TW202412843A - 新藥物複合體 - Google Patents

新藥物複合體 Download PDF

Info

Publication number
TW202412843A
TW202412843A TW112130146A TW112130146A TW202412843A TW 202412843 A TW202412843 A TW 202412843A TW 112130146 A TW112130146 A TW 112130146A TW 112130146 A TW112130146 A TW 112130146A TW 202412843 A TW202412843 A TW 202412843A
Authority
TW
Taiwan
Prior art keywords
copolymer
group
drug
hydrogen atom
antibody
Prior art date
Application number
TW112130146A
Other languages
English (en)
Inventor
鈴木健一
吉田英雄
藤卷暢宏
細野薰里
Original Assignee
日商興和股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日商興和股份有限公司 filed Critical 日商興和股份有限公司
Publication of TW202412843A publication Critical patent/TW202412843A/zh

Links

Abstract

本發明提供一種可用於藥物之傳遞技術之新穎共聚物。 本發明係關於一種於包含以下之式(A)、(B)及(C)所表示之構造單位之共聚物X結合有標靶識別分子之藥物複合體。 [式中,R 1、R 2及R 3為相同或不同,表示氫原子或C 1-3烷基;R 4表示C 1-3烷基;R 5表示氫原子、C 1-18烷基、可具有取代基之3~8員環烷基、金剛烷基、可具有取代基之C 6-18芳基或可具有取代基之5~10員雜芳基;X 1、X 2及X 3為相同或不同,表示氧原子、硫原子或N-R 7;R 6表示氫原子、脫離基或連接基;R 7表示氫原子或C 1-3烷基;m表示1~100之整數;n表示0~3之整數]

Description

新藥物複合體
本發明係關於一種可用於藥物傳遞技術之新穎共聚物。更詳細而言,本發明係關於一種以腫瘤為標靶之藥劑傳遞載體用之共聚物、使該共聚物擔載抗癌劑等生理活性物質所成之醫藥用組成物、含有該組成物之醫藥品。
近年來,作為對疾病部位高效且安全地傳遞藥物之技術,業界正盛行有關藥物遞送系統(Drug delivery system,DDS)相關之研究。其中,作為利用疾病部位之構造上的特性以提高藥物集聚之選擇性的技術中,以奈米粒子作為藥物傳遞載體之DDS之需求正在提昇中。
例如於實體固態癌組織中,相較於正常血管之下,由於新生血管(腫瘤血管)之構造尚未成熟,因而於血管內皮產生數百nm左右之細胞間隙,物質之透過性較高。已知藉由該構造性特徵,包含奈米粒子之高分子量體選擇性地透過腫瘤血管而集聚於實體固態癌組織中。進而,於實體固態癌組織中,參與高分子排出之淋巴系統發生功能障礙,因此所滲透之奈米粒子於組織內持續滯留(Enhanced permeability and retention effect,EPR效應)。通常之低分子藥劑因血管細胞之膜透過而漏出至血管外,因此非選擇性地分佈於組織,而未集聚於實體固態癌組織。根據EPR效應之方法論,利用奈米粒子之藥物傳遞,係向組織中之分佈被血管內皮細胞間隙之透過性所支配,因此於藥物之分佈中提高了對實體固態癌之組織選擇性。因此,EPR效應成為以實體固態癌為標靶之奈米技術應用醫藥品(奈米醫學)之開發中有力的學術根據。
EPR效應中藥物之傳遞過程係經由血流,且認為奈米粒子之向血管外漏出過程為被動進行。因此,為了使奈米粒子對實體固態癌之集聚最大化,重要的是對成為藥物傳遞載體之奈米粒子的構成成分可賦予耐受長期之血中滯留之分子設計。因此,對於藥物傳遞載體要求避開與血液構成成分之非特異性相互作用、肝臟、脾臟、及肺中利用網狀內皮系統(reticuloendothelial system,RES)之異物識別、腎臟中之絲球體過濾等障礙之能力。又,已知該等障礙可藉由粒徑或利用生物相容性高分子之表面修飾等粒子特性之最佳化而克服。例如藥物傳遞載體之粒徑較理想者為大於作為腎清除之閾值之約6 nm,且小於可避免利用RES之識別之200 nm。
又,已知藥物傳遞載體之粒徑亦會對疾病部位中之組織滲透性造成影響。例如,當對表現出同等之血中滯留性之粒徑30 nm、50 nm、70 nm及100 nm的藥物內包奈米粒子之抑癌活性進行比較研究,可知由於粒徑30 nm之藥物內包奈米粒子會到達疾病部位深部,因而表現出最高之治療效果(非專利文獻1)。因此,被認為以實體固態癌為標靶之藥物傳遞載體用之奈米粒子之粒徑較理想為於可避免腎清除之範圍內的儘可能為小徑。
作為藥物傳遞載體用之奈米粒子,正被開發如下之方法:使用脂質體、乳劑、或奈米顆粒等膠體分散體之方法;使用白蛋白等生物源性原料之方法;使用天然多糖類等天然高分子之方法;或使用合成高分子之方法。其中,合成高分子係藉由適當地選擇成為構成成分之單體與合成方法,其可製備粒徑被精密地控制之奈米粒子,因此被通用為藥物傳遞載體之構成成分。
例如,已揭示有包含親水性鏈段與疏水性鏈段之兩親媒性嵌段共聚合體之作為藥物傳遞載體的利用方法。該嵌段共聚合體以分子間之疏水性相互作用等作為驅動力,於水性介質中自發地締合,形成核殼型奈米粒子(高分子微胞)。已知該高分子微胞之疏水性鏈段可內包或結合低分子藥劑,所獲得之藥物內包高分子微胞表現出較高之血中穩定性,並且相較於低分子藥劑之溶液投予,藉由經由EPR效應之對實體固態癌之選擇性之集聚而產生較高之抑癌活性(專利文獻1)。然而,高分子微胞係數個分子之締合體,因此可製備之下限值為粒徑約30 nm左右,其難以控制於可避免腎清除之影響之粒徑10 nm附近的微細尺寸。
另一方面,已知於藉由合成高分子所形成之奈米粒子中,以單鏈內之化學交聯、疏水性相互作用、離子鍵結等作為驅動力形成粒子者(以下簡記為單鏈奈米顆粒(SCNP,single chain nanoparticle)),係形成粒徑20 nm以下之小徑之奈米粒子(非專利文獻2)。因此,雖然被期待SCNP作為藥物傳遞載體之有用性,但至今尚未發現有可精密地控制其粒徑之技術。
作為其他的藥物傳遞技術,有可將細胞毒殺劑(藥物)標靶向傳遞至抗原表現腫瘤細胞之抗體-藥物複合體(ADC)(非專利文獻3~5)。ADC具有抗體(Ab)、連接基及藥物之3種成分。為了進行對標靶之局部傳遞,而將藥物連結或複合於抗體。複合方法通常為經由抗體之離胺酸側鏈之胺基、或將鏈間雙硫鍵還原所獲得之半胱胺酸硫氫基進行之化學修飾。ADC之設計依然較難,其必須控制數種要素(例如抗體之選擇、連接基之穩定性、藥物/毒素(有效負載)及其切斷動態等)。其中,重要之參數為對單一抗體之有效負載數(藥物抗體比或DAR(Drug Antibody ratio))。結合有大量藥物/毒素分子之抗體表現出對標靶抗原之結合障礙、或自血流之活體內清除率較快速,通常1個抗體僅可結合數量有限之藥物/毒素分子(通常DAR為4~6)。其結果,為了獲得可殺傷標靶細胞之充分有效性,必須使用IC50未滿1 nM之毒性非常高之藥劑(例如卡奇黴素或奧瑞他汀單甲酯(MMAE)等)(非專利文獻6、7等)。因此,若複合物之一小部分脫靶,則會出現重大之有害作用。如上所述,其需要兼具較高之有效性與提高之耐受性之新穎方法。 [先前技術文獻] [專利文獻]
[專利文獻1]日本專利第3270592號公報 [非專利文獻]
[非專利文獻1]H. Cabral et al., Nat. Nanotechnol. 6 815-823(2011) [非專利文獻2]Jose A. Pomposo, Single-Chain Polymer Nanoparticles:Synthesis, Characterization, Simulations, and Applications(2017) [非專利文獻3]Chari, R.V. et al., Angew. Chem. Int. Ed. 53, 3796-3827(2014) [非專利文獻4]Jagadeesh, D., Smith, M. R., Curr. Treat. options Oncol. 17, 55(2016) [非專利文獻5]Ducry, L., Stump, B., Bioconjugate Chem. 21, 5-13(2010) [非專利文獻6]Casi, G., Neri, D., J. Controlled Release 161, 422-428(2012) [非專利文獻7]Wu, A. M., Senter, P. D., Nat. Biotechnol. 23, 1137-1146(2005)
(發明所欲解決之問題)
本發明之課題在於提供一種以腫瘤為標靶之藥劑傳遞載體用之共聚物。更詳細而言,本發明之課題在於提供一種可用於提升藥物之血中滯留性及/或腫瘤集聚性之藥物傳遞載體用之共聚物。 (解決問題之技術手段)
本發明人等為了解決上述課題而進行銳意研究,其過程中發現丙烯酸衍生物之三元共聚合體於水中形成SCNP之特性。又,其成功創製了可進行將SCNP控制為20 nm以下之10 nm左右之微小規格的精密之粒徑控制,除此以外,腫瘤集聚性較高之藥物傳遞載體用之共聚物。將使該聚合物經擔載或結合抗癌劑之藥物複合體投予至癌之皮下移植模型小鼠,結果可發揮出優異之抗腫瘤效果。
本發明係關於以下發明。 [1]一種共聚物,其於具有以下式(A)、(B)及(C)所表示之構造單位之共聚物X結合有標靶識別分子。
[化1]
[式中,R 1、R 2及R 3為相同或不同,表示氫原子或C 1-3烷基;R 4表示C 1-3烷基;R 5表示氫原子、C 1-18烷基、可具有取代基之3~8員環烷基、金剛烷基、可具有取代基之C 6-18芳基或可具有取代基之5~10員雜芳基;X 1、X 2及X 3為相同或不同,表示氧原子、硫原子或N-R 7;R 6表示氫原子、脫離基或連接基;R 7表示氫原子或C 1-3烷基;m表示1~100之整數;n表示0~3之整數] [2]如上述[1]所記載之共聚物,其中,上述共聚物X係藉由以下通式(1)~(3) 所表示之3種單體之聚合所形成之共聚物:
[化2]
[式中,R 1、R 2及R 3為相同或不同,表示氫原子或C 1-3烷基;R 4表示C 1-3烷基;R 5表示氫原子、C 1-18烷基、可具有取代基之3~8員環烷基、金剛烷基、可具有取代基之C 6-18芳基或可具有取代基之5~10員雜芳基;X 1、X 2及X 3為相同或不同,表示氧原子、硫原子或N-R 7;R 6表示氫原子、脫離基或連接基;R 7表示氫原子或C 1-3烷基;m表示1~100之整數;n表示0~3之整數]。 [3]如上述[1]或[2]所記載之共聚物,其中,R 1為氫原子。 [4]如上述[1]至[3]中任一項所記載之共聚物,其中,R 2為氫原子。 [5]如上述[1]至[4]中任一項所記載之共聚物,其中,R 3為氫原子。 [6]如上述[1]至[5]中任一項所記載之共聚物,其中,R 4為甲基。 [7]如上述[1]至[6]中任一項所記載之共聚物,其中,R 5為可具有取代基之C 6-18芳基。 [8]如上述[1]至[7]中任一項所記載之共聚物,其中,R 5為苯基。 [9]如上述[1]至[8]中任一項所記載之共聚物,其中,R 6為氫原子。 [10]如上述[1]至[8]中任一項所記載之共聚物,其中,R 6之脫離基係由下式(4) 所表示之基:
[化3]
[11]如上述[1]至[8]中任一項所記載之共聚物,其中,R 6之連接基係由下式(5) 所表示之基:
[化4]
[式中,R 8表示氫原子、或藥物;Ak 1表示C 1-7伸烷基鍵;X 4表示氧原子、硫原子或-N(R 7)-(R 7表示氫原子或C 1-3烷基)]。 [12]如上述[1]至[11]中任一項所記載之共聚物,其中,X 1為氧原子。 [13]如上述[1]至[12]中任一項所記載之共聚物,其中,X 2為氧原子。 [14]如上述[1]至[13]中任一項所記載之共聚物,其中,X 3為氧原子或NH。 [15]如上述[1]至[14]中任一項所記載之共聚物,其中,m為4~22之整數。 [16]如上述[1]至[15]中任一項所記載之共聚物,其中,n為1。 [17]如上述[1]至[16]所記載之共聚物,其中,有關構造單位(A)、(B)、(C)之比率,對1質量份之(A)係包含0.01~100質量份之(B)、及0.1~100質量份之(C)。 [18]如上述[2]至[16]中任一項所記載之共聚物,其中,對1質量份之單體(1),係使0.01~100質量份之單體(2)與0.1~100質量份之單體(3) 聚合而成。 [19]如上述[1]至[18]中任一項所記載之共聚物,其數量平均分子量為5000~150000。 [20]如上述[1]至[19]中任一項所記載之共聚物,其中,上述標靶識別分子為抗體。 [21]如上述[20]所記載之共聚物,其中,上述抗體為抗表皮生長因子受體(epidermal growth factor receptor,EGFR)抗體、抗Her2抗體、抗CD20抗體、抗CD276抗體、抗MUC1抗體、抗PD-L1抗體、或抗TROP-2抗體。 [22]如上述[20]所記載之共聚物,其中,上述抗體為西妥昔單抗、帕尼單抗、耐昔妥珠單抗、埃萬妥單抗(amivantamab)、帕尼單抗、曲妥珠單抗、帕妥珠單抗、馬吉妥昔單抗、利妥昔單抗、替伊莫單抗、托西莫單抗(tositumomab)、奧法木單抗、奧濱尤妥珠單抗、克利妥珠單抗(clivatuzumab)、伽妥珠單抗(gatipotuzumab)、伊菲那單抗(ifinatamab)、米佐妥單抗(mirzotamab)、博拉米妥單抗(vobramitamab)、阿特珠單抗、阿維魯單抗、度伐魯單抗、賽妥珠單抗(sacituzumab)、或該等之功能性片段。 [23]一種藥物複合體,其包含上述[1]至[22]中任一項所記載之共聚物及藥物。 [24]如上述[23]所記載之藥物複合體,其中,上述藥物係代謝拮抗藥、烷基化劑、蒽環類藥物、抗生素、有絲分裂抑制劑、拓樸異構酶抑制劑、蛋白酶體抑制劑、或抗激素劑。 [25]如上述[23]所記載之藥物複合體,其中,上述藥物為DM0、DM1、DM2、DM3、DM4、美坦辛、奧瑞他汀E、奧瑞他汀苯丙胺酸苯二胺(AFP)、單甲基奧瑞他汀E、單甲基奧瑞他汀D、單甲基奧瑞他汀F、紫杉醇、多西紫杉醇、伊立替康、拓朴替康、諾吉替康、安吖啶、依託泊苷、替尼泊苷、mizantrone、SN-38、依喜替康、或德魯替康。 [26]如上述[23]至[25]中任一項所記載之藥物複合體,其中,標靶識別分子或藥物與上述共聚物X之結合為共價鍵結或非共價鍵結。 [27]如上述[23]至[26]中任一項所記載之藥物複合體,其中,上述標靶識別分子或藥物與上述共聚物X之結合為下式(a):
[化5]
[式中,J 1為與標靶識別分子、或與藥物之結合部;J 2為與共聚物X之結合部;Ak 2、Ak 3分別獨立地表示單鍵、或C 1-7伸烷基鍵;B 1、B 2分別獨立地表示單鍵、醯胺基、或酯鍵;L 1表示單鍵、-(CH 2CH 2O) oCH 2CH 2-、伸苯基、伸環己基、-NH-肽-CO-、或伸苯基-NH-肽-CO-;o表示0~100之整數]。 [28]一種單鏈奈米顆粒,其包含上述[1]至[27]中任一項所記載之共聚物或藥物複合體。 [29]一種醫藥組成物,其包含上述[1]至[28]中任一項所記載之共聚物或藥物複合體。 (對照先前技術之功效)
根據後述實施例可知,使藉由本發明之共聚物自締合所獲得之SCNP擔載或結合抗癌劑所成之物,係於小鼠荷癌模型中表現出腫瘤增大抑制效果,因此其可應用為惡性腫瘤之治療劑。藉由本發明之共聚物自締合所獲得之SCNP擔載或結合抗癌劑所成之物,相較於現有之ADC其可獲得較高之DAR,以低用量即具有較高之腫瘤增大抑制效果,因此其提供一種可兼顧藥理作用之增強與副作用之抑制之惡性腫瘤的治療劑。並且,本發明之結合有標靶識別分子之共聚物可有效用於利用標靶特異性之標靶識別分子之藥物傳遞。
本說明書中所使用之用語除了特別提及之情形之外,均以該領域通常使用之含義使用。以下,對本發明進一步進行詳細說明。 於本說明書中,所謂「奈米粒子」係指表示100 nm以下之粒徑之構造體。
於本說明書中,所謂「單鏈奈米顆粒(SCNP,single chain nanoparticle)」係指以單鏈內之化學交聯、疏水性相互作用、離子鍵結等作為驅動力所形成之奈米粒子。多數情況下表示20 nm以下之奈米粒子中相對較小之粒徑。
於本說明書中,所謂「起始劑」意指偶氮化合物或過氧化物等熱自由基聚合之起始劑。
於本說明書中,所謂「鏈轉移劑」係指自由基聚合中發生鏈轉移反應之化合物,較佳為具有硫羰基之化合物。
於本說明書中,所謂「C 1-3烷基」意指直鏈或支鏈之碳數1~3之烷基,可舉例如甲基、乙基、正丙基、異丙基。
於本說明書中,所謂「C 1-18烷基」意指直鏈或支鏈之碳數1~18之烷基,可舉例如甲基、乙基、正丙基、異丙基、正丁基、異丁基、第二丁基、第三丁基、戊基、己基、庚基、辛基、壬基、癸基、十一烷基、十二烷基、十三烷基、十四烷基、十五烷基、十六烷基、十七烷基、十八烷基等。
於本說明書中,所謂「可具有取代基之3~8員環烷基」意指碳數3~8之環狀烷基,可舉例如環丙基、環丁基、環戊基、環己基、環庚基、環辛基等。作為取代基,並無特別限制,可舉例如鹵素原子、碳數1~6之烷基、碳數2~6之烯基、碳數2~6之炔基、羥基、碳數1~6之烷氧基、胺基、碳數1~6之烷基胺基、烷基為相同或不同之二碳數1~6烷基胺基、硫醇基、碳數1~6之烷硫基、羧基、碳數1~6之烷氧基羰基、胺甲醯基等。
於本說明書中,所謂「可具有取代基之C 6-18芳基」意指單環式或縮環多環式之芳香族烴基,可舉例如苯基、萘基、蒽基、菲基、聯三苯基、芘基、 基、稠四苯基等。又,所謂「可具有取代基之C 6-14芳基」意指單環式或縮環多環式之芳香族烴基,可舉例如苯基、萘基、蒽基、菲基等。作為取代基,並無特別限制,可舉例如鹵素原子、碳數1~6之烷基、碳數2~6之烯基、碳數2~6之炔基、羥基、碳數1~6之烷氧基、胺基、碳數1~6之烷基胺基、烷基相同或不同之二碳數1~6之烷基胺基、硫醇基、碳數1~6之烷硫基、羧基、碳數1~6之烷氧基羰基、胺甲醯基等。
於本說明書中,所謂「可具有取代基之5~10員雜芳基」意指作為構成環之原子為除了碳原子以外包含自氮原子、氧原子及硫原子中選擇之1~4個雜原子之5~10員之單環芳香族雜環基或縮合芳香族雜環基。作為單環芳香族雜環基,可舉例如呋喃基、噻吩基、吡咯基、吡啶基、吡 基、嘧啶基、嗒 基、咪唑基、吡 基、噻唑基、 唑基、異 唑基、1,3,4-噻二唑基、1,2,3-三唑基、1,2,4-三唑基、四唑基等。作為縮合芳香族雜環基,可舉例如苯并呋喃基、苯并噻吩基、喹 啉基、吲哚基、異吲哚基、異苯并呋喃基、 基、苯并咪唑基、苯并噻唑基、苯并 唑基、喹啉基、異喹啉基等。又,所謂「可具有取代基之6~10員雜芳基」意指作為構成環之原子而除了碳原子以外包含自氮原子、氧原子及硫原子中選擇之1~4個雜原子之6~10員之單環芳香族雜環基或縮合芳香族雜環基。作為單環芳香族雜環基,可舉例如吡啶基、吡 基、嘧啶基、嗒 基等。作為縮合芳香族雜環基,可舉例如苯并呋喃基、苯并噻吩基、喹 啉基、吲哚基、異吲哚基、異苯并呋喃基、 基、苯并咪唑基、苯并噻唑基、苯并 唑基、喹啉基、異喹啉基等。作為取代基,並無特別限制,可舉例如鹵素原子、碳數1~6之烷基、碳數2~6之烯基、碳數2~6之炔基、羥基、碳數1~6之烷氧基、胺基、碳數1~6之烷基胺基、烷基相同或不同之二碳數1~6之烷基胺基、硫醇基、碳數1~6之烷硫基、羧基、碳數1~6之烷氧基羰基、胺甲醯基等。
於本說明書中,作為「鹵素原子」,可舉例如氟原子、氯原子、溴原子、碘原子等。
於本說明書中,所謂「C 1-7伸烷基鍵」意指可經取代之直鏈或支鏈之碳數1~7之伸烷基,可舉例如亞甲基、伸乙基、伸丙基、伸丁基、伸戊基、伸己基、伸庚基、-CH(CH 3)-、-C(CH 3) 2-、-CH(CH 2CH 3)-、-CH(CH 3)CH 2-、-CH(CH 2CH 2CH 3)-、-CH(CH 2(CH 3) 2)-、-C(CH 3)(CH 2CH 3)-、-C(CH 3) 2CH 2-、-CH(CH 2CH 3)CH 2-、-CH(CH 3)CH(CH 3)-、-CH(CH 3)CH 2CH 2-、-CH 2CH(CH 3)CH 2-、-CH(CH 2CH 2CH 2CH 3)-、-C(CH 3)(CH 2CH 2CH 3)-、-C(CH 2CH 3) 2-、-CH(CH 2CH 2CH 3)CH 2-、-CH(CH 2(CH 3) 2)CH 2-、-C(CH 3)(CH 2CH 3)CH 2-、-C(CH 3) 2CH(CH 3)-、-CH(CH 2CH 3)CH(CH 3)-、-C(CH 3) 2CH 2CH 2-、-CH(CH 2CH 3)CH 2CH 2-、-CH 2CH(CH 2CH 3)CH 2-、-CH(CH 3)CH(CH 3)CH 2-、-CH(CH 3)CH 2CH(CH 3)-、-CH(CH 2CH 2CH 2CH 2CH 3)-、-C(CH 3)(CH 2CH 2CH 2CH 3)-、-C(CH 2CH 3)(CH 2CH 2CH 3)-、-C(CH 2CH 3)(CH 2(CH 3) 2)-、-CH(CH 2CH 2CH 2CH 3)CH 2-、-CH(CH(CH 3)CH 2CH 3)CH 2-、-CH(CH 2CH(CH 3)CH 3)CH 2-、-CH(CH 2CH 2(CH 3) 2)CH 2-、-C(CH 3)(CH 2CH 2CH 3)CH 2-、-C(CH 2CH 3) 2CH 2-、-CH(CH 2(CH 3) 2)CH 2-、-C(CH 3)(CH 2CH 3)CH(CH 3)-、-CH(CH 2CH 3)C(CH 3) 2-、-CH(CH 2CH 3)CH(CH 2CH 3)-、-C(CH 3) 2C(CH 3) 2-、-CH(CH 2CH 2CH 3)CH 2CH 2-、-CH(CH 2(CH 3) 2)CH 2CH 2-、-CH 2CH(CH 2CH 2CH 3)CH 2-、-CH 2CH(CH 2(CH 3) 2)CH 2-、-C(CH 3)(CH 2CH 3)CH 2CH 2-、-CH(CH 2CH 3)CH(CH 3)CH 2-、-CH(CH 2CH 3)CH 2CH(CH 3)-、-CH 2CH(CH 2CH 3)CH(CH 3)-、-CH(CH 3)CH(CH 3)CH(CH 3)-、-C(CH 3) 2CH(CH 3)CH 2-、-C(CH 3) 2CH 2CH(CH 3)-、-CH(CH 2CH 3)CH 2CH 2CH 2-、-CH 2CH(CH 2CH 3)CH 2CH 2-、-C(CH 3) 2CH 2CH 2CH 2-、-CH(CH 3)CH(CH 3)CH 2CH 2-、-CH(CH 3)CH 2CH(CH 3)CH 2-、-CH(CH 3)CH 2CH 2CH(CH 3)-、-CH(CH 3)CH 2CH 2CH 2CH 2-、-CH 2CH(CH 3)CH 2CH 2CH 2-、-CH 2CH 2CH(CH 3)CH 2CH 2-、-C(CH 2CH 3)(CH 2CH 2CH 2CH 3)-、-C(CH 2CH 2CH 3) 2-、-C(CH 3)(CH 2CH 2CH 2CH 3)CH 2-、-C(CH 3)(CH(CH 3)CH 2CH 3)CH 2-、-C(CH 3)(CH 2CH(CH 3)CH 3)CH 2-、-C(CH 3)(CH 2CH 2(CH 3) 2)CH 2-、-CH(CH 2CH 2CH 2CH 3)CH(CH 3)-、-CH(CH(CH 3)CH 2CH 3)CH(CH 3)-、-CH(CH 2CH(CH 3)CH 3)CH(CH 3)-、-CH(CH 2CH 2(CH 3) 2)CH(CH 3)-、-C(CH 3)(CH 2CH 2CH 3)CH(CH 3)-、-C(CH 2CH 3) 2CH(CH 3)-、-CH(CH 2(CH 3) 2)CH(CH 3)-、-C(CH 3)(CH 2CH 3)C(CH 3) 2-、-C(CH 3)(CH 2CH 2CH 3)CH 2CH 2-、-CH(CH 2CH 2CH 3)CH(CH 3)CH 2-、-CH(CH 2CH 2CH 3)CH 2CH(CH 3)-、-CH 2CH(CH 2CH 2CH 3)CH(CH 3)-、-C(CH 3)(CH 2CH 3)CH(CH 3)CH 2-、-C(CH 3)(CH 2CH 3)CH 2CH(CH 3)-、-CH(CH 2CH 3)C(CH 3) 2CH 2-、-CH(CH 2CH 3)CH(CH 3)CH(CH 3)-、-CH(CH 2CH 3)CHCH(CH 3) 2-、-C(CH 3) 2CH(CH 2CH 3)CH 2-、-CH(CH 3)C(CH 3)(CH 2CH 3)CH 2-、-CH(CH 3)CH(CH 2CH 3)CH(CH 3)-、-C(CH 3) 2CH(CH 3)CH(CH 3)-、-CH(CH 3)C(CH 3) 2CH(CH 3)-、-C(CH 3) 2CH(CH 3)CH 2CH 2-、-C(CH 3) 2CH 2CH(CH 3)CH 2-、-C(CH 3) 2CH 2CH 2CH(CH 3)-、-CH(CH 3)C(CH 3) 2CH 2CH 2-、-CH(CH 3)CH(CH 3)CH(CH 3)CH 2-、-CH(CH 3)CH(CH 3)CH 2CH(CH 3)-、-CH(CH 3)CH(CH 3)CH 2CH 2CH 2-、-CH(CH 3)CH 2CH(CH 3)CH 2CH 2-、-CH(CH 3)CH 2CH 2CH(CH 3)CH 2-、-CH(CH 3)CH 2CH 2CH 2CH(CH 3)-、-C(CH 3) 2CH 2CH 2CH 2CH 2-、或-CH(CH 2CH 3)CH 2CH 2CH 2CH 2-等。作為取代基,並無特別限制,可取代任意之氫原子,可舉例如苯氧基、羧酸、磺酸、磷酸、羥基、或硫醇基等。
於本說明書中,所謂「標靶識別分子」係識別於細胞表面表現之標記物或受體(例如跨膜蛋白、表面不溶化蛋白質、或蛋白多糖等)並特異性地結合之分子。其係特異性地識別癌之生長或轉移所需之癌細胞所特有或於其中過度表現之標靶的分子,可舉例如抗體、脂質運載蛋白(Anticalin等)、蛋白質(干擾素、淋巴介質、生長因子、菌落刺激因子等)、肽(黃體激素釋放激素(Luteinising-hormone releasing hormone,LHRH)受體標靶肽、EC-1肽等)或擬肽藥等。標靶識別分子除了具有結合特異性以外,對於標的細胞或路徑可亦具有抗增殖(細胞增殖抑制性、及/或細胞毒殺性)活性等特定之治療效果。標靶識別分子只要藉由與本發明之共聚物X之靜電相互作用、氫鍵結、疏水性相互作用或共價鍵結等作用等擔載於共聚物即可。其可於維持結合特異性之範圍內進行修飾,並可經由化學反應性基(羧酸、一級胺、二級胺、硫醇等)、化學反應性胺基酸殘基或其側鏈(酪胺酸、組胺酸、半胱胺酸、離胺酸等)結合於共聚物X。以下,有時將於本發明之共聚物X結合或擔載有標靶識別分子者稱為「標靶識別性共聚物」。
於本說明書中,所謂「抗體」係具有與標靶抗原免疫特異性地結合之特徵且具有來自IgG、IgM、IgA、IgD或IgE等免疫球蛋白之序列之分子、或其功能性片段。其包括單株抗體、嵌合抗體、重組抗體、或人源化抗體。其含有獨特型即可,作為抗原結合片段,可舉例如Fab區域、F(ab') 2片段、pFc'片段、或Fab'片段等。Fab區域包含來自抗體之重鏈及輕鏈之1個恆定區及1個可變區。Fc片段及Fab片段係來自經木瓜酶切斷之免疫球蛋白之片段。F(ab') 2片段及pFc'片段係來自經胃蛋白酶切斷之免疫球蛋白之片段。Fab'片段係於溫和之條件下將F(ab') 2片段還原而成者。作為進一步之形態,亦可作為使受體細胞胞外域等之功能性蛋白質與免疫球蛋白之Fc區域融合而成之Fc融合蛋白質使用。又,亦可作為可結合於2種抗原之雙特異性抗體或進一步增加了抗原結合部位之多特異性抗體使用。進而,亦可實施化學性或生物學性之修飾。於使用基因重組技術之情形時,只要維持原來之胺基酸序列之特性即可,其可同時或不同地容許1個或數個胺基酸之缺失、置換、插入或附加。其例如為具有80%以上之同源性之胺基酸序列,較佳為90%以上之同源性,更佳為具有95%以上之同源性之胺基酸序列。
於本說明書中,所謂「醫藥組成物」意指可用於疾病之診斷、預防或治療之有效成分(藥物、生理活性物質)藉由靜電相互作用、氫鍵結、疏水性相互作用或共價鍵結等作用等擔載於本發明之共聚物X、標靶識別性共聚物、或藥物複合體之物。作為擔載之形態,於共聚物X、標靶識別性共聚物、或藥物複合體形成奈米粒子之情形時,可舉例如藥物存在於粒子表面之形態或藥物內包於奈米粒子內之形態、或該等之組合形態。
本發明之一實施形態係於具有以下式(A)、(B)及(C)所表示之構造單位之共聚物X結合有標靶識別分子之共聚物或藥物複合體。
[化6]
[式中,R 1、R 2及R 3為相同或不同,表示氫原子或C 1-3烷基;R 4表示C 1-3烷基;R 5表示氫原子、C 1-18烷基、可具有取代基之3~8員環烷基、金剛烷基、可具有取代基之C 6-18芳基或可具有取代基之5~10員雜芳基;X 1、X 2及X 3為相同或不同,表示氧原子、硫原子或N-R 7;R 6表示氫原子、脫離基或連接基;R 7表示氫原子或C 1-3烷基;m表示1~100之整數;n表示0~3之整數]
於本發明之共聚物X中,構造單位(A)係作為賦予親水性之單元發揮功能,構造單位(B) 係作為賦予疏水性之單元發揮功能。又,構造單位(C)係作為有效成分(藥物、生理活性物質)與共聚物X或標靶識別性共聚物進行結合之支架發揮功能。本發明之共聚物X、標靶識別性共聚物、或藥物複合體係藉由具有此3種構造單位,而具有於水中形成SCNP之特性,其可實現所形成之SCNP為20 nm以下之微小規格下的精密之粒徑控制,從而作為腫瘤集聚性較高之藥物傳遞載體而發揮功能。
構造單位(A)中之R 1表示氫原子或C 1-3烷基,較佳為氫原子或甲基,又,較佳為氫原子、乙基或丙基,更佳為氫原子。 X 1表示氧原子、硫原子或N-R 7,較佳為氧原子、硫原子或NH,更佳為氧原子。 m表示1~100之整數,較佳為3~100之整數,由賦予良好之親水性之方面而言,較佳為3~80,更佳為4~60,進而更佳為4~40,特佳為4~22。 R 4表示C 1-3烷基,具體而言為甲基、乙基、正丙基或異丙基,較佳為甲基或乙基,更佳為甲基。
構造單位(B)中之R 2雖表示氫原子或C 1-3烷基,但氫原子或甲基為佳,又,較佳為氫原子、乙基或丙基,更佳為氫原子。 X 2雖表示氧原子、硫原子或N-R 7,但氧原子、硫原子或NH為佳,更佳為氧原子。 n表示0~3之整數,較佳為1~3之整數,更佳為1。 R 5雖表示氫原子、C 1-18烷基、可具有取代基之3~8員環烷基、金剛烷基、可具有取代基之C 6-18芳基或可具有取代基之5~10員雜芳基,但由對構造單位(B)賦予疏水性之方面而言,較佳為C 1-18烷基、可具有取代基之3~8員環烷基、金剛烷基、可具有取代基之C 6-18芳基或可具有取代基之5~10員雜芳基,更佳為C 1-18烷基、可具有取代基之3~8員環烷基、金剛烷基、可具有取代基之C 6-18芳基或可具有取代基之5~10員雜芳基,進而更佳為C 1-18烷基、3~8員環烷基、金剛烷基或C 6-18芳基。又,另一方面,可具有取代基之3~8員環烷基、金剛烷基、可具有取代基之C 6-14芳基或可具有取代基之6~10員雜芳基亦較佳。此處,作為取代基,較佳為自鹵素原子、碳數1~6之烷基、碳數2~6之烯基及碳數2~6之炔基中選擇之1種或2種以上。
構造單位(C)中之R 3表示氫原子或C 1-3烷基,較佳為氫原子或甲基,又,較佳為氫原子、乙基或丙基,更佳為氫原子。 X 3表示氧原子、硫原子或N-R 7,較佳為氧原子、硫原子或NH,更佳為氧原子或NH。 R 6表示氫原子、脫離基或連接基。該脫離基係於構造單位(C)與藥物(生理活性物質)結合時可脫離之基,連接基係於構造單位(C)與藥物(生理活性物質)結合時可用於交聯之基。作為該等脫離基或連接基,較佳為可具有取代基之C 1-18烷基、可具有取代基之3~8員環烷基、可具有取代基之C 7-19芳烷基。此處,作為取代基,可舉例如鹵素原子、碳數1~6之烷基、碳數2~6之烯基、碳數2~6之炔基、羥基、碳數1~6之烷氧基、胺基、碳數1~6之烷基胺基、烷基相同或不同之二碳數1~6之烷基胺基、硫醇基、碳數1~6之烷硫基、羧基、碳數1~6之烷氧基羰基、胺甲醯基等。該等基中,作為連接基,較佳為具有羥基、胺基、硫醇基、羧基等官能基作為取代基之基。 作為R 6之脫離基之較佳之具體例,可舉例如下式(4):
[化7]
所表示之基。 作為R 6之連接基之較佳之具體例,可舉例如下式(5):
[化8]
[式中,R 8表示氫原子、或藥物;Ak 1表示C 1-7伸烷基鍵;X 4表示氧原子、硫原子或-N(R 7)-(R 7表示氫原子或C 1-3烷基)]所表示之基;式(5)中之X 4表示氧原子、硫原子或NH更佳。
本發明之共聚物X係具有式(A)、(B)及(C)所表示之構造單位之共聚物。該共聚物X可為無規共聚物,亦可為嵌段共聚物,較佳為無規共聚物。一分子中之各構造單位之組成比率較佳為於將(A)設為1質量份時(B)為0.01~100質量份且(C)為0.1~100質量份之比率,更佳為於將(A)設為1質量份時(B)為0.05~18質量份且(C)為0.1~20質量份之比率,特佳為於將(A)設為1質量份時(B)為0.05~4質量份且(C)為0.1~16質量份之比率。
本發明之共聚物X之聚合度並無特別限定,作為數量平均分子量,較佳為5000~150000,更佳為8000~150000。
於本發明之共聚物中,如上所述,通式(1)所表示之單體係作為賦予親水性之單元發揮功能,通式(2)所表示之單體係作為賦予疏水性之單元發揮功能。又,通式(3)所表示之單體係作為藥物與共聚物結合之支架發揮功能。作為以通式(2)所表示之疏水性單元之形式發揮功能之單體,例如可例示下式:
[化9]
[化10]
[化11]
所表示之單體。
通式(1)中,R 1雖表示氫原子或C 1-3烷基,但氫原子或甲基為佳,又,較佳為氫原子、乙基或丙基,更佳為氫原子。
通式(2)中,R 2雖表示氫原子或C 1-3烷基,但氫原子或甲基為佳,又,較佳為氫原子、乙基或丙基,更佳為氫原子。
通式(3)中,R 3雖表示氫原子或C 1-3烷基,但氫原子或甲基為佳,又,較佳為氫原子、乙基或丙基,更佳為氫原子。
通式(1)中,R 4表示C 1-3烷基,具體而言為甲基、乙基、正丙基或異丙基,較佳為甲基或乙基,更佳為甲基。
通式(1)中,X 1雖表示氧原子、硫原子或N-R 7,但氧原子、硫原子或NH為佳,更佳為氧原子。
通式(1)中,m雖表示1~100之整數,但3~100之整數為佳,由賦予良好之親水性之方面而言,較佳為3~80,更佳為4~60,進而更佳為4~40,特佳為4~22。
通式(2)中,R 5表示氫原子、C 1-18烷基、可具有取代基之3~8員環烷基、金剛烷基、可具有取代基之C 6-18芳基或可具有取代基之5~10員雜芳基,由對構造單位(B)賦予疏水性之方面而言,較佳為C 1-18烷基、可具有取代基之3~8員環烷基、金剛烷基、可具有取代基之C 6-18芳基或可具有取代基之5~10員雜芳基,更佳為C 1-18烷基、可具有取代基之3~8員環烷基、金剛烷基、可具有取代基之C 6-18芳基或可具有取代基之5~10員雜芳基,進而更佳為C 1-18烷基、3~8員環烷基、金剛烷基或C 6-18芳基。又,另一方面,可具有取代基之3~8員環烷基、金剛烷基、可具有取代基之C 6-14芳基或可具有取代基之6~10員雜芳基亦較佳。此處,作為取代基,較佳為自鹵素原子、碳數1~6之烷基、碳數2~6之烯基及碳數2~6之炔基中選擇之1種或2種以上。
通式(2)中,X 2雖表示氧原子、硫原子或N-R 7,但氧原子、硫原子或NH為佳,更佳為氧原子。
通式(2)中,n雖表示0~3之整數,但1~3之整數為佳,更佳為1。
通式(3)中,R 6表示氫原子、脫離基或連接基。作為該等脫離基或連接基,較佳為可具有取代基之C 1-18烷基、可具有取代基之3~8員環烷基、可具有取代基之C 7-19芳烷基。此處,作為取代基,可舉例如鹵素原子、碳數1~6之烷基、碳數2~6之烯基、碳數2~6之炔基、羥基、碳數1~6之烷氧基、胺基、碳數1~6之烷基胺基、烷基相同或不同之二碳數1~6之烷基胺基、硫醇基、碳數1~6之烷硫基、羧基、碳數1~6之烷氧基羰基、胺甲醯基等。該等基中,作為連接基,較佳為具有羥基、胺基、硫醇基、羧基等官能基作為取代基之基。 作為R 6之脫離基之較佳之具體例,可舉例如下式(4):
[化12]
所表示之基。 作為R 6之連接基之較佳之具體例,可舉例如下式(5):
[化13]
[式中,R 8表示氫原子、或藥物;Ak 1表示C 1-7伸烷基鍵,X 4表示氧原子、硫原子或-N(R 7)-(R 7表示氫原子或C 1-3烷基)]所表示之基;式(5)中之X 4表示氧原子、硫原子或NH更佳。
通式(3)中,X 3雖表示氧原子、硫原子或N-R 7,但氧原子、硫原子或NH為佳,更佳為氧原子或NH。
本發明之共聚物X係藉由通式(1)~(3)所表示之3種單體共聚合而形成。共聚合可進行無規共聚,亦可進行嵌段共聚,較佳為藉由進行無規共聚而形成。3種單體之調配比可在將單體(1)之質量份設為1時,較佳為使0.01~100質量份之單體(2)與0.1~100質量份之單體(3)聚合,更佳為使0.05~18質量份之單體(2)與0.1~20質量份之單體(3)聚合,特佳為使0.05~4質量份之單體(2)與0.1~16質量份之單體(3)聚合。
又,配位有各種溶劑類之「溶劑合物」亦被包含於本發明之共聚物X中。於本說明書中,作為「溶劑合物」,可舉例如水合物或乙醇合物等。溶劑可相對於本發明之共聚物X而以任意數量配位。
本發明之共聚物X可藉由各種公知之方法製造。其製造方法並無特別限制,例如可依照以下所記載之基本高分子之合成方法而製造。
[化14]
[式中,R'表示氫原子或C 1-3烷基,R''表示上述R 4、R 5或R 6所表示之基]
本反應表示使單體(I)與鏈轉移劑(II)及起始劑進行反應而製造聚合物(III)之步驟。本反應可於無溶劑之情況下進行,或於以下溶劑中進行:甲醇、乙醇、1-丙醇、2-丙醇等醇類;二乙醚、四氫呋喃、1,4-二 烷等醚類;苯、甲苯、二甲苯等芳香族烴類;二氯甲烷、氯仿、1,2-二氯乙烷等鹵化烴類;N,N-二甲基甲醯胺、N,N-二甲基乙醯胺、N-甲基吡咯啶酮、乙腈、乙酸乙酯等,較佳為使用甲苯、二甲苯等芳香族烴類作為溶劑。 作為鏈轉移劑,可使用:2-(十二烷基硫基硫羰基硫基)-2-甲基丙酸(DDMAT)、十二烷基三硫代碳酸氰基甲酯(CDTTC)、三硫代碳酸2-氰基-2-丙基十二烷基酯(CPDTTC)、4-氰基-4-[(十二烷基硫基-硫羰基)硫基]戊酸(CDSPA)、2-(十二烷基硫基硫羰基硫基)-2-甲基丙酸3-疊氮基-1-丙醇酯(N 3-CTA)、N 3-PEG m酯-CTA(m與上述相同)、例如2-(十二烷基硫基硫羰基硫基)-2-甲基丙酸2-(2-(2-疊氮基乙氧基)乙氧基)乙酯(N 3-PEG2酯-CTA)、2-(十二烷基硫基硫羰基硫基)-2-甲基丙酸17-疊氮基-3,6,9,12,15-五氧雜十七烷-1-醇酯(N 3-PEG5酯-CTA)、2-(十二烷基硫基硫羰基硫基)-2-甲基丙酸23-疊氮基-3,6,9,12,15,18,21-七氧雜二十三烷-1-醇酯(N 3-PEG7酯-CTA)、N 3-PEG m醯胺-CTA(m與上述相同)、例如N-(8-疊氮基-3,6-二氧雜辛烷-1-基)-2-(十二烷基硫基硫羰基硫基)-2-甲基丙醯胺(N 3-PEG2醯胺-CTA)、N-(17-疊氮基-3,6,9,12,15-五氧雜十七烷-1-基)-2-(十二烷基硫基硫羰基硫基)-2-甲基丙醯胺(N 3-PEG5醯胺-CTA)、或N-(23-疊氮基-3,6,9,12,15,18,21-七氧雜二十三烷-1-基)-2-(十二烷基硫基硫羰基硫基)-2-甲基丙醯胺(N 3-PEG7醯胺-CTA)等,較佳為使用DDMAT或N 3-CTA,進而較佳為N 3-CTA。當使用鏈轉移劑進行聚合之情形時,本發明之共聚物X可採用局部結合有鏈轉移劑之構造之一部分或全部之構造。當共聚物X包含鏈轉移劑之構造之情形時,其可藉由適當之方法將該構造去除。 作為起始劑,可使用:2,2'-偶氮雙-二異丁腈(AIBN)、1,1'-偶氮雙(環己腈)(ACHN)、2,2'-偶氮雙-2-甲基丁腈(AMBN)、2,2'-偶氮雙-2,4-二甲基戊腈(ADVN)、2,2'-偶氮雙(2-甲基丙酸甲酯)(MAIB)等偶氮系聚合起始劑,較佳為使用AIBN。 反應溫度為0~300℃,較佳為0~150℃,更佳為1~100℃,反應時間為1分鐘~48小時,較佳為5分鐘~24小時。於本反應中,可藉由於構造不同之單體(I)之共存下進行反應,而製造無規共聚之共聚物X。 例如,作為鏈轉移劑,若使用具有疊氮基之N 3-CTA,則可獲得末端具有疊氮基之共聚物X,因此藉由後述之點擊反應,可有利於標靶識別性共聚物之製造。
作為上述結合於共聚物X之標靶識別分子,較佳為可識別於細胞表面表現之標記物或受體之抗體、其變異(改型)體、或其功能性片段(片段化抗體),具體而言,可舉例如以B細胞成熟抗原(B-cell maturation antigen,BCMA)、BLyS、癌抗原(cancer antigen,CA)-125、C-C趨化因子受體(C-C chemokine receptor,CCR)4、分化群(cluster of differentiation,CD)3、CD19、CD20、CD22、CD25、CD30、CD33、CD38、CD40L、CD52、CD74、CD79b、癌胚抗原相關細胞黏附分子(carcinoembryonic antigen-related cell adhesion molecule,CEACAM)5、CEACAM6、CSAp、細胞毒殺性T淋巴細胞相關抗原(Cytotoxic T-Lymphocyte Antigen,CTLA-4)、CXCR4、EGFR、EpCAM、ErbB2(HER2)、GD2、gp100、HLA-DR、類胰島素生長因子1受體(insulin-like growth factor 1 receptor,IGF-1R)、介白素-6受體(Interleukin-6 receptor,IL-6R)、cMET、MUC1、黏連蛋白-4、程式性細胞死亡蛋白(programmed cell death protein,PD)-1、PD-L1、血小板衍生生長因子受體(platelet-derived growth factor receptor,PDGFR)、信號淋巴細胞激活分子家族成員(Signaling Lymphocytic Activation Molecule Family Member,SLAMF)7、攝護腺特異性膜抗原(prostate-specific membrane antigen,PSMA)、腫瘤相關性糖蛋白(Tumor-associated glycoprotein,TAG)-72、組織因子(tissue factor,TF)、腫瘤壞死因子(Tumor necrosis factor,TNF)-α、TROP-2(上皮糖蛋白(epithelial glycoprotein,EGP)-1)、血管內皮生長因子(vascular endothelial growth factor,VEGF)、血管內皮生長因子受體(vascular endothelial growth factor receptor,VEGFR)1、VEGFR2、α4整合素、α胎蛋白(AFP)、血纖維蛋白、碳酸酐酶IX(carbonic anhydrase IX,CAIX)、A33、B7、CA125、CCL19、CD2、CD4、CD8、CD11A、CD14、CD15、CD16、CD18、CD23、CD32b、CD37、CD40、CD44、CD45、CD54、CD55、CD59、CD64、CD66、CD70、CD80、CD95、CD138、CD147、CD154、CD276、EGFRvIII、纖維母細胞生長因子(fibroblast growth factor,FGF)、Flt-1、FRα、高遷移率族蛋白(high mobility group box,HMGB)-1、IL-4R、IL-12、IL-15、IGF-1、IGF-2、巨噬細胞移動抑制因子(Macrophage Migration Inhibitory Factor,MIF)、TRAG-3、單核細胞趨化蛋白(Monocyte chemoattractant protein,MCP)-1、CD67、CD70L、CD79a、CD132、CD133、細胞分裂週期蛋白(Cell Division Cycle,CDC)27、細胞週期蛋白依賴性激酶(cyclin-dependent kinases,CDK)-4/m、CDKN2A、CXCR7、CXCL12、缺氧誘導因子(Hypoxia Inducible Factor,HIF)-1α、EGP-2、類胰島素生長因子(insulin-like growth factor,ILGF)-1R、SAGE、S100、凋亡抑制基因、凋亡抑制基因-2B、TAC、肌腱蛋白、TRAIL-R、Tn抗原、Thomsen-Friedenreich抗原、WT-1、bcl-2、bcl-6、或Kras之一種或數種作為標靶之抗體或其變異(改型)體或功能性片段。 其中,作為較佳之標靶,可舉例如以自CD20、CD276、MUC1、EGFR、HER2、PD-L1、及TROP-2所構成之群組選擇之一種或數種作為標靶之抗體或其變異(改型)體或功能性片段。
作為較佳之個別之抗體,可舉例如阿侖單抗(抗CD52)、貝伐單抗(抗VEGF)、雷莫盧單抗(抗VEGFR2)、西妥昔單抗(抗EGFR)、吉妥珠單抗(抗CD33)、帕尼單抗(抗EGFR)、耐昔妥珠單抗(抗EGFR)、埃萬妥單抗(抗EGFR/cMET)、利妥昔單抗(抗CD20)、替伊莫單抗(抗CD20)、托西莫單抗(抗CD20)、奧法木單抗(抗CD20)、莫舒妥珠單抗(mosunetuzumab)(抗CD20/CD3)、曲妥珠單抗(抗ErbB2)、帕妥珠單抗(抗HER2)、馬吉妥昔單抗(抗HER2)、帕瑞妥單抗(patritumab)(抗HER3)、拉立珠單抗(lambrolizumab)(抗PD-1)、納武單抗(抗PD-1)、帕博利珠單抗(抗PD-1)、西米普利單抗(抗PD-1)、多塔利單抗(dostarlimab)(抗PD-1)、特瑞普利單抗(抗PD-1)、阿特珠單抗(抗PD-L1)、阿維魯單抗(抗PD-L1)、度伐魯單抗(抗PD-L1)、伊比利單抗(抗CTLA-4)、Avagomomab(抗CA-125)、阿德木單抗(抗EpCAM)、貝蘭他單抗(belantamab)(抗BCMA)、莫加珠單抗(抗CCR4)、卡托莫西單抗(catumaxomab)(抗CD3/EpCAM)、依決洛單抗(抗EpCAM)、博納吐單抗(抗CD19/CD3)、他法西他單抗(tafasitamab)(抗CD19)、朗妥昔單抗(loncastuximab)(抗CD19)、英妥珠單抗(抗CD22)、莫西莫單抗(抗CD22)、布妥昔單抗(brentuximab)(抗CD30)、泊洛妥珠單抗(polatuzumab)(抗CD79b)、達妥昔單抗(抗GD2)、那昔妥單抗(naxitamab)(抗GD2)、tebentafusp(抗gp100/CD3)、恩諾單抗(enfortumab)(抗黏連蛋白-4)、奧拉木單抗(olaratumab)(抗PDGFR)、埃羅妥珠單抗(elotuzumab)(抗SLAMF7)、替索單抗(tisotumab)(抗TF)、賽妥珠單抗(抗TROP-2)、托珠單抗(別名阿替珠單抗(atlizumab):抗IL-6受體)、奧濱尤妥珠單抗(別名GA101:抗CD20)、CC49(抗TAG-72)、AB-PG1-XG1-026(抗PSMA,美國專利第8,114,965號,寄存為ATCC PTA-4405及PTA-4406)、D2/B(抗PSMA,國際公開第2009/130575號公報)、達克珠單抗(抗CD25)、莫羅單抗-CD3(抗CD3)、那他珠單抗(抗α4整合素)、英夫利昔單抗(抗TNF-α)、塞妥株單抗(抗TNF-α)、阿達木單抗(抗TNF-α)、培戈-達匹利珠單抗(dapirolizumab pegol)(抗CD40L)、來利珠單抗(letolizumab)(抗CD40L)、魯利珠單抗(抗CD40L)、貝利木單抗(抗BLyS)、59D8(抗血纖維蛋白)、比西單抗(biciromab)(別名T2G1s:抗血纖維蛋白)、MH1(抗血纖維蛋白)、菲澤妥單抗(felzartamab)(抗CD38)、伊莎妥昔單抗(isatuximab)(抗CD38)、達雷木單抗(抗CD38)、hR1(抗IGF-1R,美國公開第2010/226,884號)、克利妥珠單抗(抗MUC1)、伽妥珠單抗(抗MUC1)、維妥珠單抗(veltuzumab)(別名hA20:抗CD20,美國專利第7,151,164號)、hA19(抗CD19,美國專利第7,109,304號)、hIMMU31(抗AFP,美國專利第7,300,655號)、米拉珠單抗(milatuzumab)(別名hLL1(抗CD74,美國專利第7,312,318號)、依帕珠單抗(epratuzumab)(別名hLL2:抗CD22,美國專利第7,074,403號)、hMu-9(抗CSAp,美國專利第7,387,773號)、hL243(抗HLA-DR,美國專利第7,612,180號)、拉貝珠單抗(labetuzumab)(別名hMN-14:抗CEACAM5,美國專利第6,676,924)、hMN-3及hMN-15(抗CEACAM6,美國專利第7,541,440號)、Ab124及Ab125(抗CXCR4,美國專利第7,138,496號)、G250(抗CAIX)、A33(抗A33)、加利昔單抗(抗B7)、OC125(抗CA125)、阿巴伏單抗(abagovomab)(抗CA125)、CAP-100(抗CCL19)、TRX-3(抗CD2)、IT-1208(抗CD4)、拉諾利單抗(抗CD4)、crefmirlimab(抗CD8)、阿非莫單抗(抗CD11A)、Cytolin(抗CD11A)、依法利珠單抗(抗CD11A)、歐度利單抗(抗CD11A)、阿替布利單抗(atibuclimab)(抗CD14)、法索單抗(fanolesomab)(抗CD15)、GTB-4550(抗CD16)、ererumab(抗CD18)、歐度利單抗(抗CD18)、羅維珠單抗(抗CD18)、魯昔單抗(抗CD23)、奧貝利單抗(obexelimab)(抗CD32b)、BI-1206(抗CD32b)、HuMax-CD32b(抗CD32b)、NVS-32b(抗CD32b)、NNV-003(抗CD37)、利洛托單抗(lilotomab)(抗CD37)、K7153A(抗CD37)、伊斯卡利單抗(iscalimab)(抗CD40)、ChiLob7/4(抗CD40)、CDX-1140(抗CD40)、TNX-1500(抗CD40L)、TES-23(抗CD44)、比伐珠單抗(bivatuzumab)(抗CD44)、Actimab-B(抗CD45)、BI-505(抗CD54)、恩莫單抗(enlimomab)(抗CD54)、MOR-101(抗CD54)、MOR-102(抗CD54)、Onyvax-105(抗CD55)、GB-262(抗CD55)、PAT-SC1(抗CD55)、VG-102(抗CD55)、AR36A36.11.1(抗CD59)、KNP-302(抗CD59)、MDX-210(抗CD64)、MDX-220(抗CD64)、替奴瑞利單抗(tinurilimab)(抗CD66c)、庫沙珠單抗(cusatuzumab)(抗CD70)、MDX-1411(抗CD70)、柯希利單抗(cosibelimab)(抗PD-L1)、加利昔單抗(抗CD80)、Novotarg(抗CD95)、DOM-1112(抗CD138)、茚達昔單抗(indatuximab)(抗CD138)、加維莫單抗(抗CD147)、來利珠單抗(抗CD154)、ABI-793(抗CD154)、DOM-0800(抗CD154)、伊菲那單抗(抗CD276)、米佐妥單抗(抗CD276)、博拉米妥單抗(抗CD276)、AMG-596(抗EGFRvIII)、貝馬妥珠單抗(bemarituzumab)(抗FGF)、布羅索尤單抗(burosumab)(抗FGF)、U3-1784(抗FGF)、阿普盧妥單抗(aprutumab)(抗FGF)、伊克蘆庫單抗(icrucumab)(抗Flt-1/VEGFR)、法勒珠單抗(farletuzumab)(抗FRα)、米維妥昔單抗(mirvetuximab)(抗FRα)、吉瑞昔單抗(girentuximab)(抗CAIX)、MEDI-541(抗HMGB-1)、杜匹魯單抗(dupilumab)(抗IL-4R)、樂維利單抗(levilimab)(抗IL-6R)、SANT-7(抗IL-6R)、沃巴利珠單抗(vobarilizumab)(抗IL-6R)、沙利姆單抗(sarilumab)(抗IL-6R)、克拉紮珠單抗(clazakizumab)(抗IL-6R)、TZLS-501(抗IL-6R)、尤特克單抗(抗IL-12)、布雷奴單抗(briakinumab)(抗IL-12)、奧司奇單抗(ordesekimab)(抗IL-15)、西妥木單抗(cixutumumab)(抗IGF-1)、芬妥木單抗(figitumumab)(抗IGF-1)、替妥木單抗(teprotumumab)(抗IGF-1)、達洛珠單抗(dalotuzumab)(抗IGF-1)、甘尼妥單抗(ganitumab)(抗IGF-1)、rovatumab(抗IGF-1)、AVE1642(抗IGF-1)、dusitumab(抗IGF-1/2)、Estilab(抗IGF-1)、珍妥珠單抗(xentuzumab)(抗IGF-1)、伊瑪魯單抗(imalumab)(抗MIF)、瑞拉利單抗(relatlimab)(抗TRAG-3)、卡魯單抗(carlumab)(抗MCP-1)、培阿賽珠單抗(alacizumab pegol)(抗VEGFR-2)、布西珠單抗(brolucizumab)(抗VEGFR)、金妥昔單抗(gentuximab)(抗VEGFR)、奧伐西單抗(olinvacimab)(抗VEGFR-2)等。
作為結合於上述共聚物X之連接基,只要可將共聚物X與藥物或標靶識別分子連結(相互作用)即可,其為胺基酸殘基、二官能性衍生物、利用生物正交型反應之鍵、伸烷基鍵、聚乙二醇(PEG)鍵、雙硫鍵或硫醚鍵等。
作為具有利用蛋白酶之切斷部位(例如組織蛋白酶B切斷部位、組織蛋白酶C切斷部位、或組織蛋白酶D切斷部位)之連接基,可舉例如胺基酸殘基包含丙胺酸、苯丙胺酸、甘胺酸、纈胺酸、離胺酸、瓜胺酸、絲胺酸、麩胺酸或天冬胺酸等之肽。例如包括二肽、三肽、四肽或五肽,可為天然胺基酸殘基或天然不存在之胺基酸殘基。作為此種例,可舉例如纈胺酸-瓜胺酸(ve或val-cit)、纈胺酸-丙胺酸(va或val-ala)、纈胺酸-離胺酸(val-lys)、苯丙胺酸-丙胺酸(phe-ala)、苯丙胺酸-離胺酸(fk或phe-lys)、苯丙胺酸-瓜胺酸(phe-cit)、苯丙胺酸-苯丙胺酸-離胺酸(phe-phe-lys)、丙胺酸-苯丙胺酸(af或ala-phe)、丙胺酸-離胺酸(ala-lys)、甘胺酸-甘胺酸(gly-gly)、甘胺酸-丙胺酸-苯丙胺酸(gly-ala-phe)、甘胺酸-纈胺酸-瓜胺酸(gly-val-cit)、甘胺酸-甘胺酸-甘胺酸(gly-gly-gly)、甘胺酸-苯丙胺酸-離胺酸(gly-phe-lys)、甘胺酸-苯丙胺酸-白胺酸-甘胺酸(gly-phe-leu-gly)、甘胺酸-甘胺酸-苯丙胺酸-甘胺酸(gly-gly-phe-gly)、白胺酸-瓜胺酸(leu-cit)、異白胺酸-瓜胺酸(ile-cit)、色胺酸-瓜胺酸(trp-cit)、或丙胺酸-白胺酸-丙胺酸-白胺酸(ala-leu-ala-leu)等。
進而,作為經由肽-對胺基苄醇(「肽-PAB」)而與藥物或抗體形成胺基甲酸酯基/碳酸酯基等之連接基之例,可舉例如纈胺酸-瓜胺酸-對胺基苄基胺基甲酸酯、馬來醯亞胺己醯-對胺基苄基胺基甲酸酯、馬來醯亞胺己醯-苯丙胺酸-離胺酸-對胺基苄基胺基甲酸酯、或馬來醯亞胺己醯-纈胺酸-瓜胺酸-對胺基苄基胺基甲酸酯等。
作為二官能性衍生物,可舉例如N-[β-馬來醯亞胺基丙氧基]丁二醯亞胺酯(BMPS)、[N-ε-馬來醯亞胺基己醯氧基]丁二醯亞胺酯(EMCS)、N-[γ-馬來醯亞胺基丁醯氧基]丁二醯亞胺酯(GMBS)、間馬來醯亞胺基苯甲醯基-N-羥基丁二醯亞胺酯(MBS)、[N-ε-馬來醯亞胺基己醯氧基]磺基丁二醯亞胺酯(磺基-EMCS)、N-[γ-馬來醯亞胺基丁醯氧基]磺基丁二醯亞胺酯(磺基-GMBS)、間馬來醯亞胺基苯甲醯基-N-羥基磺基丁二醯亞胺酯(磺基-MBS)、N-丁二醯亞胺基-3-(2-吡啶基二硫基)丙酸酯(SPDP)、丁二醯亞胺基-4-(N-馬來醯亞胺基甲基)環己烷-1-羧酸酯(SMCC)、N-丁二醯亞胺基-4-(2-吡啶基硫基)戊酸酯(SPP)、亞胺基硫雜環戊烷(IT)、醯亞胺酯(二亞胺代己二酸二甲酯HCl等)、活性酯(辛二酸二丁二醯亞胺等)、醛(戊二醛等)、雙-疊氮化合物(雙(對疊氮基苯甲醯基)己二胺等)、雙-重氮鎓衍生物(雙-(對重氮鎓苯甲醯基)-乙二胺等)、二異氰酸酯(甲苯2,6-二異氰酸酯等)、his-活性氟化合物(1,5-二氟-2,4-二硝基苯等)、二苯并環辛炔(dibenzocyclooctyne,DBCO)-N-羥基丁二醯亞胺(N-hydroxysuccinimidyl,NHS)酯、DBCO-C6-NHS酯、DBCO-磺基-NHS酯、DBCO-PEG4-NHS酯、DBCO-PEG5-NHS酯、磺基DBCO-四氟苯基(tetrafluoro苯基,TFP)酯、磺基DBCO-PEG4-TFP酯、DBCO-PEG5-TFP酯、DBCO-磺基四氟苯基(sulfotetrafluoro苯基,STP)酯、DBCO酸、DBCO-C6-酸、DBCO-PEG5-酸、DBCO胺、DBCO-PEG4-胺、磺基DBCO-胺、DBCO馬來醯亞胺、磺基DBCO-馬來醯亞胺、DBCO-PEG4-馬來醯亞胺、雙環[6.1.0]壬炔(bicyclo[6.1.0]nonyne,BCN)-PEG3-Val-Cit、DBCO-PEG4-Val-Cit-PAB-對硝基苯酚(p-nitrophenol,PNP)、或反式環辛烯(trans-cyclooctene,TCO)-PEG4-Val-Cit-PAB-PNP等。
又,可舉例如藉由生物正交型反應、例如疊氮基與炔烴之Huisgen反應等所形成之三唑或肟/腙鍵等。 進而,可單獨或組合使用伸烷基鍵、聚乙二醇(PEG)鍵、雙硫鍵、或硫醚鍵等。作為較佳之組合,可舉例如下式(a):
[化15]
[式中,J 1為與標靶識別分子、或藥物之結合部;J 2為與共聚物X之結合部;Ak 2、Ak 3分別獨立地表示單鍵、或C 1-7伸烷基鍵;B 1、B 2分別獨立地表示單鍵、醯胺基、或酯鍵;L 1表示單鍵、-(CH 2CH 2O) oCH 2CH 2-、伸苯基、伸環己基、-NH-肽-CO-、或伸苯基-NH-肽-CO-;o表示0~100之整數]
通式(a)中,J 1為與標靶識別分子、或藥物之結合部,為-CO-、-S-、-CO-O-、-CO-Ak 4-O-、或下式(a'):
[化16]
[式中,* 1表示與標靶識別分子、或藥物之結合,* 2表示與Ak 2之結合]。
通式(a)中,Ak 2、Ak 3、Ak 4分別獨立地表示單鍵、或C 1-7伸烷基鍵。
通式(a)中,B 1、B 2分別獨立地表示單鍵、醯胺基、或酯鍵。
通式(a)中,L 1表示單鍵、-(CH 2CH 2O) oCH 2CH 2-、伸苯基、伸環己基、-NH-肽-CO-、或伸苯基-NH-肽-CO-,o表示0~100之整數。肽為2~5之胺基酸殘基。
通式(a)中,J 2為與共聚物X之結合部,表示單鍵、包含藉由疊氮基與含有炔烴之官能基之Huisgen反應等所形成之三唑之鍵、或下式(a"):
[化17]
[式中,* 3表示與共聚物X之結合,* 4表示與Ak 3之結合]。
作為更佳之組合,於抗體與共聚物X之鍵中包括''包含藉由疊氮基與含有炔烴之官能基之Huisgen反應等所形成之三唑之鍵'',其可舉例如下式(b):
[化18]
[式中,J 3係與標靶識別分子之結合部;Ak 6表示單鍵、或C 1-7伸烷基鍵;B 3表示單鍵、醯胺基、或酯鍵;J 4表示包含藉由疊氮基與含有炔烴之官能基之Huisgen反應等所形成之三唑之鍵部;p、q分別獨立地表示0~100之整數]。
通式(b)中,J 3係與標靶識別分子之連結部,表示-CO-、或下式(b'):
[化19]
[式中,* 5表示與標靶識別分子之結合,* 6表示與Ak 6之結合]。
通式(b)中,Ak 6表示單鍵、或C 1 7伸烷基鍵。
通式(b)中,B 3、B 4分別獨立地表示單鍵、醯胺基、或酯鍵。
通式(b)中,p、q分別獨立地表示0~100之整數,較佳為1~50之整數,更佳為2~25。
通式(b)中,J 4係與共聚物X之結合部,為包含藉由疊氮基與含有炔烴之官能基之Huisgen反應等所形成之三唑之鍵,其可舉例如下式(b"):
[化20]
[式中,* 7表示與通式(b)之-CO-之結合,* 8表示與共聚物X之結合]。
進而,更佳之標靶識別分子與共聚物X之結合可舉例如下式(6)~(13):
[化21] ,或
[式中,* 7表示與標靶識別分子之結合,* 8表示與共聚物X之結合]所表示之連接基。
又,作為藥物與共聚物X之結合之較佳之組合,其可舉例如下式(c):
[化22]
[式中,J 5係與共聚物X之結合部;J 6係與藥物之結合部;Ak 7、Ak 8分別獨立地表示單鍵、或C 1-7伸烷基鍵;B 5表示單鍵、醯胺基、或酯鍵;L 2表示單鍵、伸苯基、伸環己基、-CO-肽-NH-、或-CO-肽-NH-伸苯基]。
通式(c)中,J 5為與共聚物X之結合部,表示單鍵、或下式(c'):
[化23]
[式中,* 9表示與共聚物X之結合,* 10表示與Ak 7之結合]。
通式(c)中,Ak 7、Ak 8、Ak 9、Ak 10分別獨立地表示單鍵、或C 1-7伸烷基鍵。
通式(c)中,B 5表示單鍵、醯胺基、或酯鍵。
通式(c)中,L 2表示單鍵、伸苯基、伸環己基、-CO-肽-NH-、或-CO-肽-NH-伸苯基。肽為2~5之胺基酸殘基。
通式(c)中,J 6係與藥物之結合部,表示-CO-、-S-、-O-CO-、-O-Ak 10-CO-、或下式(c"):
[化24]
[式中,* 11表示與藥物之結合,* 12表示與Ak 8之結合], 較佳為包含來自藥物之硫原子與''雙硫鍵''。
進而,更佳之藥物與共聚物X之結合,其可舉例如下式(14)~(22):
[化25]
[式中,* 13表示與共聚物X之結合,* 14表示與藥物之結合]所表示之連接基。
於本發明之化合物存在幾何異構物或光學異構物之情形時,該等異構物之混合物或分離物亦被包括於本發明之範圍中。異構物之分離可藉由常規方法進行。
本發明之標靶識別性共聚物可藉由各種公知之方法製造。製造方法並無特別限制,例如可依照以下所記載之點擊反應之合成方法而製造。
[化26]
[式中,R'表示氫原子或C 1-3烷基;R''表示上述R 4、R 5或R 6所表示之基;Ab表示標靶識別分子]
標靶識別分子之SH基係藉由還原將鏈連結之半胱胺酸殘基間之雙硫鍵而獲得。作為還原劑,可舉例如三羧基乙基膦(TCEP)、2-巰基乙醇、2-巰基乙基胺、半胱胺酸鹽酸鹽、二硫蘇糖醇、或該等之鹽(例如鹽酸鹽)等。該方法只要將含有標靶識別分子之溶液與含有還原劑之溶液混合即可。除了生成經部分還原之抗體以外,可使其與具有與標靶識別分子之SH基進行反應之官能基之連接基進行反應而生成連接基結合(修飾)標靶識別分子。該反應中之標靶識別分子之濃度例如為1 mg/mL~100 mg/mL。還原劑之濃度例如為1 mM~100 mM,可以相對於標靶識別分子而言為過剩之量進行混合。相對於標靶識別分子可以1~50倍莫耳當量、例如2~30倍莫耳當量、5~20倍莫耳當量、7~13倍莫耳當量之範圍或10倍莫耳當量使用。又,蛋白質可加溫至不變性之程度、例如1~37℃之範圍進行,且可根據還原劑之量調整反應時間。例如為數秒~5分鐘、數秒~2分鐘左右,較佳為1分鐘~5分鐘,更佳為1分鐘~2分鐘左右。
於實施利用共價鍵之標靶識別分子與SCNP之複合體化之情形時,可對SCNP之表面導入用以進行複合體化反應之官能基,其藉由與可與該官能基進行反應之標靶識別分子之末端或側鏈之SH基、胺基、或羧基等之反應而進行複合體化。又,亦可藉由適當之交聯試劑(交聯劑)對標靶識別分子之末端或側鏈導入間隔基,作為修飾標靶識別分子而與SCNP形成共價鍵。作為此種鍵形成,可舉例如疊氮基與炔烴之點擊化學、硫氫基與馬來醯亞胺基之反應、及胺基與丁二醯亞胺基之反應等。
「點擊化學」被分類為具有以下屬性之類似於自然之生物化學反應之反應,其具有以下特徵。其可迅速地進行至高產率之非常高效之反應,又,係完全(或幾乎)不生成副產物、且容許多官能基之非常選擇性之反應。進而其係於低溫(或周圍)等溫和之反應條件下、或水溶液中進行之反應。本反應可於以下溶劑中進行:水中或甲醇、乙醇、1-丙醇、2-丙醇等醇類;二乙醚、四氫呋喃、1,4-二 烷等醚類;苯、甲苯、二甲苯等芳香族烴類;二氯甲烷、氯仿、1,2-二氯乙烷等鹵化烴類;N,N-二甲基甲醯胺、N,N-二甲基乙醯胺、N-甲基吡咯啶酮、乙腈、乙酸乙酯等;較佳為於水中或使用N,N-二甲基甲醯胺作為溶劑。於某些態樣中,環辛炔為二苯并環辛炔(DBCO)、二氟苯并環辛炔(DIFBO)、聯芳基氮雜環辛炔酮(BARAC)、二苯并環辛炔(DIBO)、二氟化環辛炔(DIFO)、一氟化環辛炔(MOFO)、二甲氧基氮雜環辛炔(DIMAC)或無芳基辛炔(aryl-less octyne)(ALO),較佳為使用二苯并環辛炔(DBCO)。於某些態樣中,炔烴係脂肪族炔烴,且進行反應之步驟係於銅(I)觸媒之存在下實施。於某些態樣中,炔烴係環辛炔,且進行反應之步驟係於無銅條件下實施。反應溫度為0~300℃,較佳為0~150℃,更佳為1~100℃,反應時間為1分鐘~48小時,較佳為5分鐘~24小時。 上述反應式之反應係屬於點擊反應一種之惠斯根環化反應(Huisgen cycloaddition),為由疊氮基與炔烴形成1,2,3-三唑之1,3-偶極加成環化反應。
本發明所製造之聚合物X、標靶識別性共聚物、及標靶識別性微胞藥物複合體可藉由高分子化學之領域中通常已知之聚合物之單離、純化方法進行純化。具體而言,可舉例如萃取、再結晶、利用硫酸銨或硫酸鈉等進行之鹽析、離心分離、透析、超過濾法、吸附層析、離子交換層析、疏水性層析、正相層析、逆相層析、去鹽柱層析、凝膠過濾法、凝膠滲透層析、親和層析、電泳法、逆流分配等或該等之組合等處理操作。尤其是於疏水性層析中,根據相對於標靶識別分子之SCNP結合數,保持時間會發生變化,因此可藉由區分分取而回收任意滿足DAR之組分。
本發明之共聚物X及標靶識別性共聚物可利用作為用以輸送各種生理活性物質(藥物)之載體。例如,本發明之共聚物X、標靶識別性共聚物、或於標靶識別性微胞藥物複合體擔載(內包)腫瘤治療藥而成之醫藥組成物,係如下所記載之試驗例中所確認般,可抑制腫瘤之生長,因此例如可用作為對大腸癌、十二指腸癌、胃癌、胰臟癌、肝癌、肺癌、子宮癌、卵巢癌等各種癌疾病之預防及/或治療劑。又,由於腫瘤集聚能力高,因而可用作為腫瘤之診斷試劑、造影劑。
於將本發明之共聚物及標靶識別性共聚物用作為藥物輸送載體時,其投予量及投予次數可考慮投予形態、患者之年齡、體重、應治療之症狀之性質或嚴重程度等適當選擇即可,投予量或投予次數不應加以限定,但當藉由注射劑靜脈內注射內包藥物之聚合物、或標靶識別性微胞藥物複合體之情形時,相對於成人一人(60 kg),例如於1次投予中,較佳為投予0.12 mg~12000000 mg之量,更佳為投予1.2 mg~1200000 mg之量,特佳為投予12~120000 mg之量。
本發明之醫藥組成物可藉由將本發明之共聚物X、標靶識別性共聚物、或標靶識別性微胞藥物複合體與藥物混合而製造。較佳為將本發明之共聚物、標靶識別性共聚物、或標靶識別性微胞藥物複合體與藥物混合而製造單鏈奈米顆粒,或於製造本發明之共聚物X、標靶識別性共聚物、或標靶識別性微胞藥物複合體之單鏈奈米顆粒後混合藥物即可。單鏈奈米顆粒可藉由公知之方法製造。 於本發明之醫藥組成物中,藉由靜電相互作用、氫鍵結、疏水性相互作用或共價鍵結等作用等將藥物擔載於共聚物X、標靶識別性共聚物、或標靶識別性微胞藥物複合體即可。
作為藥物,較佳為抗癌劑,更佳為作用於癌細胞而抑制癌細胞之增殖之抗癌劑,可舉例如代謝拮抗藥、烷基化劑、蒽環類藥物、抗生素、有絲分裂抑制劑、拓樸異構酶抑制劑、蛋白酶體抑制劑、或抗激素劑等。 作為代謝拮抗藥,可舉例如硫唑嘌呤、6-巰基嘌呤、6-硫鳥嘌呤、氟達拉濱、噴司他丁、克拉屈濱、5-氟尿嘧啶(5FU)、氟尿苷(FUDR)、阿糖胞苷(cytarabine)、甲胺喋呤、三甲氧苄胺嘧啶、乙胺嘧啶(pyrimethamine)、或培美曲塞等。作為烷基化劑,可舉例如環磷醯胺、二氯甲基二乙胺、烏拉莫司汀、美法侖、氯芥苯丁酸、噻替派/氯芥苯丁酸、異環磷醯胺、卡莫司汀、洛莫司汀、鏈脲佐菌素、白消安、二溴甘露醇、順鉑、卡鉑、奈達鉑、奧沙利鉑、米鉑(miriplatin)、沙鉑、四硝酸三鉑、甲基苄肼、六甲蜜胺、達卡巴仁、米托唑胺、特拉貝替汀、或替莫唑胺等。作為蒽環類藥物,可舉例如柔紅黴素、多柔比星、表柔比星、艾達黴素、戊柔比星、阿克拉黴素、氨柔比星、吡柔比星等。作為抗生素,可舉例如放線菌素、博來黴素、光輝黴素、安麴黴素、鏈脲佐菌素、短桿菌素D、星孢菌素、絲裂黴素類(例如絲裂黴素C)、多卡米星類(例如CC-1065)、或卡奇黴素類等。作為有絲分裂抑制劑,可舉例如類美登素類(例如DM0、美登素(別名DM1)、DM2、DM3、DM4、或美坦辛)、奧瑞他汀(例如奧瑞他汀E、奧瑞他汀苯丙胺酸苯二胺(AFP)、單甲基奧瑞他汀E、單甲基奧瑞他汀D、及單甲基奧瑞他汀F)、海兔毒素類、念珠藻素類、長春花屬生物鹼(例如長春新鹼、長春花鹼、長春地辛、長春瑞濱)、紫杉烷類(例如紫杉醇、多西紫杉醇)、或秋水仙鹼類等。 作為拓樸異構酶抑制劑,可舉例如伊立替康、拓朴替康、諾吉替康、安吖啶、依託泊苷、替尼泊苷、mizantrone、米托蒽醌、SN-38、依喜替康、德魯替康等。 作為蛋白酶體抑制劑,可舉例如肽基硼酸、卡非佐米、硼替佐米等。作為抗激素劑,可舉例如氟維司群(fulvestrant)、他莫昔芬、托瑞米芬等。於將該等藥物製造為本發明之醫藥組成物之情形時,亦可使用1種或組合使用數種,藥物可以游離體之形式擔載於共聚物。
本發明之醫藥組成物之投予路徑較理想為使用治療時最有效者,可以經口投予製劑、注射劑或經皮投予製劑等非經口投予製劑進行投予,例如,較佳為動脈內注射、靜脈內注射、皮下注射、肌內注射、腹腔內注射等非經口投予,更佳為動脈內注射及靜脈內注射。投予次數不應加以限定,但可舉例如1週平均投予1次~數次。
適於投予路徑之各種製劑可適當選擇製劑上通常使用之賦形劑、增量劑、結合劑、濕潤劑、崩解劑、潤滑劑、界面活性劑、分散劑、緩衝劑、保存劑、增溶劑、防腐劑、矯味矯臭劑、鎮痛劑、穩定化劑、等張劑等製劑添加物等,藉由常規方法而製造。
上述各種製劑可包含之製劑添加物只要為醫藥上容許者,則無特別限定。作為此種製劑添加物之例,可舉例如:純化水、注射用水、注射用蒸餾水、醫藥上容許之有機溶劑、膠原蛋白、聚乙烯醇、聚乙烯基吡咯啶酮、羧基乙烯基聚合物、海藻酸鈉、水溶性葡聚糖、羧甲基澱粉鈉、果膠、三仙膠、阿拉伯膠、酪蛋白、明膠、洋菜、甘油、丙二醇、聚乙二醇、凡士林、石蠟、硬脂醇、硬脂酸、人類血清白蛋白、甘露醇、山梨醇、乳糖等。所使用之添加物可根據各種製劑而適當選擇,單獨或組合使用。
再者,注射劑亦可製備為非水性之稀釋劑(例如聚乙二醇、橄欖油等植物油、乙醇等醇類等)、懸浮劑或乳濁劑。注射劑之無菌化可藉由利用過濾器之過濾滅菌、殺菌劑等之調配而進行。又,注射劑可製造為使用時製備之形態。即,可藉由冷凍乾燥法等製成無菌之固體組成物,於使用前溶解於注射用水、注射用蒸餾水或其他溶劑中使用。 [實施例]
以下,藉由實施例進一步對本發明進行具體說明。該等實施例係為了例示所提供者,其並不對本發明之實施形態進行限定。
[實施例1] 聚[(丙烯酸苄酯)-(聚(乙二醇)甲醚丙烯酸酯)-(丙烯酸1-乙氧基乙酯)共聚物]之製造 (1)丙烯酸1-乙氧基乙酯(EEA)之合成 於氬氣環境下,秤取乙基乙烯基醚(28.725 mL),於冰浴冷卻下添加磷酸(50 mg)。其後,添加丙烯酸(17.15 mL),於室溫下攪拌48小時。添加水滑石(3 g),進一步攪拌2小時,使反應停止。矽藻土過濾後,藉由蒸發去除未反應之乙基乙烯基醚。以成為500 ppm之方式添加作為聚合抑制劑之啡噻 ,與氫化鈣一起進行減壓蒸餾,藉此進行純化(蒸餾溫度28-32℃)。將所獲得之丙烯酸1-乙氧基乙酯分取於玻璃小瓶中,於-30℃保管。 13C NMR(400 MHz, CDCl 3), δ, ppm: 15.29(-OCH 2CH 3), 21.16(-COOCH(CH 3)), 64.98(-OCH 2-), 96.73(-COOCH(CH 3)), 128.84(CH 2CH-), 131.43(CH 2CH-), 166.00(-COO).
(2)聚[(丙烯酸苄酯)-(聚(乙二醇)甲醚丙烯酸酯)-(丙烯酸1-乙氧基乙酯)共聚物]之合成 秤取100 mg之2-(十二烷基硫基硫羰基硫基)-2-甲基丙酸(DDMAT),溶於甲苯17.3 mL中製成DDMAT/甲苯儲備溶液(以DDMAT濃度計為5.78 mg/mL)。同樣地,秤取22 mg之2,2'-偶氮雙(2-甲基丙腈)(AIBN),溶於甲苯17.3 mL中製成AIBN/甲苯儲備溶液(以AIBN濃度計為1.27 mg/mL)。另外,添加聚(乙二醇)甲醚丙烯酸酯(mPEGA,乙二醇之重複數之平均值(n)為9)1.296 g、丙烯酸苄酯(BnA)0.394 g、丙烯酸1-乙氧基乙酯0.039 g、DDMAT/甲苯儲備溶液1.73 mL及AIBN/甲苯儲備溶液1.73 mL,於70℃之油浴中進行聚合。經過90分鐘後,於停止聚合後,將反應溶液藉由再沈澱法或對甲醇進行透析,藉此將共聚物回收。所獲得之共聚物基本上為黏稠體,因此有關再沈澱法,於添加有不良溶劑(己烷/乙酸乙酯=7/3[v/v])之離心管中滴加反應溶液,藉由離心分離(2,000×g、5 min)進行回收,將該操作重複3次,最終進行真空乾燥,可獲得聚[(丙烯酸苄酯)-(聚(乙二醇)甲醚丙烯酸酯)-(丙烯酸1-乙氧基乙酯)共聚物]1.223 g。 對所獲得之共聚物,藉由使用NMR所測定之 1H-NMR圖譜對各單體之聚合度、及數量平均分子量(M n,NMR)進行解析,結果為mPEGA(n=9)之聚合度為102,BnA之聚合度為94,EEA之聚合度為9,M n,NMR為65,900。進而,對於所獲得之共聚物,使用GPC對分子量分散度(M w/M n)進行測定,結果為1.53。
[化27]
[測定裝置與條件等] (1) 1H-NMR測定 裝置:JNM-ECX400(400 MHz)/日本電子 溶劑:包含0.03%四甲基矽烷之二甲基亞碸-d 6/關東化學 試樣濃度:20 mg/mL 測定溫度:25℃ 累計次數:256次 結果:圖1 (2)GPC測定 裝置:高效液相層析儀(high performance liquid chromatography,HPLC)-Prominence系統/島津製作所 檢測器:RID-10A折射率檢測器/島津製作所 管柱:TSKgel α-2500管柱/Tosoh (管柱尺寸7.8 mm×300 mm,粒徑7 μm,排除極限分子量5×10 3) TSKgel α-4000管柱/Tosoh (管柱尺寸7.8 mm×300 mm,粒徑10 μm,排除極限分子量4×10 5) TSKgel保護管柱/Tosoh 流動相:含有10 mmol/L之溴化鋰之N,N-二甲基甲醯胺(DMF) 溫度:40℃ 流速:0.5 mL/min 試樣濃度:6 mg/mL 標準物質:聚(甲基丙烯酸甲酯)標準ReadyCal set,M p800-2,200,000Da/SIGMA 結果:圖2
[表1]
實施例 準備比(相對於鏈轉移劑之莫耳比) 溶劑 溫度 (℃) 聚合 時間 (分鐘) 聚合度 M n,NMR M w/ M n
鏈轉移劑 起始劑 單體
DDMAT AIBN mPEGA BnA EEA mPEGA BnA EEA
n=9 n=9
1 1 0.5 100 90 10 甲苯 70 90 102 94 9 65,900 1.53
[實施例2~68] 適當變更實施例1所使用之單體(mPEGA、BnA、EEA)之種類、準備量、反應溫度、聚合時間,使用與實施例1同樣之方法,藉此製造下表所示之組成比率或平均分子量不同之聚合物。
[表2]
實施例 準備比(相對於鏈轉移劑之莫耳比) 溶劑 溫度 (℃) 聚合 時間 (分鐘)
鏈轉移劑 起始劑 單體
DDMAT AIBN ACHN mPEGA BnA EEA 丙烯酸2- 羥基乙酯 丙烯酸4- 羥基丁酯 丙烯酸2-羥基 -3-苯氧基丙酯
n=4 n=9 n=22
2 1 2 - 255 - - 15 30 - - - 甲苯 70 90
3 1 2 - 160 - - 20 20 - - - 甲苯 70 60
4 1 2 - 240 - - 30 30 - - - 甲苯 70 60
5 1 2 - 170 - - 10 20 - - - 甲苯 70 60
6 1 2 - 255 - - 15 30 - - - 甲苯 70 60
7 1 0.5 - - 16 - 16 8 - - - 甲苯 70 90
8 1 0.5 - - 18 - 14 8 - - - 甲苯 70 90
9 1 0.5 - - 20 - 12 8 - - - 甲苯 70 90
10 1 0.5 - - 20 - 12 8 - - - 甲苯 70 90
11 1 0.5 - - 20 - 12 8 - - - 甲苯 70 90
12 1 0.5 - - 20 - 16 4 - - - 甲苯 70 10
13 1 0.5 - - 20 - 16 4 - - - 甲苯 70 30
14 1 0.5 - - 20 - 16 4 - - - 甲苯 70 50
15 1 0.5 - - 20 - 16 4 - - - 甲苯 70 70
16 1 0.5 - - 20 - 16 4 - - - 甲苯 70 90
17 1 0.5 - - 22 - 10 8 - - - 甲苯 70 90
18 1 0.5 - - 24 - 8 8 - - - 甲苯 70 90
19 1 0.5 - - 24 - 8 8 - - - 甲苯 70 90
20 1 0.5 - - 28 - 4 8 - - - 甲苯 70 90
21 1 0.5 - - 10 - 25 15 - - - 甲苯 70 90
22 1 0.5 - - 17 - 25 8 - - - 甲苯 70 90
23 1 0.5 - - 22.5 - 12.5 15 - - - 甲苯 70 90
24 1 0.5 - - 25 - 20 5 - - - 甲苯 70 90
25 1 0.5 - - 29.5 - 12.5 8 - - - 甲苯 70 90
26 1 0.5 - - 30 - 24 6 - - - 甲苯 70 90
27 1 0.5 - - 35 - 28 7 - - - 甲苯 70 90
28 1 0.5 - - 50 - 40 10 - - - 甲苯 70 90
29 1 0.5 - - 10 - 10 180 - - - 甲苯 70 90
30 1 0.5 - - 30 - 30 140 - - - 甲苯 70 90
31 1 0.5 - - 30 - 70 100 - - - 甲苯 70 90
32 1 0.5 - - 30 - 110 60 - - - 甲苯 70 90
33 1 0.5 - - 50 - 10 140 - - - 甲苯 70 90
34 1 0.5 - - 50 - 50 100 - - - 甲苯 70 90
35 1 0.5 - - 50 - 90 60 - - - 甲苯 70 90
36 1 0.5 - - 50 - 130 20 - - - 甲苯 70 90
37 1 0.5 - - 70 - 30 100 - - - 甲苯 70 90
38 1 0.5 - - 70 - 70 60 - - - 甲苯 70 90
39 1 0.5 - - 70 - 110 20 - - - 甲苯 70 90
40 1 0.5 - - 80 - 80 40 - - - 甲苯 70 90
41 1 0.5 - - 80 - 100 20 - - - 甲苯 70 90
42 1 0.5 - - 90 - 10 100 - - - 甲苯 70 90
43 1 0.5 - - 90 - 50 60 - - - 甲苯 70 90
44 1 0.5 - - 90 - 90 20 - - - 甲苯 70 90
45 1 0.5 - - 100 - 20 80 - - - 甲苯 70 90
46 1 0.5 - - 100 - 40 60 - - - 甲苯 70 90
47 1 0.5 - - 100 - 50 50 - - - 甲苯 70 90
48 1 0.5 - - 100 - 60 40 - - - 甲苯 70 90
49 1 0.5 - - 100 - 70 30 - - - 甲苯 70 90
50 1 0.5 - - 100 - 80 20 - - - 甲苯 70 90
51 1 0.5 - - 110 - 30 60 - - - 甲苯 70 90
52 1 0.5 - - 110 - 70 20 - - - 甲苯 70 90
53 1 0.5 - - 130 - 10 60 - - - 甲苯 70 90
54 1 0.5 - - 130 - 50 20 - - - 甲苯 70 90
55 1 0.5 - - 150 - 30 20 - - - 甲苯 70 90
56 1 0.5 - - 170 - 10 20 - - - 甲苯 70 90
57 1 0.5 - - 200 - 160 40 - - - 甲苯 70 90
58 1 0.5 - - 300 - 240 60 - - - 甲苯 70 90
59 1 0.5 - - 400 - 320 80 - - - 甲苯 70 90
60 1 2 - - - 105 155 40 - - - 甲苯 70 90
61 1 2 - - - 120 240 40 - - - 甲苯 70 90
62 1 2 - - - 140 210 50 - - - 甲苯 70 90
63 1 2 - - - 140 220 40 - - - 甲苯 70 90
64 1 0.1 - - 100 - 80 - 20 - - 1,4-二㗁烷 70 90
65 1 - 0.5 - 100 - 50 - - 50 - 1,4-二㗁烷 70 180
66 1 - 0.5 - 100 - 80 - - 20 - 1,4-二㗁烷 70 180
67 1 0.1 - - 130 - 65 - - - 65 1,4-二㗁烷 70 90
68 1 0.1 - - 130 - 104 - - - 26 1,4-二㗁烷 70 90
[表3]
實施例 聚合度 M n,NMR M w/ M n
mPEGA BnA EEA 丙烯酸2- 羥基乙酯 丙烯酸4- 羥基丁酯 丙烯酸2-羥基- 3-苯氧基丙酯
n=4 n=9 n=22
2 250 - - 18 31 - - - 62,400 1.37
3 155 - - 22 20 - - - 39,200 1.23
4 211 - - 29 29 - - - 53,100 1.32
5 162 - - 11 20 - - - 39,000 1.22
6 227 - - 15 28 - - - 54,300 1.33
7 - 16 - 16 8 - - - 11,800 1.20
8 - 18 - 14 8 - - - 12,400 1.20
9 - 13 - 8 5 - - - 8,600 1.46
10 - 20 - 13 8 - - - 13,400 1.30
11 - 18 - 11 7 - - - 11,700 1.33
12 - 8 - 7 1 - - - 5,300 1.51
13 - 16 - 13 3 - - - 10,800 1.30
14 - 19 - 15 3 - - - 12,200 1.28
15 - 20 - 16 4 - - - 13,300 1.39
16 - 24 - 19 4 - - - 15,700 1.29
17 - 21 - 10 8 - - - 13,200 1.20
18 - 13 - 5 4 - - - 8,000 1.44
19 - 24 - 8 8 - - - 14,300 1.21
20 - 26 - 4 8 - - - 14,600 1.20
21 - 7 - 17 9 - - - 8,100 1.41
22 - 11 - 17 5 - - - 9,200 1.39
23 - 15 - 9 10 - - - 10,700 1.30
24 - 26 - 21 5 - - - 16,900 1.31
25 - 20 - 10 6 - - - 12,400 1.33
26 - 33 - 27 6 - - - 21,500 1.34
27 - 39 - 30 7 - - - 25,000 1.36
28 - 39 - 4 8 - - - 20,200 1.25
29 - 10 - 10 159 - - - 29,700 1.19
30 - 27 - 27 122 - - - 35,600 1.27
31 - 30 - 66 91 - - - 38,600 1.17
32 - 27 - 91 52 - - - 35,800 1.20
33 - 45 - 10 123 - - - 41,000 1.31
34 - 44 - 45 86 - - - 41,100 1.20
35 - 45 - 79 54 - - - 42,700 1.24
36 - 43 - 111 19 - - - 42,000 1.28
37 - 60 - 28 87 - - - 46,500 1.24
38 - 55 - 57 49 - - - 43,000 1.27
39 - 56 - 89 18 - - - 44,300 1.30
40 - 79 - 80 36 - - - 56,400 1.43
41 - 81 - 106 17 - - - 58,900 1.51
42 - 81 - 12 93 - - - 54,600 1.27
43 - 71 - 42 51 - - - 48,600 1.30
44 - 70 - 73 18 - - - 48,400 1.32
45 - 84 - 19 72 - - - 54,200 1.33
46 - 80 - 35 52 - - - 51,900 1.35
47 - 84 - 45 44 - - - 54,200 1.33
48 - 82 - 52 35 - - - 53,100 1.36
49 - 94 - 68 26 - - - 60,100 1.50
50 - 104 - 83 20 - - - 66,700 1.52
51 - 93 - 30 55 - - - 57,700 1.33
52 - 84 - 56 18 - - - 52,400 1.35
53 - 105 - 10 52 - - - 60,000 1.35
54 - 102 - 42 18 - - - 58,900 1.37
55 - 111 - 25 18 - - - 60,100 1.40
56 - 131 - 10 18 - - - 67,400 1.43
57 - 129 - 108 31 - - - 84,100 1.51
58 - 170 - 144 40 - - - 111,200 1.61
59 - 221 - 191 50 - - - 144,700 1.68
60 - - 58 102 78 - - - 91,200 1.71
61 - - 62 143 21 - - - 93,100 1.68
62 - - 59 105 93 - - - 95,000 1.82
63 - - 60 106 18 - - - 85,400 1.68
64 - 75 - 66 - 19 - - 49,400 1.46
65 - 67 - 37 - - 39 - 44,300 1.40
66 - 61 - 56 - - 20 - 41,600 1.43
67 - 75 - 42 - - - 42 52,300 1.61
68 - 75 - 68 - - - 18 51,400 1.56
[實施例69] 聚[(丙烯酸苄酯)-(聚(乙二醇)甲醚丙烯酸酯)-(丙烯酸)共聚物]之製造 於室溫下利用0.5 N HCl對實施例1中所獲得之聚[(丙烯酸苄酯)-(聚(乙二醇)甲醚丙烯酸酯)-(丙烯酸1-乙氧基乙酯)共聚物]進行處理,藉此將乙氧基乙基脫離而獲得具有羧基之三元共聚合體1.176 g。藉由動態光散射法(Dynamic light scattering,DLS)測定所獲得之三元共聚合體之水中之Z平均粒徑、及多分散指數,結果為8.5 nm(多分散指數0.14)。
[化28]
[測定裝置與條件等] (1)DLS測定 裝置:Zetasizer NanoZS/Malvern Instruments Ltd. 測定溫度:25℃ 試樣濃度:10 mg/mL 結果:圖3
[實施例70] (1,2-二胺基環己烷)鉑(II)內包SCNP之製造方法 將(1,2-二胺基環己烷)鉑(II)(以下簡記為DACHPt)之Cl(H 2O)體(DACHPt・Cl・H 2O)65.28 mg溶解於純化水20 mL中,於70℃攪拌2小時。對於該溶液5 mL,添加實施例69中獲得之三元共聚合體287.4 mg,於50℃攪拌一晚。攪拌結束後,以純化水作為外液將反應溶液進行透析純化,可獲得5 mL之DACHPt內包SCNP。純化後所獲得之DACHPt內包SCNP之Pt含量係藉由感應耦合電漿發光分析(Inductively coupled plasma-atomic emission spectrometry,ICP-AES)進行測定,為720 μg/mL(以DACHPt計為1.14 mg/mL)。另外,將DACHPt內包SCNP 200 μL進行冷凍乾燥,算出固形份濃度後,取與Pt含量之比,算出相對於聚合物之Pt結合量,結果為3.4 mol/mol。又,藉由動態光散射法(Dynamic light scattering,DLS)測定所獲得之DACHPt內包SCNP之Z平均粒徑、及多分散指數,結果為8.7 nm(多分散指數0.14)。將DACHPt內包前後之SCNP之粒徑示於圖3。SCNP之粒徑於DACHPt內包前後幾乎未變動。其結果被彙總於下表。
[測定裝置與條件等] (1)ICP-AES測定 裝置:連續式高頻電漿發光裝置 ICPE-9000/島津製作所 預處理裝置:微波試樣預處理裝置 ETHOS EASY/Milestone General 測定波長:214 nm 標準溶液:鉑標準液(Pt1000) ICP分析用/FUJIFILM Wako Pure Chemical (2)DLS測定 裝置:Zetasizer NanoZS/Malvern Instruments Ltd. 測定溫度:25℃ 試樣濃度:10 mg/mL 結果:圖3
[表4]
實施例 產量 (mL) Pt含量 (μg/mL) 每聚合物之Pt結合量 (mol/mol) Z平均粒徑 (nm) 多分散指數
70 5 720 3.4 8.7 0.14
[實施例71] N 3-聚[(丙烯酸苄酯)-(聚(乙二醇)甲醚丙烯酸酯)-(丙烯酸)共聚物]之製造 使用N 3-CTA取代實施例1所使用之鏈轉移劑DDMAT,與實施例1及實施例69同樣地進行合成。秤取100 mg之2-(十二烷基硫基硫羰基硫基)-2-甲基丙酸3-疊氮基-1-丙醇酯(N 3-CTA),溶於甲苯17.3 mL中而製成N 3-CTA/甲苯儲備溶液(以N 3-CTA濃度計為5.78 mg/mL)。同樣地,秤取10 mg之2,2'-偶氮雙(2-甲基丙腈)(AIBN),溶於甲苯7.87 mL中製成AIBN/甲苯儲備溶液(以AIBN濃度計為1.27 mg/mL)。另外,添加聚(乙二醇)甲醚丙烯酸酯(mPEGA,乙二醇之重複數之平均值(n)為9)2.592 g、丙烯酸苄酯(BnA)0.684 g、丙烯酸1-乙氧基乙酯0.172 g、N 3-CTA/甲苯儲備溶液4.15 mL及AIBN/甲苯儲備溶液3.46 mL,於70℃之油浴中進行聚合。經過90分鐘後,於停止聚合後,將反應溶液藉由再沈澱法或對甲醇進行透析,藉此將共聚物回收。有關再沈澱法,於添加有不良溶劑(己烷/乙酸乙酯=7/3[v/v])之離心管中滴加反應溶液,藉由離心分離(2,000×g、5 min)進行回收,將該操作重複3次,最終進行真空乾燥。於室溫下利用0.5 N HCl對所獲得之共聚物進行處理,藉此將乙氧基乙基脫離而獲得N 3-聚[(丙烯酸苄酯)-(聚(乙二醇)甲醚丙烯酸酯)-(丙烯酸)共聚物]2.455 g。 對所獲得之共聚物,藉由使用NMR所測定之 1H-NMR圖譜對各單體之聚合度、及數量平均分子量(M n,NMR)進行解析,結果為mPEGA(n=9)之聚合度為70,BnA之聚合度為56,EEA之聚合度為15,M n,NMR為44,000。進而,對所獲得之共聚物,使用GPC對分子量分散度(M w/M n)進行測定,結果為1.32。
[化29]
[測定裝置與條件等] (1) 1H-NMR測定 裝置:JNM-ECX400(400 MHz)/日本電子 溶劑:包含0.03%四甲基矽烷之二甲基亞碸-d 6/關東化學 試樣濃度:20 mg/mL 測定溫度:25℃ 累計次數:256次 結果:圖4 (2)GPC測定 裝置:HPLC-Prominence系統/島津製作所 檢測器:RID-10A 折射率檢測器/島津製作所 管柱:TSKgel α-2500管柱/Tosoh (管柱尺寸7.8 mm×300 mm,粒徑7 μm,排除極限分子量5×10 3) TSKgel α-4000管柱/Tosoh (管柱尺寸7.8 mm×300 mm,粒徑10 μm,排除極限分子量4×10 5) TSKgel保護管柱/Tosoh 流動相:含有10 mmol/L之溴化鋰之N,N-二甲基甲醯胺(DMF) 溫度:40℃ 流速:0.5 mL/min 試樣濃度:6 mg/mL 標準物質:聚(甲基丙烯酸甲酯)標準ReadyCal set,M p800-2,200,000Da/SIGMA 結果:圖5
[表5]
實 施 例 準備比(相對於鏈轉移劑之莫耳比) 溶劑 溫度 (℃) 聚合 時間 (分鐘) 聚合度 M n,NMR M w/ M n
鏈轉移劑 起始劑 單體
N 3-CTA AIBN mPEGA BnA EEA mPEGA BnA EEA
n=9 n=9
71 1 0.5 100 80 20 甲苯 70 90 70 56 15 44,000 1.32
[實施例72~85] 適當變更實施例71所使用之單體(mPEGA、BnA、EEA)之準備量、聚合時間,使用與實施例71同樣之方法,藉此製造下表所示之組成比率或平均分子量不同之聚合物。
[表6]
實施例 準備比(相對於鏈轉移劑之莫耳比) 溶劑 溫度 (℃) 聚合時間 (分鐘)
鏈轉移劑 起始劑 單體
N 3-CTA AIBN mPEGA BnA EEA
(n=9)
72 1 0.5 100 90 10 甲苯 70 90
73 1 0.5 100 80 20 甲苯 70 90
74 1 0.5 100 88 12 甲苯 70 90
75 1 0.5 100 88 12 甲苯 70 90
76 1 0.5 100 80 20 甲苯 70 90
77 1 0.5 100 70 30 甲苯 70 90
78 1 0.5 100 70 30 甲苯 70 90
79 1 0.5 100 70 30 甲苯 70 90
80 1 0.5 100 80 20 甲苯 70 90
81 1 0.5 100 80 20 甲苯 70 90
82 1 0.5 100 80 20 甲苯 70 90
83 1 0.5 100 78 22 甲苯 70 90
84 1 0.5 100 62 38 甲苯 70 90
85 1 0.5 100 38 62 甲苯 70 90
[表7]
實施例 聚合度 M n,NMR M w/ M n
單體
mPEGA BnA EEA (丙烯酸)
(n=9)
72 72 69 9 46,900 1.47
73 79 65 18 49,800 1.38
74 77 75 12 50,500 1.34
75 73 68 12 47,200 1.34
76 77 66 20 49,600 1.34
77 74 55 26 46,700 1.34
78 75 55 26 47,100 1.28
79 85 61 26 52,900 1.33
80 82 69 16 52,300 1.32
81 82 67 16 51,600 1.32
82 77 64 15 48,600 1.34
83 65 52 16 41,300 1.31
84 70 45 30 43,300 1.35
85 75 31 50 45,100 1.29
[實施例86-88] N 3(PEG m酯)-聚[(丙烯酸苄酯)-(聚(乙二醇)甲醚丙烯酸酯)-(丙烯酸)共聚物]之製造 使用2-(十二烷基硫基硫羰基硫基)-2-甲基丙酸2-(2-(2-疊氮基乙氧基)乙氧基)乙酯(N 3-PEG2-酯CTA)、2-(十二烷基硫基硫羰基硫基)-2-甲基丙酸17-疊氮基-3,6,9,12,15-五氧雜十七烷-1-醇酯(N 3-PEG5-酯CTA)、或2-(十二烷基硫基硫羰基硫基)-2-甲基丙酸23-疊氮基-3,6,9,12,15,18,21-七氧雜二十三烷-1-醇酯(N 3-PEG7-酯CTA)取代實施例71所使用之鏈轉移劑N 3-CTA,於與實施例83同樣之(準備比)條件下進行合成。
[表8]
實 施 例 準備比(相對於鏈轉移劑之莫耳比) 溶劑 溫度 (℃) 聚合時間 (分鐘) 聚合度 M n,NMR M w/ M n Z平均粒徑 (nm) 多分散指數
鏈轉移劑 起始劑 單體
N 3-酯CTA AIBN mPEGA BnA EEA mPEGA BnA EEA
n=9 n=9
86 1 (PEG2) 0.5 100 78 22 甲苯 70 90 83 68 19 52,500 1.32 10 0.27
87 1 (PEG5) 0.5 100 78 22 甲苯 70 90 72 60 19 46,100 1.33 9 0.22
88 1 (PEG7) 0.5 100 78 22 甲苯 70 90 75 63 20 48,200 1.33 10 0.25
[化30]
[實施例89-91] N 3(PEG m醯胺)-聚[(丙烯酸苄酯)-(聚(乙二醇)甲醚丙烯酸酯)-(丙烯酸)共聚物]之製造 使用N-(8-疊氮基-3,6-二氧雜辛烷-1-基)-2-(十二烷基硫基硫羰基硫基)-2-甲基丙醯胺(N 3-PEG2-醯胺CTA)、N-(17-疊氮基-3,6,9,12,15-五氧雜十七烷-1-基)-2-(十二烷基硫基硫羰基硫基)-2-甲基丙醯胺(N 3-PEG5-醯胺CTA)、或N-(23-疊氮基-3,6,9,12,15,18,21-七氧雜二十三烷-1-基)-2-(十二烷基硫基硫羰基硫基)-2-甲基丙醯胺(N 3-PEG7-醯胺CTA)取代實施例71所使用之鏈轉移劑N 3-CTA,於與實施例83同樣之(準備比)條件下進行合成。
[表9]
實 施 例 準備比(相對於鏈轉移劑之莫耳比) 溶劑 溫度 (℃) 聚合 時間 (分鐘) 聚合度 M n,NMR M w/ M n Z平均 粒徑 (nm) 多分散 指數
鏈轉移劑 起始劑 單體
N 3-醯胺 CTA AIBN mPEGA BnA EEA mPEGA BnA EEA
n=9 n=9
89 1 (PEG2) 0.5 100 78 22 甲苯 70 90 72 60 19 45,900 1.46 10 0.24
90 1(PEG5) 0.5 100 78 22 甲苯 70 90 68 58 19 44,000 1.47 9 0.23
91 1(PEG7) 0.5 100 78 22 甲苯 70 90 70 59 20 45,200 1.49 9 0.23
[化31]
[實施例92] N 3-聚[(丙烯酸苄酯)-(聚(乙二醇)甲醚丙烯酸酯)-(丙烯酸)共聚物]-異丁腈之製造 秤取實施例71中所獲得之共聚物2.40 g,溶於甲苯32 mL中。於該溶液中添加AIBN 170 mg及過氧化月桂醯62 mg,於80℃之油浴中攪拌20小時。藉由冰浴冷卻使反應停止後,將反應溶液藉由再沈澱法或對甲醇進行透析,藉此將共聚物回收。所獲得之共聚物基本上為黏稠體,因此有關再沈澱法,於添加有不良溶劑(己烷/乙酸乙酯=7/3[v/v])之離心管中滴加反應溶液,藉由離心分離(2,000×g、5 min)進行回收,將該操作重複3次,最終進行真空乾燥,藉此可獲得末端構造經轉換之N 3-聚[(丙烯酸苄酯)-(聚(乙二醇)甲醚丙烯酸酯)-(丙烯酸)共聚物]-異丁腈2.21 g。對所獲得之共聚物,使用紫外可見分光光度計進行測定,根據所獲得之UV圖譜對末端構造之殘存率進行評價,結果為0.0%。
[化32]
[測定裝置與條件等] (1)UV圖譜測定 裝置:日立分光光度計U-9300/日立 溶劑:純化水 試樣濃度:4 mg/mL 測定波長:250~500 nm 結果:圖6
[表10]
實施例 所使用之共聚物 反應所使用之偶氮化合物 末端構造之殘存率(%)
92 實施例71 AIBN 0.0
[實施例93~95] 對於實施例84及85中所獲得之共聚物,適當變更偶氮化合物之種類、準備量,使用與實施例92同樣之方法,藉此合成下表所示之末端構造不同之共聚物。
[表11]
實施例 所使用之共聚物 反應所使用之偶氮化合物 末端構造之殘存率(%)
93 實施例84 AIBN 0.0
94 實施例84 MAIB 0.0
95 實施例85 AIBN 0.0
[實施例96] DM1-半胱胺結合共聚物之製造 秤取實施例92中所獲得之共聚物200 mg,溶解於DMF 2 mL中,添加(1-氰基-2-乙氧基-2-側氧基亞乙基胺基氧基)二甲胺基嗎啉基碳鎓六氟磷酸鹽(COMU)59 mg及2,2,6,6-四甲基哌啶(TMP)23.2 μL,於30℃攪拌2小時。另外,添加美登素(DM1)101 mg及S-(2-吡啶基硫基)半胱胺鹽酸鹽18 mg,溶解於THF 3 mL中,添加DIPEA 35.9 μL,於30℃攪拌2小時。將各反應液混合,將所獲得之反應液於30℃攪拌24小時。將反應溶液進行透析純化(透析膜:Spectra/Por Regenerated Cellulose Membrane 6,截留分子量:3.5 kDa,外液:甲醇)後,藉由減壓蒸餾去除及真空乾燥將溶劑去除,並將共聚物回收,可獲得DM1-半胱胺結合共聚物222 mg。又,藉由動態光散射法(Dynamic light scattering,DLS)測定所獲得之共聚物之水中之Z平均粒徑、及多分散指數,結果為11 nm(多分散指數0.32)。
[化33]
對DM1-半胱胺結合共聚物,藉由使用NMR所測定之 1H-NMR圖譜對共聚物每1分子之DM1導入數進行解析,結果為13 mol/mol。 [測定裝置與條件等] (1) 1H-NMR測定 裝置:JNM-ECX400(400 MHz)/日本電子 溶劑:包含0.03%四甲基矽烷之二甲基亞碸-d 6/關東化學 試樣濃度:20 mg/mL 測定溫度:25℃ 累計次數:256次 結果:圖7
[表12]
實施例 所使用之共聚物 共聚物每1分子之DM1導入數 (mol/mol)
96 實施例92 13
[實施例97~107] 對於實施例79、85~91及93~95中所獲得之共聚物,適當變更連接基及DM1之準備量,使用與實施例96同樣之方法,藉此合成下表所示之共聚物每1分子之DM1導入數不同之共聚物。
[表13]
實施例 所使用之共聚物 共聚物每1分子之DM1導入數 (mol/mol)
97 實施例93 20
98 實施例94 26
99 實施例95 20
100 實施例85 26
101 實施例79 19
102 實施例86 13
103 實施例87 13
104 實施例88 12
105 實施例89 13
106 實施例90 12
107 實施例91 15
[實施例108] DM1-N-4-APM結合共聚物之製造 秤取實施例72中所獲得之共聚物509 mg,溶解於DMF 10 mL中,添加COMU 84 mg及TMP 33 μL,於室溫下攪拌3小時。其後,添加N-(4-胺基苯基)馬來醯亞胺(N-4-APM)55 mg,於30℃攪拌3天。將反應溶液進行透析純化(透析膜:Spectra/Por Regenerated Cellulose Membrane 6,截留分子量:3.5 kDa,外液:甲醇)後,藉由減壓蒸餾去除及真空乾燥將溶劑去除,可獲得N-4-APM結合共聚物475 mg。將所獲得之N-4-APM結合共聚物475 mg溶解於DMF 10 mL中,添加DM1 102 mg,於室溫下攪拌24小時。將反應溶液進行透析純化(透析膜:Spectra/Por Regenerated Cellulose Membrane 6,截留分子量:3.5 kDa,外液:甲醇)後,藉由減壓蒸餾去除及真空乾燥將溶劑去除,可獲得DM1-N-4-APM結合共聚物458 mg。藉由動態光散射法(Dynamic light scattering,DLS)測定所獲得之共聚物之水中之Z平均粒徑、及多分散指數,結果為11 nm(多分散指數0.19)。
[化34]
對DM1-N-4-APM結合共聚物,藉由使用NMR所測定之 1H-NMR圖譜對共聚物每1分子之DM1導入數進行解析,結果為7 mol/mol。 [測定裝置與條件等] (1) 1H-NMR測定 裝置:JNM-ECX400(400 MHz)/日本電子 溶劑:包含0.03%四甲基矽烷之二甲基亞碸-d 6/關東化學 試樣濃度:20 mg/mL 測定溫度:25℃ 累計次數:256次 結果:圖8
[表14]
實施例 所使用之共聚物 共聚物每1分子之DM1導入數 (mol/mol)
108 實施例72 7
[實施例109] 1,4-丁二胺結合共聚物之合成 秤取實施例74中所獲得之共聚物810 mg,溶解於DMF 16 mL中,添加COMU 164.9 mg及TMP 78 μL,於室溫下攪拌3小時。其後,添加N-(第三丁氧基羰基)-1,4-丁二胺735 μL,於30℃攪拌3天。將反應溶液進行透析純化(透析膜:Spectra/Por Regenerated Cellulose Membrane 6,截留分子量:3.5 kDa,外液:甲醇)後,藉由減壓蒸餾去除及真空乾燥將溶劑去除,並將共聚物回收。將所獲得之N-Boc-1,4-丁二胺共聚物溶解於DCM與TFA之混液[DCM/TFA=5/3(v/v)]32 mL中,於室溫下攪拌一晚,藉此進行去保護後,藉由減壓蒸餾去除及真空乾燥將溶劑去除,可獲得1,4-丁二胺結合共聚物643 mg。
[化35]
對1,4-丁二胺結合共聚物,藉由使用NMR所測定之 1H-NMR圖譜對共聚物每1分子之1,4-丁二胺導入數進行解析,結果為12 mol/mol。 [測定裝置與條件等] (1) 1H-NMR測定 裝置:JNM-ECX400(400 MHz)/日本電子 溶劑:包含0.03%四甲基矽烷之二甲基亞碸-d 6/關東化學 試樣濃度:20 mg/mL 測定溫度:25℃ 累計次數:256次 結果:圖9
[表15]
實施例 所使用之共聚物 共聚物每1分子之1,4-丁二胺導入數 (mol/mol)
109 實施例74 12
[實施例110~116] 對實施例73、75~78及80~81中所獲得之共聚物,適當變更N-(第三丁氧基羰基)-1,4-丁二胺之準備量,使用與實施例109同樣之方法,藉此合成下表所示之共聚物每1分子之1,4-丁二胺導入數不同之共聚物。
[表16]
實施例 所使用之共聚物 共聚物每1分子之1,4-丁二胺導入數 (mol/mol)
110 實施例73 18
111 實施例75 12
112 實施例76 20
113 實施例77 26
114 實施例78 26
115 實施例80 16
116 實施例81 16
[實施例117] DM1-MHA-1,4-丁二胺結合共聚物之製造 秤取實施例109中所獲得之共聚物295 mg,溶解於DMF 6 mL中,添加COMU 59.3 mg及TMP 28 μL,於室溫下攪拌3小時。其後,添加6-馬來醯亞胺己酸(MHA)293 mg,於30℃攪拌3天。將反應溶液進行透析純化(透析膜:Spectra/Por Regenerated Cellulose Membrane 6,截留分子量:3.5 kDa,外液:甲醇)後,藉由減壓蒸餾去除及真空乾燥將溶劑去除,可獲得MHA-1,4-丁二胺結合共聚物313 mg。將所獲得之MHA-1,4-丁二胺結合共聚物溶解於DMF 10 mL中後,添加DM1 80 mg,於30℃攪拌24小時。將反應溶液進行透析純化(透析膜:Spectra/Por Regenerated Cellulose Membrane 6,截留分子量:3.5 kDa,外液:甲醇)後,藉由減壓蒸餾去除及真空乾燥將溶劑去除,可獲得DM1-MHA-1,4-丁二胺結合共聚物321 mg。藉由動態光散射法(Dynamic light scattering,DLS)測定所獲得之共聚物之水中之Z平均粒徑、及多分散指數,結果為10 nm(多分散指數0.21)。
[化36]
對DM1-MHA-1,4-丁二胺結合共聚物,藉由使用NMR所測定之 1H-NMR圖譜對共聚物每1分子之DM1導入數進行解析,結果為12 mol/mol。 [測定裝置與條件等] (1) 1H-NMR測定 裝置:JNM-ECX400(400 MHz)/日本電子 溶劑:包含0.03%四甲基矽烷之二甲基亞碸-d 6/關東化學 試樣濃度:20 mg/mL 測定溫度:25℃ 累計次數:256次 結果:圖10
[表17]
實施例 所使用之共聚物 共聚物每1分子之DM1導入數 (mol/mol)
117 實施例109 12
[實施例118] DM1-SPDP-1,4-丁二胺結合共聚物之製造 添加DM1 81 mg及3-(吡啶-2-基二硫基)丙酸2,5-二側氧基吡咯啶-1-基酯(SPDP)29 mg,溶解於DCM 1 mL中,N,N-二異丙基乙基胺(DIPEA)16 μL,於30℃攪拌3小時。利用DCM 4 mL將實施例110中所獲得之共聚物200 mg溶解,添加至反應溶液中,將所獲得之反應液於30℃攪拌24小時。將反應溶液進行透析純化(透析膜:Spectra/Por Regenerated Cellulose Membrane 6,截留分子量:3.5 kDa,外液:甲醇)後,藉由減壓蒸餾去除及真空乾燥將溶劑去除,並將共聚物回收,可獲得DM1-SPDP-1,4-丁二胺結合共聚物189 mg。藉由動態光散射法(Dynamic light scattering,DLS)測定所獲得之共聚物之水中之Z平均粒徑、及多分散指數,結果為13 nm(多分散指數0.23)。
[化37]
對DM1-SPDP-1,4-丁二胺結合共聚物,藉由使用NMR所測定之 1H-NMR圖譜對共聚物每1分子之DM1導入數進行解析,結果為18 mol/mol。 [測定裝置與條件等] (1) 1H-NMR測定 裝置:JNM-ECX400(400 MHz)/日本電子 溶劑:包含0.03%四甲基矽烷之二甲基亞碸-d 6/關東化學 試樣濃度:20 mg/mL 測定溫度:25℃ 累計次數:256次 結果:圖11
[表18]
實施例 所使用之共聚物 共聚物每1分子之DM1導入數 (mol/mol)
118 實施例110 18
[實施例119~121] 對實施例112~114中所獲得之共聚物,適當變更DM1之準備量,使用與實施例118同樣之方法,藉此合成下表所示之共聚物每1分子之DM1導入數不同之共聚物。
[表19]
實施例 所使用之共聚物 共聚物每1分子之DM1導入數 (mol/mol)
119 實施例112 16
120 實施例113 20
121 實施例114 26
[實施例122] DM1-SMCC-1,4-丁二胺結合共聚物之製造 添加DM1 39 mg及N-丁二醯亞胺基4-(N-馬來醯亞胺基甲基)環己烷羧酸酯(SMCC)15 mg,溶解於DCM 1 mL中,添加DIPEA 7.8 μL,於30℃攪拌3小時。利用DCM 4 mL將實施例110中所獲得之共聚物96 mg溶解,添加至反應溶液中,將所獲得之反應液於30℃攪拌48小時。將反應溶液進行透析純化(透析膜:Spectra/Por Regenerated Cellulose Membrane 6,截留分子量:3.5 kDa,外液:甲醇)後,藉由減壓蒸餾去除及真空乾燥將溶劑去除,並將共聚物回收,可獲得DM1-SMCC-1,4-丁二胺結合共聚物122 mg。藉由動態光散射法(Dynamic light scattering,DLS)測定所獲得之共聚物之水中之Z平均粒徑、及多分散指數,結果為12 nm(多分散指數0.29)。
[化38]
對DM1-SMCC-1,4-丁二胺結合共聚物,藉由使用NMR所測定之 1H-NMR圖譜對共聚物每1分子之DM1導入數進行解析,結果為18 mol/mol。 [測定裝置與條件等] (1) 1H-NMR測定 裝置:JNM-ECX400(400 MHz)/日本電子 溶劑:包含0.03%四甲基矽烷之二甲基亞碸-d 6/關東化學 試樣濃度:20 mg/mL 測定溫度:25℃ 累計次數:256次 結果:圖12
[表20]
實施例 所使用之共聚物 共聚物每1分子之DM1導入數 (mol/mol)
122 實施例110 18
[實施例123] 對實施例111中所獲得之共聚物,適當變更DM1之準備量,使用與實施例122同樣之方法,藉此合成下表所示之共聚物每1分子之DM1導入數不同之共聚物。
[表21]
實施例 所使用之共聚物 共聚物每1分子之DM1導入數 (mol/mol)
123 實施例111 7
[實施例124] DM1-CL-031-1,4-丁二胺結合共聚物之製造 添加DM1 81 mg及2,5-二側氧基吡咯啶-1-基4-(吡啶-2-基二硫基)戊酸酯(CL-031)32 mg,溶解於DCM 1 mL中,添加DIPEA 16 μL,於30℃攪拌3小時。利用DCM 4 mL將實施例110中所獲得之共聚物200 mg溶解,添加至反應溶液中,將所獲得之反應液於30℃攪拌24小時。將反應溶液進行透析純化(透析膜:Spectra/Por Regenerated Cellulose Membrane 6,截留分子量:3.5 kDa,外液:甲醇)後,藉由減壓蒸餾去除及真空乾燥將溶劑去除,並將共聚物回收,可獲得DM1-CL-031-1,4-丁二胺結合共聚物222 mg。藉由動態光散射法(Dynamic light scattering,DLS)測定所獲得之共聚物之水中之Z平均粒徑、及多分散指數,結果為13 nm(多分散指數0.34)。
[化39]
對DM1-CL-031-1,4-丁二胺結合共聚物,藉由使用NMR所測定之 1H-NMR圖譜對共聚物每1分子之DM1導入數進行解析,結果為17 mol/mol。 [測定裝置與條件等] (1) 1H-NMR測定 裝置:JNM-ECX400(400 MHz)/日本電子 溶劑:包含0.03%四甲基矽烷之二甲基亞碸-d 6/關東化學 試樣濃度:20 mg/mL 測定溫度:25℃ 累計次數:256次 結果:圖13
[表22]
實施例 所使用之共聚物 共聚物每1分子之DM1導入數 (mol/mol)
124 實施例110 17
[實施例125] DM1-CL-018-1,4-丁二胺結合共聚物之製造 添加DM1 114 mg及2,5-二側氧基吡咯啶-1-基3-甲基-3-(吡啶-2-基二硫基)丁酸酯(CL-018)43 mg,溶解於N,N-二甲基乙醯胺(DMAC)1 mL中,添加4-二甲胺基吡啶(DMAP)8.4 mg,於50℃攪拌2小時。利用DMAC 4 mL將實施例115中所獲得之共聚物150 mg溶解,添加至反應溶液中,將所獲得之反應液於50℃攪拌24小時。將反應溶液進行透析純化(透析膜:Spectra/Por Regenerated Cellulose Membrane 6,截留分子量:3.5 kDa,外液:甲醇)後,藉由減壓蒸餾去除及真空乾燥將溶劑去除,並將共聚物回收,可獲得DM1-CL-018-1,4-丁二胺結合共聚物156 mg。藉由動態光散射法(Dynamic light scattering,DLS)測定所獲得之共聚物之水中之Z平均粒徑、及多分散指數,結果為13 nm(多分散指數0.23)。
[化40]
對DM1-CL-018-1,4-丁二胺結合共聚物,藉由使用NMR所測定之 1H-NMR圖譜對共聚物每1分子之DM1導入數進行解析,結果為16 mol/mol。 [測定裝置與條件等] (1) 1H-NMR測定 裝置:JNM-ECX400(400 MHz)/日本電子 溶劑:包含0.03%四甲基矽烷之二甲基亞碸-d 6/關東化學 試樣濃度:20 mg/mL 測定溫度:25℃ 累計次數:256次 結果:圖14
[表23]
實施例 所使用之共聚物 共聚物每1分子之DM1導入數 (mol/mol)
125 實施例115 16
[實施例126] DM1-CL-038-1,4-丁二胺結合共聚物之製造 添加DM1 76 mg及2,5-二側氧基吡咯啶-1-基4-甲基-4-(吡啶-2-基二硫基)戊酸酯(CL-038)29 mg,溶解DMAC 1 mL中,添加DMAP 6 mg,於50℃攪拌2小時。利用DMAC 4 mL將實施例115中所獲得之共聚物100 mg溶解,添加至反應溶液中,於50℃攪拌24小時。將反應溶液進行透析純化(透析膜:Spectra/Por Regenerated Cellulose Membrane 6,截留分子量:3.5 kDa,外液:甲醇)後,藉由減壓蒸餾去除及真空乾燥將溶劑去除,並將共聚物回收,可獲得DM1-CL-038-1,4-丁二胺結合共聚物56 mg。藉由動態光散射法(Dynamic light scattering,DLS)測定所獲得之共聚物之水中之Z平均粒徑、及多分散指數,結果為11 nm(多分散指數0.32)。
[化41]
對DM1-CL-038-1,4-丁二胺結合共聚物,藉由使用NMR所測定之 1H-NMR圖譜對共聚物每1分子之DM1導入數進行解析,結果為8 mol/mol。 [測定裝置與條件等] (1) 1H-NMR測定 裝置:JNM-ECX400(400 MHz)/日本電子 溶劑:包含0.03%四甲基矽烷之二甲基亞碸-d 6/關東化學 試樣濃度:20 mg/mL 測定溫度:25℃ 累計次數:256次 結果:圖15
[表24]
實施例 所使用之共聚物 共聚物每1分子之DM1導入數 (mol/mol)
126 實施例115 8
[實施例127] DM1-CL-047-1,4-丁二胺結合共聚物之製造 將4-丁二醯亞胺基氧基羰基-α-甲基-α-(2-吡啶基二硫基)甲苯(CL-047)21.2 mg溶解於DMF 3 mL中,添加實施例113中所獲得之共聚物100 mg及DIPEA 10 μL,於30℃攪拌24小時。於反應液中添加DM1 40 mg,於30℃攪拌24小時。將反應溶液進行透析純化(透析膜:Spectra/Por Regenerated Cellulose Membrane 6,截留分子量:3.5 kDa,外液:甲醇)後,藉由減壓蒸餾去除及真空乾燥將溶劑去除,並將共聚物回收,可獲得DM1-CL-047-1,4-丁二胺結合共聚物153 mg。藉由動態光散射法(Dynamic light scattering,DLS)測定所獲得之共聚物之水中之Z平均粒徑、及多分散指數,結果為12 nm(多分散指數0.18)。
[化42]
對DM1-CL-047-1,4-丁二胺結合共聚物,藉由使用NMR所測定之 1H-NMR圖譜對共聚物每1分子之DM1導入數進行解析,結果為20 mol/mol。 [測定裝置與條件等] (1) 1H-NMR測定 裝置:JNM-ECX400(400 MHz)/日本電子 溶劑:包含0.03%四甲基矽烷之二甲基亞碸-d 6/關東化學 試樣濃度:20 mg/mL 測定溫度:25℃ 累計次數:256次 結果:圖16
[表25]
實施例 所使用之共聚物 共聚物每1分子之DM1導入數 (mol/mol)
127 實施例113 20
[實施例128] SN-38-CO-1,4-丁二胺結合共聚物之製造 將SN-38 0.5 g溶解於DCM 50 mL中,添加二碳酸二第三丁酯353 mg及吡啶3 mL,於室溫下整夜攪拌。將反應液轉移至分液漏斗,利用0.5 N HCl水溶液150 mL洗淨3次,繼而利用飽和NaHCO 3水溶液洗淨1次。將有機層回收,藉由蒸發器將DCM減壓蒸餾去除後,進行真空乾燥而獲得0.586 g之Boc-SN-38。 繼而,將實施例115中所獲得之共聚物200 mg溶解於苯中,並進行冷凍乾燥。於氬氣環境下溶解於THF中,分別添加27.6 mg之Boc-SN-38、12 mg之1,1'-羰基二咪唑及15 mg之DMAP,於室溫下攪拌3小時。將反應溶液進行透析純化(透析膜:Spectra/Por Regenerated Cellulose Membrane 6,截留分子量:3.5 kDa,外液:甲醇)後,藉由減壓蒸餾去除及真空乾燥將溶劑去除,並將Boc-SN-38-CO-1,4-丁二胺結合共聚物回收。將所獲得之Boc-SN-38-CO-1,4-丁二胺結合共聚物溶解於DCM與TFA之混液[DCM/TFA=5/3(v/v)]32 mL中,於室溫下攪拌一晚,藉此進行去保護後,藉由減壓蒸餾去除及真空乾燥將溶劑去除,可獲得SN-38-CO-1,4-丁二胺結合共聚物220 mg。藉由動態光散射法(Dynamic light scattering,DLS)測定所獲得之共聚物之水中之Z平均粒徑、及多分散指數,結果為8 nm(多分散指數0.23)。
[化43]
對SN-38-CO-1,4-丁二胺結合共聚物,藉由使用NMR所測定之 1H-NMR圖譜對共聚物每1分子之SN-38導入數進行解析,結果為13 mol/mol。 [測定裝置與條件等] (1) 1H-NMR測定 裝置:JNM-ECX400(400 MHz)/日本電子 溶劑:包含0.03%四甲基矽烷之二甲基亞碸-d 6/關東化學 試樣濃度:20 mg/mL 測定溫度:25℃ 累計次數:256次 結果:圖17
[表26]
實施例 所使用之共聚物 共聚物每1分子之SN-38導入數 (mol/mol)
128 實施例115 13
[實施例129] 德魯替康-SPDP-1,4-丁二胺結合共聚物之製造 將實施例116中所獲得之共聚物200 mg、3-(吡啶-2-基二硫基)丙酸2,5-二側氧基吡咯啶-1-基酯(SPDP)14.2 mg及德魯替康51.4 mg溶解於DMF 4 mL中,於30℃攪拌2小時。其後,於攪拌下向反應液中滴加三(2-羧基乙基)膦(TCEP)水溶液1 mL,於30℃整夜攪拌。將所獲得之反應液於30℃攪拌24小時。將反應溶液進行透析純化(透析膜:Spectra/Por Regenerated Cellulose Membrane 6,截留分子量:3.5 kDa,外液:甲醇)後,藉由減壓蒸餾去除及真空乾燥將溶劑去除,並將共聚物回收,可獲得德魯替康-SPDP-1,4-丁二胺結合共聚物(硫醚鍵)205 mg。藉由動態光散射法(Dynamic light scattering,DLS)測定所獲得之共聚物之水中之Z平均粒徑、及多分散指數,結果為12 nm(多分散指數0.23)。
[化44]
對德魯替康-SPDP-1,4-丁二胺結合共聚物,藉由使用NMR所測定之 1H-NMR圖譜對共聚物每1分子之德魯替康導入數進行解析,結果為16 mol/mol。 [測定裝置與條件等] (1) 1H-NMR測定 裝置:JNM-ECX400(400 MHz)/日本電子 溶劑:包含0.03%四甲基矽烷之二甲基亞碸-d 6/關東化學 試樣濃度:20 mg/mL 測定溫度:25℃ 累計次數:256次 結果:圖18
[表27]
實施例 所使用之共聚物 共聚物每1分子之德魯替康導入數 (mol/mol)
129 實施例116 16
[實施例130] 4-羥基丁胺結合共聚物之製造 秤取實施例82中所獲得之共聚物200 mg,溶解於DMF 4 mL中,添加COMU 64.4 mg及TMP 31 μL,於室溫下攪拌3小時。其後,添加4-胺基-1-丁醇73 μL,於30℃整夜攪拌。將反應溶液進行透析純化(透析膜:Spectra/Por Regenerated Cellulose Membrane 6,截留分子量:3.5 kDa,外液:甲醇)後,藉由減壓蒸餾去除及真空乾燥將溶劑去除,可獲得4-羥基丁胺結合共聚物205 mg。
[化45]
對4-羥基丁胺結合共聚物,藉由使用NMR所測定之 1H-NMR圖譜對共聚物每1分子之4-胺基-1-丁醇導入數進行解析,結果為15 mol/mol。 [測定裝置與條件等] (1) 1H-NMR測定 裝置:JNM-ECX400(400 MHz)/日本電子 溶劑:包含0.03%四甲基矽烷之二甲基亞碸-d 6/關東化學 試樣濃度:20 mg/mL 測定溫度:25℃ 累計次數:256次 結果:圖19
[表28]
實施例 所使用之共聚物 共聚物每1分子之4-胺基-1-丁醇導入數 (mol/mol)
130 實施例82 15
[實施例131] 星孢菌素(STS)結合共聚物之合成 將實施例130中所獲得之共聚物200 mg溶解於THF中,添加三光氣7.2 mg及DMAP 22.1 mg,於10℃攪拌30分鐘。其後,添加星孢菌素28.2 mg,於室溫下攪拌3小時。將反應溶液進行透析純化(透析膜:Spectra/Por Regenerated Cellulose Membrane 6,截留分子量:3.5 kDa,外液:甲醇)後,藉由減壓蒸餾去除及真空乾燥將溶劑去除,可獲得星孢菌素結合共聚物233 mg。藉由動態光散射法(Dynamic light scattering,DLS)測定所獲得之共聚物之水中之Z平均粒徑、及多分散指數,結果為10 nm(多分散指數0.21)。
[化46]
對STS結合共聚物,藉由使用NMR所測定之 1H-NMR圖譜對共聚物每1分子之STS導入數進行解析,結果為13 mol/mol。 [測定裝置與條件等] (1) 1H-NMR測定 裝置:JNM-ECX400(400 MHz)/日本電子 溶劑:包含0.03%四甲基矽烷之二甲基亞碸-d 6/關東化學 試樣濃度:20 mg/mL 測定溫度:25℃ 累計次數:256次 結果:圖20
[表29]
實施例 所使用之共聚物 共聚物每1分子之STS導入數 (mol/mol)
131 實施例130 13
[實施例132] 西妥昔單抗-馬來醯亞胺-PEG4-DBCO結合微胞藥物複合體之製造 於分注有西妥昔單抗(爾必得舒,Merck BioPharma)抗體原液(10 mg/mL)3 mL與磷酸鹽緩衝鹽水(phosphate buffered saline,PBS)9 mL之玻璃小瓶中添加溶解於PBS中之10 mM三(2-羧基乙基)膦(TCEP)42 μL,於37℃攪拌15分鐘。其後,添加溶解於二甲基亞碸(dimethyl sulfoxide,DMSO)中之10 mM DBCO-PEG4-馬來醯亞胺99 μL,於37℃攪拌15分鐘,使其與抗體之半胱胺酸殘基進行反應。添加溶解於PBS中之L-半胱胺酸(168149,Sigma-Aldrich)水溶液(10 mg/mL)20 μL,於37℃攪拌1分鐘,使反應停止。將反應液回收,於對純化水進行整夜透析後(Slide-A-Lyzer TMDialysis Cassette,截留分子量:20 K,7736,Thermo Fisher Scientific)進行超過濾(Vivaspin Turbo 15,截留分子量:100 K),將未反應之修飾試劑去除。使用PBS準確地定容為5 mL,將溶液1 mL分注於玻璃小瓶中。繼而,添加實施例99中所獲得之共聚物10 mg,於BICELL TM中在-20℃靜置1天。其後,於4℃解凍並將所獲得之溶液回收。藉由疏水層析,利用保持時間之差異將共聚物結合抗體與非結合抗體分離後,將目標之溶析分成分分別回收,藉由使用PBS之超過濾(Vivaspin Turbo 15,截留分子量:100 K)洗淨後,可獲得作為目標物之西妥昔單抗-馬來醯亞胺-PEG4-DBCO結合微胞藥物複合體。 西妥昔單抗-馬來醯亞胺-PEG4-DBCO結合微胞藥物複合體之Z平均粒徑、及多分散指數係藉由動態光散射法(Dynamic light scattering,DLS)進行測定。又,藉由具備多角度光散射(Multi Angle Light Scattering:MALS)檢測器之尺寸排除層析(Size exclusion chromatography,SEC)測定水中之複合體之數量平均分子量(Mn,MALS),算出絕對分子量,根據抗體分子量與所結合之共聚物之分子量,算出每一抗體所結合之共聚物結合數與抗體藥物結合比(DAR)。
[化47]
[測定裝置與條件等] (1)SEC-MALS測定 裝置:Waters Alliance/Waters 檢測器:2998 PDA檢測器/Waters 2414折射率檢測器/Waters DAWN HELEOSII 8+/WYATT 管柱:TSKgel G-3000PWXL/Tosoh(管柱尺寸7.8 mm×300 mm,粒徑7 μm,排除極限分子量2×10 5) TSKgel 保護管柱/Tosoh 流動相:100 mmol/L氯化鈉水溶液 溫度:25℃ 流速:0.8 mL/min 試樣濃度:10 mg/mL
[表30]
實施例 所使用之 共聚物 抗體 藥物 溶析分 共聚物每1分子之藥物結合數 (mol/mol) 每抗體之共聚物結合數 (mol/mol) DAR Z平均粒徑 (nm) 多分散 指數
132 實施例99 西妥昔單抗 DM1 1 20 1.2 24 14 0.13
2 2.0 40 18 0.11
[實施例133~134] 取代實施例132所使用之DBCO-PEG4-馬來醯亞胺,而於實施例133中使用DBCO-PEG12-馬來醯亞胺,並於實施例134中使用DBCO-PEG24-馬來醯亞胺,且藉由與實施例132同樣之製法進行合成。
[表31]
實施例 所使用之 共聚物 抗體 藥物 溶析分 共聚物每1分子之藥物結合數 (mol/mol) 每抗體之共聚物結合數 (mol/mol) DAR Z平均粒徑 (nm) 多分散 指數
133 實施例99 西妥昔單抗 DM1 - 20 1.9 38 19 0.20
134 實施例99 西妥昔單抗 DM1 - 20 2.1 42 20 0.22
[實施例135~144] 對實施例83、96、100、101、120、121、122、124、125及128中所獲得之共聚物,適當變更準備量,藉由使用與實施例132同樣之方法進行合成。
[表32]
實施例 所使用之 共聚物 抗體 藥物 溶析分 共聚物每1分子之藥物結合數 (mol/mol) 每抗體之共聚物結合數 (mol/mol) DAR Z平均粒徑 (nm) 多分散 指數
135 實施例100 西妥昔單抗 DM1 1 26 1.0 26 14 0.17
2 1.6 42 15 0.19
136 實施例125 DM1 1 16 1.2 18 17 0.08
2 1.6 24 18 0.08
137 實施例124 DM1 1 17 1.6 27 21 0.30
2 1.8 31 17 0.15
138 實施例120 DM1 - 20 1.9 38 18 0.11
139 實施例121 DM1 1 26 1.2 31 17 0.32
2 2.0 52 18 0.25
3 3.3 85 25 0.25
140 實施例101 DM1 - 19 1.9 36 16 0.10
141 實施例128 SN-38 - 13 1.8 23 14 0.13
142 實施例125 STS - 13 2.1 27 14 0.09
143 實施例83 SCNP - 0 1.9 0 15 0.07
144 實施例122 DM1 1 18 1.4 25 17 0.08
2 2.1 38 17 0.07
[實施例145] 西妥昔單抗-NHS-DBCO結合微胞藥物複合體之製造 將實施例118中所獲得之共聚物與西妥昔單抗進行複合體化。於分注有西妥昔單抗之PBS溶液(2.07 mg/mL)14.5 mL之玻璃小瓶中以1.22 mg/mL添加溶解於PBS中之磺基DBCO-NHS酯0.5 mL,攪拌3小時,使其與抗體之離胺酸殘基進行反應。其後,藉由透析純化(透析膜:Spectra/Por Regenerated Cellulose Membrane 6,截留分子量:3.5 kDa,外液:純化水)與超過濾(Vivaspin Turbo 15,截留分子量:100 K)將未反應之修飾試劑去除。使用PBS準確地定容為5 mL。將溶液1 mL分注於玻璃小瓶(以抗體計為6 mg/瓶)中,藉由冷凍乾燥進行回收。之後,藉由與實施例132同樣之操作將作為目標物之西妥昔單抗-NHS-DBCO結合微胞藥物複合體回收。 藉由動態光散射法(Dynamic light scattering,DLS)測定西妥昔單抗-NHS-DBCO結合微胞藥物複合體之Z平均粒徑、及多分散指數,結果為32 nm(多分散指數0.47)。又,藉由MALS測定算出絕對分子量,根據抗體分子量與所結合之共聚物之分子量所算出之每一抗體所結合之共聚物結合數為1.9,抗體藥物結合比(DAR)為34。
[表33]
實施例 所使用之 共聚物 抗體 藥物 溶析分 共聚物每1分子之藥物結合數 (mol/mol) 每抗體之共聚物結合數 (mol/mol) DAR Z平均粒徑 (nm) 多分散 指數
145 實施例118 西妥昔單抗 DM1 - 18 1.9 34 32 0.47
[實施例146~148] 取代實施例145所使用之磺基DBCO-NHS酯,而於實施例146中使用DBCO-NHS酯,並於實施例147中使用DBCO-PEG5-NHS酯,並於實施例148中使用DBCO-PEG13-NHS酯,且藉由與實施例145同樣之製法進行合成。
[表34]
實施例 所使用之 共聚物 抗體 藥物 溶析分 共聚物每1分子之藥物結合數 (mol/mol) 每抗體之共聚物結合數 (mol/mol) DAR Z平均粒徑 (nm) 多分散 指數
146 實施例118 西妥昔單抗 DM1 - 18 1.5 27 26 0.34
147 實施例118 西妥昔單抗 DM1 - 18 1.8 32 27 0.21
148 實施例118 西妥昔單抗 DM1 - 18 1.9 34 27 0.22
[實施例149~152] 曲妥珠單抗結合微胞藥物複合體之製造 將抗體變更為曲妥珠單抗(賀癌平,中外製藥公司),與實施例132同樣地進行。
[表35]
實施例 所使用之 共聚物 抗體 藥物 溶析分 共聚物每1分子之藥物結合數 (mol/mol) 每抗體之共聚物結合數 (mol/mol) DAR Z平均粒徑 (nm) 多分散 指數
149 實施例119 曲妥珠 單抗 DM1 1 16 1.1 18 17 0.21
2 1.6 26 26 0.23
3 2.4 38 28 0.19
150 實施例123 DM1 - 7 3.3 23 23 0.25
151 實施例120 DM1 - 20 2.0 40 26 0.23
152 實施例129 德魯替康 - 16 1.6 26 19 0.26
[實施例153] 利妥昔單抗-S-結合微胞藥物複合體之製造 將抗體變更為利妥昔單抗(美羅華,全藥工業公司),與實施例132同樣地進行。
[表36]
實施例 所使用之 共聚物 抗體 藥物 溶析分 共聚物每1分子之藥物結合數 (mol/mol) 每抗體之共聚物結合數 (mol/mol) DAR Z平均粒徑 (nm) 多分散 指數
153 實施例119 利妥昔單抗 DM1 1 16 1.7 27 21 0.22
2 2.6 42 16 0.20
[實施例154] 利妥昔單抗-NH-結合微胞藥物複合體之製造 將抗體變更為利妥昔單抗(美羅華,全藥工業公司),與實施例146同樣地進行。
[表37]
實施例 所使用之 共聚物 抗體 藥物 溶析分 共聚物每1 分子之藥 物結合數 (mol/mol) 每抗體之共聚物結合數 (mol/mol) DAR Z平均 粒徑 (nm) 多分散 指數
154 實施例119 利妥昔單抗 DM1 1 16 1.5 24 20 0.20
2 2.5 40 18 0.24
[實施例155] 帕尼單抗結合微胞藥物複合體之製造 將抗體變更為帕尼單抗(Vectibix,武田藥品工業公司),與實施例132同樣地進行。
[表38]
實施例 所使用之 共聚物 抗體 藥物 溶析分 共聚物每1 分子之藥物結合數 (mol/mol) 每抗體之共聚物結合數 (mol/mol) DAR Z平均粒徑 (nm) 多分散 指數
155 實施例121 帕尼單抗 DM1 1 26 0.8 21 13 0.11
2 1.5 39 18 0.22
3 2.6 69 17 0.22
[實施例156] IgG結合微胞藥物複合體之製造 將抗體變更為IgG(正常人類IgG,全分子,純化品、143-09501,FUJIFILM Wako Pure Chemical),與實施例132同樣地進行。
[表39]
實施例 所使用之 共聚物 抗體 藥物 溶析分 共聚物每1 分子之藥 物結合數 (mol/mol) 每抗體之共聚物結合數 (mol/mol) DAR Z平均 粒徑 (nm) 多分散 指數
156 實施例121 IgG DM1 - 26 1.8 47 17 0.20
[實施例157] 西妥昔單抗-Fab結合微胞藥物複合體之製造 使用市售純化套組(Fab Preparation Kit,Pierce,#44985)製備西妥昔單抗之鏈段化抗體(Fab),與實施例145同樣地進行。
[表40]
實施例 所使用之 共聚物 抗體 藥物 溶析分 共聚物每1分子之藥 物結合數 (mol/mol) 每抗體之共聚物結合數 (mol/mol) DAR Z平均粒徑 (nm) 多分散 指數
157 實施例121 西妥昔單抗-Fab DM1 1 26 1.0 26 15 0.13
2 1.4 35 14 0.12
[實施例158] 依喜替康-PAB-Cit-Val-Ahx結合共聚物之製造 步驟1:Boc-Ahx-Val-Cit-PAB-PNP之合成 將Boc-Ahx-Val-Cit-PAB-OH(國際公開第2016/142049號公報所記載之化合物HDP 30.1267)239 mg及碳酸雙(4-硝基苯酯)362 mg溶解於DMF 1.5 mL中,添加N,N-二異丙基乙基胺207 μL,於室溫下整夜攪拌。藉由蒸發器將反應液減壓蒸餾去除後,藉由矽膠管柱層析進行純化(CHCl 3/MeOH=100/0→85/15),獲得Boc-Ahx-Val-Cit-PAB-PNP 241 mg。
[化48]
1H NMR(400 MHz, DMSO-d 6) δ: 10.06(s, 1H), 8.33-8.29(m, 2H), 8.11(d, J = 7.6 Hz, 1H), 7.80(d, J = 8.5 Hz, 1H), 7.65(d, J = 9.0 Hz, 2H), 7.57(dt, J = 10.0, 2.7 Hz, 2H), 7.41(d, J = 8.8 Hz, 2H), 6.75(t, J = 5.6 Hz, 1H), 5.97(t, J = 5.8 Hz, 1H), 5.42(s, 2H), 5.24(s, 2H), 4.41-4.34(m, 1H), 4.20(dd, J = 8.8,7.6 Hz, 1H), 3.07-2.92(m, 2H), 2.90-2.85(m, 2H), 2.23-2.08(m, 2H), 2.01-1.91(m, 1H), 1.75-1.32(m, 17H), 1.25-1.17(m, 2H), 0.87(d, J = 6.8 Hz, 3H), 0.83(d, J = 6.8 Hz, 3H).MS(ESI) m/z: 758.2[M+H] +
步驟2:Boc-Ahx-Val-Cit-PAB-依喜替康之合成 將Boc-Ahx-Val-Cit-PAB-PNP 240 mg及甲磺酸依喜替康168 mg溶解於DMSO 6.33 mL中,添加三乙胺88.2 μL,於室溫下整夜攪拌。於反應液中添加水後,藉由抽氣過濾濾取所生成之沈澱物。藉由矽膠管柱層析對濾取物進行純化(CHCl 3/MeOH=100/0→85/15),可獲得Boc-Ahx-Val-Cit-PAB-依喜替康202 mg。
[化49]
1H NMR(400 MHz, DMSO-d 6) δ: 9.98(s, 1H), 8.09-8.04(m, 2H), 7.81-7.76(m, 2H), 7.61(d, J = 8.5 Hz, 2H), 7.36(d, J = 8.5 Hz, 2H), 7.31(s, 1H), 6.74(t, J = 5.6 Hz, 1H), 6.52(s, 1H), 5.97(t, J = 5.8 Hz, 1H), 5.45(s, 2H), 5.41(s, 2H), 5.34-5.23(m, 3H), 5.08(s, 2H), 4.40-4.33(m, 1H), 4.19(dd, J = 8.5,6.7 Hz, 1H), 3.30-3.06(m, 2H), 3.05-2.84(m, 4H), 2.37(s, 3H), 2.24-2.08(m, 4H), 2.03-1.80(m, 3H), 1.74-1.31(m, 17H), 1.21-1.18(m, 2H), 0.89-0.82(m, 9H).MS(ESI) m/z: 1054.5[M+H] +
步驟3:H-Ahx-Val-Cit-PAB-依喜替康三氟乙酸酯之合成 將Boc-Ahx-Val-Cit-PAB-依喜替康100 mg溶解於DCM 3 mL中,添加三氟乙酸0.3 mL,於室溫下攪拌4小時。藉由蒸發器將反應液減壓蒸餾去除後,使用十八烷基矽烷(octadecyl silane,ODS)管柱藉由逆相層析(0.1%TFA水溶液/MeCN=100/0→60/40)進行純化,可獲得H-Ahx-Val-Cit-PAB-依喜替康三氟乙酸酯63.7 mg。
[化50]
MS(ESI) m/z: 954.5[M+H] +
步驟4:依喜替康-PAB-Cit-Val-Ahx結合共聚物之合成 將藉由與實施例72同樣之製法所獲得之共聚物100 mg溶解於DMF 1 mL中,添加H-Ahx-Val-Cit-PAB-依喜替康三氟乙酸酯25.4 mg、N,N-二異丙基乙基胺15.5 μL及氮雜苯并三唑四甲基脲六氟磷酸鹽(Hexafluorophosphate Azabenzotriazole Tetramethyl Uronium,HATU)11.3 mg,於室溫下整夜攪拌。將反應液進行透析純化(透析膜:Spectra/Por Regenerated Cellulose Membrane 6,截留分子量:3.5 kDa,外液:甲醇)後,藉由減壓蒸餾去除及真空乾燥將溶劑去除,並將共聚物回收,可獲得依喜替康-PAB-Cit-Val-Ahx結合共聚物106 mg。藉由動態光散射法(Dynamic light scattering,DLS)測定所獲得之共聚物之水中之Z平均粒徑、及多分散指數,結果為8.5 nm(多分散指數0.129)。
[化51]
對依喜替康-PAB-Cit-Val-Ahx結合共聚物,藉由使用NMR所測定之 1H-NMR圖譜對共聚物每1分子之依喜替康導入數進行解析,結果為9.4 mol/mol。 [測定裝置與條件等] (1) 1H-NMR測定 裝置:JNM-ECX400(400 MHz)/日本電子 溶劑:包含0.03%四甲基矽烷之二甲基亞碸-d 6/關東化學 試樣濃度:20 mg/mL 測定溫度:25℃ 累計次數:399次 結果:圖21
[實施例159~163] 對實施例158中所獲得之共聚物,適當變更準備量,藉由使用與實施例132同樣之方法進行合成。又,對於適當變更準備量並且以與實施例72、79、82及84同樣之方式所獲得之共聚物,依次進行與實施例94、96及132同樣之製法進行合成。
[表41]
實施例 所使用之 共聚物 抗體 藥物 溶析分 共聚物每1分子之藥 物結合數 (mol/mol) 每抗體之共聚物結合數 (mol/mol) DAR Z平均 粒徑 (nm) 多分散 指數
159 實施例158 西妥昔單抗 依喜替康 - 9.4 2.3 21 13 0.13
160 實施例82 西妥昔單抗 DM1 - 12 2.1 25 27 -
161 實施例84 西妥昔單抗 DM1 - 24 1.7 41 27 -
162 實施例72 西妥昔單抗 DM1 - 10 2.0 20 27 -
163 實施例79 西妥昔單抗 DM1 - 24 1.8 43 27 -
[比較例1] 奧沙利鉑溶液之製備 將ELPLAT TM點滴靜脈注射液50 mg(Yakult Honsha公司)1 mL添加至5.9(w/v)%葡萄糖溶液5.58 mL中,製備含有奧沙利鉑760 μg之5(w/v)%葡萄糖溶液。
[比較例2] 西妥昔單抗溶液之製備 利用生理食鹽水(大塚生食注)稀釋西妥昔單抗(爾必得舒 TM注射液100 mg,Merck BioPharma公司),製備2 mg/mL溶液之西妥昔單抗溶液,用於靜脈內投予(以10 mg/kg體重計之投予量)。又,同樣地,利用包含10%之胎牛血清(Merck KGaA)之RPMI1640(以下為RPMI1640培養基)進行稀釋,藉此以西妥昔單抗之最終濃度為66 nmol/L、20 nmol/L、6.6 nmol/L、2.0 nmol/L、0.66 nmol/L、0.20 nmol/L、0.066 nmol/L或0.020 nmol/L對抗細胞效果進行評價。
[比較例3] 曲妥珠單抗溶液之製備 將曲妥珠單抗(賀癌平 TM注射用60,中外製藥公司)60 mg溶解於日本藥典注射用水3.0 mL中,製備20 mg/mL之溶液。繼而,利用RPMI1640培養基稀釋該溶液,藉此以曲妥珠單抗之最終濃度為20 nmol/L、6.8 nmol/L、2.0 nmol/L、0.68 nmol/L、0.20 nmol/L、0.068 nmol/L、0.020 nmol/L、0.0068 nmol/L或0.0020 nmol/L對抗細胞效果進行評價。
[比較例4] 利妥昔單抗溶液之製備 利用RPMI1640培養基稀釋利妥昔單抗(美羅華 TM點滴靜脈注射100 mg,全藥工業公司),藉此以利妥昔單抗之最終濃度為69 nmol/L、21 nmol/L、6.9 nmol/L、2.1 nmol/L、0.69 nmol/L、0.21 nmol/L、0.069 nmol/L或0.021 nmol/L對抗細胞效果進行評價。
[試驗例1]藥效試驗 對雌性裸小鼠(BALB/c-nu/nu,7週齡;Charles River Laboratories Japan公司)皮下移植小鼠大腸癌細胞株C26(美國典型培養物保藏中心(American Type Culture Collection)),將所獲得之荷癌模型用於藥效試驗。 將於CO 2保溫箱內繼代培養之小鼠大腸癌細胞株C26懸浮於液體培養基(高葡萄糖達爾伯克改良伊格爾培養基,Sigma-Aldrich)中,以每隻之細胞數成為1×10 6/100 μL之方式注射至裸小鼠之背部皮下。其後將裸小鼠飼養約1週後,於腫瘤體積之平均值生長至約30 mm 3時開始藥劑之投予。尾靜脈內投予DACHPt內包SCNP(使用實施例70之共聚物所製備之DACHPt內包SCNP)(隔天3次),根據腫瘤體積對抗腫瘤效果進行評價(一組4~5隻)。作為比較,使用奧沙利鉑溶液(比較例1),同樣地進行投予。有關各製劑之投予量,奧沙利鉑溶液係可投予之最高用量8 mg/kg(Pt換算為3.9 mg/kg),DACHPt內包SCNP係以Pt換算計設為3 mg/kg。 將腫瘤體積之經時變化示於圖22。於DACHPt內包SCNP之情形時,於投予14天後為T/C=0.4[T/C:藥物投予組(T)與對照組(C)之腫瘤體積之比]。於奧沙利鉑溶液(比較例1)之情形時,於投予14天後為T/C=1.1。又,確認於投予14天後,相較於對照組,DACHPt內包SCNP有意義地抑制腫瘤之增大(學生t檢驗)。以上結果表明DACHPt內包SCNP相較於奧沙利鉑溶液具有優異之抗腫瘤效果。
[試驗例2]抗細胞試驗 分別利用RPMI1640培養基以成為2.0×10 4個細胞/mL及4.0×10 4個細胞/mL之方式對EGFR抗原陽性人類乳癌細胞株之MDA-MB-468(美國典型培養物保藏中心)及EGFR抗原陰性人類乳癌細胞株之MDA-MB-453(RIKEN BRC CELL BANK)進行調整,以每孔100 μL之方式添加至96孔細胞培養用微量盤中培養一晚。第二天將經RPMI培養基稀釋之評價檢體以每孔100 μL之方式添加至微量盤中,於37℃、5%CO 2下培養4天。培養後,於微量盤中添加CellTiter-Glo TMLuminescent Cell Viability Assay(Promega Corporation)並加以攪拌,於室溫下靜置10分鐘後利用讀板儀(Molecular Devices, LLC.)測量發光量。細胞存活率係藉由下式算出。
細胞存活率(%)=a÷b×100 [式中:a表示樣品孔之發光量之平均值(n=3),b表示未添加樣品之孔之發光量之平均值(n=3)] 細胞存活率成為50%之藥劑濃度IC 50值係使用SAS TM9.4 Software(SAS Institute Japan Ltd.)算出。
[表42]
實施例 溶析分 EGFR高表現 EGFR陰性
IC 50(nmol/L)
MDA-MB-468 MDA-MB-453
比較例2 - >20 >66
134 1 0.034 0.225
2 0.028 0.081
135 1 0.147 22.1
2 0.112 2.38
132 1 0.042 4.09
133 1 0.047 6.52
136 - 0.017 4.14
137 1 0.014 6.56
2 0.006 1.52
3 0.005 0.48
139 - 0.015 >20
150 1 0.014 12.4
2 0.010 4.06
3 0.006 3.41
152 1 0.070 7.16
159 - 0.121 >20
[試驗例3]抗細胞試驗 利用RPMI1640培養基以成為2.0×10 4個細胞/mL之方式對HER2抗原陽性人類胃癌細胞株之NCI-N87(美國典型培養物保藏中心)或HER2抗原陰性人類乳癌細胞株之MDA-MB-468進行調整,以每孔100 μL之方式添加至96孔細胞培養用微量盤中培養一晚。第二天將經RPMI培養基稀釋之評價檢體以每孔100 μL之方式添加至微量盤中,於37℃、5%CO 2下培養4天。培養後,於微量盤中添加CellTiter-Glo TMLuminescent Cell Viability Assay(Promega Corporation)並加以攪拌,於室溫下靜置10分鐘後利用讀板儀(Molecular Devices, LLC.)測量發光量。算出細胞存活率及IC 50值。
[表43]
實施例 溶析分 HER2高表現 HER2陰性
IC 50(nmol/L)
NCI-N87 MDA-MB-468
比較例3 - >20 >20
144 3 0.10 3.8
145 - 4.60 -
146 - 0.38 2.3
147 - 2.30 >20
[試驗例4]抗細胞試驗 利用RPMI1640培養基以成為5.0×10 4個細胞/mL之方式對CD20抗原陽性之來自人類B細胞淋巴瘤之Raji細胞或CD20抗原陰性之來自人類T淋巴母細胞白血病之MOLT-4細胞進行調整,以每孔50 μL之方式添加至96孔細胞培養用微量盤中培養一晚。第二天將經RPMI培養基稀釋之評價檢體以每孔50 μL之方式添加至微量盤中,於37℃、5%CO 2下培養4天。培養後,於微量盤中添加CellTiter-Glo TMLuminescent Cell Viability Assay(Promega Corporation)並加以攪拌,於室溫下靜置10分鐘後利用讀板儀(Molecular Devices, LLC.)測量發光量。算出細胞存活率及IC 50值。
[表44]
實施例 溶析分 CD20高表現 CD20陰性
IC 50(nmol/L)
Raji MOLT-4
比較例4 - >69 >69
148 1 1.0 13
2 0.50 6.9
149 1 0.60 20
2 0.41 9.9
[試驗例5]抗腫瘤效果確認試驗 將EGFR陽性人類大腸癌細胞株HT-29懸浮於PBS中,製備成2.5×10 7個細胞/mL之濃度,將5×10 6個細胞(0.2 mL)移植至檢疫期滿後之裸小鼠(雌性、6週齡)之右腹側部皮下,於細胞皮下移植起8天後隨機實施分組(每組12隻)。將西妥昔單抗結合微胞藥物複合體(實施例138,DAR=38)以1.8、5.5 mg/kg之用量(以抗體部分之量計為1.0、3.0 mg抗體/kg之投予量,以DM1部分之量計為0.18、0.55 mgDM1/kg之投予量),或將DM1結合微胞(實施例120,抗體未結合)以2.5 mg/kg之用量(以DM1部分之量計為0.55 mgDM1/kg)分別進行尾靜脈內投予。設定生理食鹽水投予組作為對照組。將結果示於圖23。評價檢體表現出依賴於投予量之抗腫瘤效果。又,未觀察到投予會引起小鼠之體重減少。
[試驗例6]抗腫瘤效果確認試驗 將HER2陽性人類胃癌細胞株NCI-N87懸浮於PBS中,製備成5×10 7個細胞/mL之濃度,將1×10 7個細胞(0.2 mL)移植至裸小鼠(雌性、6週齡;Charles River Laboratories Japan公司)之右腹側部皮下。 於細胞皮下移植起7天後隨機實施分組(每組12隻)。將曲妥珠單抗結合微胞藥物複合體(實施例151,DAR=40)以1.9、5.7 mg/kg之用量(以抗體部分之量計為1.0、3.0 mg抗體/kg之投予量,以DM1部分之量計為0.20、0.60 mgDM1/kg之投予量),或將DM1結合微胞(實施例120,抗體未結合)以0.70 mg/kg之用量(以DM1部分之量計為0.20 mgDM1/kg)分別進行尾靜脈內投予。設定生理食鹽水投予組作為對照組。將結果示於圖24。評價檢體表現出依賴於投予量之抗腫瘤效果。又,未觀察到投予會引起小鼠之體重減少。
[試驗例7]抗腫瘤效果確認試驗 將EGFR陽性人類乳癌細胞株MDA-MB-468懸浮於PBS中,製備成5×10 7個細胞/mL之濃度,將1×10 7個細胞(0.2 mL)移植至裸小鼠(雌性、6週齡;Jackson Laboratory Japan公司)之右腹側部皮下。 於細胞皮下移植起27天後隨機實施分組(每組10隻)。將西妥昔單抗結合微胞藥物複合體(實施例160,DAR=25)以3.0 mg/kg之用量(以抗體部分之量計為1.6 mg抗體/kg之投予量,以DM1部分之量計為0.20 mgDM1/kg之投予量),或將西妥昔單抗結合微胞藥物複合體(實施例161,DAR=41)以1.8 mg/kg之用量(以抗體部分之量計為1.0 mg抗體/kg之投予量,以DM1部分之量計為0.20 mgDM1/kg之投予量)分別進行尾靜脈內投予。設定生理食鹽水投予組作為對照組。將結果示於圖25。評價檢體表現出抗腫瘤效果。又,未觀察到投予會引起小鼠之體重減少。
[試驗例8]抗腫瘤效果確認試驗 將具有KRAS變異(G13D)之EGFR陽性人類大腸癌細胞株HCT-116懸浮於PBS中,製備成5×10 7個細胞/mL之濃度,將1×10 7個細胞(0.2 mL)移植至裸小鼠(雌性、6週齡;Jackson Laboratory Japan公司)之右腹側部皮下。 於細胞皮下移植起7天後隨機實施分組(每組10隻)。將西妥昔單抗結合微胞藥物複合體(實施例162,DAR=20)以5.5 mg/kg之用量(以抗體部分之量計為3.1 mg抗體/kg之投予量,以DM1部分之量計為0.30 mgDM1/kg之投予量),或將西妥昔單抗結合微胞藥物複合體(實施例163,DAR=43)以2.6 mg/kg之用量(以抗體部分之量計為1.4 mg抗體/kg之投予量,以DM1部分之量計為0.30 mgDM1/kg之投予量)分別進行尾靜脈內投予。設定生理食鹽水投予組作為對照組。將結果示於圖26。評價檢體表現出抗腫瘤效果。又,未觀察到投予會引起小鼠之體重減少。
使用數位游標卡尺(商品號19975,Shinwa Rules公司)每週測定2次腫瘤之長徑及短徑,藉由下式算出腫瘤體積。
腫瘤體積(mm 3)=a×b 2/2 [式中,a表示長徑(mm),b表示短徑(mm)]
圖1係表示使用核磁共振光譜法(Nuclear Magnetic Resonance,NMR)對實施例1中所獲得之共聚物進行測定所得之 1H-NMR圖譜的圖。 圖2係表示關於實施例1中所獲得之共聚物,藉由凝膠滲透層析法(Gel Permeation Chromatography,GPC)所獲得之層析圖的圖。 圖3係關於DACHPt內包前之共聚物(實施例69)與DACHPt內包SCNP(實施例70),表示動態光散射法(Dynamic Light Scattering,DLS)中之粒徑測定結果(散射強度分佈)的圖。 圖4係表示使用核磁共振光譜法(Nuclear Magnetic Resonance,NMR)對實施例71中所獲得之N 3-聚[(丙烯酸苄酯)-(聚(乙二醇)甲醚丙烯酸酯)-(丙烯酸)共聚物]進行測定所得之 1H-NMR圖譜的圖。 圖5係表示關於實施例71中所獲得之N 3-聚[(丙烯酸苄酯)-(聚(乙二醇)甲醚丙烯酸酯)-(丙烯酸)共聚物],藉由凝膠滲透層析法(Gel Permeation Chromatography,GPC)所獲得之層析圖的圖。 圖6係表示使用UV(ultraviolet,紫外線)圖譜測定(UV),對實施例92中所獲得之N 3-聚[(丙烯酸苄酯)-(聚(乙二醇)甲醚丙烯酸酯)-(丙烯酸)共聚物]-異丁腈進行測定所得之UV圖譜的圖。 圖7係表示使用核磁共振光譜法(Nuclear Magnetic Resonance,NMR),對實施例96中所獲得之DM1-半胱胺結合共聚物進行測定所得之 1H-NMR圖譜的圖。 圖8係表示使用核磁共振光譜法(Nuclear Magnetic Resonance,NMR),對實施例108中所獲得之DM1-N-4-APM結合共聚物進行測定所得之 1H-NMR圖譜的圖。 圖9係表示使用核磁共振光譜法(Nuclear Magnetic Resonance,NMR),對實施例109中所獲得之1,4-丁二胺結合共聚物進行測定所得之 1H-NMR圖譜的圖。 圖10係表示使用核磁共振光譜法(Nuclear Magnetic Resonance,NMR),對實施例117中所獲得之DM1-MHA-1,4-丁二胺結合共聚物進行測定所得之 1H-NMR圖譜的圖。 圖11係表示使用核磁共振光譜法(Nuclear Magnetic Resonance,NMR),對實施例118中所獲得之DM1-SPDP-1,4-丁二胺結合共聚物進行測定所得之 1H-NMR圖譜的圖。 圖12係表示使用核磁共振光譜法(Nuclear Magnetic Resonance,NMR),對實施例122中所獲得之DM1-SMCC-1,4-丁二胺結合共聚物進行測定所得之 1H-NMR圖譜的圖。 圖13係表示使用核磁共振光譜法(Nuclear Magnetic Resonance,NMR),對實施例124中所獲得之DM1-CL-031-1,4-丁二胺結合共聚物進行測定所得之 1H-NMR圖譜的圖。 圖14係表示使用核磁共振光譜法(Nuclear Magnetic Resonance,NMR),對實施例125中所獲得之DM1-CL-018-1,4-丁二胺結合共聚物進行測定所得之 1H-NMR圖譜的圖。 圖15係表示使用核磁共振光譜法(Nuclear Magnetic Resonance,NMR),對實施例126中所獲得之DM1-CL-038-1,4-丁二胺結合共聚物進行測定所得之 1H-NMR圖譜的圖。 圖16係表示使用核磁共振光譜法(Nuclear Magnetic Resonance,NMR),對實施例127中所獲得之DM1-CL-047-1,4-丁二胺結合共聚物進行測定所得之 1H-NMR圖譜的圖。 圖17係表示使用核磁共振光譜法(Nuclear Magnetic Resonance,NMR),對實施例128中所獲得之SN-38-CO-1,4-丁二胺結合共聚物進行測定所得之 1H-NMR圖譜的圖。 圖18係表示使用核磁共振光譜法(Nuclear Magnetic Resonance,NMR),對實施例129中所獲得之德魯替康-SPDP-1,4-丁二胺結合共聚物進行測定所得之 1H-NMR圖譜的圖。 圖19係表示使用核磁共振光譜法(Nuclear Magnetic Resonance,NMR),對實施例130中所獲得之4-羥基丁胺結合共聚物進行測定所得之 1H-NMR圖譜的圖。 圖20係表示使用核磁共振光譜法(Nuclear Magnetic Resonance,NMR),對實施例131中所獲得之星孢菌素(STS)結合共聚物進行測定所得之 1H-NMR圖譜的圖。 圖21係表示使用核磁共振光譜法(Nuclear Magnetic Resonance,NMR),對實施例158中所獲得之依喜替康-PAB-Cit-Val-Ahx結合共聚物進行測定所得之 1H-NMR圖譜的圖。 圖22係表示對小鼠大腸癌細胞株(C26)之背部皮下移植模型小鼠隔天投予3次奧沙利鉑溶液、或DACHPt內包SCNP(實施例70)時之相對腫瘤體積之變化的圖。 圖23係表示對小鼠EGFR陽性人類大腸癌細胞株HT-29之右腹側部皮下移植模型小鼠投予生理食鹽水、或西妥昔單抗結合微胞藥物複合體(實施例138)時之腫瘤體積之變化的圖。 圖24係表示對小鼠HER2陽性人類胃癌細胞株NCI-N87之右腹側部皮下移植模型小鼠投予生理食鹽水、或曲妥珠單抗結合微胞藥物複合體(實施例151)時之腫瘤體積之變化的圖。 圖25係表示對小鼠EGFR陽性人類乳癌細胞株MDA-MB-468之右腹側部皮下移植模型小鼠投予生理食鹽水、或西妥昔單抗結合微胞藥物複合體(實施例160或實施例161)時之腫瘤體積之變化的圖。 圖26係表示對具有KRAS變異(G13D)之EGFR陽性人類大腸癌細胞株HCT-116之右腹側部皮下移植模型小鼠投予生理食鹽水、或西妥昔單抗結合微胞藥物複合體(實施例162或實施例163)時之腫瘤體積之變化的圖。

Claims (31)

  1. 一種共聚物,其於具有以下式(A)、(B)及(C)所表示之構造單位之共聚物X結合有標靶識別分子: [化1] [式中,R 1、R 2及R 3為相同或不同,表示氫原子或C 1-3烷基;R 4表示C 1-3烷基;R 5表示氫原子、C 1-18烷基、可具有取代基之3~8員環烷基、金剛烷基、可具有取代基之C 6-18芳基或可具有取代基之5~10員雜芳基;X 1、X 2及X 3為相同或不同,表示氧原子、硫原子或N-R 7;R 6表示氫原子、脫離基或連接基;R 7表示氫原子或C 1-3烷基;m表示1~100之整數;n表示0~3之整數]。
  2. 如請求項1之共聚物,其中,上述聚合物X係藉由以下通式(1)~(3)所表示之3種單體之聚合所形成之共聚物: [化2] [式中,R 1、R 2及R 3為相同或不同,表示氫原子或C 1-3烷基;R 4表示C 1-3烷基;R 5表示氫原子、C 1-18烷基、可具有取代基之3~8員環烷基、金剛烷基、可具有取代基之C 6-18芳基或可具有取代基之5~10員雜芳基;X 1、X 2及X 3為相同或不同,表示氧原子、硫原子或N-R 7;R 6表示氫原子、脫離基或連接基;R 7表示氫原子或C 1-3烷基;m表示1~100之整數;n表示0~3之整數]。
  3. 如請求項1或2之共聚物,其中,R 1為氫原子。
  4. 如請求項1或2之共聚物,其中,R 2為氫原子。
  5. 如請求項1或2之共聚物,其中,R 3為氫原子。
  6. 如請求項1或2之共聚物,其中,R 4為甲基。
  7. 如請求項1或2之共聚物,其中,R 5為可具有取代基之C 6-18芳基。
  8. 如請求項1或2之共聚物,其中,R 5為苯基。
  9. 如請求項1或2之共聚物,其中,R 6為氫原子。
  10. 如請求項1或2之共聚物,其中,R 6之脫離基係由下式(4) 所表示之基: [化3]
  11. 如請求項1或2之共聚物,其中,R 6之連接基係由下式(5) 所表示之基: [化4] [式中,R 8表示氫原子、或藥物;Ak 1表示C 1-7伸烷基鍵;X 4表示氧原子、硫原子或-N(R 7)-(R 7表示氫原子或C 1-3烷基)]。
  12. 如請求項1或2之共聚物,其中,X 1為氧原子。
  13. 如請求項1或2之共聚物,其中,X 2為氧原子。
  14. 如請求項1或2之共聚物,其中,X 3為氧原子或NH。
  15. 如請求項1或2之共聚物,其中,m為4~22之整數。
  16. 如請求項1或2之共聚物,其中,n為1。
  17. 如請求項1或2之共聚物,其中,有關構造單位(A)、(B)、(C)之比率,對1質量份之(A)係包含0.01~100質量份之(B)、及0.1~100質量份之(C)。
  18. 如請求項2之共聚物,其對1質量份之單體(1),係使0.01~100質量份之單體(2)與0.1~100質量份之單體(3)聚合而成。
  19. 如請求項1或2之共聚物,其數量平均分子量為5000~150000。
  20. 如請求項1或2之共聚物,其中,上述標靶識別分子為抗體。
  21. 如請求項20之共聚物,其中,上述抗體為抗EGFR抗體、抗Her2抗體、抗CD20抗體、抗CD276抗體、抗MUC1抗體、抗PD-L1抗體、或抗TROP-2抗體。
  22. 如請求項20之共聚物,其中,上述抗體為西妥昔單抗、帕尼單抗、耐昔妥珠單抗、埃萬妥單抗、帕尼單抗、曲妥珠單抗、帕妥珠單抗、馬吉妥昔單抗、利妥昔單抗、替伊莫單抗、托西莫單抗、奧法木單抗、奧濱尤妥珠單抗、克利妥珠單抗、伽妥珠單抗、伊菲那單抗、米佐妥單抗、博拉米妥單抗、阿特珠單抗、阿維魯單抗、度伐魯單抗、賽妥珠單抗、或其功能性片段。
  23. 一種藥物複合體,其包含請求項1或2之共聚物及藥物。
  24. 如請求項23之藥物複合體,其中,上述藥物為代謝拮抗藥、烷基化劑、蒽環類藥物、抗生素、有絲分裂抑制劑、拓樸異構酶抑制劑、蛋白酶體抑制劑、或抗激素劑。
  25. 如請求項23之藥物複合體,其中,上述藥物為DM0、DM1、DM2、DM3、DM4、美坦辛、奧瑞他汀E、奧瑞他汀苯丙胺酸苯二胺(AFP)、單甲基奧瑞他汀E、單甲基奧瑞他汀D、單甲基奧瑞他汀F、紫杉醇、多西紫杉醇、伊立替康、拓朴替康、諾吉替康、安吖啶、依託泊苷、替尼泊苷、mizantrone、SN-38、依喜替康、或德魯替康。
  26. 如請求項23至25中任一項之藥物複合體,其中,標靶識別分子或藥物與上述共聚物X之結合為共價鍵結或非共價鍵結。
  27. 如請求項23至26中任一項之藥物複合體,其中,上述標靶識別分子或藥物與上述共聚物X之結合為下式(a): [化5] [式中,J 1為與標靶識別分子、或與藥物之結合部;J 2為與共聚物X之結合部;Ak 2、Ak 3分別獨立地表示單鍵、或C 1-7伸烷基鍵;B 1、B 2分別獨立地表示單鍵、醯胺基、或酯鍵;L 1表示單鍵、-(CH 2CH 2O) oCH 2CH 2-、伸苯基、伸環己基、-NH-肽-CO-、或伸苯基-NH-肽-CO-;o表示0~100之整數]。
  28. 一種單鏈奈米顆粒(single chain nanoparticle),其包含請求項1或2之共聚物。
  29. 一種單鏈奈米顆粒,其包含請求項23或24之藥物複合體。
  30. 一種醫藥組成物,其包含請求項1或2之共聚物。
  31. 一種醫藥組成物,其包含請求項23或24之藥物複合體。
TW112130146A 2022-08-10 2023-08-10 新藥物複合體 TW202412843A (zh)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2022-128536 2022-08-10

Publications (1)

Publication Number Publication Date
TW202412843A true TW202412843A (zh) 2024-04-01

Family

ID=

Similar Documents

Publication Publication Date Title
AU2021201765B2 (en) Hydrophilic Linkers for Conjugate
CA3075087A1 (en) Anti- folate receptor alpha antibody conjugates and their uses
CN110234357A (zh) 用于抗体-药物缀合物的含肽接头
JP2022539076A (ja) 分岐連結体を有する細胞結合分子と細胞毒性剤との共役体
JP2018509908A (ja) Cd48抗体及びその複合体
JP2023520930A (ja) 電荷多様性リンカー
JP2022513400A (ja) ペプチド含有リンカーを有するシステイン操作抗体-薬物コンジュゲート
WO2024034684A1 (ja) 新薬物複合体
TW202412843A (zh) 新藥物複合體
WO2022179571A1 (en) Targeting conjugates comprising targeting moiety binding fragments and uses thereof
WO2022178751A1 (en) Targeting conjugates comprising effector molecules and uses thereof
CN116157417A (zh) 抗体-药物缀合物的制造方法
US20220047716A1 (en) Combination therapies with anti-folate receptor antibody conjugates
WO2024034685A1 (ja) アフィボディミセル薬物複合体
WO2022228493A1 (zh) 抗体偶联药物的制备方法及应用
WO2022205316A1 (en) Targeting conjugates comprising effector molecules and uses thereof
WO2022179570A1 (en) Targeting conjugates comprising effector molecules and uses thereof
WO2022179572A1 (en) Targeting conjugates with therapeutic agents and oligonucleotides and uses thereof
TW202416938A (zh) 親和體微胞(affibody micelle)藥物複合體
WO2023135398A1 (fr) Conjugues anticorps-medicament pour utilisation therapeutique
JP2024075668A (ja) 抗体-薬物コンジュゲートとチューブリン阻害剤の組み合わせ