TW202408215A - 執行選擇性多重採樣的影像感測器及其操作方法 - Google Patents

執行選擇性多重採樣的影像感測器及其操作方法 Download PDF

Info

Publication number
TW202408215A
TW202408215A TW112126255A TW112126255A TW202408215A TW 202408215 A TW202408215 A TW 202408215A TW 112126255 A TW112126255 A TW 112126255A TW 112126255 A TW112126255 A TW 112126255A TW 202408215 A TW202408215 A TW 202408215A
Authority
TW
Taiwan
Prior art keywords
period
sampling
bits
signal
count
Prior art date
Application number
TW112126255A
Other languages
English (en)
Inventor
全燦鎬
金敬珉
吉珉墡
金東炫
李美羅
Original Assignee
南韓商三星電子股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020230007001A external-priority patent/KR20240018345A/ko
Priority claimed from US18/335,488 external-priority patent/US20240048869A1/en
Application filed by 南韓商三星電子股份有限公司 filed Critical 南韓商三星電子股份有限公司
Publication of TW202408215A publication Critical patent/TW202408215A/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/50Control of the SSIS exposure
    • H04N25/57Control of the dynamic range
    • H04N25/58Control of the dynamic range involving two or more exposures
    • H04N25/587Control of the dynamic range involving two or more exposures acquired sequentially, e.g. using the combination of odd and even image fields
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/50Control of the SSIS exposure
    • H04N25/57Control of the dynamic range
    • H04N25/59Control of the dynamic range by controlling the amount of charge storable in the pixel, e.g. modification of the charge conversion ratio of the floating node capacitance
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/60Noise processing, e.g. detecting, correcting, reducing or removing noise
    • H04N25/616Noise processing, e.g. detecting, correcting, reducing or removing noise involving a correlated sampling function, e.g. correlated double sampling [CDS] or triple sampling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/60Noise processing, e.g. detecting, correcting, reducing or removing noise
    • H04N25/618Noise processing, e.g. detecting, correcting, reducing or removing noise for random or high-frequency noise

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)

Abstract

揭露一種影像感測器,包括:畫素陣列,包括多個畫素,所述畫素中的每一者包括第一光電二極體及第二光電二極體,所述多個畫素中的每一者在第一週期中使用第二光電二極體基於第一轉換增益輸出第一畫素訊號,在第二週期中使用第二光電二極體基於第二轉換增益輸出第二畫素訊號,在第三週期中使用第一光電二極體基於第一轉換增益輸出第三畫素訊號,且在第四週期中使用第一光電二極體基於第二轉換增益輸出第四畫素訊號;類比-數位轉換器電路,對第一畫素訊號至第四畫素訊號中的每一者的重設訊號及影像訊號執行採樣。將採樣計數及採樣位元數目調整成在第一週期至第四週期中的每一者之間有所不同。

Description

執行選擇性多重採樣的影像感測器及其操作方法
本文中所述的本揭露的實例性實施例是有關於一種電子裝置,且更具體而言,是有關於一種執行選擇性多重採樣的影像感測器及其操作方法。 [相關申請案的交叉參考]
本申請案基於35 U.S.C.§119主張2022年8月2日於韓國智慧財產局提出申請的韓國專利申請案第10-2022-0096355號及2023年1月17日於韓國智慧財產局提出申請的韓國專利申請案第10-2023-0007001號的優先權,上述韓國專利申請案的揭露內容全部併入本案供參考。
影像感測器包括電荷耦合裝置(charge coupled device,CCD)影像感測器、互補金屬氧化物半導體(complementary metal-oxide semiconductor,CMOS)影像感測器(CMOS image sensor,CIS)等。CMOS影像感測器包括以CMOS電晶體實施的畫素,且使用每一畫素中所包括的光電轉換元件將光能轉換成電性訊號。CMOS影像感測器使用由每一畫素產生的電性訊號來獲得關於所捕捉/所拍攝的影像的資訊。
本揭露的實例性實施例提供一種執行選擇性多重採樣以減小雜訊從而將圖框率減小最小化的影像感測器及其操作方法。
根據實例性實施例,一種影像感測器包括:畫素陣列,包括多個畫素,所述多個畫素中的每一者包括第一光電二極體及第二光電二極體,所述第一光電二極體具有第一光接收面積,所述第二光電二極體具有大於所述第一光接收面積的第二光接收面積,且所述多個畫素中的每一者被配置成在第一週期中使用所述第二光電二極體基於第一轉換增益輸出第一畫素訊號,在第二週期中使用所述第二光電二極體基於第二轉換增益輸出第二畫素訊號,在第三週期中使用所述第一光電二極體基於所述第一轉換增益輸出第三畫素訊號,且在第四週期中使用所述第一光電二極體基於所述第二轉換增益輸出第四畫素訊號;類比-數位轉換器(analog-to-digital converter,ADC)電路,被配置成藉由對所述第一畫素訊號、所述第二畫素訊號、所述第三畫素訊號及所述第四畫素訊號中的每一者的重設訊號及影像訊號執行採樣來輸出數位訊號;以及時序控制器,控制所述ADC電路的操作。所述第一轉換增益高於所述第二轉換增益。所述時序控制器被配置成將與所述採樣相關聯的採樣計數及採樣位元數目調整成在所述第一週期、所述第二週期、所述第三週期及所述第四週期中的每一者之間有所不同,且所述時序控制器包括用於調整所述採樣計數及所述採樣位元數目的暫存器。
根據實例性實施例,一種影像感測器包括:畫素陣列,包括多個畫素且自所述多個畫素輸出畫素訊號;ADC電路,藉由對所述畫素訊號的重設訊號及影像訊號執行採樣來輸出數位訊號;以及時序控制器,控制所述ADC電路的操作。所述多個畫素中的每一者包括:第一光電二極體,具有第一光接收面積;第二光電二極體,具有大於所述第一光接收面積的第二光接收面積;電容器,連接至被配置成儲存由所述第一光電二極體產生的電荷的第一浮動擴散區;第一電晶體,連接至所述電容器;第二電晶體,連接於所述第一浮動擴散區與第二浮動擴散區之間;及第三電晶體,連接於所述第二浮動擴散區與被配置成儲存由所述第二光電二極體產生的電荷的第三浮動擴散區之間。所述時序控制器被配置成基於所述第一電晶體、所述第二電晶體及所述第三電晶體中的每一者是否接通將與所述採樣相關聯的採樣計數及採樣位元數目調整成有所不同,且所述時序控制器包括用於調整所述採樣計數及所述採樣位元數目的暫存器。
根據實例性實施例,一種影像感測器的操作方法包括:以第一採樣計數對第一畫素訊號進行採樣來作為第一採樣位元,所述第一畫素訊號是在第一週期中使用第二光電二極體基於第一轉換增益而產生;以第二採樣計數對第二畫素訊號進行採樣來作為第二採樣位元,所述第二畫素訊號是在第二週期中使用所述第二光電二極體基於低於所述第一轉換增益的第二轉換增益而產生;以第三採樣計數對第三畫素訊號進行採樣來作為第三採樣位元,所述第三畫素訊號是在第三週期中使用具有小於所述第二光電二極體的第二光接收面積的第一光接收面積的第一光電二極體基於所述第一轉換增益而產生;以第四採樣計數對第四畫素訊號進行採樣來作為第四採樣位元,所述第四畫素訊號是在第四週期中使用所述第一光電二極體基於所述第二轉換增益而產生;以及基於經過採樣的所述畫素訊號輸出數位訊號且基於所述數位訊號產生影像資料。
根據實例性實施例,一種電子裝置包括影像感測器及應用處理器。一種影像感測器包括:畫素陣列,包括多個畫素,所述多個畫素中的每一者包括第一光電二極體及第二光電二極體,所述第一光電二極體具有第一光接收面積,所述第二光電二極體具有大於所述第一光接收面積的第二光接收面積,且所述多個畫素中的每一者被配置成在第一週期中使用所述第二光電二極體基於第一轉換增益輸出第一畫素訊號,在第二週期中使用所述第二光電二極體基於第二轉換增益輸出第二畫素訊號,在第三週期中使用所述第一光電二極體基於所述第一轉換增益輸出第三畫素訊號,且在第四週期中使用所述第一光電二極體基於所述第二轉換增益輸出第四畫素訊號;ADC電路,被配置成藉由對所述第一畫素訊號、所述第二畫素訊號、所述第三畫素訊號及所述第四畫素訊號中的每一者的重設訊號及影像訊號執行採樣來輸出數位訊號;以及時序控制器,控制所述ADC電路的操作。所述第一轉換增益高於所述第二轉換增益。將與所述採樣相關聯的採樣計數及採樣位元數目調整成在所述第一週期、所述第二週期、所述第三週期及所述第四週期中的每一者之間有所不同。所述應用處理器藉由設定時序控制器中所包括的暫存器的值來調整所述採樣計數及所述採樣位元數目。
在下文中,將詳細且清楚地闡述本揭露的實例性實施例以使此項技術者之通常知識者容易實施本揭露。
在詳細說明中,參考用語「單元」、「模組」、「區塊」、「~器(~er或~or)」等及圖式中所說明的功能區塊所述的組件將被實施成軟體、硬體或其組合。舉例而言,軟體可以是機器碼、韌體、嵌式碼及應用軟體。舉例而言,硬體可包括電性電路、電子電路、處理器、電腦、積體電路、積體電路核心、壓力感測器、慣性感測器、微機電系統(microelectromechanical system,MEMS)、被動元件或其組合。
圖1說明根據本揭露的實例性實施例的影像處理系統10的配置的實例。舉例而言,影像處理系統10可被實施為各種電子裝置的一部分,例如相機、智慧型電話、穿戴式裝置、物聯網(Internet of things,IoT)裝置、家用電器、平板個人電腦(personal computer,PC)、個人數位助理(personal digital assistant,PDA)、可攜式多媒體播放器(portable multimedia player,PMP)、導航系統、無人機、先進駕駛員輔助系統(Advanced Drivers Assistance System,ADAS)及類似裝置。此外,影像處理系統10可安裝於被設置成車輛、家具、製造設施、門及各種量測裝置的一部分的電子裝置上。參考圖1,影像處理系統10可包括透鏡12、影像感測器14及影像訊號處理器16。
作為拍攝目標的物體、景物等可反射光,且透鏡12可接收反射的光。影像感測器14可基於經由透鏡12接收到的光產生電性訊號。舉例而言,影像感測器14可被實施成互補金屬氧化物半導體(CMOS)影像感測器或類似影像感測器。
影像感測器14可包括畫素陣列。畫素陣列的畫素可藉由將光轉換成電性訊號來產生畫素值。將光轉換成電性訊號(例如,電壓)的速率可被定義為轉換增益。在低轉換增益模式及高轉換增益模式下,畫素陣列可藉由使用雙轉換增益改變轉換增益來產生畫素訊號。此外,畫素陣列中的每一畫素可具有分離式光電二極體結構。將參考圖2更詳細地闡述影像感測器14的配置。
影像訊號處理器16可對自影像感測器14輸出的電性訊號執行預處理,且然後可藉由恰當地處理預處理的電性訊號產生與所捕捉的物體或景觀相關的影像資料。為此,影像訊號處理器16可執行各種處理,例如色彩校正、自動白平衡、伽馬校正、色彩飽和度校正、不良畫素校正及色相校正。
圖1說明一個透鏡12及一個影像感測器14。然而,在另一實例性實施例中,影像處理系統10可包括多個透鏡及多個影像感測器。在此種情形中,所述多個透鏡可具有不同的視場。並且,所述多個影像感測器可具有不同的功能、不同的效能、及/或不同的特性,且可分別包括不同配置的畫素陣列。
圖2說明圖1所示影像感測器14的配置的實例。參考圖2,影像感測器100可包括畫素陣列110、列驅動器120、斜坡訊號產生器130、類比-數位轉換器(ADC)電路140、資料匯流排150、賦能訊號產生器160及時序控制器170。
畫素陣列110可包括按照列及行(「N」列及「N」行(例如,N×N))定位成矩陣形式的多個畫素PX。所述多個畫素PX中的每一者(或作為另外一種選擇,至少一者)可包括光電轉換元件。舉例而言,光電轉換元件可包括光電二極體、光電晶體、光閘、釘紮光電二極體等。所述多個畫素PX中的每一者(或作為另外一種選擇,至少一者)可包括多個光電轉換元件。
根據本揭露的實例性實施例的所述多個畫素PX中的每一者(或作為另外一種選擇,至少一者)可以是具有包括至少兩個或更多個光電二極體的分離式光電二極體結構的畫素PX。在此,兩個或更多個光電二極體可彼此獨立地運作。舉例而言,畫素PX可包括具有小光接收面積的小光電二極體(small photodiode,SPD)及具有大於小光電二極體的光接收面積的大光電二極體(large photodiode,LPD)。
大光電二極體及小光電二極體可基於物體周圍的照度而選擇性地運作。舉例而言,大光電二極體可在低照度環境中運作以產生畫素訊號,且小光電二極體可在高照度環境中藉由延長曝光時間運作以產生畫素訊號。此外,大光電二極體及小光電二極體中的每一者(或作為另外一種選擇,至少一者)可在高轉換增益模式或低轉換增益模式中的一者中運作。將參考圖3詳細地闡述具有分離式光電二極體結構的畫素PX的配置及操作。
此外,根據本揭露的實例性實施例,可針對每一種模式(大光電二極體的高轉換增益模式及低轉換增益模式、小光電二極體的高轉換增益模式及低轉換增益模式)選擇性地調整採樣計數(或採樣次數)及採樣位元數目。舉例而言,可藉由時序控制器170的暫存器調整採樣計數及採樣位元數目。
與此同時,用於聚光的微透鏡可設置於所述多個畫素PX中的每一者(或作為另外一種選擇,至少一者)或由相鄰畫素PX構成的每一畫素群組上。所述多個畫素PX中的每一者(或作為另外一種選擇,至少一者)可自經由微透鏡接收到的光偵測在特定光譜區內的光。舉例而言,畫素陣列110可包括用於將紅色光譜區的光轉換成電性訊號的紅色畫素、用於將綠色光譜區的光轉換成電性訊號的綠色畫素、或用於將藍色光譜區的光轉換成電性訊號的藍色畫素。用於透射在特定光譜區內的光的彩色濾波片可設置於所述多個畫素PX中的每一者(或作為另外一種選擇,至少一者)上。然而,本揭露並不僅限於此。舉例而言,畫素陣列110可包括將在除了紅色、綠色及藍色之外的光譜區內的光轉換成電性訊號的畫素。
畫素陣列110的所述多個畫素PX中的每一者(或作為另外一種選擇,至少一者)可經由對應的行線CL1至CLN基於自外部接收到的光的強度或量而輸出畫素訊號。所述多條行線CL1至CLN中的每一者(或作為另外一種選擇,至少一者)在行方向上延伸且可連接至設置於同一行中的畫素PX。舉例而言,畫素訊號可以是與自外部接收到的光的強度或量對應的類比訊號。畫素訊號可穿過電壓緩衝器(例如,源極隨耦器)且可然後經由行線CL1至CLN被提供至ADC電路140。
列驅動器120可選擇且驅動畫素陣列110中的一列。列驅動器120可對由時序控制器170產生的位址及/或控制訊號進行解碼且可產生用於選擇且驅動畫素陣列120中的所述一列的控制訊號。舉例而言,控制訊號可包括用於選擇畫素的訊號、用於重設浮動擴散區的訊號、用於將電荷傳輸至浮動擴散區的訊號及類似訊號。具體而言,根據本揭露的實例性實施例的列驅動器120可產生用於控制畫素PX的大光電二極體及小光電二極體中的每一者(或作為另外一種選擇,至少一者)的讀出模式的控制訊號且可將所述控制訊號提供至畫素陣列110。
斜坡訊號產生器130可在時序控制器170的控制下產生斜坡訊號。舉例而言,斜坡訊號產生器130可因應於控制訊號(例如斜坡賦能訊號)而運作。當啟用斜坡賦能訊號時,斜坡訊號產生器130可基於預設定值(例如所期望值,例如起始位準、結束位準及斜率)產生斜坡訊號。換言之,斜坡訊號可以是在特定時間期間基於預設定斜率而增大或減小的訊號。此外,可基於畫素PX的每一種模式的採樣計數及採樣位元數目的上述改變將根據本揭露的實例性實施例的斜坡訊號調整成有所不同。可將斜坡訊號提供至ADC電路140。
ADC電路140可經由行線CL1至CLN自畫素陣列110的所述多個畫素PX接收畫素訊號且可自斜坡訊號產生器130接收斜坡訊號。ADC電路140可自接收到的畫素訊號獲得重設訊號及影像訊號且可提取重設訊號與影像訊號之間的差異作為有效訊號分量。ADC電路140可包括多個比較器COMP及多個計數器CNT。
詳細而言,比較器COMP中的每一者(或作為另外一種選擇,至少一者)可對畫素訊號的重設訊號與斜坡訊號RAMP進行比較,可對畫素訊號的影像訊號與斜坡訊號RAMP進行比較,且可對比較結果執行採樣。舉例而言,可使用運算跨導放大器(operational transconductance amplifier,OTA)來實施比較器COMP。計數器CNT中的每一者(或作為另外一種選擇,至少一者)可藉由對經歷相關雙重採樣的訊號的脈衝進行計數來輸出計數結果作為數位訊號且可將所述計數結果提供至資料匯流排150。
資料匯流排150可基於自ADC電路140接收到的數位訊號輸出影像資料IDAT。舉例而言,資料匯流排150可包括多個記憶體、感測放大器及行解碼器。所述多個記憶體可暫時儲存自數位計數器CNT輸出的數位訊號,且感測放大器可感測並放大所述多個記憶體中所儲存的數位訊號。可在賦能訊號產生器160的控制下執行將數位訊號儲存於所述多個記憶體中及載入所儲存的數位訊號的操作。在行解碼器的控制下,可將放大的數位訊號傳輸至圖1所示影像訊號處理器16作為影像資料IDAT。
賦能訊號產生器160可產生讀取/寫入選擇訊號及讀取/寫入賦能訊號,以控制將數位訊號暫時儲存於資料匯流排150中所包括的多個記憶體中的操作(例如,寫入操作)及自所述多個記憶體載入數位訊號以輸出影像資料IDAT的操作(例如,讀取操作)。
時序控制器170可產生控制訊號及/或時脈以控制列驅動器120、斜坡訊號產生器130、ADC電路140及賦能訊號產生器160中的每一者(或作為另外一種選擇,至少一者)的操作及/或時序。具體而言,本揭露的時序控制器170可包括用於調整畫素PX的每一種讀出模式的採樣計數及採樣位元數目的暫存器。舉例而言,時序控制器170可基於由暫存器設定的採樣計數及採樣位元數目控制列驅動器120、斜坡訊號產生器130、ADC電路140及賦能訊號產生器160。
圖3是說明圖2所示畫素陣列110的畫素PX中的一者的實例的電路圖。參考圖3,畫素PX可包括大光電二極體LPD、小光電二極體SPD、大轉移電晶體LTG、小轉移電晶體STG、重設電晶體RG、驅動電晶體DX、選擇電晶體SX、轉換增益控制電晶體DRG、開關電晶體SW、電容器控制電晶體CCTR及電容器C1。
此外,參考圖3,施加至畫素PX的電壓可包括畫素電壓VPIX、電容器電源電壓VMIM及重設電源電壓VRD。電容器電源電壓VMIM及重設電源電壓VRD中的每一者(或作為另外一種選擇,至少一者)可與畫素電壓VPIX一起被供應或可經由單獨的電路供應。此外,可藉由浮動擴散區FD1、FD2及FD3形成寄生電容器。
光電二極體可將自外部入射的光轉換成電性訊號。光電二極體可基於光的強度產生電荷。由光電二極體產生的電荷的量可基於物體周圍的照度而變化。如上文所述,可基於光接收面積將光電二極體分類成具有大光接收面積的大光電二極體LPD及具有小光接收面積的小光電二極體SPD。即,畫素PX可具有包括大光電二極體LPD及小光電二極體SPD的分離式光電二極體結構。
大轉移電晶體LTG可由大轉移控制訊號LTS驅動。大轉移電晶體LTG可將由大光電二極體LPD產生的電荷傳輸至第三浮動擴散區FD3。此外,當接通轉換增益控制電晶體DRG時,大轉移電晶體LTG可將由大光電二極體LPD產生的電荷傳輸至第二浮動擴散區FD2以及第三浮動擴散區FD3。大轉移電晶體LTG的一端可連接至大光電二極體LPD,且大轉移電晶體LTG的另一端可連接至第三浮動擴散區FD3。
小轉移電晶體STG可由小轉移控制訊號STS驅動。小轉移電晶體STG可將由小光電二極體SPD產生的電荷傳輸至第一浮動擴散區FD1。小轉移電晶體STG的一端可連接至小光電二極體SPD,且小轉移電晶體STG的另一端可連接至第一浮動擴散區FD1。
開關電晶體SW可由開關控制訊號SWS驅動。可接通開關電晶體SW以使用小光電二極體SPD產生畫素訊號PIX,且可關斷開關電晶體SW以使用大光電二極體LPD產生畫素訊號PIX。開關電晶體SW的一端可連接至第一浮動擴散區FD1,且開關電晶體SW的另一端可連接至第二浮動擴散區FD2。
當使用大光電二極體LPD時,可藉由轉換增益控制訊號CGS驅動轉換增益控制電晶體DRG。當轉換增益控制電晶體DRG接通時,形成於第三浮動擴散區FD3中的寄生電容器與形成於第二浮動擴散區FD2中的寄生電容器並聯連接以增大浮動擴散區的電容。當浮動擴散區的電容增大時,轉換增益減小。當浮動擴散區的電容減小時,轉換增益增大。因此,在轉換增益控制電晶體DRG關斷的時間點處的轉換增益可高於在轉換增益控制電晶體DRG接通的時間點處的轉換增益。轉換增益控制電晶體DRG的一端可連接至第二浮動擴散區FD2,且轉換增益控制電晶體DRG的另一端可連接至第三浮動擴散區FD3。
當使用小光電二極體SPD時,可藉由電容器控制訊號CCS驅動電容器控制電晶體CCTR。當電容器控制電晶體CCTR接通時,電容器C1可與形成於第一浮動擴散區FD1中的寄生電容器並聯連接以增大第一浮動擴散區FD1的電容。因此,在電容器控制電晶體CCTR關斷的時間點處的轉換增益可高於在電容器控制電晶體CCTR接通的時間點處的轉換增益。電容器控制電晶體CCTR的一端可連接至電容器C1,且電容器控制電晶體CCTR的另一端可連接至電容器電源電壓VMIM。舉例而言,電容器C1可以是具有固定或可變的電容的被動元件,且可儲存在小光電二極體SPD中溢流的側向溢流電荷。
重設電晶體RG可由重設控制訊號RS驅動且可將重設電源電壓VRD提供至浮動擴散區FD2及FD3。此外,當開關電晶體SW接通時,重設電晶體RG亦可將重設電源電壓VRD提供至第一浮動擴散區FD1。因此,累積於浮動擴散區FD1、FD2及FD3中的電荷可移動至被施加重設電源電壓VRD的端子,且可重設浮動擴散區FD1、FD2及FD3的電壓。
驅動電晶體DX可基於由連接至行線CL的電流源(未示出)產生的偏壓電流而用作源極隨耦器,且可藉由放大浮動擴散區FD1、FD2及FD3的電壓產生畫素訊號PIX。選擇電晶體SX可由選擇訊號SEL驅動且可以列為單位選擇欲讀取的畫素。當選擇電晶體SEL接通時,可經由行線CL將畫素訊號PIX輸出至圖2所示ADC電路140。
因此,圖3所示畫素PX可使用大光電二極體LPD或小光電二極體SPD中的一者產生畫素訊號PIX。此外,大光電二極體LPD可基於轉換增益控制電晶體DRG是接通還是關斷而在高轉換增益模式或低轉換增益模式中的一者中運作。小光電二極體SPD可基於電容器控制電晶體CCTR是接通還是關斷而在高轉換增益模式或低轉換增益模式中的一者中運作。
即,圖3所示畫素PX可基於照度而在總共四種讀出模式中產生畫素訊號PIX。詳細而言,在具有最低照度的第一週期中,大光電二極體LPD可在高轉換增益模式(在下文中被稱為「LPD_HCG模式」)中運作。在照度高於第一週期的第二週期中,大光電二極體LPD可在低轉換增益模式(在下文中被稱為「LPD_LCG模式」)中運作。此外,在照度高於第二週期的第三週期中,小光電二極體SPD可在高轉換增益模式(在下文中被稱為「SPD_HCG模式」)中運作。在具有最高照度的第四週期中,小光電二極體SPD可在低轉換增益模式(在下文中被稱為「SPD_LCG模式」)中運作。
如此,由於畫素PX能夠使用能夠在雙轉換增益模式中運作的大光電二極體LPD及小光電二極體SPD基於照度偵測低光位準及高光位準,因此圖2所示影像感測器100的動態範圍可增大。此外,畫素PX可依序在LPD_HCG模式、LPD_LCG模式、SPD_HCG模式及LCG模式中運作,圖2所示影像感測器100可藉由合併根據所述模式的所有影像資料IDAT來產生高動態範圍(high dynamic range,HDR)影像。
此外,根據本揭露的實例性實施例,可選擇性地調整每一種讀出模式的採樣計數及採樣位元數目。舉例而言,藉由增大每一種模式的採樣計數,可減小雜訊且可改良訊雜比(signal-to-noise ratio,SNR)。然而,當讀出時間延長時,圖框率可減小。可藉由減小採樣位元數目來將圖框率的減小最小化。
圖4是說明圖3所示畫素PX的讀出操作的實例的時序圖。參考圖3及圖4,一個讀出操作可包括與不同的讀出模式LPD_HCG、LPD_LCG、SPD_HCG及SPD_LCG對應的多個週期。可將一個讀出操作所需(或作為另外一種選擇,使用)的總時間定義為1H時間。所述多個週期中的每一者(或作為另外一種選擇,至少一者)可包括輸出畫素訊號PIX的重設訊號的週期RST及輸出畫素訊號PIX的影像訊號的週期SIG。基本上,假定每一種模式的採樣計數(例如,對重設訊號與斜坡訊號彼此進行比較的次數或對影像訊號與斜坡訊號彼此進行比較的次數)是一次且採樣位元數目是「M」個位元(例如,12個位元)。
參考圖4,可因應於具有高位準的選擇訊號SEL而接通畫素PX的執行讀出操作的選擇電晶體SX。此外,在使用大光電二極體LPD的LPD_HCG模式及LPD_LCG模式期間,可因應於低位準的開關控制訊號SWS而關斷開關電晶體SW。在使用小光電二極體SPD的SPD_HCG模式及SPD_LCG模式期間,可因應於高位準的開關控制訊號SWS而接通開關電晶體SW。此外,每當模式中的每一者(或作為另外一種選擇,至少一者)開始時,可因應於高位準的自動歸零訊號AZ將圖2所示ADC電路140中所包括的放大器初始化。
在作為第一模式的LPD_HCG模式期間,在首先輸出根據重設週期RST的重設訊號之後,可輸出根據訊號週期SIG的影像訊號(RST-SIG)。參考圖4,當在LPD_HCG模式的重設週期RST中因應於高位準的重設控制訊號RS而接通重設電晶體RG時,可重設第三浮動擴散區FD3,且可讀出與高轉換增益對應的畫素訊號的重設訊號。
此後,在訊號週期SIG中,可因應於高位準的大轉移控制訊號LTS而經由大轉移電晶體LTG將由大光電二極體LPD產生的電荷傳輸至第三浮動擴散區FD3,且可讀出與高轉換增益對應的畫素訊號的影像訊號。此後,可因應於所述位準的轉換增益控制訊號CGS而接通轉換增益控制電晶體DRG。
在作為第二模式的LPD_LCG模式中,在首先輸出根據訊號週期SIG的影像訊號時,可輸出根據重設週期RST的重設訊號(SIG-RST)。參考圖4,在訊號週期SIG中,可因應於高位準的大轉移控制訊號LTS而經由大轉移電晶體LTG將由大光電二極體LPD產生的電荷傳輸至第三浮動擴散區FD3,且可讀出與低轉換增益對應的畫素訊號的影像訊號。此後,當在重設週期RST中因應於高位準的重設控制訊號RS而接通重設電晶體RG時,可重設第三浮動擴散區FD3,且可讀出與低轉換增益對應的畫素訊號的重設訊號。
在作為第三模式的SPD_HCG模式期間,在首先輸出根據重設週期RST的重設訊號之後,可輸出根據訊號週期SIG的影像訊號(RST-SIG)。參考圖4,可在重設週期RST中因應於高位準的重設控制訊號RS而接通重設電晶體RG,且可重設第二浮動擴散區FD2及第三浮動擴散區FD3。當重設第二浮動擴散區FD2及第三浮動擴散區FD3時,可因應於高位準的開關控制訊號SWS而接通開關電晶體SW,且可讀出與高轉換增益對應的畫素訊號的重設訊號。此外,可因應於低位準的電容器控制訊號CCS而關斷電容器控制電晶體CCTR。
此後,在訊號週期SIG中,可因應於高位準的小轉移控制訊號STS而經由小轉移電晶體STG將由小光電二極體SPD產生的電荷傳輸至第一浮動擴散區FD1,且可讀出與高轉換增益對應的畫素訊號的影像訊號。此後,可因應於高位準的電容器控制訊號CCS而接通電容器控制電晶體CCTR。
在作為第四模式的SPD_LCG模式期間,在首先輸出根據訊號週期SIG的影像訊號時,可輸出根據重設週期RST的重設訊號(SIG-RST)。參考圖4,在訊號週期SIG中,可將儲存於電容器C1中的側向溢流電荷傳輸至第一浮動擴散區FD1,且可讀出與低轉換增益對應的畫素訊號的影像訊號。此後,當在重設週期RST中因應於高位準的重設控制訊號RS而接通重設電晶體RG時,可重設第一浮動擴散區FD1、電容器C1、第二浮動擴散區FD2及第三浮動擴散區FD3,且可讀出與低轉換增益對應的畫素訊號的重設訊號。
上述LPD_HCG模式、LPD_LCG模式、SPD_HCG模式及SPD_LCG模式可以是分別與參考圖3基於照度分類的第一週期、第二週期、第三週期及第四週期對應的讀出模式。根據上文所提及的讀出模式之中的LPD_HCG模式及SPD_HCG模式,可首先在重設週期RST中讀出重設訊號,且然後可在訊號週期SIG中讀出影像訊號(RST-SIG)。此可被稱為「相關雙重採樣(correlated double sampling,CDS)讀出方法」。另一方面,根據LPD_LCG模式及SPD_LCG模式,可首先在訊號週期SIG中讀出影像訊號,且然後可在重設週期RST中讀出重設訊號(SIG-RST)。此可被稱為「不完全CDS讀出方法」。
在CDS讀出方法(RST-SIG)的情形中,由於重設訊號及影像訊號具有彼此相關的KT/C雜訊分量,因此可經由讀出移除KT/C雜訊。然而,在不完全CDS讀出方法(SIG-RST)的情形中,由於重設訊號與影像訊號具有不同(非相關)的KT/C雜訊分量,因此無法經由讀出移除KT/C雜訊。
另一方面,多種讀出模式的操作次序並不僅限於圖4中所示的次序。可在大光電二極體LPD的讀出操作之前執行小光電二極體SPD的讀出操作。作為另外一種選擇,可在高轉換增益模式的操作之前執行低轉換增益模式的操作。此外,在每一種模式中,改變重設週期RST及訊號週期SIG的次序,或首先進行低轉換增益模式的重設週期RST及高轉換增益模式的重設週期RST,且然後可進行高轉換增益模式的訊號週期SIG及低轉換增益模式的訊號週期SIG。
如上文所述,可選擇性地調整根據本揭露的實例性實施例的每一種讀出模式的採樣計數及採樣位元數目以減小雜訊且將圖框時間縮短最小化。舉例而言,每一種讀出模式的採樣計數可自1次增大至「K」次(1 < K;例如1次增大至4次),且其採樣位元數目可自「M」個位元減小至「N」個位元(M > N;例如自12位元減少至10個位元)。此外,當調整採樣計數時,可調整重設週期RST的比較操作及訊號週期SIG的比較操作的數目。然而,可僅調整重設週期RST或訊號週期SIG中的任一者的比較操作的數目。
如此一來,在一種讀出模式期間執行兩次或更多次採樣被稱為「多重採樣」。多重採樣可選擇性地應用於每一種讀出模式,且亦可調整每一種讀出模式的採樣位元數目以調整1H時間(例如,以調整圖框率)。由於經由多重採樣取得的平均效果,可減小畫素訊號PIX中所包含的雜訊且可改良SNR。舉例而言,可藉由圖2所示時序控制器170中所包括的暫存器提前調整與多重採樣相關的每一種模式的採樣計數及採樣位元數目。此外,亦可調整由斜坡訊號產生器130產生的斜坡訊號RAMP的斜率、偏移及態勢(aspect)。
具體而言,可在LPD_HCG模式中經由多重採樣減小在極低照度環境中產生的暗隨機雜訊,且可在SPD_LCG模式中經由多重採樣減小由於不完全CDS讀出方法而無法移除的KT/C雜訊。此外,同時,可維持特定位準或更高位準的圖框率。在下文中,經由圖5A、圖5B及圖6A至圖6C闡述與LPD_HCG模式的用於減小暗隨機雜訊的多重採樣相關的實例性實施例,且參考圖7A、圖7B及圖8闡述與SPD_LCG模式的用於減小KT/C雜訊的多重採樣相關的實例性實施例。
圖5A示出1H時間維持不變的LPD_HCG模式的多重採樣的實例。圖5B示出1H時間延長的LPD_HCG模式的多重採樣的實例。在圖5A及圖5B的情形中,重設週期RST的比較操作的數目及訊號週期SIG的比較操作的數目可增大至「K」次。
參考圖5A,LPD_HCG模式的採樣計數自一次增大至「K」次(1 < K),且LPD_HCG模式的採樣位元數目可自「M」個位元減小至「N」個位元(M > N)。暗隨機雜訊可由於藉由增大LPD_HCG模式的採樣計數而實現的平均效果而減小。然而,當採樣計數自一次增大至「K」次時,LPD_HCG模式所需(或作為另外一種選擇,使用)的時間可延長。由於其餘模式LPD_LCG、SPD_HCG及SPD_LCG中的每一者(或作為另外一種選擇,至少一者)的採樣位元數目自「M」個位元減小至「N」個位元,因此1H時間保持不變,如圖4中所示。因此,可在維持雜訊減小效果的同時維持圖框率。
與此同時,參考圖5B,如圖5A中所說明,LPD_HCG模式的採樣計數可自一次增大至「K」次,且LPD_HCG模式的採樣位元數目可自「M」個位元減小至「N」個位元。然而,與圖5A的說明不同的是,由於即使LPD_HCG模式所需(或作為另外一種選擇,使用)的時間延長但其餘模式LPD_LCG、SPD_HCG及SPD_LCG中的每一者(或作為另外一種選擇,至少一者)的採樣位元數目及採樣計數仍維持不變,因此與圖5A的實例相比1H時間延長。
對圖5A的實例性實施例與圖5B的實例性實施例進行比較,由於LPD_HCG模式的採樣計數及採樣位元相同,因此暗隨機雜訊減小效果可相同。詳細而言,在圖5A的情形中,當減小其餘模式中的每一者(或作為另外一種選擇,至少一者)的採樣位元數目以維持圖4中所示的1H時間時,在其餘模式中的每一者(或作為另外一種選擇,至少一者)中產生的訊號的量值可減小。然而,由於LPD_HCG模式的採樣計數增大,因此即使當訊號的量值減小時減小雜訊的效果仍可更大,且因此與圖4的實例相比可改良SNR。另一方面,在圖5B的情形中,由於其餘模式中的每一者(或作為另外一種選擇,至少一者)的採樣位元數目維持不變,因此在其餘模式中的每一者(或作為另外一種選擇,至少一者)中產生的訊號的量值不會減小,且SNR的改良效果可大於圖5A的改良效果。然而,當1H時間延長時,圖框率與圖5A的圖框率相比可減小。
圖6A示出LPD_HCG模式中其中採樣計數對應於一次且採樣位元數目對應於12個位元的重設週期RST及訊號週期SIG的實例。圖6B示出LPD_HCG模式中其中採樣計數對應於四次且採樣位元數目對應於12個位元的重設週期RST及訊號週期SIG的實例。圖6C示出LPD_HCG模式中其中採樣計數對應於四次且採樣位元數目對應於10個位元的重設週期RST及訊號週期SIG的實例。圖6A至圖6C示出執行比較操作的週期,所述週期以灰調表示。
圖6a可對應於未應用圖4所示多重採樣的LPD_HCG模式。參考圖6A,在重設週期RST中,可執行一次重設訊號與斜坡訊號RAMP之間的比較操作(12位元計數)。在訊號週期SIG中,可執行一次影像訊號與斜坡訊號RAMP之間的比較操作(12位元計數)。在此,當僅採樣計數增大至4次而採樣位元數目維持為12個位元時,如圖6B中所說明地示出本揭露的實例性實施例。
參考圖6B,在重設週期RST中,可執行四次重設訊號與斜坡訊號RAMP之間的比較操作(12位元計數)。在訊號週期SIG中,可執行四次影像訊號與斜坡訊號RAMP之間的比較操作(12位元計數)。暗隨機雜訊可隨著採樣計數增大而減小。然而,當LPD_HCG模式所需(或作為另外一種選擇,使用)的總時間延長時,圖框率可過度地減小。因此,為了將圖框率的減小最小化,必須同時增大LPD_HCG模式的採樣計數並減小採樣位元數目,如圖5A及圖5B中所示。在此,當採樣位元數目減小至10個位元時,如圖6C中所說明地示出本揭露的實例性實施例。
圖6C可對應於應用圖5A及圖5B的多重採樣的LPD_HCG模式。參考圖6C,在重設週期RST中,可執行四次重設訊號與斜坡訊號RAMP之間的比較操作(10位元計數)。在訊號週期SIG中,可執行四次影像訊號與斜坡訊號RAMP之間的比較操作(10位元計數)。與圖6B的實例性實施例相比,所產生訊號的量值可由於採樣位元數目的減小而減小,且因此SNR的改良效果可減小。然而,減小程度並不明顯,且LPD_HCG模式所需(或作為另外一種選擇,使用)的總體時間與圖6B的實例性實施例相比減小,且因此可將圖框率的減小最小化。此外,本揭露並不僅限於此。舉例而言,可調整LPD_HCG模式,使得執行兩次11位元計數而不是執行四次10位元計數。
圖7A示出1H時間維持不變的SPD_LCG模式的多重採樣的實例。圖7B示出1H時間延長的SPD_LCG模式的多重採樣的實例。與圖5A及圖5B的實例性實施例不同,在圖7A及圖7B中所示的SPD_LCG模式的情形中,可將訊號週期SIG的比較操作的數目維持為一次,且可僅將重設週期RST的比較操作的數目增大至「K」次。
參考圖7A,SPD_LCG模式的訊號週期SIG的採樣計數及採樣位元數目分別維持為一次及「M」個位元。然而,重設週期RST的採樣計數自一次增大至「K」次(1 < K),且重設週期RST的採樣位元數目可自「M」個位元減小至「N」個位元(M > N)。然而,當重設週期RST的採樣計數自一次增大至「K」次時,SPD_LCG模式所需(或作為另外一種選擇,使用)的時間可延長。當其餘模式LPD_HCG、LPD_LCG及SPD_HCG中的每一者(或作為另外一種選擇,至少一者)的採樣位元數目自「M」個位元減小至「N」個位元時,1H時間保持不變,如圖4中所示。因此,圖框率可維持不變。
與此同時,參考圖7B,如圖7A中所說明,SPD_LCG模式的重設週期RST的採樣計數可自一次增大至「K」次,且SPD_LCG模式的採樣位元數目可自「M」個位元減小至「N」個位元。然而,與圖7A的說明不同的是,由於即使SPD_LCG模式所需(或作為另外一種選擇,使用)的時間延長但其餘模式LPD_HCG、LPD_LCG及SPD_HCG中的每一者(或作為另外一種選擇,至少一者)的採樣位元數目及採樣計數維持不變,因此與圖7A的實例相比1H時間延長。
此外,在圖7A及圖7B中所示的SPD_LCG模式的情形中,可藉由為重設週期RST的每一比較操作啟用重設控制訊號RS來重設浮動擴散區,所述重設重複K次。如參考圖4所述,由於SPD_LCG模式對應於不完全CDS讀出方法,因此無法完全移除KT/C雜訊。如此,KT/C雜訊可因此種重複重設而隨機地產生,且KT/C雜訊可由於經過「K」次重複而獲得的平均效果而減小。
與參考圖5A及圖5B所述的類似,當對圖7A的實例性實施例與圖7B的實例性實施例進行比較時,SPD_LCG模式的採樣計數及採樣位元數目相同,KT/C雜訊減小效果可相同。在圖7A的情形中,由於其餘模式中的每一者(或作為另外一種選擇,至少一者)中的採樣位元數目減小,因此SNR改良效果可小於圖7B的SNR改良效果,但圖框率可維持不變。另一方面,在圖7B的情形中,SNR改良效果可大於圖7A的SNR改良效果,但圖框率可隨著1H時間延長而減小。
圖8示出SPD_LCG模式的其中採樣計數是一次且採樣位元數目是12個位元的訊號週期SIG的實例及SPD_LCG模式的其中採樣計數是四次且採樣位元數目是10個位元的重設週期RST的實例。圖8可對應於應用多重採樣的SPD_LCG模式。
參考圖8,在訊號週期SIG中,可執行一次影像訊號與斜坡訊號RAMP之間的比較操作(例如,12位元計數)。在重設週期RST中,可執行四次重設訊號與斜坡訊號RAMP之間的比較操作(例如,10位元計數)。此外,如上文所述,在重設週期RST的比較操作中的每一者(或作為另外一種選擇,至少一者)之前,可啟用重設控制訊號RS,使得能夠反覆地重設浮動擴散區(例如,圖3中的第一浮動擴散區FD1)。因此,在每次採樣時可隨機地產生KT/C雜訊,且KT/C雜訊可由於經過K次重複取得的平均效果而減小。
與此同時,闡述經由圖5A及圖7A的讀出模式維持圖4中所示的1H時間。然而,本揭露並不僅限於此。舉例而言,可藉由調整LPD_HCG模式及SPD_LCG模式中的每一者(或作為另外一種選擇,至少一者)的採樣位元數目及採樣計數來與圖4的實例性實施例相比縮短1H時間,如圖5A及圖7A中所示。
圖9示出圖2的資料匯流排150的配置的實例。參考圖9,資料匯流排150包括多個反相器、多個邏輯閘、多個寫入記憶體151及152、多個讀取記憶體153及154以及先進資料匯流排(ADBUS)155。示出圖9中的所述多個邏輯閘是反及(NAND)閘。本揭露並不僅限於此。舉例而言,可使用其他類型的邏輯閘來實施資料匯流排150。在下文,將參考圖2闡述圖9。
資料匯流排150可自ADC電路140接收數位訊號DS且可自賦能訊號產生器160接收寫入賦能訊號WR_EN、寫入選擇訊號WR_SEL、讀取賦能訊號RD_EN及讀取選擇訊號RD_SEL。舉例而言,數位訊號DS可對應於經由模式LPD_HCG、LPD_LCG、SPD_HCG及SPD_LCG的依序操作在畫素PX中讀出的資料。此外,當應用多重採樣時,可基於計數器的計數操作累積在每次採樣時產生的數位值,以作為數位訊號DS輸出且提供至資料匯流排150。
可因應於高位準的寫入賦能訊號WR_EN而將接收到的數位訊號DS儲存於所述多個寫入記憶體151及152中的一者中。可藉由寫入選擇訊號WR_SEL確定所述多個寫入記憶體151及152之中欲被儲存的寫入記憶體。舉例而言,當寫入賦能訊號WR_EN處於高位準且寫入選擇訊號WR_SEL處於低位準時,可將數位訊號DS儲存於寫入記憶體151中。當寫入賦能訊號WR_EN處於高位準且寫入選擇訊號WR_SEL處於高位準時,可將數位訊號DS儲存於寫入記憶體152中。
所述多個讀取記憶體153及154可因應於高位準的讀取賦能訊號RD_EN而讀出對應多個寫入記憶體151及152中所儲存的數位訊號DS。可藉由讀取選擇訊號RD_SEL確定所述多個讀取記憶體153及154之中欲被使用的讀取記憶體。舉例而言,當讀取賦能訊號RD_EN處於高位準且讀取選擇訊號RD_SEL處於低位準時,讀取記憶體153可讀取寫入記憶體151中所儲存的數位訊號DS。當讀取賦能訊號RD_EN處於高位準且讀取選擇訊號RD_SEL處於高位準時,讀取記憶體154可讀取寫入記憶體152中所儲存的數位訊號DS。
載入至所述多個讀取記憶體153及154中的數位訊號DS可儲存於ADBUS 155中。在行解碼器(未示出)的控制下,可經由感測放大器(未示出)放大ADBUS 155中所儲存的數位訊號DS且可將數位訊號DS作為影像資料IDAT提供至圖1的影像訊號處理器16。
圖10A是說明當不應用多重採樣時圖9所示資料匯流排150的操作的實例的時序圖。圖10B是說明當將1H時間維持不變的多重採樣應用於LPD_HCG模式時圖9所示資料匯流排150的操作的實例的時序圖。圖10C是說明當將1H時間延長的多重採樣應用於LPD_HCG模式時圖9所示資料匯流排150的操作的實例的時序圖。在圖10A至圖10C中,MEM 1可對應於圖9的寫入記憶體151或讀取記憶體153,且MEM 2可對應於圖9的寫入記憶體152或讀取記憶體154。在下文,將參考圖10A至圖10C闡述圖9。
參考圖10A,在1H時間期間,數位訊號DS可包括在模式LPD_HCG、LPD_LCG、SPD_HCG及SPD_LCG中依序讀出的畫素資料。圖10A可對應於不應用多重採樣的情形,且因此每一種模式的採樣位元數目可以是12個位元,且採樣計數可以是一次。
首先,可因應於高位準的寫入賦能訊號WR_EN及低位準的寫入選擇訊號WR_SEL而將與LPD_HCG模式對應的資料儲存於寫入記憶體151中。可因應於高位準的寫入賦能訊號WR_EN及高位準的寫入選擇訊號WR_SEL而將與LPD_LCG模式對應的資料儲存於寫入記憶體152中。
此後,讀取記憶體153可因應於高位準的讀取賦能訊號RD_EN及低位準的讀取選擇訊號RD_SEL而讀取寫入記憶體151中所儲存的與LPD_HCG模式對應的資料。讀取記憶體154可因應於高位準的讀取賦能訊號RD_EN及高位準的讀取選擇訊號RD_SEL而讀取寫入記憶體152中所儲存的與LPD_LCG模式對應的資料。可將由讀取記憶體153及154載入的資料傳輸至ADBUS 155以輸出影像資料IDAT。
在讀取記憶體153及154分別讀取寫入記憶體151及152中所儲存的LPD讀出資料之後,可以相同的方式將與SPD_HCG模式對應的資料及與SPD_LCG模式對應的資料儲存於寫入記憶體151及152中,且可藉由讀取記憶體153及154傳輸至ADBUS 155。上述程序示出在1H時間期間的操作,且可在每次讀出操作時重複。
圖10B可對應於圖5A中所說明的1H時間維持不變的情形,且圖10C可對應於圖5B中所說明的1H時間延長的情形。在圖10B及圖10C中,將數位訊號DS儲存於寫入記憶體151及152中、經由讀取記憶體153及154載入數位訊號DS及將數位訊號DS傳輸至ADBUS 155的一系列操作與參考圖10A所述的一系列操作相同,且因此將省略另外說明以避免冗餘。
參考圖10B及圖10C,與圖10A中所示的不同,可基於讀出模式的已改變的採樣計數及已改變的採樣位元數目來調整寫入賦能訊號WR_EN的位準及寫入選擇訊號WR_SEL的位準處於高位準的週期的長度(例如,寫入記憶體151及152儲存資料的週期長度)以及寫入賦能訊號WR_EN的位準及寫入選擇訊號WR_SEL的位準處於低位準的週期的長度。舉例而言,圖2的時序控制器170可基於暫存器中所儲存的每一種讀出模式的採樣計數及採樣位元數目控制賦能訊號產生器160的訊號產生時序。如此,基於被調整成有所不同的寫入賦能訊號WR_EN及寫入選擇訊號WR_SEL儲存的資料可交替地儲存於兩個寫入記憶體151及152中,且因此與僅使用一個記憶體的情形相比,可更長時間地儲存資料。
換言之,存在兩個寫入記憶體及兩個讀取記憶體,且調整與寫入操作相關的寫入賦能訊號WR_EN及寫入選擇訊號WR_SEL。因此,即使當每一種讀出模式的採樣計數及採樣位元數目發生改變時,仍可恰當地產生影像資料IDAT。圖10B及圖10C示出將多重採樣應用於LPD_HCG模式的實例性實施例。然而,即使當將多重採樣應用於SPD_LCG模式時,仍可經由類似的操作產生影像資料IDAT。
圖11示出對在將多重採樣應用於LPD_HCG模式的情形(a)中的SNR與在不應用多重採樣的情形(b)中的SNR進行比較的結果。圖12示出對在將多重採樣應用於SPD_LCG模式的情形(a)中的SNR與在不應用多重採樣的情形(b)(例如,預設情形)中的SNR進行比較的結果。參考圖11,如參考圖5A及圖5B所述,可看到SNR由於在極低照度週期中暗隨機雜訊的減小而得以改良。參考圖12,如參考圖7A及圖7B所述,可看到SNR由於在極高照度週期中KT/C雜訊的減小而得以改良。圖11及圖12示出SNR得以改良的週期,所述週期以灰調表示。
圖13是說明根據本揭露的實例性實施例的執行選擇性多重採樣的影像感測器的操作方法的實例的流程圖。在下文,將參考圖2至圖4闡述圖13。
在操作S110中,ADC電路140可在具有第一照度的第一週期中以第一採樣次數對使用大光電二極體LPD根據高轉換增益產生的畫素訊號(例如,根據LPD-HCG模式產生的畫素訊號)進行採樣來作為第一採樣位元。在操作S120中,ADC電路140可在具有亮於第一照度的第二照度的第二週期中以第二採樣次數對使用大光電二極體LPD根據低轉換增益產生的畫素訊號(例如,根據LPD-LCG模式產生的畫素訊號)進行採樣來作為第二採樣位元。
在操作S130中,ADC電路140可在具有亮於第二照度的第三照度的第三週期中以第三採樣次數對使用小光電二極體SPD根據高轉換增益產生的畫素訊號(例如,根據SPD-HCG模式產生的畫素訊號)進行採樣來作為第三採樣位元。在操作S140中,ADC電路140可在具有亮於第三照度的第四照度的第四週期中以第四採樣次數對使用小光電二極體SPD根據低轉換增益產生的畫素訊號(例如,根據SPD-LCG模式產生的畫素訊號)進行採樣來作為第四採樣位元。
基本上,採樣位元數目可以是12個位元,且採樣計數可以是一次。如參考圖5A、圖5B、圖7A及圖7B所述,可將多重採樣應用於LPD-HCG模式以移除暗隨機雜訊,且可將多重採樣應用於SPD-LCG模式以消除或減小KT/C雜訊。
舉例而言,當將多重採樣應用於LPD-HCG模式時,LPD-HCG模式中的採樣位元數目可減小至10個位元,且採樣計數可增大至4次。其餘模式中的每一者(或作為另外一種選擇,至少一者)的採樣位元數目可減小至10個位元或可維持為12個位元。將多重採樣應用於SPD-LCG模式的情形與此類似。然而,在SPD-LCG模式的情形中,重設週期RST的採樣位元數目可減小且採樣計數可增大。另外,訊號週期SIG的採樣位元數目及採樣計數可維持不變。
此後,在操作S150中,ADC電路140可基於採樣的畫素訊號將數位訊號輸出至資料匯流排150,且資料匯流排150可在賦能訊號產生器160的控制下將影像資料IDAT輸出至圖1所示影像訊號處理器16。
圖14說明根據本揭露的實例性實施例的包括影像感測器的電子裝置的實例。參考圖14,電子裝置1000可包括影像感測器1100、應用處理器(application processor,AP)1200、顯示器1300、記憶體1400、儲存器1500、使用者介面1600及無線收發器1700。圖14的影像感測器1100可對應於圖2的影像感測器100,且將省略與圖2的影像感測器100的說明相同的說明以避免冗餘。
應用處理器1200可控制電子裝置1000的總體操作,且可利用驅動應用程式、操作系統及諸如此類的系統晶片(system on chip,SoC)來實施。應用處理器1200可自影像感測器1100接收影像資料且可對接收到的影像資料執行影像處理。根據實例性實施例,應用處理器1200可將接收到的影像資料及/或處理的影像資料儲存於記憶體1400或儲存器1500中。此外,根據本揭露的實例性實施例,應用處理器1200可藉由設定影像感測器1100的時序控制器內部的暫存器值來調整每一種畫素讀出模式LPD_HCG、LPD_LCG、SPD_HCG或SPD_LCG的採樣計數及採樣位元數目。
記憶體1400可儲存由應用處理器1200處理或執行的程式及/或資料。儲存器1500可被實施為非揮發性記憶體裝置,例如反及快閃記憶體或電阻式記憶體。舉例而言,儲存器1500可被設置成記憶卡(多媒體卡(Multi Media Card,MMC)、嵌入式多媒體卡( embedded MMC,eMMC)、安全數位卡(Secure Digital Card,SD)或微型SD)。儲存器1500可儲存用於執行演算法以控制應用處理器1200的影像處理操作的資料及/或程式。當執行影像處理操作時,可將資料及/或程式載入至記憶體1400中。使用者介面1600可利用能夠接收使用者輸入的各種裝置來實施,例如鍵盤、簾幕鍵板(curtain key panel)、觸控面板、指紋感測器及麥克風。使用者介面1600可接收使用者輸入且可將與接收到的使用者輸入對應的訊號提供到應用處理器1200。無線收發器1700可包括數據機1710、收發器1720及天線1730。
以上說明涉及用於實施本揭露的實例性實施例。本揭露以及上文所述的實例性實施例中可包括僅改變設計或容易改變的實例性實施例。另外,本揭露中可包括容易改變且使用以上實例性實施例實施的技術。雖然已參考本揭露的實例性實施例闡述本揭露,但熟習此項技術者將明白,可對本揭露做出各種改變及修改,而此並不背離以下申請專利範圍中所陳述的本揭露的精神及範疇。
根據本揭露的實例性實施例,可基於讀出模式選擇性地應用多重採樣。
具體而言,根據本揭露的實例性實施例,可藉由調整每一種讀出模式的驅動時間來將雜訊減小所涉及的圖框率減小最小化。
上文所揭露的元件及/或功能區塊中的任一者可包括以下各項或實施於以下各項中:處理電路系統,例如包括邏輯電路的硬體;硬體/軟體組合,例如執行軟體的處理器;或其組合。舉例而言,影像訊號處理器16、時序控制器170及AP 1200可被實施為處理電路系統。處理電路系統具體而言可包括但不限於中央處理單元(central processing unit,CPU)、算術邏輯單元(arithmetic logic unit,ALU)、數位訊號處理器、微電腦、現場可程式化閘陣列(field programmable gate array,FPGA)、系統晶片(SoC)、可程式化邏輯單元、微處理器、特殊應用積體電路(application-specific integrated circuit,ASIC)等。處理電路系統可包括電性組件,例如電晶體、電阻器、電容器等中的至少一者。處理電路系統可包括例如邏輯閘等電性組件,所述邏輯閘包括及(AND)閘、或(OR)閘、反及閘、反(NOT)閘等中的至少一者。
處理器、控制器及/或處理電路系統可被配置成藉由專門被程式化成執行動作或步驟(例如利用FPGA或ASIC)來執行該些動作或步驟,或可被配置成藉由執行自記憶體接收到的指令來執行動作或步驟,或上述兩種方式的組合。
雖然已參考本揭露的實例性實施例闡述本揭露,但熟習此項技術者將明白,可對本揭露做出各種改變及修改,而此並不背離以下申請專利範圍中所陳述的本揭露的精神及範疇。
1H:時間 10:影像處理系統 12:透鏡 14、100、1100:影像感測器 16:影像訊號處理器 110:畫素陣列 120:列驅動器 130:斜坡訊號產生器 140:類比-數位轉換器(ADC)電路 150:資料匯流排 151、152:寫入記憶體 153、154:讀取記憶體 155:先進資料匯流排 160:賦能訊號產生器 170:時序控制器 1000:電子裝置 1200:應用處理器(AP) 1300:顯示器 1400:記憶體 1500:儲存器 1600:使用者介面 1700:無線收發器 1710:數據機 1720:收發器 1730:天線 AZ:自動歸零訊號 C1:電容器 CCS:電容器控制訊號 CCTR:電容器控制電晶體 CGS:轉換增益控制訊號 CL、CL1、CL2、CLN:行線 COMP:比較器 CNT:計數器/數位計數器 DS:數位訊號 DRG:轉換增益控制電晶體 DX:驅動電晶體 FD1:浮動擴散區/第一浮動擴散區 FD2:浮動擴散區/第二浮動擴散區 FD3:浮動擴散區/第三浮動擴散區 IDAT:影像資料 LPD:大光電二極體 LPD_HCG、LPD_LCG、SPD_HCG、SPD_LCG:模式/讀出模式 LTG:大轉移電晶體 LTS:大轉移控制訊號 PIX:畫素訊號 PX:畫素 RAMP:斜坡訊號 RD_EN:讀取賦能訊號 RD_SEL:讀取選擇訊號 RG:重設電晶體 RS:重設控制訊號 RST:週期/重設週期 S110、S120、S130、S140、S150:操作 SEL:選擇電晶體 SIG:週期/訊號週期 SPD:小光電二極體 STG:小轉移電晶體 STS:小轉移控制訊號 SW:開關電晶體 SWS:開關控制訊號 SX:選擇電晶體 VMIM:電容器電源電壓 VPIX:畫素電壓 VRD:重設電源電壓 WR_EN:寫入賦能訊號 WR_SEL:寫入選擇訊號
藉由參考附圖詳細地闡述本揭露的實例性實施例,本揭露的以上及其他目標及特徵將變得顯而易見。 圖1說明根據本揭露的實例性實施例的影像處理系統的配置的實例。 圖2說明圖1所示影像感測器的配置的實例。 圖3是說明圖2所示畫素陣列的畫素中的一者的實例的電路圖。 圖4是說明圖3所示畫素的讀出操作的實例的時序圖。 圖5A示出1H時間維持不變的LPD_HCG模式的多重採樣的實例。 圖5B示出1H時間延長的LPD_HCG模式的多重採樣的實例。 圖6A示出LPD_HCG模式中其中採樣計數對應於一次且採樣位元數目對應於12個位元的重設週期及訊號週期的實例。 圖6B示出LPD_HCG模式中其中採樣計數對應於四次且採樣位元數目對應於12個位元的重設週期及訊號週期的實例。 圖6C示出LPD_HCG模式中其中採樣計數對應於四次且採樣位元數目對應於10個位元的重設週期及訊號週期的實例。 圖7A示出1H時間維持不變的SPD_LCG模式的多重採樣的實例。 圖7B示出1H時間延長的SPD_LCG模式的多重採樣的實例。 圖8示出SPD_LCG模式的其中採樣計數是一次且採樣位元數目是12個位元的訊號週期的實例及SPD_LCG模式中其中採樣計數是四次且採樣位元數目是10個位元的重設週期的實例。 圖9示出圖2所示資料匯流排的配置的實例。 圖10A是說明當不應用多重採樣時圖9所示資料匯流排的操作的實例的時序圖。 圖10B是說明當將1H時間維持不變的多重採樣應用於LPD_HCG模式時圖9所示資料匯流排的操作的實例的時序圖。 圖10C是說明當將1H時間延長的多重採樣應用於LPD_HCG模式時圖9所示資料匯流排的操作的實例的時序圖。 圖11示出對在多重採樣應用於LPD_HCG模式的情形中的SNR與在不應用多重採樣的情形中的SNR進行比較的結果。 圖12示出對在多重採樣應用於SPD_LCG模式的情形中的SNR與在不應用多重採樣的情形中的SNR進行比較的結果。 圖13是說明根據本揭露的實例性實施例的執行選擇性多重採樣的影像感測器的操作方法的實例的流程圖。 圖14說明根據本揭露的實例性實施例的包括影像感測器的電子裝置的配置的實例。
10:影像處理系統
12:透鏡
14:影像感測器
16:影像訊號處理器

Claims (20)

  1. 一種影像感測器,包括: 畫素陣列,包括多個畫素,所述多個畫素中的每一者包括第一光電二極體及第二光電二極體,所述第一光電二極體具有第一光接收面積,所述第二光電二極體具有大於所述第一光接收面積的第二光接收面積,所述多個畫素中的每一者被配置成在第一週期中使用所述第二光電二極體基於第一轉換增益輸出第一畫素訊號,在第二週期中使用所述第二光電二極體基於第二轉換增益輸出第二畫素訊號,在第三週期中使用所述第一光電二極體基於所述第一轉換增益輸出第三畫素訊號,且在第四週期中使用所述第一光電二極體基於所述第二轉換增益輸出第四畫素訊號; 類比-數位轉換器(ADC)電路,被配置成藉由對所述第一畫素訊號、所述第二畫素訊號、所述第三畫素訊號及所述第四畫素訊號中的每一者的重設訊號及影像訊號執行採樣來輸出數位訊號;以及 時序控制器,被配置成控制所述類比-數位轉換器電路的操作, 其中所述第一轉換增益高於所述第二轉換增益, 其中所述時序控制器被配置成將與所述採樣相關聯的採樣計數及採樣位元數目調整成對於所述第一週期、所述第二週期、所述第三週期及所述第四週期中的每一者均有所不同,且 其中所述時序控制器包括用於調整所述採樣計數及所述採樣位元數目的暫存器。
  2. 如請求項1所述的影像感測器,其中 所述時序控制器被配置成將所述第一週期的所述採樣計數調整成自一次增大至「K」次,且將所述第一週期的所述採樣位元數目調整成自「M」個位元減小至「N」個位元,「K」、「M」及「N」是整數, 所述時序控制器被配置成將所述第二週期、所述第三週期及所述第四週期中的每一者的所述採樣計數調整成維持為一次,且將所述第二週期、所述第三週期及所述第四週期中的每一者的所述採樣位元數目調整成維持自所述「M」個位元至所述「N」個位元,且 在調整所述採樣計數及所述採樣位元數目之後所述第一週期、所述第二週期、所述第三週期及所述第四週期中的每一者的長度與在調整所述採樣計數及所述採樣位元數目之前所述第一週期、所述第二週期、所述第三週期及所述第四週期中的每一者的相應長度相同。
  3. 如請求項1所述的影像感測器,其中 所述時序控制器被配置成將所述第一週期的所述採樣計數調整成自一次增大至「K」次,且將所述第一週期的所述採樣位元數目調整成自「M」個位元減小至「N」個位元,「K」、「M」及「N」是整數, 所述時序控制器被配置成將所述第二週期、所述第三週期及所述第四週期中的每一者的採樣計數調整成維持為一次,且將所述第二週期、所述第三週期及所述第四週期中的每一者的所述採樣位元數目調整成維持為「M」個位元,且 在調整所述採樣計數及所述採樣位元數目之後所述第一週期、所述第二週期、所述第三週期及所述第四週期中的每一者的長度長於在調整所述採樣計數及所述採樣位元數目之前所述第一週期、所述第二週期、所述第三週期及所述第四週期中的每一者的相應長度。
  4. 如請求項1所述的影像感測器,其中 所述時序控制器被配置成將所述第四週期的所述重設訊號的所述採樣計數調整成自一次增大至「K」次,且將所述第四週期的所述重設訊號的所述採樣位元數目調整成自「M」個位元減小至「N」個位元,「K」、「M」及「N」是整數, 所述時序控制器被配置成將所述第一週期、所述第二週期及所述第三週期中的每一者的所述採樣計數調整成維持為一次,且將所述第一週期、所述第二週期及所述第三週期中的每一者的所述採樣位元數目調整成維持自所述「M」個位元至所述「N」個位元,且 在調整所述採樣計數及所述採樣位元數目之後所述第一週期、所述第二週期、所述第三週期及所述第四週期中的每一者的長度與在調整所述採樣計數及所述採樣位元數目之前所述第一週期、所述第二週期、所述第三週期及所述第四週期中的每一者的相應長度相同。
  5. 如請求項1所述的影像感測器,其中 所述時序控制器被配置成將所述第四週期的所述重設訊號的所述採樣計數調整成自一次增大至「K」次,且將所述第四週期的所述重設訊號的所述採樣位元數目調整成自「M」個位元減小至「N」個位元,「K」、「M」及「N」是整數, 所述時序控制器被配置成將所述第一週期、所述第二週期及所述第三週期中的每一者的所述採樣計數調整成維持為一次,且將所述第一週期、所述第二週期及所述第三週期中的每一者的所述採樣位元數目調整成維持為「M」個位元,且 在調整所述採樣計數及所述採樣位元數目之後所述第一週期、所述第二週期、所述第三週期及所述第四週期中的每一者的長度長於在調整所述採樣計數及所述採樣位元數目之前所述第一週期、所述第二週期、所述第三週期及所述第四週期中的每一者的相應長度。
  6. 如請求項5所述的影像感測器,其中所述類比-數位轉換器被配置成使得每當在所述第四週期中對所述第四畫素訊號的所述重設訊號進行採樣時,儲存由所述第一光電二極體產生的電荷的第一浮動擴散區的電壓均被重設。
  7. 如請求項1所述的影像感測器,更包括: 資料匯流排,包括第一記憶體及第二記憶體且被配置成接收所述數位訊號且輸出影像資料, 其中所述第一記憶體被配置成儲存所述數位訊號之中與所述第一週期對應的第一訊號或與所述第三週期對應的第三訊號,且所述第二記憶體被配置成儲存所述數位訊號之中與所述第二週期對應的第二訊號或與所述第四週期對應的第四訊號,且 其中所述時序控制器被配置成使得基於所述第一畫素訊號、所述第二畫素訊號、所述第三畫素訊號及所述第四畫素訊號中的每一者的所述採樣計數及所述採樣位元數目,將所述第一記憶體儲存所述第一訊號或所述第三訊號的時間或所述第二記憶體儲存所述第二訊號或所述第四訊號的時間調整成有所不同。
  8. 如請求項1所述的影像感測器,其中所述畫素陣列被配置成基於所述第一週期、所述第二週期、所述第三週期及所述第四週期,依序輸出所述第一畫素訊號、所述第二畫素訊號、所述第三畫素訊號及所述第四畫素訊號。
  9. 一種影像感測器,包括: 畫素陣列,包括多個畫素且被配置成自所述多個畫素輸出畫素訊號; 類比-數位轉換器(ADC)電路,被配置成藉由對所述畫素訊號的重設訊號及影像訊號執行採樣來輸出數位訊號;以及 時序控制器,被配置成控制所述類比-數位轉換器電路的操作, 其中所述多個畫素中的每一者包括: 第一光電二極體,具有第一光接收面積; 第二光電二極體,具有大於所述第一光接收面積的第二光接收面積; 電容器,連接至被配置成儲存由所述第一光電二極體產生的電荷的第一浮動擴散區; 第一電晶體,連接至所述電容器; 第二電晶體,連接於所述第一浮動擴散區與第二浮動擴散區之間;以及 第三電晶體,連接於所述第二浮動擴散區與被配置成儲存由所述第二光電二極體產生的電荷的第三浮動擴散區之間,且 其中所述時序控制器被配置成基於所述第一電晶體、所述第二電晶體及所述第三電晶體中的每一者是否接通,而將與所述採樣相關聯的採樣計數及採樣位元數目調整成有所不同,且所述時序控制器包括用於調整所述採樣計數及所述採樣位元數目的暫存器。
  10. 如請求項9所述的影像感測器,其中 所述電容器儲存所述第一光電二極體中溢流的電荷, 因應於所述第一電晶體接通,所述電容器被配置成增大所述第一浮動擴散區的電容, 所述第一光電二極體被配置成因應於所述第二電晶體接通而運作,且所述第二光電二極體被配置成因應於所述第二電晶體關斷而運作, 因應於所述第三電晶體接通,所述第二浮動擴散區及所述第三浮動擴散區中的每一者的電容增大, 所述第一光電二極體被配置成因應於所述第一電晶體關斷而基於第一轉換增益運作,且因應於所述第一電晶體接通而基於低於所述第一轉換增益的第二轉換增益運作,且 所述第二光電二極體被配置成因應於所述第三電晶體關斷而基於所述第一轉換增益運作,且因應於所述第三電晶體接通而基於所述第二轉換增益運作。
  11. 如請求項9所述的影像感測器,其中所述多個畫素中的每一者被配置成: 在所述第二電晶體關斷且所述第三電晶體關斷的第一週期中使用所述第二光電二極體輸出第一畫素訊號; 在所述第二電晶體關斷且所述第三電晶體接通的第二週期中使用所述第二光電二極體輸出第二畫素訊號; 在所述第一電晶體關斷且所述第二電晶體接通的第三週期中使用所述第一光電二極體輸出第三畫素訊號;且 在所述第一電晶體接通且所述第二電晶體接通的第四週期中使用所述第一光電二極體輸出第四畫素訊號。
  12. 如請求項11所述的影像感測器,其中 所述時序控制器被配置成將所述第一週期的所述採樣計數調整成自一次增大至「K」次,且將所述第一週期的所述採樣位元數目調整成自「M」個位元減小至「N」個位元,「K」、「M」及「N」是整數, 所述時序控制器被配置成將所述第二週期、所述第三週期及所述第四週期中的每一者的所述採樣計數調整成維持為一次,且將所述第二週期、所述第三週期及所述第四週期中的每一者的所述採樣位元數目調整成維持自所述「M」個位元至所述「N」個位元,且 在調整所述採樣計數及所述採樣位元數目之後所述第一週期、所述第二週期、所述第三週期及所述第四週期中的每一者的長度與在調整所述採樣計數及所述採樣位元數目之前所述第一週期、所述第二週期、所述第三週期及所述第四週期中的每一者的相應長度相同。
  13. 如請求項11所述的影像感測器,其中 所述時序控制器被配置成將所述第一週期的所述採樣計數調整成自一次增大至「K」次,且將所述第一週期的所述採樣位元數目調整成自「M」個位元減小至「N」個位元,「K」、「M」及「N」是整數, 所述時序控制器被配置成將所述第二週期、所述第三週期及所述第四週期中的每一者的所述採樣計數調整成維持為一次,且將所述第二週期、所述第三週期及所述第四週期中的每一者的所述採樣位元數目調整成維持為「M」個位元,且 在調整所述採樣計數及所述採樣位元數目之後所述第一週期、所述第二週期、所述第三週期及所述第四週期中的每一者的長度長於在調整所述採樣計數及所述採樣位元數目之前所述第一週期、所述第二週期、所述第三週期及所述第四週期中的每一者的相應長度。
  14. 如請求項11所述的影像感測器,其中 所述時序控制器被配置成將所述第四週期的所述重設訊號的所述採樣計數調整成自一次增大至「K」次,且將所述第四週期的所述重設訊號的所述採樣位元數目調整成自「M」個位元減小至「N」個位元,「K」、「M」及「N」是整數, 所述時序控制器被配置成將所述第一週期、所述第二週期及所述第三週期中的每一者的所述採樣計數調整成維持為一次,且將所述第一週期、所述第二週期及所述第三週期中的每一者的所述採樣位元數目調整成維持自所述「M」個位元至所述「N」個位元,且 在調整所述採樣計數及所述採樣位元數目之後所述第一週期、所述第二週期、所述第三週期及所述第四週期中的每一者的長度與在調整所述採樣計數及所述採樣位元數目之前所述第一週期、所述第二週期、所述第三週期及所述第四週期中的每一者的相應長度相同。
  15. 如請求項11所述的影像感測器,其中 所述時序控制器被配置成將所述第四週期的所述重設訊號的所述採樣計數調整成自一次增大至「K」次,且將所述第四週期的所述重設訊號的所述採樣位元數目調整成自「M」個位元減小至「N」個位元,「K」、「M」及「N」是整數, 所述時序控制器被配置成將所述第一週期、所述第二週期及所述第三週期中的每一者的所述採樣計數調整成維持為一次,且將所述第一週期、所述第二週期及所述第三週期中的每一者的所述採樣位元數目調整成維持為「M」個位元,且 在調整所述採樣計數及所述採樣位元數目之後所述第一週期、所述第二週期、所述第三週期及所述第四週期中的每一者的長度長於在調整所述採樣計數及所述採樣位元數目之前所述第一週期、所述第二週期、所述第三週期及所述第四週期中的每一者的相應長度。
  16. 如請求項11所述的影像感測器,其中 所述多個畫素中的每一者更包括第四電晶體,所述第四電晶體連接至所述第二浮動擴散區且被配置成重設多個浮動擴散區中的每一者的電壓,且 所述類比-數位轉換器電路被配置成使得每當在所述第四週期中對所述第四畫素訊號的所述重設訊號進行採樣時,均藉由接通所述第四電晶體而重設儲存由所述第一光電二極體產生的所述電荷的所述第一浮動擴散區的電壓。
  17. 一種影像感測器的操作方法,所述方法包括: 以第一採樣計數對第一畫素訊號進行採樣來作為第一採樣位元,所述第一畫素訊號是在第一週期中使用第二光電二極體基於第一轉換增益而產生; 以第二採樣計數對第二畫素訊號進行採樣來作為第二採樣位元,所述第二畫素訊號是在第二週期中使用所述第二光電二極體基於低於所述第一轉換增益的第二轉換增益而產生; 以第三採樣計數對第三畫素訊號進行採樣來作為第三採樣位元,所述第三畫素訊號是在第三週期中使用具有小於所述第二光電二極體的第二光接收面積的第一光接收面積的第一光電二極體基於所述第一轉換增益而產生; 以第四採樣計數對第四畫素訊號進行採樣來作為第四採樣位元,所述第三畫素訊號是在第四週期中使用所述第一光電二極體基於所述第二轉換增益而產生;以及 基於經過採樣的所述畫素訊號輸出數位訊號且基於所述數位訊號產生影像資料。
  18. 如請求項17所述的方法,其中所述第二採樣計數、所述第三採樣計數及所述第四採樣計數中的每一者是一次,且所述第一採樣計數大於一次。
  19. 如請求項17所述的方法,其中以所述第四採樣計數對所述第四畫素訊號進行採樣來作為所述第四採樣位元包括: 對所述第四畫素訊號的影像訊號進行一次採樣;以及 以所述第四採樣計數對所述第四畫素訊號的重設訊號進行採樣,且 其中所述第一採樣計數、所述第二採樣計數、所述第三採樣計數中的每一者是一次,且所述第四採樣計數大於一次。
  20. 如請求項19所述的方法,其中以所述第四採樣計數對所述第四畫素訊號的所述重設訊號進行採樣包括: 以所述第四採樣計數重設連接至所述第一光電二極體的浮動擴散區的電壓。
TW112126255A 2022-08-02 2023-07-13 執行選擇性多重採樣的影像感測器及其操作方法 TW202408215A (zh)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
KR20220096355 2022-08-02
KR10-2022-0096355 2022-08-02
KR1020230007001A KR20240018345A (ko) 2022-08-02 2023-01-17 선택적 멀티플 샘플링을 수행하는 이미지 센서 및 그 동작 방법
KR10-2023-0007001 2023-01-17
US18/335,488 US20240048869A1 (en) 2022-08-02 2023-06-15 Image sensor performing selective multiple sampling and operating method thereof
US18/335,488 2023-06-15

Publications (1)

Publication Number Publication Date
TW202408215A true TW202408215A (zh) 2024-02-16

Family

ID=87555102

Family Applications (1)

Application Number Title Priority Date Filing Date
TW112126255A TW202408215A (zh) 2022-08-02 2023-07-13 執行選擇性多重採樣的影像感測器及其操作方法

Country Status (3)

Country Link
EP (1) EP4319180A1 (zh)
JP (1) JP2024021074A (zh)
TW (1) TW202408215A (zh)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5347341B2 (ja) * 2008-06-06 2013-11-20 ソニー株式会社 固体撮像装置、撮像装置、電子機器、ad変換装置、ad変換方法
JP5862126B2 (ja) * 2011-09-06 2016-02-16 ソニー株式会社 撮像素子および方法、並びに、撮像装置
KR20230080445A (ko) * 2020-10-05 2023-06-07 소니 세미컨덕터 솔루션즈 가부시키가이샤 촬상 장치
KR20220098587A (ko) * 2021-01-04 2022-07-12 삼성전자주식회사 이미지 센서, 픽셀 및 픽셀의 동작 방법

Also Published As

Publication number Publication date
JP2024021074A (ja) 2024-02-15
EP4319180A1 (en) 2024-02-07

Similar Documents

Publication Publication Date Title
CN107079116B (zh) 摄像元件、驱动方法和电子装置
US9344649B2 (en) Floating point image sensors with different integration times
CN111343396A (zh) 具有可控转换增益的图像传感器
US20060181625A1 (en) CMOS image sensor with wide dynamic range
KR20140067408A (ko) 고체 촬상소자 및 그에 따른 동작 제어방법
US9854186B2 (en) Methods and apparatus for an images sensor with row-level gain control
JP2008136042A (ja) 固体撮像装置、撮像装置
US11503229B2 (en) Image sensor and imaging device including the same
US11950011B2 (en) Image sensor
US10051216B2 (en) Imaging apparatus and imaging method thereof using correlated double sampling
US11722795B2 (en) Image processing device for noise reduction using dual conversion gain and operation method thereof
CN114979519A (zh) 图像传感器
US9137432B2 (en) Backside illumination image sensor, operating method thereof, image processing system and method of processing image using the same
TW202408215A (zh) 執行選擇性多重採樣的影像感測器及其操作方法
US20240048869A1 (en) Image sensor performing selective multiple sampling and operating method thereof
CN117499802A (zh) 执行选择性多重采样的图像传感器及其操作方法
US11889219B2 (en) Analog-to-digital converting circuit for optimizing power consumption of dual conversion gain operation, operation method thereof, and image sensor including the same
KR20240018345A (ko) 선택적 멀티플 샘플링을 수행하는 이미지 센서 및 그 동작 방법
US12063447B2 (en) Analog-to-digital converting circuit for optimizing dual conversion gain operation and operation method thereof
US20240147092A1 (en) Analog-to-digital converting circuits for dual conversion gain operation and operation methods of the same
US20230011310A1 (en) Image sensor including pixel array
US20240098380A1 (en) Image sensor and operating method thereof
US11800250B2 (en) Image sensor and operation method of the image sensor
US20240031694A1 (en) Image sensing device and imaging device including the same
US20240323570A1 (en) Ramp signal generator, image sensor including the same, and operating method thereof