情況下,最理想的是毛刺的長度為0.1至0.5μm以下。
如果金屬柱的毛刺尺寸大於一定大小,將無法在應用於半導體封裝中需要使用的連接柱中實現焊錫層的鍍覆,並無法發揮作為連接柱的功能。因此,通過使用具有上述範圍內毛刺的金屬柱,可以製造具有優異鍍覆附著性、鍍覆厚度均勻性和最小傾斜度的金屬柱。
金屬柱的直徑範圍為50至300μm,理想值為100至200μm,而高度範圍為60至3,000μm,理想值為150至500μm,長寬比(長度/直徑)為1.1至15,理想值為1.5至5。
特別地,在本發明中,由於使用金屬線進行切割製造,因此能夠製造適用於尺寸緊湊且具有較高基板間距的多晶片封裝等的長寬比為3至5的金屬柱。
金屬柱的熔點最好為500至1,000℃。若超過該範圍,將增加製造成本;若低於該範圍,則可能在接合過程中出現熔化的問題。
金屬柱的抗拉強度理想值為170至950兆帕。若超過該範圍,可能會導致金屬材料的供應缺陷;若低於該範圍,則可能在金屬柱的製造過程中出現形狀變形的問題。
金屬柱的一種實施例是製造銅合金柱。銅合金柱是由以銅為主要成分的銅合金線材進行切割製造的柱狀結構,具有特定的直徑和高度,並且包含銅和至少一種添加元素。
純度99.9%以上的純銅柱具有非常高的電導率,其電導率為99至101%IACS。然而,僅使用純銅製造銅柱時,由於純銅具有較高的延展性,在切割過程中可能產生毛刺問題。為瞭解決這個問題,添加元素被引入。
換句話說,通過添加一定量的添加元素到銅中,在銅熔融時,可以使晶粒尺寸減小,從而改善材料的機械性能。因此,使用添加元素製造的銅合金線材具有更高的強度和硬度,使表面變得堅硬,可以最小化切割面的毛刺生成量。
添加元素主要選自Sn、Fe、Zn、Mn、Ni、P等組成的族群中,至少選擇其中一種是理想的,且含量在0.1wt%至20wt%之間是理想的,更理想的是在5wt%至10wt%之間。若低於該範圍,將產生過多的毛刺於切割面上若超過該範圍,則將導致電導率下降的問題。
更理想的是,添加元素以約0.05wt%至20wt%的Sn含量(更理想的是2wt%至10wt%)進行混合,並以1:1至100:1的Sn和Zn比例(更理想的是1:1至10:1)進行混合。Sn具有提高強度和硬度的效果,而Zn則具有增加耐蝕性和耐磨性的效果,因此當它們以該範圍的組合方式混合時,可以使毛刺的生成量最小化。此外,為了進一步提高耐蝕性和可靠性,添加元素還可以包括0.01wt%的Pd或0.01wt%至10wt%的Pt作為P的成分。
實施例的組成所製造的金屬柱的維氏硬度應該具有150以上的高硬度,最理想的情況是具有150到300HV的硬度,更理想的情況是具有160到220HV的硬度。為了實現該硬度,需要進行以下所述的熱處理是理想的。
以下是金屬柱的製造過程的說明。金屬柱的製造過程包括溶融過程、擠壓和成型過程、拉絲過程、熱處理過程和切割過程。
溶融過程是將金屬溶劑中添加特定組成的添加元素,進行熔化的過程。
擠壓和成型過程是熔化過程後,通過軋製、壓製或拉伸將熔體製成股線或薄片。
拉絲過程是將線狀或薄片拉伸成具有特定直徑的金屬線的過程。
熱處理過程是根據組成的不同進行熱處理,以確保強度。熱處理的適宜溫度範圍為160度至300度,通過熱處理可以實現符合要求的維氏硬度介於150至300HV之間的硬度。如果超過該硬度範圍,則可能變得過於堅硬,難以切割或容易斷裂;如果低於該硬度範圍,則可能產生較大的毛刺或增加毛刺的數量。
熱處理之後,通過浸泡在酸中進行酸處理。這是為了去除金屬柱表面由退火處理形成的氧化膜。
切割過程是將經過熱處理的金屬絲切割成指定長度的步驟。在此過程中,使用模切方法進行切割是理想的選擇。模切方法利用壓鑄製程,在壓鑄模具內插入金屬絲,並進行高速切割,從而製造金屬柱。採用上述提到的相同組成的金屬絲,在經過熱處理後具有150至300HV的維氏硬度,使用模切方法進行切割時可以最小化毛刺的產生,同時實現經濟高效的製造。
金屬柱作為連接材料連接晶片和基板,在外部可以覆蓋焊錫層進行使用。此外,可以在柱和基板的電極上塗佈焊膏等,使其成為一種自身俱備連接材料的選擇,而無需形成外部焊錫層。
<第二方面>
本發明的第二方面涉及連接柱及其製造方法。圖1顯示了連接柱的剖面圖。根據本發明,連接柱包括金屬柱和焊錫層。
其中,金屬柱採用了第一方面中所描述的金屬柱,其毛刺長度為0.1μm至0.5μm,電氣傳導度為11至101%IACS,維氏硬度為150至300HV,並且具有50至450W/mK,更好地具備320至450W/mK的熱導率。
關於金屬柱,已在第一方面中進行了詳細描述,為了保證發明的清晰性,將省略詳細說明。金屬柱應具有高熱和電氣傳導度,這是理想的。
焊錫層至少覆蓋在金屬柱的外部區域。焊錫層在熔化過程中形成,用於連接柱的頂部和底部基板或晶片之間的連接。
由於焊料層是鍍在金屬柱上的因此它應具有良好的電鍍性能。此外,由於連接柱與基板接觸面積較小,相比傳統焊球,連接柱在印刷電路板上進行的回流焊接過程中可能導致連接柱無法與電極或基板正常接觸,大量出現失配(Missing),嚴重影響工作效率。因此,連接柱需要提高焊接接頭的耐熱衝擊性能和加速沖擊性能,以滿足高度可靠性的要求。本發明的一實施例根據環境污染的限制,禁止使用鉛(Pb),因此焊錫層採用具有與鉛類似的物理特性的元素錫(Sn)作為基礎,具有良好的導電性、延展性、耐蝕性和優秀的主成分組成。
然而,為了滿足焊錫層所需的電鍍性能、抗落擊強度(Dropstrength)、熱循環特性(Thermalcycling,TC)和潤濕性(Wet-ability)等特性,相對於僅採用錫(Sn)形成焊錫層,更好的做法是與其他金屬進行合金化使用。
因此,本發明的焊錫層採用了Sn-Ag-Cu系合金,其中包含銀(Ag)和銅(Cu)與錫(Sn)合金化,以實現高導電性和熱導率。合金中含有銀(Ag)、銅(Cu)以及殘留的錫和一些不可避免的雜質,在回流焊之前能夠良好地附著在銅合金柱上,在回流焊之後能夠確保連接可靠性。
更具體地說,提供了含有1.5至4.0重量%銀(Ag)、0.2至2.0重量%銅(Cu)以及殘留的錫(Sn)和一些不可避免的雜質的焊錫合金,並且利用該合金製造的焊錫柱具有優秀的抗落擊強度、熱循環特性和潤濕性,且失配率低。
銲錫層的每個組成元素進行詳細檢視。銀(Ag)本身不具有毒性,可以增強合金的熔點,改善接合材料的濕潤性,降低電阻,提高熱循環(Thermalcycling,TC)特性和耐腐蝕性。
銲錫層中銀(Ag)的含量在1.5至4.0重量%之間是理想的。如果銀(Ag)含量低於1.5重量%,將難以確保銲錫層的電導率和熱導率,並且會降低濕潤性。如果銀(Ag)含量超過4.0重量%,將在銲錫合金和銲錫層內部形成稱為Ag 3Sn的大塊金屬間化合物(BulkyIMC,過度生長的BulkyIMC會影響銲錫的抗衝擊特性。理想的含量為2.2至3.2重量%,更理想的是3.0重量%。
銅(Cu)可以影響接合強度或拉伸強度,從而提高抗跌落衝擊特性。焊錫層中銅(Cu)的含量為0.2至2.0重量%,如果銅(Cu)含量低於0.2重量%,將很難按需提高焊錫層的接合強度或拉伸強度如果含量超過2.0重量%,將導致焊錫固化,容易造成組織破裂並降低加工性能。理想的含量為0.2至1.0重量%,更理想的是0.5重量%。可選地,可以添加鋅。如果焊錫層中含有0.1至0.7%的鋅(Zn),可以防止形成大塊金屬間化合物(BulkyIMC),從而提高接合性能。
焊錫層應以金屬柱直徑的1/300至1/3厚度形成為理想。如果超過1/3,將在接合時產生傾斜的問題;如果低於1/300,將導致焊錫不足,無法實現良好
焊錫層的熔點理想範圍為200至250℃。超過250℃會導致電子產品損壞,而低於200℃則可能在使用過程中引起重新熔化的問題。
焊錫層應至少在金屬柱的某個區域形成,其形狀不受限制。圖2顯示了根據不同的發明。
根據該圖,連接柱可以根據用途僅在某一方向上形成焊錫層,或者在上部和下部形成焊錫層,或者沿上部和下部的方向形成焊錫層。焊錫層的熱傳導性應為50至80W/mK,這是理想的範圍。然而,圖2中並未顯示擴散層,但根據後續描述,擴散層可以存在。此外,金屬柱與銲錫層之間的存在擴散層是理想的。擴散層是一種鍍層,用於防止金屬柱中的金屬合金原子與銲錫層中的錫或其他金屬原子擴散,以形成金屬間化合物。擴散層包括金屬柱中的金屬原子,在高溫下擴散形成一個區域的固溶體。理想的例子是使用理想的例子是使用如果金屬柱的主要金屬是銅,其中晶體結構相同或相似且原子大小差異較小的鎳是理想的選擇。例如,可以使用鎳(Ni),Ni-Ag,Ni-P,Ni-B,Co等材料。
連接柱的電導率和熱傳導率可以通過擴散層的鍍層來提高,理想的熱傳導率為50至100W/mK,這種情況下,Ni-Ag是一種理想的材料。連接柱的電導率和熱傳導率可以通過擴散層的鍍層來提高,理想的熱傳導率為50至100W/mK,這種情況下,Ni-Ag是一種理想的材料。
下面介紹一種根據本發明製造連接柱的方法。連接柱的製造方法包括溶融過程、擠壓和成型過程、拉絲過程、熱處理過程和切割過程和焊錫層形成過程。溶融過程是將金屬溶劑中添加特定組成的添加元素,進行熔化的過程。
擠壓和成型過程是熔化過程後,通過軋製、壓製或拉伸將熔體製成股線或薄片。
拉絲過程是將線狀或薄片拉伸成具有特定直徑的金屬線的過程。
熱處理過程是根據組成的不同進行熱處理,以確保強度。熱處理的適宜溫度範圍為160度至300度,通過熱處理可以實現符合要求的維氏硬度介於150至300HV之間的硬度。如果超過該硬度範圍,則可能變得過於堅硬,難以切割或容易斷裂;如果低於該硬度範圍,則可能產生較大的毛刺或增加毛刺的數量。
切割過程是將經過熱處理的金屬絲切割成指定長度的步驟。在此過程中,使用模切方法進行切割是理想的選擇。模切方法利用壓鑄製程,在壓鑄模具內插入金屬絲,並進行高速切割,從而製造金屬柱。採用上述提到的相同組成的金屬絲,在經過熱處理後具有150至300HV的維氏硬度,使用模切方法進行切割時可以最小化毛刺的產生,同時實現經濟高效的製造。
焊錫層形成過程是在金屬芯體表面沉積包含錫和其他金屬的鍍層的步驟。電鍍是將金屬芯體放入桶中,使其成為陽極,將欲鍍的金屬作為陽極放入桶中,然後通過將桶中的陰極連接到電源,以進行電鍍。在此過程中,溫度保持在20至30℃。電鍍的時間取決於大小而定,需要適當的時間進行。
焊錫層的材料可以是包含錫的合金,例如SnAg、SnAgCu、SnCu、SnZn、SnMg、SnAl等。理想情況下,可以使用Sn-Ag-Cu合金,其中銅(Cu)的含量為0.2至2.0重量%。
如果銅(Cu)含量低於0.2重量%,將很難提高焊錫層的接合強度或拉伸強度,而超過2.0重量%則會導致焊料硬化並容易造成組織損傷,還可能降低可加工性。最理想的銅含量是0.2至1.0重量%,更好的選擇是0.5重量%。銀(Ag)含量應在1.5至4.0重量%之間。如果銀(Ag)含量低於1.5重量%,將很難確保焊錫層具有足夠的電導率和熱導率,同時還可能降低潤濕性。而超過4.0重量%時,焊料合金和焊錫層內部會形成體積較大的Ag 3Sn互金屬化合物(BulkyIMC),這可能導致過度生長,進而影響焊料的抗衝擊特性。在鍍層製程中,使用甲磺酸鹽系列溶液是理想的選擇。
預處理過程包括去脂製程,用於去除金屬柱表面的有機物或污染物,以及酸洗過程,用於去除金屬柱表面的氧化層。如果金屬柱表面存在有機物、污染物或氧化層,會影響鍍層的順利形成,因此預處理過程是必要的。
擴散層形成過程是在預處理過程直接在金屬柱表面形成的非鍍層,可防止銅墊片和金屬柱表面的氧化以及由此產生的潤濕不良,通過促使Cu 6Sn 5金屬間化合物結合層轉變為(Cu,Ni) 6Sn 5金屬間化合物生成,從而提高接合強度,增加可靠性。形成在連接柱表面的擴散層的成分可以包括鎳(Ni)、Ni-Ag、Ni-P、Ni-B、鈷(Co)等,從熱傳導性考慮,Ni-Ag是理想選擇。擴散層通常可以通過廣為人知的電鍍方法形成。如果使用無電鍍方法形成擴散層,可能會涉及厚度和可靠性方面的問題。
焊錫層的厚度根據金屬柱的直徑而定,理想的厚度範圍是1至10μm,更理想的是1至7μm、1至5μm或1至3μm。如果焊錫層超出了上述範圍,可能會導致接合時傾斜、焊錫量過多形成橋接,以及導致熱傳導性變差的問題。如果焊錫層的厚度低於上述範圍,可能會導致焊錫不足,無法實現良好的接合。
擴散層的厚度最理想的範圍是0至5μm。也就是說,擴散層可以選擇性地包含在內,但包含擴散層是理想的。如果包含擴散層,則可以通過電鍍的方法形成1至5μm或1至3μm的厚度。擴散層的厚度應較焊錫層小。如果超出了上述範圍,可能會導致銅墊片、金屬柱和焊錫之間的接合層在熱源作用下(包括150°C周圍溫度)產生柯肯德爾空洞(Kirkendallvoids),從而導致初期裂紋的產生風險。此外,長時間的熱處理或熱循環/熱衝擊暴露可能導致銅的消耗。
使用無電鍍方法將擴散層形成厚度為0.1至1μm的層是可能的,但根據條件不同,可能會通過柯肯德爾空洞(Kirkendallvoids)的生成產生初期裂紋的風險,並且在長時間的熱處理或熱循環/熱衝擊暴露下可能會導致銅的消耗。
此外,金屬柱的熱導率最好為50至450W/mK,更優選為320至450W/mK,焊料層的熱導率最好為50至80W/mK,擴散層的熱導率最好為50至100W/mK。特別是,由於連接柱的傳熱橫截面積小而傳熱厚度大,因此最好將導熱系數低的焊料層的厚度保持得盡可能薄,以保持整個連接柱的高導熱系數。
<第三方面>連接柱傳輸支架
根據本發明,連接柱可以應用於半導體封裝的各種用途。圖3之(a)顯示了連接柱用於連接上基板和下基板的示例,圖3之(b)顯示了連接柱用於連接晶片和下基板的示例,圖3之(c)顯示了連接柱用於連接下基板和PCB的示例,圖3之(d)顯示了連接柱用於連接大面積服務器多晶片封裝中的上基板和下基板的示例,圖3之(e)顯示了連接柱用於連接移動設備多晶片封裝中的上基板和下基板的示例。
換句話說,根據本發明,連接柱不僅可以作為電連接材料來取代傳統的焊球或焊盤,而且還可以在大面積服務器多晶片封裝或移動設備多晶片封裝等情況下,由於第一基板和第二基板之間的距離過大無法使用焊球進行連接,因此採用高縱橫比的連接柱進行連接。
根據本發明,各種用途的連接柱不是在印製板上層疊形成,而是在外部製造後進行傳輸。因此,製造的柱狀引腳需要在封裝過程中準確地傳輸並安裝到指定位置。
為此,本發明的第三方面提供了連接柱傳輸支架。圖4顯示了連接柱-傳輸支架的剖面圖。根據圖示,連接柱傳輸支架包括連接柱、傳輸基板、黏合基材。
連接柱根據本發明的第二方面,是帶有焊錫層的金屬柱的柱狀形狀。連接柱被插入傳輸基板上形成的貫穿孔中並進行對齊。特別是本發明的連接柱適宜使用具有3至10的高寬比。
傳輸基板是一種基板,具有排列整齊的通孔,這些通孔用於將引腳定位在封裝上需要定位的位置,傳輸基板具有預定的厚度,以便將引腳插入通孔並保持整齊。例如,傳輸基板的厚度最好至少為連接銷長度的1/2,以便可靠地插入連接銷。
傳輸基板應選擇具有低熱變形的材料,以減少連接柱在回焊過程中受熱而產生的變形。例如,可以使用鋁、不銹鋼、碳化矽、鈦和鎢等材料。
黏合基材為與連接柱的一端接合的層,應選擇不會在連接柱的回焊過程中燃燒的耐高溫材料。該接合片位於連接柱插入的反方向位置,一旦連接柱插入,它將被接著層或黏著層固定。接合片可以使用聚醯亞胺樹脂或聚酯類樹脂薄膜等材料。
接著層的材料沒有限制,只要能夠黏合連接柱。例如,可以使用塑膠接著劑、液體環氧樹脂或EMC(Epoxymoldingcompound)。
如果使用黏著層,則可以僅更換黏著層以進行重複使用,因此從環保生產的角度來看,黏著層更為理想。黏著層的材料可以是具有耐高溫特性的丙烯酸類黏著劑組成物或矽樹脂類黏著劑組成物。這是因為需要確保連接柱在回焊過程中具有耐高溫性能。
在這種情況下,為了增加黏著面積,建議使用軟性材料製成黏著層。換句話說,為了防止細長形狀的連接柱僅僅在末端接觸而導致黏著面積不足從而鬆動脫落,連接柱應該穿入軟性黏著層中以擴大黏著面積。
黏著層可以包括兩層,即接合片側的第一黏著層和該第一黏著層上的第二黏著層。第一黏著層可以是較硬的黏著層,而第二黏著層可以是較軟的黏著層,第二黏著層可以由前述的丙烯酸類黏著劑或矽類黏著劑中含有環氧化合物的組成製造而成。
此外,黏著層的黏著力減弱的傳輸支架可以從傳輸基板上取下黏合基材,並將新的黏合基材附著到傳輸基板上以便重新使用。
圖5是使用柱傳輸支架將柱傳輸並連接到基板之間的工序圖。根據圖中所示,連接的工序包括連接柱插入階段、傳輸階段和連接階段。
插入階段是將連接柱插入柱傳輸支架的穿透孔中的階段。通過這樣的方式,連接柱就被固定在配備有接著層或黏著層的接合片上的柱傳輸支架中。插入可以採用多種方式進行,並且可以使用專用治具。插入的連接柱通過背面的接著層或黏著層黏著以確保即使翻轉也不會脫落,並形成連接柱傳輸支架以供儲存和傳輸。
傳輸階段是將連接柱傳輸支架翻轉,使連接柱能夠按照指定位置對齊,將其傳輸到需要連接的基板電極或焊盤上的過程。連接柱傳輸支架使每個連接柱與底部基板上相應的暴露電極或焊盤相連接。
連接階段是進行回流焊製程,使連接柱的焊錫層熔化,以實現其與基板上的電極或焊盤的連接過程。在此過程中,傳輸基板黏合基材應使用耐高溫的材料,以確保在回流焊後也能輕鬆移除而不損壞。
黏合基材去除階段是移除黏合基材的過程。在此階段中,由於黏合基材的黏著力比焊料與焊盤之間的結合力弱,因此可以將其移除。
根據本方案,使用連接柱傳輸支架可以從外部傳輸連接柱以連接板與板之間或板與半導體晶片之間,因此無需腐蝕或其他濕法製程,簡化了製程流程。
<第四方面>
本發明的第四方面提供了一種利用連接柱進行電連接的方法。連接柱具有金屬柱和附著在金屬柱外表面的焊錫層。這樣的連接柱經過所述的步驟,首先切割金屬線,然後鍍上焊錫層來形成。
製造好的連接柱首先與第一基板的電極或焊盤結合,然後與第二基板的電極或焊盤結合,實現電連接或者連接柱的一端與第一基板的電極或焊盤結合,另一端與半導體晶片結合,實現電連接。在這種情況下,結合是通過焊膏、助焊劑以及附著在連接柱外表面和/或底部的焊錫層在熔化的過程中實現的。
用於連接柱的焊膏可用於半導體封裝中,特別是將金屬柱的兩端連接到半導體封裝中的電極或基板上,或在金屬柱的外表面形成焊料層。
助焊劑通過與焊接過程中焊料和元件接觸的空氣中的氧氣發生反應來防止氧化,因此當焊料粉末熔化時,助焊劑也隨之熔化,從而在焊料和元件之間形成清潔可靠的電氣連接。助焊劑還能清潔元件表面,去除雜質、油和其他外部污染物,並改善焊料的"潤濕性",使焊料附著在元件表面。
通常情況下,連接柱通過熔化金屬柱外表面的第一基板側焊錫層,將一端固定在第一基板上,然後通過熔化第二基板側焊錫層,將另一端固定在第二基板上,從而實現第一基板和第二基板之間的電連接。
然而,由於熔化引起的連接柱的焊錫層不以固定形狀熔化,而是以隨機形狀熔化,因此存在連接柱高度不一致的問題。此外,當施加熱量以將連接柱的另一端固定在第二基板上時,可能會導致熔化一端和第一基板之間的連接,從而導致連接柱傾斜或倒塌。
因此,本方面提供了一種穩定連接第一基板和第二基板,或基板和半導體晶片的方法,使用連接柱實現。
圖6是表示連接方法的工序圖。在圖6中,為了描述方便,連接柱被誇大地傾斜。據此,連接製程是電連接第一基板的電極或焊盤和第二基板的電極或焊盤的電連接方法。電連接方法包括以下步驟。第一端部連接步驟,將具有焊料層的連接引腳的一端連接至含銅的銅合金引腳或金屬柱的外表面的至少一個區域至第一基板的電極或焊盤,並將其豎立;
樹脂塗敷步驟,通過在第一基板上塗敷聚合物樹脂至連接引腳的另一端在附接的連接引腳周圍露出的高度而形成樹脂膜;以及
第二端接連接步驟,將第一板翻轉,熔化連接腳另一端的焊錫層,貼附於第二板。
首先,第一端部連接步驟是將連接柱的焊錫層熔化並附著到第一塊基板上。在此過程中,連接柱可以在外側整體、或者頂面和底面配備焊錫層。理想情況下,可以使用所述支架來將連接柱運輸到第一基板上。與此同時,焊錫層熔化並附著到第一塊基板上的焊盤或電極上,
另一方面,即使只使用金屬柱或連接柱,也可以先將助焊劑、焊粉或焊膏塗抹到第一基板的焊盤或電極上並進行連接。用於此目的的助焊劑、焊錫粉末或焊錫膏可以根據用途使用各種不同的組合或物質,並不限於特定的組合。
樹脂塗布階段是在第一塊基板上塗覆樹脂組成物以固化連接柱周圍。這樣,連接柱就固定住,無法移動,從而可以防止連接柱墜落的問題。
在這種情況下,重要的是樹脂組成物形成的層比引腳的高度低,以使連接柱的端部暴露出來。暴露的連接柱端部的高度最好在引腳高度的範圍內,介於3μm至100μm之間。在這種情況下,可以使用環氧樹脂類型、矽樹脂類型的樹脂組成物。暴露的連接柱端部外部上形成的焊錫層可以融化並連接到第二塊基板上,並且連接柱的端部暴露使位置確認變得容易。此外,由於連接柱被樹脂層固定在第一塊基板上,即使端部傾斜,也不會對連接造成問題。
之後,第二端連接步驟是熔化連接柱另一端的焊料層並將其貼附至第二基板的步驟。在連接柱被樹脂層包裹的狀態下,將第一基板翻轉並貼附到第二基板。此時,在電極或焊盤上提供塗有焊膏或助焊劑的第二基板,即使出現稍微突出連接引腳的高度,焊料層和焊盤或電極上提供的助焊劑和焊粉第二基板,由於焊膏等原因,連接沒有問題。因此,可以使用設置有焊料層的連接引腳來連接第一基板和第二基板。
在這種情況下,連接柱的一端連接到第一塊基板的電極或焊盤,連接柱的另一端連接到第二塊基板的電極或焊盤。在此過程中,連接柱的一端和另一端所配備的焊錫層的焊錫組成可以相同也可以不同,但最好使用圖2的(a)、(b)、(f)等進行選擇,根據情況也可以使用本發明的第一方面的各種金屬柱或本發明的第二方面的各種連接柱或者本發明的第五方面的雙層連接柱。
特別是在本實施例中,連接柱的另一端,即連接到第二塊基板的連接柱的末端,最好配備焊錫層,這是為了使連接柱的另一端的末端暴露在樹脂層上方,以便為連接到第二塊基板所需的焊錫提供供應。
此外,在連接到第一塊基板的連接柱的一端,最好具有第一熔點的焊錫層,並且連接到第二塊基板的連接柱的另一端具有第二熔點的焊錫層,這是為了使連接柱的正面具有由第一熔點的焊錫組成的第一焊錫層,而底面的第二焊錫層由高於第一熔點的第二熔點的焊錫組成。在這種情況下,第二熔點與第一熔點的熔點差應滿足5℃至25℃的要求。如果溫差小於5℃,則第二焊錫可能在第一焊錫熔化時同時熔化;如果溫差大於25℃,可能存在未熔化的問題。
第一個熔點宜在210至220℃之間,第二個熔點宜在225至235℃之間。
<第五方面>雙焊層
在第三方面中,柱的焊料層不是通過熔化而熔化成恆定形狀,而是呈隨機形狀,因此存在連接引腳的高度彼此不同的問題。已經表明,當施加熱量以將連接柱的另一端附接到第二基板時,一端和第一基板熔化並且連接柱塌陷。
為此,可以如第四方面那樣使用樹脂層,但是作為另一種替代方案,本發明的第五方面提供了一種具有雙層焊料層的連接引腳。圖7表示連接用焊料層的截面。據此,焊錫層由內部的第一焊錫層和外部的第二焊錫層構成。其中,第一焊錫層由第一熔點的焊錫組成,第二焊錫層由第二熔點的焊錫組成。此時,第一熔點(T1)和第二熔點(T2)滿足5℃<T2-T1<25℃是可取的。當溫差小於5℃時,第一焊錫熔化時第二焊錫也會同時熔化,而溫差大於25℃時,可能存在未熔化的問題。
第一焊錫層最好使用Sn-Ag-Cu合金,以確保在回流焊前能夠良好地附著在金屬柱上,並在回流焊後保證連接的可靠性。該焊錫層可以包含銀(Ag)、銅(Cu)、殘餘的錫和其他不可避免的雜質。第一焊錫層的第一熔點最好在210℃至220℃之間。
更具體地說,提供了由1.2至4.0重量%的銀(Ag)、0.2至1.0重量%的銅(Cu)、殘餘的錫(Sn)和其他不可避免的雜質組成的焊錫合金。
第二焊錫層宜使用Sn,但可包含任意不可避免的雜質。第二焊錫層的第二熔點宜在225℃至235℃之間。更具體地說,提供一種含有100重量%Sn和任意不可避免雜質的焊錫合金。此時,第一焊錫層的厚度(t1)和第二焊錫層的厚度(t2)之間的比值應滿足0.1<t2/t1<0.5。如果比值小於0.1,則第二焊錫層的熔化量太少,無法穩定地附著在基板上;如果超過0.5,則第二焊錫層的熔化量過多,可能導致連接柱傾斜。
這樣製造的連接柱在應用於基板時能夠提供優異的抗跌落強度、熱循環特性和濡濕性,同時具有較低的缺失率。此外,通過在內部形成具有第一熔點的第一焊錫層,並在外部形成具有第二熔點的第二焊錫層,當連接柱與第一基板連接時,可以施加比T1溫度高而低於T2溫度的溫度,從而只溶融第一焊錫層內的焊錫而無需溶融第二焊錫層。因此,這樣製造的連接柱可以在內部的第一焊錫層溶融時穩固地放置在第一基板上,這種連接是臨時的,因為第一焊錫層的數量較少;而外部的第二焊錫層尚未溶融,所以即使連接柱傾斜,也只會輕微傾斜。
為了連接第一基板上的連接柱與第二基板的電極或焊盤,或者半導體晶片的電極或焊盤,需要再次升高溫度超過T2溫度,使第二焊錫層熔化,從而完全連接第一基板上的電極和連接柱,並實現第二基板和連接柱的連接。因此,通過為連接柱配備不同的焊錫層,無需使用像第四方案中描述的組成物的過程,就能夠將連接柱穩定地連接到第一基板和第二基板上。
<實施例>
<實施例1>:銅合金柱製造
我們準備了含有5.0%Sn的銅合金溶融液,通過將這些銅合金線通過模具拉伸,使其在頂面和底面的直徑達到110μm,然後在長度(高度L)達到490μm的位置剪斷,以製作所需的銅合金柱。剪斷過程使用了模切方法。
然後,我們對這些銅合金柱進行退火處理,退火條件是將其從室溫加熱至200℃,保持加熱時間為20分鐘,然後在200℃下保持180分鐘,最後再將其從200℃冷卻至室溫,冷卻時間為20分鐘。內部冷卻過程使用了內部冷卻風扇進行。
<實施例2至實施例5>
按照實施例1的方法製造銅合金柱,但合金成分的添加元素含量和退火溫度請參見表1。 [表1]
添加元素和含量(%) 退火溫度℃
實施例1 Sn2.0% 200
實施例2 Sn5.0% 200
實施例3 Sn7.0%Zn0.7% 200
實施例4 Sn8.0% 200
實施例5 Sn10.0% 200
<比較例1至3>以與實施例1相同的方法製造銅合金柱,但合金成分的添加元素和含量以及退火溫度已整理在下表2中。 [表2]
添加元素和含量(%) 退火溫度℃
比較例1 無Sn 320
比較例2 Sn0.05% 350
比較例3 Sn25% 380
<實施例6至10>:焊錫層形成
使用實施例1製造的銅合金柱,在整個表面上塗覆了由Sn-Ag-Cu組成的焊錫層。首先,對銅合金柱進行清洗,然後將銅合金柱放入桶中,在陽極上懸掛鎳(Ni),並在鍍液中添加硫代硫酸鎳(Ni)鍍液和添加劑,然後在銅合金柱上懸掛陰極進行電鍍。此時,溫度保持在55~65°C之間。以電流密度0.1A/dm進行2小時的電鍍處理,形成約2.1μm厚度的擴散層。
接下來,將形成了擴散層的銅合金柱放入桶中,在陽極上懸掛Sn-Ag,並在鍍液中添加MS-Cu鍍液和添加劑,然後在銅合金柱上懸掛陰極進行電鍍。此時,溫度保持在20~30°C之間。以電流密度1A/dm進行3小時的電鍍處理,形成約4μm厚度的第一層焊錫層,從而製造出連接柱。其中,第一層焊錫層通過調節Ag和Cu的濃度來形成,並將其組成整理如表3所示。 [表3]
組成(composition)
實施例6 Sn1.5Ag0.2Cu
實施例7 Sn2.0Ag0.2Cu0.3Zn
實施例8 Sn3.0Ag0.2Cu
實施例9 Sn1.5Ag0.8Cu
實施例10 Sn3.0Ag0.8Cu
通過實施例1,將由Sn-Ag-Cu組成的焊錫層覆蓋在整個銅合金柱表面上。首先對銅合金柱進行酸洗處理,然後將銅合金柱放入桶中,在陽極上懸掛Sn-Ag,並在鍍液中添加MS-Cu鍍液和添加劑,然後在銅合金柱上懸掛陰極進行電鍍。此時,溫度保持在20~30℃之間。以電流密度1A/dm進行3小時的電鍍處理,形成約6μm厚度的第一層焊錫層,從而製造出連接柱。其中,第一層焊錫層的組成按照表4的要求形成。
實施例6-1至10-1的實施例是製造不形成擴散層的連接柱。 [表4]
組成(composition)
實施例6-1 Sn1.5Ag0.2Cu
實施例7-1 Sn2.0Ag0.2Cu0.3Zn
實施例8-1 Sn3.0Ag0.2Cu
實施例9-1 Sn1.5Ag0.8Cu
實施例10-1 Sn3.0Ag0.8Cu
<比較例4至5>
實施例1所製造的銅合金柱表面全覆蓋以Sn-Bi形成的焊錫層。鍍液使用的是甲磺酸甲酯類的溶液,焊錫層通過電鍍金的方法,通過調節Ag和Bi的濃度來形成,組成情況整理如表5所示。 [表5]
組成(composition)
比較例4 Sn3.0Bi
比較例5 Sn3.0Bi1.0Ag
<實施例11至實施例15>:二重焊錫層形成
實施例6至10的銅合金柱在第一焊錫層的表面上形成了由Sn組成的第二焊錫層。將形成第一焊錫層的銅合金柱放入桶中,陽極上懸掛Sn-Ag,將陰極連接到銅合金柱上,進行電鍍。此時溫度保持在20~30℃。使用電鍍的方法,在1A/dm的電流密度下進行3小時的鍍金,形成約5μm厚的第二焊錫層,從而製造銅合金柱。使用的鍍液是基於甲磺酸甲酯的溶液,第一焊錫層通過調節Ag和Cu的濃度進行電鍍形成,而第二焊錫層則是通過電鍍的方法形成Sn鍍層。組成情況整理如表6所示。 [表6]
第一焊錫層組成(composition) 第二焊錫層組成(composition)
實施例11 Sn1.5Ag0.2Cu 100Sn
實施例12 Sn2.0Ag0.2Cu 100Sn
實施例13 Sn3.0Ag0.2Cu 100Sn
實施例14 Sn1.5Ag0.8Cu 100Sn
實施例15 Sn3.0Ag0.8Cu 100Sn
<實驗例>
<實驗例1>:測量銅合金柱的毛刺生成與否
圖8顯示了根據實施例和比較例拍攝的金屬柱毛刺生成的電子顯微鏡照片。根據照片顯示,當Sn的含量在0.1wt%至20wt%之間,並且退火溫度介於160至300之間時,實施例1到實施例5中切割金屬柱時不會生成毛刺,然而比較例則可以觀察到生成的毛刺較大且較多。
<實驗例2>:銅合金柱的維氏硬度和電導率(受到組成和熱處理溫度的影響)
實施例1到5和比較例1到3的維氏硬度和電導率實驗結果總結在表7中。 [表7]
維氏硬度(HV) 電氣傳導度
實施例1 302 15
實施例2 288 13
實施例3 261 12
實施例4 246 9
實施例5 218 8
比較例1 369 101
比較例2 352 86
比較例3 190 28
<實驗例3>:關於連接柱的剪切強度測試
本發明的實施例6至10所製造的連接柱與基板連接後進行了剪切強度測試,結果整理如表8所示。印刷電路板採用經OSP處理的銅表面處理,基板的銅表面尺寸為φ220μm。連接方法是在基板上列印flux或焊錫膏,然後使用回流爐在峰值溫度250℃下保持50秒進行連接。 [表8]
剪切強度(gf)
實施例6 171
實施例7 178
實施例8 189
實施例9 180
實施例10 192
實施例6-1 166
實施例7-1 168
實施例8-1 170
實施例9-1 169
實施例10-1 172
實施例11 158
實施例12 159
實施例13 180
實施例14 162
實施例15 179
<實驗例4>:跌落衝擊試驗
為了測試試樣的墜落衝擊強度,按照JESD22-B111規範進行了測試。具體而言,對連接柱黏結在經過銅表面處理的印刷電路板上進行了重力加速度1500G、0.5毫秒的衝擊,並通過焊錫的5%破壞次數和63.2%破壞次數來測量墜落衝擊強度。試樣的破壞被認為是當初始電阻增加超過10%時發生的,而在連續進行的5次墜落評估中,當3次墜落衝擊阻力值增加超過初始電阻的10%時被視為破壞。測試結果整理如表9所示。 [表9]
5%破壞的次數 (墜落次數) 63.2%破壞的次數 (墜落次數)
實施例6 18.669 108.657
實施例7 22.002 121.312
實施例8 26.038 152.897
實施例9 17.778 112.984
實施例10 24.284 154.687
實施例6-1 17.862 105.823
實施例7-1 20.107 116.811
實施例8-1 23.915 142.987
實施例9-1 17.184 108.198
實施例10-1 20.224 148.911
實施例11 19.081 119.156
實施例12 22.111 158.248
實施例13 26.088 161.194
實施例14 18.902 128.261
實施例15 26.126 169.445
<實驗例5>:熱循環測試
進行了符合JEDS22-A104-B標準的熱循環測試,測試條件為-40℃至125℃。在125℃下保持10分鐘,然後轉換到-40℃並保持10分鐘,這構成一個循環。測試結果顯示,發生5%故障的循環次數和發生63.2%故障的循環次數。故障判斷基準是每完成100個循環時測量電阻,如果發生斷路,則排除該試片。
表10顯示了連接柱的熱循環測試結果。表10顯示了引腳的熱循環測試結果。可以看出,含鎳和鈀的熱循環壽命至少是不含鎳和鈀的兩倍。可以看出,當實施例5中的鎳和鈀含量分別為0.05wt%和0.03wt%時,熱循環次數最多。 [表10]
熱循環5%破壞的次數 (循環次數) 熱循環5%破壞的次數 (循環次數)
實施例6 480.121 809.781
實施例7 395.189 682.144
實施例8 334.891 759.872
實施例9 462.529 801.871
實施例10 316.818 598.745
實施例6-1 468.524 800.591
實施例7-1 390.791 671.833
實施例8-1 330.291 748.159
實施例9-1 454.767 793.953
實施例10-1 310.890 589.898
實施例11 423.841 761.418
實施例12 384.619 700.847
實施例13 349.726 658.418
實施例14 422.168 711.691
實施例15 327.189 621.482
<實驗例6>:根據金屬填料成分切割的表面電子顯微照片。
以與實施例1相同的方式製備銅合金銷釘,但製備了與表1相對應的多種合金成分的實施例和比較例,並測量了抗拉強度,拍攝了電子顯微照片,如圖9所示。相應地,可以看出實施例的毛刺和缺陷明顯減少。 [表11]
Cu Pb Fe Sn Zn P 直徑 拉伸強度
實施例16 殘留 0.02或以下 0.10或以下 5.5~7.0 0.20或以下 0.03~0.35 0.40~5.0 835或以上
比較例6 殘留 0.02或以下 0.10或以下 Sn3.0~5.5% 0.20或以下 0.03~0.35 0.40~5.0 862或以上
比較例7 殘留 0.02或以下 0.10或以下 Sn7.0~9.0% 0.20或以下 0.03~0.35 0.40~5.0 930或以上
儘管該描述中提供了許多具體細節,但它們應被解釋為實施示例,而不是限定發明的範圍。因此,本發明的範圍應由所記載的技術特徵依據專利申請範圍來確定,而不是由所述實施例來確定。
圖1是連接柱的剖面圖。
圖2是根據本發明的不同實施方式所呈現的連接柱的不同形狀的模式圖。
圖3之(a)顯示了用於上部基板和下部基板的連接柱的例子,圖3之(b)顯示了用於晶片和下部基板的連接柱的例子,圖3之(c)顯示了用於下部基板和PCB的連接柱的例子,圖3之(d)顯示了用於大面積伺服器向多晶片封裝中連接上部基板和下部基板的連接柱,圖3之(e)顯示了用於移動向多晶片封裝中連接上部基板和下部基板的連接柱。
圖4是連接柱傳輸卡匣的剖面圖。
圖5是使用連接柱傳輸卡匣將連接柱運輸並連接到基板與基板之間的工序圖。
圖6是顯示使用連接柱在第一塊基板和第二塊基板之間進行連接的工序圖。
圖7是具有雙錫層的連接用焊錫層的剖面圖。
圖8是根據實施例和比較例所拍攝的金屬柱上的毛刺生成的電子顯微鏡照片。
圖9是由不同合金成分製成的金屬柱的電子顯微照片。

Claims (15)

  1. 一種連接柱,其包括: 金屬線的兩端被切割成一定長度形成柱狀的金屬柱;以及 所述金屬柱外面至少的一個區域包含Sn、Cu和Ag的焊錫層。
  2. 如請求項1所述之連接柱,其中所述焊錫層包含1.5至4.0重量%的銀(Ag)、0.2至2.0重量%的銅(Cu)、以及剩餘的錫(Sn)。
  3. 如請求項2所述之連接柱,其中所述焊錫層的厚度範圍為1至10μm。
  4. 如請求項3所述之連接柱,其中所述金屬柱和所述焊錫層之間還包含有所述金屬柱和所述焊錫層中各金屬原子能夠擴散的擴散層。
  5. 如請求項4所述之連接柱,其中所述金屬柱的電導率在11至101%IACS之間,所述金屬柱的維氏硬度在150至300HV之間。
  6. 如請求項5所述之連接柱,其中所述金屬柱的直徑範圍為50至300μm,所述金屬柱的高度範圍為60至3,000μm。
  7. 如請求項6所述之連接柱,其中所述金屬柱的長徑比(長度/直徑)範圍為1.1至15。
  8. 如請求項7所述之連接柱,其中所述金屬柱的熔點範圍為500至1000℃。
  9. 如請求項8所述之連接柱,其中所述焊錫層包圍著所述金屬柱的整個外表面。
  10. 如請求項9所述之連接柱,其中所述焊錫層包圍著所述金屬柱的上部和下部。
  11. 一種連接柱的製造方法,其包括以下步驟: 步驟1,熔融:主要金屬熔液中加入添加元素熔化; 步驟2,擠壓和成型:所述熔融過程後,通過軋製、壓製或拉伸將熔體製成線狀或薄片; 步驟3,拉拔:將所述線狀或所述薄片拉拔成線材; 步驟4,熱處理:將拉拔後的所述線材進行熱處理,溫度範圍為160至300度; 步驟5,切割:將所述線材切割成一定長度,製成直徑為50至300μm,高度為60至3,000μm的金屬柱;以及 步驟6,焊錫層形成:通過在所述金屬柱表面電鍍含Sn的金屬形成焊錫層。
  12. 如請求項11所述之連接柱的製造方法,其中所述切割後,包括去除所述金屬柱表面的有機物或污染物的脫脂過程和去除所述金屬柱表面氧化層的酸洗過程的預處理過程。
  13. 如請求項12所述之連接柱的製造方法,所述預處理過程包括在所述金屬柱表面進行電鍍或無電鍍的擴散層形成過程。
  14. 如請求項13所述之連接柱的製造方法,其中所述擴散層的厚度為2至5μm。
  15. 如請求項14所述之連接柱的製造方法,其中所述金屬柱的電導率為11至101%IACS,所述金屬柱的維氏硬度為150至300HV。
TW112133066A 2022-09-06 2023-08-31 連接柱及其製造方法 TW202418482A (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020220112710A KR102579479B1 (ko) 2022-09-06 2022-09-06 접속핀
KR10-2022-0112710 2022-09-06

Publications (1)

Publication Number Publication Date
TW202418482A true TW202418482A (zh) 2024-05-01

Family

ID=88189145

Family Applications (1)

Application Number Title Priority Date Filing Date
TW112133066A TW202418482A (zh) 2022-09-06 2023-08-31 連接柱及其製造方法

Country Status (4)

Country Link
US (1) US20240096832A1 (zh)
KR (2) KR102579479B1 (zh)
CN (1) CN117673010A (zh)
TW (1) TW202418482A (zh)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007281369A (ja) 2006-04-11 2007-10-25 Shinko Electric Ind Co Ltd 半田接続部の形成方法、配線基板の製造方法、および半導体装置の製造方法
KR101704839B1 (ko) * 2009-06-24 2017-02-08 신닛테츠스미킹 마테리알즈 가부시키가이샤 반도체용 구리 합금 본딩 와이어
JP5733486B1 (ja) * 2014-09-09 2015-06-10 千住金属工業株式会社 Cuカラム、Cu核カラム、はんだ継手およびシリコン貫通電極

Also Published As

Publication number Publication date
US20240096832A1 (en) 2024-03-21
CN117673010A (zh) 2024-03-08
KR20240034096A (ko) 2024-03-13
KR102579479B1 (ko) 2023-09-21

Similar Documents

Publication Publication Date Title
US7964492B2 (en) Semiconductor device and automotive AC generator
WO2010047139A1 (ja) はんだ合金および半導体装置
US20060113683A1 (en) Doped alloys for electrical interconnects, methods of production and uses thereof
JP2007075856A (ja) Cuコアボール
EP3385027A1 (en) Lead-free, silver-free solder alloys
US8887980B2 (en) Method of soldering portions plated by electroless Ni plating
WO2012002173A1 (ja) Bi-Sn系高温はんだ合金
JP2000197988A (ja) 無鉛はんだ合金
JP2007081141A (ja) Cuコアボールとその製造方法
JP2008098212A (ja) 電子装置およびその製造方法
JP2011044624A (ja) 半導体装置および車載用交流発電機
JP3796181B2 (ja) 無鉛ハンダ合金、ハンダボール及びハンダバンプを有する電子部材
US20240109157A1 (en) Solder joint
JP2005503926A (ja) 高温無鉛はんだに適した改良された組成物、方法およびデバイス
JP5231727B2 (ja) 接合方法
JP2001246493A (ja) ハンダ材及びこれを用いたデバイス又は装置並びにその製造方法
JP2005052869A (ja) 高温はんだ付用ろう材とそれを用いた半導体装置
TW202418482A (zh) 連接柱及其製造方法
TW202414632A (zh) 導電連接的金屬柱及其製造方法
TWI795778B (zh) 無鉛焊料合金、焊料球、焊膏及半導體裝置
JP6887183B1 (ja) はんだ合金および成形はんだ
JP3988710B2 (ja) 金属電極を用いた接合方法
KR20240033889A (ko) 접속핀
KR20240033887A (ko) 접속핀의 접속방법
KR20240033886A (ko) 접속핀 이송카트리지