TW202406220A - electromagnetic wave absorber - Google Patents
electromagnetic wave absorber Download PDFInfo
- Publication number
- TW202406220A TW202406220A TW112122345A TW112122345A TW202406220A TW 202406220 A TW202406220 A TW 202406220A TW 112122345 A TW112122345 A TW 112122345A TW 112122345 A TW112122345 A TW 112122345A TW 202406220 A TW202406220 A TW 202406220A
- Authority
- TW
- Taiwan
- Prior art keywords
- layer
- electromagnetic wave
- wave absorber
- return loss
- dielectric
- Prior art date
Links
- 239000006096 absorbing agent Substances 0.000 title claims abstract description 170
- 238000012360 testing method Methods 0.000 claims abstract description 44
- 239000011347 resin Substances 0.000 claims abstract description 19
- 229920005989 resin Polymers 0.000 claims abstract description 19
- 239000003989 dielectric material Substances 0.000 claims abstract description 15
- 229920001940 conductive polymer Polymers 0.000 claims abstract description 4
- 239000002861 polymer material Substances 0.000 claims abstract description 3
- 239000010410 layer Substances 0.000 claims description 335
- 230000004888 barrier function Effects 0.000 claims description 86
- 239000000463 material Substances 0.000 claims description 43
- 239000012790 adhesive layer Substances 0.000 claims description 37
- 238000004891 communication Methods 0.000 claims description 23
- 238000005034 decoration Methods 0.000 claims description 10
- 238000005516 engineering process Methods 0.000 abstract description 4
- 238000012423 maintenance Methods 0.000 abstract 1
- 238000000576 coating method Methods 0.000 description 60
- 239000011248 coating agent Substances 0.000 description 39
- 230000000052 comparative effect Effects 0.000 description 36
- 230000001070 adhesive effect Effects 0.000 description 32
- 239000011241 protective layer Substances 0.000 description 32
- 239000000853 adhesive Substances 0.000 description 31
- 238000000034 method Methods 0.000 description 29
- -1 silicate Metal compounds Chemical class 0.000 description 28
- 238000005259 measurement Methods 0.000 description 27
- 238000004519 manufacturing process Methods 0.000 description 24
- 150000001875 compounds Chemical class 0.000 description 20
- 229920002799 BoPET Polymers 0.000 description 18
- 238000004088 simulation Methods 0.000 description 16
- 229910010272 inorganic material Inorganic materials 0.000 description 15
- 239000011147 inorganic material Substances 0.000 description 15
- JOYRKODLDBILNP-UHFFFAOYSA-N Ethyl urethane Chemical compound CCOC(N)=O JOYRKODLDBILNP-UHFFFAOYSA-N 0.000 description 14
- 229910002113 barium titanate Inorganic materials 0.000 description 13
- 238000001035 drying Methods 0.000 description 13
- 229920000139 polyethylene terephthalate Polymers 0.000 description 13
- 239000005020 polyethylene terephthalate Substances 0.000 description 13
- JRPBQTZRNDNNOP-UHFFFAOYSA-N barium titanate Chemical compound [Ba+2].[Ba+2].[O-][Ti]([O-])([O-])[O-] JRPBQTZRNDNNOP-UHFFFAOYSA-N 0.000 description 12
- 238000010438 heat treatment Methods 0.000 description 12
- 239000007788 liquid Substances 0.000 description 12
- 229920001609 Poly(3,4-ethylenedioxythiophene) Polymers 0.000 description 11
- 239000011247 coating layer Substances 0.000 description 11
- 239000011368 organic material Substances 0.000 description 11
- IUVCFHHAEHNCFT-INIZCTEOSA-N 2-[(1s)-1-[4-amino-3-(3-fluoro-4-propan-2-yloxyphenyl)pyrazolo[3,4-d]pyrimidin-1-yl]ethyl]-6-fluoro-3-(3-fluorophenyl)chromen-4-one Chemical compound C1=C(F)C(OC(C)C)=CC=C1C(C1=C(N)N=CN=C11)=NN1[C@@H](C)C1=C(C=2C=C(F)C=CC=2)C(=O)C2=CC(F)=CC=C2O1 IUVCFHHAEHNCFT-INIZCTEOSA-N 0.000 description 10
- 238000003475 lamination Methods 0.000 description 10
- 239000011342 resin composition Substances 0.000 description 10
- 238000010030 laminating Methods 0.000 description 9
- 229920000172 poly(styrenesulfonic acid) Polymers 0.000 description 9
- 229940005642 polystyrene sulfonic acid Drugs 0.000 description 9
- 239000007787 solid Substances 0.000 description 9
- 125000004429 atom Chemical group 0.000 description 8
- 238000007756 gravure coating Methods 0.000 description 8
- 239000002105 nanoparticle Substances 0.000 description 8
- 239000000758 substrate Substances 0.000 description 8
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 7
- 239000004952 Polyamide Substances 0.000 description 7
- 239000003522 acrylic cement Substances 0.000 description 7
- 238000007607 die coating method Methods 0.000 description 7
- 230000000694 effects Effects 0.000 description 7
- 238000002156 mixing Methods 0.000 description 7
- 229920002647 polyamide Polymers 0.000 description 7
- 229920000098 polyolefin Polymers 0.000 description 7
- 230000004044 response Effects 0.000 description 7
- JAONJTDQXUSBGG-UHFFFAOYSA-N dialuminum;dizinc;oxygen(2-) Chemical compound [O-2].[O-2].[O-2].[O-2].[O-2].[Al+3].[Al+3].[Zn+2].[Zn+2] JAONJTDQXUSBGG-UHFFFAOYSA-N 0.000 description 6
- 230000035699 permeability Effects 0.000 description 6
- 238000004544 sputter deposition Methods 0.000 description 6
- 239000010936 titanium Substances 0.000 description 6
- 239000012298 atmosphere Substances 0.000 description 5
- 238000009820 dry lamination Methods 0.000 description 5
- 229910052809 inorganic oxide Inorganic materials 0.000 description 5
- 229920001296 polysiloxane Polymers 0.000 description 5
- 238000007740 vapor deposition Methods 0.000 description 5
- 239000004593 Epoxy Substances 0.000 description 4
- 125000000217 alkyl group Chemical group 0.000 description 4
- 229910052782 aluminium Inorganic materials 0.000 description 4
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 4
- 238000005452 bending Methods 0.000 description 4
- 230000015572 biosynthetic process Effects 0.000 description 4
- 125000004432 carbon atom Chemical group C* 0.000 description 4
- 238000011156 evaluation Methods 0.000 description 4
- 239000007789 gas Substances 0.000 description 4
- 229910052737 gold Inorganic materials 0.000 description 4
- 125000001183 hydrocarbyl group Chemical group 0.000 description 4
- 238000010884 ion-beam technique Methods 0.000 description 4
- 239000000203 mixture Substances 0.000 description 4
- 239000002070 nanowire Substances 0.000 description 4
- 239000001301 oxygen Substances 0.000 description 4
- 229910052760 oxygen Inorganic materials 0.000 description 4
- 229910052698 phosphorus Inorganic materials 0.000 description 4
- 229920000515 polycarbonate Polymers 0.000 description 4
- 239000004417 polycarbonate Substances 0.000 description 4
- 229920006267 polyester film Polymers 0.000 description 4
- 238000007761 roller coating Methods 0.000 description 4
- 229920005992 thermoplastic resin Polymers 0.000 description 4
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 4
- 229920002284 Cellulose triacetate Polymers 0.000 description 3
- 239000004677 Nylon Substances 0.000 description 3
- 239000004743 Polypropylene Substances 0.000 description 3
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 3
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 3
- NNLVGZFZQQXQNW-ADJNRHBOSA-N [(2r,3r,4s,5r,6s)-4,5-diacetyloxy-3-[(2s,3r,4s,5r,6r)-3,4,5-triacetyloxy-6-(acetyloxymethyl)oxan-2-yl]oxy-6-[(2r,3r,4s,5r,6s)-4,5,6-triacetyloxy-2-(acetyloxymethyl)oxan-3-yl]oxyoxan-2-yl]methyl acetate Chemical compound O([C@@H]1O[C@@H]([C@H]([C@H](OC(C)=O)[C@H]1OC(C)=O)O[C@H]1[C@@H]([C@@H](OC(C)=O)[C@H](OC(C)=O)[C@@H](COC(C)=O)O1)OC(C)=O)COC(=O)C)[C@@H]1[C@@H](COC(C)=O)O[C@@H](OC(C)=O)[C@H](OC(C)=O)[C@H]1OC(C)=O NNLVGZFZQQXQNW-ADJNRHBOSA-N 0.000 description 3
- 238000010521 absorption reaction Methods 0.000 description 3
- NIXOWILDQLNWCW-UHFFFAOYSA-N acrylic acid group Chemical group C(C=C)(=O)O NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 3
- 229910052799 carbon Inorganic materials 0.000 description 3
- 238000001723 curing Methods 0.000 description 3
- 239000006185 dispersion Substances 0.000 description 3
- 238000001704 evaporation Methods 0.000 description 3
- 238000011049 filling Methods 0.000 description 3
- AMGQUBHHOARCQH-UHFFFAOYSA-N indium;oxotin Chemical compound [In].[Sn]=O AMGQUBHHOARCQH-UHFFFAOYSA-N 0.000 description 3
- 239000011777 magnesium Substances 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- 229920001778 nylon Polymers 0.000 description 3
- 239000002245 particle Substances 0.000 description 3
- 239000008188 pellet Substances 0.000 description 3
- 125000004437 phosphorous atom Chemical group 0.000 description 3
- 239000011574 phosphorus Substances 0.000 description 3
- 229920001707 polybutylene terephthalate Polymers 0.000 description 3
- 229920000728 polyester Polymers 0.000 description 3
- 229920001155 polypropylene Polymers 0.000 description 3
- 239000002904 solvent Substances 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- 229920002803 thermoplastic polyurethane Polymers 0.000 description 3
- YVTHLONGBIQYBO-UHFFFAOYSA-N zinc indium(3+) oxygen(2-) Chemical compound [O--].[Zn++].[In+3] YVTHLONGBIQYBO-UHFFFAOYSA-N 0.000 description 3
- 229920000178 Acrylic resin Polymers 0.000 description 2
- 239000004925 Acrylic resin Substances 0.000 description 2
- 229910017944 Ag—Cu Inorganic materials 0.000 description 2
- 239000004594 Masterbatch (MB) Substances 0.000 description 2
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 2
- 230000032683 aging Effects 0.000 description 2
- HSFWRNGVRCDJHI-UHFFFAOYSA-N alpha-acetylene Natural products C#C HSFWRNGVRCDJHI-UHFFFAOYSA-N 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- 238000003490 calendering Methods 0.000 description 2
- 229910021393 carbon nanotube Inorganic materials 0.000 description 2
- 239000002041 carbon nanotube Substances 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 239000007795 chemical reaction product Substances 0.000 description 2
- 229910052804 chromium Inorganic materials 0.000 description 2
- 239000004020 conductor Substances 0.000 description 2
- 229910052802 copper Inorganic materials 0.000 description 2
- 238000005336 cracking Methods 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- 230000007613 environmental effect Effects 0.000 description 2
- 230000008020 evaporation Effects 0.000 description 2
- 238000001125 extrusion Methods 0.000 description 2
- 229910021389 graphene Inorganic materials 0.000 description 2
- 125000005843 halogen group Chemical group 0.000 description 2
- 238000009863 impact test Methods 0.000 description 2
- 229910052738 indium Inorganic materials 0.000 description 2
- 239000012770 industrial material Substances 0.000 description 2
- 238000002955 isolation Methods 0.000 description 2
- 229910052759 nickel Inorganic materials 0.000 description 2
- 125000004430 oxygen atom Chemical group O* 0.000 description 2
- 229910052763 palladium Inorganic materials 0.000 description 2
- 229910052697 platinum Inorganic materials 0.000 description 2
- 229920003207 poly(ethylene-2,6-naphthalate) Polymers 0.000 description 2
- 229920001197 polyacetylene Polymers 0.000 description 2
- 229920000767 polyaniline Polymers 0.000 description 2
- 239000011112 polyethylene naphthalate Substances 0.000 description 2
- 229920000128 polypyrrole Polymers 0.000 description 2
- 229920000123 polythiophene Polymers 0.000 description 2
- 229920001289 polyvinyl ether Polymers 0.000 description 2
- 238000003825 pressing Methods 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 102200082889 rs63750840 Human genes 0.000 description 2
- 239000013464 silicone adhesive Substances 0.000 description 2
- 229910052709 silver Inorganic materials 0.000 description 2
- 229910052719 titanium Inorganic materials 0.000 description 2
- VXUYXOFXAQZZMF-UHFFFAOYSA-N titanium(IV) isopropoxide Chemical compound CC(C)O[Ti](OC(C)C)(OC(C)C)OC(C)C VXUYXOFXAQZZMF-UHFFFAOYSA-N 0.000 description 2
- 238000007738 vacuum evaporation Methods 0.000 description 2
- IKCQWKJZLSDDSS-UHFFFAOYSA-N 2-formyloxyethyl formate Chemical compound O=COCCOC=O IKCQWKJZLSDDSS-UHFFFAOYSA-N 0.000 description 1
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 1
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 1
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 1
- 229920000219 Ethylene vinyl alcohol Polymers 0.000 description 1
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 1
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 1
- 239000004372 Polyvinyl alcohol Substances 0.000 description 1
- 229920001328 Polyvinylidene chloride Polymers 0.000 description 1
- 229910000589 SAE 304 stainless steel Inorganic materials 0.000 description 1
- 229910004283 SiO 4 Inorganic materials 0.000 description 1
- 239000006087 Silane Coupling Agent Substances 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- BOTDANWDWHJENH-UHFFFAOYSA-N Tetraethyl orthosilicate Chemical compound CCO[Si](OCC)(OCC)OCC BOTDANWDWHJENH-UHFFFAOYSA-N 0.000 description 1
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 1
- 229920001807 Urea-formaldehyde Polymers 0.000 description 1
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 1
- QCWXUUIWCKQGHC-UHFFFAOYSA-N Zirconium Chemical compound [Zr] QCWXUUIWCKQGHC-UHFFFAOYSA-N 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 230000002776 aggregation Effects 0.000 description 1
- 238000004220 aggregation Methods 0.000 description 1
- 150000001336 alkenes Chemical class 0.000 description 1
- SMZOGRDCAXLAAR-UHFFFAOYSA-N aluminium isopropoxide Chemical compound [Al+3].CC(C)[O-].CC(C)[O-].CC(C)[O-] SMZOGRDCAXLAAR-UHFFFAOYSA-N 0.000 description 1
- JPUHCPXFQIXLMW-UHFFFAOYSA-N aluminium triethoxide Chemical compound CCO[Al](OCC)OCC JPUHCPXFQIXLMW-UHFFFAOYSA-N 0.000 description 1
- 239000002518 antifoaming agent Substances 0.000 description 1
- 239000003963 antioxidant agent Substances 0.000 description 1
- 239000002216 antistatic agent Substances 0.000 description 1
- 239000012300 argon atmosphere Substances 0.000 description 1
- IJBYNGRZBZDSDK-UHFFFAOYSA-N barium magnesium Chemical compound [Mg].[Ba] IJBYNGRZBZDSDK-UHFFFAOYSA-N 0.000 description 1
- MYXYKQJHZKYWNS-UHFFFAOYSA-N barium neodymium Chemical compound [Ba][Nd] MYXYKQJHZKYWNS-UHFFFAOYSA-N 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- YHWCPXVTRSHPNY-UHFFFAOYSA-N butan-1-olate;titanium(4+) Chemical compound [Ti+4].CCCC[O-].CCCC[O-].CCCC[O-].CCCC[O-] YHWCPXVTRSHPNY-UHFFFAOYSA-N 0.000 description 1
- BSDOQSMQCZQLDV-UHFFFAOYSA-N butan-1-olate;zirconium(4+) Chemical compound [Zr+4].CCCC[O-].CCCC[O-].CCCC[O-].CCCC[O-] BSDOQSMQCZQLDV-UHFFFAOYSA-N 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 239000011575 calcium Substances 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 239000002738 chelating agent Substances 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 239000000460 chlorine Substances 0.000 description 1
- 229910052801 chlorine Inorganic materials 0.000 description 1
- 238000009833 condensation Methods 0.000 description 1
- 230000005494 condensation Effects 0.000 description 1
- 238000006482 condensation reaction Methods 0.000 description 1
- 238000003851 corona treatment Methods 0.000 description 1
- 125000004122 cyclic group Chemical group 0.000 description 1
- 230000018044 dehydration Effects 0.000 description 1
- 238000006297 dehydration reaction Methods 0.000 description 1
- JJQZDUKDJDQPMQ-UHFFFAOYSA-N dimethoxy(dimethyl)silane Chemical compound CO[Si](C)(C)OC JJQZDUKDJDQPMQ-UHFFFAOYSA-N 0.000 description 1
- YYLGKUPAFFKGRQ-UHFFFAOYSA-N dimethyldiethoxysilane Chemical compound CCO[Si](C)(C)OCC YYLGKUPAFFKGRQ-UHFFFAOYSA-N 0.000 description 1
- KPUWHANPEXNPJT-UHFFFAOYSA-N disiloxane Chemical class [SiH3]O[SiH3] KPUWHANPEXNPJT-UHFFFAOYSA-N 0.000 description 1
- 229920006332 epoxy adhesive Polymers 0.000 description 1
- 239000003822 epoxy resin Substances 0.000 description 1
- ASBGGHMVAMBCOR-UHFFFAOYSA-N ethanolate;zirconium(4+) Chemical compound [Zr+4].CC[O-].CC[O-].CC[O-].CC[O-] ASBGGHMVAMBCOR-UHFFFAOYSA-N 0.000 description 1
- QHSJIZLJUFMIFP-UHFFFAOYSA-N ethene;1,1,2,2-tetrafluoroethene Chemical group C=C.FC(F)=C(F)F QHSJIZLJUFMIFP-UHFFFAOYSA-N 0.000 description 1
- 229920000840 ethylene tetrafluoroethylene copolymer Polymers 0.000 description 1
- 239000004715 ethylene vinyl alcohol Substances 0.000 description 1
- 239000000945 filler Substances 0.000 description 1
- 239000011888 foil Substances 0.000 description 1
- 125000000524 functional group Chemical group 0.000 description 1
- RZXDTJIXPSCHCI-UHFFFAOYSA-N hexa-1,5-diene-2,5-diol Chemical compound OC(=C)CCC(O)=C RZXDTJIXPSCHCI-UHFFFAOYSA-N 0.000 description 1
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 1
- 230000006698 induction Effects 0.000 description 1
- 239000000314 lubricant Substances 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- 230000007257 malfunction Effects 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 150000002736 metal compounds Chemical class 0.000 description 1
- 239000000113 methacrylic resin Substances 0.000 description 1
- ITNVWQNWHXEMNS-UHFFFAOYSA-N methanolate;titanium(4+) Chemical compound [Ti+4].[O-]C.[O-]C.[O-]C.[O-]C ITNVWQNWHXEMNS-UHFFFAOYSA-N 0.000 description 1
- IKGXNCHYONXJSM-UHFFFAOYSA-N methanolate;zirconium(4+) Chemical compound [Zr+4].[O-]C.[O-]C.[O-]C.[O-]C IKGXNCHYONXJSM-UHFFFAOYSA-N 0.000 description 1
- WSFSSNUMVMOOMR-NJFSPNSNSA-N methanone Chemical compound O=[14CH2] WSFSSNUMVMOOMR-NJFSPNSNSA-N 0.000 description 1
- BFXIKLCIZHOAAZ-UHFFFAOYSA-N methyltrimethoxysilane Chemical compound CO[Si](C)(OC)OC BFXIKLCIZHOAAZ-UHFFFAOYSA-N 0.000 description 1
- 230000005012 migration Effects 0.000 description 1
- 238000013508 migration Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- 239000011733 molybdenum Substances 0.000 description 1
- 239000012299 nitrogen atmosphere Substances 0.000 description 1
- QJGQUHMNIGDVPM-UHFFFAOYSA-N nitrogen group Chemical group [N] QJGQUHMNIGDVPM-UHFFFAOYSA-N 0.000 description 1
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 1
- 239000005011 phenolic resin Substances 0.000 description 1
- 150000003018 phosphorus compounds Chemical class 0.000 description 1
- ZDCHZHDOCCIZIY-UHFFFAOYSA-N phthalic acid;propane-1,2,3-triol Chemical compound OCC(O)CO.OC(=O)C1=CC=CC=C1C(O)=O ZDCHZHDOCCIZIY-UHFFFAOYSA-N 0.000 description 1
- 238000009832 plasma treatment Methods 0.000 description 1
- 239000004014 plasticizer Substances 0.000 description 1
- 229920001084 poly(chloroprene) Polymers 0.000 description 1
- 229920000647 polyepoxide Polymers 0.000 description 1
- 229920001225 polyester resin Polymers 0.000 description 1
- 239000004645 polyester resin Substances 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 239000003505 polymerization initiator Substances 0.000 description 1
- 229920000417 polynaphthalene Polymers 0.000 description 1
- 229920001709 polysilazane Polymers 0.000 description 1
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 1
- 239000004810 polytetrafluoroethylene Substances 0.000 description 1
- 229920002451 polyvinyl alcohol Polymers 0.000 description 1
- 239000004800 polyvinyl chloride Substances 0.000 description 1
- 229920000915 polyvinyl chloride Polymers 0.000 description 1
- 239000005033 polyvinylidene chloride Substances 0.000 description 1
- 229920000036 polyvinylpyrrolidone Polymers 0.000 description 1
- 239000001267 polyvinylpyrrolidone Substances 0.000 description 1
- 235000013855 polyvinylpyrrolidone Nutrition 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 239000002243 precursor Substances 0.000 description 1
- 239000011164 primary particle Substances 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- ZGSOBQAJAUGRBK-UHFFFAOYSA-N propan-2-olate;zirconium(4+) Chemical compound [Zr+4].CC(C)[O-].CC(C)[O-].CC(C)[O-].CC(C)[O-] ZGSOBQAJAUGRBK-UHFFFAOYSA-N 0.000 description 1
- 229910000077 silane Inorganic materials 0.000 description 1
- 150000004756 silanes Chemical class 0.000 description 1
- 125000005372 silanol group Chemical group 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 229920002050 silicone resin Polymers 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 238000004381 surface treatment Methods 0.000 description 1
- 238000010345 tape casting Methods 0.000 description 1
- UQMOLLPKNHFRAC-UHFFFAOYSA-N tetrabutyl silicate Chemical compound CCCCO[Si](OCCCC)(OCCCC)OCCCC UQMOLLPKNHFRAC-UHFFFAOYSA-N 0.000 description 1
- LFQCEHFDDXELDD-UHFFFAOYSA-N tetramethyl orthosilicate Chemical compound CO[Si](OC)(OC)OC LFQCEHFDDXELDD-UHFFFAOYSA-N 0.000 description 1
- ZQZCOBSUOFHDEE-UHFFFAOYSA-N tetrapropyl silicate Chemical compound CCCO[Si](OCCC)(OCCC)OCCC ZQZCOBSUOFHDEE-UHFFFAOYSA-N 0.000 description 1
- 238000001029 thermal curing Methods 0.000 description 1
- XOLBLPGZBRYERU-UHFFFAOYSA-N tin dioxide Chemical compound O=[Sn]=O XOLBLPGZBRYERU-UHFFFAOYSA-N 0.000 description 1
- 229910001887 tin oxide Inorganic materials 0.000 description 1
- JMXKSZRRTHPKDL-UHFFFAOYSA-N titanium ethoxide Chemical compound [Ti+4].CC[O-].CC[O-].CC[O-].CC[O-] JMXKSZRRTHPKDL-UHFFFAOYSA-N 0.000 description 1
- MYWQGROTKMBNKN-UHFFFAOYSA-N tributoxyalumane Chemical compound [Al+3].CCCC[O-].CCCC[O-].CCCC[O-] MYWQGROTKMBNKN-UHFFFAOYSA-N 0.000 description 1
- CPUDPFPXCZDNGI-UHFFFAOYSA-N triethoxy(methyl)silane Chemical compound CCO[Si](C)(OCC)OCC CPUDPFPXCZDNGI-UHFFFAOYSA-N 0.000 description 1
- UAEJRRZPRZCUBE-UHFFFAOYSA-N trimethoxyalumane Chemical compound [Al+3].[O-]C.[O-]C.[O-]C UAEJRRZPRZCUBE-UHFFFAOYSA-N 0.000 description 1
- 239000002023 wood Substances 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
- 239000011701 zinc Substances 0.000 description 1
- 239000011787 zinc oxide Substances 0.000 description 1
- 229910052726 zirconium Inorganic materials 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B27/00—Layered products comprising a layer of synthetic resin
- B32B27/18—Layered products comprising a layer of synthetic resin characterised by the use of special additives
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B7/00—Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
- B32B7/02—Physical, chemical or physicochemical properties
- B32B7/025—Electric or magnetic properties
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B7/00—Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
- B32B7/04—Interconnection of layers
- B32B7/12—Interconnection of layers using interposed adhesives or interposed materials with bonding properties
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q17/00—Devices for absorbing waves radiated from an antenna; Combinations of such devices with active antenna elements or systems
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K9/00—Screening of apparatus or components against electric or magnetic fields
Landscapes
- Engineering & Computer Science (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Laminated Bodies (AREA)
- Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)
Abstract
Description
本發明係關於電磁波吸收體。The present invention relates to an electromagnetic wave absorber.
近年來,面向急速的資訊量增加或移動體的高速化、自動駕駛、IoT(Internet of Things(物聯網))的實用化,能夠分別對應的通訊、雷達、保安(security)用的掃描器等的需求在日益增加。隨之而來的是,與使用活用5G、毫米波(millimeter wave)、兆赫茲波(terahertz)的次世代電磁波的高速無線通訊方式的相關技術正急速地推進著。In recent years, in response to the rapid increase in the amount of information, the increase in speed of mobile objects, autonomous driving, and the practical implementation of IoT (Internet of Things), scanners for communications, radar, and security, etc., that can respond separately The demand is increasing day by day. Along with this, technologies related to high-speed wireless communication methods using next-generation electromagnetic waves utilizing 5G, millimeter waves, and terahertz waves are rapidly advancing.
利用電磁波的製品,有與由其他電子機器所產生的電磁波干涉,而引起錯誤動作的情形。作為用於防止此情形的手段,已知有被稱為λ/4型的反射型的電磁波吸收體。專利文獻1中揭露了一種λ/4型電波吸收體,其係藉由將依序具有包含鉬的電阻皮膜、介電體層(dielectric layer)、及反射層的積層體作為λ/4型電波吸收體,而發揮優異的耐久性。專利文獻2中揭露了一種電波吸收體用阻抗匹配膜,其中阻抗匹配膜係包含金屬元素和非金屬元素,具有10~200nm的厚度,氧原子的原子數基準的含有率小於50%,從而在被曝露於高溫環境時從阻抗匹配的觀點來看,可以抑制片電阻(sheet resistance)改變。 [先前技術文獻] [專利文獻] Products that utilize electromagnetic waves may interfere with electromagnetic waves generated by other electronic devices, causing malfunctions. As a means for preventing this, a reflective electromagnetic wave absorber called a λ/4 type is known. Patent Document 1 discloses a λ/4 type radio wave absorber, which is a laminated body having a resistive film containing molybdenum, a dielectric layer, and a reflective layer in this order as a λ/4 type radio wave absorber. body, and exhibits excellent durability. Patent Document 2 discloses an impedance matching film for a radio wave absorber. The impedance matching film contains metallic elements and non-metallic elements, has a thickness of 10 to 200 nm, and has an oxygen atom content rate of less than 50% based on the atomic number. Therefore, From the perspective of impedance matching, changes in sheet resistance (sheet resistance) can be suppressed when exposed to high temperature environments. [Prior technical literature] [Patent Document]
專利文獻1:日本特開2020-115578號公報 專利文獻2:日本特開2020-167414號公報 Patent Document 1: Japanese Patent Application Publication No. 2020-115578 Patent Document 2: Japanese Patent Application Publication No. 2020-167414
[發明欲解決之課題][Problem to be solved by the invention]
電磁波吸收體隨著用途擴大而被長時間使用在高溫高濕的環境下的案例(case)也在增加著。但是,發現了如下的問題:在這種環境下使用或者是在可靠性試驗中,電磁波吸收體中所含的電阻層的片電阻會隨著時間經過而改變,發生電磁波吸收體的回波損耗量(return loss)降低,而認識到提高耐久性能為課題。此外,特別是在為了屋內的通訊穩定化而安裝電磁波吸收體的場面下,有如下的課題:電磁波對電磁波吸收體沿著正面的法線方向垂直地入射的場面少,有在傾斜的角度下入射的傾向,給予良好的回波損耗量的片電阻的值也會隨著入射角度改變而跟著改變。在前述的先前專利文獻中沒有與這種課題、解決手段有關的揭露。因此,本發明的目的在於提供如下的技術:著眼於反射型的電磁波吸收體所使用的介電體層的複介電常數(complex permittivity)虛部,即使是在電阻層的片電阻改變,或是電磁波斜向入射的情況下,也可以維持優異的回波損耗量。 [用以解決課題之手段] As the use of electromagnetic wave absorbers expands, the number of cases in which electromagnetic wave absorbers are used in high-temperature and high-humidity environments for long periods of time is also increasing. However, the following problem was discovered: when used in such an environment or during reliability testing, the sheet resistance of the resistive layer contained in the electromagnetic wave absorber changes with the passage of time, resulting in return loss of the electromagnetic wave absorber. The return loss is reduced, and it is recognized that improving the durability performance is an issue. In addition, especially in situations where an electromagnetic wave absorber is installed to stabilize communications indoors, there is the following problem: There are few situations where electromagnetic waves are vertically incident on the electromagnetic wave absorber along the normal direction of the front, and there are cases where the electromagnetic wave absorber is incident at an oblique angle. With the tendency of lower incidence, the value of the sheet resistance that gives good return loss will also change as the angle of incidence changes. There is no disclosure related to this problem or solution in the aforementioned prior patent documents. Therefore, an object of the present invention is to provide a technology that focuses on the imaginary part of the complex permittivity (complex permittivity) of a dielectric layer used in a reflective electromagnetic wave absorber, even if the sheet resistance of the resistive layer changes, or Even when electromagnetic waves are incident obliquely, excellent return loss can be maintained. [Means used to solve problems]
為了解決上述的課題,本發明的代表性電磁波吸收體之一,係依序具備電阻層、介電體層、和反射層的積層體,前述介電體層係含有至少一種介電性化合物、和樹脂成分,複介電常數的虛部為0.5以上者,另外,在85℃85%RH、700h的可靠性試驗後的回波損耗量為10dB以上者。 [發明之效果] In order to solve the above-mentioned problems, one of the representative electromagnetic wave absorbers of the present invention is a laminated body including a resistive layer, a dielectric layer, and a reflective layer in this order. The dielectric layer contains at least one dielectric compound and a resin. The component, the imaginary part of the complex dielectric constant is 0.5 or more, and the return loss after the reliability test at 85℃, 85%RH, 700h is 10dB or more. [Effects of the invention]
若根據本發明的話,則即使是在電阻層的片電阻改變,或是電磁波斜向入射的情況下,也能夠維持優異的回波損耗量。上述以外的課題、構成及效果,可藉由以下用於實施之形態中的說明而瞭解。According to the present invention, excellent return loss can be maintained even when the sheet resistance of the resistive layer changes or when electromagnetic waves are incident obliquely. Problems, structures, and effects other than those described above can be understood from the following description of embodiments for implementation.
[用以實施發明的形態][Form used to implement the invention]
以下,參照圖式,針對本發明的實施形態進行說明。又,本發明不限於此實施形態。此外,在圖式的記載中,對於同一部分賦予同一符號來顯示。Hereinafter, embodiments of the present invention will be described with reference to the drawings. In addition, the present invention is not limited to this embodiment. In addition, in the description of the drawings, the same parts are indicated by being assigned the same symbols.
<電磁波吸收體> [第一實施形態A] 以下,針對第一實施形態A的電磁波吸收體進行說明。圖1係示意地顯示第一實施形態的反射型的電磁波吸收體的剖面圖。此圖所示的電磁波吸收體10係薄膜狀或薄片狀,為依序具備電阻層1、介電體層2、和反射層3的積層體。又,薄膜狀的電磁波吸收體10係例如整體的厚度為24~250μm。另一方面,薄片狀的電磁波吸收體10係例如整體的厚度為0.25~7.1mm。 <Electromagnetic wave absorber> [First Embodiment A] Hereinafter, the electromagnetic wave absorber according to the first embodiment A will be described. FIG. 1 is a cross-sectional view schematically showing the reflective electromagnetic wave absorber according to the first embodiment. The electromagnetic wave absorber 10 shown in this figure is in the form of a film or a sheet, and is a laminated body including a resistive layer 1, a dielectric layer 2, and a reflective layer 3 in this order. In addition, the overall thickness of the film-like electromagnetic wave absorber 10 is, for example, 24 to 250 μm. On the other hand, the sheet-shaped electromagnetic wave absorber 10 has an overall thickness of, for example, 0.25 to 7.1 mm.
(電阻層) 電阻層1係供使從外側入射而來的電磁波到達介電體層2用的層。即,電阻層1係供進行阻抗匹配用的層。 (resistance layer) The resistive layer 1 is a layer that allows electromagnetic waves incident from the outside to reach the dielectric layer 2 . That is, the resistance layer 1 is a layer for impedance matching.
在電磁波吸收體係在空氣(阻抗:377Ω/□)中使用,在如複介電常數的虛部為0.1以下的介電體層的情況下,電阻層1的片電阻係例如為了得到10dB以上的回波損耗量而設定在200Ω/□以上800Ω/□的範圍內。相對於此,若根據本實施形態的話,則藉由將介電體層的複介電常數的虛部設為0.5以上,來得到如下的電磁波吸收體:即使對於200Ω/□以上1400Ω/□以下,特別是400Ω/□以上1000Ω/□以下的範圍,也能夠得到高的回波損耗,因而可以實現穩定的製造,且即使在進行可靠性試驗之際電阻層的片電阻增加,回波損耗量也比以前高。此處,可靠性試驗可舉出:在JIS規格、ISO規格、ASTM規格中有記載的高溫試驗、低溫試驗、高溫高濕試驗、熱循環試驗、光照射試驗、彎曲試驗、衝擊試驗等。特別是在85℃85%RH下所進行的高溫高濕試驗,與其他試驗相比,片電阻大幅增加。因此,如後所述,可藉由本案發明得到巨大的效果。When the electromagnetic wave absorbing system is used in air (impedance: 377Ω/□) and the imaginary part of the complex dielectric constant is a dielectric layer of 0.1 or less, the sheet resistance of the resistive layer 1 is, for example, in order to obtain a response of 10dB or more. The wave loss is set within the range of 200Ω/□ to 800Ω/□. On the other hand, according to this embodiment, by setting the imaginary part of the complex dielectric constant of the dielectric layer to 0.5 or more, the following electromagnetic wave absorber can be obtained: even for 200Ω/□ or more and 1400Ω/□ or less, Especially in the range of 400Ω/□ to 1000Ω/□, high return loss can be obtained, so stable manufacturing can be achieved. Even if the sheet resistance of the resistive layer increases during reliability testing, the amount of return loss remains low. higher than before. Examples of reliability tests here include high-temperature tests, low-temperature tests, high-temperature and high-humidity tests, thermal cycle tests, light irradiation tests, bending tests, and impact tests described in JIS standards, ISO standards, and ASTM standards. Especially in the high-temperature and high-humidity test conducted at 85°C and 85%RH, the sheet resistance increased significantly compared with other tests. Therefore, as will be described later, the present invention can achieve great effects.
以下,使用由模擬(後述)所得到的數個例子進行說明。在28GHz下的介電體層2的複介電常數的實部為2.5,虛部為0.5的情況下,藉由電阻層1的片電阻例如設定在200~1400Ω/□的範圍內,能夠得到回波損耗量10dB以上的電磁波吸收體。特別是藉由設定在400~600Ω/□的範圍內,能夠在剛製造後即得到20dB以上的回波損耗量,即使電阻層的片電阻因可靠性試驗而增加也可以維持10dB以上的高回波損耗量。在28GHz下的介電體層2的複介電常數的實部為10,虛部為0.5的情況下,藉由電阻層1的片電阻例如設定在200~950Ω/□的範圍內,能夠得到回波損耗量10dB以上的電磁波吸收體。特別是藉由設定在400~550Ω/□的範圍內,能夠在剛製造後即得到20dB以上的回波損耗量,即使電阻層的片電阻因可靠性試驗而增加也可以維持10dB以上的高回波損耗量。在28GHz下的介電體層2的複介電常數的實部為10,虛部為1.5的情況下,藉由電阻層1的片電阻例如設定在200~2500Ω/□的範圍內,能夠得到回波損耗量10dB以上的電磁波吸收體。特別是藉由設定在450~800Ω/□的範圍內,能夠在剛製造後即得到20dB以上的回波損耗量,即使電阻層的片電阻因可靠性試驗而增加也可以維持10dB以上的高回波損耗量。在28GHz下的介電體層2的複介電常數的實部為15,虛部為1.5的情況下,藉由電阻層1的片電阻例如設定在200~2000Ω/□的範圍內,能夠得到回波損耗量10dB以上的電磁波吸收體。特別是藉由設定在420~750Ω/□的範圍內,能夠在剛製造後即得到20dB以上的回波損耗量,即使電阻層的片電阻因可靠性試驗而增加也可以維持10dB以上的高回波損耗量。Hereinafter, several examples obtained by simulation (described later) will be used for explanation. When the real part of the complex dielectric constant of the dielectric layer 2 at 28 GHz is 2.5 and the imaginary part is 0.5, the response can be obtained by setting the sheet resistance of the resistive layer 1 in the range of, for example, 200 to 1400Ω/□. An electromagnetic wave absorber with a wave loss of 10dB or more. In particular, by setting it within the range of 400 to 600Ω/□, a return loss of more than 20dB can be obtained immediately after manufacturing, and a high return loss of more than 10dB can be maintained even if the sheet resistance of the resistive layer increases due to reliability testing. Wave loss. When the real part of the complex dielectric constant of the dielectric layer 2 at 28 GHz is 10 and the imaginary part is 0.5, the response can be obtained by setting the sheet resistance of the resistive layer 1 in the range of, for example, 200 to 950Ω/□. An electromagnetic wave absorber with a wave loss of 10dB or more. In particular, by setting it within the range of 400 to 550Ω/□, a return loss of more than 20dB can be obtained immediately after manufacturing, and a high return loss of more than 10dB can be maintained even if the sheet resistance of the resistive layer increases due to reliability testing. Wave loss. When the real part of the complex dielectric constant of the dielectric layer 2 at 28 GHz is 10 and the imaginary part is 1.5, the response can be obtained by setting the sheet resistance of the resistive layer 1 in the range of, for example, 200 to 2500Ω/□. An electromagnetic wave absorber with a wave loss of 10dB or more. In particular, by setting it within the range of 450 to 800Ω/□, a return loss of more than 20dB can be obtained immediately after manufacturing, and a high return loss of more than 10dB can be maintained even if the sheet resistance of the resistor layer increases due to reliability testing. Wave loss. When the real part of the complex dielectric constant of the dielectric layer 2 at 28 GHz is 15 and the imaginary part is 1.5, the response can be obtained by setting the sheet resistance of the resistive layer 1 in the range of, for example, 200 to 2000Ω/□. An electromagnetic wave absorber with a wave loss of 10dB or more. In particular, by setting it within the range of 420 to 750Ω/□, a return loss of more than 20dB can be obtained immediately after manufacturing, and a high return loss of more than 10dB can be maintained even if the sheet resistance of the resistor layer increases due to reliability testing. Wave loss.
發明人使用如上述的由模擬所得到的具體數值,歸納發現:若電阻層1的片電阻R滿足式1,便可得到回波損耗量20dB以上的電磁波吸收體。 此處,ε’、ε’’分別為介電體層2中的複介電常數的實部、虛部。 The inventor used the specific numerical values obtained from the simulation as mentioned above and found that if the sheet resistance R of the resistive layer 1 satisfies Equation 1, an electromagnetic wave absorber with a return loss of 20 dB or more can be obtained. Here, ε' and ε'' are respectively the real part and the imaginary part of the complex dielectric constant in the dielectric layer 2 .
電阻層1含有具有導電性的無機材料、有機材料。作為具有導電性的無機材料,例如,可舉出奈米粒子及奈米線。作為奈米粒子及奈米線的材料,例如,可舉出:氧化銦錫(ITO)、氧化銦鋅(IZO)、氧化鋅鋁(AZO)、奈米碳管、石墨烯、Ag、Al、Au、Pt、Pd、Cu、Co、Cr、In、Ag-Cu、Cu-Au及Ni。作為具有導電性的有機材料,可舉出:聚噻吩衍生物、聚乙炔衍生物、聚苯胺衍生物及聚吡咯衍生物。特別是從柔軟性、成膜性、穩定性、片電阻的觀點來看,電阻層1較佳為包含聚伸乙二氧基噻吩(PEDOT)的導電性聚合物。電阻層1可以是包含聚伸乙二氧基噻吩(PEDOT)和聚苯乙烯磺酸(PSS)的混合物(PEDOT/PSS)者。The resistance layer 1 contains conductive inorganic materials and organic materials. Examples of conductive inorganic materials include nanoparticles and nanowires. Examples of materials for nanoparticles and nanowires include indium tin oxide (ITO), indium zinc oxide (IZO), aluminum zinc oxide (AZO), carbon nanotubes, graphene, Ag, Al, Au, Pt, Pd, Cu, Co, Cr, In, Ag-Cu, Cu-Au and Ni. Examples of conductive organic materials include polythiophene derivatives, polyacetylene derivatives, polyaniline derivatives, and polypyrrole derivatives. In particular, from the viewpoint of flexibility, film-forming property, stability, and sheet resistance, the resistive layer 1 is preferably a conductive polymer containing polyethylenedioxythiophene (PEDOT). The resistance layer 1 may be a mixture (PEDOT/PSS) containing polyethylenedioxythiophene (PEDOT) and polystyrenesulfonic acid (PSS).
電阻層1的片電阻值,若將導電性材料的體積電阻率設為ρ(Ω.m)、導電性材料的厚度設為t(m),則由導電性材料的片電阻σ=ρ/t給出。因此,能夠藉由具有導電性的無機材料、有機材料的選定、膜厚的調節來適宜設定。在電阻層1由無機材料所構成的情況下,電阻層1的厚度(膜厚)較佳為設在0.1nm~100nm的範圍內,更佳為設在1nm~50nm的範圍內。若膜厚為0.1nm以上,則有能夠容易形成均勻的膜,更充分地發揮作為電阻層1的功能的傾向。另一方面,若膜厚為100nm以下,則有能夠使其保持充分的可撓性,能夠更確實地防止因在製膜後彎折、拉伸等的外在因素而在薄膜發生龜裂且抑制因熱而對基板造成損傷、收縮的傾向。在電阻層1由有機材料所構成的情況下,電阻層1的厚度(膜厚)較佳為設在0.1~2.0μm的範圍內。特別是即使在片電阻範圍為450Ω/□以上的情況下,藉由體積電阻率設為8.0×10 -5~4.0×10 -3Ω.m,也能夠將膜厚設為0.15~0.5μm,甚至設為0.15~0.2μm,能夠抑制可靠性試驗之際的片電阻變化,能夠得到回波損耗量10dB以上的電磁波吸收體。另一方面,若膜厚為2.0μm以下,則有能夠使其保持充分的柔軟性,能夠更確實地防止因在成膜後彎折、拉伸等的外在因素而在薄膜發生龜裂的傾向。 The sheet resistance value of the resistive layer 1 is calculated by assuming that the volume resistivity of the conductive material is ρ (Ω·m) and the thickness of the conductive material is t (m). t is given. Therefore, it can be appropriately set by selecting conductive inorganic materials and organic materials and adjusting the film thickness. When the resistance layer 1 is made of an inorganic material, the thickness (film thickness) of the resistance layer 1 is preferably in the range of 0.1 nm to 100 nm, more preferably in the range of 1 nm to 50 nm. When the film thickness is 0.1 nm or more, a uniform film can be easily formed, and the function as the resistive layer 1 tends to be more fully exerted. On the other hand, if the film thickness is 100 nm or less, sufficient flexibility can be maintained, and cracks can be more reliably prevented from occurring in the film due to external factors such as bending and stretching after film formation. Suppresses the tendency of damage and shrinkage of the substrate due to heat. When the resistance layer 1 is made of an organic material, the thickness (film thickness) of the resistance layer 1 is preferably in the range of 0.1 to 2.0 μm. Especially when the sheet resistance range is 450Ω/□ or more, the volume resistivity is set to 8.0×10 -5 to 4.0×10 -3 Ω. m, the film thickness can also be set to 0.15 to 0.5 μm, or even 0.15 to 0.2 μm, which can suppress the change in sheet resistance during reliability testing and obtain an electromagnetic wave absorber with a return loss of 10 dB or more. On the other hand, if the film thickness is 2.0 μm or less, sufficient flexibility can be maintained, and cracks in the film due to external factors such as bending and stretching after film formation can be more reliably prevented. tendency.
作為製膜方法,可舉出:乾式塗布方法和濕式塗布方法。Examples of film forming methods include dry coating methods and wet coating methods.
乾式塗布方法,主要可舉出:使用電阻加熱、感應加熱、離子束(EB)的真空蒸鍍方式、濺鍍方式等。電阻加熱方式係藉由以下方式來製膜:將材料放入陶瓷製的坩堝,藉由使電壓施加於圍繞坩堝的加熱器來使電流流入,在真空中加熱坩堝,從而使無機材料從開口部蒸發,使其附著在基材。藉由控制材料與基材間距離、施加於加熱器的電壓、電流來調整製膜速度,若為批量式製膜的話,則藉由以閘門(shutter)的開關時間控制製膜時間來控制膜厚,若為輥式製膜的話,則藉由以線速度等控制製膜時間來控制膜厚。離子束係藉由以下方式來製膜:藉由在真空中使電流流入燈絲(filament)來使電子釋出,以電磁透鏡將釋出的電子直接照射在材料上,從而使無機材料加熱、蒸發,使其附著在基材。用於為了使其蒸發而需要龐大熱量的無機材料、需要高製膜速率的情況。控制材料與基材間距離、以電流使其從燈絲產生的電子量和電磁透鏡控制材料的照射位置、範圍(光圈),調整製膜速度,以前述同樣的閘門的開關時間、線速度控制製膜時間,控制膜厚。濺鍍方式係藉由以下方式來製膜:在由無機材料構成的靶材上,導入主要為Ar等的稀有氣體,藉由施加電壓來使Ar電漿化,以電壓使經電漿化的Ar加速並衝撞靶材,從而使材料物理性噴濺出來(sputtering)而使其附著在基材。若為濺鍍方式的話,則無法以真空蒸鍍方式製膜的無機材料也有可以製膜的情況。控制靶材與基材間距離、施加於靶材的電力、Ar氣壓,調整製膜速度,以前述同樣的閘門的開關時間、線速度控制製膜時間,控制膜厚。主要是在將無機材料製膜之際使用。Dry coating methods mainly include: vacuum evaporation using resistance heating, induction heating, ion beam (EB), sputtering, etc. The resistance heating method forms a film by placing the material in a ceramic crucible, applying a voltage to a heater surrounding the crucible to cause current to flow, and heating the crucible in a vacuum to cause the inorganic material to pass through the opening. Evaporates and adheres to the substrate. The film production speed is adjusted by controlling the distance between the material and the substrate, the voltage and current applied to the heater, and in the case of batch film production, the film is controlled by controlling the film production time with the opening and closing time of the shutter. Thickness. In the case of roll film forming, the film thickness is controlled by controlling the film forming time with linear speed and the like. Ion beams are used to form films by flowing current into a filament in a vacuum to release electrons, and using an electromagnetic lens to directly irradiate the released electrons onto the material, thereby heating and evaporating the inorganic material. , making it adhere to the substrate. Used for inorganic materials that require a huge amount of heat to evaporate and when a high film formation rate is required. The distance between the material and the substrate is controlled, the amount of electrons generated from the filament is controlled by current, and the irradiation position and range (aperture) of the material are controlled by the electromagnetic lens. The film production speed is adjusted, and the same gate opening and closing time and linear speed are controlled as mentioned above. Film time, control film thickness. The sputtering method forms a film by introducing a rare gas, mainly Ar, etc. onto a target made of an inorganic material, applying a voltage to plasmaize the Ar, and using the voltage to plasmaize the Ar. Ar accelerates and collides with the target, thereby physically sputtering the material and attaching it to the substrate. If the sputtering method is used, films of inorganic materials that cannot be formed by vacuum evaporation can sometimes be formed. The distance between the target and the substrate, the electric power applied to the target, and the Ar gas pressure are controlled to adjust the film forming speed. The film forming time is controlled by the same gate opening and closing time and linear speed as described above, and the film thickness is controlled. It is mainly used when forming films of inorganic materials.
濕式塗布方法係主要將材料塗布在基材的方法,在常溫常壓下為固體的材料係藉由溶解、或分散於適宜溶媒來印墨化,進行塗敷後,藉由乾燥來除去溶媒而進行製膜。塗布方法可舉出:模塗、微凹版塗布、棒凹版塗布、凹版塗布等。若為共同的印墨的固體成分和模塗的話,則控制模頭開口部的間隙(gap)、基材、塗布機噴頭間的間隙,將印墨塗敷在基材並加以乾燥來控制膜厚地進行製膜,若為共同的印墨的固體成分和微凹版塗布和棒凹版塗布、凹版塗布的話,則控制版的線數、深度、版旋轉比,將印墨塗敷在基材並加以乾燥來控制膜厚地進行製膜。主要是在將有機材料和一部分的無機分散材料製膜之際使用。The wet coating method is a method that mainly applies materials to a substrate. Materials that are solid at normal temperatures and pressures are converted into ink by dissolving or dispersing in a suitable solvent. After coating, the solvent is removed by drying. And make film. Examples of coating methods include die coating, microgravure coating, rod gravure coating, gravure coating, and the like. If the solid content of the ink and die coating are the same, the gap between the die opening, the base material, and the coating machine nozzle is controlled, and the ink is applied to the base material and dried to control the film. If the solid content of the ink is the same as that of microgravure coating, rod gravure coating, or gravure coating, then the number of lines, depth, and plate rotation ratio of the plate are controlled, and the ink is applied to the base material and The film is formed by drying to control the film thickness. It is mainly used when organic materials and some inorganic dispersed materials are formed into films.
電阻層1的片電阻值係例如能夠使用LORESTA-GP MCP-T610(商品名,三菱化學Analytech股份有限公司製)來測定。The sheet resistance value of the resistive layer 1 can be measured using, for example, LORESTA-GP MCP-T610 (trade name, manufactured by Mitsubishi Chemical Analytech Co., Ltd.).
(介電體層) 介電體層2係為了藉由干涉來使入射的電磁波與反射的電磁波抵消而調整相位的層。簡單而言,介電體層2係以滿足用以下的公式所表示的條件的方式設定厚度等。 d=λ/(4(ε’) 1/2) 式中,λ表示待抑制的電磁波的波長(單位:m),ε’表示構成介電體層2的材料的複介電常數的實部,d表示介電體層2的厚度(單位:m)。藉由入射的電磁波的相位和反射的電磁波的相位相差π,可得到回波損耗。 (Dielectric layer) The dielectric layer 2 is a layer that adjusts the phase in order to cancel the incident electromagnetic wave and the reflected electromagnetic wave through interference. Simply put, the thickness and the like of the dielectric layer 2 are set so as to satisfy the conditions expressed by the following formula. d=λ/(4(ε') 1/2 ) where λ represents the wavelength of the electromagnetic wave to be suppressed (unit: m), ε' represents the real part of the complex dielectric constant of the material constituting the dielectric layer 2, d represents the thickness of the dielectric layer 2 (unit: m). The return loss can be obtained by the phase difference π between the incident electromagnetic wave and the reflected electromagnetic wave.
介電體層2係以最能使其吸收電磁波的頻率下的複介電常數的虛部高於0.5的樹脂組成物構成。藉由介電體層2的虛部高於0.5,如上所述,能夠將為了得到高回波損耗量所需的電阻層的片電阻範圍充分地擴大,而可得到可以實現穩定的製造,且即使在進行可靠性試驗之際電阻層的片電阻增加,回波損耗量也比以前高的電磁波吸收體。特別是即使為了使介電體層2變薄而使複介電常數的實部為10以上,也能夠將為了得到高回波損耗量所需的電阻層的片電阻範圍充分地擴大,而可得到可以實現穩定的製造,且即使在進行可靠性試驗之際電阻層的片電阻增加,回波損耗量也比以前高的電磁波吸收體。The dielectric layer 2 is composed of a resin composition having an imaginary part of the complex dielectric constant higher than 0.5 at a frequency that can best absorb electromagnetic waves. By having the imaginary part of the dielectric layer 2 higher than 0.5, as described above, the sheet resistance range of the resistive layer required to obtain a high return loss can be sufficiently expanded, and stable manufacturing can be achieved, even if It is an electromagnetic wave absorber in which the sheet resistance of the resistive layer increases during reliability testing and the amount of return loss is also higher than before. In particular, even if the real part of the complex dielectric constant is set to 10 or more in order to make the dielectric layer 2 thinner, the sheet resistance range of the resistive layer required to obtain a high return loss can be sufficiently expanded to obtain An electromagnetic wave absorber that can be manufactured stably and has a higher return loss than before even if the sheet resistance of the resistive layer increases during reliability testing.
發明人發現在複介電常數的實部為一定的情況下,若虛部增加,則有為了得到回波損耗量10dB所需的片電阻上限增加的傾向,另一方面,若複介電常數的虛部為一定而實部增加,則有為了得到回波損耗量10dB所需的片電阻上限減少的傾向。依此,樹脂組成物實部的上限係15左右,但藉由將複介電常數的虛部設為0.5以上,與為0的情況相比,能夠使為了得到回波損耗量10dB所需的片電阻上限增加一成以上,即使在85℃85%RH的環境試驗後片電阻改變,也能夠有效地抑制回波損耗量的減少。The inventor found that when the real part of the complex dielectric constant is constant, if the imaginary part increases, the upper limit of the sheet resistance required to obtain a return loss of 10 dB tends to increase. On the other hand, if the complex dielectric constant The imaginary part of is constant and the real part increases, the upper limit of the chip resistance required to obtain a return loss of 10dB tends to decrease. According to this, the upper limit of the real part of the resin composition is about 15. However, by setting the imaginary part of the complex dielectric constant to 0.5 or more, compared with the case of 0, it is possible to make the return loss required to obtain a return loss of 10 dB. The upper limit of the chip resistance is increased by more than 10%. Even if the chip resistance changes after the environmental test of 85°C and 85%RH, the reduction in return loss can be effectively suppressed.
在介電體層2的複介電常數的虛部為0.5以上的情況下,能夠將如目前電阻率高而無法採用的電阻率高的化合物用於電阻層。例如,能夠使用例如氧化鋅鋁(AZO)、摻雜鎵的氧化鋅(GZO)、摻雜銻的氧化錫(ATO)等來替代導電性優良的氧化銦錫(ITO)及氧化銦鋅(IZO)。藉由使用不含銦的材料,有環境負荷降低、成本降低的優點。When the imaginary part of the complex dielectric constant of the dielectric layer 2 is 0.5 or more, a compound with high resistivity that cannot be used due to high resistivity can be used for the resistive layer. For example, aluminum zinc oxide (AZO), gallium-doped zinc oxide (GZO), antimony-doped tin oxide (ATO), etc. can be used instead of indium tin oxide (ITO) and indium zinc oxide (IZO) which have excellent conductivity. ). By using indium-free materials, there are advantages of reduced environmental load and cost reduction.
構成介電體層2的樹脂組成物含有至少一種介電性化合物、和樹脂成分。能夠根據樹脂組成物中的介電性化合物的選擇及其含量,來調整介電體層2的複介電常數虛部及實部。相對於樹脂組成物100體積份,介電性化合物的含量較佳為10~300體積份,更佳為25~100體積份。相對於樹脂組成物100質量份,介電性化合物的含量較佳為10~900質量份,更佳為25~100質量份。藉由樹脂組成物中的介電性化合物的含量為下限值以上,有能夠使由介電體層2的複介電常數虛部成為0.5以上的傾向,藉由使摻合比增加,能夠使複介電常數的虛部增加。另一方面,藉由為上限值以下,有利用濕式塗布法或擠出成形來有效率地製造介電體層2的傾向。例如,在將樹脂組成物設為胺基甲酸酯,將介電性化合物設為鈦酸鋇的情況下,在相對於胺基甲酸酯100體積份而鈦酸鋇為22體積份,即相對於胺基甲酸酯100質量份而鈦酸鋇為132質量份的情況下,複介電常數的虛部成為0.5。此外,在相對於胺基甲酸酯100體積份而鈦酸鋇為30體積份,即相對於胺基甲酸酯100質量份而鈦酸鋇為180質量份的情況下,複介電常數的虛部成為1.0。此外,在相對於胺基甲酸酯100體積份而鈦酸鋇為35體積份,即相對於胺基甲酸酯100質量份而鈦酸鋇為210質量份的情況下,複介電常數的虛部成為1.5。此外,藉由使介電性化合物的含量增加,也能夠使耐延燒性增加。The resin composition constituting the dielectric layer 2 contains at least one dielectric compound and a resin component. The imaginary part and the real part of the complex dielectric constant of the dielectric layer 2 can be adjusted according to the selection and content of the dielectric compound in the resin composition. The content of the dielectric compound is preferably 10 to 300 parts by volume, more preferably 25 to 100 parts by volume relative to 100 parts by volume of the resin composition. The content of the dielectric compound is preferably 10 to 900 parts by mass, more preferably 25 to 100 parts by mass relative to 100 parts by mass of the resin composition. When the content of the dielectric compound in the resin composition is equal to or greater than the lower limit, the imaginary part of the complex dielectric constant of the dielectric layer 2 tends to be equal to or greater than 0.5. By increasing the blending ratio, the imaginary part of the complex dielectric constant of the dielectric layer 2 can be increased. The imaginary part of the complex permittivity increases. On the other hand, when the value is less than the upper limit, the dielectric layer 2 tends to be efficiently produced by a wet coating method or extrusion molding. For example, when the resin composition is urethane and the dielectric compound is barium titanate, the barium titanate is 22 parts by volume relative to 100 parts by volume of urethane, that is, When the barium titanate is 132 parts by mass relative to 100 parts by mass of urethane, the imaginary part of the complex dielectric constant becomes 0.5. In addition, when the barium titanate is 30 parts by volume relative to 100 parts by volume of urethane, that is, the barium titanate is 180 parts by mass relative to 100 parts by mass of urethane, the complex dielectric constant The imaginary part becomes 1.0. In addition, when the barium titanate is 35 parts by volume relative to 100 parts by volume of urethane, that is, the barium titanate is 210 parts by mass relative to 100 parts by mass of urethane, the complex dielectric constant The imaginary part becomes 1.5. In addition, by increasing the content of the dielectric compound, the burning resistance can also be increased.
作為介電性化合物,可舉出:鈦酸鋇(BaTiO 3)、釹鈦酸鋇(Ba 3Nd 9.3Ti 18O 54)、氧化鈦(TiO 2)、氧化鋅(ZnO)、矽酸鎂石(Mg 2SiO 4)、氧化鋁(Al 2O 3)、鎂鈮酸鋇(Ba(Mg 1/3Nb 2/3)O 3)等的金屬化合物、碳。特別是鈦酸鋇和碳能夠使複介電常數的虛部大幅增加,因而是較佳的。此外,也可以混合金屬化合物和碳。藉由混合,除了增加複介電常數虛部外,還能夠使耐延燒性提高。 Examples of the dielectric compound include barium titanate (BaTiO 3 ), neodymium barium titanate (Ba 3 Nd 9.3 Ti 18 O 54 ), titanium oxide (TiO 2 ), zinc oxide (ZnO), and silicate Metal compounds such as (Mg 2 SiO 4 ), aluminum oxide (Al 2 O 3 ), magnesium barium niobate (Ba(Mg 1/3 Nb 2/3 )O 3 ), and carbon. In particular, barium titanate and carbon are preferable because they can significantly increase the imaginary part of the complex dielectric constant. In addition, a metal compound and carbon may be mixed. By mixing, in addition to increasing the imaginary part of the complex dielectric constant, the resistance to burnout can also be improved.
介電性化合物的態樣較佳為粉末(例如,奈米粒子)。若粒形為0.3~1μm,便可得到大的複介電常數的實部、虛部,即使使含量增加也能夠薄膜不破裂地維持形狀,能夠利用濕式塗布法或擠出成形來有效率地製造介電體層2。The dielectric compound is preferably in the form of powder (for example, nanoparticles). If the particle shape is 0.3 to 1 μm, large real and imaginary parts of the complex dielectric constant can be obtained, and the shape of the film can be maintained without cracking even if the content is increased. Wet coating methods or extrusion molding can be used efficiently. The dielectric layer 2 is produced.
作為樹脂成分,例如,可舉出:丙烯酸樹脂、胺基甲酸酯樹脂、甲基丙烯酸樹脂、聚矽氧樹脂、聚碳酸酯、環氧樹脂、甘油酞酸樹脂(glyptal resin)、聚氯乙烯、聚乙烯甲醛、酚樹脂、脲樹脂及聚氯丁二烯樹脂。樹脂成分的溶解度參數(SP值)越高,越能夠在混合介電性化合物時使複介電常數虛部變大。用於使介電性化合物的複介電常數虛部成為0.5以上的樹脂成分的SP值較佳為8以上,更佳為9以上,再更佳為10以上。樹脂成分的複介電常數實部較佳為2.5~9.5,更佳為3.5~9.5,再更佳為5.0~9.5。Examples of the resin component include acrylic resin, urethane resin, methacrylic resin, silicone resin, polycarbonate, epoxy resin, glycerin phthalate resin (glyptal resin), and polyvinyl chloride. , polyethylene formaldehyde, phenol resin, urea resin and polychloroprene resin. The higher the solubility parameter (SP value) of the resin component, the greater the imaginary part of the complex dielectric constant can be increased when the dielectric compound is mixed. The SP value of the resin component for making the imaginary part of the complex dielectric constant of the dielectric compound 0.5 or more is preferably 8 or more, more preferably 9 or more, and still more preferably 10 or more. The real part of the complex dielectric constant of the resin component is preferably 2.5 to 9.5, more preferably 3.5 to 9.5, still more preferably 5.0 to 9.5.
樹脂組成物較佳為具有黏著性。藉此,能夠對反射層3的表面有效率地貼附介電體層2。作為這樣的材料,例如,可舉出:聚矽氧黏著劑、丙烯酸黏著劑及胺基甲酸酯黏著劑。可以使用這些材料作為上述樹脂成分,也可以將以這些材料所構成的黏著層形成在介電體層2的至少一面上。樹脂組成物本身或黏著層對不銹鋼304鋼板的黏著力較佳為1.0N/25mm以上,也可以是3.0~10.0N/25mm或10.0~15.0N/25mm。The resin composition preferably has adhesive properties. Thereby, the dielectric layer 2 can be efficiently attached to the surface of the reflective layer 3 . Examples of such materials include silicone adhesives, acrylic adhesives, and urethane adhesives. These materials may be used as the resin component, and an adhesive layer composed of these materials may be formed on at least one side of the dielectric layer 2 . The adhesion force of the resin composition itself or the adhesive layer to the stainless steel 304 steel plate is preferably 1.0N/25mm or more, and can also be 3.0~10.0N/25mm or 10.0~15.0N/25mm.
(反射層) 反射層3係供使從介電體層2入射而來的電磁波反射,使其到達介電體層2用的層。反射層3的厚度,例如為0.1nm~1mm,可以是0.1nm~10μm的薄膜或0.01~0.2mm的箔、0.2mm~1mm的板。 (reflective layer) The reflective layer 3 is a layer for reflecting electromagnetic waves incident from the dielectric layer 2 so that the electromagnetic waves reach the dielectric layer 2 . The thickness of the reflective layer 3 is, for example, 0.1 nm to 1 mm, and may be a film of 0.1 nm to 10 μm, a foil of 0.01 to 0.2 mm, or a plate of 0.2 mm to 1 mm.
反射層3含有具有導電性的無機材料、有機材料。作為具有導電性的無機材料,例如,可舉出奈米粒子及奈米線。作為奈米粒子及奈米線的材料,例如,可舉出:氧化銦錫(ITO)、氧化銦鋅(IZO)、氧化鋅鋁(AZO)、奈米碳管、石墨烯、Ag、Al、Au、Pt、Pd、Cu、Co、Cr、In、Ag-Cu、Cu-Au及Ni。作為具有導電性的有機材料,可舉出:聚噻吩衍生物、聚乙炔衍生物、聚苯胺衍生物及聚吡咯衍生物。此外,可以將具有導電性的無機材料、有機材料製膜在基材上。特別是從柔軟性、成膜性、穩定性、片電阻、低成本的觀點來看,較佳為使用具備PET薄膜、和被蒸鍍在其表面的鋁層的積層薄膜(Al蒸鍍PET薄膜)作為反射層。反射層3的片電阻可以是100Ω/□以下。The reflective layer 3 contains conductive inorganic materials and organic materials. Examples of conductive inorganic materials include nanoparticles and nanowires. Examples of materials for nanoparticles and nanowires include indium tin oxide (ITO), indium zinc oxide (IZO), aluminum zinc oxide (AZO), carbon nanotubes, graphene, Ag, Al, Au, Pt, Pd, Cu, Co, Cr, In, Ag-Cu, Cu-Au and Ni. Examples of conductive organic materials include polythiophene derivatives, polyacetylene derivatives, polyaniline derivatives, and polypyrrole derivatives. In addition, a conductive inorganic material or organic material can be formed into a film on the base material. In particular, from the viewpoints of flexibility, film-forming properties, stability, sheet resistance, and low cost, it is preferable to use a laminated film including a PET film and an aluminum layer vapor-deposited on the surface (Al vapor-deposited PET film ) as a reflective layer. The sheet resistance of the reflective layer 3 may be 100Ω/□ or less.
電磁波吸收體10的最大回波損耗量可以是10dB以上、20bB以上、或30dB以上。The maximum return loss of the electromagnetic wave absorber 10 may be 10 dB or more, 20 bB or more, or 30 dB or more.
[第一實施形態B] 以下,針對第一實施形態B的電磁波吸收體進行說明。關於以下沒有說明的事項,只要沒有造成不一致,係與第一實施形態A的電磁波吸收體同樣的。在本實施形態中,以電磁波吸收體中的從電磁波入射之側的表面朝向空氣(外側)的法線方向為基準線,將入射波的入射方向所成的角度稱為入射角度(°),將反射波的反射方向所成的角度稱為反射角度(°)。只要沒有特別說明,從前述基準線起以順時鐘旋轉為正方向,以逆時鐘旋轉為負方向。關於既定的電磁波的入射角和反射角是相等的。 [First Embodiment B] Hereinafter, the electromagnetic wave absorber according to the first embodiment B will be described. Matters not described below are the same as those of the electromagnetic wave absorber of the first embodiment A as long as there is no inconsistency. In this embodiment, the normal direction from the surface of the electromagnetic wave incident side toward the air (outside) in the electromagnetic wave absorber is used as the reference line, and the angle formed by the incident direction of the incident wave is called the incident angle (°). The angle formed by the reflection direction of the reflected wave is called the reflection angle (°). Unless otherwise specified, clockwise rotation from the aforementioned reference line is the positive direction, and counterclockwise rotation is the negative direction. For a given electromagnetic wave, the angle of incidence and angle of reflection are equal.
在電磁波吸收體係在空氣(阻抗:377Ω/□)中使用,在如複介電常數的虛部為0.1以下的介電體層的情況下,電阻層1的片電阻係例如為了得到10dB以上的回波損耗量而設定在200Ω/□以上800Ω/□以下的範圍內。相對於此,若根據本實施形態的話,則藉由將介電體層的複介電常數的實部設為10以上15以下,將虛部設為1.0以上1.5以下,來得到如下的電磁波吸收體:即使對於600Ω/□以上2500Ω/□以下的範圍,也能夠對30°~70°的入射角/反射角得到高的回波損耗,因而可以實現穩定的製造,且即使在進行可靠性試驗之際電阻層的片電阻增加,回波損耗量也比以前高。此處,可靠性試驗可舉出:在JIS規格、ISO規格、ASTM規格中有記載的高溫試驗、低溫試驗、高溫高濕試驗、熱循環試驗、光照射試驗、彎曲試驗、衝擊試驗等。特別是在85℃85%RH下所進行的高溫高濕試驗,與其他試驗相比,片電阻大幅增加。When the electromagnetic wave absorbing system is used in air (impedance: 377Ω/□) and the imaginary part of the complex dielectric constant is a dielectric layer of 0.1 or less, the sheet resistance of the resistive layer 1 is, for example, in order to obtain a response of 10dB or more. The wave loss amount is set within the range of 200Ω/□ or more and 800Ω/□ or less. On the other hand, according to this embodiment, the following electromagnetic wave absorber is obtained by setting the real part of the complex dielectric constant of the dielectric layer to 10 or more and 15 or less and setting the imaginary part to 1.0 or more and 1.5 or less. : Even in the range of 600Ω/□ or more and 2500Ω/□ or less, high return loss can be obtained for the incident angle/reflection angle of 30° to 70°, so stable manufacturing can be achieved, and even after reliability testing The sheet resistance of the international resistive layer increases, and the return loss is also higher than before. Examples of reliability tests here include high-temperature tests, low-temperature tests, high-temperature and high-humidity tests, thermal cycle tests, light irradiation tests, bending tests, and impact tests described in JIS standards, ISO standards, and ASTM standards. Especially in the high-temperature and high-humidity test conducted at 85°C and 85%RH, the sheet resistance increased significantly compared with other tests.
發明人使用由後述的模擬所得到的具體數值,歸納發現:若電阻層1的片電阻R滿足式2,便可得到回波損耗量25dB以上的電磁波吸收體。 此處,ε’為介電體層2中的複介電常數的虛部,θ(°)為入射角度/反射角度。 The inventor used specific numerical values obtained from the simulation described below and found that if the sheet resistance R of the resistive layer 1 satisfies Equation 2, an electromagnetic wave absorber with a return loss of 25 dB or more can be obtained. Here, ε' is the imaginary part of the complex dielectric constant in the dielectric layer 2, and θ (°) is the incident angle/reflection angle.
發明人發現如下的傾向:如後所述,若使電阻層的片電阻和介電體層的複介電常數的實部成為一定,使虛部增加,則在既定的入射角度/反射角度下的回波損耗量大致增大。這個發現可以實現如下的設計:即使在片電阻改變的情況下,也能藉由著眼於虛部來維持在斜向入射的情況下的良好的回波損耗特性。The inventor found the following tendency: as will be described later, if the real part of the sheet resistance of the resistive layer and the complex dielectric constant of the dielectric layer is made constant and the imaginary part is increased, then at a given incident angle/reflection angle The amount of return loss increases roughly. This discovery enables designs that maintain good return loss characteristics under oblique incidence by focusing on the imaginary part even when the sheet resistance changes.
在本實施形態中,構成介電體層2的樹脂成分的複介電常數實部係10~15,較佳為10~12,更佳為12~13,再更佳為13~15。In this embodiment, the real part of the complex dielectric constant of the resin component constituting the dielectric layer 2 is 10 to 15, preferably 10 to 12, more preferably 12 to 13, still more preferably 13 to 15.
[第二實施形態] 以下,針對第二實施形態的電磁波吸收體進行說明。關於以下沒有說明的事項,只要沒有造成不一致,係與第一實施形態的電磁波吸收體同樣的。圖2係示意地顯示第二實施形態的反射型的電磁波吸收體的剖面圖。此圖所示的電磁波吸收體20係依序具備保護層4、電阻層1、介電體層2、和反射層3的積層體。 [Second Embodiment] Hereinafter, the electromagnetic wave absorber according to the second embodiment will be described. Matters not described below are the same as those of the electromagnetic wave absorber of the first embodiment as long as there is no inconsistency. FIG. 2 is a cross-sectional view schematically showing a reflective electromagnetic wave absorber according to the second embodiment. The electromagnetic wave absorber 20 shown in this figure is a laminated body including a protective layer 4, a resistive layer 1, a dielectric layer 2, and a reflective layer 3 in this order.
(保護層4) 保護層4係例如可舉出:聚對苯二甲酸乙二酯、聚對苯二甲酸丁二酯及聚萘二甲酸乙二酯等的聚酯;尼龍等的聚醯胺;聚丙烯及環烯烴等的聚烯烴;聚碳酸酯;以及三乙酸纖維素、乙烯四氟乙烯;聚氯四氟乙烯、聚四氟乙烯等的氟樹脂等,但不限於此。保護層4較佳為聚酯薄膜、聚醯胺薄膜或聚烯烴薄膜,更佳為聚酯薄膜或聚醯胺薄膜,再更佳為聚對苯二甲酸乙二酯(PET薄膜)。PET薄膜,從適合加工性及密接性的觀點來看,是理想的。此外,PET薄膜,從阻氣性的觀點來看,較佳為雙軸拉伸PET薄膜。也可以是進一步在前述的PET薄膜形成塗布膜、蒸鍍膜的阻隔薄膜。 (Protective layer 4) Examples of the protective layer 4 include polyesters such as polyethylene terephthalate, polybutylene terephthalate, and polyethylene naphthalate; polyamides such as nylon; polypropylene and cyclic Polyolefins such as olefins; polycarbonate; and cellulose triacetate, ethylene tetrafluoroethylene; fluororesins such as polychlorotetrafluoroethylene, polytetrafluoroethylene, etc., but are not limited thereto. The protective layer 4 is preferably a polyester film, a polyamide film or a polyolefin film, more preferably a polyester film or a polyamide film, and still more preferably a polyethylene terephthalate (PET film). PET film is ideal from the viewpoint of processability and adhesion. In addition, the PET film is preferably a biaxially stretched PET film from the viewpoint of gas barrier properties. A barrier film in which a coating film or a vapor-deposited film is further formed on the PET film may be used.
保護層4的厚度可以是例如11~13μm、49~51μm、74~76μm、或95~110μm。The thickness of the protective layer 4 may be, for example, 11 to 13 μm, 49 to 51 μm, 74 to 76 μm, or 95 to 110 μm.
電阻層1可以形成在保護層4上,可以是保護層4位於最外表面,也可以是電阻層1位於最外表面。若保護層4位於最外表面,便能夠抑制因水蒸氣、氧等外部環境所造成的電阻層1的片電阻增加。The resistive layer 1 may be formed on the protective layer 4, the protective layer 4 may be located on the outermost surface, or the resistive layer 1 may be located on the outermost surface. If the protective layer 4 is located on the outermost surface, the increase in the sheet resistance of the resistive layer 1 caused by external environments such as water vapor and oxygen can be suppressed.
在保護層4的表面,可以形成有具有木紋、磁磚(tile)等設計性的設計(design)。On the surface of the protective layer 4, a design having wood grain, tiles, etc. may be formed.
以上,針對第一實施形態及第二實施形態的電磁波吸收體詳細地進行了說明,但本發明不限於上述實施形態。例如,在電磁波吸收體20中,可以在保護層4與電阻層1之間設置基底層。藉此,電磁波吸收體有保護層及電阻層的密接性提高,此外,保護層的塗敷性提高的傾向。此外,在電磁波吸收體20中,也可以在保護層4的與和電阻層1相接的表面為相反側的表面設置頂塗層。藉此,有遷移(migration)受到抑制的傾向,此外,能夠保護保護層4。The electromagnetic wave absorbers of the first and second embodiments have been described in detail above. However, the present invention is not limited to the above embodiments. For example, in the electromagnetic wave absorber 20 , a base layer may be provided between the protective layer 4 and the resistive layer 1 . Thereby, in the electromagnetic wave absorber, the adhesion between the protective layer and the resistive layer is improved, and the coating properties of the protective layer tend to be improved. Furthermore, in the electromagnetic wave absorber 20 , a topcoat layer may be provided on the surface of the protective layer 4 opposite to the surface in contact with the resistive layer 1 . Thereby, migration tends to be suppressed, and the protective layer 4 can be protected.
[第三實施形態] 以下,針對第三實施形態的電磁波吸收體進行說明。關於以下沒有說明的事項,只要沒有造成不一致,係與第一、第二實施形態的電磁波吸收體同樣的。圖3係示意地顯示第三實施形態的反射型的電磁波吸收體的剖面圖。此圖所示的電磁波吸收體30係依序具備保護層4、電阻層1、阻隔接著層5、阻隔層6、介電體層2、和反射層3的積層體。藉由具備阻隔接著層5和阻隔層6,來抑制因介電體層2所造成的電阻層1的電阻增加,而得到回波損耗量大且波段寬度寬的電磁波吸收體。 [Third Embodiment] Hereinafter, the electromagnetic wave absorber according to the third embodiment will be described. Matters not described below are the same as those of the electromagnetic wave absorbers of the first and second embodiments as long as there is no inconsistency. FIG. 3 is a cross-sectional view schematically showing a reflective electromagnetic wave absorber according to the third embodiment. The electromagnetic wave absorber 30 shown in this figure is a laminated body including a protective layer 4, a resistive layer 1, a barrier bonding layer 5, a barrier layer 6, a dielectric layer 2, and a reflective layer 3 in this order. By providing the barrier adhesive layer 5 and the barrier layer 6, the increase in resistance of the resistive layer 1 caused by the dielectric layer 2 is suppressed, and an electromagnetic wave absorber with a large return loss and a wide band width is obtained.
(阻隔接著層) 阻隔接著層5係供不會使電阻層1的電阻上升地、使其和阻隔層6密接用的層。 (barrier bonding layer) The barrier adhesion layer 5 is a layer for tightly contacting the resistive layer 1 with the barrier layer 6 without increasing the resistance of the resistive layer 1 .
阻隔接著層5的厚度較佳為根據吸收頻率和密接力而適宜設定。即,較佳為0.5μm以上100μm以下,更佳為3μm以上25μm以下。若此厚度為0.5μm以上便可得到充分的密接力,若為100μm以下便能夠使電磁波吸收體的總厚度變薄。The thickness of the barrier adhesive layer 5 is preferably set appropriately based on the absorption frequency and adhesion force. That is, it is preferably 0.5 μm or more and 100 μm or less, and more preferably 3 μm or more and 25 μm or less. If the thickness is 0.5 μm or more, sufficient adhesion can be obtained, and if the thickness is 100 μm or less, the total thickness of the electromagnetic wave absorber can be reduced.
阻隔接著層5係例如可舉出:丙烯酸系接著劑或黏著劑、聚矽氧系接著劑或黏著劑、聚烯烴系接著劑或黏著劑、胺基甲酸酯系接著劑或黏著劑、或聚乙烯醚系接著劑或黏著劑等。其中,聚矽氧系黏著劑係透明性、耐濕熱性高,即使在可靠性試驗下也不會使密接力降低,且電阻層1的電阻上升小,因而是較佳的。阻隔接著層5的片電阻值較佳為夠高的,例如,較佳為1.0×10 6Ω/□以上。藉由阻隔接著層5的片電阻值為1.0×10 6Ω/□以上,能夠抑制從電阻層1入射而來的電磁波在阻隔接著層5的表面反射。 Examples of the barrier adhesive layer 5 include: acrylic adhesives or adhesives, polysiloxane adhesives or adhesives, polyolefin adhesives or adhesives, urethane adhesives or adhesives, or Polyvinyl ether adhesive or adhesive, etc. Among them, the polysiloxane-based adhesive is preferred because it has high transparency and resistance to moisture and heat, does not reduce the adhesion force even under reliability tests, and has a small increase in resistance of the resistive layer 1 . The sheet resistance value of the barrier adhesive layer 5 is preferably sufficiently high, for example, 1.0×10 6 Ω/□ or more. When the sheet resistance value of the barrier adhesive layer 5 is 1.0×10 6 Ω/□ or more, the electromagnetic waves incident from the resistive layer 1 can be suppressed from being reflected on the surface of the barrier adhesive layer 5 .
(阻隔層) 阻隔層6係供抑制因介電體層2所造成的電阻層1的電阻增加用的層。阻隔層6的片電阻值較佳為夠高的,例如,較佳為1.0×10 6Ω/□以上。藉由阻隔層6的片電阻值為1.0×10 6Ω/□以上,能夠抑制從電阻層1入射而來的電磁波在阻隔層6的表面反射。 (Barrier layer) The barrier layer 6 is a layer for suppressing an increase in the resistance of the resistive layer 1 caused by the dielectric layer 2 . The sheet resistance value of the barrier layer 6 is preferably high enough, for example, 1.0×10 6 Ω/□ or more. When the sheet resistance value of the barrier layer 6 is 1.0×10 6 Ω/□ or more, the electromagnetic waves incident from the resistive layer 1 can be suppressed from being reflected on the surface of the barrier layer 6 .
阻隔層6的透氧度較佳為4.0×10 2cc/m 2.day.atm以下,更佳為1.0×10 1cc/m 2.day.atm以下,再更佳為1.0×10 -1cc/m 2.day.atm以下。透氧度意指根據JIS K7126-2記載的方法,在溫度30℃、相對濕度70%的條件下所測定的值。 The oxygen permeability of the barrier layer 6 is preferably 4.0×10 2 cc/m 2 . day. atm or less, preferably 1.0×10 1 cc/m 2 . day. atm or less, preferably 1.0×10 -1 cc/m 2 . day. below atm. The oxygen permeability means a value measured under the conditions of a temperature of 30° C. and a relative humidity of 70% according to the method described in JIS K7126-2.
阻隔層6的水蒸氣透過度較佳為1.0×10 2g/m 2.day以下,更佳為1.0×10 1g/m 2.day以下,再更佳為2.0×10 -1g/m 2.day以下。水蒸氣透過度意指根據JIS K7129B記載的方法,在溫度40℃、相對濕度90%的條件下所測定的值。 The water vapor permeability of the barrier layer 6 is preferably 1.0×10 2 g/m 2 . day or less, preferably 1.0×10 1 g/m 2 . day or less, preferably 2.0×10 -1 g/m 2 . day or less. The water vapor permeability means a value measured under the conditions of a temperature of 40° C. and a relative humidity of 90% according to the method described in JIS K7129B.
阻隔層6的厚度較佳為根據吸收頻率和透氧度、水蒸氣透過度而予以適宜設定,較佳為3μm以上100μm以下,更佳為5μm以上25μm以下。若此厚度為3μm以上,則加工容易,若為100μm以下,則能夠使電磁波抑制體的總厚度變薄。又,阻隔層6,可以根據需要而包含抗靜電劑、紫外線吸收劑、塑化劑及潤滑劑等的添加劑。阻隔層的表面可以施加電暈處理、火燄處理及電漿處理等的表面處理。The thickness of the barrier layer 6 is preferably set appropriately based on the absorption frequency, oxygen permeability, and water vapor permeability, and is preferably 3 μm or more and 100 μm or less, more preferably 5 μm or more and 25 μm or less. If the thickness is 3 μm or more, processing is easy, and if the thickness is 100 μm or less, the total thickness of the electromagnetic wave suppressor can be reduced. In addition, the barrier layer 6 may contain additives such as antistatic agents, ultraviolet absorbers, plasticizers, and lubricants as necessary. The surface of the barrier layer can be subjected to surface treatment such as corona treatment, flame treatment, and plasma treatment.
阻隔層6可舉出:聚對苯二甲酸乙二酯、聚對苯二甲酸丁二酯及聚萘二甲酸乙二酯等的聚酯;尼龍等的聚醯胺;聚丙烯及環烯烴等的聚烯烴;聚碳酸酯;以及三乙酸纖維素等,但不限於此。阻隔層6較佳為聚酯薄膜、聚醯胺薄膜或聚烯烴薄膜,更佳為聚酯薄膜或聚醯胺薄膜,再更佳為聚對苯二甲酸乙二酯(PET薄膜)。PET薄膜,從適合加工性及密接性的觀點來看,是理想的。此外,PET薄膜,從阻氣性的觀點來看,較佳為雙軸拉伸PET薄膜。Examples of the barrier layer 6 include polyesters such as polyethylene terephthalate, polybutylene terephthalate, and polyethylene naphthalate; polyamides such as nylon; polypropylene and cyclic olefins; and the like. Polyolefin; polycarbonate; and cellulose triacetate, etc., but are not limited to these. The barrier layer 6 is preferably a polyester film, a polyamide film or a polyolefin film, more preferably a polyester film or a polyamide film, and still more preferably a polyethylene terephthalate (PET film). PET film is ideal from the viewpoint of processability and adhesion. In addition, the PET film is preferably a biaxially stretched PET film from the viewpoint of gas barrier properties.
阻隔層6可以是在基材薄膜上依序包含蒸鍍層及阻隔性被覆層的積層構造,該基材薄膜係聚對苯二甲酸乙二酯、聚對苯二甲酸丁二酯及聚萘二甲酸乙二酯等的聚酯;尼龍等的聚醯胺;聚丙烯及環烯烴等的聚烯烴;聚碳酸酯;以及三乙酸纖維素等。阻隔性被覆層係以覆蓋蒸鍍層的方式設置。阻隔性被覆層係為了防止在後續步驟的各種二次性損傷,同時賦予高阻隔性而設置者。阻隔性被覆層的厚度較佳為50~2000nm,更佳為100~1000nm。若阻隔性被覆層的厚度為50nm以上,便有變得容易進行膜形成的傾向,另一方面,若為2000nm以下,便有能夠抑制裂開或捲曲的傾向。The barrier layer 6 may be a laminated structure including a vapor deposition layer and a barrier coating layer on a base film, and the base film is made of polyethylene terephthalate, polybutylene terephthalate, and polynaphthalene. Polyesters such as ethylene formate; polyamides such as nylon; polyolefins such as polypropylene and cyclic olefins; polycarbonate; and cellulose triacetate, etc. The barrier coating layer is provided to cover the vapor deposition layer. The barrier coating layer is provided to prevent various secondary damages in subsequent steps and to provide high barrier properties. The thickness of the barrier coating layer is preferably 50 to 2000 nm, more preferably 100 to 1000 nm. If the thickness of the barrier coating layer is 50 nm or more, film formation tends to be easier, while on the other hand, if the thickness is 2000 nm or less, cracking or curling tends to be suppressed.
阻隔性被覆層可以包含矽氧烷鍵。包含矽氧烷鍵的化合物,例如,較佳為使用矽烷化合物,使矽醇基進行反應而形成。作為這樣的矽烷化合物,可舉出以下述式3所表示的化合物。 R1 n(OR2) 4-nSi…(式3) [式中,n表示0~3的整數,R1及R2各自獨立地表示烴基,較佳為表示碳數1~4的烷基。] 作為以上述式3所表示的化合物,例如,可舉出:四甲氧基矽烷、四乙氧基矽烷、四丙氧基矽烷、四丁氧基矽烷、甲基三甲氧基矽烷、甲基三乙氧基矽烷、二甲基二甲氧基矽烷、及二甲基二乙氧基矽烷等。也可以使用包含氮的聚矽氮烷。 The barrier coating may contain siloxane linkages. The compound containing a siloxane bond is preferably formed by reacting a silanol group using a silane compound, for example. Examples of such silane compounds include compounds represented by the following formula 3. R1 n (OR2) 4-n Si...(Formula 3) [In the formula, n represents an integer of 0 to 3, and R1 and R2 each independently represent a hydrocarbon group, preferably an alkyl group having 1 to 4 carbon atoms. ] Examples of the compound represented by the above formula 3 include: tetramethoxysilane, tetraethoxysilane, tetrapropoxysilane, tetrabutoxysilane, methyltrimethoxysilane, methyl Triethoxysilane, dimethyldimethoxysilane, and dimethyldiethoxysilane, etc. Nitrogen-containing polysilazanes may also be used.
就阻隔性被覆層而言,可以使用由包含其他金屬原子的前驅物所作出的材料。作為包含Ti原子的化合物,例如,可舉出以下述式4所表示的化合物。 R1 n(OR2) 4-nTi…(式4) [式中,n表示0~3的整數,R1及R2各自獨立地表示烴基,較佳為表示碳數1~4的烷基。] 作為以上述式4所表示的化合物,例如,可舉出:四甲氧基鈦、四乙氧基鈦、四異丙氧基鈦、及四丁氧基鈦等。 For the barrier coating layer, materials made from precursors containing other metal atoms can be used. Examples of compounds containing Ti atoms include compounds represented by the following formula 4. R1 n (OR2) 4-n Ti...(Formula 4) [In the formula, n represents an integer of 0 to 3, and R1 and R2 each independently represent a hydrocarbon group, preferably an alkyl group having 1 to 4 carbon atoms. ] Examples of the compound represented by the above formula 4 include titanium tetramethoxide, titanium tetraethoxide, titanium tetraisopropoxide, and titanium tetrabutoxide.
作為包含Al原子的化合物,例如,可舉出以下述式5所表示的化合物。 R1 m(OR2) 3-mAl…(式5) [式中,m表示0~2的整數,R1及R2各自獨立地表示烴基,較佳為表示碳數1~4的烷基。] 作為以上述式5所表示的化合物,例如,可舉出:三甲氧基鋁、三乙氧基鋁、三異丙氧基鋁、及三丁氧基鋁等。 Examples of compounds containing Al atoms include compounds represented by the following formula 5. R1 m (OR2) 3-m Al...(Formula 5) [In the formula, m represents an integer of 0 to 2, and R1 and R2 each independently represent a hydrocarbon group, preferably an alkyl group having 1 to 4 carbon atoms. ] Examples of the compound represented by the above formula 5 include aluminum trimethoxide, aluminum triethoxide, aluminum triisopropoxide, aluminum tributoxide, and the like.
作為包含Zr原子的化合物,例如,可舉出以下述式6所表示的化合物。 R1 n(OR2) 4-nZr…(式6) [式中,n表示0~3的整數,R1及R2各自獨立地表示烴基,較佳為表示碳數1~4的烷基。] 作為以上述式6所表示的化合物,例如,可舉出:四甲氧基鋯、四乙氧基鋯、四異丙氧基鋯、及四丁氧基鋯等。 Examples of compounds containing Zr atoms include compounds represented by the following formula 6. R1 n (OR2) 4-n Zr...(Formula 6) [In the formula, n represents an integer of 0 to 3, and R1 and R2 each independently represent a hydrocarbon group, preferably an alkyl group having 1 to 4 carbon atoms. ] Examples of the compound represented by the above formula 6 include zirconium tetramethoxide, zirconium tetraethoxide, zirconium tetraisopropoxide, and zirconium tetrabutoxide.
阻隔性被覆層也能夠在大氣中形成。在大氣中形成阻隔性被覆層的情況下,例如,能夠藉由將含有如聚乙烯醇、聚乙烯吡咯啶酮、乙烯乙烯醇的具有極性的化合物、聚偏二氯乙烯等的包含氯的化合物、及包含Si原子的化合物、包含Ti原子的化合物、包含Al原子的化合物、包含Zr原子的化合物等的塗布液塗布在蒸鍍層上,使其乾燥硬化來形成。作為在大氣中形成阻隔性被覆層之際的塗布液的塗布方法,具體而言,可舉出利用凹版塗布機、浸漬塗布機、反向輥塗布機、線棒塗布機、及模塗機等的塗布方法。上述塗布液係在塗布後予以硬化。作為硬化方法,沒有特別的限定,可舉出:紫外線硬化及熱硬化等。在為紫外線硬化的情況下,塗布液可以包含聚合起始劑及具有雙鍵的化合物。此外,可以根據需要而予以加熱老化。Barrier coatings can also form in the atmosphere. When forming a barrier coating layer in the atmosphere, for example, a compound containing chlorine such as a polar compound such as polyvinyl alcohol, polyvinylpyrrolidone, ethylene vinyl alcohol, or polyvinylidene chloride can be used. , and a coating liquid containing a compound containing Si atoms, a compound containing Ti atoms, a compound containing Al atoms, a compound containing Zr atoms, etc., is applied on the vapor deposition layer, and dried and hardened to form. Specific examples of the application method of the coating liquid when forming the barrier coating layer in the atmosphere include gravure coaters, dip coaters, reverse roll coaters, wire bar coaters, die coaters, and the like. coating method. The above-mentioned coating liquid is hardened after application. The curing method is not particularly limited, and examples thereof include ultraviolet curing and thermal curing. In the case of ultraviolet curing, the coating liquid may contain a polymerization initiator and a compound having a double bond. In addition, it can be heated and aged as needed.
作為在大氣中形成阻隔性被覆層的其他方法,也能夠使用如下的方法:將藉由鎂、鈣、鋅、鋁、矽、鈦、鋯等的無機氧化物的粒子,彼此之間透過源自磷化合物的磷原子進行脫水縮合所得到的反應產物作為阻隔性被覆層。具體而言,存在於無機氧化物的表面的官能基(例如,羥基)、和可以與無機氧化物進行反應的磷化合物的部位(例如,與磷原子直接鍵結的鹵素原子、與磷原子直接鍵結的氧原子)產生縮合反應,進行鍵結。反應產物例如可藉由使如下的反應進行來得到:將包含無機氧化物和磷化合物的塗布液塗布於蒸鍍層的表面,將形成的塗膜進行熱處理,從而無機氧化物的粒子彼此之間透過源自磷化合物的磷原子鍵結。熱處理的溫度的下限為110℃以上,較佳為120℃以上,更佳為140℃以上,再更佳為170℃以上。若熱處理溫度低,則變得很難得到充分的反應速度,成為生產性降低的原因。熱處理的溫度的較佳上限係依基材的種類等而異,為220℃以下,較佳為190℃以下。熱處理能夠在空氣中、氮氣環境下、或氬氣環境下等實施。As another method of forming a barrier coating layer in the atmosphere, the following method can also be used: particles of inorganic oxides such as magnesium, calcium, zinc, aluminum, silicon, titanium, zirconium, etc. are allowed to pass through each other. The reaction product obtained by dehydration and condensation of phosphorus atoms of the phosphorus compound serves as a barrier coating layer. Specifically, functional groups (for example, hydroxyl groups) present on the surface of the inorganic oxide, and sites of the phosphorus compound that can react with the inorganic oxide (for example, halogen atoms directly bonded to phosphorus atoms, halogen atoms directly bonded to phosphorus atoms, The bonded oxygen atoms) produce a condensation reaction and bond. The reaction product can be obtained, for example, by applying a coating liquid containing an inorganic oxide and a phosphorus compound to the surface of the vapor deposition layer, and subjecting the formed coating film to heat treatment so that particles of the inorganic oxide can penetrate each other. Derived from phosphorus atom bonding in phosphorus compounds. The lower limit of the heat treatment temperature is 110°C or higher, preferably 120°C or higher, more preferably 140°C or higher, still more preferably 170°C or higher. If the heat treatment temperature is low, it becomes difficult to obtain a sufficient reaction rate, which causes a decrease in productivity. The preferable upper limit of the heat treatment temperature varies depending on the type of base material, etc., but is 220°C or lower, preferably 190°C or lower. The heat treatment can be performed in the air, in a nitrogen atmosphere, or in an argon atmosphere, or the like.
在大氣中形成阻隔性被覆層的情況下,只要不會發生凝集等,上述塗布液也可以進一步包含樹脂。作為上述樹脂,具體而言,可舉出:丙烯酸樹脂、聚酯樹脂等。上述塗布液較佳為包含這些樹脂當中的與塗布液中的其他材料的相容性高的樹脂。上述塗布液,可以根據需要而進一步包含填料、流平劑(leveling agent)、消泡劑、紫外線吸收劑、抗氧化劑、以及矽烷偶合劑及鈦螯合劑等。When the barrier coating layer is formed in the atmosphere, the coating liquid may further contain a resin as long as aggregation or the like does not occur. Specific examples of the resin include acrylic resin, polyester resin, and the like. The coating liquid preferably contains a resin that has high compatibility with other materials in the coating liquid among these resins. The above-mentioned coating liquid may further contain fillers, leveling agents, defoaming agents, ultraviolet absorbers, antioxidants, silane coupling agents, titanium chelating agents, etc. as needed.
[第四實施形態] 以下,針對第四實施形態的電磁波吸收體進行說明。關於以下沒有說明的事項,只要沒有造成不一致,係與第一~第三實施形態的電磁波吸收體同樣的。圖4係示意地顯示第四實施形態的反射型的電磁波吸收體的剖面圖。此圖所示的電磁波吸收體40係依序具備保護層4、電阻層1、阻隔接著層5、阻隔層6、接著層7、介電體層2、接著層7、和反射層3的積層體。 [Fourth Embodiment] Hereinafter, the electromagnetic wave absorber according to the fourth embodiment will be described. Matters not described below are the same as those of the electromagnetic wave absorbers of the first to third embodiments as long as there is no inconsistency. FIG. 4 is a cross-sectional view schematically showing a reflective electromagnetic wave absorber according to the fourth embodiment. The electromagnetic wave absorber 40 shown in this figure is a laminated body including a protective layer 4, a resistive layer 1, a barrier adhesive layer 5, a barrier layer 6, an adhesive layer 7, a dielectric layer 2, an adhesive layer 7, and a reflective layer 3 in this order. .
(接著層) 接著層7係在對介電體層2沒有接著性、黏著性的情況下,供使阻隔層6和反射層3密接用的層。 (adhering layer) The subsequent layer 7 is a layer used to closely connect the barrier layer 6 and the reflective layer 3 when it has no adhesiveness or adhesion to the dielectric layer 2 .
接著層7的厚度可以根據吸收頻率和密接力而予以適宜設定。即,較佳為0.5μm以上100μm以下,更佳為3μm以上25μm以下。若此厚度為0.5μm以上,便可得到充分的密接力,若為100μm以下,則能夠使電磁波抑制體的總厚度變薄。The thickness of the subsequent layer 7 can be appropriately set based on the absorption frequency and adhesion force. That is, it is preferably 0.5 μm or more and 100 μm or less, and more preferably 3 μm or more and 25 μm or less. If the thickness is 0.5 μm or more, sufficient adhesion can be obtained, and if the thickness is 100 μm or less, the total thickness of the electromagnetic wave suppressor can be reduced.
接著層7例如可舉出:丙烯酸系接著劑或黏著劑、環氧系接著劑或黏著劑、聚矽氧系接著劑或黏著劑、聚烯烴系接著劑或黏著劑、胺基甲酸酯系接著劑或黏著劑、或聚乙烯醚系接著劑或黏著劑等。Examples of the adhesive layer 7 include: acrylic adhesives or adhesives, epoxy adhesives or adhesives, polysiloxane adhesives or adhesives, polyolefin adhesives or adhesives, urethane adhesives, etc. Adhesives or adhesives, or polyvinyl ether adhesives or adhesives, etc.
<電磁波吸收體的製造方法> [第一實施形態] 以下,針對第一實施形態的電磁波吸收體10的製造方法進行說明。本實施形態的製造方法具備藉由將熔融狀態的包含熱塑性樹脂的組成物擠出來形成介電體層2的步驟。 <Manufacturing method of electromagnetic wave absorber> [First Embodiment] Hereinafter, a method of manufacturing the electromagnetic wave absorber 10 according to the first embodiment will be described. The manufacturing method of this embodiment includes the step of forming the dielectric layer 2 by extruding a composition containing a thermoplastic resin in a molten state.
電阻層1的製膜方法較佳為依構成電阻層1的材質而適宜選擇。例如,若材質為有機材料的話,則較佳為濕式塗布法,若材質為無機材料的話,則較佳為乾式塗布法。作為濕式塗布法,例如,可舉出:模塗機、微凹版塗布機、接觸式反向輥塗布機及唇模塗布機。作為乾式塗布法,例如,可舉出:電阻加熱蒸鍍、離子束(EB)法及濺鍍法。電阻層1可以直接形成在介電體層2的表面上。The method of forming the resistive layer 1 is preferably appropriately selected according to the material constituting the resistive layer 1 . For example, if the material is an organic material, a wet coating method is preferred, and if the material is an inorganic material, a dry coating method is preferred. Examples of the wet coating method include a die coater, a microgravure coater, a contact reverse roll coater, and a lip die coater. Examples of the dry coating method include resistance heating evaporation, ion beam (EB) method, and sputtering method. The resistance layer 1 may be directly formed on the surface of the dielectric layer 2 .
作為熱塑性樹脂,可以使用作為構成介電體層2的有機材料所例示的樹脂當中屬於熱塑性樹脂者。As the thermoplastic resin, a thermoplastic resin may be used among the resins exemplified as the organic materials constituting the dielectric layer 2 .
電磁波吸收體10可以藉由利用介電體層2將電阻層1、和反射層3貼合來製造,也可以藉由將具備電阻層1及介電體層2的積層體、和反射層3,以積層體的介電體層2及反射層3呈相向的方式貼合來製造。The electromagnetic wave absorber 10 can be manufactured by laminating the resistive layer 1 and the reflective layer 3 using the dielectric layer 2, or by laminating a laminate including the resistive layer 1 and the dielectric layer 2, and the reflective layer 3. The dielectric layer 2 and the reflective layer 3 of the laminated body are bonded so as to face each other and are manufactured.
[第二實施形態] 以下,針對第二實施形態的電磁波吸收體20的製造方法進行說明。關於以下沒有說明的事項,只要沒有造成不一致,係與第一實施形態的電磁波吸收體10的製造方法同樣的。 [Second Embodiment] Hereinafter, a method for manufacturing the electromagnetic wave absorber 20 according to the second embodiment will be described. Matters not described below are the same as the manufacturing method of the electromagnetic wave absorber 10 of the first embodiment as long as there is no inconsistency.
電阻層1的製膜方法較佳為依構成電阻層1的材質而適宜選擇。例如,若材質為有機材料的話,則較佳為濕式塗布法,若材質為無機材料的話,則較佳為乾式塗布法。作為濕式塗布法,例如,可舉出:模塗機、微凹版塗布機、接觸式反向輥塗布機及唇模塗布機。作為乾式塗布法,例如,可舉出:電阻加熱蒸鍍、離子束(EB)法及濺鍍法。電阻層1可以直接形成在保護層4的表面上。The method of forming the resistive layer 1 is preferably appropriately selected according to the material constituting the resistive layer 1 . For example, if the material is an organic material, a wet coating method is preferred, and if the material is an inorganic material, a dry coating method is preferred. Examples of the wet coating method include a die coater, a microgravure coater, a contact reverse roll coater, and a lip die coater. Examples of the dry coating method include resistance heating evaporation, ion beam (EB) method, and sputtering method. The resistance layer 1 may be directly formed on the surface of the protective layer 4 .
介電體層2係藉由濕式塗布來形成。濕式塗布可以藉由將分散有構成介電體層2的材料的分散液塗敷在基材上以形成塗膜,使塗膜乾燥來進行。作為濕式塗布的方法,可舉出:凹版塗布、輥塗、模塗、缺角輪塗布(comma coat)及刮刀塗布等,從有分散液的塗敷及塗膜的乾燥這樣的操作係即使是一次也能夠形成足夠厚度的介電體層的傾向來看,較佳為缺角輪塗布、刮刀塗布及輥塗。介電體層2可以直接形成在電阻層1的表面上,也可以直接形成在反射層3的表面上,也可以暫時形成在對介電體層2所使用的材料具有離形性的材料被形成在表面的離形薄膜上後,以層壓法將介電體層2和反射層3貼合,將離形薄膜剝離,與被形成在保護層4的表面上的電阻層1貼合。The dielectric layer 2 is formed by wet coating. Wet coating can be performed by applying a dispersion liquid in which the material constituting the dielectric layer 2 is dispersed onto a base material to form a coating film, and drying the coating film. Examples of wet coating methods include gravure coating, roll coating, die coating, comma coating, blade coating, etc., and include an operation system such as application of a dispersion liquid and drying of a coating film. In view of the tendency to form a dielectric layer with a sufficient thickness at one time, notch wheel coating, blade coating, and roller coating are preferred. The dielectric layer 2 may be directly formed on the surface of the resistance layer 1 , may be directly formed on the surface of the reflective layer 3 , or may be temporarily formed on a material that has release properties for the material used for the dielectric layer 2 . After applying the release film on the surface, the dielectric layer 2 and the reflective layer 3 are bonded together by a lamination method, the release film is peeled off, and the resistive layer 1 formed on the surface of the protective layer 4 is bonded together.
在濕式塗布中,分散液的塗敷及塗膜的乾燥這樣的操作可以只進行一次,也可以進行複數次。In wet coating, the operations of applying the dispersion liquid and drying the coating film may be performed only once or a plurality of times.
[第三實施形態] 以下,針對第三實施形態的電磁波吸收體30的製造方法進行說明。關於以下沒有說明的事項,只要沒有造成不一致,係與第一、第二實施形態的電磁波吸收體10、20的製造方法同樣的。本實施形態的製造方法具備藉由濕式塗布來形成介電體層2的步驟。 [Third Embodiment] Hereinafter, a method for manufacturing the electromagnetic wave absorber 30 according to the third embodiment will be described. Matters not described below are the same as the manufacturing methods of the electromagnetic wave absorbers 10 and 20 of the first and second embodiments as long as there is no inconsistency. The manufacturing method of this embodiment includes the step of forming the dielectric layer 2 by wet coating.
將以與第一實施形態同樣的方法製作的電阻層1和阻隔層6以阻隔接著層5貼合。貼合方法係例如有如下的方法:以層壓輥將電阻層1直接貼合在阻隔接著層5的乾式層壓法,該阻隔接著層5係對阻隔層6的表面以凹版塗布、輥塗、模塗、缺角輪塗布及刮刀塗布等的濕式塗布法進行塗敷及塗膜的乾燥而形成;或是以前述乾式層壓法將以聚矽氧、氟樹脂所形成的離形薄膜暫時貼合在一面後,將離形薄膜剝離,以層壓法將電阻層1貼合在阻隔接著層5的方法。The resistive layer 1 and the barrier layer 6 produced in the same manner as in the first embodiment are bonded together with the barrier adhesive layer 5 . The laminating method is, for example, the following method: a dry lamination method in which the resistive layer 1 is directly bonded to the barrier adhesive layer 5 using a lamination roller. The barrier adhesive layer 5 is applied to the surface of the barrier layer 6 by gravure coating or roller coating. It is formed by coating and drying the coating film using wet coating methods such as die coating, notch wheel coating, and blade coating; or it is a release film formed of polysiloxane or fluororesin by the aforementioned dry lamination method. After being temporarily bonded to one side, the release film is peeled off, and the resistive layer 1 is bonded to the barrier adhesive layer 5 by lamination.
另外,在反射層3上,以具有接著、黏著性的介電體層2,以同樣的乾式層壓法貼合在依序具備電阻層1、阻隔接著層5、阻隔層6的積層體的阻隔層6上。In addition, on the reflective layer 3, the dielectric layer 2 having adhesiveness and adhesiveness is bonded to the barrier layer of the laminate including the resistive layer 1, the barrier adhesive layer 5, and the barrier layer 6 in this order using the same dry lamination method. On level 6.
[第四實施形態] 以下,針對第四實施形態的電磁波吸收體40的製造方法進行說明。關於以下沒有說明的事項,只要沒有造成不一致,係與第一~第三實施形態的電磁波吸收體10、20、30的製造方法同樣的。本實施形態的製造方法具備藉由將熔融狀態的包含熱塑性樹脂的組成物擠出來形成介電體層2的步驟。 [Fourth Embodiment] Hereinafter, a method for manufacturing the electromagnetic wave absorber 40 according to the fourth embodiment will be described. Matters not described below are the same as the manufacturing methods of the electromagnetic wave absorbers 10, 20, and 30 of the first to third embodiments as long as there is no inconsistency. The manufacturing method of this embodiment includes the step of forming the dielectric layer 2 by extruding a composition containing a thermoplastic resin in a molten state.
在反射層3,以凹版塗布、輥塗、模塗、缺角輪塗布及刮刀塗布等的濕式塗布法進行塗敷及塗膜的乾燥而形成接著層7,以乾式層壓法貼合以與第一實施形態同樣的方法製作的介電體層2。The reflective layer 3 is coated using a wet coating method such as gravure coating, roller coating, die coating, notched wheel coating, or blade coating, and the coating film is dried to form the adhesive layer 7, which is then laminated using a dry lamination method. The dielectric layer 2 is produced in the same manner as in the first embodiment.
接著,在以與第三實施形態同樣的方法製作的依序具備電阻層1、阻隔接著層5、阻隔層6的積層體的阻隔層6的表面,以凹版塗布、輥塗、模塗、缺角輪塗布及刮刀塗布等的濕式塗布法進行塗敷及塗膜的乾燥而形成接著層7,以乾式層壓法貼合依序具備介電體層2、接著層7、反射層3的積層體的介電體層2的表面。Next, on the surface of the barrier layer 6, which is a laminate including the resistive layer 1, the barrier adhesive layer 5, and the barrier layer 6, which is produced in the same manner as in the third embodiment, gravure coating, roller coating, die coating, and die coating are performed. The adhesive layer 7 is formed by applying wet coating methods such as angle wheel coating and knife coating and drying the coating film, and laminating a laminate including the dielectric layer 2, the adhesive layer 7, and the reflective layer 3 in this order by a dry lamination method. The surface of the dielectric layer 2 of the body.
<實施例> 以下,基於實施例及比較例進行說明。首先,針對第一~第四實施形態當中有關第一實施形態A的實施形態(以下,稱為「有關第一實施形態A」。)的實施例之實施例A1~A22和比較例A1~A4,使用表1和圖5~30來進行說明。接著,針對第一~第四實施形態當中有關第一實施形態B的實施形態(以下,稱為「有關第一實施形態B」。)的實施例之實施例B1~B16和比較例B1~B3,使用表2和圖31~49來進行說明。又,本發明不限於以下的實施例。 <Example> Hereinafter, description will be given based on Examples and Comparative Examples. First, among the first to fourth embodiments, Examples A1 to A22 and Comparative Examples A1 to A4 concerning the first embodiment A (hereinafter referred to as “the first embodiment A”) will be described. , explained using Table 1 and Figures 5 to 30. Next, among the first to fourth embodiments, Examples B1 to B16 and Comparative Examples B1 to B3 concerning the first embodiment B (hereinafter referred to as “the first embodiment B”) will be described. , explained using Table 2 and Figures 31 to 49. In addition, the present invention is not limited to the following examples.
[有關第一實施形態A] 首先對於在針對回波損耗特性進行了實測的實施例A15、A19、A21、及比較例A1所使用的各構成要素的構件和製造方法加以敘述。 [保護層] PET薄膜(厚度:50μm,Toray股份有限公司製,商品名「Lumirror S10」) [電阻層] 聚伸乙二氧基噻吩(PEDOT)和聚苯乙烯磺酸(PSS)的混合物(PEDOT/PSS)(Nagase chemtex股份有限公司製) [阻隔接著層] 聚矽氧黏著劑(商品名「KR-3700」「CAT-PL-50T」信越化學工業公司製) [阻隔層] 阻隔薄膜(商品名「GL-RD」凸版印刷公司製) [介電體層] 丙烯酸黏著劑(商品名「OC-3405」「K-341」,Saiden化學股份有限公司製) 胺基甲酸酯樹脂(商品名「C60A」BASF公司製) 鈦酸鋇的奈米粒子(堺化學工業股份有限公司製,平均一次粒徑:100nm) [接著層] 環氧胺基甲酸酯接著劑(商品名「AD-393」「CAT-EP5」東洋Ink公司製) [反射層] Al蒸鍍PET薄膜(蒸鍍層的厚度:30nm,整體的厚度:12μm) [About first embodiment A] First, the components and manufacturing methods of each component used in Examples A15, A19, A21, and Comparative Example A1 in which return loss characteristics were actually measured will be described. [protective layer] PET film (thickness: 50 μm, manufactured by Toray Co., Ltd., trade name "Lumirror S10") [Resistive layer] Mixture of polyethylenedioxythiophene (PEDOT) and polystyrenesulfonic acid (PSS) (PEDOT/PSS) (manufactured by Nagase Chemtex Co., Ltd.) [Barrier bonding layer] Polysilicone adhesive (trade name "KR-3700" "CAT-PL-50T" manufactured by Shin-Etsu Chemical Industry Co., Ltd.) [barrier layer] Barrier film (trade name "GL-RD" manufactured by Toppan Printing Co., Ltd.) [Dielectric layer] Acrylic adhesive (trade name "OC-3405" "K-341", manufactured by Saiden Chemical Co., Ltd.) Urethane resin (trade name "C60A" manufactured by BASF Corporation) Barium titanate nanoparticles (manufactured by Sakai Chemical Industry Co., Ltd., average primary particle size: 100 nm) [Adhering layer] Epoxy urethane adhesive (trade name "AD-393" "CAT-EP5" manufactured by Toyo Ink Co., Ltd.) [Reflective layer] Al evaporated PET film (thickness of evaporated layer: 30nm, overall thickness: 12μm)
(實施例A15) 在PET薄膜(保護層)的表面,使用固體成分1.3wt%、棒塗布機No.30塗敷PEDOT/PSS的電阻層(厚度:500nm)後,在設定為120℃的烘箱乾燥1分鐘而得到第1積層體。接著,在阻隔薄膜(阻隔層)的表面,KR-3700、CAT-PL-50T、甲苯溶媒係以質量基準的混合比率成為40:0.2:60的方式混合、攪拌,得到固體成分20wt%的聚矽氧黏著劑。使用棒塗布機No.34塗敷所製作的聚矽氧黏著劑後,在設定為130℃的烘箱乾燥1分鐘而形成阻隔接著層(厚度:10μm)後,以設定為層壓溫度40℃、壓力0.4MPa、速度1m/min的層壓機來與第1積層體貼合,得到第2積層體。 (Example A15) The surface of the PET film (protective layer) was coated with a PEDOT/PSS resistive layer (thickness: 500 nm) using a bar coater No. 30 with a solid content of 1.3 wt%, and then dried in an oven set to 120°C for 1 minute. The first layered body. Next, on the surface of the barrier film (barrier layer), KR-3700, CAT-PL-50T, and toluene solvent were mixed and stirred so that the mass-based mixing ratio became 40:0.2:60 to obtain a poly(polymer) with a solid content of 20 wt%. Silicone adhesive. After applying the polysiloxane adhesive produced using a bar coater No. 34, it was dried in an oven set to 130°C for 1 minute to form a barrier adhesive layer (thickness: 10 μm), and then the lamination temperature was set to 40°C. A laminator with a pressure of 0.4 MPa and a speed of 1 m/min was used to laminate the first laminated body to obtain a second laminated body.
接著,用以下的方法得到介電體層。鈦酸鋇的奈米粒子、OC-3405、K-341、甲苯溶媒係以質量基準的混合比率成為57:28:1:15的方式混合、攪拌而得到固體成分74%的丙烯酸黏著劑。 使用依此方式製作的丙烯酸黏著劑、隔離膜(separator film)(商品名「TN-100」,東洋紡製)、填隙帶(shim tape)(厚度:300μm)、和施用機(applicator)(200μm間隙),依以下方式進行塗敷。在隔離膜離形面與施用機的基準面之間設置填隙帶。依此操作,將使施用機塗敷時的隔離膜離形面、與施用機刀部的間隔一直為平均500μm。將丙烯酸黏著溶液滴在隔離膜離形面與施用機的間隙間,一邊使施用機基準面接觸填隙帶一邊以使施用機進行掃描的方式進行塗敷後,使其在設定為50℃的烘箱乾燥2分鐘,在設定為80℃的烘箱乾燥2分鐘,在設定為120℃的烘箱乾燥2分鐘而製膜後,以設定為層壓溫度60℃、壓力0.4MPa、速度1m/min的層壓裝置將製膜面彼此貼合而得到介電體層。 Next, the dielectric layer is obtained by the following method. Barium titanate nanoparticles, OC-3405, K-341, and a toluene solvent were mixed and stirred in a mass-based mixing ratio of 57:28:1:15 to obtain an acrylic adhesive with a solid content of 74%. Use the acrylic adhesive produced in this way, a separator film (trade name "TN-100", produced by Toyobo), a shim tape (thickness: 300 μm), and an applicator (200 μm). gap), apply as follows. A caulk strip is provided between the release surface of the release film and the base surface of the applicator. By following this operation, the distance between the release surface of the release film and the knife part of the applicator during application will always be an average of 500 μm. The acrylic adhesive solution is dropped into the gap between the release surface of the release film and the applicator, and the applicator is scanned while applying the applicator with the base surface of the applicator in contact with the gap-filling tape. After drying in an oven for 2 minutes, drying in an oven set to 80°C for 2 minutes, and drying in an oven set to 120°C for 2 minutes to form a film, the layer was set to a lamination temperature of 60°C, a pressure of 0.4MPa, and a speed of 1m/min. A pressing device is used to bond the film forming surfaces to each other to obtain a dielectric layer.
將依此操作所得到的介電體層的一個隔離膜剝離後,以設定為層壓溫度40℃、壓力0.4MPa、速度1m/min的層壓裝置貼合Al蒸鍍PET薄膜(反射層),將另一個隔離膜剝離後,同樣地以層壓裝置貼合第2積層體。貼合後,在50℃的老化室(aging room)進行老化處理3天,得到與圖3所示的電磁波吸收體同樣的層構成的電磁波吸收體。After peeling off one isolation film of the dielectric layer obtained in this way, the Al vapor-deposited PET film (reflective layer) was bonded using a laminating device set to a laminating temperature of 40°C, a pressure of 0.4MPa, and a speed of 1m/min. After peeling off the other separator, the second laminated body was bonded using a laminating device in the same manner. After lamination, aging treatment was performed in an aging room at 50° C. for 3 days, and an electromagnetic wave absorber having the same layer structure as the electromagnetic wave absorber shown in FIG. 3 was obtained.
(實施例A19) 除了用以下的方法為介電體層和其上下層的貼合方法來製作外,與實施例A15同樣地得到電磁波吸收體。將鈦酸鋇的奈米粒子和胺基甲酸酯樹脂粒料C60A以質量基準的混合比率70:30進行混合、攪拌所得到的混合粒料投入擠出機,在100℃下進行熔融‧混練並擠出成棒狀,冷卻後切斷成粒料狀,製作母料。將依此操作所得到的母料以設定為軋光輥溫度140℃、輥間間隙390μm的軋光成型機進行壓延而得到成型片。在依此方式所製作的成型片上積層以同樣的方法壓延的成型片,得到介電體層。 (Example A19) An electromagnetic wave absorber was obtained in the same manner as in Example A15, except that the following method was used to laminate the dielectric layer and its upper and lower layers. Barium titanate nanoparticles and urethane resin pellets C60A were mixed and stirred at a mass-based mixing ratio of 70:30. The resulting mixed pellets were put into an extruder and melted and kneaded at 100°C. And extruded into rod shape, cooled and cut into pellets to make masterbatch. The masterbatch obtained in this way was calendered using a calendering machine set to a calender roll temperature of 140° C. and a gap between the rolls of 390 μm to obtain a molded sheet. A molded sheet rolled in the same manner is laminated on the molded sheet produced in this manner to obtain a dielectric layer.
接著,AD-393、CAT-EP5、IPA溶媒係以質量基準的混合比率成為44:3:53的方式混合、攪拌而得到固體成分25wt%的環氧胺基甲酸酯接著劑。將所製作的環氧胺基甲酸酯接著劑滴在Al蒸鍍PET薄膜(反射層)的PET表面,使用棒塗布機No.34進行塗敷後,在設定為130℃的烘箱乾燥1分鐘而形成接著層(厚度:8μm)後,以設定為層壓溫度40℃、壓力0.4MPa、速度1m/min的層壓機來與介電體層貼合,得到第3積層體。Next, AD-393, CAT-EP5, and IPA solvent were mixed and stirred so that the mass-based mixing ratio became 44:3:53 to obtain an epoxy urethane adhesive with a solid content of 25 wt%. The prepared epoxy urethane adhesive was dropped on the PET surface of the Al vapor-deposited PET film (reflective layer), applied using a bar coater No. 34, and then dried in an oven set to 130°C for 1 minute. After forming the adhesive layer (thickness: 8 μm), the laminator was bonded to the dielectric layer using a laminator set to a lamination temperature of 40° C., a pressure of 0.4 MPa, and a speed of 1 m/min to obtain a third laminated body.
同樣地,將環氧胺基甲酸酯接著劑滴在第2積層體的阻隔薄膜表面,使用棒塗布機No.70進行塗敷後,在設定為130℃的烘箱乾燥1分鐘而形成接著層(厚度:18μm)後,以設定為層壓溫度40℃、壓力0.4MPa、速度1m/min的層壓機來與第3介電體的介電體層面貼合。Similarly, the epoxy urethane adhesive was dropped on the surface of the barrier film of the second laminated body, applied using a bar coater No. 70, and then dried in an oven set at 130° C. for 1 minute to form an adhesive layer. (Thickness: 18 μm), the laminator was bonded to the dielectric layer of the third dielectric using a laminator set to a lamination temperature of 40° C., a pressure of 0.4 MPa, and a speed of 1 m/min.
(實施例A21) 除了將軋光輥間的間隙設定為270μm外,與實施例A19同樣地得到電磁波吸收體。 (Example A21) An electromagnetic wave absorber was obtained in the same manner as in Example A19 except that the gap between the calender rolls was set to 270 μm.
(比較例A1) 在PET薄膜(保護層)的表面,使用固體成分1.3wt%、棒塗布機No.30塗敷PEDOT/PSS的電阻層(厚度:500nm)後,在設定為120℃的烘箱乾燥1分鐘而得到第1積層體。 (Comparative example A1) The surface of the PET film (protective layer) was coated with a PEDOT/PSS resistive layer (thickness: 500 nm) using a bar coater No. 30 with a solid content of 1.3 wt%, and then dried in an oven set to 120°C for 1 minute. The first layered body.
接著,OC-3405、K-341、甲苯溶媒係以質量基準的混合比率成為73:2:25的方式混合、攪拌,得到固體成分45%的丙烯酸黏著劑。使用依此方式所製作的丙烯酸黏著劑、隔離膜(商品名「TN-100」,東洋紡製)、填隙帶(厚度:300μm)、和施用機(200μm間隙),依以下方式進行塗敷。在隔離膜離形面與施用機的基準面之間設置填隙帶。依此操作,將使施用機塗敷時的隔離膜離形面、與施用機刀部的間隔一直為平均500μm。將丙烯酸黏著溶液滴在隔離膜離形面與施用機的間隙間,一邊使施用機基準面接觸填隙帶一邊以使施用機進行掃描的方式進行塗敷後,使其在設定為50℃的烘箱乾燥2分鐘,在設定為80℃的烘箱乾燥2分鐘,在設定為120℃的烘箱乾燥2分鐘而製膜後,以設定為層壓溫度60℃、壓力0.4MPa、速度1m/min的層壓裝置將製膜面彼此貼合而得到介電體層。Next, OC-3405, K-341, and toluene solvent were mixed and stirred so that the mass-based mixing ratio became 73:2:25 to obtain an acrylic adhesive with a solid content of 45%. Use the acrylic adhesive produced in this way, a release film (trade name "TN-100", manufactured by Toyobo), a gap filling tape (thickness: 300 μm), and an applicator (200 μm gap) to apply in the following manner. A caulk strip is provided between the release surface of the release film and the base surface of the applicator. By following this operation, the distance between the release surface of the release film and the knife part of the applicator during application will always be an average of 500 μm. The acrylic adhesive solution is dropped into the gap between the release surface of the release film and the applicator, and the applicator is scanned while applying the applicator with the base surface of the applicator in contact with the gap-filling tape. After drying in an oven for 2 minutes, drying in an oven set to 80°C for 2 minutes, and drying in an oven set to 120°C for 2 minutes to form a film, the layer was set to a lamination temperature of 60°C, a pressure of 0.4MPa, and a speed of 1m/min. A pressing device is used to bond the film forming surfaces to each other to obtain a dielectric layer.
將依此操作所得到的介電體層的一個隔離膜剝離後,以設定為層壓溫度40℃、壓力0.4MPa、速度1m/min的層壓裝置來與Al蒸鍍PET薄膜(反射層)的Al蒸鍍面貼合,將另一個隔離膜剝離後,同樣地以層壓裝置來與第1積層體的PEDOT/PSS貼合。又,比較例的介電體層和反射層的接合面成為Al蒸鍍層,但也可以與實施例同樣地以PET成為接合面的方式貼合。任一情況都不會對可靠性試驗造成影響。After peeling off one isolation film of the dielectric layer obtained in this way, the PET film (reflective layer) was vapor-deposited with Al using a laminating device set to a lamination temperature of 40°C, a pressure of 0.4 MPa, and a speed of 1 m/min. The Al vapor-deposited surface was bonded, and after peeling off the other separator, it was bonded to the PEDOT/PSS of the first laminated body using a laminating device in the same manner. In addition, in the comparative example, the bonding surface of the dielectric layer and the reflective layer is the Al vapor deposition layer, but they may be bonded together such that PET serves as the bonding surface in the same manner as in the embodiment. Either situation will not affect the reliability test.
<保護層的厚度的測定> 保護層的厚度係使用THICKNESS GAUG(Mitsutoyo股份有限公司製),根據JIS B 7503:2011進行測定。 <Measurement of protective layer thickness> The thickness of the protective layer was measured in accordance with JIS B 7503:2011 using THICKNESS GAUG (manufactured by Mitsutoyo Co., Ltd.).
<保護層的複介電常數的測定> 保護層的複介電常數係藉由使用向量網路分析儀(Keysight PNA N5222B 10MHz-43.5GHz,Virginia Diodes Inc,WR12 55-95GHz)的頻率變化法來進行測定。保護層的複介電常數的實部為2.95,虛部為0.003。 <Measurement of complex dielectric constant of protective layer> The complex dielectric constant of the protective layer was measured by the frequency variation method using a vector network analyzer (Keysight PNA N5222B 10MHz-43.5GHz, Virginia Diodes Inc, WR12 55-95GHz). The real part of the complex dielectric constant of the protective layer is 2.95 and the imaginary part is 0.003.
<介電體層的複介電常數的測定> 介電體層的複介電常數係藉由使用向量網路分析儀(Keysight PNA N5222B 10MHz-26.5GHz,Virginia Diodes Inc,WR12 55-95GHz)的頻率變化法來進行測定。將介電體層的複介電常數顯示在表1。 <Measurement of complex dielectric constant of dielectric layer> The complex dielectric constant of the dielectric layer is measured by the frequency variation method using a vector network analyzer (Keysight PNA N5222B 10MHz-26.5GHz, Virginia Diodes Inc, WR12 55-95GHz). The complex dielectric constants of the dielectric layers are shown in Table 1.
<回波損耗特性的測定> 針對在各實施例及比較例所得到的電磁波吸收體,使用以下的裝置測定回波損耗量。 向量網路分析儀(Keysight PNA N5222B 10MHz-26.5GHz,Virginia Diodes Inc,WR12 55-95GHz) 高頻網路分析儀(Agilent.Technology製,E8362C) 從發送訊號的天線將毫米波照射在電磁波吸收體,測定在電磁波吸收體反射並入射至接受訊號的天線的毫米波的強度,求出損耗量(dB)。 <Measurement of return loss characteristics> The return loss amount of the electromagnetic wave absorber obtained in each Example and Comparative Example was measured using the following apparatus. Vector network analyzer (Keysight PNA N5222B 10MHz-26.5GHz, Virginia Diodes Inc, WR12 55-95GHz) A high-frequency network analyzer (manufactured by Agilent Technology, E8362C) irradiates millimeter waves from an antenna that transmits signals to an electromagnetic wave absorber, measures the intensity of the millimeter waves that are reflected by the electromagnetic wave absorber and enters the antenna that receives signals, and calculates the loss. Amount (dB).
<高溫高濕試驗> 將在各實施例及比較例所得到的電磁波吸收體設置在以下的裝置內,經過1000h後取出,回到室溫後,進行片電阻的測定和回波損耗特性的測定。 恆溫恆濕器(ESPEC公司製,RP-4J) <High temperature and high humidity test> The electromagnetic wave absorber obtained in each of the Examples and Comparative Examples was placed in the following apparatus, and was taken out after 1000 hours. After returning to room temperature, the sheet resistance and return loss characteristics were measured. Thermostat and humidistat (manufactured by ESPEC, RP-4J)
<回波損耗特性的模擬> 關於實施例A1~A14、A16~A18、A20、A22、及比較例A2~A4,以模擬來導出回波損耗特性,評價介電體層的複介電常數虛部對回波損耗特性造成的影響。模擬軟體係使用基於導出λ/4型電波吸收體中的回波損耗特性的理論和演算法(「電波吸收體入門」,橋本修著,森北出版,1997年,參照第58~62、128~134頁)內製的軟體。模擬係將層構成設為從電磁波的入射側起依序為保護層、電阻層、阻隔接著層、阻隔層、接著層、介電體層、接著層、反射層(支撐體PET,Al蒸鍍層(短路)),各層係以與上述的製造方法同樣的方法製作。依此操作而將保護層的複介電常數和厚度的實測結果、電阻層的片電阻實測結果、阻隔接著層的厚度和實測結果、阻隔層的厚度和實測結果、接著層的厚度和實測結果、介電體層的厚度的實測結果和複介電常數、接著層的厚度和複介電常數的實測結果、反射層的厚度和複介電常數的實測結果作為設定值。進行可靠性試驗85℃85%RH 700h及1000h後,另外準備沒有反射層的構成,將以非接觸電阻計測定的電阻層的片電阻實測結果作為設定值。 <Simulation of return loss characteristics> Regarding Examples A1 to A14, A16 to A18, A20, A22, and Comparative Examples A2 to A4, the return loss characteristics were derived through simulation, and the influence of the imaginary part of the complex dielectric constant of the dielectric layer on the return loss characteristics was evaluated. . The simulation soft system uses the theory and algorithm based on deriving the return loss characteristics of λ/4 type radio wave absorbers ("Introduction to Radio Wave Absorbers", Shu Hashimoto, Morikita Publishing, 1997, refer to pp. 58~62, 128~ 134 pages) built-in software. The simulation system sets the layer structure in order from the incident side of the electromagnetic wave to a protective layer, a resistance layer, a barrier adhesive layer, a barrier layer, an adhesive layer, a dielectric layer, an adhesive layer, and a reflective layer (support PET, Al evaporated layer ( Short circuit)), each layer is produced by the same method as the above-mentioned manufacturing method. According to this operation, the actual measurement results of the complex dielectric constant and thickness of the protective layer, the actual measurement results of the sheet resistance of the resistive layer, the thickness of the barrier layer and the actual measurement results, the thickness of the barrier layer and the actual measurement results, the thickness of the adhesive layer and the actual measurement results , the actual measurement results of the thickness and complex dielectric constant of the dielectric layer, the actual measurement results of the thickness and complex dielectric constant of the connecting layer, and the actual measurement results of the thickness and complex dielectric constant of the reflective layer are used as the set values. After conducting reliability tests at 85°C and 85%RH for 700h and 1000h, a structure without a reflective layer was prepared, and the actual measurement result of the sheet resistance of the resistive layer measured with a non-contact resistance meter was used as the set value.
<特性評價>
針對實施例及比較例,將以實測及模擬評價回波損耗特性的結果顯示於表1、圖5~30。回波損耗特性係以最初製作電磁波吸收體時(初期)、進行可靠性試驗(85℃85%RH 700h及1000h)後的值表示回波損耗量成為最大時的頻率(GHz)和最大損耗量(dB)。
[表1]
圖5係顯示實施例A1的電磁波吸收體的回波損耗特性的圖表。圖5(a)表示在初期的特性,圖5(b)表示進行了在85℃85%RH 1000h下的可靠性試驗者的特性。圖6~圖26係關於實施例A2~A22,與實施例A1一樣,因此省略說明。此外,圖27係顯示比較例A1的電磁波吸收體的回波損耗特性的圖表。圖27(a)表示在初期的特性,圖27(b)表示進行了在85℃85%RH 1000h下的可靠性試驗者的特性。圖28~圖30係關於比較例A2~A4,與比較例A1一樣,因此省略說明。由實施例及比較例可知,關於介電體層的複介電常數的虛部為0.5以上的電磁波吸收體,即使是在進行了85℃85%RH 700h的可靠性試驗後,片電阻的值增加的情況下,仍維持回波損耗量為10dB以上的良好特性。此外,即使是在進行了85℃85%RH 1000h的可靠性試驗的情況下,在大半的實施例中仍顯示回波損耗量10dB以上的良好特性。FIG. 5 is a graph showing the return loss characteristics of the electromagnetic wave absorber of Example A1. Figure 5(a) shows the initial characteristics, and Figure 5(b) shows the characteristics of a person who performed a reliability test at 85°C and 85%RH for 1000 hours. Figures 6 to 26 relate to Examples A2 to A22, and are the same as Example A1, so description is omitted. In addition, FIG. 27 is a graph showing the return loss characteristics of the electromagnetic wave absorber of Comparative Example A1. Figure 27(a) shows the initial characteristics, and Figure 27(b) shows the characteristics of a person who performed a reliability test at 85°C and 85%RH for 1000 hours. Figures 28 to 30 relate to Comparative Examples A2 to A4, and are the same as Comparative Example A1, so description will be omitted. It can be seen from the examples and comparative examples that for electromagnetic wave absorbers in which the imaginary part of the complex dielectric constant of the dielectric layer is 0.5 or more, the sheet resistance value increases even after a reliability test at 85°C and 85%RH for 700 hours. Under the circumstances, the return loss is still maintained at a good characteristic of more than 10dB. In addition, even when the reliability test was performed at 85°C and 85%RH for 1000 hours, most of the examples still showed good characteristics with a return loss of 10 dB or more.
[有關第一實施形態B] <回波損耗特性的模擬> 關於實施例B1~B16、及比較例B1~B3,以模擬來導出回波損耗特性,評價介電體層的複介電常數虛部對回波損耗特性造成的影響等。模擬軟體係使用基於導出λ/4型電波吸收體中的回波損耗特性的理論和演算法(「電波吸收體入門」,橋本修著,森北出版,1997年,參照第58~62、128~134頁)內製的軟體。模擬係將層構成設為從電磁波的入射側起依序為保護層、電阻層、阻隔接著層、阻隔層、接著層、介電體層、接著層、反射層(支撐體PET,Al蒸鍍層(短路))。 [About first embodiment B] <Simulation of return loss characteristics> Regarding Examples B1 to B16 and Comparative Examples B1 to B3, the return loss characteristics were derived through simulation, and the influence of the imaginary part of the complex dielectric constant of the dielectric layer on the return loss characteristics was evaluated. The simulation soft system uses the theory and algorithm based on deriving the return loss characteristics of λ/4 type radio wave absorbers ("Introduction to Radio Wave Absorbers", Shu Hashimoto, Morikita Publishing, 1997, refer to pp. 58~62, 128~ 134 pages) built-in software. The simulation system sets the layer structure in order from the incident side of the electromagnetic wave to a protective layer, a resistance layer, a barrier adhesive layer, a barrier layer, an adhesive layer, a dielectric layer, an adhesive layer, and a reflective layer (support PET, Al evaporated layer ( short circuit)).
<特性評價>
針對實施例及比較例,將構成電磁波吸收體的積層體的各層的厚度、複介電常數、入射/反射角度的設定值、和以模擬評價回波損耗特性的結果顯示於表2。回波損耗特性係以最初製作電磁波吸收體時(初期)的值表示回波損耗量成為最大時的頻率(GHz)和最大損耗量(dB)。
[表2]
圖31係顯示實施例B1的電磁波吸收體的回波損耗特性的圖表。圖32~圖46係關於實施例B2~B16,與實施例B1一樣,因此省略說明。此外,圖47係顯示比較例B1的電磁波吸收體的回波損耗特性的圖表。圖48、圖49係關於比較例B2、B3,與比較例B1一樣,因此省略說明。由實施例及比較例可知,對於介電體層的複介電常數的實部為10以上15以下,虛部為1.0以上1.5以下,電阻層的片電阻範圍為600Ω/□以上2500Ω/□以下的電磁波吸收體,發現了具有在入射/反射角度為30°至70°的電磁波的回波損耗量為25dB以上的良好特性。FIG. 31 is a graph showing the return loss characteristics of the electromagnetic wave absorber of Example B1. 32 to 46 relate to Embodiments B2 to B16 and are the same as Embodiment B1, so the description will be omitted. In addition, FIG. 47 is a graph showing the return loss characteristics of the electromagnetic wave absorber of Comparative Example B1. Figures 48 and 49 relate to Comparative Examples B2 and B3, and are the same as Comparative Example B1, so description is omitted. It can be seen from the examples and comparative examples that the real part of the complex dielectric constant of the dielectric layer is 10 or more and 15 or less, the imaginary part is 1.0 or more and 1.5 or less, and the sheet resistance range of the resistive layer is 600Ω/□ or more and 2500Ω/□ or less. The electromagnetic wave absorber has been found to have excellent characteristics such that the return loss of electromagnetic waves at an incident/reflection angle of 30° to 70° is 25dB or more.
關於介電體層的複介電常數的虛部對回波損耗特性造成的影響,採用實施例B12和實施例B16的模擬為例子進行說明。圖50係顯示介電體層的複介電常數虛部和回波損耗量的關係的圖表。圖50(a)係將橫軸設為頻率,將縱軸設為入射‧反射角度來表示在電阻層的片電阻為2500Ω/□、介電體層的複介電常數實部為15、虛部為0.5的情況下的電磁波的回波損耗量的等高線的圖表。圖50(b)係表示在將虛部設為1.5的情況下的同樣的回波損耗特性的圖表。發現了若虛部增加,則有回波損耗量的等高線的高度大致上升,基部擴大的傾向。即,知道了有在既定的入射角度/反射角度下的回波損耗量大致增大,可得到既定的回波損耗量的入射角度/反射角度的範圍大致擴大的傾向。The influence of the imaginary part of the complex dielectric constant of the dielectric layer on the return loss characteristics will be explained using the simulations of Embodiment B12 and Embodiment B16 as examples. FIG. 50 is a graph showing the relationship between the imaginary part of the complex dielectric constant of the dielectric layer and the amount of return loss. Figure 50(a) shows that when the horizontal axis is frequency and the vertical axis is incident/reflection angle, the sheet resistance of the resistive layer is 2500Ω/□, the real part of the complex dielectric constant of the dielectric layer is 15, and the imaginary part A graph showing the contours of the return loss of electromagnetic waves when the value is 0.5. FIG. 50(b) is a graph showing the same return loss characteristics when the imaginary part is set to 1.5. It was found that when the imaginary part increases, the height of the contour line of the return loss amount generally increases and the base tends to expand. That is, it is found that the return loss amount at a given incident angle/reflection angle generally increases, and the range of the incident angle/reflection angle at which a given return loss amount is obtained tends to expand substantially.
進一步地,發明人使用由基於實施例的模擬結果所得到的具體數值,歸納發現:若電阻層的片電阻R滿足式2,便可得到回波損耗量25dB以上的電磁波吸收體。 此處,ε’為介電體層中的複介電常數的虛部,θ(°)為入射角度/反射角度。 Furthermore, the inventor used specific numerical values obtained from the simulation results based on the embodiments and found that if the sheet resistance R of the resistive layer satisfies Equation 2, an electromagnetic wave absorber with a return loss of 25 dB or more can be obtained. Here, ε' is the imaginary part of the complex dielectric constant in the dielectric layer, and θ (°) is the incident angle/reflection angle.
<應用事例> 第一~第四實施形態的電磁波吸收體10、20、30、40可以應用於各種物品。作為物品的具體例,可舉出:建築裝飾材(例如,鏡面裝飾板、地板片及裝飾薄膜)、產業資材(例如,路面構件、交通護欄(guardrail)、道路標識及隔音牆)。藉由將第一~第四實施形態的電磁波吸收體10、20、30、40應用於建築裝飾材,例如,即使是在辦公大樓、集合住宅使用利用5G、6G等的電磁波的高速無線通訊的情況下,也因實現良好的回波損耗量而能夠維持5G、6G原本的通訊速度。具體而言,若為具備內壁的至少一部分被具備有關第一實施形態A的電磁波吸收體10、20、30、40的前述建築裝飾材覆蓋的房間、和被配置在前述房間內的發訊器的通訊穩定室的話,便能夠期待相關的效果。此外,具備前述通訊穩定室和被配置在該通訊穩定室內的無線通訊裝置的系統也能夠期待同樣的效果。同樣地,若為具備內壁的至少一部分被具備有關第一實施形態B的電磁波吸收體10、20、30、40的前述建築裝飾材覆蓋的房間、和被配置在前述房間內的發訊器,且前述建築裝飾材的表面法線與從前述發訊器入射的電磁波所成的夾度為30°至60°的通訊穩定室的話,便能夠期待相關的效果。但是,也可以是接收前述角度範圍的入射波的建築裝飾材表面係部分地存在者。此外,若為具備前述通訊穩定室和被配置在該通訊穩定室內的無線通訊裝置的系統的話,便能夠期待同樣的效果,同時能夠只接收直接波,能夠構築S/N比高的穩定的系統。進一步地,也可以提供可在前述通訊穩定室或前述系統所形成的空間實現良好的回波損耗量的通訊穩定空間。除此之外,例如,藉由將第一~第五實施形態的電磁波吸收體10、20、30、40應用於產業資材,能夠抑制電磁波的散射、雜訊,能夠有助於提高自動駕駛的安全性。 <Application examples> The electromagnetic wave absorbers 10, 20, 30, and 40 of the first to fourth embodiments can be applied to various articles. Specific examples of the articles include building decoration materials (for example, mirror decorative panels, floor sheets, and decorative films), and industrial materials (for example, road surface components, traffic guardrails, road signs, and soundproof walls). By applying the electromagnetic wave absorbers 10, 20, 30, and 40 of the first to fourth embodiments to building decoration materials, for example, high-speed wireless communications using electromagnetic waves such as 5G and 6G can be used in office buildings and condominiums. Even under such circumstances, the original communication speed of 5G and 6G can be maintained by achieving good return loss. Specifically, if it is a room having at least a part of the inner wall covered with the aforementioned building decoration materials including the electromagnetic wave absorbers 10, 20, 30, and 40 of the first embodiment A, and a transmitter arranged in the aforementioned room, If you install the communication stable room of the device, you can expect related effects. In addition, the same effect can be expected from a system including the communication stable room and a wireless communication device arranged in the communication stable room. Similarly, if it is a room having at least a part of the inner wall covered with the aforementioned building decoration material including the electromagnetic wave absorbers 10, 20, 30, 40 of the first embodiment B, and a transmitter arranged in the aforementioned room , and if the angle between the surface normal of the building decoration material and the electromagnetic wave incident from the transmitter is 30° to 60° in a stable communication room, the relevant effects can be expected. However, the surface of the building decoration material that receives the incident wave in the aforementioned angle range may be partially present. In addition, if it is a system including the communication stable room and the wireless communication device arranged in the communication stable room, the same effect can be expected, and at the same time, only direct waves can be received, and a stable system with a high S/N ratio can be constructed. . Furthermore, it is also possible to provide a communication stable space that can achieve a good return loss in the space formed by the communication stable room or the system. In addition, for example, by applying the electromagnetic wave absorbers 10, 20, 30, and 40 of the first to fifth embodiments to industrial materials, the scattering and noise of electromagnetic waves can be suppressed, which can contribute to improving the performance of autonomous driving. safety.
以上,針對本發明的實施形態進行了說明,但本發明不限於上述的實施形態,可以在不脫離本發明的要旨的範圍內進行各種變更、實施形態之間的組合。The embodiments of the present invention have been described above. However, the present invention is not limited to the above-described embodiments, and various modifications and combinations of embodiments can be made without departing from the gist of the present invention.
以下敘述能成為本發明的內容的項目,但是不限於此。 (項目1) 一種電磁波吸收體,其係依序具備電阻層、介電體層、和反射層的積層體,前述介電體層係含有至少一種介電性化合物、和樹脂成分,複介電常數的虛部為0.5以上。 (項目2) 如項目1之電磁波吸收體,其在85℃85%RH、700h的可靠性試驗後的回波損耗量為10dB以上。 (項目3) 如項目1或2之電磁波吸收體,其中前述介電體層的複介電常數的實部為10以上。 (項目4) 如項目1至3中任一項之電磁波吸收體,其中前述電阻層的片電阻為400Ω/□以上1000Ω/□以下。 (項目5) 如項目1至4中任一項之電磁波吸收體,其係前述電阻層的體積電阻率為8.0×10 -5~4.0×10 -3Ω.m的導電性高分子材料。 (項目6) 如項目1至5中任一項之電磁波吸收體,其中前述電阻層的厚度為150nm~2000nm。 (項目7) 如項目1至6中任一項之電磁波吸收體,其中前述電阻層的片電阻R(Ω/□)、前述介電體層的複介電常數的實部ε’、和虛部ε’’為式1的關係。 (項目8) 如項目1至7中任一項之電磁波吸收體,其中85℃85%RH 1000h的可靠性試驗後的回波損耗量為10dB以上。 (項目9) 如項目1至8中任一項之電磁波吸收體,其中前述介電體層係複介電常數的實部為10以上15以下,虛部為1.0以上1.5以下,前述電阻層的片電阻為600Ω/□以上2500Ω/□以下,反射角度θ為30°至70°的電磁波的回波損耗量為25dB以上。 (項目10) 如項目9之電磁波吸收體,其中前述電阻層的片電阻R(Ω/□)、前述介電體層的複介電常數的虛部ε’’、和前述反射角度θ(°)為式2的關係。 (項目11) 如項目1至10中任一項之電磁波吸收體,其中前述積層體依序具備前述電阻層、阻隔接著層、阻隔層、前述介電體層、和前述反射層。 (項目12) 如項目11之電磁波吸收體,其中前述積層體依序具備前述電阻層、前述阻隔接著層、前述阻隔層、接著層、前述介電體層、接著層、和前述反射層。 (項目13) 一種建築裝飾材,其具備如請求項1至12中任一項之電磁波吸收體。 (項目14) 一種通訊穩定室,其具備內壁的至少一部分被如項目13之建築裝飾材覆蓋的房間、和被配置在前述房間內的發訊器。 (項目15) 一種系統,其具備如項目14之通訊穩定室、和被配置在前述通訊穩定室內的無線通訊裝置。 The following describes items that can form the content of the present invention, but is not limited thereto. (Item 1) An electromagnetic wave absorber, which is a laminated body including a resistive layer, a dielectric layer, and a reflective layer in this order. The dielectric layer contains at least one dielectric compound and a resin component, and has a complex dielectric constant. The imaginary part is above 0.5. (Item 2) For example, the electromagnetic wave absorber of Item 1 has a return loss of more than 10dB after a reliability test at 85°C, 85%RH, and 700 hours. (Item 3) The electromagnetic wave absorber of Item 1 or 2, wherein the real part of the complex dielectric constant of the dielectric layer is 10 or more. (Item 4) The electromagnetic wave absorber according to any one of Items 1 to 3, wherein the sheet resistance of the resistive layer is 400Ω/□ or more and 1000Ω/□ or less. (Item 5) The electromagnetic wave absorber according to any one of Items 1 to 4, wherein the volume resistivity of the resistive layer is 8.0×10 -5 to 4.0×10 -3 Ω. m conductive polymer material. (Item 6) The electromagnetic wave absorber according to any one of Items 1 to 5, wherein the thickness of the resistive layer is 150 nm to 2000 nm. (Item 7) The electromagnetic wave absorber according to any one of Items 1 to 6, wherein the sheet resistance R (Ω/□) of the resistive layer, the real part ε' and the imaginary part of the complex dielectric constant of the dielectric layer ε'' is the relationship of Equation 1. (Item 8) An electromagnetic wave absorber according to any one of Items 1 to 7, in which the return loss after a reliability test at 85°C and 85%RH for 1000h is more than 10dB. (Item 9) The electromagnetic wave absorber according to any one of Items 1 to 8, wherein the real part of the complex dielectric constant of the dielectric layer is 10 to 15 and the imaginary part is 1.0 to 1.5, and the resistive layer is The resistance is 600Ω/□ or more and 2500Ω/□ or less, and the return loss of electromagnetic waves with a reflection angle θ of 30° to 70° is 25dB or more. (Item 10) The electromagnetic wave absorber of Item 9, wherein the sheet resistance R (Ω/□) of the resistive layer, the imaginary part ε'' of the complex dielectric constant of the dielectric layer, and the reflection angle θ (°) is the relationship of Equation 2. (Item 11) The electromagnetic wave absorber according to any one of Items 1 to 10, wherein the laminated body includes the resistance layer, the barrier bonding layer, the barrier layer, the dielectric layer, and the reflection layer in this order. (Item 12) The electromagnetic wave absorber of Item 11, wherein the laminated body includes the resistance layer, the barrier adhesive layer, the barrier layer, the adhesive layer, the dielectric layer, the adhesive layer, and the reflective layer in this order. (Item 13) A building decoration material equipped with the electromagnetic wave absorber according to any one of claims 1 to 12. (Item 14) A communication stable room including a room in which at least part of the inner wall is covered with the architectural decoration material of Item 13, and a transmitter arranged in the room. (Item 15) A system including the communication stable room according to Item 14, and a wireless communication device arranged in the communication stable room.
1:電阻層 2:介電體層 3:反射層 4:保護層 5:阻隔接著層 6:阻隔層 7:接著層 10,20,30,40:電磁波吸收體 1:Resistance layer 2: Dielectric layer 3: Reflective layer 4: Protective layer 5: Barrier bonding layer 6: Barrier layer 7: Next layer 10,20,30,40: Electromagnetic wave absorber
圖1係示意地顯示第一實施形態的反射型的電磁波吸收體的剖面圖。 圖2係示意地顯示第二實施形態的反射型的電磁波吸收體的剖面圖。 圖3係示意地顯示第三實施形態的反射型的電磁波吸收體的剖面圖。 圖4係示意地顯示第四實施形態的反射型的電磁波吸收體的剖面圖。 圖5係顯示實施例A1的電磁波吸收體的回波損耗特性的圖表(graph)。 圖6係顯示實施例A2的電磁波吸收體的回波損耗特性的圖表。 圖7係顯示實施例A3的電磁波吸收體的回波損耗特性的圖表。 圖8係顯示實施例A4的電磁波吸收體的回波損耗特性的圖表。 圖9係顯示實施例A5的電磁波吸收體的回波損耗特性的圖表。 圖10係顯示實施例A6的電磁波吸收體的回波損耗特性的圖表。 圖11係顯示實施例A7的電磁波吸收體的回波損耗特性的圖表。 圖12係顯示實施例A8的電磁波吸收體的回波損耗特性的圖表。 圖13係顯示實施例A9的電磁波吸收體的回波損耗特性的圖表。 圖14係顯示實施例A10的電磁波吸收體的回波損耗特性的圖表。 圖15係顯示實施例A11的電磁波吸收體的回波損耗特性的圖表。 圖16係顯示實施例A12的電磁波吸收體的回波損耗特性的圖表。 圖17係顯示實施例A13的電磁波吸收體的回波損耗特性的圖表。 圖18係顯示實施例A14的電磁波吸收體的回波損耗特性的圖表。 圖19係顯示實施例A15的電磁波吸收體的回波損耗特性的圖表。 圖20係顯示實施例A16的電磁波吸收體的回波損耗特性的圖表。 圖21係顯示實施例A17的電磁波吸收體的回波損耗特性的圖表。 圖22係顯示實施例A18的電磁波吸收體的回波損耗特性的圖表。 圖23係顯示實施例A19的電磁波吸收體的回波損耗特性的圖表。 圖24係顯示實施例A20的電磁波吸收體的回波損耗特性的圖表。 圖25係顯示實施例A21的電磁波吸收體的回波損耗特性的圖表。 圖26係顯示實施例A22的電磁波吸收體的回波損耗特性的圖表。 圖27係顯示比較例A1的電磁波吸收體的回波損耗特性的圖表。 圖28係顯示比較例A2的電磁波吸收體的回波損耗特性的圖表。 圖29係顯示比較例A3的電磁波吸收體的回波損耗特性的圖表。 圖30係顯示比較例A4的電磁波吸收體的回波損耗特性的圖表。 圖31係顯示實施例B1的電磁波吸收體的回波損耗特性的圖表。 圖32係顯示實施例B2的電磁波吸收體的回波損耗特性的圖表。 圖33係顯示實施例B3的電磁波吸收體的回波損耗特性的圖表。 圖34係顯示實施例B4的電磁波吸收體的回波損耗特性的圖表。 圖35係顯示實施例B5的電磁波吸收體的回波損耗特性的圖表。 圖36係顯示實施例B6的電磁波吸收體的回波損耗特性的圖表。 圖37係顯示實施例B7的電磁波吸收體的回波損耗特性的圖表。 圖38係顯示實施例B8的電磁波吸收體的回波損耗特性的圖表。 圖39係顯示實施例B9的電磁波吸收體的回波損耗特性的圖表。 圖40係顯示實施例B10的電磁波吸收體的回波損耗特性的圖表。 圖41係顯示實施例B11的電磁波吸收體的回波損耗特性的圖表。 圖42係顯示實施例B12的電磁波吸收體的回波損耗特性的圖表。 圖43係顯示實施例B13的電磁波吸收體的回波損耗特性的圖表。 圖44係顯示實施例B14的電磁波吸收體的回波損耗特性的圖表。 圖45係顯示實施例B15的電磁波吸收體的回波損耗特性的圖表。 圖46係顯示實施例B16的電磁波吸收體的回波損耗特性的圖表。 圖47係顯示比較例B1的電磁波吸收體的回波損耗特性的圖表。 圖48係顯示比較例B2的電磁波吸收體的回波損耗特性的圖表。 圖49係顯示比較例B3的電磁波吸收體的回波損耗特性的圖表。 圖50係顯示介電體層的複介電常數虛部和回波損耗量的關係的圖表。 FIG. 1 is a cross-sectional view schematically showing the reflective electromagnetic wave absorber according to the first embodiment. FIG. 2 is a cross-sectional view schematically showing a reflective electromagnetic wave absorber according to the second embodiment. FIG. 3 is a cross-sectional view schematically showing a reflective electromagnetic wave absorber according to the third embodiment. FIG. 4 is a cross-sectional view schematically showing a reflective electromagnetic wave absorber according to the fourth embodiment. FIG. 5 is a graph showing the return loss characteristics of the electromagnetic wave absorber of Example A1. FIG. 6 is a graph showing the return loss characteristics of the electromagnetic wave absorber of Example A2. FIG. 7 is a graph showing the return loss characteristics of the electromagnetic wave absorber of Example A3. FIG. 8 is a graph showing the return loss characteristics of the electromagnetic wave absorber of Example A4. FIG. 9 is a graph showing the return loss characteristics of the electromagnetic wave absorber of Example A5. FIG. 10 is a graph showing the return loss characteristics of the electromagnetic wave absorber of Example A6. FIG. 11 is a graph showing the return loss characteristics of the electromagnetic wave absorber of Example A7. FIG. 12 is a graph showing the return loss characteristics of the electromagnetic wave absorber of Example A8. FIG. 13 is a graph showing the return loss characteristics of the electromagnetic wave absorber of Example A9. FIG. 14 is a graph showing the return loss characteristics of the electromagnetic wave absorber of Example A10. FIG. 15 is a graph showing the return loss characteristics of the electromagnetic wave absorber of Example A11. FIG. 16 is a graph showing the return loss characteristics of the electromagnetic wave absorber of Example A12. FIG. 17 is a graph showing the return loss characteristics of the electromagnetic wave absorber of Example A13. FIG. 18 is a graph showing the return loss characteristics of the electromagnetic wave absorber of Example A14. FIG. 19 is a graph showing the return loss characteristics of the electromagnetic wave absorber of Example A15. FIG. 20 is a graph showing the return loss characteristics of the electromagnetic wave absorber of Example A16. FIG. 21 is a graph showing the return loss characteristics of the electromagnetic wave absorber of Example A17. FIG. 22 is a graph showing the return loss characteristics of the electromagnetic wave absorber of Example A18. FIG. 23 is a graph showing the return loss characteristics of the electromagnetic wave absorber of Example A19. FIG. 24 is a graph showing the return loss characteristics of the electromagnetic wave absorber of Example A20. FIG. 25 is a graph showing the return loss characteristics of the electromagnetic wave absorber of Example A21. FIG. 26 is a graph showing the return loss characteristics of the electromagnetic wave absorber of Example A22. FIG. 27 is a graph showing the return loss characteristics of the electromagnetic wave absorber of Comparative Example A1. FIG. 28 is a graph showing the return loss characteristics of the electromagnetic wave absorber of Comparative Example A2. FIG. 29 is a graph showing the return loss characteristics of the electromagnetic wave absorber of Comparative Example A3. FIG. 30 is a graph showing the return loss characteristics of the electromagnetic wave absorber of Comparative Example A4. FIG. 31 is a graph showing the return loss characteristics of the electromagnetic wave absorber of Example B1. FIG. 32 is a graph showing the return loss characteristics of the electromagnetic wave absorber of Example B2. FIG. 33 is a graph showing the return loss characteristics of the electromagnetic wave absorber of Example B3. FIG. 34 is a graph showing the return loss characteristics of the electromagnetic wave absorber of Example B4. FIG. 35 is a graph showing the return loss characteristics of the electromagnetic wave absorber of Example B5. FIG. 36 is a graph showing the return loss characteristics of the electromagnetic wave absorber of Example B6. FIG. 37 is a graph showing the return loss characteristics of the electromagnetic wave absorber of Example B7. FIG. 38 is a graph showing the return loss characteristics of the electromagnetic wave absorber of Example B8. FIG. 39 is a graph showing the return loss characteristics of the electromagnetic wave absorber of Example B9. FIG. 40 is a graph showing the return loss characteristics of the electromagnetic wave absorber of Example B10. FIG. 41 is a graph showing the return loss characteristics of the electromagnetic wave absorber of Example B11. FIG. 42 is a graph showing the return loss characteristics of the electromagnetic wave absorber of Example B12. FIG. 43 is a graph showing the return loss characteristics of the electromagnetic wave absorber of Example B13. FIG. 44 is a graph showing the return loss characteristics of the electromagnetic wave absorber of Example B14. FIG. 45 is a graph showing the return loss characteristics of the electromagnetic wave absorber of Example B15. FIG. 46 is a graph showing the return loss characteristics of the electromagnetic wave absorber of Example B16. FIG. 47 is a graph showing the return loss characteristics of the electromagnetic wave absorber of Comparative Example B1. FIG. 48 is a graph showing the return loss characteristics of the electromagnetic wave absorber of Comparative Example B2. FIG. 49 is a graph showing the return loss characteristics of the electromagnetic wave absorber of Comparative Example B3. FIG. 50 is a graph showing the relationship between the imaginary part of the complex dielectric constant of the dielectric layer and the amount of return loss.
無。without.
Claims (15)
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2022-097064 | 2022-06-16 | ||
JP2022-097141 | 2022-06-16 | ||
JP2022097064A JP2023183509A (en) | 2022-06-16 | 2022-06-16 | electromagnetic wave absorber |
JP2022097141 | 2022-06-16 |
Publications (1)
Publication Number | Publication Date |
---|---|
TW202406220A true TW202406220A (en) | 2024-02-01 |
Family
ID=89191150
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW112122345A TW202406220A (en) | 2022-06-16 | 2023-06-15 | electromagnetic wave absorber |
Country Status (2)
Country | Link |
---|---|
TW (1) | TW202406220A (en) |
WO (1) | WO2023243485A1 (en) |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2022107797A1 (en) * | 2020-11-20 | 2022-05-27 | 凸版印刷株式会社 | Designed electromagnetic wave suppressor, construction material equipped with same, electromagnetic wave suppression chamber, and system |
-
2023
- 2023-06-06 WO PCT/JP2023/020961 patent/WO2023243485A1/en unknown
- 2023-06-15 TW TW112122345A patent/TW202406220A/en unknown
Also Published As
Publication number | Publication date |
---|---|
WO2023243485A1 (en) | 2023-12-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR100523192B1 (en) | Gas-barrier films | |
KR101414541B1 (en) | Transparent conducting film and manufacturing method thereof | |
CN110741744A (en) | Electromagnetic wave absorber and molded article with electromagnetic wave absorber | |
JP4924806B2 (en) | Gas barrier laminate | |
TW202406220A (en) | electromagnetic wave absorber | |
KR102301277B1 (en) | Heat insulating film and heat insulating substrate comprising the same | |
WO2014156889A1 (en) | Multilayer film, film roll of same, light-transmitting conductive film obtained from same, and touch panel utilizing said light-transmitting conductive film | |
CN113621280A (en) | Aqueous coating liquid and gas barrier film | |
JP2023183509A (en) | electromagnetic wave absorber | |
Zhang et al. | Adhesion and thermal stability enhancement of IZO films by adding a primer layer on polycarbonate substrate | |
JP2023184463A (en) | electromagnetic wave absorber | |
CN108292541B (en) | Conductive transparent film | |
JP2023167269A (en) | Electromagnetic wave absorber, manufacturing method thereof, and stable communication space | |
TW201522046A (en) | Heat-insulating laminate and composition for forming said heat-insulating laminate | |
WO2023042799A1 (en) | Electromagnetic wave suppressor | |
JP7287069B2 (en) | Transparent conductive gas barrier laminate, manufacturing method thereof, and device | |
WO2023218849A1 (en) | Electromagnetic wave absorption body, production method for same, and communication stabilization space | |
WO2022131298A1 (en) | Method for manufacturing dielectric layer, resin composition, and laminate including dielectric layer | |
EP1405317B1 (en) | Charge-dissipating, white thermal control film, and structures utilizing the thermal control film | |
JP2020049733A (en) | Laminate film, and production method of the same, and packaging container, and production method of the same | |
TWI855376B (en) | Release film | |
KR101212449B1 (en) | Resin coating composition for solar cell module back sheet, solar cell module back sheet, solar cell comprising the same, and fabrication method thereof | |
TW202233050A (en) | Electromagnetic wave shielding body | |
CN115873458A (en) | Aqueous coating liquid, method for producing same, and gas barrier film | |
KR101506085B1 (en) | Nano alloy thin film and manufacturing method thereof |