TW202415970A - 檢測系統以及發光二極體的檢測方法 - Google Patents

檢測系統以及發光二極體的檢測方法 Download PDF

Info

Publication number
TW202415970A
TW202415970A TW112122112A TW112122112A TW202415970A TW 202415970 A TW202415970 A TW 202415970A TW 112122112 A TW112122112 A TW 112122112A TW 112122112 A TW112122112 A TW 112122112A TW 202415970 A TW202415970 A TW 202415970A
Authority
TW
Taiwan
Prior art keywords
voltage
light
emitting diodes
detection system
sensing
Prior art date
Application number
TW112122112A
Other languages
English (en)
Inventor
林雁容
郭仲倫
葉佳良
Original Assignee
財團法人工業技術研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 財團法人工業技術研究院 filed Critical 財團法人工業技術研究院
Publication of TW202415970A publication Critical patent/TW202415970A/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/26Testing of individual semiconductor devices
    • G01R31/2607Circuits therefor
    • G01R31/2632Circuits therefor for testing diodes
    • G01R31/2635Testing light-emitting diodes, laser diodes or photodiodes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/44Testing lamps

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Testing Of Optical Devices Or Fibers (AREA)
  • Led Devices (AREA)

Abstract

一種檢測系統,用以檢測多個發光二極體,包括激發光源、電壓感應膜、照明光源以及影像擷取裝置。激發光源用以朝多個發光二極體提供激發光束而使多個發光二極體產生多個開路電壓。電壓感應膜位於多個發光二極體的頂側,包括電壓感應介質層以及第一電極層。第一電極層配置於電壓感應介質層內,提供多個開路電壓之增益效果,使得電壓介質層感測多個開路電壓,且電壓感應介質層的顯示隨著開路電壓之部分或全部而變化。照明光源提供照明光束至電壓感應膜以依據顯示變化產生感測影像。影像擷取裝置配置於感測影像的傳遞路徑上,用以接收感測影像以產生檢測結果。

Description

檢測系統以及發光二極體的檢測方法
本發明是有關於一種檢測系統以及發光二極體的檢測方法。
隨著發光二極體顯示技術的發展,發光二極體晶粒(die)的尺寸逐漸縮小至數微米(μm)。在進行巨量轉移發光二極體時須確保其高良率,以避免後端產品的修復,甚至在發光二極體晶粒的尺寸非常小時幾乎無法修復,造成顯示器的瑕疵,影響製程良率,進而影響成本。因此如何篩檢出工作正常,或是更進一步篩檢出品質均一的發光二極體晶粒為一重要的檢測技術。
發光二極體的整體尺寸縮小時,發光二極體之電極的尺寸也隨之縮小。因此,在檢測發光二極體時,檢測裝置的探針不易與發光二極體的電極對位,且探針的尖端還需配合發光二極體的電極大小而具有極小的尺寸。由於具有極小尺寸之尖端的探針不易製造,且在檢測過程中,探針的尖端需與發光二極體的電極接觸,易耗損。此外,在一般的檢測方法中,探針需循序地與多個發光二極體的多個電極接觸,檢測過程耗工耗時。
本發明提供一種檢測系統以及發光二極體的檢測方法,可快速檢測巨量的發光二極體。
本發明提供一種檢測系統,用以檢測多個發光二極體,包括激發光源、電壓感應膜、照明光源以及影像擷取裝置。激發光源用以朝多個發光二極體提供激發光束而使多個發光二極體產生多個開路電壓。電壓感應膜位於多個發光二極體的頂側,用以依據驅動電壓產生顯示變化。電壓感應膜包括電壓感應介質層以及第一電極層。第一電極層配置於電壓感應介質層內,提供多個開路電壓之增益效果,使得電壓感應介質層感測多個開路電壓,且電壓感應介質層的顯示隨著多個開路電壓之部分或全部而變化。照明光源提供照明光束至電壓感應膜以依據顯示變化產生感測影像。影像擷取裝置配置於感測影像的傳遞路徑上,用以接收感測影像以產生檢測結果。
本發明另提供一種發光二極體的檢測方法,包括:提供激發光束至多個發光二極體以使多個發光二極體產生多個開路電壓的步驟;提供開路電壓增益效果至電壓感應膜的電壓感應介質層的步驟;電壓感應介質層感測多個開路電壓,且電壓感應介質層的顯示隨著多個開路電壓之部分或全部而變化,以使電壓感應膜產生顯示變化的步驟;提供照明光束至電壓感應膜以依據顯示變化產生感測影像的步驟;以及擷取感測影像以產生檢測結果的步驟。
基於上述,在本發明的檢測系統及發光二極體的檢測方法中。提供激發光束至多個發光二極體以使多個發光二極體產生多個開路電壓,並依據多個驅動電壓使電壓感應膜產生顯示變化。其中,電壓感應膜包括電壓感應介質層以及第一電極層。第一電極層配置於電壓感應介質層內,提供多個開路電壓之增益效果,使得電壓感應介質層感測多個開路電壓,且電壓感應介質層的顯示隨著多個開路電壓之部分或全部而變化;再藉由提供照明光束至電壓感應膜以依據顯示變化產生感測影像,並擷取感測影像以產生檢測結果。如此一來,可藉由電壓感應膜對多個發光二極體進行電壓感測,依據驅動電壓以產生相對應的顯示變化,從而獲得產生相對應區域亮暗或顏色變化所拼湊的感測影像以進行檢測,並依據檢測結果獲得多個發光二極體的開路電壓,從而可由此電性特性資料判斷出每個發光二極體的品質,以達成快速檢測巨量的發光二極體。
為讓本發明的上述特徵和優點能更明顯易懂,下文特舉實施例,並配合所附圖式作詳細說明如下。
圖1為本發明一實施例的檢測系統的示意圖。請參考圖1。本實施例提供一種檢測系統100,用以檢測多個發光二極體20,以達到非接觸檢測且同時具有快速及全面檢測的目的。例如是巨量轉移前的微發光二極體(Micro LED)。在本實施例中,檢測系統100包括激發光源110、電壓感應膜200、照明光源120以及影像擷取裝置130。
激發光源110位於多個發光二極體20的底側,用以朝多個發光二極體20提供激發光束L1而使多個發光二極體20產生多個開路電壓(open circuit voltage, Voc)。多個開路電壓所對應的電場方向具有平行於多個發光二極體20中基板的延伸方向,即為水平方向。詳細而言,激發光束L1同時照射多個發光二極體20。激發光束L1的波長小於或等於發光二極體20的發光波長。激發光束L1能導致發光二極體20產生光伏效應(photovoltaic effect)。故上述開路電壓即是指,無電流通過的多個發光二極體20經激發光束L1照射後而在正負電極之間所產生的電位差,而此電位差將會依據各別的發光二極體20的異常程度而有所不同。在較佳的實施例中,激發光束L1為平行光束,且具有均勻的光強度。也就是說,被激發光束L1同時照射的多個發光二極體20的每一個受到激發光束L1所照射的量實質上可相同,但本發明不以此為限。
圖2A及圖2B分別為本發明不同實施例的電壓感應膜接近多個發光二極體的示意圖。圖2A及圖2B所示的電壓感應膜200至少可應用於圖1所顯示的檢測系統100中,請先參考圖1及圖2A。電壓感應膜200位於多個發光二極體20的頂側,用以感測多個開路電壓而產生顯示變化(例如是變色或是穿透率改變導致灰階變化)。詳細而言,在本實施例中,電壓感應膜200包括第一基板210、電壓感應介質層220、第二基板230以及第一電極層240。第一基板210與第二基板230中的其中一者具有支撐效果,可以是玻璃基板或塑膠基板貼在玻璃上,而其中另一者則靠近多個發光二極體20,可以是非常薄的高分子基板,厚度介於數十微米至數微米。在其他實施例中,發光二極體20的電極位於下方,如圖2B所示。
電壓感應介質層220配置於第一基板210與第二基板230之間。電壓感應介質層220工作的電壓所對應的電場方向平行於多個發光二極體20的多個開路電壓所對應的電場方向(如圖2A所顯示)。舉例而言,在本實施例中,電壓感應介質層220為橫向電場效應切換(In-Plane Switching, IPS)液晶或邊緣場切換式(Fringe Field Switching, FFS)液晶,其工作的電壓所對應的電場方向具有平行於多個發光二極體20中基板的延伸方向。換句話說,電壓感應介質層220的液晶分子排列可依據多個發光二極體20的開路電壓對應之電場而改變,以產生相對應的穿透率變化。在另一實施例中,電壓感應介質層220為橫向彎曲(transverse bend mode, TBM)垂直配向液晶,工作電壓作用時大部分液晶的長軸呈現傾向平行於水平方向。在另一實施例中,電壓感應介質層220為水平配向彎曲(homogeneously aligned bend, HAB)液晶,可受水平電極在縱向的分量電場影響而彎曲。以上液晶可以依需求選用正型或是負型液晶,本發明並不限於此。選用液晶當電壓感應介質時,根據其工作原理在照明光束進入液晶與經過液晶後,分別經過極化方向互相垂直的偏振片。在不同實施例中,電壓感應介質層220亦可選擇高分子分散液晶(Polymer-dispersed Liquid Crystal, PDLC)、電致變色層、電溼潤層、懸浮粒子元件層、電壓感測奈米粒子或電壓敏感染料等可受電壓或電場改變顏色或穿透率的介質層,本發明並不限於此。
第一電極層240配置於電壓感應介質層220且連接於第一基板210。但在其他實施例中,第一電極層240可連接於第二基板230,本發明並不限於此。因此,電壓感應介質層220依據驅動電壓以產生相對應的顯示變化。所述驅動電壓相當於上述之工作電壓。其中,在本實施例中,驅動電壓為藉由啟動第一電極層240所提供的外加偏壓及多個開路電壓,當第一電極層240所提供的外加偏壓固定時,電壓感應介質層220依據多個開路電壓以產生相對應的顯示變化,藉由第一電極層240提供之偏壓提供開路電壓增益效果。舉例而言,多個發光二極體20中包括好的與壞的發光二極體,而壞的發光二極體的開路電壓將與好的發光二極體的開路電壓產生差異,進而對相應的液晶分子產生不同的驅動電壓,從而顯示出不同的灰階。
圖2C為本發明一實施例的電壓感應介質層的穿透率對電壓感應膜下方電壓的曲線圖。請參考圖2A及圖2C。其中,曲線300表示了光線在電壓感應介質層220的穿透率對電壓感應膜下方電壓的變化。當電壓感應膜200放在多個發光二極體20上時,電壓感應膜下方電壓即為二極體的開路電壓。傳統上,多個發光二極體20的開路電壓為一有限值,如小於2.5V,這一有限值依二極體種類而異。在這種狀況,開路電壓提供給電壓感應介質層220的電壓對應的穿透率變化不明顯或沒變化,如區域310內的穿透率變化。理想狀況是,電壓感應介質層感測到二極體的開路電壓即有穿透率變化,如區域320內的穿透率變化。
圖2D為本發明另一實施例的電壓感應介質層的穿透率對電壓感應膜下方電壓V1變化的曲線圖。電壓感應膜200依據驅動電壓產生穿透率變化,請參考圖2A及圖2D。由於第一電極層240對電壓感應介質層220提供了一外加電壓,在本實施裡稱之偏壓(Vbias),以作為感應介質層220驅動電壓的一部份,故可使開路電壓部分或全部落於電壓感應介質層220穿透率有變化的工作範圍或是穿透率有明顯變化範圍。如曲線300-1,當第一電極層240不施加偏壓時,Vbias = 0,在開路電壓的範圍穿透率隨電壓感應膜下方電壓變化很小或是幾乎沒有變化;如曲線300-2,當第一電極層240被施加第一偏壓Vbias = Va時,曲線穿透率變化明顯區域可被移至電壓感應膜200下方電壓較小範圍,等效於第一電極層240提供之偏壓提供開路電壓增益效果。此時,開路電壓大於某個閥值時,會在感測影像中顯示出明顯穿透率差異,並可被影像擷取模組所擷取。但當開路電壓小於某個閥值時,電壓感應膜200不發生穿透率變化。有閥值的穿透率曲線可以讓異常到一定程度的二極體直接篩除掉,閥值設定依需求而異;另一實施例,當第一電極層240被施加第二偏壓,V bias = Vb,曲線穿透率變化明顯部分被移至更小下方電壓範圍,即開路電壓(Voc)範圍都可以使電壓感應介質層220發生穿透率變化。此時,穿透率變化明顯範圍落於開路電壓的範圍,發光二極體20的開路電壓有變化時,會在感測影像中顯示出明顯穿透率差異,並可被影像擷取模組所擷取。
上面所述電壓感應介質層220所感受到的驅動電壓為藉由啟動第一電極層240所提供的外加偏壓及多個開路電壓的綜合效果。開路電壓在電壓感應介質層220內產生之效應即開路電壓的某個比例,此比例與感應介質層220的厚度、材料,第二基板230的厚度、材料及二極體20與第二基板230間的間隙大小與材料相關。曲線300-2、300-3的閥值或斜率受感應介質層220厚度、材料、第一電極幾何尺寸、間距、多個發光二極體20的電極間距及偏壓影響,但本發明並不限於此。感應介質層220厚度、材料、第一電極幾何尺寸、間距稱為電壓感應膜的參數。所述多個發光二極體20具有水平電極架構,在電壓感應介質層220內的電場具有平行於發光二極體20基板的延伸方向。
照明光源120位於多個發光二極體20的頂側,用以提供照明光束L2至電壓感應膜200以依據顯示變化產生感測影像L3。在本實施例中,照明光源120為影像擷取裝置130可以感應的光源,故提供照明光束L2至電壓感應膜200以依據不同液晶分子的顯示變化而產生相對應區域亮暗或顏色變化所拼湊的感測影像L3。影像擷取裝置130配置於感測影像L3的傳遞路徑上,用以接收感測影像L3以產生檢測結果。為使成像對比提升,影像擷取裝置130前可放置濾光元件160,例如是高通濾玻片或是帶通濾波片。如此一來,可進一步濾掉大部分的激發光束L1或光致發光產生的光,進而提升感測品質。具體而言,影像擷取裝置130擷取電壓感應膜200受電壓影響產生顏色或是穿透率變化的圖案。影像擷取裝置130例如是顯微鏡頭與相機的組合,但本發明並不限於此。如此一來,可藉由電壓感應膜200對多個發光二極體20進行電壓感測,依據開路電壓以產生相對應的顯示變化,從而獲得產生相對應區域亮暗或顏色變化所拼湊的感測影像以進行檢測,並依據檢測結果獲得多個發光二極體20的開路電壓,從而可由此電性特性資料判斷出每個發光二極體20的品質(例如是利用所獲得的開路電壓對每個發光二極體20進行好與壞的分級),以達成快速檢測巨量的發光二極體20。在不同的實施例中,激發光源110與照明光源120可進行位置對調配置,本發明並不限於此。
詳細而言,在本實施例中,檢測系統100還包括分光元件140,配置於照明光束L2的傳遞路徑上,用以反射照明光束L2至電壓感應膜200,且讓由電壓感應膜200傳遞的感測影像L3通過。此外,電壓感應膜200還包括反射層(未顯示),配置於第二基板230的上表面或下表面,用以反射照明光束L2以傳遞通過電壓感應膜200以產生顏色或是穿透率變化並傳遞至影像擷取裝置130進行檢測,但本發明並不限於此。在一實施例中,可於多個發光二極體20上PN電極間形成光反射層,例如LED的布拉格反射層(DBR),以針對照明光束L2的光進行反射,本發明並不限於此。
圖3A為本發明另一實施例的檢測系統的示意圖。請參考圖3A。本實施例的檢測系統100A類似於圖1所顯示的檢測系統100。兩者不同之處在於,在本實施例中,檢測系統100A的激發光源110同時當作照明光源120使用。詳細而言,激發光源110與照明光源120同時位於多個發光二極體20的底側,且實質上為同一發光裝置。因此,激發光束L1即等同於照明光束L2,由同一方向傳遞至多個發光二極體20,以形成穿透式光學系統。此外,濾光元件160更改選擇使用光衰減片,用以適當地衰減通過多個發光二極體20的激發光束L1。如此一來,可省略配置額外的光源,進而減少檢測系統100A的體積。
圖3B為本發明另一實施例的檢測系統的示意圖。請參考圖3B。本實施例的檢測系統100B類似於圖1所顯示的檢測系統100。兩者不同之處在於,在本實施例中,檢測系統100B的激發光源110與照明光源120位於多個發光二極體20的同一側,且分光元件140還位於激發光束L1的傳遞路徑上,用以反射激發光束L1至電壓感應膜200。詳細而言,激發光源110與照明光源120可藉分光元件進行配置,額外配置分光元件140A以導引激發光束L1及照明光束L2至分光元件140。如此一來,可集中配置光源,進而減少檢測系統100B的體積。在另一配置中,在上述的檢測系統100B中可進一步調整將激發光源110與照明光源120設計為檢測系統100A的實施方式,即將激發光源110與照明光源120設計為同一發光裝置,本發明並不限於此。
請繼續參考圖1。另一方面,在本實施例中,檢測系統100還包括處理元件150,電性連接於影像擷取裝置130,依據檢測結果獲得多個發光二極體20的開路電壓,從而可由此電性特性資料判斷出每個發光二極體20的品質。處理元件150例如為中央處理單元(Central Processing Unit,CPU),或是其他可程式化之一般用途或特殊用途的微處理器(Microprocessor)、數位信號處理器(Digital Signal Processor,DSP)、可程式化控制器、特殊應用積體電路(Application Specific Integrated Circuit,ASIC)或其他類似元件或上述元件的組合,本發明並不限於此。
圖4A至圖4D分別為本發明不同實施例的第一電極層與多個發光二極體的上視示意圖。在上述的電壓感應膜200中,第一電極層240的分佈在堆疊方向上至多個發光二極體20的投影可依據不同的需求而有不同的分佈方式。請先參考圖2A及圖4A。在圖4A的實施例中,第一電極層240的排列方向平行於多個發光二極體20中電極的排列方向。詳細而言,第一電極層240包括沿著排列方向間隔排列的多個條狀電極242,且多個條狀電極242經啟動提供外加偏壓。此外,多個發光二極體20包括多個元件電極22A、22B(例如分別為P電極與N電極),多個條狀電極242的排列方向平行於多個元件電極22A、22B的排列方向,且多個條狀電極242的數量相等於多個元件電極22A、22B的數量。在圖4B的實施例中,可將多個條狀電極242的數量設計為多個元件電極22A、22B的數量的整數倍。或者可依據不同需求將多個條狀電極242的數量設計為多個元件電極22A、22B的數量的非整數倍,本發明並不限於此。在圖4C的實施例中,多個條狀電極242的排列方向垂直於多個元件電極22A、22B的排列方向,且多個條狀電極242的數量相等於多個元件電極22A、22B的數量。在圖4D的實施例中,可將圖4C實施例中的多個條狀電極242的數量設計為多個元件電極22A、22B的數量的整數倍,本發明亦不限於此。
圖5A及圖5B分別為本發明不同實施例的第一電極層的上視示意圖及剖面示意圖。請參考圖5A及圖5B。在上述的任意實施例中,多個條狀電極242可依據需求為正極或負極而進行串連設計,以形成指叉形式,如圖5A所顯示。或者是,多個條狀電極242也可依據需求為正極或負極分布在不同位置的兩層,如圖5B所顯示,本發明並不限於此。
圖6A及圖6B分別為本發明不同實施例的電壓感應膜接近多個發光二極體的示意圖。請參考圖6A及圖6B。本實施例的電壓感應膜200A類似於圖2A所顯示的電壓感應膜200。兩者不同之處在於,在本實施例中,第一電極層240A連接第二基板230。詳細而言,第一電極層240A包括沿著排列方向間隔排列的多個浮動電極,且多個浮動電極依據多個發光二極體20的多個開路電壓被感應而產生感應電壓,此感應電壓效果將依據多個浮動電極的排列間隔大小而有所改變。換句話說,在本實施例中,驅動電壓為藉由第一電極層240A感應多個開路電壓所產生的感應電壓。因此,可以由靠近多個發光二極體20製作浮動電極,感應下方發光二極體20的電荷產生感應電壓,利用浮動電極圖案變化,提升電壓感應膜200A的電壓感測敏感度,換句話說,第一電極層240所產生的感應電壓提供開路電壓增益效果。在其他實施例中,發光二極體20的電極位於下方,如圖6B所示。
圖7為本發明不同實施例的電壓感應介質層的穿透率對電壓感應膜下方電壓的曲線圖,請參考圖7。曲線330為待測物電極間隔皆為10微米的工作曲線,曲線340為待測物電極間隔皆為5微米的工作曲線,曲線350為待測物電極間隔皆為4微米的工作曲線,且曲線360為待測物電極間隔皆為3微米的工作曲線。當電壓感應膜200A放在多個二極體20上時,電壓感應膜下方電壓即為二極體的開路電壓。由曲線圖可知,意味待測元件電極間隔越大,下方電壓需要在大一點的範圍才能被感測到,但是待測元件因應用需求,電極間距有一定範圍,可以產生的電壓或是電場為有限範圍。
請同時參照圖6A和圖7電壓感應膜200A依據下方電壓產生穿透率變化。在本實施例中,驅動電壓為藉由第一電極層240A,或稱浮動電極,感應多個開路電壓所產生的感應電壓,相當於第一電極層240A提供開路電壓增益效果。此處例示水平電極架構的發光二極體20,在電壓感應介質層內的電場具有於平行發光二極體20基板的延伸方向。利用浮動電極間隔大小設計突破元件電極間距有一定範圍的限制,讓曲線穿透率變化大的部分往小電壓移動,使得電壓感應介質層感測在有限的發光二極體20開路電壓範圍有穿透率變化,或是讓小電壓即有穿透率變化。
圖8A至圖8C分別為本發明不同實施例的第一電極層與多個發光二極體的上視示意圖。在上述的電壓感應膜200A中,第一電極層240A的分佈在堆疊方向上至多個發光二極體20的投影可依據不同的需求而有不同的分佈方式。請先參考圖6A及圖8A。在圖8A的實施例中,第一電極層240A的排列方向平行於多個發光二極體20中電極的排列方向。詳細而言,第一電極層240A包括沿著排列方向間隔排列的多個浮動電極244,多個浮動電極244的排列方向平行於多個元件電極22的排列方向,且多個浮動電極244經開路電壓感應產生感應電壓。此外,多個浮動電極244的間隔長度D1小於兩元件電極22A、22B的間隔長度D2,且多個浮動電極244的至少部分區域在堆疊方向上重疊於元件電極22A、22B(意即,至少部分浮動電極244沿堆疊方向上的投影重疊於元件電極22A、22B),且元件電極22A、22B在浮動電極244產生的感應電壓分別在不連接的電極上。其中,浮動電極244的間隔長度D1小於兩元件電極22A、22B的間隔長度D2,讓曲線穿透率變化大的部分往小電壓移動,或是讓小電壓即有穿透率變化,本發明並不限於此。
在圖8B的實施例中,可將多個浮動電極244與元件電極22A、22B在堆疊方向(即鉛直方向)上的重疊區域設計多條條狀電極朝垂直於堆疊方向(即水平方向)延伸,並且在兩元件電極22A、22B的中央間隔上方處交錯。此外,在兩元件電極22A、22B的中央間隔上方處交錯的多個浮動電極244的間隔長度D1小於兩元件電極22A、22B的間隔長度D2。在圖8C的實施例中,即為圖8B的實施例中減少與元件電極22A、22B在堆疊方向上重疊的浮動電極244區域,而相同於圖8B的實施例,在兩元件電極22A、22B的中央間隔上方處交錯的多個浮動電極244的間隔長度D1小於兩元件電極22A、22B的間隔長度D2。
圖9A及圖9B分別為本發明不同實施例的電壓感應膜接近多個發光二極體的示意圖。請參考圖9A及圖9B。本實施例的電壓感應膜200B類似於圖2A所顯示的電壓感應膜200及圖6A所顯示的電壓感應膜200A。兩者不同之處在於,在本實施例中,電壓感應膜200B還包括第二電極層250,配置於電壓感應介質層230。其中,第一電極層240連接於第一基板210,且第二電極層250連接於第二基板230。舉例而言,在本實施例中,第一電極層240包括沿著第一排列方向間隔排列的多個條狀電極242(參考圖10A至圖10F),而第二電極層250包括沿著第二排列方向間隔排列的多個浮動電極244(參考圖10A至圖10F)。第一電極層240的電極排列方向垂直或平行於第二電極層250的電極排列方向。意即,第一排列方向可與第二排列方向垂直或平行。如此一來,在此架構下,電壓感應膜200B具有條狀電極242及浮動電極244,可以由浮動電極244感應下方發光二極體20電極的電荷產生感應電壓,並藉由條狀電極242提供外加偏壓。第一電極層240及第二電極層250都提供開路電壓增益效果,讓電壓感應介質層220感測在有限的發光二極體20開路電壓範圍有穿透率變化。此時,驅動電壓為藉由啟動第一電極層240所提供的外加偏壓及多個開路電壓感應產生之感應電壓的綜合效果。利用第一電極層240提供的外加偏壓及感應膜的參數調整使得電壓感應膜200B在曲線最佳工作位置附近,此外,再加上利用浮動電極244的圖案變化,可進一步提升電壓感應膜200B的電壓感測敏感度。換句話說在本實施例中,驅動電壓為藉由啟動第一電極層240所提供的外加偏壓及多個開路電壓在浮動電極244產生的感應電壓。在其他實施例中,發光二極體20的電極位於下方,如圖9B所示。
圖10A至圖10F分別為本發明不同實施例的第一電極層、第二電極層及多個發光二極體的上視示意圖。類似於圖4A至圖4D以及圖8A至圖8C實施例的分佈方式,在圖9A實施例的架構中,第一電極層240與第二電極層250可設計選擇具有相同的排列方向或垂直的排列方向,且包括多個條狀電極242的第一電極層240與元件電極22A、22B的重疊方式可參照圖4A至圖4D的方式設計,包括多個浮動電極244的第二電極層250與元件電極22A、22B的重疊方式則可參照圖8A至圖8C的方式設計,在此說明不再贅述。
圖11為本發明一實施例的多個發光二極體的檢測方法的步驟流程圖。請參考圖1、圖2A及圖11。本實施例的多個發光二極體的檢測方法至少可應用於圖1所顯示的檢測系統100中,故以下說明以應用於圖1所顯示的檢測系統100中為例。在本實施例中,首先,執行步驟S400,提供激發光束L1至多個發光二極體20以使多個發光二極體20產生多個開路電壓。接著,在上述步驟之後,執行步驟S401,提供開路電壓增益效果至電壓感應膜200的電壓感應介質層220。其中,步驟S400與步驟S401沒有固定的執行先後順序,即可交換進行或同時進行,本發明並不限於此。接著,在上述步驟之後,執行步驟S402,電壓感應介質層220感測多個開路電壓,且電壓感應介質層220的顯示隨著多個開路電壓之部分或全部而變化,以使電壓感應膜200產生顯示變化。接著,在上述步驟之後,執行步驟S403,提供照明光束L2至電壓感應膜200以依據顯示變化產生感測影像L3。值得一提的是,上述步驟中所述的激發光束L1與照明光束L2可由相同光源同時提供出,亦即將激發光束L1作為照明光束L2使用,或者是將兩不同光源配置於相同位置,本發明並不限於此。最後,在上述步驟之後,執行步驟S404,擷取感測影像L3以產生檢測結果。如此一來,可藉由電壓感應膜200對多個發光二極體20進行電壓感應,依據多個發光二極體20的開路電壓以產生相對應的顯示變化,從而獲得產生相對應區域亮暗或顏色變化所拼湊的感測影像以進行檢測,並依據檢測結果獲得多個發光二極體20的開路電壓,從而可由此電性特性資料判斷出每個發光二極體20的品質(例如是利用所獲得的開路電壓對每個發光二極體20進行好與壞的分級)。
綜上所述,在本發明的檢測系統及發光二極體的檢測方法中。提供激發光束至多個發光二極體以使多個發光二極體產生多個開路電壓,並依據驅動電壓使電壓感應膜產生顯示變化。其中,電壓感應膜包括電壓感應介質層以及第一電極層。第一電極層配置於電壓感應介質層內,提供多個開路電壓之增益效果,使得電壓感應介質層感測多個開路電壓,且電壓感應介質層的顯示隨著開路電壓之部分或全部而變化。再藉由提供照明光束至電壓感應膜以依據顯示變化產生感測影像,並擷取感測影像以產生檢測結果。如此一來,可藉由電壓感應膜對多個發光二極體進行電壓感應,依據驅動電壓以產生相對應的顯示變化,從而獲得產生相對應區域亮暗或顏色變化所拼湊的感測影像以進行檢測,並依據檢測結果獲得多個發光二極體的開路電壓,從而可由此電性特性資料判斷出每個發光二極體的品質,以達成快速檢測巨量的發光二極體。
雖然本發明已以實施例揭露如上,然其並非用以限定本發明,任何所屬技術領域中具有通常知識者,在不脫離本發明的精神和範圍內,當可作些許的更動與潤飾,故本發明的保護範圍當視後附的申請專利範圍所界定者為準。
20:發光二極體 22A,22B:元件電極 100,100A,100B:檢測系統 110:激發光源 120:照明光源 130:影像擷取裝置 140,140A:分光元件 150:處理元件 160:濾光元件 200,200A,200B:電壓感應膜 210:第一基板 220:電壓感應介質層 230:第二基板 240,240A:第一電極層 242:條狀電極 244:浮動電極 250:第二電極層 V1:下方電壓 Voc:開路電壓 300,300-1~300-3,330~360:曲線 310,320:區域 D1,D2:間隔長度 L1:激發光束 L2:照明光束 L3:感測影像 S400~S404:步驟
圖1為本發明一實施例的檢測系統的示意圖。 圖2A及圖2B分別為本發明不同實施例的電壓感應膜接近多個發光二極體的示意圖。 圖2C為本發明一實施例的電壓感應介質層的穿透率對電壓感應膜下方電壓的曲線圖。 圖2D為本發明另一實施例的電壓感應介質層的穿透率對電壓感應膜下方電壓V1的曲線圖。 圖3A為本發明另一實施例的檢測系統的示意圖。 圖3B為本發明另一實施例的檢測系統的示意圖。 圖4A至圖4D分別為本發明不同實施例的第一電極層與多個發光二極體的上視示意圖。 圖5A及圖5B分別為本發明不同實施例的第一電極層的上視示意圖及剖面示意圖。 圖6A及圖6B分別為本發明不同實施例的電壓感應膜接近多個發光二極體的示意圖。 圖7為本發明不同實施例的電壓感應介質層的穿透率對電壓感應膜下方電壓的曲線圖。 圖8A至圖8C分別為本發明不同實施例的第一電極層與多個發光二極體的上視示意圖。 圖9A及圖9B分別為本發明不同實施例的電壓感應膜接近多個發光二極體的示意圖。 圖10A至圖10F分別為本發明不同實施例的第一電極層、第二電極層及多個發光二極體的上視示意圖。 圖11為本發明一實施例的多個發光二極體的檢測方法的步驟流程圖。
20:發光二極體
100:檢測系統
110:激發光源
120:照明光源
130:影像擷取裝置
140:分光元件
150:處理元件
160:濾光元件
200:電壓感應膜
L1:激發光束
L2:照明光束
L3:感測影像

Claims (28)

  1. 一種檢測系統,用以檢測多個發光二極體,包括: 激發光源,用以朝所述多個發光二極體提供激發光束而使所述多個發光二極體產生多個開路電壓; 電壓感應膜,位於所述多個發光二極體的頂側,用以依據驅動電壓產生顯示變化,所述電壓感應膜包括: 電壓感應介質層;以及 第一電極層,配置於所述電壓感應介質層內,提供所述多個開路電壓之增益效果,使得所述電壓感應介質層感測所述多個開路電壓,且所述電壓感應介質層的顯示隨著所述多個開路電壓之部分或全部而變化; 照明光源,提供照明光束至所述電壓感應膜以依據所述顯示變化產生感測影像;以及 影像擷取裝置,配置於所述感測影像的傳遞路徑上,用以接收所述感測影像以產生檢測結果。
  2. 如請求項1所述的檢測系統,其中所述多個開路電壓所對應的電場方向具有平行於所述多個發光二極體中基板的延伸方向。
  3. 如請求項1所述的檢測系統,其中所述電壓感應介質層驅動電壓所對應的電場方向平行於所述多個發光二極體的所述多個開路電壓所對應的電場的方向。
  4. 如請求項1所述的檢測系統,其中所述電壓感應介質層為橫向電場效應切換液晶、邊緣場切換式液晶、水平配向彎曲液晶或橫向彎曲垂直配向液晶。
  5. 如請求項1所述的檢測系統,其中所述第一電極層的排列方向垂直或平行於所述多個發光二極體中電極的排列方向。
  6. 如請求項1所述的檢測系統,其中所述電壓感應膜包括: 第一基板;以及 第二基板,所述電壓感應介質層連接於所述第一基板與所述第二基板之間,其中所述第一電極層連接於所述第一基板或所述第二基板。
  7. 如請求項6所述的檢測系統,其中所述第一電極層連接所述第一基板,所述第一電極層包括沿著排列方向間隔排列的多個條狀電極,且所述多個條狀電極經啟動提供外加偏壓。
  8. 如請求項7所述的檢測系統,其中所述多個發光二極體包括多個元件電極,且所述多個條狀電極的數量為所述多個元件電極的數量的整數倍。
  9. 如請求項6所述的檢測系統,其中所述第一電極層連接所述第二基板,所述第一電極層包括沿著排列方向間隔排列的多個浮動電極,且所述多個浮動電極依據所述多個開路電壓產生感應電壓。
  10. 如請求項9所述的檢測系統,其中所述多個發光二極體包括多個元件電極,且所述多個浮動電極的間隔長度小於所述兩元件電極的間隔長度。
  11. 如請求項10所述的檢測系統,其中所述多個浮動電極與所述多個元件電極在堆疊方向上重疊。
  12. 如請求項6所述的檢測系統,其中所述電壓感應膜還包括第二電極層,配置於所述電壓感應介質層,所述第一電極層連接於所述第一基板,且所述第二電極層連接於所述第二基板。
  13. 如請求項12所述的檢測系統,其中所述第一電極層的電極排列方向垂直或平行於所述第二電極層的電極排列方向。
  14. 如請求項6所述的檢測系統,所述電壓感應膜還包括反射層,配置於所述第二基板的上表面或下表面。
  15. 如請求項1所述的檢測系統,還包括: 分光元件,配置於所述照明光束的傳遞路徑上,用以反射所述照明光束至所述電壓感應膜,且讓由所述電壓感應膜傳遞的所述感測影像通過。
  16. 如請求項1所述的檢測系統,其中所述激發光源與所述照明光源分別位於所述多個發光二極體的底側以及頂側。
  17. 如請求項1所述的檢測系統,其中所述激發光源與所述照明光源實質上為同一發光裝置,且所述激發光束相同於所述照明光束,並由同一方向傳遞至所述多個發光二極體。
  18. 如請求項1所述的檢測系統,其中所述激發光源與所述照明光源位於所述多個發光二極體的同一側,且所述分光元件還位於所述激發光束的傳遞路徑上,用以反射所述激發光束至所述電壓感應膜。
  19. 如請求項1所述的檢測系統,還包括: 濾光元件,配置於所述照明光束的傳遞路徑上,且位於所述影像擷取裝置與所述電壓感應膜之間,用以濾除所述激發光束或光致發光產生的光。
  20. 如請求項19所述的檢測系統,其中所述濾光元件為高通濾波器或帶通濾波器。
  21. 如請求項19所述的檢測系統,其中所述濾光元件為光衰減片。
  22. 如請求項1所述的檢測系統,還包括: 處理元件,電性連接於所述影像擷取裝置,依據所述檢測結果獲得所述多個發光二極體的所述開路電壓。
  23. 一種發光二極體的檢測方法,用以檢測多個發光二極體,所述檢測方法包括: 提供激發光束至所述多個發光二極體以使所述多個發光二極體產生多個開路電壓; 提供開路電壓增益效果至電壓感應膜的電壓感應介質層; 所述電壓感應介質層感測所述多個開路電壓,且所述電壓感應介質層的顯示隨著所述多個開路電壓之部分或全部而變化,以使所述電壓感應膜產生顯示變化; 提供照明光束至所述電壓感應膜以依據所述顯示變化產生感測影像;以及 擷取所述感測影像以產生檢測結果。
  24. 如請求項23所述的發光二極體的檢測方法,其中所述提供開路電壓增益效果至所述電壓感應膜的所述電壓感應介質層的方法還包括: 經啟動提供外加偏壓。
  25. 如請求項23所述的發光二極體的檢測方法,其中所述提供開路電壓增益效果至所述電壓感應膜的所述電壓感應介質層的方法還包括: 依據所述多個開路電壓產生感應電壓。
  26. 如請求項23所述的發光二極體的檢測方法,其中所述提供所述照明光束至所述電壓感應膜以依據所述顯示變化產生感測影像的方法還包括: 提供所述照明光束通過所述電壓感應介質層以產生所述感測影像;以及 反射所述感測影像至影像擷取裝置。
  27. 如請求項26所述的發光二極體的檢測方法,還包括: 依據所述感測影像產生所述檢測結果。
  28. 如請求項23所述的發光二極體的檢測方法,還包括: 依據所述檢測結果獲得所述多個發光二極體的所述多個開路電壓。
TW112122112A 2022-09-30 2023-06-14 檢測系統以及發光二極體的檢測方法 TW202415970A (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
TW111137243 2022-09-30
TW111137243 2022-09-30

Publications (1)

Publication Number Publication Date
TW202415970A true TW202415970A (zh) 2024-04-16

Family

ID=90470447

Family Applications (1)

Application Number Title Priority Date Filing Date
TW112122112A TW202415970A (zh) 2022-09-30 2023-06-14 檢測系統以及發光二極體的檢測方法

Country Status (2)

Country Link
US (1) US20240110968A1 (zh)
TW (1) TW202415970A (zh)

Also Published As

Publication number Publication date
US20240110968A1 (en) 2024-04-04

Similar Documents

Publication Publication Date Title
US8378708B2 (en) Inspecting method using an electro optical detector
US11474144B2 (en) Method for inspecting light-emitting diodes and inspection apparatus
CN101051619B (zh) 基板检查装置及使用其的基板检查方法
KR101068364B1 (ko) 액정표시장치 검사장비 및 그 검사방법
US11002783B2 (en) Method for inspecting light-emitting diodes and inspection apparatus
JP2005321319A (ja) 表面検査装置および表面検査方法
TW201512736A (zh) 用於偵測缺陷基板之液晶調變器及具有該液晶調變器之檢驗裝置
TW202415970A (zh) 檢測系統以及發光二極體的檢測方法
CN102749749B (zh) 电光调变装置、电光检测器及其检测方法
CN1265232C (zh) 电路图形检测装置和电路图形检测方法
KR101111383B1 (ko) 3차원 표면 형상 측정부가 구비되는 압흔 검사시스템
JP2014107483A (ja) Obirch検査方法及びobirch装置
US11656181B2 (en) Inspection apparatus and inspection method for inspecting light-emitting diodes
US20120025839A1 (en) Apparatus for measuring conductive pattern on substrate
TWI773068B (zh) 檢測裝置及發光二極體的檢測方法
TWI759866B (zh) 發光二極體的檢測裝置及其檢測方法
JP3485166B2 (ja) 液晶表示装置の検査方法および検査装置
JP5708385B2 (ja) 表面検査方法及び表面検査装置
JP3776628B2 (ja) 画像処理装置を用いる検査方法
JP5414743B2 (ja) マクロ検査装置
JP4517574B2 (ja) カラーフィルタ評価方法
KR100868746B1 (ko) 배선 결함 검사 방법
WO2014007543A1 (ko) 공초점센서를 포함하는 다기능 발광다이오드 검사장치
TW202323769A (zh) 用以改良準確缺陷位置報告之面板設計
KR101458795B1 (ko) 우네리 측정 장비 및 측정 방법