WO2023042799A1 - Electromagnetic wave suppressor - Google Patents

Electromagnetic wave suppressor Download PDF

Info

Publication number
WO2023042799A1
WO2023042799A1 PCT/JP2022/034072 JP2022034072W WO2023042799A1 WO 2023042799 A1 WO2023042799 A1 WO 2023042799A1 JP 2022034072 W JP2022034072 W JP 2022034072W WO 2023042799 A1 WO2023042799 A1 WO 2023042799A1
Authority
WO
WIPO (PCT)
Prior art keywords
electromagnetic wave
layer
sheet resistance
barrier
suppressor
Prior art date
Application number
PCT/JP2022/034072
Other languages
French (fr)
Japanese (ja)
Inventor
美穂 今井
亮 正田
碩芳 西山
Original Assignee
凸版印刷株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 凸版印刷株式会社 filed Critical 凸版印刷株式会社
Priority to JP2023548459A priority Critical patent/JPWO2023042799A1/ja
Publication of WO2023042799A1 publication Critical patent/WO2023042799A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/02Physical, chemical or physicochemical properties
    • B32B7/023Optical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/02Physical, chemical or physicochemical properties
    • B32B7/025Electric or magnetic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B9/00Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K9/00Screening of apparatus or components against electric or magnetic fields

Definitions

  • the present disclosure relates to electromagnetic wave suppressors.
  • Patent Document 1 discloses a radio wave absorber having a dielectric layer between a resistive film containing ultrafine conductive fibers and a radio wave reflector.
  • Patent Document 2 includes a first layer that is a dielectric layer or a magnetic layer and a conductive layer provided on at least one side of the first layer, and the first layer has a relative dielectric constant of 1 to 10. An electromagnetic wave absorber is disclosed.
  • the surface resistivity of the resistive film in the electromagnetic wave absorber described in Patent Document 1 is adjusted to a predetermined value so as to match the radio wave characteristic impedance of free space. More specifically, in the invention described in Patent Document 1, the amount of carbon nanotubes contained in the resistive film and the thickness of the resistive film are adjusted so that the surface resistivity of the resistive film is in the range of 377 ⁇ 30 ⁇ / ⁇ . etc. is set.
  • an electromagnetic wave suppressor comprising an electromagnetic wave transmission layer for impedance matching and a dielectric layer
  • the present inventors discovered a phenomenon in which the performance of the electromagnetic wave suppressor drops rapidly (return loss is reduced). We encountered a phenomenon of a sharp decline).
  • the main cause was an increase in the sheet resistance value of the electromagnetic wave permeable layer.
  • the electromagnetic wave permeable layer was in direct contact with the dielectric layer, such a phenomenon was likely to occur. I got some insight.
  • the present disclosure has been made in view of the above problems, and provides an electromagnetic wave suppressor capable of maintaining sufficient return loss over a long period of time.
  • the electromagnetic wave suppressor includes, in this order, an electromagnetic wave transmission layer having conductivity, a barrier layer, a dielectric layer containing at least one dielectric compound and a resin component, and a reflector.
  • an electromagnetic wave transmission layer having conductivity
  • a barrier layer between the electromagnetic wave permeable layer and the dielectric layer, for example, the sheet resistance value of the electromagnetic wave permeable layer is prevented from fluctuating (particularly increasing) due to substances contained in the dielectric layer. can be done. Therefore, the electromagnetic wave suppressor can maintain sufficient return loss over a long period of time.
  • an electromagnetic wave suppressor capable of maintaining sufficient return loss over a long period of time.
  • FIG. 1 is a cross-sectional view schematically showing one embodiment of an electromagnetic wave suppressor according to the present disclosure.
  • FIG. 2 is a cross-sectional view schematically showing a modification of the electromagnetic wave suppressor shown in FIG. 3(a) and 3(b) are sectional views schematically showing modifications of the electromagnetic wave suppressor shown in FIGS. 1 and 2, respectively.
  • FIG. 4 is a cross-sectional view schematically showing a configuration including an adhesive layer, which is a modification of the electromagnetic wave suppressor shown in FIG.
  • FIG. 5 is a cross-sectional view schematically showing another embodiment of an electromagnetic wave suppressor according to the present disclosure.
  • FIG. 6 is a cross-sectional view schematically showing another embodiment of an electromagnetic wave suppressor according to the present disclosure.
  • FIG. 1 is a cross-sectional view schematically showing a reflective electromagnetic wave suppressor according to this embodiment.
  • the electromagnetic wave suppressor 10 shown in this figure is in the form of a film or a sheet, and includes a substrate layer 1, an electromagnetic wave transmission layer 2, a barrier layer 3, a dielectric layer 4, and a reflective layer 5 (reflector). It has a laminated structure with an order.
  • the film-like electromagnetic wave suppressor has a total thickness of, for example, 24 to 250 ⁇ m.
  • the sheet-like electromagnetic wave suppressor has a total thickness of 0.25 to 7.1 mm, for example.
  • the base material layer 1 is composed of, for example, a polymer film.
  • materials for the polymer film include polyesters such as polyethylene terephthalate, polybutylene terephthalate and polyethylene naphthalate; polyamides such as nylon; polyolefins such as polypropylene and cycloolefin; polycarbonates; is not limited to
  • the polymer film is preferably a polyester film, a polyamide film or a polyolefin film, more preferably a polyester film or a polyamide film, and even more preferably a polyethylene terephthalate film (PET film).
  • PET film is desirable from the viewpoint of transparency, workability and adhesion.
  • the PET film is preferably a biaxially stretched PET film from the viewpoint of transparency and gas barrier properties.
  • the thickness of the polymer film is not particularly limited, it is preferably 3 ⁇ m or more and 100 ⁇ m or less, more preferably 5 ⁇ m or more and 50 ⁇ m or less. When the thickness is 3 ⁇ m or more, processing is easy, and when the thickness is 100 ⁇ m or less, the total thickness of the electromagnetic wave suppressor can be reduced.
  • the polymer film may contain additives such as an antistatic agent, an ultraviolet absorber, a plasticizer and a slipping agent, if necessary.
  • the surface of the polymer film may be subjected to surface treatments such as corona treatment, flame treatment and plasma treatment.
  • the surface of the substrate layer 1 (polymer film) is the surface to be coated when the electromagnetic wave transmission layer 2 is formed by coating. For example, when the electromagnetic wave permeable layer 2 is transferred to another layer after coating, or when the electromagnetic wave permeable layer 2 is formed by a method other than coating, the electromagnetic wave suppressor 10 does not have the base layer 1. good too.
  • the electromagnetic wave transmission layer 2 is a layer for allowing electromagnetic waves incident from the outside to reach the dielectric layer 4 . That is, the electromagnetic wave transmission layer 2 is a layer for impedance matching according to the environment in which the electromagnetic wave suppressor 10 is used.
  • the sheet resistance value of the electromagnetic wave transmission layer 2 is set in the range of 350 to 600 ⁇ / ⁇ , for example.
  • the electromagnetic wave permeable layer 2 contains a conductive inorganic material or organic material.
  • conductive inorganic materials include indium tin oxide (ITO), indium zinc oxide (IZO), zinc aluminum oxide (AZO), carbon nanotubes, graphene, Ag, Al, Au, Pt, Pd, Cu, Co , Cr, In, Ag—Cu, Cu—Au, and Ni nanoparticles, or nanowires.
  • conductive organic materials include polythiophene derivatives, polyacetylene derivatives, polyaniline derivatives, and polypyrrole derivatives.
  • a conductive polymer containing polyethylenedioxythiophene (PEDOT) is preferable from the viewpoint of flexibility, film formability, stability, and sheet resistance of 377 ⁇ / ⁇ .
  • the electromagnetic wave transmission layer 2 may contain a mixture (PEDOT/PSS) of polyethylenedioxythiophene (PEDOT) and polystyrene sulfonic acid (PPS).
  • the sheet resistance value of the electromagnetic wave permeable layer 2 can be appropriately set, for example, by selecting a conductive organic material and adjusting the film thickness.
  • the thickness (film thickness) of the electromagnetic wave permeable layer 2 is preferably in the range of 0.1 to 2.0 ⁇ m, more preferably in the range of 0.1 to 0.4 ⁇ m.
  • the film thickness is 0.1 ⁇ m or more, it tends to be easy to form a uniform film, and the function of the electromagnetic wave transmitting layer 2 can be more sufficiently achieved.
  • the film thickness is 2.0 ⁇ m or less, sufficient flexibility can be maintained, and cracks in the thin film due to external factors such as bending and pulling after film formation can be more reliably prevented. tend to be able to
  • the sheet resistance value of the electromagnetic wave permeable layer 2 can be measured using, for example, Loresta GP MCP-T610 (trade name, manufactured by Mitsubishi Chemical Analytic Tech Co., Ltd.).
  • the sheet resistance change rate C1 of the electromagnetic wave transmitting layer 2 calculated by the following formula is preferably 60% or less, more preferably 35% or less, and even more preferably 9% or less.
  • Sheet resistance change rate C 1 [%] (R 1 ⁇ R 0 )/R 0 ⁇ 100
  • R 1 indicates the sheet resistance value of the electromagnetic wave permeable layer 2 after exposing the electromagnetic wave suppressor 10 to an environment with a temperature of 85° C. and a relative humidity of 85% for 24 hours; The sheet resistance value of the electromagnetic wave permeable layer 2 before exposing the suppressor 10 is shown. ]
  • the sheet resistance change rate C2 of the electromagnetic wave permeable layer 2 calculated by the following formula is preferably 9% or less, more preferably 6% or less, and even more preferably 2.5% or less.
  • Sheet resistance change rate C 2 [%] (R 2 ⁇ R 0 )/R 0 ⁇ 100
  • R 2 represents the sheet resistance value of the electromagnetic wave permeable layer 2 after the electromagnetic wave suppressor 10 has been exposed to an environment with a temperature of 85° C. and a relative humidity of 85% for 500 hours
  • R 0 represents the The sheet resistance value of the electromagnetic wave permeable layer 2 before exposing the suppressor 10 is shown.
  • the barrier layer 3 is provided between the electromagnetic wave permeable layer 2 and the dielectric layer 4 .
  • the barrier layer 3 plays a role of suppressing a change in the sheet resistance value of the electromagnetic wave transmission layer 2 due to substances contained in the dielectric layer 4 . It is also presumed that it also plays a role in suppressing changes in the sheet resistance value of the electromagnetic wave permeable layer 2 due to gases (for example, carbon dioxide) that may be generated from the dielectric layer 4 .
  • the sheet resistance value of the barrier layer 3 is preferably sufficiently high, for example, 1.0 ⁇ 10 6 ⁇ / ⁇ or more. By setting the sheet resistance value of the barrier layer 3 to 1.0 ⁇ 10 6 ⁇ / ⁇ or more, it is possible to suppress reflection of the electromagnetic waves incident from the electromagnetic wave transmission layer 2 on the surface of the barrier layer 3 .
  • the oxygen permeability of the barrier layer 3 is preferably 4.0 ⁇ 10 2 cc/(m 2 ⁇ day ⁇ atm) or less, more preferably 1.0 ⁇ 10 1 cc/(m 2 ⁇ day ⁇ atm). or less, more preferably 1.0 ⁇ 10 ⁇ 1 cc/(m 2 ⁇ day ⁇ atm) or less.
  • Oxygen permeability means a value measured under conditions of temperature of 30° C. and relative humidity of 70% according to the method described in JIS K7126-2.
  • the water vapor permeability of the barrier layer 3 is preferably 1.0 ⁇ 10 2 g/m 2 /day or less, more preferably 1.0 ⁇ 10 1 g/m 2 /day or less, still more preferably 2 .0 ⁇ 10 ⁇ 1 g/m 2 /day or less.
  • the water vapor permeability means a value measured under conditions of a temperature of 40°C and a relative humidity of 90% according to the method described in JIS K7129B.
  • the barrier layer 3 of this embodiment has a laminated structure including a base film 3a and a vapor deposition layer 3b.
  • the vapor deposition layer 3b is provided on one surface of the base film 3a.
  • the electromagnetic wave permeable layer 2 the base film 3a, the deposited layer 3b and the dielectric layer 4 are arranged in this order.
  • a vapor deposition layer 3b may be formed on the surface of the base film 3a on the electromagnetic wave transmission layer 2 side.
  • the electromagnetic wave permeable layer 2, the deposited layer 3b, the substrate film 3a and the dielectric layer 4 may be arranged in this order.
  • the base film 3a is composed of a polymer film. Specific examples thereof include those exemplified in the description of the base material layer 1 .
  • a vacuum deposition method, a sputtering method, or a PECVD method can be used as a method for forming the deposition layer 3b.
  • the vacuum deposition method include a resistance heating vacuum deposition method, an electron beam heating vacuum deposition method, and an induction heating vacuum deposition method.
  • Examples of the sputtering method include a reactive sputtering method and a dual magnetron sputtering method.
  • the sputtering method is preferred from the viewpoint of film uniformity, and the vacuum deposition method is preferred from the viewpoint of cost, and can be selected according to the purpose and application.
  • the thickness of the base film 3a is, for example, 9-50 ⁇ m, preferably 12-30 ⁇ m. If the thickness is 9 ⁇ m or more, the strength of the base film 3a tends to be sufficiently secured. It tends to be possible to manufacture
  • vapor deposition layer 3b is preferably 5 nm or more and 100 nm or less. When the thickness of the deposited layer 3b is 5 nm or more, there is a tendency that better barrier properties can be obtained.
  • the thickness is 100 nm or less, the occurrence of cracks tends to be suppressed, and deterioration of the water vapor barrier properties and oxygen barrier properties due to cracks can be suppressed.
  • the cost can be reduced due to the reduction in the amount of material used and the shortening of the film formation time, which is preferable from an economic point of view.
  • the barrier layer 3 may have a laminated structure including a substrate film 3a, a vapor deposition layer 3b, and a barrier coating layer 3c in this order.
  • the barrier coating layer 3c is provided so as to cover the deposition layer 3b.
  • the barrier coating layer 3c is provided to prevent various secondary damages in the post-process and to impart high barrier properties.
  • the thickness of the barrier coating layer 3c is preferably 50-2000 nm, more preferably 100-1000 nm. When the thickness of the barrier coating layer 3c is 50 nm or more, film formation tends to be easier, while when it is 2000 nm or less, cracking or curling tends to be suppressed.
  • the barrier coating layer 3c may contain siloxane bonds.
  • a compound containing a siloxane bond is preferably formed, for example, by reacting a silanol group with a silane compound.
  • silane compounds include compounds represented by the following formula (1).
  • n represents an integer of 0 to 3
  • R 1 and R 2 each independently represents a hydrocarbon group, preferably an alkyl group having 1 to 4 carbon atoms.
  • Examples of the compound represented by the formula (1) include tetramethoxysilane, tetraethoxysilane, tetrapropoxysilane, tetrabutoxysilane, methyltrimethoxysilane, methyltriethoxysilane, dimethyldimethoxysilane, and dimethyldiethoxysilane. etc. Polysilazanes containing nitrogen may also be used.
  • Compounds containing Ti atoms include, for example, compounds represented by the following formula (2).
  • R 1 n (OR 2 ) 4-n Ti (2) [In the formula, n represents an integer of 0 to 3, R 1 and R 2 each independently represents a hydrocarbon group, preferably an alkyl group having 1 to 4 carbon atoms. ] Examples of the compound represented by formula (2) include tetramethoxytitanium, tetraethoxytitanium, tetraisopropoxytitanium, tetrabutoxytitanium, and the like.
  • Compounds containing Al atoms include, for example, compounds represented by the following formula (3).
  • R 1 m (OR 2 ) 3-m Al (3) [In the formula, m represents an integer of 0 to 2, R 1 and R 2 each independently represents a hydrocarbon group, preferably an alkyl group having 1 to 4 carbon atoms. ]
  • Examples of the compound represented by formula (3) include trimethoxyaluminum, triethoxyaluminum, triisopropoxyaluminum, and tributoxyaluminum.
  • Compounds containing Zr atoms include, for example, compounds represented by the following formula (4).
  • R 1 n (OR 2 ) 4-n Zr (4) [In the formula, n represents an integer of 0 to 3, R 1 and R 2 each independently represents a hydrocarbon group, preferably an alkyl group having 1 to 4 carbon atoms. ]
  • Examples of the compound represented by the formula (4) include tetramethoxyzirconium, tetraethoxyzirconium, tetraisopropoxyzirconium, and tetrabutoxyzirconium.
  • the barrier coating layer 3c can also be formed in the air.
  • a polar compound such as polyvinyl alcohol, polyvinylpyrrolidone, or ethylene vinyl alcohol
  • a chlorine-containing compound such as polyvinylidene chloride, a Si atom-containing compound
  • It can be formed by applying a coating liquid containing a compound containing a Ti atom, a compound containing an Al atom, a compound containing a Zr atom, or the like on the vapor deposition layer 3b, followed by drying and curing.
  • the coating liquid When the barrier coating layer 3c is formed in the atmosphere, the coating liquid may be applied using, for example, a gravure coater, a dip coater, a reverse coater, a wire bar coater, or a die coater. After being applied, the coating liquid is cured.
  • the curing method is not particularly limited, but includes ultraviolet curing, heat curing, and the like. In the case of UV curing, the coating liquid may contain a polymerization initiator and a compound having a double bond. Moreover, heat aging may be performed as needed.
  • particles of inorganic oxides such as magnesium, calcium, zinc, aluminum, silicon, titanium, and zirconium are dehydrated via phosphorus atoms derived from phosphorus compounds.
  • a method of using a reaction product obtained by condensation as a barrier coating layer is exemplified.
  • the functional group e.g., hydroxyl group
  • the site of the phosphorus compound that can react with the inorganic oxide e.g., a halogen atom directly bonded to the phosphorus atom or a bonded oxygen atoms
  • the reaction product is obtained, for example, by applying a coating liquid containing an inorganic oxide and a phosphorus compound to the surface of the vapor deposition layer 3b and heat-treating the formed coating film, whereby the particles of the inorganic oxide are derived from the phosphorus compound. It is obtained by proceeding a reaction that bonds through the phosphorus atom.
  • the lower limit of the heat treatment temperature is 110° C. or higher, preferably 120° C. or higher, more preferably 140° C. or higher, and even more preferably 170° C. or higher. When the heat treatment temperature is low, it becomes difficult to obtain a sufficient reaction rate, which causes a decrease in productivity.
  • a preferable upper limit of the temperature of the heat treatment is 220° C. or less, and preferably 190° C. or less, though it varies depending on the type of substrate.
  • the heat treatment can be performed in air, under a nitrogen atmosphere, under an argon atmosphere, or the like.
  • the coating liquid may further contain a resin as long as it does not aggregate.
  • the resins include acrylic resins and polyester resins.
  • the coating liquid preferably contains a resin having high compatibility with other materials in the coating liquid.
  • the coating liquid may further contain a filler, a leveling agent, an antifoaming agent, an ultraviolet absorber, an antioxidant, a silane coupling agent, a titanium chelating agent, and the like, if necessary.
  • the dielectric layer 4 is a layer for causing interference between incident electromagnetic waves and reflected electromagnetic waves.
  • the thickness and the like of the dielectric layer 4 are set so as to satisfy the conditions represented by the following formula.
  • d ⁇ /(4( ⁇ r ) 1/2 )
  • indicates the wavelength (unit: m) of the electromagnetic wave to be suppressed
  • ⁇ r is the dielectric constant of the material forming the dielectric layer 4
  • d is the thickness (unit: m) of the dielectric layer 4. show. Reflection attenuation is obtained by shifting the phase of the incident electromagnetic wave and the phase of the reflected electromagnetic wave by ⁇ .
  • the dielectric layer 4 is made of a resin composition with a dielectric constant higher than 10.0 at a frequency of 3.7 GHz.
  • a dielectric constant of the dielectric layer 4 is higher than 10.0, as described above, excellent absorption performance (preferably -15 dB, more preferably -20 dB) can be achieved in a specific frequency band.
  • the relative dielectric constant of the dielectric layer 4 at a frequency of 3.7 GHz is preferably higher than 10.0 and 30.0 or less, more preferably higher than 10.0 and 20.0 or less.
  • Dielectric layer 4 having a dielectric constant of 30.0 or less at a frequency of 3.7 GHz tends to be able to form dielectric layer 4 having sufficient strength. For example, blending an excessive amount of a dielectric compound into the dielectric layer 4 in order to increase the dielectric constant of the dielectric layer 4 tends to make the dielectric layer 4 brittle.
  • the thickness of the dielectric layer 4 may be appropriately set depending on the frequency band and relative permittivity. For example, assuming use in the 60 GHz, 76 GHz or 90 GHz band of millimeter wave radar, the thickness of the dielectric layer 4 is preferably 100 to 400 ⁇ m, more preferably 250 to 400 ⁇ m.
  • the thickness of the dielectric layer 4 is preferably 450 to 7000 ⁇ m, more preferably 800 to 6500 ⁇ m.
  • the thickness of the dielectric layer 4 is preferably is 20-80 ⁇ m, more preferably 50-80 ⁇ m.
  • the resin composition that constitutes the dielectric layer 4 contains at least one kind of dielectric compound and a resin component.
  • the dielectric constant of the dielectric layer 4 can be adjusted according to the selection and content of the dielectric compound in the resin composition.
  • the content of the dielectric compound is preferably 10 to 300 parts by volume, more preferably 25 to 100 parts by volume, with respect to 100 parts by volume of the resin composition.
  • the content of the dielectric compound is preferably 10 to 900 parts by mass, more preferably 25 to 100 parts by mass, based on 100 parts by mass of the resin composition.
  • Dielectric compounds include metal compounds such as barium titanate, titanium oxide and zinc oxide. Preferred embodiments of the dielectric compound are powders (eg, nanoparticles).
  • the relative permittivity of the dielectric compound is preferably higher than that of the resin component.
  • the relative permittivity of the dielectric compound at a frequency of 3.7 GHz is preferably higher than 10 and 5,000 or less, more preferably 100 to 5,000, still more preferably 1,000 to 5,000.
  • resin components include acrylic resins, methacrylic resins, silicone resins, polycarbonates, epoxy resins, cribtal resins, polyvinyl chloride, polyvinyl formal, phenolic resins, urea resins, and polychloroprene resins.
  • the dielectric constant of the resin component at a frequency of 3.7 GHz is preferably 2.5 to 9.5, more preferably 3.5 to 9.5, still more preferably 5.0 to 9.5. .
  • the resin composition preferably has stickiness. Thereby, the dielectric layer 4 can be efficiently attached to the surface of the reflective layer 5 .
  • examples of such materials include silicone adhesives, acrylic adhesives, and urethane adhesives. These materials may be used as the resin component, or an adhesive layer made of these materials may be formed on at least one surface of the dielectric layer 4 .
  • the adhesive strength of the resin composition itself or the adhesive layer to a stainless steel 304 steel plate is preferably 1.0 N/25 mm or more, even if it is 3.0 to 10.0 N/25 mm or 10.0 to 15.0 N/25 mm. good.
  • an adhesive layer 6 may be arranged between the electromagnetic wave transmission layer 2 and the barrier layer 3 as shown in FIG.
  • the thickness of the adhesive layer 6 is, for example, 1-120 ⁇ m, preferably 10-30 ⁇ m. When the thickness of the adhesive layer 6 is 10 ⁇ m or more, sufficient adhesion tends to be ensured.
  • the reflective layer 5 is a layer for reflecting electromagnetic waves incident from the dielectric layer 4 to reach the dielectric layer 4 .
  • the thickness of the reflective layer 5 is, for example, 4-250 ⁇ m, and may be 4-12 ⁇ m or 50-100 ⁇ m.
  • the reflective layer 5 is made of, for example, a conductive material with a sheet resistance of 100 ⁇ / ⁇ or less.
  • a conductive material with a sheet resistance of 100 ⁇ / ⁇ or less.
  • Such materials may be inorganic or organic.
  • Inorganic materials having conductivity include, for example, indium tin oxide (ITO), indium zinc oxide (IZO), zinc aluminum oxide (AZO), carbon nanotubes, graphene, Ag, Al, Au, Pt, Pd, Cu, Co, Cr , In, Ag—Cu, Cu—Au, and Ni nanoparticles, or nanowires.
  • conductive organic materials include polythiophene derivatives, polyacetylene derivatives, polyaniline derivatives, and polypyrrole derivatives.
  • a conductive inorganic material or organic material may be formed on the substrate.
  • Al-deposited PET film comprising a PET film and an aluminum layer deposited on its surface (Al-deposited PET film) as a reflective layer.
  • the electromagnetic wave suppressor 10 is manufactured through the following steps, for example. First, a laminate of the substrate layer 1 and the electromagnetic wave permeable layer 2 is produced by roll-to-roll. Moreover, the barrier layer 3 or the laminated body containing this is produced by roll to roll. Furthermore, a laminate including the dielectric layer 4 is produced by roll-to-roll. After laminating these laminates on the reflective layer 5, the electromagnetic wave suppressor 10 is obtained by cutting into a predetermined size. A roll-shaped laminate including the dielectric layer 4 is produced through (A) the step of preparing the resin composition and (B) the step of forming the dielectric layer 4 from the resin composition by roll-to-roll. manufactured.
  • the electromagnetic wave suppressor 10 can be manufactured by roll-to-roll because the thickness of the dielectric layer 4 is sufficiently thin.
  • the frequency band to be applied is low (for example, less than 28 GHz)
  • the dielectric layer 4 can be formed, for example, by extrusion. That is, the manufacturing method may be appropriately selected according to the frequency band to be applied (in other words, the thickness of the dielectric layer).
  • the electromagnetic wave suppressor 10 by providing the barrier layer 3 between the electromagnetic wave transmitting layer 2 and the dielectric layer 4, the sheet resistance value of the electromagnetic wave transmitting layer 2 is reduced due to the substance contained in the dielectric layer 4. Fluctuation can be suppressed. Therefore, the electromagnetic wave suppressor 10 can maintain sufficient return loss over a long period of time.
  • the electromagnetic wave suppressor 20 shown in FIG. 5 includes a substrate layer 1, an electromagnetic wave transmitting layer 2, a single-layer barrier layer 13, a dielectric layer 4, and a reflective layer 5 in this order.
  • the barrier layer 13 is composed of, for example, a polymer film. Specific examples thereof include those exemplified in the description of the base material layer 1 .
  • polymer films it is preferable to use, as the barrier layer 13, those having excellent gas barrier properties (for example, PET film and polypropylene film).
  • the thickness of the polymer film is, for example, 5-50 ⁇ m, and may be 12-30 ⁇ m.
  • the barrier layer 13 may be composed of an adhesive.
  • the thickness of the adhesive layer is, for example, 10-50 ⁇ m, and may be 100-500 ⁇ m. From the viewpoint of maintaining the sheet resistance value of the electromagnetic wave permeable layer 2, it is preferable to use a silicone adhesive, an acrylic adhesive, or a urethane adhesive as the adhesive.
  • the single-layer barrier layer 13 does not necessarily have to have high gas barrier properties.
  • the water vapor permeability of the barrier layer 13 may be, for example, 4.0 ⁇ 10 2 g/m 2 /day or less.
  • the electromagnetic wave suppressor may have an adhesive layer.
  • the electromagnetic wave suppressor 30 shown in FIG. 6 includes a base layer 1, an electromagnetic wave transmission layer 2, an adhesive layer 6, a base film 3a, a vapor deposition layer 3b, a barrier coating layer 3c, an adhesive layer 7, A dielectric layer 4, an adhesive layer 8 and a reflective layer 5 are provided in this order.
  • the adhesive layer 7 bonds the barrier coating layer 3c and the dielectric layer 4 together.
  • the adhesive layer 8 bonds the dielectric layer 4 and the reflective layer 5 together.
  • Examples of adhesives constituting the adhesive layer include acrylic adhesives, silicone adhesives, polyolefin adhesives, urethane adhesives, polyvinyl ether adhesives, and the like.
  • the thickness of the adhesive layer is, for example, 0.5-50 ⁇ m, and may be 1-20 ⁇ m or 2-6 ⁇ m.
  • the adhesive constituting the adhesive layer may have oxygen barrier properties.
  • the oxygen permeability of the adhesive layer is, for example, 1000 cc/(m 2 ⁇ day ⁇ atm) or less in the thickness direction at a thickness of 5 ⁇ m.
  • the oxygen permeability is preferably 500 cc/(m 2 ⁇ day ⁇ atm) or less, more preferably 100 cc/(m 2 ⁇ day ⁇ atm) or less, and 50 cc/(m 2 ⁇ day ⁇ atm) or less. is more preferably 10 cc/(m 2 ⁇ day ⁇ atm) or less.
  • the adhesive layer has an oxygen barrier property, even if the barrier layer 3 has a defect, it can be compensated for.
  • the lower limit of oxygen permeability is not particularly limited, it is, for example, 0.1 cc/(m 2 ⁇ day ⁇ atm).
  • the film-like or sheet-like electromagnetic wave suppressor 10 and its modification were exemplified, but the shape of the electromagnetic wave suppressor is not limited to this.
  • the reflecting layer 5 is used as a structure (reflector) for reflecting electromagnetic waves, but the structure of the reflector may not be layered as long as it can reflect electromagnetic waves.
  • the electromagnetic wave suppressor may be sandwiched between films having gas barrier properties, or the electromagnetic wave suppressor may be housed and sealed in a packaging bag having gas barrier properties.
  • This disclosure relates to: [1] an electromagnetic wave transmission layer having electrical conductivity; a barrier layer; a dielectric layer containing at least one dielectric compound and a resin component; a reflector; in that order.
  • the electromagnetic wave transmission layer contains a conductive polymer, The electromagnetic wave suppressor according to [1], wherein the dielectric compound is at least one of titanium oxide and barium titanate.
  • the barrier layer includes a substrate film and an oxide deposition layer provided on one surface of the substrate film.
  • the barrier layer further includes a barrier coating layer provided to cover the vapor deposition layer.
  • the barrier layer includes at least one of a polymer film and an adhesive layer.
  • the barrier layer has a water vapor permeability of 4.0 ⁇ 10 2 g/m 2 /day or less.
  • the electromagnetic wave permeable layer has a sheet resistance change rate C1 calculated by the following formula of 60% or less.
  • Sheet resistance change rate C 1 [%] (R 1 ⁇ R 0 )/R 0 ⁇ 100
  • R 1 represents the sheet resistance value of the electromagnetic wave permeable layer after exposing the electromagnetic wave suppressor to an environment with a temperature of 85° C. and a relative humidity of 85% for 24 hours
  • R 0 represents the The sheet resistance value of the electromagnetic wave permeable layer before exposing the electromagnetic wave suppressor is shown.
  • [8] The electromagnetic wave suppressor according to any one of [1] to [7], wherein the electromagnetic wave permeable layer has a sheet resistance change rate C2 calculated by the following formula of 9% or less.
  • Sheet resistance change rate C 2 [%] (R 2 ⁇ R 0 )/R 0 ⁇ 100
  • R 2 represents the sheet resistance value of the electromagnetic wave permeable layer after exposing the electromagnetic wave suppressor to an environment of 85° C. and 85% relative humidity for 500 hours
  • R 0 represents the The sheet resistance value of the electromagnetic wave permeable layer before exposing the electromagnetic wave suppressor is shown.
  • Example 1 An electromagnetic wave transmitting layer (thickness: 440 nm) of (B1) PEDOT/PSS was formed by coating on the surface of the biaxially stretched PET film.
  • a barrier layer was prepared by forming (C2) a barrier coating layer (thickness: 400 nm) on the surface (alumina-deposited surface) of (C1) an alumina-deposited PET film.
  • C4 a silicone adhesive, (B1) the PEDOT/PSS electromagnetic wave transmission layer and (C1) the surface (PET surface) of alumina-deposited PET were laminated with a laminator.
  • the thickness of the silicone adhesive layer was 10 ⁇ m.
  • a composition having the following composition was prepared to form a dielectric layer.
  • Example 2 This experiment was carried out in the same manner as in Example 1, except that (C3) a biaxially stretched PET film (thickness: 12 ⁇ m) was used as the barrier layer instead of forming the barrier layer with (C1) and (C2). An electromagnetic wave suppressor (thickness: 429 ⁇ m) according to the example was produced (see FIG. 4).
  • Example 3 Instead of forming a barrier layer with (C1) and (C2), a layer (C4) of silicone pressure-sensitive adhesive (thickness: 10 ⁇ m) was formed as a barrier layer on the surface of (B1) PEDOT/PSS electromagnetic wave transmission layer. Thereafter, an electromagnetic wave suppressor (thickness: 427 ⁇ m) according to this example was produced in the same manner as in Example 1, except that the barrier layer and the dielectric layer were laminated by a laminator (see FIG. 5).
  • Example 4 An electromagnetic wave suppressor (thickness: 429 ⁇ m) according to this example was produced in the same manner as in Example 1, except that the direction of the barrier layer was reversed.
  • the layer structure of this electromagnetic wave suppressor is the same as that of the electromagnetic wave suppressor shown in FIG. 3(b) except that an adhesive layer is formed between the electromagnetic wave transmission layer and the barrier coating layer.
  • Example 5 (Example 5) (B1) Instead of forming an electromagnetic wave-transmitting layer of a mixture (PEDOT/PSS) of polyethylenedioxythiophene (PEDOT) and polystyrene sulfonic acid (PPS), (B2) forming an electromagnetic wave-transmitting layer of a polyaniline derivative.
  • An electromagnetic wave suppressor (thickness: 429 ⁇ m) according to this example was produced in the same manner as in Example 1 (see FIG. 3(a)).
  • Example 6 (Example 6)
  • a layer of (B3) indium tin oxide (ITO) is formed by a sputtering method.
  • An electromagnetic wave suppressor (thickness: 429 ⁇ m) according to this example was produced in the same manner as in Example 1, except that it was formed (see FIG. 3A).
  • Example 7 An electromagnetic wave transmitting layer (thickness: 440 nm) of (B1) PEDOT/PSS was formed by coating on the surface of the biaxially stretched PET film.
  • a barrier layer was prepared by forming (C2) a barrier coating layer (thickness: 400 nm) on the surface (alumina-deposited surface) of (C1) an alumina-deposited PET film.
  • C4 a silicone adhesive, (B1) the PEDOT/PSS electromagnetic wave transmission layer and (C1) the surface (PET surface) of alumina-deposited PET were laminated with a laminator.
  • the thickness of the silicone adhesive layer was 10 ⁇ m.
  • a composition having the following composition was mixed, melted, kneaded, extruded, cooled, and cut to prepare a masterbatch.
  • a dielectric layer (thickness: 325 ⁇ m) is formed through a process of rolling a masterbatch containing this composition with a calendar molding machine. bottom.
  • a composition having the following composition was prepared.
  • Example 8 A composition having the following composition was prepared to form a dielectric layer.
  • An electromagnetic wave suppressor (thickness: 429 ⁇ m) according to this example was produced in the same manner as in Example 1, except that a dielectric layer (thickness: 345 ⁇ m) was formed through a drying step (FIG. 3). (a)).
  • Example 9 A composition having the following composition was prepared to form a dielectric layer.
  • An electromagnetic wave suppressor (thickness: 464 ⁇ m) according to this example was produced in the same manner as in Example 1, except that a dielectric layer (thickness: 380 ⁇ m) was formed through a drying step (see FIG. 3 ( a) see).
  • Example 10 A composition having the following composition was prepared to form a dielectric layer.
  • D1 Zinc oxide powder: 69 parts by mass
  • D2 Acrylic resin: 31 parts by mass
  • An electromagnetic wave suppressor (thickness: 470 ⁇ m) according to this example was produced in the same manner as in Example 1, except that a dielectric layer (thickness: 350 ⁇ m) was formed through a drying step (see FIG. 3 ( a) see).
  • Example 11 An electromagnetic wave suppressor (thickness: 830 ⁇ m) according to this example was produced in the same manner as in Example 7, except that a dielectric layer (thickness: 710 ⁇ m) was formed (see FIG. 6).
  • Comparative example 1 Electromagnetic wave suppression according to Comparative Example 1 in the same manner as in Example 1, except that no barrier layer is arranged between the electromagnetic wave permeable layer and the dielectric layer, and the electromagnetic wave permeable layer is in direct contact with the dielectric layer. A body (thickness: 407 ⁇ m) was produced.
  • Comparative example 2 Electromagnetic wave suppression according to Comparative Example 2 in the same manner as in Example 5, except that no barrier layer was arranged between the electromagnetic wave permeable layer and the dielectric layer, and the electromagnetic wave permeable layer was in direct contact with the dielectric layer. A body (thickness: 407 ⁇ m) was produced.
  • Comparative Example 3 Electromagnetic wave suppression according to Comparative Example 3 in the same manner as in Example 6, except that no barrier layer was arranged between the electromagnetic wave permeable layer and the dielectric layer, and the electromagnetic wave permeable layer was in direct contact with the dielectric layer. A body (thickness: 407 ⁇ m) was produced.
  • Comparative Example 4 Electromagnetic wave suppression according to Comparative Example 4 in the same manner as in Example 8, except that no barrier layer was arranged between the electromagnetic wave permeable layer and the dielectric layer, and the electromagnetic wave permeable layer was in direct contact with the dielectric layer. A body (thickness: 407 ⁇ m) was produced.
  • Comparative Example 5 Electromagnetic wave suppression according to Comparative Example 5 in the same manner as in Example 9, except that no barrier layer was arranged between the electromagnetic wave permeable layer and the dielectric layer, and the electromagnetic wave permeable layer was in direct contact with the dielectric layer. A body (thickness: 407 ⁇ m) was produced.
  • Comparative Example 6 Electromagnetic wave suppression according to Comparative Example 6 in the same manner as in Example 10, except that no barrier layer was arranged between the electromagnetic wave permeable layer and the dielectric layer, and the electromagnetic wave permeable layer was in direct contact with the dielectric layer. A body (thickness: 407 ⁇ m) was produced.
  • the electromagnetic wave suppressors according to the examples and the comparative examples and the layers constituting the same were evaluated as follows. Results are shown in Tables 5-8.
  • OTR oxygen transmission rate of Barrier Layer
  • the oxygen transmission rate (OTR) of the barrier layer was measured using an oxygen transmission rate measuring device (manufactured by MOCON, trade name: OX-TRAN) at a temperature of 30° C. and a relative humidity of 70%. It was measured in accordance with JIS K-7126-2 under conditions.
  • the unit of oxygen permeability is [cc/(m 2 ⁇ day ⁇ atm)].
  • the water vapor transmission rate (WVTR) of the barrier layer was measured using a water vapor transmission rate measuring device (manufactured by MOCON, trade name: PERMATRAN 3/31) at a temperature of 40 ° C. and a relative humidity of 90%. It was measured in accordance with JIS K-7129 under conditions.
  • the unit of water vapor permeability is [g/m 2 /day].
  • the sheet resistance change rate was negative in some cases.
  • the main reason for this is presumed to be the additives contained in the mixture (B). That is, in addition to PEDOT/PSS, the mixture of (B) is added with an anti-deterioration agent and the like. drop) vector and present. It is presumed that in some examples, the action of the anti-deterioration agent became dominant, the vector of sheet resistance decrease became relatively large, and the rate of change became negative. According to studies by the present inventors, the reliability of the electromagnetic wave suppressor can be ensured unless the sheet resistance change rate is less than ⁇ 40% (absolute value is greater than 40%).
  • a return loss of the electromagnetic wave suppressor after being exposed to an environment with a temperature of 85° C. and a relative humidity of 85% for 24 hours was measured using the following equipment.
  • the electromagnetic wave suppressors according to Examples 1 and 4 were also measured for return loss after being exposed to an environment with a temperature of 85° C. and a relative humidity of 85% for 500 hours.
  • an electromagnetic wave suppressor capable of maintaining sufficient return loss over a long period of time.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Laminated Bodies (AREA)

Abstract

An electromagnetic wave suppressor according to the present disclosure is equipped, in this order, with a conductive electromagnetic wave-transmitting layer, a barrier layer, a dielectric layer which contains one or more types of dielectric compound and resin component, and a reflective body. A metallic compound thereof is, for example, titanium oxide and/or barium titanate. The barrier layer thereof contains, for example, a substrate film and an oxide deposition layer provided on one surface of the substrate film, and may also contain a barrier coating layer provided so as to cover the deposition layer.

Description

電磁波抑制体electromagnetic wave suppressor
 本開示は電磁波抑制体に関する。 The present disclosure relates to electromagnetic wave suppressors.
 近年、急速な情報量の増加や移動体の高速化、自動運転、IoT(Internet of Things)の実用化に向け、各々に対応できる通信、レーダー、セキュリティ用のスキャナ等の需要が益々高まっている。これに伴い、5G、ミリ波、テラヘルツ波を活用した次世代の電磁波を用いた高速無線通信方式に関する技術が急速に進んでいる。 In recent years, the demand for communication, radar, security scanners, etc. that can respond to each of the rapid increase in the amount of information, the speeding up of mobile vehicles, automatic driving, and the practical application of IoT (Internet of Things) is increasing. . Along with this, technologies related to high-speed wireless communication systems using next-generation electromagnetic waves such as 5G, millimeter waves, and terahertz waves are progressing rapidly.
 電磁波を利用した製品は、他の電子機器から発生する電磁波と干渉し、誤作動を引き起こすことがある。これを防止するための手段としてλ/4型と称される反射型の電磁波吸収体が知られている。特許文献1には、極細導電繊維を含んだ抵抗膜と電波反射体との間に誘電体層を備えた電波吸収体が開示されている。特許文献2には、誘電体層又は磁性体層である第一層と、この第一層の少なくとも片側に設けられた導電層とを備え、第一層の比誘電率が1~10である電磁波吸収体が開示されている。 Products that use electromagnetic waves may interfere with electromagnetic waves generated by other electronic devices and cause malfunctions. As means for preventing this, a reflective electromagnetic wave absorber called λ/4 type is known. Patent Document 1 discloses a radio wave absorber having a dielectric layer between a resistive film containing ultrafine conductive fibers and a radio wave reflector. Patent Document 2 includes a first layer that is a dielectric layer or a magnetic layer and a conductive layer provided on at least one side of the first layer, and the first layer has a relative dielectric constant of 1 to 10. An electromagnetic wave absorber is disclosed.
特開2005-311330号公報Japanese Patent Application Laid-Open No. 2005-311330 国際公開第2018/230026号WO2018/230026
 特許文献1に記載の電磁波吸収体における抵抗膜は、自由空間の電波特性インピーダンスに合致するように表面抵抗率が所定の値に調整されている。より具体的には、特許文献1に記載の発明においては、抵抗膜の表面抵抗率が377±30Ω/□の範囲となるように、抵抗膜に含有させるカーボンナノチューブの量、抵抗膜の厚さなどを設定している。 The surface resistivity of the resistive film in the electromagnetic wave absorber described in Patent Document 1 is adjusted to a predetermined value so as to match the radio wave characteristic impedance of free space. More specifically, in the invention described in Patent Document 1, the amount of carbon nanotubes contained in the resistive film and the thickness of the resistive film are adjusted so that the surface resistivity of the resistive film is in the range of 377±30Ω/□. etc. is set.
 本発明者らは、インピーダンスマッチングのための電磁波透過層と、誘電体層とを備える電磁波抑制体の耐久性を評価する過程において、電磁波抑制体の性能が急激に低下する現象(反射減衰量が急激に低下する現象)に遭遇した。この原因を検討した結果、電磁波透過層のシート抵抗値の増大が主因であると推察され、特に、電磁波透過層が誘電体層と直接接しているときに、このような現象が生じやすいとの知見を得た。 In the process of evaluating the durability of an electromagnetic wave suppressor comprising an electromagnetic wave transmission layer for impedance matching and a dielectric layer, the present inventors discovered a phenomenon in which the performance of the electromagnetic wave suppressor drops rapidly (return loss is reduced). We encountered a phenomenon of a sharp decline). As a result of investigating the cause, it was inferred that the main cause was an increase in the sheet resistance value of the electromagnetic wave permeable layer. In particular, when the electromagnetic wave permeable layer was in direct contact with the dielectric layer, such a phenomenon was likely to occur. I got some insight.
 本開示は、上記課題に鑑みてなされたものであり、十分な反射減衰量を長期にわたって維持できる電磁波抑制体を提供する。 The present disclosure has been made in view of the above problems, and provides an electromagnetic wave suppressor capable of maintaining sufficient return loss over a long period of time.
 本開示に係る電磁波抑制体は、導電性を有する電磁波透過層と、バリア層と、少なくとも一種の誘電性化合物と樹脂成分とを含有する誘電体層と、反射体とをこの順序で備える。電磁波透過層と誘電体層の間にバリア層を設けたことで、例えば、誘電体層に含まれる物質に起因して電磁波透過層のシート抵抗値が変動(特に上昇)することを抑制することができる。このため、上記電磁波抑制体は十分な反射減衰量を長期にわたって維持することができる。 The electromagnetic wave suppressor according to the present disclosure includes, in this order, an electromagnetic wave transmission layer having conductivity, a barrier layer, a dielectric layer containing at least one dielectric compound and a resin component, and a reflector. By providing a barrier layer between the electromagnetic wave permeable layer and the dielectric layer, for example, the sheet resistance value of the electromagnetic wave permeable layer is prevented from fluctuating (particularly increasing) due to substances contained in the dielectric layer. can be done. Therefore, the electromagnetic wave suppressor can maintain sufficient return loss over a long period of time.
 本開示によれば、十分な反射減衰量を長期にわたって維持できる電磁波抑制体が提供される。 According to the present disclosure, an electromagnetic wave suppressor capable of maintaining sufficient return loss over a long period of time is provided.
図1は本開示に係る電磁波抑制体の一実施形態を模式的に示す断面図である。FIG. 1 is a cross-sectional view schematically showing one embodiment of an electromagnetic wave suppressor according to the present disclosure. 図2は図1に示す電磁波抑制体の変形例を模式的に示す断面図である。FIG. 2 is a cross-sectional view schematically showing a modification of the electromagnetic wave suppressor shown in FIG. 図3(a)及び図3(b)は図1及び図2に示す電磁波抑制体の変形例をそれぞれ模式的に示す断面図である。3(a) and 3(b) are sectional views schematically showing modifications of the electromagnetic wave suppressor shown in FIGS. 1 and 2, respectively. 図4は図1に示す電磁波抑制体の変形例であって粘着層を含む構成を模式的に示す断面図である。FIG. 4 is a cross-sectional view schematically showing a configuration including an adhesive layer, which is a modification of the electromagnetic wave suppressor shown in FIG. 図5は本開示に係る電磁波抑制体の他の実施形態を模式的に示す断面図である。FIG. 5 is a cross-sectional view schematically showing another embodiment of an electromagnetic wave suppressor according to the present disclosure. 図6は本開示に係る電磁波抑制体の他の実施形態を模式的に示す断面図である。FIG. 6 is a cross-sectional view schematically showing another embodiment of an electromagnetic wave suppressor according to the present disclosure.
 以下、図面を参照しながら本開示の実施形態について詳細に説明する。なお、図面中、同一又は相当部分には同一符号を付し、重複する説明は省略する。また、上下左右等の位置関係は、特に断らない限り、図面に示す位置関係に基づくものとする。更に、図面の寸法比率は図示の比率に限られるものではない。 Hereinafter, embodiments of the present disclosure will be described in detail with reference to the drawings. In the drawings, the same or corresponding parts are denoted by the same reference numerals, and redundant explanations are omitted. In addition, unless otherwise specified, positional relationships such as up, down, left, and right are based on the positional relationships shown in the drawings. Furthermore, the dimensional ratios of the drawings are not limited to the illustrated ratios.
 図1は本実施形態に係る反射型の電磁波抑制体を模式的に示す断面図である。この図に示す電磁波抑制体10はフィルム状又はシート状であり、基材層1と、電磁波透過層2と、バリア層3と、誘電体層4と、反射層5(反射体)とをこの順序で備える積層構造を有する。なお、フィルム状の電磁波抑制体は、例えば、全体の厚さが24~250μmである。他方、シート状の電磁波抑制体は、例えば、全体の厚さが0.25~7.1mmである。 FIG. 1 is a cross-sectional view schematically showing a reflective electromagnetic wave suppressor according to this embodiment. The electromagnetic wave suppressor 10 shown in this figure is in the form of a film or a sheet, and includes a substrate layer 1, an electromagnetic wave transmission layer 2, a barrier layer 3, a dielectric layer 4, and a reflective layer 5 (reflector). It has a laminated structure with an order. Incidentally, the film-like electromagnetic wave suppressor has a total thickness of, for example, 24 to 250 μm. On the other hand, the sheet-like electromagnetic wave suppressor has a total thickness of 0.25 to 7.1 mm, for example.
(基材層)
 基材層1は、例えば、高分子フィルムで構成されている。高分子フィルムの材質としては、例えば、ポリエチレンテレフタレート、ポリブチレンテレフタレート及びポリエチレンナフタレート等のポリエステル;ナイロン等のポリアミド;ポリプロピレン及びシクロオレフィン等のポリオレフィン;ポリカーボネート;並びにトリアセチルセルロース等が挙げられるが、これらに限定されない。高分子フィルムはポリエステルフィルム、ポリアミドフィルム又はポリオレフィンフィルムであることが好ましく、ポリエステルフィルム又はポリアミドフィルムであることがより好ましく、ポリエチレンテレフタレートフィルム(PETフィルム)であることが更に好ましい。PETフィルムは、透明性、加工適性及び密着性の観点から望ましい。また、PETフィルムは、透明性及びガスバリア性の観点から、二軸延伸PETフィルムであることが好ましい。
(Base material layer)
The base material layer 1 is composed of, for example, a polymer film. Examples of materials for the polymer film include polyesters such as polyethylene terephthalate, polybutylene terephthalate and polyethylene naphthalate; polyamides such as nylon; polyolefins such as polypropylene and cycloolefin; polycarbonates; is not limited to The polymer film is preferably a polyester film, a polyamide film or a polyolefin film, more preferably a polyester film or a polyamide film, and even more preferably a polyethylene terephthalate film (PET film). A PET film is desirable from the viewpoint of transparency, workability and adhesion. Moreover, the PET film is preferably a biaxially stretched PET film from the viewpoint of transparency and gas barrier properties.
 高分子フィルムの厚さは、特に制限されないが、3μm以上100μm以下であることが好ましく、5μm以上50μm以下であることがより好ましい。この厚さが3μm以上であると加工が容易であり、100μm以下であると電磁波抑制体の総厚を薄くすることができる。なお、高分子フィルムは、必要に応じて、帯電防止剤、紫外線吸収剤、可塑剤及び滑り剤等の添加剤を含んでいてもよい。高分子フィルムの表面は、コロナ処理、フレーム処理及びプラズマ処理等の表面処理が施されていてもよい。なお、基材層1(高分子フィルム)は、電磁波透過層2を塗工によって形成する際、その表面が塗工対象面となる。例えば、塗工後、電磁波透過層2を他の層に転写したり、塗工以外の方法で電磁波透過層2を形成したりする場合、電磁波抑制体10は基材層1を備えていなくてもよい。 Although the thickness of the polymer film is not particularly limited, it is preferably 3 μm or more and 100 μm or less, more preferably 5 μm or more and 50 μm or less. When the thickness is 3 μm or more, processing is easy, and when the thickness is 100 μm or less, the total thickness of the electromagnetic wave suppressor can be reduced. In addition, the polymer film may contain additives such as an antistatic agent, an ultraviolet absorber, a plasticizer and a slipping agent, if necessary. The surface of the polymer film may be subjected to surface treatments such as corona treatment, flame treatment and plasma treatment. The surface of the substrate layer 1 (polymer film) is the surface to be coated when the electromagnetic wave transmission layer 2 is formed by coating. For example, when the electromagnetic wave permeable layer 2 is transferred to another layer after coating, or when the electromagnetic wave permeable layer 2 is formed by a method other than coating, the electromagnetic wave suppressor 10 does not have the base layer 1. good too.
(電磁波透過層)
 電磁波透過層2は外側から入射してきた電磁波を誘電体層4へと至らしめるための層である。すなわち、電磁波透過層2は、電磁波抑制体10が使用される環境に応じてインピーダンスマッチングをするための層である。電磁波抑制体10が空気(インピーダンス:377Ω/□)中で使用される場合、電磁波透過層2のシート抵抗値は、例えば、350~600Ω/□の範囲に設定される。
(Electromagnetic wave transmission layer)
The electromagnetic wave transmission layer 2 is a layer for allowing electromagnetic waves incident from the outside to reach the dielectric layer 4 . That is, the electromagnetic wave transmission layer 2 is a layer for impedance matching according to the environment in which the electromagnetic wave suppressor 10 is used. When the electromagnetic wave suppressor 10 is used in the air (impedance: 377Ω/□), the sheet resistance value of the electromagnetic wave transmission layer 2 is set in the range of 350 to 600Ω/□, for example.
 電磁波透過層2は、導電性を有する無機材料や有機材料を含有する。導電性を有する無機材料としては、例えば、酸化インジウムスズ(ITO)、酸化インジウム亜鉛(IZO)、酸化亜鉛アルミニウム(AZO)、カーボンナノチューブ、グラフェン、Ag、Al、Au、Pt、Pd、Cu、Co、Cr、In、Ag-Cu、Cu-Au及びNiナノ粒子からなる群から選択される1つ以上を含むナノ粒子、又は及びナノワイヤーが挙げられる。導電性を有する有機材料としては、ポリチオフェン誘導体、ポリアセチレン誘導体、ポリアニリン誘導体、ポリピロール誘導体が挙げられる。特に柔軟性、成膜性、安定性、377Ω/□のシート抵抗の観点から、ポリエチレンジオキシチオフェン(PEDOT)を含む導電性ポリマーが好ましい。電磁波透過層2は、ポリエチレンジオキシチオフェン(PEDOT)とポリスチレンスルホン酸(PPS)との混合物(PEDOT/PSS)を含むものであってもよい。 The electromagnetic wave permeable layer 2 contains a conductive inorganic material or organic material. Examples of conductive inorganic materials include indium tin oxide (ITO), indium zinc oxide (IZO), zinc aluminum oxide (AZO), carbon nanotubes, graphene, Ag, Al, Au, Pt, Pd, Cu, Co , Cr, In, Ag—Cu, Cu—Au, and Ni nanoparticles, or nanowires. Examples of conductive organic materials include polythiophene derivatives, polyacetylene derivatives, polyaniline derivatives, and polypyrrole derivatives. In particular, a conductive polymer containing polyethylenedioxythiophene (PEDOT) is preferable from the viewpoint of flexibility, film formability, stability, and sheet resistance of 377Ω/□. The electromagnetic wave transmission layer 2 may contain a mixture (PEDOT/PSS) of polyethylenedioxythiophene (PEDOT) and polystyrene sulfonic acid (PPS).
 電磁波透過層2のシート抵抗値は、例えば、導電性を有する有機材料の選定、膜厚の調節によって適宜設定することができる。電磁波透過層2の厚さ(膜厚)は0.1~2.0μmの範囲内とすることが好ましく、0.1~0.4μmの範囲内とすることがより好ましい。膜厚が0.1μm以上であると、均一な膜を形成しやすく、電磁波透過層2としての機能をより十分に果たすことができる傾向がある。一方、膜厚が2.0μm以下であると、十分なフレキシビリティを保持させることができ、成膜後に折り曲げ、引っ張りなどの外的要因により、薄膜に亀裂を生じることをより確実に防ぐことができる傾向がある。電磁波透過層2のシート抵抗値は例えばロレスターGP MCP-T610(商品名、株式会社三菱化学アナリテック製)を用いて測定することができる。 The sheet resistance value of the electromagnetic wave permeable layer 2 can be appropriately set, for example, by selecting a conductive organic material and adjusting the film thickness. The thickness (film thickness) of the electromagnetic wave permeable layer 2 is preferably in the range of 0.1 to 2.0 μm, more preferably in the range of 0.1 to 0.4 μm. When the film thickness is 0.1 μm or more, it tends to be easy to form a uniform film, and the function of the electromagnetic wave transmitting layer 2 can be more sufficiently achieved. On the other hand, when the film thickness is 2.0 μm or less, sufficient flexibility can be maintained, and cracks in the thin film due to external factors such as bending and pulling after film formation can be more reliably prevented. tend to be able to The sheet resistance value of the electromagnetic wave permeable layer 2 can be measured using, for example, Loresta GP MCP-T610 (trade name, manufactured by Mitsubishi Chemical Analytic Tech Co., Ltd.).
 電磁波透過層2の下記式で算出されるシート抵抗変化率Cは、電磁波抑制体10の信頼性の観点から、好ましくは60%以下であり、より好ましくは35%以下であり、更に好ましくは9%以下である。
 シート抵抗変化率C[%]=(R-R)/R×100
[式中、Rは温度85℃、相対湿度85%の環境下に電磁波抑制体10を24時間にわたって晒した後の電磁波透過層2のシート抵抗値を示し、Rは上記環境下に電磁波抑制体10を晒す前の電磁波透過層2のシート抵抗値を示す。]
From the viewpoint of the reliability of the electromagnetic wave suppressor 10, the sheet resistance change rate C1 of the electromagnetic wave transmitting layer 2 calculated by the following formula is preferably 60% or less, more preferably 35% or less, and even more preferably 9% or less.
Sheet resistance change rate C 1 [%]=(R 1 −R 0 )/R 0 ×100
[In the formula, R 1 indicates the sheet resistance value of the electromagnetic wave permeable layer 2 after exposing the electromagnetic wave suppressor 10 to an environment with a temperature of 85° C. and a relative humidity of 85% for 24 hours; The sheet resistance value of the electromagnetic wave permeable layer 2 before exposing the suppressor 10 is shown. ]
 電磁波透過層2の下記式で算出されるシート抵抗変化率Cは、電磁波抑制体10の信頼性の観点から、好ましくは9%以下であり、より好ましくは6%以下であり、更に好ましくは2.5%以下である。
 シート抵抗変化率C[%]=(R-R)/R×100
[式中、Rは温度85℃、相対湿度85%の環境下に電磁波抑制体10を500時間にわたって晒した後の電磁波透過層2のシート抵抗値を示し、Rは上記環境下に電磁波抑制体10を晒す前の電磁波透過層2のシート抵抗値を示す。]
From the viewpoint of the reliability of the electromagnetic wave suppressor 10, the sheet resistance change rate C2 of the electromagnetic wave permeable layer 2 calculated by the following formula is preferably 9% or less, more preferably 6% or less, and even more preferably 2.5% or less.
Sheet resistance change rate C 2 [%]=(R 2 −R 0 )/R 0 ×100
[In the formula, R 2 represents the sheet resistance value of the electromagnetic wave permeable layer 2 after the electromagnetic wave suppressor 10 has been exposed to an environment with a temperature of 85° C. and a relative humidity of 85% for 500 hours, and R 0 represents the The sheet resistance value of the electromagnetic wave permeable layer 2 before exposing the suppressor 10 is shown. ]
(バリア層)
 バリア層3は、電磁波透過層2と誘電体層4の間に設けられている。バリア層3は誘電体層4に含まれる物質に起因して電磁波透過層2のシート抵抗値が変化することを抑制する役割を果たす。また、誘電体層4から生じ得るガス(例えば、二酸化炭素)に起因して電磁波透過層2のシート抵抗値が変化することを抑制する役割も果たすと推察される。バリア層3のシート抵抗値は十分に高いことが好ましく、例えば、1.0×10Ω/□以上であることが好ましい。バリア層3のシート抵抗値が1.0×10Ω/□以上であることで、電磁波透過層2から入射してきた電磁波がバリア層3の表面で反射することを抑制することができる。
(barrier layer)
The barrier layer 3 is provided between the electromagnetic wave permeable layer 2 and the dielectric layer 4 . The barrier layer 3 plays a role of suppressing a change in the sheet resistance value of the electromagnetic wave transmission layer 2 due to substances contained in the dielectric layer 4 . It is also presumed that it also plays a role in suppressing changes in the sheet resistance value of the electromagnetic wave permeable layer 2 due to gases (for example, carbon dioxide) that may be generated from the dielectric layer 4 . The sheet resistance value of the barrier layer 3 is preferably sufficiently high, for example, 1.0×10 6 Ω/□ or more. By setting the sheet resistance value of the barrier layer 3 to 1.0×10 6 Ω/□ or more, it is possible to suppress reflection of the electromagnetic waves incident from the electromagnetic wave transmission layer 2 on the surface of the barrier layer 3 .
 バリア層3の酸素透過度は、好ましくは4.0×10cc/(m・day・atm)以下であり、より好ましくは1.0×10cc/(m・day・atm)以下であり、更に好ましくは1.0×10-1cc/(m・day・atm)以下である。酸素透過度は、JIS K7126-2に記載の方法に準拠し、温度30℃、相対湿度70%の条件下で測定される値を意味する。 The oxygen permeability of the barrier layer 3 is preferably 4.0×10 2 cc/(m 2 ·day·atm) or less, more preferably 1.0×10 1 cc/(m 2 ·day·atm). or less, more preferably 1.0×10 −1 cc/(m 2 ·day·atm) or less. Oxygen permeability means a value measured under conditions of temperature of 30° C. and relative humidity of 70% according to the method described in JIS K7126-2.
 バリア層3の水蒸気透過度は、好ましくは1.0×10g/m/day以下であり、より好ましくは1.0×10g/m/day以下であり、更に好ましくは2.0×10-1g/m/day以下である。水蒸気透過度は、JIS K7129Bに記載の方法に準拠し、温度40℃、相対湿度90%の条件下で測定される値を意味する。 The water vapor permeability of the barrier layer 3 is preferably 1.0×10 2 g/m 2 /day or less, more preferably 1.0×10 1 g/m 2 /day or less, still more preferably 2 .0×10 −1 g/m 2 /day or less. The water vapor permeability means a value measured under conditions of a temperature of 40°C and a relative humidity of 90% according to the method described in JIS K7129B.
 本実施形態のバリア層3は、図1に示すように、基材フィルム3aと蒸着層3bとを含む積層構造である。蒸着層3bは、基材フィルム3aの一方面上に設けられている。本発明者らの検討によると、電磁波透過層2のシート抵抗値の維持の観点から、図1に示すように、基材フィルム3aにおける誘電体層4側の面上に蒸着層3bが形成されていることが好ましい。換言すれば、電磁波透過層2、基材フィルム3a、蒸着層3b及び誘電体層4がこの順序で配置されていることが好ましい。なお、図2に示すように、基材フィルム3aにおける電磁波透過層2側の面上に蒸着層3bが形成されていてもよい。換言すれば、電磁波透過層2、蒸着層3b、基材フィルム3a及び誘電体層4がこの順序で配置されていてもよい。 The barrier layer 3 of this embodiment, as shown in FIG. 1, has a laminated structure including a base film 3a and a vapor deposition layer 3b. The vapor deposition layer 3b is provided on one surface of the base film 3a. According to studies by the present inventors, from the viewpoint of maintaining the sheet resistance value of the electromagnetic wave permeable layer 2, as shown in FIG. preferably. In other words, it is preferable that the electromagnetic wave permeable layer 2, the base film 3a, the deposited layer 3b and the dielectric layer 4 are arranged in this order. In addition, as shown in FIG. 2, a vapor deposition layer 3b may be formed on the surface of the base film 3a on the electromagnetic wave transmission layer 2 side. In other words, the electromagnetic wave permeable layer 2, the deposited layer 3b, the substrate film 3a and the dielectric layer 4 may be arranged in this order.
 基材フィルム3aは、高分子フィルムで構成されている。その具体例として、基材層1の説明において例示したものが挙げられる。蒸着層3bの形成方法として、真空蒸着法、スパッタリング法、又はPECVD法が挙げられる。真空蒸着法として、抵抗加熱式真空蒸着法、電子ビーム(Electron Beam)加熱式真空蒸着法、誘導加熱式真空蒸着法が挙げられる。スパッタリング法として、反応性スパッタリング法、デュアルマグネトロンスパッタリング法が挙げられる。膜の均質性の観点からはスパッタリング法が好ましく、コストの観点からは、真空蒸着法が好ましく、目的、用途に応じて選択することができる。基材フィルム3aの厚さは、例えば、9~50μmであり、好ましくは12~30μmである。この厚さが9μm以上であれば、基材フィルム3aの強度を十分に確保できる傾向にあり、他方、50μm以下であれば、バリア層3のロール(バリアフィルムのロール)を効率的且つ経済的に製造できる傾向にある。 The base film 3a is composed of a polymer film. Specific examples thereof include those exemplified in the description of the base material layer 1 . A vacuum deposition method, a sputtering method, or a PECVD method can be used as a method for forming the deposition layer 3b. Examples of the vacuum deposition method include a resistance heating vacuum deposition method, an electron beam heating vacuum deposition method, and an induction heating vacuum deposition method. Examples of the sputtering method include a reactive sputtering method and a dual magnetron sputtering method. The sputtering method is preferred from the viewpoint of film uniformity, and the vacuum deposition method is preferred from the viewpoint of cost, and can be selected according to the purpose and application. The thickness of the base film 3a is, for example, 9-50 μm, preferably 12-30 μm. If the thickness is 9 μm or more, the strength of the base film 3a tends to be sufficiently secured. It tends to be possible to manufacture in
 真空成膜では通常、金属、或いは、珪素等の酸化物、窒化物又は窒化酸化物等の膜が形成される。蒸着層3bとしては、実質的に絶縁性である点において、酸化アルミニウム、酸化珪素又は酸化チタンの膜が好ましい。これらの酸化物だけでなく、金属や珪素の窒化物や窒化酸化物の膜が形成されてもよい。蒸着層3bの厚さは、5nm以上100nm以下であることが好ましい。蒸着層3bの厚さが5nm以上であると、より良好なバリア性を得ることができる傾向がある。この厚さが100nm以下であると、クラックの発生を抑制し、クラックによる水蒸気バリア性及び酸素バリア性の低下を抑制できる傾向がある。これに加え、材料使用量の低減及び膜形成時間の短縮等に起因してコストを低減できるので、経済的観点から好ましい。 In vacuum film formation, films of metals, oxides such as silicon, nitrides or oxynitrides are usually formed. As the deposited layer 3b, a film of aluminum oxide, silicon oxide or titanium oxide is preferable in that it is substantially insulating. In addition to these oxides, metal or silicon nitride or oxynitride films may be formed. The thickness of vapor deposition layer 3b is preferably 5 nm or more and 100 nm or less. When the thickness of the deposited layer 3b is 5 nm or more, there is a tendency that better barrier properties can be obtained. When the thickness is 100 nm or less, the occurrence of cracks tends to be suppressed, and deterioration of the water vapor barrier properties and oxygen barrier properties due to cracks can be suppressed. In addition to this, the cost can be reduced due to the reduction in the amount of material used and the shortening of the film formation time, which is preferable from an economic point of view.
 バリア層3は、図3(a)及び図3(b)に示すように、基材フィルム3aと蒸着層3bとバリア性被覆層3cとをこの順序で含む積層構造であってもよい。バリア性被覆層3cは蒸着層3bを覆うように設けられている。バリア性被覆層3cは、後工程での二次的な各種損傷を防止するとともに、高いバリア性を付与するために設けられるものである。バリア性被覆層3cの厚さは、50~2000nmであることが好ましく、100~1000nmであることがより好ましい。バリア性被覆層3cの厚さが50nm以上であると、膜形成がしやすくなる傾向があり、他方、2000nm以下であると、割れ又はカールを抑制できる傾向がある。 As shown in FIGS. 3(a) and 3(b), the barrier layer 3 may have a laminated structure including a substrate film 3a, a vapor deposition layer 3b, and a barrier coating layer 3c in this order. The barrier coating layer 3c is provided so as to cover the deposition layer 3b. The barrier coating layer 3c is provided to prevent various secondary damages in the post-process and to impart high barrier properties. The thickness of the barrier coating layer 3c is preferably 50-2000 nm, more preferably 100-1000 nm. When the thickness of the barrier coating layer 3c is 50 nm or more, film formation tends to be easier, while when it is 2000 nm or less, cracking or curling tends to be suppressed.
 バリア性被覆層3cは、シロキサン結合を含んでいてもよい。シロキサン結合を含む化合物は、例えば、シラン化合物を用い、シラノール基を反応させて形成されることが好ましい。このようなシラン化合物としては、下記式(1)で表される化合物が挙げられる。
 R (OR4-nSi   …(1)
[式中、nは0~3の整数を示し、R及びRはそれぞれ独立に炭化水素基を示し、好ましくは炭素数1~4のアルキル基を示す。]
 上記式(1)で表される化合物としては、例えば、テトラメトキシシラン、テトラエトキシシラン、テトラプロポキシシラン、テトラブトキシシラン、メチルトリメトキシシラン、メチルトリエトキシシラン、ジメチルジメトキシシラン、及びジメチルジエトキシシラン等が挙げられる。窒素を含むポリシラザンを使用してもよい。
The barrier coating layer 3c may contain siloxane bonds. A compound containing a siloxane bond is preferably formed, for example, by reacting a silanol group with a silane compound. Examples of such silane compounds include compounds represented by the following formula (1).
R 1 n (OR 2 ) 4-n Si (1)
[In the formula, n represents an integer of 0 to 3, R 1 and R 2 each independently represents a hydrocarbon group, preferably an alkyl group having 1 to 4 carbon atoms. ]
Examples of the compound represented by the formula (1) include tetramethoxysilane, tetraethoxysilane, tetrapropoxysilane, tetrabutoxysilane, methyltrimethoxysilane, methyltriethoxysilane, dimethyldimethoxysilane, and dimethyldiethoxysilane. etc. Polysilazanes containing nitrogen may also be used.
 バリア性被覆層3cには、他の金属原子からなる前駆体から作られる材料を使用してもよい。Ti原子を含む化合物としては、例えば、下記式(2)で表される化合物が挙げられる。
 R (OR4-nTi   …(2)
[式中、nは0~3の整数を示し、R及びRはそれぞれ独立に炭化水素基を示し、好ましくは炭素数1~4のアルキル基を示す。]
 上記式(2)で表される化合物としては、例えば、テトラメトキシチタニウム、テトラエトキシチタニウム、テトライソプロポキシチタニウム、及びテトラブトキシチタニウム等が挙げられる。
Materials made from precursors of other metal atoms may also be used for the barrier coating layer 3c. Compounds containing Ti atoms include, for example, compounds represented by the following formula (2).
R 1 n (OR 2 ) 4-n Ti (2)
[In the formula, n represents an integer of 0 to 3, R 1 and R 2 each independently represents a hydrocarbon group, preferably an alkyl group having 1 to 4 carbon atoms. ]
Examples of the compound represented by formula (2) include tetramethoxytitanium, tetraethoxytitanium, tetraisopropoxytitanium, tetrabutoxytitanium, and the like.
 Al原子を含む化合物としては、例えば、下記式(3)で表される化合物が挙げられる。
 R (OR3-mAl   …(3)
[式中、mは0~2の整数を示し、R及びRはそれぞれ独立に炭化水素基を示し、好ましくは炭素数1~4のアルキル基を示す。]
 上記式(3)で表される化合物としては、例えば、トリメトキシアルミニウム、トリエトキシアルミニウム、トリイソプロポキシアルミニウム、及びトリブトキシアルミニウム等が挙げられる。
Compounds containing Al atoms include, for example, compounds represented by the following formula (3).
R 1 m (OR 2 ) 3-m Al (3)
[In the formula, m represents an integer of 0 to 2, R 1 and R 2 each independently represents a hydrocarbon group, preferably an alkyl group having 1 to 4 carbon atoms. ]
Examples of the compound represented by formula (3) include trimethoxyaluminum, triethoxyaluminum, triisopropoxyaluminum, and tributoxyaluminum.
 Zr原子を含む化合物としては、例えば、下記式(4)で表される化合物が挙げられる。
 R (OR4-nZr   …(4)
[式中、nは0~3の整数を示し、R及びRはそれぞれ独立に炭化水素基を示し、好ましくは炭素数1~4のアルキル基を示す。] 上記式(4)で表される化合物としては、例えば、テトラメトキシジルコニウム、テトラエトキシジルコニウム、テトライソプロポキシジルコニウム、及びテトラブトキシジルコニウム等が挙げられる。
Compounds containing Zr atoms include, for example, compounds represented by the following formula (4).
R 1 n (OR 2 ) 4-n Zr (4)
[In the formula, n represents an integer of 0 to 3, R 1 and R 2 each independently represents a hydrocarbon group, preferably an alkyl group having 1 to 4 carbon atoms. ] Examples of the compound represented by the formula (4) include tetramethoxyzirconium, tetraethoxyzirconium, tetraisopropoxyzirconium, and tetrabutoxyzirconium.
 バリア性被覆層3cは、大気中で形成することもできる。バリア性被覆層3cを大気中で形成する場合は、例えば、ポリビニルアルコール、ポリビニルピロリドン、エチレンビニルアルコールのような極性を持つ化合物、ポリ塩化ビニリデン等の塩素を含む化合物、及びSi原子を含む化合物、Ti原子を含む化合物、Al原子を含む化合物、Zr原子を含む化合物等を含有する塗布液を蒸着層3b上に塗布し、乾燥硬化させることで形成することができる。バリア性被覆層3cを大気中で形成する場合、例えば、グラビアコーター、ディップコーター、リバースコーター、ワイヤーバーコーター又はダイコーターを使用して塗布液を塗工すればよい。上記塗布液は塗布後、硬化される。硬化方法としては、特に限定されないが、紫外線硬化及び熱硬化等が挙げられる。紫外線硬化の場合、塗布液は重合開始剤及び二重結合を有する化合物を含んでいてもよい。また必要に応じて、加熱エージングがされてもよい。 The barrier coating layer 3c can also be formed in the air. When the barrier coating layer 3c is formed in the atmosphere, for example, a polar compound such as polyvinyl alcohol, polyvinylpyrrolidone, or ethylene vinyl alcohol, a chlorine-containing compound such as polyvinylidene chloride, a Si atom-containing compound, It can be formed by applying a coating liquid containing a compound containing a Ti atom, a compound containing an Al atom, a compound containing a Zr atom, or the like on the vapor deposition layer 3b, followed by drying and curing. When the barrier coating layer 3c is formed in the atmosphere, the coating liquid may be applied using, for example, a gravure coater, a dip coater, a reverse coater, a wire bar coater, or a die coater. After being applied, the coating liquid is cured. The curing method is not particularly limited, but includes ultraviolet curing, heat curing, and the like. In the case of UV curing, the coating liquid may contain a polymerization initiator and a compound having a double bond. Moreover, heat aging may be performed as needed.
 バリア性被覆層3cを大気中で形成する別の方法として、マグネシウム、カルシウム、亜鉛、アルミニウム、ケイ素、チタン、ジルコニウムなどの無機酸化物の粒子同士が、リン化合物に由来するリン原子を介して脱水縮合することで得られる反応生成物をバリア性被覆層とする方法が挙げられる。具体的には、無機酸化物の表面に存在する官能基(例えば、水酸基)と、無機酸化物と反応可能なリン化合物の部位(例えば、リン原子に直接結合したハロゲン原子や、リン原子に直接結合した酸素原子)とが、縮合反応を起こし、結合する。反応生成物は、例えば、無機酸化物とリン化合物とを含む塗布液を蒸着層3bの表面に塗布し、形成した塗膜を熱処理することにより、無機酸化物の粒子同士が、リン化合物に由来するリン原子を介して結合する反応を進行させることで得られる。熱処理の温度の下限は、110℃以上であり、120℃以上であることが好ましく、140 ℃以上であることがより好ましく、170℃以上であることが更に好ましい。熱処理温度が低いと、十分な反応速度を得ることが難しくなり、生産性が低下する原因となる。熱処理の温度の好ましい上限は、基材の種類などによって異なるが、220℃以下であり、190℃以下であることが好ましい。熱処理は、空気中、窒素雰囲気下、又はアルゴン雰囲気下などで実施することができる。 As another method for forming the barrier coating layer 3c in the air, particles of inorganic oxides such as magnesium, calcium, zinc, aluminum, silicon, titanium, and zirconium are dehydrated via phosphorus atoms derived from phosphorus compounds. A method of using a reaction product obtained by condensation as a barrier coating layer is exemplified. Specifically, the functional group (e.g., hydroxyl group) present on the surface of the inorganic oxide and the site of the phosphorus compound that can react with the inorganic oxide (e.g., a halogen atom directly bonded to the phosphorus atom or a bonded oxygen atoms) cause a condensation reaction and bond. The reaction product is obtained, for example, by applying a coating liquid containing an inorganic oxide and a phosphorus compound to the surface of the vapor deposition layer 3b and heat-treating the formed coating film, whereby the particles of the inorganic oxide are derived from the phosphorus compound. It is obtained by proceeding a reaction that bonds through the phosphorus atom. The lower limit of the heat treatment temperature is 110° C. or higher, preferably 120° C. or higher, more preferably 140° C. or higher, and even more preferably 170° C. or higher. When the heat treatment temperature is low, it becomes difficult to obtain a sufficient reaction rate, which causes a decrease in productivity. A preferable upper limit of the temperature of the heat treatment is 220° C. or less, and preferably 190° C. or less, though it varies depending on the type of substrate. The heat treatment can be performed in air, under a nitrogen atmosphere, under an argon atmosphere, or the like.
 バリア性被覆層3cを大気中で形成する場合は、凝集等しない限り、上記塗布液は更に樹脂を含んでいてもよい。上記樹脂としては、具体的にはアクリル樹脂、ポリエステル樹脂等が挙げられる。上記塗布液は、これらの樹脂のうち、塗布液中の他の材料との相溶性が高い樹脂を含むことが好ましい。上記塗布液は、更に、フィラー、レベリング剤、消泡剤、紫外線吸収剤、酸化防止剤、並びに、シランカップリング剤及びチタンキレート剤等を必要に応じて含んでいてもよい。 When the barrier coating layer 3c is formed in the atmosphere, the coating liquid may further contain a resin as long as it does not aggregate. Specific examples of the resins include acrylic resins and polyester resins. Among these resins, the coating liquid preferably contains a resin having high compatibility with other materials in the coating liquid. The coating liquid may further contain a filler, a leveling agent, an antifoaming agent, an ultraviolet absorber, an antioxidant, a silane coupling agent, a titanium chelating agent, and the like, if necessary.
(誘電体層)
 誘電体層4は、入射する電磁波と反射した電磁波を干渉させるための層である。誘電体層4は、以下の式で表される条件を満たすように厚さ等が設定されている。
  d=λ/(4(ε1/2
 式中、λは抑制すべき電磁波の波長(単位:m)を示し、εは誘電体層4を構成する材料の比誘電率、dは誘電体層4の厚さ(単位:m)を示す。入射する電磁波の位相と反射した電磁波の位相がπずれることで反射減衰が得られる。
(dielectric layer)
The dielectric layer 4 is a layer for causing interference between incident electromagnetic waves and reflected electromagnetic waves. The thickness and the like of the dielectric layer 4 are set so as to satisfy the conditions represented by the following formula.
d=λ/(4(ε r ) 1/2 )
In the formula, λ indicates the wavelength (unit: m) of the electromagnetic wave to be suppressed, εr is the dielectric constant of the material forming the dielectric layer 4, and d is the thickness (unit: m) of the dielectric layer 4. show. Reflection attenuation is obtained by shifting the phase of the incident electromagnetic wave and the phase of the reflected electromagnetic wave by π.
 誘電体層4は、周波数3.7GHzにおける比誘電率が10.0よりも高い樹脂組成物で構成されている。誘電体層4の比誘電率が10.0よりも高いことで、上述のとおり、特定の周波数帯域において優れた吸収性能(好ましくは-15dB、より好ましくは-20dB)を実現し得る。これに加え、誘電体層4を薄くすることができるため、誘電体層4の生産性向上及び省スペース化の両方を高水準に達成できる。誘電体層4の周波数3.7GHzにおける比誘電率は、好ましくは10.0より高く30.0以下であり、より好ましくは10.0より高く20.0以下である。誘電体層4の周波数3.7GHzにおける比誘電率が30.0以下であることで、十分な強度を有する誘電体層4を形成できる傾向にある。例えば、誘電体層4の比誘電率を高めるために、過剰量の誘電性化合物を誘電体層4に配合すると、誘電体層4が脆くなる傾向にある。誘電体層4の厚さは、周波数帯と比誘電率により適宜設定すればよい。例えば、ミリ波レーダーなどの60GHz、76GHz又は90GHz帯での使用を想定した場合、誘電体層4の厚さは、好ましくは100~400μmであり、より好ましくは250~400μmである。5G通信用などの3.7GHz、4.5GHz又は28GHz帯での使用を想定した場合、誘電体層4の厚さは、好ましくは450~7000μmであり、より好ましくは800~6500μmである。また、近年、次世代通信規格や計測・分析技術、医療などの分野などで注目されているテラヘルツ波、例えば300GHzや350GHz帯での使用を想定した場合、誘電体層4の厚さは、好ましくは20~80μmであり、より好ましくは50~80μmである。 The dielectric layer 4 is made of a resin composition with a dielectric constant higher than 10.0 at a frequency of 3.7 GHz. When the dielectric constant of the dielectric layer 4 is higher than 10.0, as described above, excellent absorption performance (preferably -15 dB, more preferably -20 dB) can be achieved in a specific frequency band. In addition, since the dielectric layer 4 can be made thinner, both productivity improvement and space saving of the dielectric layer 4 can be achieved at a high level. The relative dielectric constant of the dielectric layer 4 at a frequency of 3.7 GHz is preferably higher than 10.0 and 30.0 or less, more preferably higher than 10.0 and 20.0 or less. Dielectric layer 4 having a dielectric constant of 30.0 or less at a frequency of 3.7 GHz tends to be able to form dielectric layer 4 having sufficient strength. For example, blending an excessive amount of a dielectric compound into the dielectric layer 4 in order to increase the dielectric constant of the dielectric layer 4 tends to make the dielectric layer 4 brittle. The thickness of the dielectric layer 4 may be appropriately set depending on the frequency band and relative permittivity. For example, assuming use in the 60 GHz, 76 GHz or 90 GHz band of millimeter wave radar, the thickness of the dielectric layer 4 is preferably 100 to 400 μm, more preferably 250 to 400 μm. Assuming use in the 3.7 GHz, 4.5 GHz, or 28 GHz band for 5G communication, etc., the thickness of the dielectric layer 4 is preferably 450 to 7000 μm, more preferably 800 to 6500 μm. In addition, when considering use of terahertz waves, for example, 300 GHz and 350 GHz bands, which have been attracting attention in the fields of next-generation communication standards, measurement and analysis technology, medical care, etc. in recent years, the thickness of the dielectric layer 4 is preferably is 20-80 μm, more preferably 50-80 μm.
 誘電体層4を構成する樹脂組成物は、少なくとも一種の誘電性化合物と、樹脂成分とを含有する。樹脂組成物における誘電性化合物の選択及びその含有量に応じて、誘電体層4の比誘電率を調整することができる。樹脂組成物100体積部に対し、誘電性化合物の含有量は、好ましくは10~300体積部であり、より好ましくは25~100体積部である。樹脂組成物100質量部に対し、誘電性化合物の含有量は、好ましくは10~900質量部であり、より好ましくは25~100質量部である。樹脂組成物における誘電性化合物の含有量が下限値以上であることで、誘電体層4の比誘電率を十分に大きくできる傾向にあり、他方、上限値以下であることで、ロールtoロール又は押出し成形によって誘電体層4を効率的に製造する傾向にある。 The resin composition that constitutes the dielectric layer 4 contains at least one kind of dielectric compound and a resin component. The dielectric constant of the dielectric layer 4 can be adjusted according to the selection and content of the dielectric compound in the resin composition. The content of the dielectric compound is preferably 10 to 300 parts by volume, more preferably 25 to 100 parts by volume, with respect to 100 parts by volume of the resin composition. The content of the dielectric compound is preferably 10 to 900 parts by mass, more preferably 25 to 100 parts by mass, based on 100 parts by mass of the resin composition. When the content of the dielectric compound in the resin composition is at least the lower limit, there is a tendency that the dielectric constant of the dielectric layer 4 can be sufficiently increased. The trend is to efficiently manufacture the dielectric layer 4 by extrusion.
 誘電性化合物として、チタン酸バリウム、酸化チタン及び酸化亜鉛などの金属化合物が挙げられる。誘電性化合物の態様は粉末(例えば、ナノ粒子)であることが好ましい。誘電性化合物の比誘電率は樹脂成分の比誘電率よりも高いことが好ましい。誘電性化合物の周波数3.7GHzにおける比誘電率は、好ましくは10よりも高く5000以下であり、より好ましくは100~5000であり、更に好ましくは1000~5000である。 Dielectric compounds include metal compounds such as barium titanate, titanium oxide and zinc oxide. Preferred embodiments of the dielectric compound are powders (eg, nanoparticles). The relative permittivity of the dielectric compound is preferably higher than that of the resin component. The relative permittivity of the dielectric compound at a frequency of 3.7 GHz is preferably higher than 10 and 5,000 or less, more preferably 100 to 5,000, still more preferably 1,000 to 5,000.
 樹脂成分として、例えば、アクリル樹脂、メタクリル樹脂、シリコーン樹脂、ポリカーボネート、エポキシ樹脂、クリブタル樹脂、ポリ塩化ビニル、ポリビニルホルマール、フェノール樹脂、ユリア樹脂及びポリクロロブレン樹脂が挙げられる。樹脂成分の周波数3.7GHzにおける比誘電率は、好ましくは2.5~9.5であり、より好ましくは3.5~9.5であり、更に好ましくは5.0~9.5である。 Examples of resin components include acrylic resins, methacrylic resins, silicone resins, polycarbonates, epoxy resins, cribtal resins, polyvinyl chloride, polyvinyl formal, phenolic resins, urea resins, and polychloroprene resins. The dielectric constant of the resin component at a frequency of 3.7 GHz is preferably 2.5 to 9.5, more preferably 3.5 to 9.5, still more preferably 5.0 to 9.5. .
 樹脂組成物は粘着性を有することが好ましい。これにより、反射層5の表面に対して誘電体層4を効率的に貼り付けることができる。かかる材料として、例えば、シリコーン系粘着剤、アクリル系粘着剤及びウレタン系粘着剤が挙げられる。これらの材料を上記樹脂成分として使用してもよいし、これらの材料で構成される粘着層を誘電体層4の少なくとも一方の面上に形成してもよい。樹脂組成物自体又は粘着層のステンレス304鋼板に対する粘着力は、好ましくは1.0N/25mm以上であり、3.0~10.0N/25mm又は10.0~15.0N/25mmであってもよい。粘着層をバリア層として機能させる場合、図4に示すように、電磁波透過層2とバリア層3の間に粘着層6を配置してもよい。粘着層6の厚さは、例えば、1~120μmであり、好ましくは10~30μmである。粘着層6の厚さが10μm以上であることで、十分な密着性を確保できる傾向にあり、他方、30μm以下であることで、ロールtoロールで粘着層6を形成しやすい傾向にある。 The resin composition preferably has stickiness. Thereby, the dielectric layer 4 can be efficiently attached to the surface of the reflective layer 5 . Examples of such materials include silicone adhesives, acrylic adhesives, and urethane adhesives. These materials may be used as the resin component, or an adhesive layer made of these materials may be formed on at least one surface of the dielectric layer 4 . The adhesive strength of the resin composition itself or the adhesive layer to a stainless steel 304 steel plate is preferably 1.0 N/25 mm or more, even if it is 3.0 to 10.0 N/25 mm or 10.0 to 15.0 N/25 mm. good. When the adhesive layer functions as a barrier layer, an adhesive layer 6 may be arranged between the electromagnetic wave transmission layer 2 and the barrier layer 3 as shown in FIG. The thickness of the adhesive layer 6 is, for example, 1-120 μm, preferably 10-30 μm. When the thickness of the adhesive layer 6 is 10 μm or more, sufficient adhesion tends to be ensured.
(反射層)
 反射層5は誘電体層4から入射してきた電磁波を反射させ、誘電体層4へと至らしめるための層である。反射層5の厚さは、例えば、4~250μmであり、4~12μm又は50~100μmであってもよい。
(reflective layer)
The reflective layer 5 is a layer for reflecting electromagnetic waves incident from the dielectric layer 4 to reach the dielectric layer 4 . The thickness of the reflective layer 5 is, for example, 4-250 μm, and may be 4-12 μm or 50-100 μm.
 反射層5は、例えば、シート抵抗値が100Ω/□以下の導電性を有する材料で構成されている。かかる材料は無機材料であっても有機材料であってもよい。導電性を有する無機材料として、例えば、酸化ンジウムスズ(ITO)、酸化インジウム亜鉛(IZO)、酸化亜鉛アルミニウム(AZO)、カーボンナノチューブ、グラフェン、Ag、Al、Au、Pt、Pd、Cu、Co、Cr、In、Ag-Cu、Cu-Au及びNiナノ粒子からなる群から選択される1つ以上を含むナノ粒子、又は及びナノワイヤーが挙げられる。導電性を有する有機材料として、例えば、ポリチオフェン誘導体、ポリアセチレン誘導体、ポリアニリン誘導体、ポリピロール誘導体が挙げられる。導電性を有する無機材料又は有機材料を基材上に製膜してもよい。柔軟性、成膜性、安定性、シート抵抗値及び低コストの観点から、PETフィルムと、その表面に蒸着されたアルミニウム層とを備える積層フィルム(Al蒸着PETフィルム)を反射層として用いることが好ましい。 The reflective layer 5 is made of, for example, a conductive material with a sheet resistance of 100Ω/□ or less. Such materials may be inorganic or organic. Inorganic materials having conductivity include, for example, indium tin oxide (ITO), indium zinc oxide (IZO), zinc aluminum oxide (AZO), carbon nanotubes, graphene, Ag, Al, Au, Pt, Pd, Cu, Co, Cr , In, Ag—Cu, Cu—Au, and Ni nanoparticles, or nanowires. Examples of conductive organic materials include polythiophene derivatives, polyacetylene derivatives, polyaniline derivatives, and polypyrrole derivatives. A conductive inorganic material or organic material may be formed on the substrate. From the viewpoints of flexibility, film formability, stability, sheet resistance, and low cost, it is possible to use a laminated film (Al-deposited PET film) comprising a PET film and an aluminum layer deposited on its surface (Al-deposited PET film) as a reflective layer. preferable.
<電磁波抑制体の製造方法>
 電磁波抑制体10は、例えば、以下の工程を経て製造される。まず、基材層1と電磁波透過層2の積層体をロールtoロールで作製する。また、ロールtoロールによってバリア層3又はこれを含む積層体を作製する。更に、ロールtoロールによって誘電体層4を含む積層体を作製する。これらの積層体を、反射層5にラミネートした後、所定のサイズに切断することで電磁波抑制体10が得られる。誘電体層4を含むロール状の積層体は、(A)上記樹脂組成物を調製する工程と、(B)この樹脂組成物からなる誘電体層4をロールtoロールによって形成する工程とを経て製造される。適用対象の周波数帯が高い場合(例えば、60GHz以上)、誘電体層4の厚さが十分に薄いため、ロールtoロールによって電磁波抑制体10を製造できる。これに対し、適用対象の周波数帯が低い場合(例えば、28GHz未満)、誘電体層4を厚く形成する必要があるため、ロールtoロールでの製造が困難となる傾向にある。この場合、例えば、押出し成形によって誘電体層4を形成することができる。つまり、適用対象の周波数帯(換言すれば、誘電体層の厚さ)に応じて作製方法を適宜選択すればよい。
<Method for producing electromagnetic wave suppressor>
The electromagnetic wave suppressor 10 is manufactured through the following steps, for example. First, a laminate of the substrate layer 1 and the electromagnetic wave permeable layer 2 is produced by roll-to-roll. Moreover, the barrier layer 3 or the laminated body containing this is produced by roll to roll. Furthermore, a laminate including the dielectric layer 4 is produced by roll-to-roll. After laminating these laminates on the reflective layer 5, the electromagnetic wave suppressor 10 is obtained by cutting into a predetermined size. A roll-shaped laminate including the dielectric layer 4 is produced through (A) the step of preparing the resin composition and (B) the step of forming the dielectric layer 4 from the resin composition by roll-to-roll. manufactured. When the frequency band to be applied is high (for example, 60 GHz or higher), the electromagnetic wave suppressor 10 can be manufactured by roll-to-roll because the thickness of the dielectric layer 4 is sufficiently thin. On the other hand, when the frequency band to be applied is low (for example, less than 28 GHz), it is necessary to form the dielectric layer 4 thickly, so roll-to-roll production tends to be difficult. In this case, the dielectric layer 4 can be formed, for example, by extrusion. That is, the manufacturing method may be appropriately selected according to the frequency band to be applied (in other words, the thickness of the dielectric layer).
 電磁波抑制体10によれば、電磁波透過層2と誘電体層4の間にバリア層3を設けたことで、誘電体層4に含まれる物質に起因して電磁波透過層2のシート抵抗値が変動することを抑制することができる。このため、電磁波抑制体10は十分な反射減衰量を長期にわたって維持することができる。 According to the electromagnetic wave suppressor 10, by providing the barrier layer 3 between the electromagnetic wave transmitting layer 2 and the dielectric layer 4, the sheet resistance value of the electromagnetic wave transmitting layer 2 is reduced due to the substance contained in the dielectric layer 4. Fluctuation can be suppressed. Therefore, the electromagnetic wave suppressor 10 can maintain sufficient return loss over a long period of time.
 以上、本開示の実施形態について詳細に説明したが、本発明は上記実施形態に限定されるものではない。例えば、上記実施形態においては、多層のバリア層3を例示したが、バリア層は単層であってもよい。図5に示す電磁波抑制体20は、基材層1と、電磁波透過層2と、単層のバリア層13と、誘電体層4と、反射層5とをこの順序で備える。バリア層13は、例えば、高分子フィルムで構成される。その具体例として、基材層1の説明において例示したものが挙げられる。高分子フィルムのうち、ガスバリア性に優れるもの(例えば、PETフィルム、ポリプロピレンフィルム)をバリア層13として使用することが好ましい。高分子フィルムの厚さは、例えば、5~50μmであり、12~30μmであってもよい。バリア層13は粘着剤で構成されていてもよい。粘着剤の層の厚さは、例えば、10~50μmであり、100~500μmであってもよい。粘着剤は、電磁波透過層2のシート抵抗値の維持の観点から、シリコーン粘着剤、アクリル粘着剤又はウレタン粘着剤を使用することが好ましい。なお、単層のバリア層13は必ずしも高度なガスバリア性を有していなくてもよい。バリア層13の水蒸気透過度は、例えば、4.0×10g/m/day以下であればよい。 Although the embodiments of the present disclosure have been described above in detail, the present invention is not limited to the above embodiments. For example, in the above embodiment, the multilayer barrier layer 3 was illustrated, but the barrier layer may be a single layer. The electromagnetic wave suppressor 20 shown in FIG. 5 includes a substrate layer 1, an electromagnetic wave transmitting layer 2, a single-layer barrier layer 13, a dielectric layer 4, and a reflective layer 5 in this order. The barrier layer 13 is composed of, for example, a polymer film. Specific examples thereof include those exemplified in the description of the base material layer 1 . Among polymer films, it is preferable to use, as the barrier layer 13, those having excellent gas barrier properties (for example, PET film and polypropylene film). The thickness of the polymer film is, for example, 5-50 μm, and may be 12-30 μm. The barrier layer 13 may be composed of an adhesive. The thickness of the adhesive layer is, for example, 10-50 μm, and may be 100-500 μm. From the viewpoint of maintaining the sheet resistance value of the electromagnetic wave permeable layer 2, it is preferable to use a silicone adhesive, an acrylic adhesive, or a urethane adhesive as the adhesive. Note that the single-layer barrier layer 13 does not necessarily have to have high gas barrier properties. The water vapor permeability of the barrier layer 13 may be, for example, 4.0×10 2 g/m 2 /day or less.
 電磁波抑制体は接着層を備えたものであってもよい。図6に示す電磁波抑制体30は、基材層1と、電磁波透過層2と、粘着層6と、基材フィルム3aと、蒸着層3bと、バリア性被覆層3cと、接着層7と、誘電体層4と、接着層8と、反射層5とをこの順序で備える。接着層7は、バリア性被覆層3cと誘電体層4を貼り合わせている。接着層8は、誘電体層4と反射層5を貼り合わせている。接着層を構成する接着剤としては、アクリル系接着剤、シリコーン系接着剤、ポリオレフィン系接着剤、ウレタン系接着剤及びポリビニルエーテル系接着剤等が挙げられる。これらのうち、接着力、耐加水分解性及びコストの観点から、ウレタン系接着剤を使用することが好ましい。接着層の厚さは、例えば、0.5~50μmであり、1~20μm又は2~6μmであってもよい。 The electromagnetic wave suppressor may have an adhesive layer. The electromagnetic wave suppressor 30 shown in FIG. 6 includes a base layer 1, an electromagnetic wave transmission layer 2, an adhesive layer 6, a base film 3a, a vapor deposition layer 3b, a barrier coating layer 3c, an adhesive layer 7, A dielectric layer 4, an adhesive layer 8 and a reflective layer 5 are provided in this order. The adhesive layer 7 bonds the barrier coating layer 3c and the dielectric layer 4 together. The adhesive layer 8 bonds the dielectric layer 4 and the reflective layer 5 together. Examples of adhesives constituting the adhesive layer include acrylic adhesives, silicone adhesives, polyolefin adhesives, urethane adhesives, polyvinyl ether adhesives, and the like. Among these, it is preferable to use a urethane-based adhesive from the viewpoint of adhesive strength, hydrolysis resistance, and cost. The thickness of the adhesive layer is, for example, 0.5-50 μm, and may be 1-20 μm or 2-6 μm.
 接着層を構成する接着剤は、酸素バリア性を有してもよい。この場合、接着層の酸素透過度は、厚さ5μmにおいて、厚さ方向に、例えば1000cc/(m・day・atm)以下である。酸素透過度は500cc/(m・day・atm)以下であることが好ましく、100cc/(m・day・atm)以下であることがより好ましく、50cc/(m・day・atm)以下であることが更に好ましく、10cc/(m・day・atm)以下であることが特に好ましい。接着層が酸素バリア性を有していることにより、バリア層3が欠陥を有していたとしてもこれを補うことができる。酸素透過度の下限値は特に制限されないが、例えば、0.1cc/(m・day・atm)である。 The adhesive constituting the adhesive layer may have oxygen barrier properties. In this case, the oxygen permeability of the adhesive layer is, for example, 1000 cc/(m 2 ·day·atm) or less in the thickness direction at a thickness of 5 μm. The oxygen permeability is preferably 500 cc/(m 2 ·day·atm) or less, more preferably 100 cc/(m 2 ·day·atm) or less, and 50 cc/(m 2 ·day·atm) or less. is more preferably 10 cc/(m 2 ·day·atm) or less. Since the adhesive layer has an oxygen barrier property, even if the barrier layer 3 has a defect, it can be compensated for. Although the lower limit of oxygen permeability is not particularly limited, it is, for example, 0.1 cc/(m 2 ·day·atm).
 上記実施形態においては、フィルム状又はシート状の電磁波抑制体10及びその変形例を例示したが、電磁波抑制体の形状はこれに限定されるものではない。例えば、上記実施形態においては、電磁波を反射する構成(反射体)として反射層5を例示したが、電磁波を反射できる限り、反射体の構成は層状でなくてもよい。 In the above embodiment, the film-like or sheet-like electromagnetic wave suppressor 10 and its modification were exemplified, but the shape of the electromagnetic wave suppressor is not limited to this. For example, in the above-described embodiment, the reflecting layer 5 is used as a structure (reflector) for reflecting electromagnetic waves, but the structure of the reflector may not be layered as long as it can reflect electromagnetic waves.
 電磁波抑制体の耐久性を向上させる観点から、ガスバリア性を有するフィルムで電磁波抑制体をサンドイッチしたり、ガスバリア性を有する包装袋に電磁波抑制体を収容して密封した状態としたりしてもよい。 From the viewpoint of improving the durability of the electromagnetic wave suppressor, the electromagnetic wave suppressor may be sandwiched between films having gas barrier properties, or the electromagnetic wave suppressor may be housed and sealed in a packaging bag having gas barrier properties.
 本開示は以下の事項に関する。
[1]導電性を有する電磁波透過層と、
 バリア層と、
 少なくとも一種の誘電性化合物と樹脂成分とを含有する誘電体層と、
 反射体と、
をこの順序で備える、電磁波抑制体。
[2]前記電磁波透過層が導電性ポリマーを含有し、
 前記誘電性化合物が酸化チタン及びチタン酸バリウムの少なくとも一方である、[1]に記載の電磁波抑制体。
[3]前記バリア層が、基材フィルムと、前記基材フィルムの一方の面上に設けられた酸化物の蒸着層とを含む、[1]又は[2]に記載の電磁波抑制体。
[4]前記バリア層が、前記蒸着層を覆うように設けられたバリア性被覆層を更に含む、[3]に記載の電磁波抑制体。
[5]前記バリア層が、高分子フィルム及び粘着層の少なくとも一方を含む、[1]~[4]のいずれか一つに記載の電磁波抑制体。
[6]前記バリア層の水蒸気透過度が4.0×10g/m/day以下である、[1]~[5]のいずれか一つに記載の電磁波抑制体。
[7]前記電磁波透過層の下記式で算出されるシート抵抗変化率Cが60%以下である、[1]~[6]のいずれか一つに記載の電磁波抑制体。
 シート抵抗変化率C[%]=(R-R)/R×100
[式中、Rは温度85℃、相対湿度85%の環境下に前記電磁波抑制体を24時間にわたって晒した後の前記電磁波透過層のシート抵抗値を示し、Rは前記環境下に前記電磁波抑制体を晒す前の前記電磁波透過層のシート抵抗値を示す。]
[8]前記電磁波透過層の下記式で算出されるシート抵抗変化率Cが9%以下である、[1]~[7]のいずれか一つに記載の電磁波抑制体。
 シート抵抗変化率C[%]=(R-R)/R×100
[式中、Rは温度85℃、相対湿度85%の環境下に前記電磁波抑制体を500時間にわたって晒した後の前記電磁波透過層のシート抵抗値を示し、Rは前記環境下に前記電磁波抑制体を晒す前の前記電磁波透過層のシート抵抗値を示す。]
This disclosure relates to:
[1] an electromagnetic wave transmission layer having electrical conductivity;
a barrier layer;
a dielectric layer containing at least one dielectric compound and a resin component;
a reflector;
in that order.
[2] The electromagnetic wave transmission layer contains a conductive polymer,
The electromagnetic wave suppressor according to [1], wherein the dielectric compound is at least one of titanium oxide and barium titanate.
[3] The electromagnetic wave suppressor according to [1] or [2], wherein the barrier layer includes a substrate film and an oxide deposition layer provided on one surface of the substrate film.
[4] The electromagnetic wave suppressor according to [3], wherein the barrier layer further includes a barrier coating layer provided to cover the vapor deposition layer.
[5] The electromagnetic wave suppressor according to any one of [1] to [4], wherein the barrier layer includes at least one of a polymer film and an adhesive layer.
[6] The electromagnetic wave suppressor according to any one of [1] to [5], wherein the barrier layer has a water vapor permeability of 4.0×10 2 g/m 2 /day or less.
[7] The electromagnetic wave suppressor according to any one of [1] to [6], wherein the electromagnetic wave permeable layer has a sheet resistance change rate C1 calculated by the following formula of 60% or less.
Sheet resistance change rate C 1 [%]=(R 1 −R 0 )/R 0 ×100
[In the formula, R 1 represents the sheet resistance value of the electromagnetic wave permeable layer after exposing the electromagnetic wave suppressor to an environment with a temperature of 85° C. and a relative humidity of 85% for 24 hours, and R 0 represents the The sheet resistance value of the electromagnetic wave permeable layer before exposing the electromagnetic wave suppressor is shown. ]
[8] The electromagnetic wave suppressor according to any one of [1] to [7], wherein the electromagnetic wave permeable layer has a sheet resistance change rate C2 calculated by the following formula of 9% or less.
Sheet resistance change rate C 2 [%]=(R 2 −R 0 )/R 0 ×100
[In the formula, R 2 represents the sheet resistance value of the electromagnetic wave permeable layer after exposing the electromagnetic wave suppressor to an environment of 85° C. and 85% relative humidity for 500 hours, and R 0 represents the The sheet resistance value of the electromagnetic wave permeable layer before exposing the electromagnetic wave suppressor is shown. ]
 以下、本開示について、実施例及び比較例に基づいて説明する。なお、本発明は以下の実施例に限定されるものではない。 The present disclosure will be described below based on examples and comparative examples. In addition, the present invention is not limited to the following examples.
 実施例及び比較例に係る電磁波抑制体を作製するため、以下の材料を準備した。
[基材層]
(A)二軸延伸PETフィルム(厚さ:50μm、東レ株式会社製)
[電磁波透過層]
(B1)ポリエチレンジオキシチオフェン(PEDOT)とポリスチレンスルホン酸(PSS)との混合物(PEDOT/PSS)(ナガセケムテックス株式会社製)
(B2)ポリアニリン誘導体(日立化成株式会社製)
(B3)酸化インジウムスズ(ITO)(三井金属株式会社製)
[バリア層]
(C1)アルミナ蒸着PETフィルム(蒸着層の厚さ:15nm、全体の厚さ:12μm)
(C2)バリア性被覆層(テトラエトキシシランの加水分解物とポリビニルアルコールとを質量比1:1で混合した塗布液を使用して形成)
(C3)二軸延伸PETフィルム(厚さ:10μm、東レ株式会社製)
(C4)シリコーン粘着剤(KR-3700、信越化学工業株式会社製)
[誘電体層]
(D1)誘電性化合物
・チタン酸バリウム粉末:BT-01(堺化学工業株式会社製)
・酸化チタン粉末:TTO-51(A)(石原産業株式会社製)
・酸化亜鉛粉末:FZO-50(石原産業株式会社製)
(D2)樹脂成分
・アクリル樹脂:OC-3405(サイデン化学株式会社製、3.7GHzにおける比誘電率:4.2)
・ウレタン樹脂:エラストランC60A10WN(BASFジャパン株式会社製、3.7GHzにおける比誘電率:4.5)
・シリコーン樹脂:KR-3700(信越化学株式会社製、3.7GHzにおける比誘電率:3.1)
(D3)ウレタン接着剤:AD-393(東洋インキ株式会社製、3.7GHzにおける比誘電率:2.95)
(D4)エポキシ硬化剤:CAT-EP5(東洋インキ株式会社製)
(D5)IPA溶媒S503(東洋インキ株式会社製)
[反射層]
(E)Al蒸着PETフィルム(蒸着層の厚さ:50nm、全体の厚さ:12μm)
In order to produce electromagnetic wave suppressors according to Examples and Comparative Examples, the following materials were prepared.
[Base material layer]
(A) Biaxially stretched PET film (thickness: 50 μm, manufactured by Toray Industries, Inc.)
[Electromagnetic wave transmission layer]
(B1) A mixture of polyethylenedioxythiophene (PEDOT) and polystyrene sulfonic acid (PSS) (PEDOT/PSS) (manufactured by Nagase ChemteX Corporation)
(B2) Polyaniline derivative (manufactured by Hitachi Chemical Co., Ltd.)
(B3) Indium tin oxide (ITO) (manufactured by Mitsui Kinzoku Co., Ltd.)
[Barrier layer]
(C1) Alumina-deposited PET film (deposited layer thickness: 15 nm, total thickness: 12 μm)
(C2) Barrier coating layer (formed using a coating liquid obtained by mixing a hydrolyzate of tetraethoxysilane and polyvinyl alcohol at a mass ratio of 1:1)
(C3) Biaxially stretched PET film (thickness: 10 μm, manufactured by Toray Industries, Inc.)
(C4) Silicone adhesive (KR-3700, manufactured by Shin-Etsu Chemical Co., Ltd.)
[Dielectric layer]
(D1) Dielectric compound/barium titanate powder: BT-01 (manufactured by Sakai Chemical Industry Co., Ltd.)
・ Titanium oxide powder: TTO-51 (A) (manufactured by Ishihara Sangyo Co., Ltd.)
・ Zinc oxide powder: FZO-50 (manufactured by Ishihara Sangyo Co., Ltd.)
(D2) Resin component Acrylic resin: OC-3405 (manufactured by Saiden Chemical Co., Ltd., dielectric constant at 3.7 GHz: 4.2)
・ Urethane resin: Elastollan C60A10WN (manufactured by BASF Japan Ltd., dielectric constant at 3.7 GHz: 4.5)
・ Silicone resin: KR-3700 (manufactured by Shin-Etsu Chemical Co., Ltd., dielectric constant at 3.7 GHz: 3.1)
(D3) Urethane adhesive: AD-393 (manufactured by Toyo Ink Co., Ltd., dielectric constant at 3.7 GHz: 2.95)
(D4) Epoxy curing agent: CAT-EP5 (manufactured by Toyo Ink Co., Ltd.)
(D5) IPA solvent S503 (manufactured by Toyo Ink Co., Ltd.)
[Reflection layer]
(E) Al-evaporated PET film (thickness of evaporated layer: 50 nm, total thickness: 12 μm)
(実施例1)
 (A)二軸延伸PETフィルムの表面に、(B1)PEDOT/PSSの電磁波透過層(厚さ:440nm)を塗工によって形成した。他方、(C1)アルミナ蒸着PETフィルムの表面(アルミナ蒸着面)上に、(C2)バリア性被覆層(厚さ:400nm)が形成されたバリア層を準備した。(C4)シリコーン粘着剤を使用し、(B1)PEDOT/PSSの電磁波透過層と(C1)アルミナ蒸着PETの表面(PET面)をラミネーターで貼合した。(C4)シリコーン粘着剤の層の厚さは10μmとした。
 誘電体層を形成するため、以下の組成の組成物を調製した。
・(D1)チタン酸バリウム粉末:70質量部
・(D2)アクリル樹脂:30質量部
 この組成物を含む塗液を(E)Al蒸着PETフィルムの表面(Al蒸着面)上に塗工した後、乾燥する工程を経て誘電体層(厚さ:345μm)を形成した。アルミナ蒸着PETの表面(バリア性被覆層側)に、上記誘電体層をラミネートする工程を経て本実施例に係る電磁波抑制体(厚さ:429μm)を得た。この電磁波抑制体の層構成は、電磁波透過層と基材フィルムの間に粘着層が形成されていることの他は図3(a)に示す電磁波抑制体と同じ層構成である。
(Example 1)
(A) An electromagnetic wave transmitting layer (thickness: 440 nm) of (B1) PEDOT/PSS was formed by coating on the surface of the biaxially stretched PET film. On the other hand, a barrier layer was prepared by forming (C2) a barrier coating layer (thickness: 400 nm) on the surface (alumina-deposited surface) of (C1) an alumina-deposited PET film. Using (C4) a silicone adhesive, (B1) the PEDOT/PSS electromagnetic wave transmission layer and (C1) the surface (PET surface) of alumina-deposited PET were laminated with a laminator. (C4) The thickness of the silicone adhesive layer was 10 μm.
A composition having the following composition was prepared to form a dielectric layer.
・(D1) Barium titanate powder: 70 parts by mass ・(D2) Acrylic resin: 30 parts by mass After applying a coating liquid containing this composition on (E) the surface of the Al-deposited PET film (Al-deposited surface) , and drying to form a dielectric layer (thickness: 345 μm). An electromagnetic wave suppressor (thickness: 429 μm) according to this example was obtained through the step of laminating the above dielectric layer on the surface (barrier coating layer side) of the alumina-deposited PET. The layer structure of this electromagnetic wave suppressor is the same as that of the electromagnetic wave suppressor shown in FIG. 3A except that an adhesive layer is formed between the electromagnetic wave permeable layer and the base film.
(実施例2)
 (C1)及び(C2)によってバリア層を構成する代わりに、バリア層として(C3)二軸延伸PETフィルム(厚さ:12μm)を使用したことの他は、実施例1と同様にして本実施例に係る電磁波抑制体(厚さ:429μm)を作製した(図4参照)。
(Example 2)
This experiment was carried out in the same manner as in Example 1, except that (C3) a biaxially stretched PET film (thickness: 12 μm) was used as the barrier layer instead of forming the barrier layer with (C1) and (C2). An electromagnetic wave suppressor (thickness: 429 μm) according to the example was produced (see FIG. 4).
(実施例3)
 (C1)及び(C2)によってバリア層を構成する代わりに、バリア層として(C4)シリコーン粘着剤の層(厚さ:10μm)を(B1)PEDOT/PSSの電磁波透過層の表面に形成した。その後、バリア層と誘電体層をラミネーターにより貼合したことの他は、実施例1と同様にして本実施例に係る電磁波抑制体(厚さ:427μm)を作製した(図5参照)。
(Example 3)
Instead of forming a barrier layer with (C1) and (C2), a layer (C4) of silicone pressure-sensitive adhesive (thickness: 10 μm) was formed as a barrier layer on the surface of (B1) PEDOT/PSS electromagnetic wave transmission layer. Thereafter, an electromagnetic wave suppressor (thickness: 427 μm) according to this example was produced in the same manner as in Example 1, except that the barrier layer and the dielectric layer were laminated by a laminator (see FIG. 5).
(実施例4)
 バリア層の向きを反転させたことの他は、実施例1と同様にして本実施例に係る電磁波抑制体(厚さ:429μm)を作製した。この電磁波抑制体の層構成は、電磁波透過層とバリア性被覆層の間に粘着層が形成されていることの他は図3(b)に示す電磁波抑制体と同じ層構成である。
(Example 4)
An electromagnetic wave suppressor (thickness: 429 μm) according to this example was produced in the same manner as in Example 1, except that the direction of the barrier layer was reversed. The layer structure of this electromagnetic wave suppressor is the same as that of the electromagnetic wave suppressor shown in FIG. 3(b) except that an adhesive layer is formed between the electromagnetic wave transmission layer and the barrier coating layer.
(実施例5)
 (B1)ポリエチレンジオキシチオフェン(PEDOT)とポリスチレンスルホン酸(PPS)との混合物(PEDOT/PSS)の電磁波透過層を形成する代わりに、(B2)ポリアニリン誘導体の電磁波透過層を形成したことの他は、実施例1と同様にして本実施例に係る電磁波抑制体(厚さ:429μm)を作製した(図3(a)参照)。
(Example 5)
(B1) Instead of forming an electromagnetic wave-transmitting layer of a mixture (PEDOT/PSS) of polyethylenedioxythiophene (PEDOT) and polystyrene sulfonic acid (PPS), (B2) forming an electromagnetic wave-transmitting layer of a polyaniline derivative. An electromagnetic wave suppressor (thickness: 429 μm) according to this example was produced in the same manner as in Example 1 (see FIG. 3(a)).
(実施例6)
 (B1)ポリエチレンジオキシチオフェン(PEDOT)とポリスチレンスルホン酸(PPS)との混合物(PEDOT/PSS)の電磁波透過層を形成する代わりに、(B3)酸化インジウムスズ(ITO)の層をスパッタリング法で形成したことの他は、実施例1と同様にして本実施例に係る電磁波抑制体(厚さ:429μm)を作製した(図3(a)参照)。
(Example 6)
(B1) Instead of forming an electromagnetic wave transmission layer of a mixture of polyethylenedioxythiophene (PEDOT) and polystyrene sulfonic acid (PPS) (PEDOT/PSS), a layer of (B3) indium tin oxide (ITO) is formed by a sputtering method. An electromagnetic wave suppressor (thickness: 429 μm) according to this example was produced in the same manner as in Example 1, except that it was formed (see FIG. 3A).
(実施例7)
 (A)二軸延伸PETフィルムの表面に、(B1)PEDOT/PSSの電磁波透過層(厚さ:440nm)を塗工によって形成した。他方、(C1)アルミナ蒸着PETフィルムの表面(アルミナ蒸着面)上に、(C2)バリア性被覆層(厚さ:400nm)が形成されたバリア層を準備した。(C4)シリコーン粘着剤を使用し、(B1)PEDOT/PSSの電磁波透過層と(C1)アルミナ蒸着PETの表面(PET面)をラミネーターで貼合した。(C4)シリコーン粘着剤の層の厚さは10μmとした。
 誘電体層を形成するため、以下の組成の組成物を混合、溶融、混錬、押出、冷却、切断し、マスターバッチを作製した。
・(D1)チタン酸バリウム粉末:70質量部
・(D2)ウレタン樹脂:30質量部
 この組成物を含むマスターバッチをカレンダー成型機で圧延する工程を経て誘電体層(厚さ:325μm)を形成した。
 誘電体層を上下層と接着するため、以下の組成の組成物を調製した。
・(D3)ウレタン接着剤(AD-393):44質量部
・(D4)エポキシ硬化剤(CAT-EP5):3質量部
・(D5)IPA溶媒:53質量部
 この組成物を含む塗液を(E)Al蒸着PETフィルムの表面(Al蒸着面)上に塗工した後、乾燥する工程を経て接着層(厚さ:18μm)を形成し、誘電体層とラミネーターにより貼合した。
 同様に、上記のアルミナ蒸着PETの表面(バリア性被覆層側)上に塗工した後、乾燥する工程を経て接着層(厚さ:18μm)を形成し、誘電体層をラミネートする工程を経て図6に示す電磁波抑制体と同様の層構成の電磁波抑制体(厚さ:445μm)を得た。
(Example 7)
(A) An electromagnetic wave transmitting layer (thickness: 440 nm) of (B1) PEDOT/PSS was formed by coating on the surface of the biaxially stretched PET film. On the other hand, a barrier layer was prepared by forming (C2) a barrier coating layer (thickness: 400 nm) on the surface (alumina-deposited surface) of (C1) an alumina-deposited PET film. Using (C4) a silicone adhesive, (B1) the PEDOT/PSS electromagnetic wave transmission layer and (C1) the surface (PET surface) of alumina-deposited PET were laminated with a laminator. (C4) The thickness of the silicone adhesive layer was 10 μm.
In order to form a dielectric layer, a composition having the following composition was mixed, melted, kneaded, extruded, cooled, and cut to prepare a masterbatch.
・(D1) Barium titanate powder: 70 parts by mass ・(D2) Urethane resin: 30 parts by mass A dielectric layer (thickness: 325 μm) is formed through a process of rolling a masterbatch containing this composition with a calendar molding machine. bottom.
In order to adhere the dielectric layer to the upper and lower layers, a composition having the following composition was prepared.
・(D3) Urethane adhesive (AD-393): 44 parts by mass ・(D4) Epoxy curing agent (CAT-EP5): 3 parts by mass ・(D5) IPA solvent: 53 parts by mass A coating liquid containing this composition (E) After coating on the surface of the Al-deposited PET film (Al-deposited surface), an adhesive layer (thickness: 18 μm) was formed through a drying process, and then bonded to the dielectric layer using a laminator.
Similarly, after coating on the surface (barrier coating layer side) of the above alumina-deposited PET, an adhesive layer (thickness: 18 μm) is formed through a drying step, and a dielectric layer is laminated through a step of drying. An electromagnetic wave suppressor (thickness: 445 μm) having a layer structure similar to that of the electromagnetic wave suppressor shown in FIG. 6 was obtained.
(実施例8)
 誘電体層を形成するため、以下の組成の組成物を調製した。
・(D1)チタン酸バリウム粉末:70質量部
・(D2)シリコーン樹脂:30質量部
 この組成物を含む塗液を(E)Al蒸着PETフィルムの表面(Al蒸着面)上に塗工した後、乾燥する工程を経て誘電体層(厚さ:345μm)を形成したことの他は、実施例1と同様にして本実施例に係る電磁波抑制体(厚さ:429μm)を作製した(図3(a)参照)。
(Example 8)
A composition having the following composition was prepared to form a dielectric layer.
・(D1) Barium titanate powder: 70 parts by mass ・(D2) Silicone resin: 30 parts by mass After applying a coating liquid containing this composition on the surface (Al-deposited surface) of (E) Al-deposited PET film An electromagnetic wave suppressor (thickness: 429 μm) according to this example was produced in the same manner as in Example 1, except that a dielectric layer (thickness: 345 μm) was formed through a drying step (FIG. 3). (a)).
(実施例9)
 誘電体層を形成するため、以下の組成の組成物を調製した。
・(D1)酸化チタン粉末:66質量部
・(D2)シリコーン樹脂:34質量部
 この組成物を含む塗液を(E)Al蒸着PETフィルムの表面(Al蒸着面)上に塗工した後、乾燥する工程を経て誘電体層(厚さ:380μm)を形成したことの他は、実施例1と同様にして本実施例に係る電磁波抑制体(厚さ:464μm)を作製した(図3(a)参照)。
(Example 9)
A composition having the following composition was prepared to form a dielectric layer.
(D1) Titanium oxide powder: 66 parts by mass (D2) Silicone resin: 34 parts by mass After applying a coating liquid containing this composition on the surface (Al-deposited surface) of (E) Al-deposited PET film, An electromagnetic wave suppressor (thickness: 464 μm) according to this example was produced in the same manner as in Example 1, except that a dielectric layer (thickness: 380 μm) was formed through a drying step (see FIG. 3 ( a) see).
(実施例10)
 誘電体層を形成するため、以下の組成の組成物を調製した。
・(D1)酸化亜鉛粉末:69質量部
・(D2)アクリル樹脂:31質量部
 この組成物を含む塗液を(E)Al蒸着PETフィルムの表面(Al蒸着面)上に塗工した後、乾燥する工程を経て誘電体層(厚さ:350μm)を形成したことの他は、実施例1と同様にして本実施例に係る電磁波抑制体(厚さ:470μm)を作製した(図3(a)参照)。
(Example 10)
A composition having the following composition was prepared to form a dielectric layer.
(D1) Zinc oxide powder: 69 parts by mass (D2) Acrylic resin: 31 parts by mass After applying a coating solution containing this composition on the surface (Al-deposited surface) of (E) Al-deposited PET film, An electromagnetic wave suppressor (thickness: 470 μm) according to this example was produced in the same manner as in Example 1, except that a dielectric layer (thickness: 350 μm) was formed through a drying step (see FIG. 3 ( a) see).
(実施例11)
 誘電体層(厚さ:710μm)を形成したことの他は、実施例7と同様に本実施例に係る電磁波抑制体(厚さ:830μm)を作製した(図6参照)。
(Example 11)
An electromagnetic wave suppressor (thickness: 830 μm) according to this example was produced in the same manner as in Example 7, except that a dielectric layer (thickness: 710 μm) was formed (see FIG. 6).
(比較例1)
 電磁波透過層と誘電体層の間にバリア層を配置せず、電磁波透過層が誘電体層と直接接した構成としたことの他は、実施例1と同様にして比較例1に係る電磁波抑制体(厚さ:407μm)を作製した。
(Comparative example 1)
Electromagnetic wave suppression according to Comparative Example 1 in the same manner as in Example 1, except that no barrier layer is arranged between the electromagnetic wave permeable layer and the dielectric layer, and the electromagnetic wave permeable layer is in direct contact with the dielectric layer. A body (thickness: 407 μm) was produced.
(比較例2)
 電磁波透過層と誘電体層の間にバリア層を配置せず、電磁波透過層が誘電体層と直接接した構成としたことの他は、実施例5と同様にして比較例2に係る電磁波抑制体(厚さ:407μm)を作製した。
(Comparative example 2)
Electromagnetic wave suppression according to Comparative Example 2 in the same manner as in Example 5, except that no barrier layer was arranged between the electromagnetic wave permeable layer and the dielectric layer, and the electromagnetic wave permeable layer was in direct contact with the dielectric layer. A body (thickness: 407 μm) was produced.
(比較例3)
 電磁波透過層と誘電体層の間にバリア層を配置せず、電磁波透過層が誘電体層と直接接した構成としたことの他は、実施例6と同様にして比較例3に係る電磁波抑制体(厚さ:407μm)を作製した。
(Comparative Example 3)
Electromagnetic wave suppression according to Comparative Example 3 in the same manner as in Example 6, except that no barrier layer was arranged between the electromagnetic wave permeable layer and the dielectric layer, and the electromagnetic wave permeable layer was in direct contact with the dielectric layer. A body (thickness: 407 μm) was produced.
(比較例4)
 電磁波透過層と誘電体層の間にバリア層を配置せず、電磁波透過層が誘電体層と直接接した構成としたことの他は、実施例8と同様にして比較例4に係る電磁波抑制体(厚さ:407μm)を作製した。
(Comparative Example 4)
Electromagnetic wave suppression according to Comparative Example 4 in the same manner as in Example 8, except that no barrier layer was arranged between the electromagnetic wave permeable layer and the dielectric layer, and the electromagnetic wave permeable layer was in direct contact with the dielectric layer. A body (thickness: 407 μm) was produced.
(比較例5)
 電磁波透過層と誘電体層の間にバリア層を配置せず、電磁波透過層が誘電体層と直接接した構成としたことの他は、実施例9と同様にして比較例5に係る電磁波抑制体(厚さ:407μm)を作製した。
(Comparative Example 5)
Electromagnetic wave suppression according to Comparative Example 5 in the same manner as in Example 9, except that no barrier layer was arranged between the electromagnetic wave permeable layer and the dielectric layer, and the electromagnetic wave permeable layer was in direct contact with the dielectric layer. A body (thickness: 407 μm) was produced.
(比較例6)
 電磁波透過層と誘電体層の間にバリア層を配置せず、電磁波透過層が誘電体層と直接接した構成としたことの他は、実施例10と同様にして比較例6に係る電磁波抑制体(厚さ:407μm)を作製した。
(Comparative Example 6)
Electromagnetic wave suppression according to Comparative Example 6 in the same manner as in Example 10, except that no barrier layer was arranged between the electromagnetic wave permeable layer and the dielectric layer, and the electromagnetic wave permeable layer was in direct contact with the dielectric layer. A body (thickness: 407 μm) was produced.
 表1~4に実施例及び比較例に係る電磁波抑制体の構成をまとめて記載した。 The configurations of the electromagnetic wave suppressors according to the examples and comparative examples are summarized in Tables 1 to 4.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 実施例及び比較例に係る電磁波抑制体及びこれを構成する層について以下の評価を行った。表5~8に結果を示す。
(1)バリア層の酸素透過度
 バリア層の酸素透過度(OTR)を、酸素透過度測定装置(MOCON社製、商品名:OX-TRAN)を用いて、温度30℃、相対湿度70%の条件で、JIS K-7126-2に準拠して測定した。酸素透過度の単位は[cc/(m・day・atm)]である。
The electromagnetic wave suppressors according to the examples and the comparative examples and the layers constituting the same were evaluated as follows. Results are shown in Tables 5-8.
(1) Oxygen Transmission Rate of Barrier Layer The oxygen transmission rate (OTR) of the barrier layer was measured using an oxygen transmission rate measuring device (manufactured by MOCON, trade name: OX-TRAN) at a temperature of 30° C. and a relative humidity of 70%. It was measured in accordance with JIS K-7126-2 under conditions. The unit of oxygen permeability is [cc/(m 2 ·day · atm)].
(2)バリア層の水蒸気透過度
 バリア層の水蒸気透過度(WVTR)を、水蒸気透過度測定装置(MOCON社製、商品名:PERMATRAN3/31)を用いて、温度40℃、相対湿度90%の条件で、JIS K-7129に準拠して測定した。水蒸気透過度の単位は[g/m/day]である。
(2) Water vapor transmission rate of barrier layer The water vapor transmission rate (WVTR) of the barrier layer was measured using a water vapor transmission rate measuring device (manufactured by MOCON, trade name: PERMATRAN 3/31) at a temperature of 40 ° C. and a relative humidity of 90%. It was measured in accordance with JIS K-7129 under conditions. The unit of water vapor permeability is [g/m 2 /day].
(3)電磁波透過層のシート抵抗値
 低抵抗率計(三菱ケミカルアナリテック株式会社製)を用いて、電磁波透過層のシート抵抗値を測定した。印加電圧は1000Vで測定した。
 シート抵抗値の測定は、電磁波抑制体を所定の時間にわたって温度85℃、相対湿度85%の環境下に晒す前後で行った。これらの測定値を以下の式に代入してシート抵抗変化率を算出した。
 シート抵抗変化率[%]=(R-R)/R×100
[式中、Rは温度85℃、相対湿度85%の環境下に電磁波抑制体を24時間、100時間、250時間又は500時間にわたって晒した後の電磁波透過層のシート抵抗値を示し、Rは上記環境下に電磁波抑制体を晒す前の電磁波透過層のシート抵抗値を示す。]
 なお、比較例1に係る電磁波抑制体を上記環境下に100時間にわたって晒した時点において、電磁波透過層のシート抵抗値が測定可能上限値を超えた。
(3) Sheet resistance value of electromagnetic wave permeable layer The sheet resistance value of the electromagnetic wave permeable layer was measured using a low resistivity meter (manufactured by Mitsubishi Chemical Analytech Co., Ltd.). The applied voltage was measured at 1000V.
The sheet resistance value was measured before and after exposing the electromagnetic wave suppressor to an environment with a temperature of 85° C. and a relative humidity of 85% for a predetermined period of time. These measured values were substituted into the following formula to calculate the sheet resistance change rate.
Sheet resistance change rate [%] = (RR 0 )/R 0 × 100
[In the formula, R represents the sheet resistance value of the electromagnetic wave permeable layer after exposing the electromagnetic wave suppressor to an environment with a temperature of 85° C. and a relative humidity of 85% for 24 hours, 100 hours, 250 hours or 500 hours, and R 0 indicates the sheet resistance value of the electromagnetic wave permeable layer before exposing the electromagnetic wave suppressor to the above environment. ]
When the electromagnetic wave suppressor according to Comparative Example 1 was exposed to the above environment for 100 hours, the sheet resistance value of the electromagnetic wave transmission layer exceeded the measurable upper limit.
 表5~7に示されたとおり、シート抵抗変化率がマイナスの値となる場合があった。この主因は(B)の混合物に含まれる添加剤にあると推察される。すなわち、(B)の混合物にはPEDOT/PSSの他に劣化防止剤などが添加されており、上記環境に晒されている状態において、劣化(シート抵抗上昇)のベクトルと、劣化防止(シート抵抗低下)ベクトルと存在する。一部の実施例においては、劣化防止剤の働きが優位になり、シート抵抗低下のベクトルが相対的に大きくなり、変化率がマイナスになったと推察される。本発明者らの検討によると、シート抵抗変化率が-40%よりも小さい値(絶対値が40%よりも大きな値)とならなければ、電磁波抑制体の信頼性は確保できる。 As shown in Tables 5 to 7, the sheet resistance change rate was negative in some cases. The main reason for this is presumed to be the additives contained in the mixture (B). That is, in addition to PEDOT/PSS, the mixture of (B) is added with an anti-deterioration agent and the like. drop) vector and present. It is presumed that in some examples, the action of the anti-deterioration agent became dominant, the vector of sheet resistance decrease became relatively large, and the rate of change became negative. According to studies by the present inventors, the reliability of the electromagnetic wave suppressor can be ensured unless the sheet resistance change rate is less than −40% (absolute value is greater than 40%).
(4)反射減衰量
 温度85℃、相対湿度85%の環境下に24時間にわたって晒した後の電磁波抑制体の反射減衰量を以下の装置を使用して測定した。なお、実施例1,4に係る電磁波抑制体については、温度85℃、相対湿度85%の環境下に500時間にわたって晒した後の反射減衰量も測定した。
・ベクトルネットワークアナライザ(Keysight PNA N5222B 10MHz-26.5GHz、Virginia DiodesInc、WR12 55-95GHz)
・高周波ネットワークアナライザー(アジレント・テクノロジー製、E8362C)
 送信アンテナからミリ波を電磁波抑制体に照射し、電磁波抑制体を反射して受信アンテナに入射するミリ波の強度を測定して減衰量(dB)を求めた。60GHz~90GHz又は20GHZ~40GHzの範囲における反射減衰量の最大値と、この最大値となったときの周波数を表5~8に記載した。
(4) Return Loss A return loss of the electromagnetic wave suppressor after being exposed to an environment with a temperature of 85° C. and a relative humidity of 85% for 24 hours was measured using the following equipment. The electromagnetic wave suppressors according to Examples 1 and 4 were also measured for return loss after being exposed to an environment with a temperature of 85° C. and a relative humidity of 85% for 500 hours.
・Vector network analyzer (Keysight PNA N5222B 10MHz-26.5GHz, Virginia Diodes Inc, WR12 55-95GHz)
・High frequency network analyzer (Agilent Technologies, E8362C)
An attenuation (dB) was obtained by measuring the intensity of the millimeter wave that was applied to the electromagnetic wave suppressor from the transmitting antenna and reflected by the electromagnetic wave suppressor and incident on the receiving antenna. Tables 5 to 8 show the maximum value of return loss in the range of 60 GHz to 90 GHz or 20 GHz to 40 GHz and the frequency at which this maximum value is reached.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
 本開示によれば、十分な反射減衰量を長期にわたって維持できる電磁波抑制体が提供される。 According to the present disclosure, an electromagnetic wave suppressor capable of maintaining sufficient return loss over a long period of time is provided.
1…基材層、2…電磁波透過層、3,13…バリア層、3a…基材フィルム、3b…蒸着層、3c…バリア性被覆層、4…誘電体層、5…反射層(反射体)、6…粘着層、7,8…接着層、10,20,30…電磁波抑制体。 DESCRIPTION OF SYMBOLS 1... Base material layer, 2... Electromagnetic wave transmission layer, 3, 13... Barrier layer, 3a... Base film, 3b... Vapor deposition layer, 3c... Barrier coating layer, 4... Dielectric layer, 5... Reflective layer (reflector ), 6... Adhesive layer, 7, 8... Adhesive layer, 10, 20, 30... Electromagnetic wave suppressor.

Claims (8)

  1.  導電性を有する電磁波透過層と、
     バリア層と、
     少なくとも一種の誘電性化合物と樹脂成分とを含有する誘電体層と、
     反射体と、
    をこの順序で備える、電磁波抑制体。
    an electromagnetic wave permeable layer having electrical conductivity;
    a barrier layer;
    a dielectric layer containing at least one dielectric compound and a resin component;
    a reflector;
    in that order.
  2.  前記電磁波透過層が導電性ポリマーを含有し、
     前記誘電性化合物が酸化チタン及びチタン酸バリウムの少なくとも一方である、請求項1に記載の電磁波抑制体。
    The electromagnetic wave transmission layer contains a conductive polymer,
    2. The electromagnetic wave suppressor according to claim 1, wherein said dielectric compound is at least one of titanium oxide and barium titanate.
  3.  前記バリア層が、基材フィルムと、前記基材フィルムの一方の面上に設けられた酸化物の蒸着層とを含む、請求項1に記載の電磁波抑制体。 The electromagnetic wave suppressor according to claim 1, wherein the barrier layer includes a substrate film and an oxide deposition layer provided on one surface of the substrate film.
  4.  前記バリア層が、前記蒸着層を覆うように設けられたバリア性被覆層を更に含む、請求項3に記載の電磁波抑制体。 The electromagnetic wave suppressor according to claim 3, wherein the barrier layer further includes a barrier coating layer provided to cover the vapor deposition layer.
  5.  前記バリア層が、高分子フィルム及び粘着層の少なくとも一方を含む、請求項1に記載の電磁波抑制体。 The electromagnetic wave suppressor according to claim 1, wherein the barrier layer includes at least one of a polymer film and an adhesive layer.
  6.  前記バリア層の水蒸気透過度が4.0×10g/m/day以下である、請求項1に記載の電磁波抑制体。 2. The electromagnetic wave suppressor according to claim 1, wherein the barrier layer has a water vapor permeability of 4.0*10< 2 > g/m <2 > /day or less.
  7.  前記電磁波透過層の下記式で算出されるシート抵抗変化率Cが60%以下である、請求項1~6のいずれか一項に記載の電磁波抑制体。
     シート抵抗変化率C[%]=(R-R)/R×100
    [式中、Rは温度85℃、相対湿度85%の環境下に前記電磁波抑制体を24時間にわたって晒した後の前記電磁波透過層のシート抵抗値を示し、Rは前記環境下に前記電磁波抑制体を晒す前の前記電磁波透過層のシート抵抗値を示す。]
    7. The electromagnetic wave suppressor according to claim 1, wherein the electromagnetic wave permeable layer has a sheet resistance change rate C1 of 60% or less calculated by the following formula.
    Sheet resistance change rate C 1 [%]=(R 1 −R 0 )/R 0 ×100
    [In the formula, R 1 represents the sheet resistance value of the electromagnetic wave permeable layer after exposing the electromagnetic wave suppressor to an environment with a temperature of 85° C. and a relative humidity of 85% for 24 hours, and R 0 represents the The sheet resistance value of the electromagnetic wave permeable layer before exposing the electromagnetic wave suppressor is shown. ]
  8.  前記電磁波透過層の下記式で算出されるシート抵抗変化率Cが9%以下である、請求項1~6のいずれか一項に記載の電磁波抑制体。
     シート抵抗変化率C[%]=(R-R)/R×100
    [式中、Rは温度85℃、相対湿度85%の環境下に前記電磁波抑制体を500時間にわたって晒した後の前記電磁波透過層のシート抵抗値を示し、Rは前記環境下に前記電磁波抑制体を晒す前の前記電磁波透過層のシート抵抗値を示す。]
    7. The electromagnetic wave suppressor according to claim 1, wherein the electromagnetic wave permeable layer has a sheet resistance change rate C2 of 9% or less calculated by the following formula.
    Sheet resistance change rate C 2 [%]=(R 2 −R 0 )/R 0 ×100
    [In the formula, R 2 represents the sheet resistance value of the electromagnetic wave permeable layer after exposing the electromagnetic wave suppressor to an environment of 85° C. and 85% relative humidity for 500 hours, and R 0 represents the The sheet resistance value of the electromagnetic wave permeable layer before exposing the electromagnetic wave suppressor is shown. ]
PCT/JP2022/034072 2021-09-16 2022-09-12 Electromagnetic wave suppressor WO2023042799A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2023548459A JPWO2023042799A1 (en) 2021-09-16 2022-09-12

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021151331 2021-09-16
JP2021-151331 2021-09-16

Publications (1)

Publication Number Publication Date
WO2023042799A1 true WO2023042799A1 (en) 2023-03-23

Family

ID=85602898

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/034072 WO2023042799A1 (en) 2021-09-16 2022-09-12 Electromagnetic wave suppressor

Country Status (3)

Country Link
JP (1) JPWO2023042799A1 (en)
TW (1) TW202323023A (en)
WO (1) WO2023042799A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018230026A1 (en) * 2017-06-13 2018-12-20 日東電工株式会社 Electromagnetic wave absorber and molded article having electromagnetic wave absorber
JP2020168775A (en) * 2019-04-02 2020-10-15 凸版印刷株式会社 Transparent conductive gas barrier laminate, its manufacturing method, and device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018230026A1 (en) * 2017-06-13 2018-12-20 日東電工株式会社 Electromagnetic wave absorber and molded article having electromagnetic wave absorber
JP2020168775A (en) * 2019-04-02 2020-10-15 凸版印刷株式会社 Transparent conductive gas barrier laminate, its manufacturing method, and device

Also Published As

Publication number Publication date
JPWO2023042799A1 (en) 2023-03-23
TW202323023A (en) 2023-06-16

Similar Documents

Publication Publication Date Title
TWI653144B (en) Multi-layer resin sheet for high-speed transmission of flexible flat cable and high-speed transmission flexible flat cable
WO2018230092A1 (en) Electromagnetic-wave absorber and molded article provided with electromagnetic-wave absorber
CN115449279A (en) Conductive coating liquid composition and transparent conductive film for flexible display including conductive layer produced therefrom
EP3471111A1 (en) Transparent conductor
WO2023042799A1 (en) Electromagnetic wave suppressor
CN111837464A (en) Electromagnetic wave absorbing sheet
US20220009202A1 (en) Transparent conductive gas barrier laminate, a method for ufacturing the same, and a device using the transparent conductive gas barrier laminate
JP7238767B2 (en) Transparent conductive gas barrier laminate and device comprising the same
WO2015072109A1 (en) Heat-insulating laminate and composition for forming said heat-insulating laminate
WO2023243485A1 (en) Electromagnetic wave absorber
CN108292541B (en) Conductive transparent film
JP2023183509A (en) electromagnetic wave absorber
JP2023167269A (en) Electromagnetic wave absorber, manufacturing method thereof, and stable communication space
WO2015119240A1 (en) Transparent conductive laminate, method for producing transparent conductive laminate, and electronic device formed using transparent conductive laminate
JP2023184463A (en) electromagnetic wave absorber
KR20170017125A (en) Gas and moisture barrier coating composition for forming a barrier film coating layer and gas and moisture barrier film using the same
WO2023218849A1 (en) Electromagnetic wave absorption body, production method for same, and communication stabilization space
KR20190121735A (en) Electroconductive coating composition and transparent conductive film for flexible display comprising conductive layer prepared from the composition
US20230420156A1 (en) Method for manufacturing dielectric layer, resin composition, and laminate comprising dielectric layer
WO2022158562A1 (en) Radio wave absorber and method for manufacturing radio wave absorber
WO2021199460A1 (en) Film antenna and method for producing film antenna
JP2023100090A (en) Dielectric sheet for electromagnetic wave absorber and electromagnetic wave absorber
JP2023132076A (en) radio wave absorber
JPWO2022158562A5 (en)
CN116472172A (en) Glass substrate with heat insulation film

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22869946

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023548459

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE