TW202413662A - 表面合金化製備抗菌不銹鋼之方法 - Google Patents

表面合金化製備抗菌不銹鋼之方法 Download PDF

Info

Publication number
TW202413662A
TW202413662A TW111135184A TW111135184A TW202413662A TW 202413662 A TW202413662 A TW 202413662A TW 111135184 A TW111135184 A TW 111135184A TW 111135184 A TW111135184 A TW 111135184A TW 202413662 A TW202413662 A TW 202413662A
Authority
TW
Taiwan
Prior art keywords
stainless steel
antibacterial
layer
copper
antibacterial metal
Prior art date
Application number
TW111135184A
Other languages
English (en)
Other versions
TWI832432B (zh
Inventor
蔡文達
劉浩志
陳治諺
黃忠誠
Original Assignee
東盟開發實業股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東盟開發實業股份有限公司 filed Critical 東盟開發實業股份有限公司
Priority to TW111135184A priority Critical patent/TWI832432B/zh
Priority to CN202211430492.9A priority patent/CN117721464A/zh
Priority to US18/056,055 priority patent/US20240093373A1/en
Application granted granted Critical
Publication of TWI832432B publication Critical patent/TWI832432B/zh
Publication of TW202413662A publication Critical patent/TW202413662A/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/48After-treatment of electroplated surfaces
    • C25D5/50After-treatment of electroplated surfaces by heat-treatment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/56After-treatment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/02Pretreatment of the material to be coated
    • C23C14/024Deposition of sublayers, e.g. to promote adhesion of the coating
    • C23C14/025Metallic sublayers
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/16Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/58After-treatment
    • C23C14/5806Thermal treatment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/02Pretreatment of the material to be coated
    • C23C16/0272Deposition of sub-layers, e.g. to promote the adhesion of the main coating
    • C23C16/0281Deposition of sub-layers, e.g. to promote the adhesion of the main coating of metallic sub-layers
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/06Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of metallic material
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/34Pretreatment of metallic surfaces to be electroplated
    • C25D5/36Pretreatment of metallic surfaces to be electroplated of iron or steel
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/38Electroplating: Baths therefor from solutions of copper

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)

Abstract

本發明係提供一種表面合金化製備抗菌不銹鋼之方法,其步驟包含:於不銹鋼表面披覆輔助介質層;於該輔助介質層表面批覆抗菌金屬層;將該不銹鋼進行熱處理,使抗菌金屬擴散至該不銹鋼內;藉此,本發明係可應用於各式不銹鋼種,並可將抗菌金屬擴散固溶於不銹鋼內,使不銹鋼可於最終成型之表面形成一具有一定厚度之抗菌合金層,藉可具有較佳之耐蝕性及抗菌能力,且具不改變抗菌金屬或不銹鋼基材性質之優點,並可透過控制抗菌金屬層之厚度、濃度、熱處理之參數以控制其化學組成及抗菌合金層之厚度,故具有廣泛之適用性;此外,本發明之處理方式簡易且快速,可大幅降低不銹鋼抗菌之製程難度及成本,藉可有效提升其產能及效率者。

Description

表面合金化製備抗菌不銹鋼之方法
本發明係提供一種表面合金化製備抗菌不銹鋼之方法,尤指一種透過於不銹鋼表面披覆抗菌金屬層並進行熱處理,使抗菌金屬擴散不銹鋼表面內部,以形成具有厚度之抗菌合金層,使具有良好之耐蝕性及抗菌能力者。
按,不銹鋼具有美觀及良好耐蝕性質的優點,因此廣泛應用於家用產品、廚具以及醫療器材等;然而,隨衛生與安全意識的提升,具備抗菌功能的不銹鋼開發乃受到重視;現今不銹鋼的抗菌技術主要可以分為兩類:(一)表面塗裝型。(二)合金型。前者是在不銹鋼表面以各種方法將具抗菌功能的物質披覆於其上,其抗菌作用與塗層的附著性與厚度有關,當塗層損耗後,即失去抗菌的效果;後者則是將具有抗菌功能的合金元素,添加在不銹鋼基材中,其效果與具抗菌功能的合金元素的含量、相(Phase)組成與分布有密切關係;由於表面塗裝型普遍存在抗菌塗層剝離與耐磨耗性較差的問題,容易因抗菌層的喪失而失去抗菌功能,故現今抗菌不銹鋼主要以合金型為主。
合金型抗菌不銹鋼常用的抗菌元素主要為銀與銅;這些抗菌金屬元素自不銹鋼表面以金屬離子的型態釋放後,產生抑菌及抗菌的作用,而抗菌的效果與這些抗菌金屬元素在不銹鋼中的濃度有關;目前合金型抗菌不銹鋼產品主要採用熔煉法進行製備,通過在高溫下將抗菌元素與不銹鋼混溶後,使抗菌元素固溶於基材內;採用該製程的特點是抗菌元素會均勻分布於基材,使整個不銹鋼均具有抗菌功能;然而,抗菌的反應過程僅發生於不銹鋼表面,大部分的場合下並不需整塊不銹鋼材料均含有抗菌元素。這些額外添加的抗菌元素除了提高生產成本以外,還會造成基材的性能產生改變。
習知另提供一種不銹鋼表面之處理方法,其主要係採用離子佈植法、珠擊法置備抗菌合金層,該製程雖可精準控制抗菌元素的濃度,但擴散深度較淺故難以保證抗菌壽命,且製程成本高昂難以大規模生產。
習知另提供一種概如我國專利證書第I764530號之「具有抗菌性和抗病毒性的不銹鋼材料及其製造方法」專利案,其係透過熱處理手段使銅層與鋼材表面相互擴散形成抗菌合金層的方法,該製程雖更具生產優勢,然而其抗菌擴散層深度有限,針對特定產品應用上會無法滿足加工需求;此外,其雖表明可適用於所有不銹鋼種,惟其記載之實驗數據經測試後之結果,其於肥粒鐵系與麻田散體系不銹鋼上難以產生銅擴散效果,例如在SS440C不銹鋼上,即發現基材與銅層間近乎沒有產生相互擴散,故其方法仍有尚未完全成熟之疑慮。
有鑑於此,吾等發明人乃潛心進一步研究不銹鋼的表面抗菌處理,並著手進行研發及改良,期以一較佳發明以解決上述問題,且在經過不斷試驗及修改後而有本發明之問世。
爰是,本發明之目的係為解決前述問題,為達致以上目的,吾等發明人提供一種表面合金化製備抗菌不銹鋼之方法,其步驟包含:於一不銹鋼表面披覆一輔助介質層;於該輔助介質層表面批覆一抗菌金屬層;以及將該不銹鋼進行熱處理,使抗菌金屬擴散至該不銹鋼內。
據上所述之表面合金化製備抗菌不銹鋼之方法,其中,該不銹鋼為肥粒鐵系不銹鋼(Ferritic stainless steel)、沃斯田鐵系不銹鋼(Austenitic stainless steel)、麻田散鐵系不銹鋼(Martensitic stainless steel)、雙相不銹鋼(Duplex stainless steel)之至少其一者。
據上所述之表面合金化製備抗菌不銹鋼之方法,其中,該抗菌金屬層係透過物理氣相沉積(Physical vapor deposition)、化學氣相沉積(Chemical vapor deposition)、電鍍(Electroplating)或無電電鍍(Autocatalytic plating)之至少其一者,以披覆於該不銹鋼表面者。
據上所述之表面合金化製備抗菌不銹鋼之方法,其中,該抗菌金屬層披覆於該不銹鋼表面時之厚度係介於0.1μm至15μm之間。
據上所述之表面合金化製備抗菌不銹鋼之方法,其中,該熱處理係於保護氣氛中加熱至600℃以上,且加熱時間係大於1分鐘。
據上所述之表面合金化製備抗菌不銹鋼之方法,其步驟更包含,將所述具抗菌金屬層之不銹鋼,透過爐冷(Furnace cooling)、空冷(Air cooling)或淬火(Quench)之至少其一者以進行降溫處理。
據上所述之表面合金化製備抗菌不銹鋼之方法,其中,該降溫處理係將所述具抗菌金屬層之不銹鋼降將至室溫者。
據上所述之表面合金化製備抗菌不銹鋼之方法,其中,該抗菌金屬為銅。
據上所述之表面合金化製備抗菌不銹鋼之方法,其中,該輔助介質層為銀、鈷、鎳、鋅或鉬之其一或組合者。
據上所述之表面合金化製備抗菌不銹鋼之方法,其中,該輔助元素之含量係小於該抗菌金屬之含量者。
是由上述說明及設置,顯見本發明主要具有下列數項優點及功效,茲逐一詳述如下:
1.本發明之製程係可應用於各式不銹鋼種,透過披覆抗菌金屬層及熱處理,使抗菌金屬可擴散固溶於不銹鋼內,使不銹鋼可於最終成型之表面形成具有一定厚度之抗菌合金層,藉可具有較佳之耐蝕性及抗菌能力,且具不改變抗菌金屬或不銹鋼基材性質之優點,且透過輔助介質層之添加,使可有效增加抗菌合金層厚度,特別是在肥粒鐵系與麻田散鐵系不銹鋼上更有顯著效果;此外,本發明亦可透過控制抗菌金屬層之厚度、濃度、熱處理之參數以控制其化學組成及抗菌合金層之厚度,故具有廣泛之適用性;本發明之處理方式簡易且快速,無須使用如習知製備合金型抗菌不銹鋼之大型鍋爐,藉可大幅降低不銹鋼抗菌之製程難度及成本,以有效提升本發明整體製造之產能及效率者。
關於吾等發明人之技術手段,茲舉數種較佳實施例配合圖式於下文進行詳細說明,俾供  鈞上深入了解並認同本發明。
請先參閱第1圖所示,本發明係一種表面合金化製備抗菌不銹鋼之方法,其步驟包含:
S001:於一不銹鋼表面披覆一輔助介質(Infiltration promoter)層,在一實施例中,該輔助介質層為銀、鈷、鎳、鋅或鉬之其一或組合;而不銹鋼在一具體之實施例中,係為肥粒鐵系不銹鋼(Ferritic stainless steel)、沃斯田鐵系不銹鋼(Austenitic stainless steel)或麻田散鐵系不銹鋼(Martensitic stainless steel)之至少其一者;而抗菌金屬層對於不銹鋼之披覆(Coating),在一實施例中,係可透過物理氣相沉積(Physical vapor deposition)、化學氣相沉積(Chemical vapor deposition)、電鍍(Electroplating)或無電電鍍(Autocatalytic plating)之至少其一以進行之,惟前述者僅係舉例說明,並不予限定之;而作為母材的不銹鋼,係可為任意結構或形貌,如:塊材、板材、半成品等,惟需注意母材結構是否會造成擴散輔助介質層或抗菌金屬披覆的不均勻。
而就輔助介質層而言,其係可為任意厚度,但最佳厚度為0.05 μm 至 5 μm;若其厚度不足,則促進擴散的效果不佳,若輔助層厚度超過5 μm,會阻礙後續抗菌金屬之擴散。
S002:於該輔助介質層表面批覆一抗菌金屬層,且其中,該抗菌金屬中之抗菌金屬係可為銅,並且在其他實施例中,係可包含輔助元素,如:銀、鈷、鎳、鋅或鉬之其一或組合,且該輔助介質之含量係小於該抗菌金屬之含量,而輔助介質之添加與否及添加含量,係可依據不銹鋼之材質而定;而抗菌金屬層披覆於該不銹鋼表面時之厚度可為任意值,較佳者係約介於0.1μm至5μm之間,若抗菌金屬層厚度未滿0.1 μm,則不銹鋼表面難以形成足夠濃度的合金層,因此無法確保良好之抗菌效果,若抗菌金屬層厚度超過5 μm,多餘的抗菌層會以殘留銅的形式存在不銹鋼表面,需要通過表面處理方法將此前驅物移除。
S003:將所述具抗菌金屬層之不銹鋼進行熱處理;而熱處理之方式,在一實施例中,熱處理係於保護氣氛中加熱至600℃以上,在一實施例中,加熱溫度係可設置為600℃至1200℃,且加熱時間係超過1分鐘;而所述保護氣氛,在一具體之實施例中,係可於無氧環境、真空環境,或透過於保護性氣體(如:氮氣、氬氣、氫氣至少其一者)中執行,而加熱過程可依需求而為任意之升溫速率進行;藉此,即可使抗菌金屬擴散至該不銹鋼內,藉以於不銹鋼表面及其內部形成一具有厚度之抗菌合金層。
對於加熱溫度之設定,在一實施例中,其持溫溫度應設定600 ℃以上,並可依據不銹鋼之種類、厚度或形貌結構等進行調整;當加熱溫度低於600 ℃時,會無法產生足夠驅動力促使抗菌金屬擴散;而隨著加熱溫度提高,擴散速率會隨之提高,能有效增加擴散距離;然而,由於銅的熔點為1085 ℃,當加熱超過該溫度時,過多的銅會揮發至環境中造成爐體汙染,更可能發生樣品黏附在爐體或其他工件上的問題;因此,較佳的熱處理持溫溫度為1000 ℃-1085 ℃之間。
而就熱處理之時間而言,係至少超過1分鐘,確保有充足時間使抗菌元素擴散至基材內部,而時間長短可依據鋼材的種類與目標抗菌合金層厚度等進行調整;當熱處理時間增加,抗菌元素擴散距離增長,使抗菌合金層增厚;但當熱處理時間過長時,會增加抗菌元素固溶稀釋於不銹鋼基材中,造成披覆製程、抗菌金屬以及能源的浪費;因此,較佳之熱處理時間係介於1分鐘至100小時以內。
S004:完成擴散熱處理之不銹鋼材料,係可依據目標的組織結構,使用任意降溫速率或方式回復至室溫,而於本實施例中,將所述具抗菌金屬層之不銹鋼降溫處理,係透過自然冷卻,或透過爐冷(Furnace cooling)、空冷(Air cooling)或淬火(Quench)之至少其一者以進行降溫處理,以最終使降將至室溫,並促使部分固溶於不銹鋼內的銅元素析出。
藉此,本發明之方法,於抗菌金屬層為銅時,銅濃度會由不銹鋼表面,隨其擴散而逐漸遞減,在熱處理的過程中,銅元素會優先通過擴散速率較快的晶界處進入不銹鋼內部,因此在靠近表層的晶界會有明顯的銅元素富集現象,並進一步擴散至不銹鋼母相內,並固溶於晶粒內,由於常溫銅的飽和溶解度比其在高溫狀態為低,因此在降溫的過程中,會使一部分原本固溶在晶粒內的銅元素偏析,形成晶粒內的富銅相;而在晶界處因為有銅元素富集的現象,更易造成富銅相的析出;因此,在不銹鋼表層的晶界處與母材晶粒內會具有高密度富銅相的組織;而隨著深度增加,富銅組織隨之遞減,而銅元素在晶粒內的濃度也逐漸遞減趨近原來之化學組成。
就抗菌合金層之厚度而言,當不銹鋼中固溶銅元素達3 wt%以上時,即可產生有效的抗菌效果;因此,於本發明中,對於擴散深度或抗菌合金層厚度,皆係以不銹鋼表面為基準,向內量測至基材中銅固溶量為3 wt%處的距離;此基準點不含擴散處理後殘餘銅鍍層前驅物;在本發明中抗菌合金層厚度的測定,係利用掃描式電子顯微鏡(Scanning electron microscope, SEM)觀察顯微組織結構,同時搭配附屬之能量散佈光譜儀(Energy-dispersive X-ray spectroscopy, EDS)進行元素分析,量測銅元素擴散深度;為提高量測的定量精度,EDS採點量測,並在數個不同位置進行垂直縱深分析,以確認抗菌合金層厚度
藉此本發明茲舉以下複數實施例進行進一步說明,惟其僅係示例性的說明,並非用以限定本發明所請之範疇。
本發明之實驗例,不銹鋼係選用440C不銹鋼(SS440C)其化學成分如下表1所示;其係以下述方式進行預處理:首先,將不銹鋼棒材裁切成20 mm長、12 mm寬、以及0.2 mm厚之大小後,以碳化矽砂紙或其他研磨材料研磨去除表面殘銹或異物,或使表面具有適當的粗糙度;而後使用去離子水清洗試片,並以超音波震盪洗清試片表面,完成試片清洗;將試片放入鍍液中施行電鍍,後續以去離子水清洗試片表面後,進行擴散熱處理;擴散熱處理在保護性氣體中執行,熱處理溫度範圍800℃-1080℃,熱處理時間1至36小時,最後冷卻至室溫。
【表1】
元素 材料 C Mn P S Si Cr Mo Fe
SS440C 0.95-1.20 <1.00 <0.04 <0.03 <1.00 16.00-18.00 <0.75 Bal.
(單位:wt%)
各不銹鋼所實施之處理參數如下表二所示:
【表2】
試樣編號(No.) 鋼種   輔助介質厚度(um) 電鍍時間 熱處理 附注
銅 (min) 持溫溫度(℃) 持溫時間(hr)
1 SS440C 1.5 10 1000 5 本發明實驗例
2 SS440C 1 10 1000 24
3 SS440C 1.4 10 1000 24
4 SS440C 1.9 10 1000 24
5 SS440C 2.8 10 1000 24
6 SS440C 1.4 10 800 12
7 SS440C 1.3 10 1000 12
8 SS440C 1.7 10 1080 12
9 SS440C 1.8 10 1080 24
10 SS440C 1.7 10 1080 36
11 SS440C 0 10 1000 5 比較例
[輔助介質層的影響]
請參閱第2a圖所示,其係試樣編號No.1試樣完成電鍍後的橫截面顯微組織,輔助介質層係以三明治結構的方式介在不銹鋼基材與銅層之間;而其經熱處理後,係如第2b圖所示,其仍可辨別殘留銅層明顯存在於不銹鋼基材表面;在殘留銅前驅物之下的不銹鋼基材表面,經過放大倍率下的影像顯示如第2c圖所示,可發現明顯富銅析出相的生成;反之,未實施擴散輔助介質處理的試樣編號No.11,其係本實驗例之比較例,其經熱處理後試樣基材內部無富銅相的析出,如第2d圖所示;而將試樣編號No.1與No.11二試片的EDS成分梯度分析結果加以比較,如第3圖所示,可見試樣編號No.1之實驗例有明顯銅擴散效果,其擴散距離可達20 μm;而未經過輔助介質層處理的試樣編號No.11試樣,則未發現銅擴散並固溶至不銹鋼內部的現象。
[輔助介質層厚度的影響]
請參閱第4圖所示,其呈現不同輔助介質層厚度對銅擴散影響之比較;試樣編號No.2、No.3、No.4與No.5係施以不同輔助介質層厚度,而後實施銅電鍍及擴散熱處理,並以EDS分析銅元素成分梯度的變化;分析結果顯示試樣編號No.2之銅擴散深度為17.5 μm,No.3為26.7 μm,No.4為30.0 μm,No.5為32.1 μm;此結果顯示,隨著輔助介質層厚度增加,銅在不銹鋼母材內的擴散深度亦增加,且在靠近表面的不銹鋼內固溶的銅濃度也隨之提升;前述結果顯示,擴散輔助介質的使用,可以促進銅在不銹鋼表面發生固溶及合金化的明顯效果。
[熱處理溫度影響]
續請參閱第5圖所示,其係顯示不同熱處理溫度對銅濃度之分佈;試樣編號No.6、No.7及No.8,係分別在800 ℃、1000 ℃與1080 ℃下進行熱處理,持溫時間均為12小時後,銅元素濃度梯度分析結果,以銅濃度為3 wt%為基準,銅擴散深度分別為6 μm (No.6), 18 μm (No.7)和25 μm (No.8);此結果說明提高熱處理溫度能有效促進銅的擴散深度,並且增加抗菌合金層的厚度。
[熱處理時間影響]
如第6圖所示者,其係在恆溫下,熱處理持溫時間對固溶於不銹鋼內之銅元素濃度分布的影響;在1080 ℃恆溫下,試樣編號No.8、No.9和No.10分別施以12小時、24小時與36小時的熱處理後,以銅濃度為3 wt%為基準,銅元素擴散深度分別為25 μm, 55 μm及60 μm;由此觀之,在恆溫下增加熱處理時間能促進銅元素的擴散,並且增加抗菌合金層的厚度。
[不同深度平面的組織形貌]
再請參閱第7圖左所示,其係試樣編號No.8在緊接著銅前驅物之下的近表面橫截面影像,而第7圖右則係從表面依序研磨至不同銅元素擴散深度位置的表面(垂直於銅擴散方向)影像;經SEM/EDS分析結果顯示,銅濃度確實隨擴散距離增加而下降,且在銅濃度降低約2 wt%時,SEM影像上仍可發現銅析出物的存在。
[抗菌測試]
抗菌性質測試則係以DH5α大腸桿菌作為測試菌種,取濃度為 CFU/ml之菌液分別接種於經抗菌處理與未處理之不銹鋼試片,控制測試面積為15 mm × 10 mm,在37℃下培養24小時;後續使用磷酸鹽緩衝生理鹽水(Phosphate buffered saline, PBS)將菌液洗脫後,使用標準平板計數法(Standard plate count method)計算菌落數後,將兩試片之菌落數依照下數學式1得出抗菌處理試片的抗菌率。
【數學式1】
藉此,經表面合金化之含銅不銹鋼進行抗菌測試,結果係如第8圖所示,顯示本實驗例經表面合金化之含銅不銹鋼具有優異的抗菌效果,證實透過本發明能有效地在不銹鋼表面生成抗菌合金層。
綜上所述,本發明所揭露之技術手段確能有效解決習知等問題,並達致預期之目的與功效,且申請前未見諸於刊物、未曾公開使用且具長遠進步性,誠屬專利法所稱之發明無誤,爰依法提出申請,懇祈  鈞上惠予詳審並賜准發明專利,至感德馨。
惟以上所述者,僅為本發明之數種較佳實施例,當不能以此限定本發明實施之範圍,即大凡依本發明申請專利範圍及發明說明書內容所作之等效變化與修飾,皆應仍屬本發明專利涵蓋之範圍內。
S001~S004:步驟
第1圖係本發明之流程圖。 第2a圖係本發明試樣編號No.1於披覆抗菌金屬層後,經熱處理前之SEM橫截面影像。 第2b圖係本發明試樣編號No.1經熱處理後之SEM橫截面影像。 第2c圖係本發明試樣編號No.1經熱處理後,表面局部放大之SEM橫影像。 第2d圖係本發明試樣編號No.11經熱處理後之SEM橫截面影像。 第3圖係本發明試樣編號No.1及試樣編號No.11經熱處理後,SEM橫截面影像與銅濃度分布對照圖。 第4圖係本發明不同輔助介質層厚度之試樣編號No.2、No.3、No.4與No.5,SEM橫截面影像與銅濃度分布對照比較圖。 第5圖係本發明不同熱處理溫度之實試樣編號No.6、No.7及No.8,SEM橫截面影像與銅濃度分布對照比較圖。 第6圖係本發明不同熱處理持溫時間之實試樣編號No.8、No.9及No.10,SEM橫截面影像與銅濃度分布對照比較圖。 第7圖係本發明試樣編號No.8經熱處理後,SEM橫截面影像與擴散深度位置表面SEM影像對照圖。 第8圖係本發明製得具抗菌合金層之不銹鋼,對照一般不銹鋼及本發明使用無菌試液,之抗菌測試結果圖。
S001-S003:步驟

Claims (10)

  1. 一種表面合金化製備抗菌不銹鋼之方法,其步驟包含: 於一不銹鋼表面披覆一輔助介質層; 於該輔助介質層表面批覆一抗菌金屬層;以及 將該不銹鋼進行熱處理,使抗菌金屬擴散至該不銹鋼內。
  2. 如請求項1所述之表面合金化製備抗菌不銹鋼之方法,其中,該不銹鋼為肥粒鐵系不銹鋼(Ferritic stainless steel)、沃斯田鐵系不銹鋼(Austenitic stainless steel)、麻田散鐵系不銹鋼(Martensitic stainless steel)、雙相不銹鋼(Duplex stainless steel)之至少其一者。
  3. 如請求項1所述之表面合金化製備抗菌不銹鋼之方法,其中,該抗菌金屬層係透過物理氣相沉積(Physical vapor deposition)、化學氣相沉積(Chemical vapor deposition)、電鍍(Electroplating)或無電電鍍(Autocatalytic plating)之至少其一者,以披覆於該不銹鋼表面者。
  4. 如請求項1所述之表面合金化製備抗菌不銹鋼之方法,其中,該抗菌金屬層披覆於該不銹鋼表面時之厚度係介於0.1μm至15μm之間。
  5. 如請求項1所述之表面合金化製備抗菌不銹鋼之方法,其中,該熱處理係於保護氣氛中加熱至600℃以上,且加熱時間係大於1分鐘。
  6. 如請求項5所述之表面合金化製備抗菌不銹鋼之方法,其步驟更包含,將所述具抗菌金屬層之不銹鋼,透過爐冷(Furnace cooling)、空冷(Air cooling)或淬火(Quench)之至少其一者以進行降溫處理。
  7. 如請求項1所述之表面合金化製備抗菌不銹鋼之方法,其中,該降溫處理係將所述具抗菌金屬層之不銹鋼降將至室溫者。
  8. 如請求項1所述之表面合金化製備抗菌不銹鋼之方法,其中,該抗菌金屬為銅。
  9. 如請求項1至請求項8中任一項所述之表面合金化製備抗菌不銹鋼之方法,其中,該輔助介質層為銀、鈷、鎳、鋅或鉬之其一或組合者。
  10. 如請求項9所述之表面合金化製備抗菌不銹鋼之方法,其中,該輔助元素之含量係小於該抗菌金屬之含量者。
TW111135184A 2022-09-16 2022-09-16 表面合金化製備抗菌不銹鋼之方法 TWI832432B (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
TW111135184A TWI832432B (zh) 2022-09-16 2022-09-16 表面合金化製備抗菌不銹鋼之方法
CN202211430492.9A CN117721464A (zh) 2022-09-16 2022-11-15 表面合金化制备抗菌不锈钢的方法
US18/056,055 US20240093373A1 (en) 2022-09-16 2022-11-16 Method for preparing antibacterial stainless steel by surface alloying

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW111135184A TWI832432B (zh) 2022-09-16 2022-09-16 表面合金化製備抗菌不銹鋼之方法

Publications (2)

Publication Number Publication Date
TWI832432B TWI832432B (zh) 2024-02-11
TW202413662A true TW202413662A (zh) 2024-04-01

Family

ID=90207494

Family Applications (1)

Application Number Title Priority Date Filing Date
TW111135184A TWI832432B (zh) 2022-09-16 2022-09-16 表面合金化製備抗菌不銹鋼之方法

Country Status (3)

Country Link
US (1) US20240093373A1 (zh)
CN (1) CN117721464A (zh)
TW (1) TWI832432B (zh)

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114364822B (zh) * 2020-01-21 2023-02-28 日铁不锈钢株式会社 具有抗菌性和抗病毒性的不锈钢材料及其制造方法
CN112959755A (zh) * 2021-02-03 2021-06-15 上海华杰生态环境工程有限公司 一种多层抗菌不锈钢材料及其制备方法

Also Published As

Publication number Publication date
TWI832432B (zh) 2024-02-11
CN117721464A (zh) 2024-03-19
US20240093373A1 (en) 2024-03-21

Similar Documents

Publication Publication Date Title
US8293028B2 (en) Method for carburizing steel components
Nishimoto et al. Effect of screen open area on active screen plasma nitriding of austenitic stainless steel
CN111441025B (zh) 一种耐腐蚀高熵合金薄膜、制备方法及其在海水环境下的应用
JPWO2012115135A1 (ja) 窒化鋼部材およびその製造方法
CN109487205A (zh) 一种在金属表面制备碳化物陶瓷层的间隙原子渗碳方法
TW202413662A (zh) 表面合金化製備抗菌不銹鋼之方法
JP5616082B2 (ja) セラミックス被覆材の製造方法
Kikuchi et al. Effects of Fine Particle Peening on Oxidation Behavior of Nickel–Titanium Shape Memory Alloy
Zeng et al. Surface nitrocarburizing of Ti-6Al-4 V alloy by YAG laser irradiation
JP2010202926A (ja) 硬質被膜を有する球状化黒鉛鋳鉄材、プレス用金型、及び硬質被膜を有する球状化黒鉛鋳鉄材の製造方法
Wu et al. Ion nitriding of TiNi shape memory alloys I. Nitriding parameters and microstructure characterization
Shchelkunov et al. Study of the hardness distribution after induction heat treatment of titanium over the surface and the cross-section
Macedo et al. Study of surface modification of niobium caused by nitriding and cathodic cage deposition
TW202115267A (zh) 模具及模具之製造方法
JP2010222649A (ja) 炭素鋼材料の製造方法および炭素鋼材料
Ramdan et al. The effect of thermo-mechanical treatment of substrate preparation and carburizing temperature on the morphology and hardness of carburizing on low carbon steel
JP2016194111A (ja) 鋼部材の窒化処理方法
Khosravi et al. Comparative tribological study of NiTi diffusion coated titanium with pure titanium
Sharma et al. A study of plasma nitriding process on the AISI 4140 steel
Sánchez et al. Tribological behavior of a self-lubricant surface film of h3bo3 formed on a borided biomedical steel by a post-treatment
Wang et al. High temperature oxidation behavior and morphology evolution of galvannealed coating in hot stamping
Mokhtara et al. Plasma Nitriding of Hard Chromium Electroplated Low Alloy AISI 4340 Steel in Pure Nitrogen Gas Atmosphere
Rousseau Metallurgical characterization and performance of high speed steel tool materials used in metal cutting applications
CN113174511A (zh) 一种具有优良力学性能的β钛合金材料及其制备方法
JPH04200557A (ja) 生体用インプラント材料