TW202406142A - Nitride semiconductor wafer and manufacturing method thereof - Google Patents

Nitride semiconductor wafer and manufacturing method thereof Download PDF

Info

Publication number
TW202406142A
TW202406142A TW112120202A TW112120202A TW202406142A TW 202406142 A TW202406142 A TW 202406142A TW 112120202 A TW112120202 A TW 112120202A TW 112120202 A TW112120202 A TW 112120202A TW 202406142 A TW202406142 A TW 202406142A
Authority
TW
Taiwan
Prior art keywords
concentration
layer
nitride semiconductor
buffer layer
semiconductor wafer
Prior art date
Application number
TW112120202A
Other languages
Chinese (zh)
Inventor
萩本和德
久保埜一平
Original Assignee
日商信越半導體股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日商信越半導體股份有限公司 filed Critical 日商信越半導體股份有限公司
Publication of TW202406142A publication Critical patent/TW202406142A/en

Links

Images

Abstract

本發明是一種氮化物半導體晶圓,其具備:矽系基板;緩衝層,其積層於該矽系基板上且包含氮化物半導體;及,功能層,其積層於該緩衝層上且至少包含GaN層;該氮化物半導體晶圓的特徵在於,前述緩衝層中摻雜有Fe,前述緩衝層中的積層方向的Fe濃度分佈是下述濃度分佈,即具有Fe濃度最大的點,且Fe濃度從該Fe濃度最大的點向前述功能層減少,前述Fe濃度最大的點中的Fe濃度為2.5×10 18atoms/cm 3以上且6.0×10 18atoms/cm 3以下,並且前述緩衝層的前述功能層側的頂面的Fe濃度為4.0×10 17atoms/cm 3以下。藉此,提供一種氮化物半導體晶圓,其翹曲得到抑制。 The present invention is a nitride semiconductor wafer, which is provided with: a silicon-based substrate; a buffer layer laminated on the silicon-based substrate and containing a nitride semiconductor; and a functional layer laminated on the buffer layer and containing at least GaN layer; the nitride semiconductor wafer is characterized in that the buffer layer is doped with Fe, and the Fe concentration distribution in the stacking direction in the buffer layer is a concentration distribution having a maximum Fe concentration, and the Fe concentration is from The point where the Fe concentration is the maximum decreases toward the functional layer, the Fe concentration at the point where the Fe concentration is the maximum is 2.5×10 18 atoms/cm 3 or more and 6.0×10 18 atoms/cm 3 or less, and the function of the buffer layer is The Fe concentration of the top surface on the layer side is 4.0×10 17 atoms/cm 3 or less. This provides a nitride semiconductor wafer in which warpage is suppressed.

Description

氮化物半導體晶圓、及其製造方法Nitride semiconductor wafer and manufacturing method thereof

本發明有關一種氮化物半導體晶圓,尤其有關一種翹曲得到抑制之氮化物半導體晶圓。The present invention relates to a nitride semiconductor wafer, and in particular to a nitride semiconductor wafer in which warpage is suppressed.

在單晶矽基板上依序積層初始AlN層、緩衝層、及GaN-高電子遷移率電晶體(HEMT)結構磊晶層而得之氮化物半導體晶圓被用作功率元件用磊晶基板、射頻(RF)元件用磊晶基板。The nitride semiconductor wafer obtained by sequentially stacking an initial AlN layer, a buffer layer, and a GaN-high electron mobility transistor (HEMT) structure epitaxial layer on a single crystal silicon substrate is used as an epitaxial substrate for power devices. Epitaxial substrates for radio frequency (RF) components.

又,亦使用在絕緣層上覆矽(SOI)基板上磊晶生長氮化物半導體而得之晶圓,當在SOI基板上進行磊晶生長時,相較於單晶矽基板,晶圓的翹曲變較大。為了抑制翹曲,需要設計緩衝層,並且一邊觀察即時(in-situ)的翹曲數據一邊減少翹曲(專利文獻1)。In addition, wafers obtained by epitaxial growth of nitride semiconductors on silicon (SOI) substrates covered with insulating layers are also used. When epitaxial growth is performed on SOI substrates, compared with single crystal silicon substrates, the warpage of the wafers is smaller. The distortion is large. In order to suppress warpage, it is necessary to design a buffer layer and reduce warpage while observing in-situ warpage data (Patent Document 1).

雖然單晶矽基板能夠使翹曲相對較小,但是當在SOI基板上磊晶生長氮化物半導體時,難以抑制翹曲。 [先前技術文獻] (專利文獻) Although a single crystal silicon substrate can make warpage relatively small, when a nitride semiconductor is epitaxially grown on an SOI substrate, it is difficult to suppress warpage. [Prior technical literature] (patent document)

專利文獻1:日本專利第6473017號公報Patent Document 1: Japanese Patent No. 6473017

[發明所欲解決的問題][Problem to be solved by the invention]

本發明是為了解決上述問題而完成,其目的在於提供一種氮化物半導體晶圓,其翹曲得到抑制。 [解決問題的技術手段] The present invention has been made to solve the above problems, and an object thereof is to provide a nitride semiconductor wafer in which warpage is suppressed. [Technical means to solve problems]

為了解決上述問題,本發明提供一種氮化物半導體晶圓,其具備:矽系基板;緩衝層,其積層於該矽系基板上且包含氮化物半導體;及,功能層,其積層於該緩衝層上且至少包含GaN層;其中, 前述緩衝層中摻雜有Fe,前述緩衝層中的積層方向的Fe濃度分佈是下述濃度分佈,即具有Fe濃度最大的點,且Fe濃度從該Fe濃度最大的點向前述功能層減少, 前述Fe濃度最大的點中的Fe濃度為2.5×10 18atoms/cm 3以上且6.0×10 18atoms/cm 3以下,並且前述緩衝層的前述功能層側的頂面的Fe濃度為4.0×10 17atoms/cm 3以下。 In order to solve the above problems, the present invention provides a nitride semiconductor wafer, which includes: a silicon-based substrate; a buffer layer laminated on the silicon-based substrate and including a nitride semiconductor; and a functional layer laminated on the buffer layer and at least includes a GaN layer; wherein, the buffer layer is doped with Fe, and the Fe concentration distribution in the stacking direction in the buffer layer is a concentration distribution that has a point where the Fe concentration is maximum, and the Fe concentration changes from the Fe concentration The maximum point decreases toward the functional layer, the Fe concentration at the point with the maximum Fe concentration is 2.5×10 18 atoms/cm 3 or more and 6.0×10 18 atoms/cm 3 or less, and the buffer layer on the functional layer side The Fe concentration on the top surface is 4.0×10 17 atoms/cm 3 or less.

藉由以這樣的濃度分佈摻雜有Fe,能夠在不改變氮化物半導體晶圓的結構的情形下抑制翹曲。若緩衝層內的Fe最高濃度為2.5×10 18atoms/cm 3以上,則能夠顯著地抑制翹曲。又,藉由設為6.0×10 18atoms/cm 3以下,從而能夠使緩衝層頂面的Fe濃度為4.0×10 17atoms/cm 3以下。若緩衝層頂面的Fe濃度為4.0×10 17atoms/cm 3以下,則能夠防止以下情形:因Fe的記憶效應導致元件表面的Fe濃度變高,使元件的特性惡化。 By doping Fe with such a concentration distribution, warpage can be suppressed without changing the structure of the nitride semiconductor wafer. If the maximum concentration of Fe in the buffer layer is 2.5×10 18 atoms/cm 3 or more, warpage can be significantly suppressed. Furthermore, by setting it to 6.0×10 18 atoms/cm 3 or less, the Fe concentration on the top surface of the buffer layer can be set to 4.0×10 17 atoms/cm 3 or less. If the Fe concentration on the top surface of the buffer layer is 4.0×10 17 atoms/cm 3 or less, it can prevent the Fe concentration on the device surface from becoming high due to the memory effect of Fe, thereby degrading the device characteristics.

又,較佳是:前述矽系基板是單晶矽基板、或絕緣層上覆矽(SOI)基板。Furthermore, preferably, the silicon-based substrate is a single crystal silicon substrate or a silicon on insulating layer (SOI) substrate.

在本發明中,能夠使用這樣的矽系基板,其中當使用SOI基板時,翹曲較大,因而本發明特別有效。In the present invention, it is possible to use a silicon-based substrate in which warpage is large when an SOI substrate is used, so the present invention is particularly effective.

又,較佳是:前述緩衝層包含AlGaN層和由GaN層與AlN層交互積層而成之超晶格層。Furthermore, preferably, the buffer layer includes an AlGaN layer and a superlattice layer formed by alternately stacking GaN layers and AlN layers.

藉由設為這樣的結構,從而更有效地抑制翹曲。By adopting such a structure, warpage can be suppressed more effectively.

又,本發明提供一種氮化物半導體晶圓的製造方法,是製造氮化物半導體晶圓的方法,其中,包含以下步驟: 步驟(1),在矽系基板上積層包含氮化物半導體之緩衝層;及, 步驟(2),在前述緩衝層上積層至少包含GaN層之功能層,來製造氮化物半導體晶圓; 並且,在前述步驟(1)中,流入用以摻雜Fe的摻雜氣體,調整該摻雜氣體的流量,藉此將前述緩衝層中的積層方向的Fe濃度分佈設為下述濃度分佈,即具有Fe濃度最大的點,且Fe濃度從該Fe濃度最大的點向前述功能層減少, 將前述Fe濃度最大的點中的Fe濃度設為2.5×10 18atoms/cm 3以上且6.0×10 18atoms/cm 3以下,並且將前述緩衝層的前述功能層側的頂面的Fe濃度設為4.0×10 17atoms/cm 3以下。 Furthermore, the present invention provides a method for manufacturing a nitride semiconductor wafer, which is a method for manufacturing a nitride semiconductor wafer, which includes the following steps: Step (1), stacking a buffer layer containing a nitride semiconductor on a silicon substrate; and, step (2), laminating a functional layer including at least a GaN layer on the buffer layer to manufacture a nitride semiconductor wafer; and, in the aforementioned step (1), flowing in a doping gas for doping Fe, The flow rate of the doping gas is adjusted to set the Fe concentration distribution in the stacking direction in the buffer layer to a concentration distribution having a maximum Fe concentration point, and the Fe concentration moves from the maximum Fe concentration point toward the aforementioned function The layer is reduced, the Fe concentration at the point with the maximum Fe concentration is set to 2.5×10 18 atoms/cm 3 or more and 6.0×10 18 atoms/cm 3 or less, and the top surface of the buffer layer on the functional layer side is The Fe concentration is set to 4.0×10 17 atoms/cm 3 or less.

能夠藉由這樣的方式製造本發明的翹曲得到抑制之氮化物半導體晶圓。In this manner, the nitride semiconductor wafer of the present invention with suppressed warpage can be manufactured.

又,較佳是:在前述步驟(1)中,將前述矽系基板設為單晶矽基板、或絕緣層上覆矽(SOI)基板。Furthermore, preferably, in the aforementioned step (1), the silicon-based substrate is a single crystal silicon substrate or a silicon-on-insulating layer (SOI) substrate.

在本發明中,能夠使用這樣的矽系基板,其中當使用SOI基板時,翹曲較大,因而本發明特別有效。In the present invention, it is possible to use a silicon-based substrate in which warpage is large when an SOI substrate is used, so the present invention is particularly effective.

又,較佳是:在前述步驟(1)中,將前述緩衝層設為包含AlGaN層和由GaN層與AlN層交互積層而成之超晶格層。Furthermore, preferably, in the aforementioned step (1), the buffer layer includes an AlGaN layer and a superlattice layer formed by alternately stacking GaN layers and AlN layers.

藉由設為這樣的結構,從而更有效地抑制翹曲。 [發明的功效] By adopting such a structure, warpage can be suppressed more effectively. [Efficacy of the invention]

如以上所述,若是本發明,則能夠提供一種氮化物半導體晶圓、及其製造方法,該氮化物半導體晶圓是在單晶矽基板或SOI基板上磊晶生長氮化物半導體而得,並且在不改變緩衝層等結構的情形下翹曲得到抑制。As described above, the present invention can provide a nitride semiconductor wafer obtained by epitaxially growing a nitride semiconductor on a single crystal silicon substrate or an SOI substrate, and a manufacturing method thereof, and Warpage is suppressed without changing the buffer layer and other structures.

如上所述,尋求開發一種氮化物半導體晶圓,其翹曲得到抑制。As described above, development of a nitride semiconductor wafer in which warpage is suppressed is sought.

本發明人針對上述問題反覆專心研究,結果發現藉由適當控制氮化物半導體晶圓的緩衝層中的Fe濃度分佈,能夠抑制氮化物半導體晶圓的翹曲,從而完成本發明。The present inventors conducted intensive research on the above-mentioned problems and found that warpage of the nitride semiconductor wafer can be suppressed by appropriately controlling the Fe concentration distribution in the buffer layer of the nitride semiconductor wafer, leading to the completion of the present invention.

亦即,本發明是一種氮化物半導體晶圓,其具備:矽系基板;緩衝層,其積層於該矽系基板上且包含氮化物半導體;及,功能層,其積層於該緩衝層上且至少包含GaN層;其中,前述緩衝層中摻雜有Fe,前述緩衝層中的積層方向的Fe濃度分佈是下述濃度分佈,即具有Fe濃度最大的點,且Fe濃度從該Fe濃度最大的點向前述功能層減少,前述Fe濃度最大的點中的Fe濃度為2.5×10 18atoms/cm 3以上且6.0×10 18atoms/cm 3以下,並且前述緩衝層的前述功能層側的頂面的Fe濃度為4.0×10 17atoms/cm 3以下。 That is, the present invention is a nitride semiconductor wafer provided with: a silicon-based substrate; a buffer layer laminated on the silicon-based substrate and containing a nitride semiconductor; and a functional layer laminated on the buffer layer. At least a GaN layer is included; wherein the buffer layer is doped with Fe, and the Fe concentration distribution in the stacking direction in the buffer layer is a concentration distribution that has a point where the Fe concentration is maximum, and the Fe concentration is from the point where the Fe concentration is maximum The points are reduced toward the functional layer, the Fe concentration at the point with the maximum Fe concentration is 2.5×10 18 atoms/cm 3 or more and 6.0×10 18 atoms/cm 3 or less, and the top surface of the buffer layer on the side of the functional layer The Fe concentration is 4.0×10 17 atoms/cm 3 or less.

以下,詳細地說明本發明,但是本發明不限定於這些說明。The present invention will be described in detail below, but the present invention is not limited to these descriptions.

[氮化物半導體晶圓] 使用圖1來說明本發明的氮化物半導體晶圓。再者,圖1的氮化物半導體晶圓的結構為一例,本發明不限定於此。 [Nitride semiconductor wafer] The nitride semiconductor wafer of the present invention will be described using FIG. 1 . In addition, the structure of the nitride semiconductor wafer in FIG. 1 is an example, and the present invention is not limited thereto.

圖1所示的氮化物半導體晶圓10具有:矽系基板1;緩衝層3,其積層於矽系基板1上且包含氮化物半導體;及,功能層4,其積層於緩衝層3上且至少包含GaN層。功能層4例如是由包含GaN之通道層(C-GaN)和包含AlGaN之障壁層(未圖示)所構成,該障壁層的能隙與通道層不同。又,較佳是在緩衝層3與通道層之間形成高電阻GaN層(耐壓層:R-GaN)。The nitride semiconductor wafer 10 shown in FIG. 1 has: a silicon-based substrate 1; a buffer layer 3 laminated on the silicon-based substrate 1 and containing a nitride semiconductor; and a functional layer 4 laminated on the buffer layer 3. Contains at least a GaN layer. The functional layer 4 is composed of, for example, a channel layer containing GaN (C-GaN) and a barrier layer (not shown) containing AlGaN. The energy gap of the barrier layer is different from that of the channel layer. Furthermore, it is preferable to form a high-resistance GaN layer (withstand voltage layer: R-GaN) between the buffer layer 3 and the channel layer.

此處,矽系基板1並未特別限定,較佳是設為單晶矽基板、或絕緣層上覆矽(SOI)基板,例如是150mmφ、675μm、(111)的Si基板或150mmφ、675μm、(111)的SOI基板。Here, the silicon-based substrate 1 is not particularly limited, but is preferably a single crystal silicon substrate or a silicon on insulating layer (SOI) substrate, for example, a 150 mmφ, 675 μm, (111) Si substrate or a 150 mmφ, 675 μm, (111) SOI substrate.

可在矽系基板1與緩衝層3之間設置厚度為100~200nm的包含AlN之初始層2。An initial layer 2 containing AlN with a thickness of 100 to 200 nm can be provided between the silicon substrate 1 and the buffer layer 3 .

緩衝層3並未特別限定,較佳是:包含AlGaN層和由GaN層與AlN層交互積層而成之超晶格層;例如能夠設為在厚度為100~200nm的AlGaN層上包含由例如23對的厚度為5~30nm的GaN層與厚度為3~10nm的AlN層交互積層而成之超晶格層(SLs)。The buffer layer 3 is not particularly limited, but preferably includes an AlGaN layer and a superlattice layer in which a GaN layer and an AlN layer are alternately laminated; for example, it can be made to include, for example, 23 nm on an AlGaN layer with a thickness of 100 to 200 nm. Superlattice layers (SLs) are formed by alternately stacking GaN layers with a thickness of 5 to 30 nm and AlN layers with a thickness of 3 to 10 nm.

此處,本發明的氮化物半導體晶圓在緩衝層3中摻雜有Fe,緩衝層3中的積層方向的Fe濃度分佈是下述濃度分佈,即具有Fe濃度最大的點,且Fe濃度從該Fe濃度最大的點向功能層4減少, Fe濃度最大的點中的Fe濃度為2.5×10 18atoms/cm 3以上且6.0×10 18atoms/cm 3以下,並且緩衝層3的功能層4側的頂面的Fe濃度為4.0×10 17atoms/cm 3以下。再者,在本發明中,能夠根據SIMS的測定結果求得Fe濃度分佈。又,緩衝層的功能層側的頂面的Fe濃度的下限並無特別限制,例如能夠設為2.5×10 17atoms/cm 3以上。 Here, in the nitride semiconductor wafer of the present invention, the buffer layer 3 is doped with Fe, and the Fe concentration distribution in the stacking direction in the buffer layer 3 is a concentration distribution that has a point where the Fe concentration is maximum, and the Fe concentration is from The point where the Fe concentration is the maximum decreases toward the functional layer 4, the Fe concentration at the point where the Fe concentration is the maximum is 2.5×10 18 atoms/cm 3 or more and 6.0×10 18 atoms/cm 3 or less, and the functional layer 4 of the buffer layer 3 The Fe concentration on the top surface of the side is 4.0×10 17 atoms/cm 3 or less. Furthermore, in the present invention, the Fe concentration distribution can be obtained based on the measurement results of SIMS. In addition, the lower limit of the Fe concentration on the top surface of the buffer layer on the functional layer side is not particularly limited, but it can be set to 2.5×10 17 atoms/cm 3 or more, for example.

參照示出下述實施例的結果之圖2、3來更具體地說明緩衝層中的Fe濃度分佈。圖2中示出在單晶矽基板上進行磊晶生長而得之氮化物半導體晶圓的藉由SIMS而得的Fe濃度分佈。又,圖3中示出在SOI基板上以相同的條件進行磊晶生長時的Fe濃度分佈。在圖2、3的任一者中皆於緩衝層中具有Fe濃度最大的點(圖中橫軸的深度為1.2μm的附近),且Fe濃度從此點向功能層側減少(漸減),在緩衝層的功能層側的頂面(圖中橫軸的深度為0.55μm的附近)Fe濃度成為4.0×10 17atoms/cm 3以下。如此一來,可知Fe濃度在緩衝層達到峰值,並向元件層減少(漸減)。 The Fe concentration distribution in the buffer layer will be described more specifically with reference to FIGS. 2 and 3 showing the results of Examples described below. FIG. 2 shows the Fe concentration distribution obtained by SIMS of a nitride semiconductor wafer obtained by epitaxial growth on a single crystal silicon substrate. In addition, FIG. 3 shows the Fe concentration distribution when epitaxial growth is performed on an SOI substrate under the same conditions. In both Figures 2 and 3, there is a point where the Fe concentration is maximum in the buffer layer (near the depth of the horizontal axis in the figure is 1.2 μm), and the Fe concentration decreases (gradually decreases) from this point toward the functional layer side. The Fe concentration on the top surface of the functional layer side of the buffer layer (near the depth of the horizontal axis in the figure is 0.55 μm) is 4.0×10 17 atoms/cm 3 or less. From this, it can be seen that the Fe concentration reaches a peak in the buffer layer and decreases (gradually decreases) toward the element layer.

當Fe濃度的最高值低於2.5×10 18atoms/cm 3時,未觀察到對於翹曲的顯著的抑制效果,並且,如果超過6.0×10 18atoms/cm 3,則變得難以將緩衝層頂面的濃度設為4.0×10 17atoms/cm 3以下。如果緩衝層頂面的濃度超過4.0×10 17atoms/cm 3,則因Fe的記憶效應導致元件表面的Fe濃度變高,使元件的特性惡化。 When the highest value of the Fe concentration is less than 2.5×10 18 atoms/cm 3 , no significant inhibitory effect on warpage is observed, and if it exceeds 6.0×10 18 atoms/cm 3 , it becomes difficult to separate the buffer layer The concentration of the top surface is set to 4.0×10 17 atoms/cm 3 or less. If the concentration on the top surface of the buffer layer exceeds 4.0×10 17 atoms/cm 3 , the Fe concentration on the device surface becomes high due to the memory effect of Fe, resulting in deterioration of device characteristics.

要設為這樣的Fe濃度分佈,能夠藉由利用金屬有機氣相沉積(MOCVD)裝置,例如在超晶格層的下部約1/3和其下方的AlGaN層的磊晶生長時流入Cp 2Fe(二環戊二烯基鐵)等摻雜氣體,並調整其流量,從而摻雜希望的濃度的Fe。藉由以這樣的方式摻雜Fe,不僅當使用SOI基板時,而且當使用單晶矽基板時都能夠在不改變緩衝層的結構的情形下抑制翹曲,但是當使用SOI基板時能夠獲得更顯著的效果。 To achieve such an Fe concentration distribution, a metal organic vapor deposition (MOCVD) device can be used, for example, to flow Cp 2 Fe into approximately the lower 1/3 of the superlattice layer and the AlGaN layer below it during epitaxial growth. (dicyclopentadienyl iron) and other doping gases, and adjust its flow rate to dope Fe at a desired concentration. By doping Fe in this way, warpage can be suppressed without changing the structure of the buffer layer not only when using an SOI substrate but also when using a single crystal silicon substrate, but when using an SOI substrate, a better Remarkable effect.

在緩衝層3上較佳是設置厚度為300~900nm的高電阻GaN層(耐壓層)作為功能層4。藉由將這樣的高電阻層設置於元件層與緩衝層之間,能夠更確實地抑制電流崩潰現象的惡化和高溫時的橫方向漏電流,並且能夠更確實地抑制Fe混入通道層,因而能夠防止遷移率的下降等正向特性的劣化。高電阻GaN層上形成有包含作為元件層的GaN層之通道層。雖然圖1中未示出,但是藉由在包含GaN層之通道層上形成包含AlGaN層之障壁層,設置源極、汲極、及閘極,從而能夠製成例如高電子遷移率電晶體(HEMT)。It is preferable to provide a high-resistance GaN layer (withstand voltage layer) with a thickness of 300 to 900 nm as the functional layer 4 on the buffer layer 3 . By providing such a high-resistance layer between the element layer and the buffer layer, it is possible to more reliably suppress the worsening of the current collapse phenomenon and the lateral leakage current at high temperatures, and to more reliably suppress Fe from being mixed into the channel layer, so that it is possible to Prevents deterioration of forward characteristics such as mobility decrease. A channel layer including a GaN layer serving as an element layer is formed on the high-resistance GaN layer. Although not shown in FIG. 1 , by forming a barrier layer including an AlGaN layer on a channel layer including a GaN layer, and providing a source, a drain, and a gate, it is possible to produce, for example, a high electron mobility transistor ( HEMT).

[氮化物半導體晶圓的製造方法] 又,本發明是一種氮化物半導體晶圓的製造方法,是製造氮化物半導體晶圓的方法,其中,包含以下步驟:步驟(1),在矽系基板上積層包含氮化物半導體之緩衝層;及,步驟(2),在前述緩衝層上積層至少包含GaN層之功能層,來製造氮化物半導體晶圓,並且,在前述步驟(1)中,流入用以摻雜Fe的摻雜氣體,調整該摻雜氣體的流量,藉此將前述緩衝層中的積層方向的Fe濃度分佈設為下述濃度分佈,即具有Fe濃度最大的點,且Fe濃度從該Fe濃度最大的點向前述功能層減少,將前述Fe濃度最大的點中的Fe濃度設為2.5×10 18atoms/cm 3以上且6.0×10 18atoms/cm 3以下,並且將前述緩衝層的前述功能層側的頂面的Fe濃度設為4.0×10 17atoms/cm 3以下。 [Method for manufacturing a nitride semiconductor wafer] In addition, the present invention is a method for manufacturing a nitride semiconductor wafer. It is a method for manufacturing a nitride semiconductor wafer, which includes the following steps: Step (1): A buffer layer including a nitride semiconductor is laminated on the buffer layer; and, step (2), a functional layer including at least a GaN layer is laminated on the buffer layer to produce a nitride semiconductor wafer, and, in the aforementioned step (1), an inflow The doping gas used to dope Fe is adjusted to the flow rate of the doping gas, thereby setting the Fe concentration distribution in the lamination direction in the buffer layer to a concentration distribution having a maximum Fe concentration, and the Fe concentration is From the point of maximum Fe concentration to the functional layer, the Fe concentration at the point of maximum Fe concentration is set to 2.5×10 18 atoms/cm 3 or more and 6.0×10 18 atoms/cm 3 or less, and the buffer is The Fe concentration of the top surface of the layer on the functional layer side is 4.0×10 17 atoms/cm 3 or less.

能夠以這樣的方式製造本發明的氮化物半導體晶圓。以下,詳細地說明本發明的氮化物半導體晶圓的製造方法。The nitride semiconductor wafer of the present invention can be manufactured in this manner. Hereinafter, the method for manufacturing a nitride semiconductor wafer of the present invention will be described in detail.

[步驟(1)] 步驟(1)是在矽系基板上積層包含氮化物半導體之緩衝層的步驟。 [Step (1)] Step (1) is a step of laminating a buffer layer containing a nitride semiconductor on a silicon substrate.

在本步驟中,首先,準備單晶矽基板和絕緣層上覆矽(SOI)基板等矽系基板。繼而,只要於MOCVD裝置內在矽系基板上磊晶生長包含氮化物半導體之緩衝層即可。或者,亦可在矽系基板上磊晶生長包含AlN之初始層,並在其上磊晶生長包含氮化物半導體之緩衝層。如上所述,作為緩衝層,較佳是設為:包含AlGaN層和由GaN層與AlN層交互積層而成之超晶格層。In this step, first, a silicon-based substrate such as a single crystal silicon substrate and a silicon on insulating layer (SOI) substrate is prepared. Then, it is only necessary to epitaxially grow a buffer layer including a nitride semiconductor on the silicon substrate in the MOCVD device. Alternatively, an initial layer including AlN may be epitaxially grown on a silicon substrate, and a buffer layer including a nitride semiconductor may be epitaxially grown thereon. As described above, the buffer layer preferably includes an AlGaN layer and a superlattice layer in which GaN layers and AlN layers are alternately laminated.

磊晶生長時,能夠使用作為鋁(Al)源的三甲基鋁(TMAl)、作為鎵(Ga)源的TMGa、作為氮(N)源的NH 3,不限定於該等。又,載體氣體能夠設為N 2和H 2、或是其中任一種,製程溫度例如較佳是設為900~1200℃左右。 During epitaxial growth, trimethylaluminum (TMAl) as an aluminum (Al) source, TMGa as a gallium (Ga) source, and NH 3 as a nitrogen (N) source can be used, but are not limited to these. In addition, the carrier gas can be N 2 and H 2 , or any one of them, and the process temperature is preferably about 900 to 1200°C, for example.

在本發明中,將緩衝層中的積層方向的Fe濃度分佈設為下述濃度分佈,即具有Fe濃度最大的點,且Fe濃度從該Fe濃度最大的點向功能層減少,將Fe濃度最大的點中的Fe濃度設為2.5×10 18atoms/cm 3以上且6.0×10 18atoms/cm 3以下,並且將緩衝層的功能層側的頂面的Fe濃度設為4.0×10 17atoms/cm 3以下。 In the present invention, the Fe concentration distribution in the stacking direction in the buffer layer is a concentration distribution that has a point where the Fe concentration is the maximum, and the Fe concentration decreases from the point where the Fe concentration is the maximum toward the functional layer, so that the Fe concentration is the maximum The Fe concentration in the dot is 2.5×10 18 atoms/cm 3 or more and 6.0×10 18 atoms/cm 3 or less, and the Fe concentration on the top surface of the functional layer side of the buffer layer is 4.0×10 17 atoms/ cm 3 or less.

要設為這樣的Fe濃度分佈,能夠藉由利用金屬有機氣相沉積(MOCVD)裝置,例如在超晶格層的下部約1/3和其下方的AlGaN層的磊晶生長時流入Cp 2Fe(二環戊二烯基鐵)等摻雜氣體,並調整其流量,從而摻雜希望的濃度的Fe。 To achieve such an Fe concentration distribution, a metal organic vapor deposition (MOCVD) device can be used, for example, to flow Cp 2 Fe into approximately the lower 1/3 of the superlattice layer and the AlGaN layer below it during epitaxial growth. (dicyclopentadienyl iron) and other doping gases, and adjust its flow rate to dope Fe at a desired concentration.

[步驟(2)] 步驟(2)是在緩衝層上積層至少包含GaN層之功能層,來製造氮化物半導體晶圓的步驟。 [Step (2)] Step (2) is a step of manufacturing a nitride semiconductor wafer by laminating a functional layer including at least a GaN layer on the buffer layer.

在本步驟中,只要根據氮化物半導體晶圓的用途而藉由磊晶生長來積層適當的功能層即可。例如能夠在MOCVD裝置內磊晶生長如上所述的高電阻GaN層,並在其上磊晶生長作為元件層的GaN層,進一步在其上磊晶生長包含AlGaN層之障壁層。藉由在其上設置源極、汲極、及閘極,從而能夠製成例如高電子遷移率電晶體(HEMT)。In this step, appropriate functional layers may be stacked by epitaxial growth according to the application of the nitride semiconductor wafer. For example, the high-resistance GaN layer as described above can be epitaxially grown in a MOCVD device, a GaN layer as an element layer can be epitaxially grown thereon, and a barrier layer including an AlGaN layer can be epitaxially grown thereon. By arranging a source electrode, a drain electrode, and a gate electrode thereon, a high electron mobility transistor (HEMT), for example, can be made.

以這樣的方式製得的氮化物半導體晶圓藉由緩衝層內的Fe濃度分佈得到適當控制,從而翹曲得到抑制。 [實施例] In the nitride semiconductor wafer produced in this manner, the Fe concentration distribution in the buffer layer is appropriately controlled, thereby suppressing warpage. [Example]

以下,使用實施例及比較例來具體地說明本發明,但是本發明不限定於這些例子。Hereinafter, the present invention will be specifically described using examples and comparative examples, but the present invention is not limited to these examples.

(實施例1) 準備以下單晶矽基板和SOI基板作為矽系基板。 (1)單晶矽基板 150mmφ p型(111) 675μm Oi:25.6ppma(ASTM79) 5000Ωcm (2)SOI基板 150mmφ SOI層:100nm/埋藏氧化(BOX)層:200nm/Si基板:675μm SOI層:(111) CZ 1kΩcm N(氮):5e14atoms/cm 3Oi:25.6ppma(ASTM79) Si基板:(100) 8mΩcm Oi:16ppma(ASTM79) (Example 1) The following single crystal silicon substrate and SOI substrate were prepared as silicon-based substrates. (1) Single crystal silicon substrate 150mmφ p-type (111) 675μm Oi: 25.6ppma (ASTM79) 5000Ωcm (2) SOI substrate 150mmφ SOI layer: 100nm/buried oxide (BOX) layer: 200nm/Si substrate: 675μm SOI layer: ( 111) CZ 1kΩcm N (nitrogen): 5e14atoms/cm 3 Oi: 25.6ppma (ASTM79) Si substrate: (100) 8mΩcm Oi: 16ppma (ASTM79)

繼而,對於該等的2片晶圓,利用MOCVD裝置在同一批次實行磊晶生長,用以下條件製造氮化物半導體晶圓。Next, epitaxial growth was performed on these two wafers in the same batch using a MOCVD apparatus, and nitride semiconductor wafers were produced under the following conditions.

一開始形成厚度為150nm的包含AlN之初始層,繼而生長厚度為160nm的AlGaN層。此時,藉由以50sccm的流量流入Cp 2Fe來開始摻雜Fe。繼而交互地生長厚度為25nm的GaN層與厚度為4.2nm的AlN層。在生長了8對的GaN層與AlN層的時候,停止供給Cp 2Fe。然後亦交互地生長GaN層與AlN層,形成全部為23對的超晶格層(SLs),而形成包含AlGaN層和超晶格層之緩衝層。繼而成長670nm高電阻GaN層,繼而成長200nm的作為通道層的GaN層。 An initial layer containing AlN is initially formed with a thickness of 150 nm, followed by growth of an AlGaN layer with a thickness of 160 nm. At this time, Fe doping was started by flowing in Cp 2 Fe at a flow rate of 50 sccm. Then, a GaN layer with a thickness of 25 nm and an AlN layer with a thickness of 4.2 nm were grown alternately. When eight pairs of GaN layers and AlN layers have grown, the supply of Cp 2 Fe is stopped. Then, GaN layers and AlN layers are grown alternately to form a total of 23 pairs of superlattice layers (SLs), and a buffer layer including an AlGaN layer and a superlattice layer is formed. Then a 670nm high-resistance GaN layer is grown, and then a 200nm GaN layer as a channel layer is grown.

然後,取出2片晶圓,測定翹曲量。將其結果示於表1。又,利用SIMS測定深度方向的Fe濃度。將使用了單晶矽基板之晶圓的Fe濃度分佈示於圖2,將使用了SOI基板之晶圓的Fe濃度分佈示於圖3。任一片晶圓的緩衝層中的Fe的最大濃度皆為6.0×10 18atoms/cm 3,且緩衝層頂面的Fe濃度皆為4.0×10 17atoms/cm 3。由表1可知,相較於下述比較例1、2,實施例1的任一片晶圓的翹曲量皆得到抑制。 Then, two wafers were taken out and the amount of warpage was measured. The results are shown in Table 1. Furthermore, the Fe concentration in the depth direction was measured using SIMS. The Fe concentration distribution of the wafer using the single crystal silicon substrate is shown in Figure 2, and the Fe concentration distribution of the wafer using the SOI substrate is shown in Figure 3. The maximum Fe concentration in the buffer layer of any wafer is 6.0×10 18 atoms/cm 3 , and the Fe concentration on the top surface of the buffer layer is 4.0×10 17 atoms/cm 3 . As can be seen from Table 1, compared with Comparative Examples 1 and 2 described below, the amount of warpage of any wafer in Example 1 is suppressed.

再者,在本發明中,將作為基準的平坦的單晶矽基板放在3點支撐平台上,露出水平面,根據與該平面的差異來測定翹曲量。Furthermore, in the present invention, a flat single crystal silicon substrate as a reference is placed on a three-point support platform to expose a horizontal surface, and the amount of warpage is measured based on the difference from the flat surface.

(實施例2) 除了將Cp 2Fe設為20sccm的流量之外,用與實施例1相同的條件製造氮化物半導體晶圓。如圖2、3所示,任一片晶圓的緩衝層中的Fe的最大濃度皆為2.5×10 18atoms/cm 3,且緩衝層頂面的Fe濃度皆為2.5×10 17atoms/cm 3。如表1所示,可知在實施例2中,雖然任一片晶圓皆不到實施例1的程度,但是相較於比較例1、2,翹曲皆得到抑制。 (Example 2) A nitride semiconductor wafer was produced under the same conditions as in Example 1, except that the flow rate of Cp 2 Fe was 20 sccm. As shown in Figures 2 and 3, the maximum Fe concentration in the buffer layer of any wafer is 2.5×10 18 atoms/cm 3 , and the Fe concentration on the top surface of the buffer layer is 2.5×10 17 atoms/cm 3 . As shown in Table 1, it can be seen that in Example 2, although none of the wafers is inferior to the level of Example 1, compared with Comparative Examples 1 and 2, warpage is suppressed.

(比較例1) 除了進一步降低Cp 2Fe的流量來將緩衝層中的最大Fe濃度設為2.0×10 18atoms/cm 3之外,以與實施例1相同的方法製造氮化物半導體晶圓。如表1所示,雖然比較例1的任一片晶圓比起比較例2皆更改善了翹曲,但是未觀察到實施例1、2程度的顯著的效果。 (Comparative Example 1) A nitride semiconductor wafer was produced in the same manner as in Example 1, except that the flow rate of Cp 2 Fe was further reduced to set the maximum Fe concentration in the buffer layer to 2.0×10 18 atoms/cm 3 . As shown in Table 1, although the warpage of any wafer of Comparative Example 1 was improved compared to Comparative Example 2, the significant effect of Examples 1 and 2 was not observed.

(比較例2) 除了未流入Cp 2Fe之外,用與實施例1相同的條件製造氮化物半導體晶圓。如表1所示,可知相較於實施例1、2,比較例2的任一片晶圓的翹曲皆較大。 (Comparative Example 2) A nitride semiconductor wafer was produced under the same conditions as in Example 1 except that Cp 2 Fe was not flowed. As shown in Table 1, it can be seen that compared with Examples 1 and 2, the warpage of any wafer in Comparative Example 2 is larger.

[表1] [Table 1]

如以上所述,可知若是本發明,則能夠提供一種氮化物半導體晶圓、及其製造方法,該氮化物半導體晶圓是在單晶矽基板或SOI基板上磊晶生長氮化物半導體而得,並且在不改變緩衝層等結構的情形下翹曲得到抑制。As described above, it can be seen that the present invention can provide a nitride semiconductor wafer obtained by epitaxially growing a nitride semiconductor on a single crystal silicon substrate or an SOI substrate, and a manufacturing method thereof. And warpage is suppressed without changing the buffer layer and other structures.

再者,本發明並不限定於上述實施形態。上述實施形態為例示,任何具有實質上與本發明的申請專利範圍所記載的技術思想相同的構成且發揮相同功效者,皆包含在本發明的技術範圍內。In addition, the present invention is not limited to the above-mentioned embodiment. The above-mentioned embodiments are only examples, and anything that has substantially the same structure as the technical idea described in the patent application scope of the present invention and performs the same effect is included in the technical scope of the present invention.

1:矽系基板 2:初始層 3:緩衝層 4:功能層 10:氮化物半導體晶圓 1: Silicon substrate 2: Initial layer 3: Buffer layer 4: Functional layer 10:Nitride semiconductor wafer

圖1是示出本發明的氮化物半導體晶圓的一例之概略圖。 圖2是利用二次離子質譜法(SIMS)測定實施例1、2中製得的氮化物半導體晶圓(矽系基板:單晶矽基板)的積層方向的Fe濃度分佈而得的結果。 圖3是利用二次離子質譜法(SIMS)測定實施例1、2中製得的氮化物半導體晶圓(矽系基板:SOI基板)的積層方向的Fe濃度分佈而得的結果。 FIG. 1 is a schematic diagram showing an example of the nitride semiconductor wafer of the present invention. FIG. 2 is a result obtained by measuring the Fe concentration distribution in the stacking direction of the nitride semiconductor wafer (silicon-based substrate: single crystal silicon substrate) produced in Examples 1 and 2 using secondary ion mass spectrometry (SIMS). FIG. 3 is the result of measuring the Fe concentration distribution in the stacking direction of the nitride semiconductor wafer (silicon-based substrate: SOI substrate) produced in Examples 1 and 2 using secondary ion mass spectrometry (SIMS).

國內寄存資訊(請依寄存機構、日期、號碼順序註記) 無 國外寄存資訊(請依寄存國家、機構、日期、號碼順序註記) 無 Domestic storage information (please note in order of storage institution, date and number) without Overseas storage information (please note in order of storage country, institution, date, and number) without

1:矽系基板 1: Silicon substrate

2:初始層 2: Initial layer

3:緩衝層 3: Buffer layer

4:功能層 4: Functional layer

10:氮化物半導體晶圓 10:Nitride semiconductor wafer

Claims (6)

一種氮化物半導體晶圓,其具備:矽系基板;緩衝層,其積層於該矽系基板上且包含氮化物半導體;及,功能層,其積層於該緩衝層上且至少包含GaN層;該氮化物半導體晶圓的特徵在於, 前述緩衝層中摻雜有Fe,前述緩衝層中的積層方向的Fe濃度分佈是下述濃度分佈,即具有Fe濃度最大的點,且Fe濃度從該Fe濃度最大的點向前述功能層減少, 前述Fe濃度最大的點中的Fe濃度為2.5×10 18atoms/cm 3以上且6.0×10 18atoms/cm 3以下,並且前述緩衝層的前述功能層側的頂面的Fe濃度為4.0×10 17atoms/cm 3以下。 A nitride semiconductor wafer, which is provided with: a silicon-based substrate; a buffer layer that is laminated on the silicon-based substrate and includes a nitride semiconductor; and a functional layer that is laminated on the buffer layer and includes at least a GaN layer; the The nitride semiconductor wafer is characterized in that the buffer layer is doped with Fe, and the Fe concentration distribution in the stacking direction in the buffer layer is a concentration distribution having a point where the Fe concentration is maximum, and the Fe concentration changes from the Fe concentration The maximum point decreases toward the functional layer, the Fe concentration at the point with the maximum Fe concentration is 2.5×10 18 atoms/cm 3 or more and 6.0×10 18 atoms/cm 3 or less, and the buffer layer on the functional layer side The Fe concentration on the top surface is 4.0×10 17 atoms/cm 3 or less. 如請求項1所述之氮化物半導體晶圓,其中,前述矽系基板是單晶矽基板、或絕緣層上覆矽(SOI)基板。The nitride semiconductor wafer according to claim 1, wherein the silicon-based substrate is a single-crystal silicon substrate or a silicon-on-insulation (SOI) substrate. 如請求項1或2所述之氮化物半導體晶圓,其中,前述緩衝層包含AlGaN層和由GaN層與AlN層交互積層而成之超晶格層。The nitride semiconductor wafer according to claim 1 or 2, wherein the buffer layer includes an AlGaN layer and a superlattice layer formed by alternately stacking GaN layers and AlN layers. 一種氮化物半導體晶圓的製造方法,是製造氮化物半導體晶圓的方法,其特徵在於,包含以下步驟: 步驟(1),在矽系基板上積層包含氮化物半導體之緩衝層;及, 步驟(2),在前述緩衝層上積層至少包含GaN層之功能層,來製造氮化物半導體晶圓;並且, 在前述步驟(1)中,流入用以摻雜Fe的摻雜氣體,調整該摻雜氣體的流量,藉此將前述緩衝層中的積層方向的Fe濃度分佈設為下述濃度分佈,即具有Fe濃度最大的點,且Fe濃度從該Fe濃度最大的點向前述功能層減少, 將前述Fe濃度最大的點中的Fe濃度設為2.5×10 18atoms/cm 3以上且6.0×10 18atoms/cm 3以下,並且將前述緩衝層的前述功能層側的頂面的Fe濃度設為4.0×10 17atoms/cm 3以下。 A method for manufacturing a nitride semiconductor wafer is a method for manufacturing a nitride semiconductor wafer, which is characterized by including the following steps: step (1), stacking a buffer layer containing a nitride semiconductor on a silicon substrate; and, step (2), laminate a functional layer including at least a GaN layer on the buffer layer to produce a nitride semiconductor wafer; and, in the aforementioned step (1), flow in the doping gas for doping Fe, and adjust the doping The flow rate of the impurity gas is used to set the Fe concentration distribution in the stacking direction in the buffer layer to a concentration distribution that has a point where the Fe concentration is the maximum, and the Fe concentration decreases from the point where the Fe concentration is the maximum toward the functional layer, The Fe concentration at the point where the Fe concentration is maximum is 2.5×10 18 atoms/cm 3 or more and 6.0×10 18 atoms/cm 3 or less, and the Fe concentration on the top surface of the buffer layer on the functional layer side is set to It is 4.0×10 17 atoms/cm 3 or less. 如請求項4所述之氮化物半導體晶圓的製造方法,其中,在前述步驟(1)中,將前述矽系基板設為單晶矽基板、或絕緣層上覆矽(SOI)基板。The method for manufacturing a nitride semiconductor wafer according to claim 4, wherein in the step (1), the silicon substrate is a single crystal silicon substrate or a silicon on insulating layer (SOI) substrate. 如請求項4或5所述之氮化物半導體晶圓的製造方法,其中,在前述步驟(1)中,將前述緩衝層設為包含AlGaN層和由GaN層與AlN層交互積層而成之超晶格層。The method for manufacturing a nitride semiconductor wafer according to claim 4 or 5, wherein in the aforementioned step (1), the aforementioned buffer layer is configured to include an AlGaN layer and a superstructure formed by alternately stacking a GaN layer and an AlN layer. lattice layer.
TW112120202A 2022-06-22 2023-05-31 Nitride semiconductor wafer and manufacturing method thereof TW202406142A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2022-100615 2022-06-22

Publications (1)

Publication Number Publication Date
TW202406142A true TW202406142A (en) 2024-02-01

Family

ID=

Similar Documents

Publication Publication Date Title
US10410859B2 (en) Epitaxial substrate for semiconductor elements, semiconductor element, and manufacturing method for epitaxial substrates for semiconductor elements
KR100690413B1 (en) Substrate for growth of nitride semiconductor
JP3733420B2 (en) Heterojunction field effect transistor using nitride semiconductor material
JP5546514B2 (en) Nitride semiconductor device and manufacturing method
JP2009507362A (en) High electron mobility electronic device structures including native substrates and methods for manufacturing them
JP6896063B2 (en) Semiconductor material growth of high resistance nitride buffer layer using ion implantation
JP2011023677A (en) Compound semiconductor epitaxial wafer, and method of manufacturing the same
JP4517077B2 (en) Heterojunction field effect transistor using nitride semiconductor material
JP4468744B2 (en) Method for producing nitride semiconductor thin film
WO2014103125A1 (en) Nitride semiconductor device and nitride semiconductor substrate
JP2015177152A (en) Nitride semiconductor laminate and semiconductor device
JP5914999B2 (en) Manufacturing method of semiconductor device
JP2019186316A (en) Transistor manufacturing method
JP4051311B2 (en) Nitride semiconductor crystal growth method
CN111009579A (en) Semiconductor heterostructure and semiconductor device
CN111009468A (en) Preparation method and application of semiconductor heterostructure
TW202406142A (en) Nitride semiconductor wafer and manufacturing method thereof
US11201217B2 (en) Nitride semiconductor substrate
JP7458904B2 (en) Nitride Semiconductor Substrate
WO2023248702A1 (en) Nitride semiconductor wafer and method for manufacturing same
JP5744784B2 (en) Manufacturing method of nitride semiconductor epitaxial wafer
JP2016219590A (en) Semiconductor substrate manufacturing method and semiconductor device manufacturing method
US20220077287A1 (en) Nitride semiconductor substrate
JP7201571B2 (en) Nitride semiconductor substrate and nitride semiconductor device
US20220020870A1 (en) Semiconductor device and method of manufacturing semiconductor device