TW202405866A - Processing data analysis method and information processing device - Google Patents

Processing data analysis method and information processing device Download PDF

Info

Publication number
TW202405866A
TW202405866A TW112112182A TW112112182A TW202405866A TW 202405866 A TW202405866 A TW 202405866A TW 112112182 A TW112112182 A TW 112112182A TW 112112182 A TW112112182 A TW 112112182A TW 202405866 A TW202405866 A TW 202405866A
Authority
TW
Taiwan
Prior art keywords
time
processing data
processing
data
value
Prior art date
Application number
TW112112182A
Other languages
Chinese (zh)
Inventor
石井隆太郎
Original Assignee
日商東京威力科創股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日商東京威力科創股份有限公司 filed Critical 日商東京威力科創股份有限公司
Publication of TW202405866A publication Critical patent/TW202405866A/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67242Apparatus for monitoring, sorting or marking
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32917Plasma diagnostics
    • H01J37/32926Software, data control or modelling
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32917Plasma diagnostics
    • H01J37/32935Monitoring and controlling tubes by information coming from the object and/or discharge
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02296Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer
    • H01L21/02299Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer pre-treatment
    • H01L21/02312Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer pre-treatment treatment by exposure to a gas or vapour
    • H01L21/02315Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer pre-treatment treatment by exposure to a gas or vapour treatment by exposure to a plasma
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching
    • H01L21/3065Plasma etching; Reactive-ion etching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L22/00Testing or measuring during manufacture or treatment; Reliability measurements, i.e. testing of parts without further processing to modify the parts as such; Structural arrangements therefor
    • H01L22/10Measuring as part of the manufacturing process
    • H01L22/12Measuring as part of the manufacturing process for structural parameters, e.g. thickness, line width, refractive index, temperature, warp, bond strength, defects, optical inspection, electrical measurement of structural dimensions, metallurgic measurement of diffusions

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Plasma & Fusion (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Drying Of Semiconductors (AREA)
  • Testing And Monitoring For Control Systems (AREA)
  • Plasma Technology (AREA)

Abstract

The invention provides an analysis method for processing data and an information processing apparatus, which can shorten the time required for analyzing the processing data and can stably analyze an appropriate part of the processing data. The processing data analysis method is used for analyzing processing data acquired during operation of a substrate processing apparatus. The processing data analysis method comprises the following steps: acquiring processing data; segmenting the processing data into a plurality of intervals in a time sequence; and diagnosing the state of health of the substrate processing apparatus on the basis of the processing data in a specific section among the divided plurality of sections. In the step of dividing into the plurality of sections, the start time and the end time of the plurality of sections are determined on the basis of the time at which one or more parameters selected from among the parameters of the plurality of sensors become predetermined prescribed values or the time at which the parameters change with respect to the prescribed values.

Description

處理資料的分析方法、及資訊處理裝置Analysis methods and information processing devices for processing data

本揭露係關於一種處理資料的分析方法、及資訊處理裝置。The present disclosure relates to an analysis method and an information processing device for processing data.

基板處理裝置在基板的處理中會藉由多個感測器來測定各種參數,並儲存已使各種參數的每一個與時間建立關聯性的處理資料(日誌資訊)。然後,當基板處理產生瑕疵時等的情況,連接於基板處理裝置之資訊處理裝置會根據處理資料來找出異常的原因。The substrate processing apparatus measures various parameters using multiple sensors during substrate processing, and stores processing data (log information) that correlates each of the various parameters with time. Then, when defects occur in substrate processing, the information processing device connected to the substrate processing device will find the cause of the abnormality based on the processing data.

例如,專利文獻1揭示一種具有用於分析測試資料(處理資料)的演算法之狀態預測裝置(資訊處理裝置)。該狀態預測裝置係使用以正常的裝置測定出的處理資料之第1特徵量與以欲評估之裝置測定出的處理資料之第2特徵量來預測電漿處理裝置的狀態。For example, Patent Document 1 discloses a state prediction device (information processing device) having an algorithm for analyzing test data (process data). The state prediction device predicts the state of the plasma processing device using a first characteristic quantity of the processing data measured by a normal device and a second characteristic quantity of the processing data measured by the device to be evaluated.

近年來為了進行更精細的基板處理,控制內容不斷地複雜化。伴隨於此,基板處理在實施期間中的參數也成為龐大的量,而必須由大量參數來診斷裝置的狀態。In recent years, control contents have become increasingly complicated in order to perform more sophisticated substrate processing. Along with this, the number of parameters during the execution of the substrate processing also becomes huge, and it is necessary to diagnose the status of the device using a large number of parameters.

專利文獻1:日本特開2020-31096號公報Patent Document 1: Japanese Patent Application Publication No. 2020-31096

本揭露提供一種可縮短處理資料的分析所需時間且穩定地分析處理資料的適當部分之技術。The present disclosure provides a technology that can shorten the time required for analysis of processed data and stably analyze and process an appropriate part of the data.

根據本揭露之一態樣,提供一種處理資料的分析方法,係分析在基板處理裝置運轉時所取得的處理資料之方法;該處理資料係已使該基板處理裝置的多個感測器的每一個所測定出的參數與所測定出的時間建立關聯性之資料;該處理資料的分析方法係具有以下工序:取得該處理資料並儲存在儲存部之工序;從該儲存部讀取該處理資料,並將該處理資料在依照該所測定出的時間之時序中劃分成多個區段之工序;以及根據劃分後之多個該區段當中的特定區段中的該處理資料來診斷該基板處理裝置的健全狀態之工序;在劃分成多個該區段之工序中,針對選自多個該感測器的該參數之一個或二個以上的該參數,藉由成為預設的指定值之時刻或自該指定值變化的時刻來設定多個該區段的開始時刻與結束時刻。According to an aspect of the present disclosure, a processing data analysis method is provided, which is a method of analyzing processing data obtained when a substrate processing device is operating; the processing data has caused each of multiple sensors of the substrate processing device to Data that establishes a correlation between a measured parameter and a measured time; the analysis method of the processed data has the following steps: a step of obtaining the processed data and storing it in a storage unit; reading the processed data from the storage unit and the process of dividing the processing data into multiple sections in a sequence according to the measured time; and diagnosing the substrate based on the processing data in a specific section among the divided sections. The process of processing the health status of the device; in the process of being divided into multiple sections, one or more of the parameters selected from a plurality of the sensors are used to become the default specified value. Set the start time and end time of multiple sections from the time or the time when the specified value changes.

根據一態樣,可縮短處理資料的分析所需時間且穩定地分析處理資料的適當部分。According to this aspect, the time required for analysis of the processed data can be shortened and an appropriate portion of the data can be stably analyzed and processed.

以下,參照圖式對用以實施本揭露之型態進行說明。各圖式中,針對相同的構成部分會有標示相同的符號以省略重複的說明的情況。Hereinafter, modes for implementing the present disclosure will be described with reference to the drawings. In each drawing, the same components may be designated by the same symbols to omit repeated explanations.

<資訊處理系統100的構成> 圖1係顯示具有一實施型態相關的資訊處理裝置之資訊處理系統100的一例之構成圖。如圖1所示,資訊處理系統100係具有多個FPD(Flat Panel Display)製造裝置1及透過網路120連接有各FPD製造裝置1之伺服器110。此外,網路120亦可採用可在FPD製造裝置1與伺服器110之間進行通訊的各種通訊環境(有線LAN、無線LAN等)。 <Configuration of information processing system 100> FIG. 1 is a block diagram showing an example of an information processing system 100 having an information processing device according to an embodiment. As shown in FIG. 1 , the information processing system 100 has a plurality of FPD (Flat Panel Display) manufacturing devices 1 and a server 110 connected to each FPD manufacturing device 1 through a network 120 . In addition, the network 120 may also adopt various communication environments (wired LAN, wireless LAN, etc.) that can communicate between the FPD manufacturing device 1 and the server 110 .

多個FPD製造裝置1為對基板進行處理之基板處理裝置的一例。FPD製造裝置1係具備測定基板處理中的各種參數(物理量)之多個感測器8及控制基板處理之裝置控制器9。The plurality of FPD manufacturing devices 1 is an example of a substrate processing device that processes a substrate. The FPD manufacturing apparatus 1 is provided with a plurality of sensors 8 that measure various parameters (physical quantities) in substrate processing and a device controller 9 that controls the substrate processing.

FPD製造裝置1可將裝置控制器9搭載於裝置本體,亦可為將裝置控制器9設置在其他位置且可通訊地連接於裝置本體之構成。裝置控制器9向FPD製造裝置1輸出用於控制FPD製造裝置1的控制零件之指令。又,裝置控制器9會取得正在進行控制中之FPD製造裝置1的各感測器8中測定出的測定值來作為參數。The FPD manufacturing device 1 may have the device controller 9 mounted on the device body, or may be configured such that the device controller 9 is disposed at another location and communicatively connected to the device body. The device controller 9 outputs a command for controlling the control components of the FPD manufacturing device 1 to the FPD manufacturing device 1 . Furthermore, the device controller 9 acquires the measurement value measured by each sensor 8 of the FPD manufacturing device 1 being controlled as a parameter.

進而,裝置控制器9係具有使用者介面的功能,其向使用者提供FPD製造裝置1相關的資訊,且從作業員受理對FPD製造裝置1的指示。此外,資訊處理系統100亦可在伺服器110側具備作為各FPD製造裝置1的使用者介面之功能。進而,一個裝置控制器9亦可具有與其他FPD製造裝置1的裝置控制器9直接進行通訊或透過伺服器110來與其他FPD製造裝置1的裝置控制器9進行通訊之功能。藉此,裝置控制器9可利用多個FPD製造裝置1相關的資訊(依照相同配方來實施基板處理後之情況的參數等)。Furthermore, the device controller 9 has a user interface function that provides information related to the FPD manufacturing device 1 to the user and accepts instructions for the FPD manufacturing device 1 from the operator. In addition, the information processing system 100 may also have a function as a user interface for each FPD manufacturing device 1 on the server 110 side. Furthermore, one device controller 9 may also have the function of communicating directly with the device controllers 9 of other FPD manufacturing devices 1 or communicating with the device controllers 9 of other FPD manufacturing devices 1 through the server 110 . Thereby, the device controller 9 can utilize information related to multiple FPD manufacturing devices 1 (parameters of substrate processing according to the same recipe, etc.).

各裝置控制器9係透過網路120在與伺服器110之間進行資訊的通訊。伺服器110會管理從各裝置控制器9傳送的各FPD製造裝置1相關的資訊,並收發各裝置控制器9執行的程式、配方等。Each device controller 9 communicates information with the server 110 through the network 120 . The server 110 manages the information related to each FPD manufacturing device 1 transmitted from each device controller 9, and sends and receives programs, recipes, etc. executed by each device controller 9.

此外,圖1所示的資訊處理系統100為一個例子,無需贅言依用途或目的有各種系統構成例。例如,資訊處理系統100可具備將多個FPD製造裝置1的裝置控制器9整合成1個裝置控制器之控制器,也可將伺服器110應用在該控制器。In addition, the information processing system 100 shown in FIG. 1 is an example, and it goes without saying that there are various system configuration examples depending on the use or purpose. For example, the information processing system 100 may be provided with a controller that integrates the device controllers 9 of multiple FPD manufacturing devices 1 into one device controller, and the server 110 may be applied to this controller.

<FPD製造裝置1的構成> 接著,針對上述資訊處理系統100所應用的FPD製造裝置1的一例,參照圖2加以說明。圖2係顯示FPD製造裝置1的整體構成之剖面示意圖。圖2所示之FPD製造裝置1為一種對俯視下呈矩形的FPD用基板G實施各種基板處理之感應耦合型電漿(Inductive Coupled Plasma:ICP)處理裝置。 <Configuration of FPD manufacturing device 1> Next, an example of the FPD manufacturing apparatus 1 to which the above-mentioned information processing system 100 is applied will be described with reference to FIG. 2 . FIG. 2 is a schematic cross-sectional view showing the overall structure of the FPD manufacturing apparatus 1 . The FPD manufacturing apparatus 1 shown in FIG. 2 is an inductively coupled plasma (ICP) processing apparatus that performs various substrate processes on an FPD substrate G that is rectangular in plan view.

FPD亦可為液晶顯示器(Liquid Crystal Display:LCD)、電激發光(Electro Luminescence:EL)、電漿顯示面板(Plasma Display Panel:PDP)等中的任一者。作為基板G的材料,主要使用玻璃,也可以依用途使用透明的合成樹脂等。基板G可以是在其表面形成有電子電路或發光元件等圖案的基板,或也可以是支撐基板。作為FPD製造裝置1的基板處理,例舉蝕刻處理或使用CVD(Chemical Vapor Deposition)法之成膜處理等。The FPD may be any of Liquid Crystal Display (LCD), Electro Luminescence (EL), Plasma Display Panel (PDP), etc. As the material of the substrate G, glass is mainly used, but transparent synthetic resin, etc. may also be used depending on the purpose. The substrate G may be a substrate on which a pattern of an electronic circuit or a light-emitting element is formed, or may be a support substrate. Examples of the substrate processing of the FPD manufacturing apparatus 1 include etching processing, film formation processing using a CVD (Chemical Vapor Deposition) method, and the like.

FPD製造裝置1係具有長方體狀的箱型處理容器10、在處理容器10內載置基板G且俯視下呈矩形的基板載置台60、及上述裝置控制器9。The FPD manufacturing apparatus 1 includes a rectangular parallelepiped box-shaped processing container 10 , a substrate mounting table 60 that is rectangular in plan view and has a substrate G placed in the processing container 10 , and the above-mentioned device controller 9 .

處理容器10係藉由介電板11而被上下地區劃。作為上方空間的天線室由上腔室容器12形成,作為下方空間的處理室S由下腔室容器13形成。處理容器10在上腔室容器12與下腔室容器13的交界具備矩形框狀的支撐框14,將介電板11作為窗構件載置於該支撐框14。又,處理容器10係透過接地線13e接地。The processing container 10 is divided up and down by dielectric plates 11 . The antenna chamber as an upper space is formed by the upper chamber container 12 , and the processing chamber S as a lower space is formed by the lower chamber container 13 . The processing container 10 is provided with a rectangular frame-shaped support frame 14 at the boundary between the upper chamber container 12 and the lower chamber container 13, and the dielectric plate 11 is placed on the support frame 14 as a window member. In addition, the processing container 10 is grounded through the ground wire 13e.

下腔室容器13係於側壁13a具有用以對基板G進行搬入搬出的搬入搬出口13b,且具有會開閉搬入搬出口13b的閘閥20。下腔室容器13和具備搬送機構的搬送模組(未圖示)相鄰。FPD製造裝置1會打開閘閥20且透過搬入搬出口13b,藉由搬送機構進行基板G的搬入搬出。The lower chamber container 13 has a loading/unloading port 13b for loading and unloading the substrate G on the side wall 13a, and has a gate valve 20 that opens and closes the loading/unloading port 13b. The lower chamber container 13 is adjacent to a transport module (not shown) equipped with a transport mechanism. The FPD manufacturing apparatus 1 opens the gate valve 20 and carries out the loading and unloading of the substrate G by the transport mechanism through the loading and unloading port 13b.

又,下腔室容器13在底板13d具有多個排氣口13f。排氣口13f係連接有氣體排氣部50。氣體排氣部50係具有連接於排氣口13f之氣體排氣管51,與設置於氣體排氣管51之壓力控制閥52及排氣裝置53。排氣裝置53係具有渦輪分子泵、真空泵等,在基板處理時將下腔室容器13內減壓。In addition, the lower chamber container 13 has a plurality of exhaust ports 13f on the bottom plate 13d. The gas exhaust part 50 is connected to the exhaust port 13f. The gas exhaust part 50 has a gas exhaust pipe 51 connected to the exhaust port 13f, and a pressure control valve 52 and an exhaust device 53 provided in the gas exhaust pipe 51. The exhaust device 53 has a turbomolecular pump, a vacuum pump, etc., and depressurizes the lower chamber container 13 during substrate processing.

在下腔室容器13的上端設置有由多個長條狀構件構成且向處理室S噴出處理氣體之噴淋頭30,該噴淋頭30係兼作會支撐介電板11之支撐樑。噴淋頭30由鋁等金屬形成,藉由陽極氧化施有表面處理。噴淋頭30係具有延伸於水平方向的氣體流道31,及連通氣體流道31與處理室S間的多個氣體噴出孔32。A shower head 30 is provided at the upper end of the lower chamber container 13 and is composed of a plurality of elongated members and sprays processing gas into the processing chamber S. The shower head 30 also serves as a support beam for supporting the dielectric plate 11 . The shower head 30 is made of metal such as aluminum, and is surface-treated by anodizing. The shower head 30 has a gas flow channel 31 extending in the horizontal direction, and a plurality of gas ejection holes 32 communicating between the gas flow channel 31 and the processing chamber S.

處理容器10在介電板11的上面連結有連通於氣體流道31之氣體導入管45。氣體導入管45係氣密地貫穿上腔室容器12的頂部12a且連接於處理氣體供應部40。處理氣體供應部40係包含有連接於氣體導入管45之氣體供應管41、設置在氣體供應管41的中途位置之開閉閥42及流量控制器43、及供應處理氣體之處理氣體供應源44。處理氣體從處理氣體供應源44經由氣體供應管41及氣體導入管45被供應至噴淋頭30,再經由氣體流道31及氣體噴出孔32被噴出至處理室S。The processing container 10 has a gas introduction pipe 45 connected to the gas flow channel 31 on the upper surface of the dielectric plate 11 . The gas introduction pipe 45 passes through the top 12 a of the upper chamber container 12 in an airtight manner and is connected to the processing gas supply part 40 . The processing gas supply unit 40 includes a gas supply pipe 41 connected to the gas introduction pipe 45, an on-off valve 42 and a flow controller 43 provided at a midway position of the gas supply pipe 41, and a processing gas supply source 44 that supplies the processing gas. The processing gas is supplied from the processing gas supply source 44 to the shower head 30 via the gas supply pipe 41 and the gas introduction pipe 45 , and is then ejected to the processing chamber S via the gas flow channel 31 and the gas ejection hole 32 .

處理容器10在形成天線室之上腔室容器12內具備高頻天線15。高頻天線15係將銅等導電性金屬構成的天線15a捲繞成環狀或漩渦狀而形成。The processing container 10 is provided with a high-frequency antenna 15 in a chamber container 12 forming an antenna chamber. The high-frequency antenna 15 is formed by winding an antenna 15a made of conductive metal such as copper into a ring or spiral shape.

上腔室容器12係具有從天線15a的端子延伸至上方之供電構件16。該供電構件16的上端連接有供電線17。供電線17係透過在處理容器10的外部進行阻抗匹配之匹配器18連接於高頻電源19。FPD製造裝置1從高頻電源19向高頻天線15供應例如13.56MHz的高頻功率,藉此在下腔室容器13內形成感應電場。藉由此感應電場,使從噴淋頭30被供應至處理室S的處理氣體電漿化以生成感應耦合型電漿,向基板G提供電漿中的離子或中性自由基等。The upper chamber container 12 has a power supply member 16 extending upward from the terminal of the antenna 15a. A power supply line 17 is connected to the upper end of the power supply member 16 . The power supply line 17 is connected to the high-frequency power supply 19 through a matching device 18 that performs impedance matching on the outside of the processing container 10 . The FPD manufacturing apparatus 1 supplies high-frequency power of, for example, 13.56 MHz from the high-frequency power supply 19 to the high-frequency antenna 15, thereby forming an induced electric field in the lower chamber container 13. By this induced electric field, the processing gas supplied from the shower head 30 to the processing chamber S is plasmaized to generate an inductively coupled plasma, and ions or neutral radicals in the plasma are supplied to the substrate G.

另一方面,基板載置台60係包含有基材63與設置在基材63的上面63a之靜電夾具66。基材63係形成為具有與基板G相同程度的平面尺寸且俯視下呈矩形。基材63由不鏽鋼或鋁、鋁合金等形成。在基材63的內部設置有蜿蜒的調溫介質流道62a。此外,調溫介質流道62a亦可設置在靜電夾具66內。On the other hand, the substrate mounting table 60 includes the base material 63 and the electrostatic chuck 66 provided on the upper surface 63 a of the base material 63 . The base material 63 has approximately the same plane size as the substrate G and is formed into a rectangular shape in plan view. The base material 63 is made of stainless steel, aluminum, aluminum alloy, or the like. A meandering temperature-regulating medium flow channel 62a is provided inside the base material 63 . In addition, the temperature regulating medium flow channel 62a can also be provided in the electrostatic clamp 66.

在調溫介質流道62a的兩端連通有使調溫介質相對於調溫介質流道62a流入及流出的循環配管62b。循環配管62b連接於冷卻器62c。冷卻器62c會使GALDEN(註冊商標)或Fluorinert(註冊商標)等調溫介質循環。此外,基材63可為內建有加熱器等且藉由加熱器進行溫度調整之構成,亦可為藉由調溫介質與加熱器兩者進行溫度調整之構成。在基材63配設有熱電耦等溫度感測器,溫度感測器的測定值(參數)會被傳送至裝置控制器9。裝置控制器9根據傳送的參數控制冷卻器62c的溫度調整動作。A circulation pipe 62b that allows the temperature control medium to flow in and out of the temperature control medium flow channel 62a is connected to both ends of the temperature control medium flow channel 62a. The circulation pipe 62b is connected to the cooler 62c. The cooler 62c circulates a temperature control medium such as GALDEN (registered trademark) or Fluorinert (registered trademark). In addition, the base material 63 may have a built-in heater or the like and may be configured to perform temperature adjustment using the heater, or may be configured to perform temperature adjustment using both a temperature-adjusting medium and a heater. The base material 63 is provided with a temperature sensor such as a thermocouple, and the measured value (parameter) of the temperature sensor is transmitted to the device controller 9 . The device controller 9 controls the temperature adjustment action of the cooler 62c based on the transmitted parameters.

在基板載置台60的內部設置有在與搬送機構之間進行基板G的收取及傳遞之多根(例如12根)舉升銷78(圖1中代表性地圖示出2根舉升銷78)。多根舉升銷78係貫穿基板載置台60,藉由透過連結構件傳達的馬達的動力而上下移動。在下腔室容器13的底板13d上固定有由絕緣材料形成且於內側具有段差部之台座68。在台座68的段差部上載置有基材63,在基材63的上面設置有直接載置基板G之靜電夾具66。A plurality of (for example, 12) lift pins 78 (for example, 12 lift pins) are provided inside the substrate placement table 60 for collecting and transferring the substrate G to and from the transport mechanism (two lift pins 78 are representatively shown in FIG. 1 ). The plurality of lift pins 78 penetrate the substrate mounting table 60 and move up and down by the power of the motor transmitted through the connecting member. A base 68 formed of an insulating material and having a stepped portion on the inside is fixed to the bottom plate 13d of the lower chamber container 13. The base material 63 is placed on the stepped portion of the base 68, and an electrostatic jig 66 on which the substrate G is directly placed is provided on the upper surface of the base material 63.

靜電夾具66係具有使氧化鋁等陶瓷熔射而形成的介電質披覆膜即陶瓷層64,及設置在陶瓷層64的內部以進行靜電吸附之吸附電極65。吸附電極65係透過供電線74及開關76連接於直流電源75。裝置控制器9藉由打開開關76來從直流電源75向吸附電極65施加直流電壓。藉此,吸附電極65便會產生庫倫力來將基板G靜電吸附在靜電夾具66。又,關閉開關76並打開介設在從供電線74分歧的地線之開關77後,儲存在吸附電極65的電荷便會流至地面。The electrostatic clamp 66 has a ceramic layer 64 which is a dielectric coating film formed by spraying ceramics such as alumina, and an adsorption electrode 65 provided inside the ceramic layer 64 for electrostatic adsorption. The adsorption electrode 65 is connected to the DC power supply 75 through the power supply line 74 and the switch 76 . The device controller 9 applies a DC voltage from the DC power supply 75 to the adsorption electrode 65 by turning on the switch 76 . Thereby, the adsorption electrode 65 generates Coulomb force to electrostatically adsorb the substrate G to the electrostatic clamp 66 . In addition, when the switch 76 is turned off and the switch 77 provided on the ground line branched from the power supply line 74 is turned on, the charge stored in the adsorption electrode 65 will flow to the ground.

位在靜電夾具66的外周之台座68的上面係載置有由氧化鋁等陶瓷或石英等所形成之矩形框狀的聚焦環69。聚焦環69的上面係設定成較靜電夾具66的上面要來得低。A rectangular frame-shaped focusing ring 69 made of ceramics such as alumina or quartz is mounted on the upper surface of the base 68 located on the outer periphery of the electrostatic jig 66 . The upper surface of the focus ring 69 is set lower than the upper surface of the electrostatic clamp 66 .

基材63的下面連結有供電構件70,供電構件70的下端連接有供電線71。供電線71係透過進行阻抗匹配的匹配器72連接於偏壓源即高頻電源73。高頻電源73對基板載置台60供應例如3.2MHz的高頻功率。藉此,基材63會將處理室S中生成的離子吸引至基板G。The power supply member 70 is connected to the lower surface of the base material 63 , and the power supply line 71 is connected to the lower end of the power supply member 70 . The power supply line 71 is connected to a bias source, that is, a high-frequency power supply 73 through a matching device 72 that performs impedance matching. The high-frequency power supply 73 supplies high-frequency power of, for example, 3.2 MHz to the substrate mounting table 60 . Thereby, the base material 63 attracts the ions generated in the processing chamber S to the substrate G.

亦即,連接於高頻天線15之高頻電源19為電漿產生用源,連接於基板載置台60之高頻電源73為吸引所產生的離子來賦予動能之偏壓源。藉此,FPD製造裝置1可獨立地進行電漿的生成與離子能量的控制,從而可提高基板處理的自由度。That is, the high-frequency power supply 19 connected to the high-frequency antenna 15 is a source for generating plasma, and the high-frequency power supply 73 connected to the substrate mounting table 60 is a bias source that attracts generated ions to impart kinetic energy. Thereby, the FPD manufacturing apparatus 1 can independently generate plasma and control ion energy, thereby increasing the degree of freedom in substrate processing.

FPD製造裝置1的感測器8係設置在處理容器10內的適當部位,在實施基板處理等時會進行測定。例如,感測器8舉例有用於檢測從高頻電源19供應的功率及從處理容器10的內部反射的功率之RF源用功率感測器81,與用於檢測從高頻電源73供應的功率及從處理容器10的內部反射的功率之RF偏壓用功率感測器82。RF源用功率感測器81設置在匹配器18內。RF偏壓用功率感測器82設置在匹配器72內。RF源用功率感測器81及RF偏壓用功率感測器82以例如每0.1秒的採樣間隔測定功率,並將所測定的功率傳送至裝置控制器9等。又,FPD製造裝置1的感測器8除此之外舉例有用於檢測處理容器10內的壓力之壓力感測器、用於檢測基材63的溫度之溫度感測器、用於檢測所供應之處理氣體的流量之流量感測器等。The sensor 8 of the FPD manufacturing apparatus 1 is installed at an appropriate location in the processing container 10 and is used for measurement when substrate processing or the like is performed. For example, the sensor 8 includes an RF source power sensor 81 for detecting the power supplied from the high-frequency power supply 19 and the power reflected from the inside of the processing container 10 , and an RF source power sensor 81 for detecting the power supplied from the high-frequency power supply 73 . and a power sensor 82 for RF bias of the power reflected from the inside of the processing container 10 . The RF source power sensor 81 is provided in the matching device 18 . The RF bias power sensor 82 is provided in the matching device 72 . The RF source power sensor 81 and the RF bias power sensor 82 measure power at a sampling interval of, for example, 0.1 seconds, and transmit the measured power to the device controller 9 and the like. In addition, the sensor 8 of the FPD manufacturing apparatus 1 includes, for example, a pressure sensor for detecting the pressure in the processing container 10, a temperature sensor for detecting the temperature of the base material 63, a Flow sensors for processing gas flow, etc.

各感測器8測定出的參數(測定值)會被傳送至裝置控制器9,在裝置控制器9所進行之各構成的控制中被加以利用。又,參數經由網路120從裝置控制器9被傳送至伺服器110,在伺服器110中被利用在管理FPD製造裝置1的狀態。此外,資訊處理系統100也可以是將各感測器8的參數不經由裝置控制器9直接傳送至伺服器110之構成。The parameters (measured values) measured by each sensor 8 are transmitted to the device controller 9 and used in the control of each component by the device controller 9 . Furthermore, the parameters are transmitted from the device controller 9 to the server 110 via the network 120, and are used in the server 110 to manage the status of the FPD manufacturing device 1. In addition, the information processing system 100 may also be configured to directly transmit the parameters of each sensor 8 to the server 110 without passing through the device controller 9 .

<資訊處理裝置的硬體構成> 圖1所示之資訊處理系統100的裝置控制器9及伺服器110係藉由例如圖3所示般之硬體構成的電腦500(資訊處理裝置)而實現。圖3係顯示電腦500的一例之硬體構成圖。 <Hardware structure of information processing device> The device controller 9 and server 110 of the information processing system 100 shown in Figure 1 are implemented by a computer 500 (information processing device) composed of hardware as shown in Figure 3, for example. FIG. 3 is a hardware configuration diagram showing an example of the computer 500.

圖3的電腦500係具備輸入裝置501、輸出裝置502、外部I/F(介面)503、RAM(Random Access Memory)504、ROM(Read Only Memory)505、CPU(Central Processing Unit)506、通訊I/F507及HDD508等,以匯流排B將各構成彼此連接。The computer 500 in Figure 3 is equipped with an input device 501, an output device 502, an external I/F (interface) 503, a RAM (Random Access Memory) 504, a ROM (Read Only Memory) 505, a CPU (Central Processing Unit) 506, and a communication I /F507 and HDD508, etc., use bus B to connect each component to each other.

輸入裝置501及輸出裝置502構成上述使用者介面,例如可應用觸控面板。抑或,輸入裝置501也可應用鍵盤、滑鼠、擴音器等,輸出裝置502也可應用顯示器、揚聲器等。外部I/F503為與外部裝置的介面。電腦500可透過外部I/F503進行外部記錄媒體503a等外部裝置的讀取或寫入。通訊I/F507為將電腦500連接於網路120之介面。The input device 501 and the output device 502 constitute the above-mentioned user interface, for example, a touch panel may be used. Alternatively, the input device 501 may also use a keyboard, a mouse, a loudspeaker, etc., and the output device 502 may also use a display, a speaker, etc. External I/F503 is the interface with external devices. The computer 500 can read or write from external devices such as the external recording medium 503a through the external I/F 503. The communication I/F 507 is an interface for connecting the computer 500 to the network 120 .

RAM504為暫時保持程式或資料之揮發性半導體記憶體(儲存裝置)的一例。ROM505為安裝有程式或資料之非揮發性半導體記憶體(儲存裝置)的一例。HDD508為儲存有程式、資料、配方等之非揮發性儲存裝置的一例。CPU506從ROM505或HDD508等儲存裝置讀取程式或資料並在RAM504上運算,藉此實現電腦500整體的控制或功能。RAM 504 is an example of a volatile semiconductor memory (storage device) that temporarily holds programs or data. ROM505 is an example of a non-volatile semiconductor memory (storage device) in which programs or data are installed. HDD508 is an example of a non-volatile storage device that stores programs, data, recipes, etc. The CPU 506 reads programs or data from storage devices such as the ROM 505 or the HDD 508 and performs operations on the RAM 504 to realize the overall control or function of the computer 500 .

電腦500在FPD製造裝置1的基板處理時會接收各感測器8所測定出的參數,並將在電腦500內計時的時間一起儲存在儲存裝置(例如HDD508)來作為基板處理的處理資料D(日誌資訊)。例如,電腦500係儲存RF源用功率感測器81所檢測出的RF源行進波83及RF源反射波84和RF偏壓用功率感測器82所檢測出的RF偏壓行進波85及RF偏壓反射波86的各參數。The computer 500 receives the parameters measured by each sensor 8 during the substrate processing of the FPD manufacturing device 1, and stores the time measured in the computer 500 in a storage device (such as HDD 508) as the processing data D of the substrate processing. (log information). For example, the computer 500 stores the RF source advancing wave 83 and the RF source reflected wave 84 detected by the RF source power sensor 81 and the RF bias advancing wave 85 detected by the RF bias power sensor 82. Various parameters of the RF bias reflected wave 86.

圖4係例示高頻功率(RF源行進波83、RF源反射波84、RF偏壓行進波85、RF偏壓反射波86)的參數的時間變化之圖表。圖4中,橫軸為時間,縱軸為高頻功率。FIG. 4 is a graph illustrating time changes of parameters of high-frequency power (RF source traveling wave 83, RF source reflected wave 84, RF bias traveling wave 85, RF bias reflected wave 86). In Figure 4, the horizontal axis is time and the vertical axis is high-frequency power.

例如,圖4所示的RF偏壓行進波85在基板處理中從大致為零的狀態急遽上升後,以設定的功率值(指定值)恆定。另外,RF偏壓行進波85在經過既定時間後,功率值發生下降而以低一級的功率(指定值)恆定。在該低功率下經過既定時間後,RF偏壓行進波85的功率值發生下降而幾乎變成零。For example, the RF bias traveling wave 85 shown in FIG. 4 suddenly rises from a state of approximately zero during substrate processing, and then becomes constant at a set power value (specified value). In addition, after a predetermined time has elapsed, the power value of the RF bias traveling wave 85 decreases and becomes constant at a lower power level (specified value). After a predetermined time elapses at this low power, the power value of the RF bias traveling wave 85 decreases and becomes almost zero.

另一方面,由於RF偏壓反射波86是因高頻電源19在供應高頻功率時的阻抗失配而產生,因此會描繪出與RF偏壓行進波85的變化連動之波形。具體而言,RF偏壓反射波86在RF偏壓行進波85上升時會反覆振幅,當RF偏壓行進波85穩定在指定值時,返回到幾乎零。另外,RF偏壓反射波86在RF偏壓行進波85下降時再次反覆振幅並返回到零。On the other hand, since the RF bias reflected wave 86 is generated due to the impedance mismatch of the high-frequency power supply 19 when supplying high-frequency power, a waveform linked to the change of the RF bias traveling wave 85 is drawn. Specifically, the RF bias reflected wave 86 will cycle in amplitude as the RF bias traveling wave 85 rises, returning to almost zero when the RF bias traveling wave 85 stabilizes at a specified value. In addition, the RF bias reflected wave 86 repeats its amplitude again and returns to zero when the RF bias traveling wave 85 decreases.

此外,RF源行進波83在RF偏壓反射波86下降後急遽上升,並且穩定在較RF偏壓行進波要來得大之功率值(指定值)。然後,RF源行進波83維持指定值的狀態在經過既定期間後急遽下降。In addition, the RF source traveling wave 83 rises sharply after the RF bias reflected wave 86 decreases, and stabilizes at a power value (specified value) that is larger than the RF bias traveling wave. Then, the RF source traveling wave 83 maintains the specified value and then drops sharply after a predetermined period.

另一方面,由於RF源反射波84是因高頻電源73在供應高頻功率時的阻抗失配而產生,因此會描繪出與RF源行進波83的變化連動之波形。亦即,RF源反射波84在RF源行進波的上升或下降中會呈現反覆振幅的波形。On the other hand, since the RF source reflected wave 84 is generated due to the impedance mismatch of the high-frequency power supply 73 when supplying high-frequency power, a waveform linked to the change of the RF source traveling wave 83 is drawn. That is, the RF source reflected wave 84 will exhibit a waveform with repeated amplitude during the rise or fall of the RF source traveling wave.

<感測器8的測定值的監視> 然後,資訊處理系統100會進行處理資料的分析方法,該處理資料的分析方法係根據基板處理時各感測器8所測定出的測定結果及基板處理的基板狀態等來診斷FPD製造裝置1的健全狀態。尤其在本實施型態中,連接有多個FPD製造裝置1的伺服器110會收集各FPD製造裝置1中的各感測器8的參數來實施處理資料的分析方法。此外,處理資料的分析方法也可以在FPD製造裝置1的裝置控制器9中對FPD製造裝置1各別實施。 <Monitoring the measured value of sensor 8> Then, the information processing system 100 performs a processing data analysis method. The processing data analysis method diagnoses the FPD manufacturing device 1 based on the measurement results measured by each sensor 8 during substrate processing and the substrate status of the substrate processing. sound state. Especially in this embodiment, the server 110 connected to multiple FPD manufacturing devices 1 collects the parameters of each sensor 8 in each FPD manufacturing device 1 to implement the processing data analysis method. In addition, the processing data analysis method may be implemented in the device controller 9 of the FPD manufacturing device 1 individually for the FPD manufacturing device 1 .

圖5係顯示實施處理資料分析方法之伺服器110的功能模塊之方塊圖。伺服器110的CPU506(參照圖3)會運算儲存裝置中儲存的程式,藉此在伺服器110內形成圖5所示般的功能部。具體而言,在伺服器110的內部形成有處理資料取得部111、儲存區域112、及資料分析部113。FIG. 5 is a block diagram showing the functional modules of the server 110 that implements the data analysis method. The CPU 506 (refer to FIG. 3 ) of the server 110 will operate the program stored in the storage device, thereby forming a functional unit as shown in FIG. 5 in the server 110 . Specifically, a processing data acquisition unit 111, a storage area 112, and a data analysis unit 113 are formed inside the server 110.

處理資料取得部111透過網路120取得裝置控制器9中儲存的處理資料D並儲存在儲存區域112。處理資料D係在裝置控制器9中,作為已使各感測器8的參數與時間建立關聯性的時序資訊而被持續地儲存。儲存區域112為了儲存該處理資料D而構成為具有大儲存容量。處理資料取得部111較佳宜對多個FPD製造裝置1中的各感測器8的參數分別進行標記並儲存在儲存區域112內。此外,伺服器110也可以直接接收各感測器8的參數,並在伺服器110內形成已與時間建立關聯性的處理資料D並加以儲存。The processing data acquisition unit 111 obtains the processing data D stored in the device controller 9 through the network 120 and stores it in the storage area 112 . The processed data D are continuously stored in the device controller 9 as timing information that correlates the parameters of each sensor 8 with time. The storage area 112 is configured to have a large storage capacity in order to store the processing data D. The processing data acquisition unit 111 preferably marks the parameters of each sensor 8 in the plurality of FPD manufacturing devices 1 and stores them in the storage area 112 . In addition, the server 110 can also directly receive the parameters of each sensor 8 and form and store the processing data D that has been correlated with time in the server 110 .

資料分析部113為會分析儲存區域112中儲存的處理資料D,並實際進行FPD製造裝置1的健全狀態的診斷之功能部。尤其資料分析部113在分析處理資料D時,會將該處理資料D劃分成多個區段,藉此實現處理的效率化。The data analysis unit 113 is a functional unit that analyzes the processing data D stored in the storage area 112 and actually diagnoses the health status of the FPD manufacturing apparatus 1 . In particular, when the data analysis unit 113 analyzes and processes the data D, it divides the processed data D into multiple sections, thereby achieving processing efficiency.

亦即,在各個FPD製造裝置1的基板處理的整個期間中,各感測器8測定的參數會成龐大的量。假設基板G在基板處理中產生瑕疵的情況,若要確認基板處理的整個期間中的各感測器8的全部參數來探討瑕疵的原因,則需要花費大量的時間(工時)。因此,在處理資料D的分析方法中,係預先在配方中設定劃分處理資料D的既定的規則,來進行處理資料D的區段的劃分,以及劃分後之多個區段當中的特定區段(關注區段)的處理資料D的提取。藉此,伺服器110可減少要確認的參數的數量,從而可縮短分析所需的時間。That is, during the entire period of substrate processing in each FPD manufacturing apparatus 1, the parameters measured by each sensor 8 will become a huge amount. Assuming that a defect occurs in the substrate G during substrate processing, it would take a lot of time (man-hours) to confirm all parameters of each sensor 8 during the entire substrate processing period to investigate the cause of the defect. Therefore, in the analysis method of processing data D, predetermined rules for dividing the processed data D are set in advance in the recipe to divide the sections of the processed data D, and to divide the specific sections among the multiple sections. Extraction of processing data D (section of interest). Thereby, the server 110 can reduce the number of parameters to be confirmed, thereby shortening the time required for analysis.

具體而言,資料分析部113係在內部具備區段設定部114及診斷部115。區段設定部114係具有可提取在處理資料D的時序中被劃分成多個區段當中劃分後之區段的處理資料D之功能。Specifically, the data analysis unit 113 includes a segment setting unit 114 and a diagnosis unit 115 internally. The segment setting unit 114 has a function of extracting the processed data D of the segment divided into a plurality of segments in the sequence of processing the data D.

處理資料D的劃分可依照配方中所設定之以下(A)~(C)的劃分規則來設定多個區段,並提取特定區段的處理資料D(多個感測器8的參數)。 (A)第1條件:針對任一感測器的處理資料D的值,特定出比預設的指定值大、小或相同等變化發生的時刻。 (B)區段條件(第2條件):組合第1條件來分別特定出區段的開始時刻與區段的結束時刻,並定義多個區段。 (C)提取滿足區段的開始時刻、區段的結束時刻之範圍的處理資料D。 The processing data D can be divided into multiple sections according to the following division rules (A) ~ (C) set in the recipe, and the processing data D (parameters of multiple sensors 8) of specific sections can be extracted. (A) The first condition: Specify the time when the value of the processed data D of any sensor is larger, smaller, or the same as the preset specified value. (B) Section condition (second condition): Combine the first condition to specify the start time of the section and the end time of the section, and define a plurality of sections. (C) Extract processing data D that satisfies the range of the segment start time and segment end time.

由於是根據上述規則來進行區段的劃分,因此使區段設定部114的內部形成有自動劃分設定部114a及使用者劃分設定部114b。自動劃分設定部114a為會自動設定處理資料D的劃分區段之功能部。使用者劃分設定部114b為透過輸入裝置501及輸出裝置502(參照圖3)且經由使用者來設定處理資料D的劃分區段之功能部。Since the segments are divided according to the above-mentioned rules, the automatic segmentation setting unit 114a and the user segmentation setting unit 114b are formed inside the segment setting unit 114. The automatic partition setting unit 114a is a functional unit that automatically sets the partitions for processing the data D. The user division setting unit 114b is a functional unit that sets division sections of the processing data D by the user through the input device 501 and the output device 502 (see FIG. 3 ).

自動劃分設定部114a在接收到開始處理資料的分析之觸發條件後,便會根據從儲存裝置讀取的配方的規則,來逐步自動設定處理資料D的多個區段。作為觸發條件,例如可以舉出從FPD製造裝置1接收實施分析的代碼,或透過輸入裝置501接收使用者對於實施分析的指令等。舉一例,FPD製造裝置1的裝置控制器9可以在透過自我診斷識別出異常變化的情況下請求分析。又,使用者可以在基板處理後的基板G產生瑕疵的情況下進行分析。抑或,觸發條件也可以是已經過既定的監視期間的時間點或已實施既定次數的基板處理的時間點等。After receiving the trigger condition to start the analysis of the processing data, the automatic partition setting part 114a will gradually automatically set multiple sections of the processing data D according to the rules of the recipe read from the storage device. Examples of the trigger condition include receiving a code for performing analysis from the FPD manufacturing apparatus 1 or receiving a user's instruction for performing analysis through the input device 501 . For example, the device controller 9 of the FPD manufacturing device 1 may request analysis when an abnormal change is recognized through self-diagnosis. In addition, the user can perform analysis when defects occur in the substrate G after substrate processing. Alternatively, the trigger condition may be a time point when a predetermined monitoring period has elapsed or a time point when a predetermined number of substrate processes have been performed.

以下,作為處理資料D,針對高頻功率(RF源行進波83、RF源反射波84、RF偏壓行進波85及RF偏壓反射波86)在區段中的設定程序,參照圖6的處理流程詳細地說明。圖6係顯示處理資料D的區段劃分處理之流程圖。Hereinafter, as the processing data D, for the setting procedure of the high frequency power (RF source advancing wave 83, RF source reflected wave 84, RF bias advancing wave 85 and RF bias reflected wave 86) in the section, refer to FIG. 6 The processing flow is explained in detail. FIG. 6 is a flowchart showing the segmentation process of processing data D.

自動劃分設定部114a在區段劃分處理中,首先,特定出RF源行進波83的功率值或RF偏壓行進波85的功率值改變既定值以上(變大或變小)的時刻(步驟S11)。此處理適用於上述(A)的劃分規則。用於獲取處理資料D的變化之「既定值」為預設的數值範圍,較佳是依各感測器8的特性來決定,例如比能夠排除各感測器8產生的雜訊還要更高的雜訊值。In the segment dividing process, the automatic segmentation setting unit 114a first identifies the time when the power value of the RF source advancing wave 83 or the power value of the RF bias advancing wave 85 changes by more than a predetermined value (becomes larger or smaller) (step S11 ). This processing applies to the division rule of (A) above. The "predetermined value" used to obtain the change of the processed data D is a preset value range, which is preferably determined according to the characteristics of each sensor 8, for example, it is better than being able to eliminate the noise generated by each sensor 8. High noise level.

接著,自動劃分設定部114a針對步驟S11中特定出的時刻,判定高頻功率的功率值是否已由零(指定值)轉變(步驟S12)。然後,當功率值已由零轉變的情況(步驟S12:YES),便前進至步驟S13,而當功率值是由零以外轉變的情況(步驟S12:NO),則前進至步驟S17。Next, the automatic division setting unit 114a determines whether the power value of the high-frequency power has changed from zero (specified value) at the time specified in step S11 (step S12). Then, when the power value has changed from zero (step S12: YES), the process proceeds to step S13, and when the power value has changed from zero (step S12: NO), the process proceeds to step S17.

步驟S13中,自動劃分設定部114a係將功率值由零開始變化的時刻設定成區段的開始時刻。此處理適用於上述(B)的劃分規則。藉此,自動劃分設定部114a可將適當參數(RF源行進波83、RF偏壓行進波85)的功率值由零上升的時刻包含在1個區段中,即功率值由零變化使得參數成為不穩定狀態的區段中。In step S13, the automatic division setting unit 114a sets the time when the power value starts to change from zero as the start time of the section. This processing applies to the division rule of (B) above. Thereby, the automatic division setting part 114a can include in one section the moment when the power value of the appropriate parameter (RF source traveling wave 83, RF bias traveling wave 85) rises from zero, that is, the power value changes from zero so that the parameter in a section that has become unstable.

在步驟S13後,自動劃分設定部114a將RF源行進波83或RF偏壓行進波85中的某一個成為指定值且RF源反射波84或RF偏壓反射波86成為零的時刻設定成結束時刻(步驟S14)。此處理也是適用於上述(B)的劃分規則。此步驟中的「指定值」為與高頻電源19向處理容器10輸出的RF源用功率相對應之值,或與高頻電源73輸出的RF偏壓用功率相對應之值,因此可由配方中記載的值來計算。藉此,自動劃分設定部114a便能夠將適當參數從功率值變化起到穩定為指定值的時刻為止的功率值的變化範圍包含在前述功率值由零變化使得參數成為不穩定狀態的區段中。After step S13, the automatic division setting unit 114a sets the time when either the RF source advancing wave 83 or the RF bias advancing wave 85 reaches a specified value and the RF source reflected wave 84 or the RF bias reflected wave 86 becomes zero. time (step S14). This processing also applies to the division rule (B) above. The "specified value" in this step is a value corresponding to the RF source power output by the high-frequency power supply 19 to the processing container 10, or a value corresponding to the RF bias power output by the high-frequency power supply 73. Therefore, it can be determined by the formula. Calculated using the values recorded in . Thereby, the automatic segmentation setting unit 114a can include the change range of the power value of the appropriate parameter from the change of the power value to the time when the power value stabilizes to the specified value in the section where the power value changes from zero causing the parameter to become unstable. .

進而,自動劃分設定部114a將與步驟S14相同的時刻設定成下一個區段的開始時刻(步驟S15)。此處理也是適用於上述(B)的劃分規則。藉此,自動劃分設定部114a可簡單地設定下一個區段的開始時刻。Furthermore, the automatic division setting unit 114a sets the same time as step S14 as the start time of the next segment (step S15). This processing also applies to the division rule (B) above. Thereby, the automatic segmentation setting unit 114a can easily set the start time of the next segment.

在步驟S15後,自動劃分設定部114a將為指定值之RF源行進波83或RF偏壓行進波85變化的時刻設定成結束時刻(步驟S16)。此處理也是適用於上述(B)的劃分規則。藉此,自動劃分設定部114a便能夠將適當參數從功率值穩定為指定值起到變化的時刻為止的功率值的範圍包含在參數為穩定狀態的區段中。After step S15, the automatic division setting unit 114a sets the time when the RF source advancing wave 83 or the RF bias advancing wave 85 changes to the specified value as the end time (step S16). This processing also applies to the division rule (B) above. Thereby, the automatic segmentation setting unit 114a can include the range of the power value of the appropriate parameter from the time when the power value stabilizes to the designated value to the time when the power value changes, in the section in which the parameter is in a stable state.

另一方面,當功率值是由零以外轉變的情況,則自動劃分設定部114a會將其由零以外開始變化的時刻設定成區段的開始時刻(步驟S17)。此處理也是適用於上述(B)的劃分規則。當功率值由零以外轉變的情況,RF源反射波84或RF偏壓反射波86幾乎不會變化而持續零的狀態。因此,自動劃分設定部114a只要監視RF源行進波83或RF偏壓行進波85便能獲取各行進波的變化時刻。On the other hand, when the power value changes from other than zero, the automatic division setting unit 114a sets the time when the power value changes from other than zero as the start time of the section (step S17). This processing also applies to the division rule (B) above. When the power value changes from zero, the RF source reflected wave 84 or the RF bias reflected wave 86 hardly changes and remains in a zero state. Therefore, the automatic division setting unit 114a only needs to monitor the RF source advancing wave 83 or the RF bias advancing wave 85 to acquire the change time of each advancing wave.

在步驟S17後,自動劃分設定部114a將RF源行進波83或RF偏壓行進波85成為指定值的時刻設定成結束時刻(步驟S18)。此處理也是適用於上述(B)的劃分規則。藉此,自動劃分設定部114a即使在功率值由零以外轉變的情況,仍能將直到該功率值成為指定值的時刻為止的功率值的範圍包含在1個區段中。After step S17, the automatic division setting unit 114a sets the time when the RF source advancing wave 83 or the RF bias advancing wave 85 reaches the specified value as the end time (step S18). This processing also applies to the division rule (B) above. Thereby, even when the power value changes from zero, the automatic division setting unit 114a can still include the range of the power value until the time when the power value reaches the designated value in one segment.

然後,自動劃分設定部114a在步驟S18後,和步驟S16的結束同樣地前進至步驟S19。在步驟S16或S18後,自動劃分設定部114a針對處理資料D的區段的設定,判定是否已在基板處理的整個期間中實施(步驟S19)。然後,若尚未在基板處理的整個期間中實施的情況(步驟S19:NO),便回到步驟S12並反覆以下相同的處理流程。另一方面,若已在基板處理的整個期間中實施的情況(步驟S19:YES),則前進至步驟S20。Then, after step S18, the automatic division setting unit 114a proceeds to step S19 in the same manner as step S16. After step S16 or S18, the automatic segmentation setting unit 114a determines whether the setting of the segments of the processing data D has been performed throughout the entire substrate processing period (step S19). Then, if it has not been performed during the entire substrate processing period (step S19: NO), the process returns to step S12 and the following same processing flow is repeated. On the other hand, if it has been performed during the entire substrate processing (step S19: YES), the process proceeds to step S20.

步驟S20中,自動劃分設定部114a會在反覆步驟S12~S18的步驟所設定之多個區段中選擇用來提取處理資料D的特定區段(關注區段)。此處理適用於上述(C)的劃分規則。關注區段可依基板處理的內容及基板G的狀態等,自動地或透過使用者的事先選擇來設定。In step S20, the automatic segmentation setting unit 114a selects a specific segment (segment of interest) for extracting the processing data D among the multiple segments set by repeating steps S12 to S18. This processing applies to the division rule of (C) above. The area of interest can be set automatically or through the user's prior selection according to the content of the substrate processing and the state of the substrate G.

例如,當基板處理在基板G的大致整面上產生瑕疵的情況,由於假定基板處理中高頻功率的供應會低於目標值,因此自動劃分設定部114a係特定出功率值在指定值成為穩定狀態的區段來作為關注區段。又,例如,基於會從FPD製造裝置1接收電壓上升時或下降時的異常代碼等,自動劃分設定部114a也可以特定出功率值上升時或下降時的不穩定狀態來作為關注區段。For example, when the substrate processing produces a defect on substantially the entire surface of the substrate G, since it is assumed that the supply of high-frequency power during the substrate processing will be lower than the target value, the automatic division setting unit 114a specifies that the output power value becomes stable at a specified value. section as the focus section. Furthermore, for example, based on receiving an abnormality code when the voltage rises or falls from the FPD manufacturing apparatus 1, the automatic segmentation setting unit 114a may specify an unstable state when the power value rises or falls as a section of interest.

然後,自動劃分設定部114a提取步驟S20中所特定出之關注區段中各感測器8的參數(步驟S21)。藉此,自動劃分設定部114a只會提供自動劃分後之區段且為關注區段中的處理資料D,從而可使後續診斷部115中的處理變得有效率。Then, the automatic segmentation setting unit 114a extracts the parameters of each sensor 8 in the area of interest specified in step S20 (step S21). Thereby, the automatic segmentation setting unit 114a only provides automatically segmented segments and processing data D in the focused segment, thereby making the subsequent processing in the diagnosis unit 115 efficient.

接著,針對藉由上述區段劃分處理所劃分之高頻功率的一例,使用圖7進行說明。圖7係顯示將高頻功率的參數劃分成多個區段之範例的圖表。Next, an example of the high-frequency power divided by the above-mentioned segment dividing process will be described using FIG. 7 . FIG. 7 is a diagram showing an example of dividing the parameters of high frequency power into multiple sections.

高頻功率的各參數藉由區段劃分處理成為被劃分成區段A~區段G的狀態。此處,區段A中,時刻t1為開始時刻,時刻t2為結束時刻。時刻t1為RF偏壓行進波85為由零急遽上升的開始時刻,在圖6的步驟S13中被特定出。時刻t2為RF偏壓行進波85成為既定的指定值,且RF偏壓反射波86成為零的結束時刻,在圖6的步驟S14中被特定出。Each parameter of the high-frequency power is divided into sections A to sections G through section division processing. Here, in section A, time t1 is the start time, and time t2 is the end time. Time t1 is the start time when the RF bias traveling wave 85 suddenly rises from zero, and is specified in step S13 of FIG. 6 . Time t2 is the end time when the RF bias traveling wave 85 reaches a predetermined designated value and the RF bias reflected wave 86 becomes zero, and is specified in step S14 of FIG. 6 .

又,區段B中,時刻t2為開始時刻,時刻t3為結束時刻。作為區段B的開始點之時刻t2在圖6的步驟S15中被特定出。時刻t3為RF偏壓行進波85下降的結束時刻,在圖6的步驟S16中被特定出。In section B, time t2 is the start time, and time t3 is the end time. Time t2 as the start point of section B is specified in step S15 of FIG. 6 . Time t3 is the end time when the RF bias traveling wave 85 falls, and is specified in step S16 of FIG. 6 .

區段C中,時刻t3為開始時刻,時刻t4為結束時刻。作為區段C的開始點之時刻t3在圖6的步驟S17中被特定出。時刻t4在圖6的步驟S18中被特定出。In section C, time t3 is the start time and time t4 is the end time. Time t3 as the starting point of section C is specified in step S17 of FIG. 6 . Time t4 is specified in step S18 of FIG. 6 .

區段D中,時刻t4為開始時刻,時刻t5為結束時刻。作為區段D的開始點之時刻t4在圖6的步驟S16中被特定出。時刻t5在圖6的步驟S17中被特定出。In section D, time t4 is the start time and time t5 is the end time. Time t4 as the start point of section D is specified in step S16 of FIG. 6 . Time t5 is specified in step S17 of FIG. 6 .

又,對於RF源行進波也可以同樣地劃分區段。即,區段E為獲取RF源行進波83上升時的變化範圍之區段,時刻t6為開始時刻,時刻t7為結束時刻。區段F為獲取RF源行進波83穩定在指定值的穩定範圍之區段,時刻t7為開始時刻,時刻t8為結束時刻。區段G係為獲取RF源行進波83下降時的變化範圍之區段,時刻t8為開始時刻,時刻t9為結束時刻。In addition, the RF source traveling wave can also be divided into segments in the same manner. That is, section E is a section for obtaining the change range when the RF source traveling wave 83 rises, time t6 is the start time, and time t7 is the end time. Section F is a section in which the RF source traveling wave 83 is stabilized in a stable range of a specified value. Time t7 is the starting time, and time t8 is the ending time. Section G is a section for obtaining the variation range of the RF source traveling wave 83 when it descends. Time t8 is the start time, and time t9 is the end time.

像這樣,自動劃分設定部114a藉由進行上述區段劃分處理的處理流程,對於基板處理中的各參數,可順利地劃分成穩定狀態的區段及不穩定狀態的區段。又,自動劃分設定部114a對於其他感測器8的處理資料D,當然也可以藉由相同的區段劃分處理來劃分成變化範圍及穩定範圍的區段。In this way, the automatic segmentation setting unit 114a can smoothly segment each parameter in the substrate processing into a segment in a stable state and a segment in an unstable state by performing the process flow of the segment segmentation process. In addition, of course, the automatic segmentation setting unit 114a can also segment the processing data D of other sensors 8 into segments of a changing range and a stable range through the same segmentation process.

回到圖5,資料分析部113的診斷部115根據在區段設定部114中提取出的關注區段的處理資料D,來運算關於各關注區段的健全狀態,以診斷各FPD製造裝置1的健全狀態。裝置的「健全狀態」是指例如,將處理資料D的各參數相對於裝置在正常狀態下的基準值偏離何種程度作為健全值(表示健全狀態之指標)加以數值化,或根據健全值來判定正常或異常。此時的「基準值」透過進行實驗或模擬等在裝置出廠時預先設定,或是在裝置的運行時,將視作正常的特定數量的處理資料D的參數作為指導資料進行學習,由此能夠設定成適當的值。Returning to FIG. 5 , the diagnosis unit 115 of the data analysis unit 113 calculates the health status of each area of interest based on the processing data D of the area of interest extracted by the area setting unit 114 to diagnose each FPD manufacturing device 1 of sound status. The "health status" of the device means, for example, digitizing the degree to which each parameter of the processing data D deviates from the reference value of the device in a normal state as a health value (an index indicating the health status), or determining based on the health value. Determine normal or abnormal. The "base value" at this time is preset when the device is shipped from the factory through experiments or simulations, or the parameters of a specific amount of processed data D regarded as normal are learned as guidance data during operation of the device. Set to appropriate value.

因此,診斷部115在內部具備健全值計算部115a及異常判定部115b。例如,健全值計算部115a為了根據區段設定部114所選擇之關注區段的處理資料D來計算健全值,會實施圖8所示般的健全值計算處理。圖8係顯示健全值計算處理之流程圖。Therefore, the diagnosis unit 115 internally includes a health value calculation unit 115a and an abnormality determination unit 115b. For example, in order to calculate the health value based on the processing data D of the segment of interest selected by the segment setting unit 114, the health value calculation unit 115a performs the health value calculation process as shown in FIG. 8 . Figure 8 is a flowchart showing the soundness value calculation process.

在健全值計算處理中,健全值計算部115a會取得區段設定部114所選擇之關注區段的處理資料D(步驟S31)。此時,健全值計算部115a可取得關注區段的處理資料D中的所有參數,亦可提取基於異常的可能性的特定參數。例如,當推測FPD製造裝置1的電力系統的健全狀態有異常的情況,健全值計算部115a會取得電力系統相關的處理資料D的參數。In the health value calculation process, the health value calculation unit 115a obtains the processing data D of the attention segment selected by the segment setting unit 114 (step S31). At this time, the health value calculation unit 115a can obtain all parameters in the processing data D of the section of interest, and can also extract specific parameters based on the possibility of anomalies. For example, when it is estimated that there is an abnormality in the health status of the power system of the FPD manufacturing apparatus 1, the health value calculation unit 115a obtains parameters of the processing data D related to the power system.

進而,健全值計算部115a對所取得的關注區段的每個感測器8的參數分別進行標準化,以分別計算健全值(步驟S32)。在此健全值的計算中,例如使用下式(1)且應用已進行標準化後之處理資料D的各參數的特徵量V。Furthermore, the health value calculation unit 115a standardizes the obtained parameters of each sensor 8 in the area of interest to calculate health values respectively (step S32). In the calculation of this soundness value, for example, the following equation (1) is used and the characteristic amount V of each parameter of the standardized processed data D is applied.

式(1):V=(Da-X)/YFormula (1): V=(Da-X)/Y

此處,式(1)的Da為標準化前的處理資料D的參數。X為正常的FPD製造裝置1中之特徵量的所有樣品的平均。Y為正常的FPD製造裝置1中之特徵量的所有樣品的離散值(或標準偏差)。Here, Da in Formula (1) is a parameter of the processed data D before standardization. X is the average of the characteristic quantities of all samples in the normal FPD manufacturing apparatus 1 . Y is the discrete value (or standard deviation) of all samples of the characteristic quantity in the normal FPD manufacturing apparatus 1.

上述式(1)所計算出之處理資料D的特徵量V相當於將表示裝置從正常狀態偏離的程度之健全狀態進行數值化後的指標,即健全值。因此,若該健全值愈大,表示裝置從正常狀態偏離的程度愈大,反之,若該數值愈小,則可視為愈接近該裝置的正常狀態。因此,健全值計算部115a係針對步驟S32中關注區段的處理資料D的各參數,計算所有的特徵量V並儲存在儲存裝置。藉由以上的健全值計算處理,診斷部115可獲得每個感測器8的關注區段的健全值(特徵量V)。The characteristic quantity V of the processed data D calculated by the above formula (1) corresponds to an index that digitizes the health state of the device indicating the degree of deviation from the normal state, that is, a health value. Therefore, if the health value is larger, it means that the device deviates more from the normal state; conversely, if the value is smaller, it can be considered that the device is closer to the normal state. Therefore, the health value calculation unit 115a calculates all the feature quantities V for each parameter of the processed data D of the section of interest in step S32 and stores them in the storage device. Through the above health value calculation process, the diagnosis unit 115 can obtain the health value (feature amount V) of the area of interest for each sensor 8 .

進而,診斷部115的異常判定部115b使用關注區段的每個感測器8的健全值來判定FPD製造裝置1是正常還是異常。例如,異常判定部115b對每個感測器8的關注區段的健全值與預先設定之每個感測器8的健全值的容許範圍進行比較。然後,若健全值為容許範圍內,異常判定部115b便判定FPD製造裝置1無異常,反之,若健全值為容許範圍外的情況,則判定該FPD製造裝置1發生異常。Furthermore, the abnormality determination unit 115b of the diagnosis unit 115 determines whether the FPD manufacturing apparatus 1 is normal or abnormal using the health value of each sensor 8 in the area of interest. For example, the abnormality determination unit 115 b compares the health value of the area of interest of each sensor 8 with a preset allowable range of the health value of each sensor 8 . Then, if the health value is within the allowable range, the abnormality determination unit 115b determines that there is no abnormality in the FPD manufacturing apparatus 1. On the contrary, if the health value is outside the allowable range, it is determined that the FPD manufacturing apparatus 1 has an abnormality.

又,若健全值超出容許範圍的情況,異常判定部115b會特定出其感測器8,藉此特定出裝置的哪個部分發生異常。例如,當RF偏壓行進波85的關注區段中所計算出之健全值超出容許範圍的情況,異常判定部115b會特定出RF偏壓行進波85相關之構成(供電構件70、供電線71、匹配器72、高頻電源73等)的異常。然後,診斷部115針對所特定出的異常,透過輸出裝置502向使用者進行通知,藉此可提示使用者採取必要的對策。In addition, if the health value exceeds the allowable range, the abnormality determination unit 115b will identify the sensor 8, thereby identifying which part of the device has an abnormality. For example, when the calculated health value in the section of interest of the RF bias advancing wave 85 exceeds the allowable range, the abnormality determination unit 115b specifies the structure related to the RF bias advancing wave 85 (power supply member 70, power supply line 71 , matching device 72, high-frequency power supply 73, etc.). Then, the diagnostic unit 115 notifies the user of the specified abnormality through the output device 502, thereby prompting the user to take necessary countermeasures.

此外,診斷部115不限於比較健全值與容許範圍來判定裝置是正常還是異常的構成。例如,診斷部115也可以將健全值作為FPD製造裝置1的健全狀態直接顯示在輸出裝置502。在此健全狀態的顯示中,亦可使健全值相當於使用者容易了解的顯示資訊(例如正常、戒備、需維護等影像資訊)來進行通知。進而,資訊處理系統100亦可採取使被判定為異常的FPD製造裝置1停止運轉這樣的不實施基板處理等對策。In addition, the diagnosis unit 115 is not limited to the configuration of comparing the health value and the allowable range to determine whether the device is normal or abnormal. For example, the diagnosis unit 115 may directly display the health value on the output device 502 as the health state of the FPD manufacturing apparatus 1 . In the display of this health status, the health value can also be notified by making the health value equal to the display information that is easy for the user to understand (such as normal, alert, maintenance required, etc. image information). Furthermore, the information processing system 100 may take countermeasures such as stopping the operation of the FPD manufacturing apparatus 1 determined to be abnormal and not performing substrate processing.

本實施型態相關之資訊處理系統100基本上構成為如以上所述,以下針對其動作(處理資料的分析方法)加以說明。The information processing system 100 related to this embodiment is basically configured as described above, and its operation (analysis method of processing data) will be described below.

資訊處理系統100的伺服器110會與各FPD製造裝置1的裝置控制器9進行資訊的通訊來管理各FPD製造裝置1的狀態(有無運轉、有無基板G、基板處理的動作內容、處理時間等)。又,伺服器110會對和各FPD製造裝置1相鄰設置的搬送模組給予指令,藉由搬送機構來對各FPD製造裝置1的處理室S內進行基板G的搬入搬出。The server 110 of the information processing system 100 communicates information with the device controller 9 of each FPD manufacturing device 1 to manage the status of each FPD manufacturing device 1 (whether or not it is operating, whether or not the substrate G is present, the operation content of the substrate processing, processing time, etc. ). Furthermore, the server 110 instructs the transport module installed adjacent to each FPD manufacturing apparatus 1 to carry out the loading and unloading of the substrate G into the processing chamber S of each FPD manufacturing apparatus 1 through the transport mechanism.

各FPD製造裝置1的裝置控制器9在將基板G收納於處理容器10內後,會對基板G實施基板處理。在基板處理時,各感測器8會持續進行測定並將測定值傳送至裝置控制器9,藉此,裝置控制器9便能根據各感測器8的測定值來適當地控制各構成。又,裝置控制器9會將已使各感測器8的測定值(參數)與時間建立關聯性的處理資料D逐步儲存在儲存裝置。After storing the substrate G in the processing container 10, the device controller 9 of each FPD manufacturing apparatus 1 performs substrate processing on the substrate G. During substrate processing, each sensor 8 will continue to measure and transmit the measured values to the device controller 9 , whereby the device controller 9 can appropriately control each component based on the measured values of each sensor 8 . In addition, the device controller 9 will gradually store the processing data D that correlates the measured values (parameters) of each sensor 8 with time in the storage device.

圖9係顯示處理資料的分析方法之流程圖。在FPD製造裝置1的基板處理後,如圖9所示,伺服器110會取得裝置控制器92中儲存的處理資料D並儲存在伺服器110的儲存區域112(步驟S1)。Figure 9 is a flow chart showing an analysis method for processing data. After the substrate is processed by the FPD manufacturing device 1, as shown in FIG. 9, the server 110 will obtain the processing data D stored in the device controller 92 and store it in the storage area 112 of the server 110 (step S1).

然後,伺服器110會判定進行處理資料D的分析之觸發條件是否已成立(步驟S2)。觸發條件如上所述,舉例有來自FPD製造裝置1的分析請求或基於使用者的操作的分析請求等。Then, the server 110 determines whether the trigger condition for analyzing the processed data D has been established (step S2). As mentioned above, the trigger condition includes, for example, an analysis request from the FPD manufacturing apparatus 1 or an analysis request based on a user's operation.

伺服器110在觸發條件未成立的情況會成為待機狀態。若不須分析的情況,由於觸發條件不會成立,故會直接結束處理(步驟S2:NO)。反之,伺服器110在觸發條件有成立的情況(步驟S2:YES),則轉移至對作為對象之FPD製造裝置1的處理資料D進行分析之處理。當待機狀態中觸發條件有成立的情況也是相同。The server 110 will enter a standby state when the trigger condition is not met. If no analysis is required, since the trigger condition will not be established, the processing will be terminated directly (step S2: NO). On the contrary, when the trigger condition is satisfied (step S2: YES), the server 110 shifts to the process of analyzing the processing data D of the target FPD manufacturing apparatus 1. The same is true when the trigger condition is met in the standby state.

此時,資料分析部113對儲存區域112中所儲存之各感測器8的處理資料D實施區段劃分處理的子程序(步驟S3)。在區段劃分處理中,自動劃分設定部114a藉由進行上述圖6所示的處理流程來將各感測器8的處理資料D劃分成多個區段,並進一步提取關注區段的處理資料D。At this time, the data analysis unit 113 performs a subroutine of segmentation processing on the processing data D of each sensor 8 stored in the storage area 112 (step S3). In the segmentation process, the automatic segmentation setting unit 114a divides the processing data D of each sensor 8 into multiple segments by performing the above-mentioned processing flow shown in FIG. 6, and further extracts the processing data of the segment of interest. D.

接著,診斷部115使用步驟S3中所提取之關注區段的處理資料D,來實施用於計算每個感測器8的關注區段的健全值之健全值計算處理的子程序(步驟S4)。在健全值計算處理中,診斷部115藉由進行上述圖8所示的處理流程來計算健全值。Next, the diagnosis unit 115 uses the processing data D of the area of interest extracted in step S3 to execute a subroutine of health value calculation processing for calculating the health value of the area of interest for each sensor 8 (step S4) . In the health value calculation process, the diagnosis unit 115 calculates the health value by performing the processing flow shown in FIG. 8 described above.

然後,診斷部115對所計算出之每個感測器8的關注區段的健全值與容許範圍進行比較,並判定健全值是否在容許範圍內(步驟S5)。若健全值為容許範圍內的情況(步驟S5:YES),便前進至步驟S6,反之,若健全值超出容許範圍的情況(步驟S5:NO),則前進至步驟S7。Then, the diagnosis unit 115 compares the calculated health value of the area of interest of each sensor 8 with the allowable range, and determines whether the health value is within the allowable range (step S5). If the health value is within the allowable range (step S5: YES), the process proceeds to step S6. Otherwise, if the health value exceeds the allowable range (step S5: NO), the process proceeds to step S7.

步驟S6中,資料分析部113透過輸出裝置502來通知已進行了處理資料D的分析後之FPD製造裝置1為正常。此時,資料分析部113也可以進行會顯示已進行分析後的處理資料D或會顯示所計算出之每個感測器8的健全值等之處理。In step S6, the data analysis unit 113 notifies the FPD manufacturing device 1 that the processing data D has been analyzed through the output device 502 and that the FPD manufacturing device 1 is normal. At this time, the data analysis unit 113 may also perform processing such as displaying the analyzed processed data D or displaying the calculated health value of each sensor 8 .

另一方面,步驟S7中,資料分析部113透過輸出裝置502來通知已進行了處理資料D的分析後之FPD製造裝置1為異常。此時,資料分析部113也可以進行會根據每個感測器8的處理資料D來顯示所特定出之異常的部位,或會顯示所計算出之每個感測器8的健全值等之處理。On the other hand, in step S7, the data analysis unit 113 notifies the FPD manufacturing apparatus 1 that the processing data D has been analyzed through the output device 502 that there is an abnormality. At this time, the data analysis unit 113 may also display the specified abnormal location based on the processed data D of each sensor 8, or display the calculated health value of each sensor 8, etc. handle.

然後,當步驟S6或S7的處理流程結束後,伺服器110便結束本次處理資料D的分析方法。Then, when the processing flow of step S6 or S7 is completed, the server 110 ends the analysis method of processing the data D this time.

此外,本揭露相關之處理資料D的分析方法及資訊處理裝置不限於上述,亦可採用各種變形例。例如,處理資料D的分析方法也可以針對基板處理裝置的溫度、壓力、流量等參數,與上述高頻功率的分析同樣地進行分析。又,例如,處理資料D的分析方法也可以根據基板處理中的多個步驟來事先劃分處理資料D,並針對既定步驟的處理資料D來實施多個區段的設定與健全狀態的診斷。藉此,可更加縮短對處理資料D進行分析的耗費時間。又,亦可替換步驟S1與步驟S2的順序。具體而言,例如,亦可以是進行分析之觸發條件已成立的情況作為輸入條件來開始步驟S2的分析處理,取得處理資料D並儲存在儲存區域112。之後,接著進行步驟S3後的處理則與上述相同。In addition, the analysis method and information processing device for processing data D related to the present disclosure are not limited to the above, and various modifications can also be adopted. For example, the analysis method of the processing data D can also analyze parameters such as temperature, pressure, and flow rate of the substrate processing apparatus in the same manner as the above-mentioned analysis of the high-frequency power. For example, the analysis method of the processing data D may also divide the processing data D in advance according to multiple steps in substrate processing, and perform settings of multiple sections and health status diagnosis for the processing data D of predetermined steps. Thereby, the time-consuming analysis of the processing data D can be further shortened. In addition, the order of step S1 and step S2 may be replaced. Specifically, for example, the analysis process in step S2 can be started when the trigger condition for analysis is established as the input condition, and the processing data D is obtained and stored in the storage area 112 . Thereafter, the processing after step S3 is the same as above.

處理資料D的分析方法亦可使用將處理資料D劃分後之區段的時間長度來診斷裝置的健全狀態。例如,當處理資料D中不穩定狀態的區段的時間長度比基準時間長的情況,可判定為裝置發生異常。進而,處理資料D的分析方法中,由劃分後的處理資料D來計算健全值之健全值計算處理的處理流程不限於圖8的例子,也可以採用各種處理流程。例如,診斷部115可計算處理資料D的各參數與對應於其之基準值的相關係數,並將所計算出的相關係數作為健全值。The analysis method of processing data D can also use the time length of the sections divided into processing data D to diagnose the health status of the device. For example, when the time length of the unstable state section in the processing data D is longer than the reference time, it can be determined that an abnormality has occurred in the device. Furthermore, in the analysis method of the processed data D, the processing flow of the health value calculation process of calculating the health value from the divided processed data D is not limited to the example in FIG. 8 , and various processing flows may be adopted. For example, the diagnosis unit 115 may calculate the correlation coefficient between each parameter of the processed data D and the reference value corresponding thereto, and use the calculated correlation coefficient as a sound value.

有關以上的實施型態中所說明之本揭露的技術思想及效果,記載於下。The technical ideas and effects of the disclosure described in the above implementation modes are described below.

本發明之第1態樣為一種處理資料D的分析方法,係分析在基板處理裝置(FPD製造裝置1)運轉時所取得的處理資料D之方法;處理資料D係已使基板處理裝置的多個感測器8的每一個所測定出的參數與所測定出的時間建立關聯性之資料;該處理資料D的分析方法係具有以下工序:取得處理資料D並儲存在儲存部(HDD508)之工序;從儲存部讀取處理資料D,並將處理資料D在依照所測定出的時間之時序中劃分成多個區段之工序;以及根據劃分後之多個區段當中的特定區段(關注區段)中的處理資料D來診斷基板處理裝置的健全狀態之工序;在劃分成多個區段之工序中,針對選自多個感測器8的參數之一個或二個以上的參數,藉由成為預設的指定值之時刻或自指定值變化的時刻來設定多個區段的開始時刻與結束時刻。The first aspect of the present invention is an analysis method of processing data D, which is a method of analyzing the processing data D obtained when a substrate processing device (FPD manufacturing device 1) is operating; the processing data D has enabled the multi-function of the substrate processing device. Data that correlates the parameters measured by each sensor 8 with the measured time; the analysis method of the processed data D has the following steps: obtain the processed data D and store it in the storage unit (HDD508) Process; a process of reading the processing data D from the storage unit and dividing the processing data D into a plurality of sections in a sequence according to the measured time; and a process of dividing the processing data D into a plurality of sections according to a specific section ( The process of diagnosing the health status of the substrate processing device by focusing on the processing data D in the section); in the process divided into multiple sections, one or two or more parameters selected from the parameters of the multiple sensors 8 , set the start time and end time of multiple sections by the time when it becomes the default specified value or the time when it changes from the specified value.

根據上述,處理資料D的分析方法係根據所選擇的參數成為指定值的時刻或自指定值變化的時刻來劃分成多個區段,藉此,可簡單地限定用於診斷基板處理裝置(FPD製造裝置1)的健全狀態之處理資料D。藉此,處理資料D的分析方法可縮短處理資料D的分析所需時間且穩定地分析處理資料D的適當部分。其結果,處理資料D的分析方法可高精度地診斷基板處理裝置的健全狀態。According to the above, the analysis method of the processed data D is divided into multiple sections according to the time when the selected parameter becomes a specified value or changes from the specified value. Thereby, the method for analyzing the substrate processing device (FPD) can be simply limited. Processing data D of the health status of the manufacturing equipment 1). Thereby, the analysis method for processing the data D can shorten the time required for analyzing the data D and stably analyze and process an appropriate part of the data D. As a result, the analysis method of the processing data D can diagnose the health status of the substrate processing apparatus with high accuracy.

又,在劃分成多個區段之工序中,當一個或二個以上的參數發生變化的情況,係劃分成包含伴隨著變化而成為不穩定狀態的參數之區段,與僅包含在變化後處於穩定狀態的參數之區段。藉此,處理資料D的分析方法可劃分成參數為不穩定狀態的區段與參數為穩定狀態的區段,從而可依目的來良好地診斷基板處理裝置(FPD製造裝置1)的健全狀態。In addition, in a process divided into multiple sections, when one or more parameters change, the section is divided into sections containing parameters that become unstable due to changes, and sections containing only parameters after changes. A section of parameters that is in a stable state. Thereby, the analysis method of the processing data D can be divided into a section in which the parameters are in an unstable state and a section in which the parameters are in a stable state, so that the health status of the substrate processing apparatus (FPD manufacturing apparatus 1) can be well diagnosed according to the purpose.

又,不穩定狀態係在一個或二個以上的參數由零變化時發生。藉此,處理資料D的分析方法可順利地劃分成參數由零變化時之參數的過渡現象的區段與參數已達穩定的區段。In addition, an unstable state occurs when one or more parameters change from zero. In this way, the analysis method for processing the data D can be smoothly divided into a section of the transition phenomenon of the parameters when the parameters change from zero and a section where the parameters have reached stability.

又,處理資料D的分析方法係以一個區段的結束時刻作為接續在一個區段後之下一個區段的開始時刻。藉此,處理資料D的分析方法可簡單地設定一個區段與下一個區段。Furthermore, the analysis method of processing data D uses the end time of one section as the start time of the next section following one section. Thereby, the analysis method for processing data D can simply set one section and the next section.

又,在劃分成多個區段之工序中,係特定出參數變得比指定值大預設數值範圍以上的時刻,或變得比指定值小預設數值範圍以上的時刻,來作為自指定值變化的時刻。藉此,處理資料D的分析方法可容易地排除感測器8產生的雜訊來特定出參數變化的時刻。In addition, in the process divided into multiple sections, the time when the parameter becomes larger than the specified value by more than the preset numerical range, or the time when the parameter becomes smaller than the specified value by more than the preset numerical range is specified as a self-specified The moment when the value changes. Thereby, the analysis method of processing the data D can easily eliminate the noise generated by the sensor 8 to identify the moment when the parameter changes.

又,在診斷基板處理裝置(FPD製造裝置1)的健全狀態之工序中,係根據特定區段(關注區段)的處理資料D來計算健全值,該健全值為表示基板處理裝置的健全狀態之指標的數值。像這樣,根據關注區段的處理資料D來計算健全值,藉此,處理資料的分析方法便能夠讓使用者了解數值化後的健全狀態。In addition, in the process of diagnosing the health status of the substrate processing apparatus (FPD manufacturing apparatus 1), a health value indicating the health status of the substrate processing apparatus is calculated based on the processing data D of a specific section (interest section). the value of the indicator. In this way, the health value is calculated based on the processed data D of the section of interest. Through this, the processing data analysis method can allow the user to understand the numerical health status.

又,在診斷基板處理裝置(FPD製造裝置1)的健全狀態之工序中,比較所計算出之健全值是否在已設定的容許範圍內,當健全值在容許範圍內的情況,便判定基板處理裝置為正常,當健全值不在容許範圍內的情況,則判定基板處理裝置為異常。藉此,處理資料的分析方法可根據所計算出的健全值來高精度地判定基板處理裝置是正常還是異常。Furthermore, in the process of diagnosing the health status of the substrate processing apparatus (FPD manufacturing apparatus 1), whether the calculated health value is within the set allowable range is compared. When the health value is within the allowable range, the substrate processing is determined. The device is normal. When the health value is not within the allowable range, the substrate processing device is determined to be abnormal. Thereby, the processing data analysis method can determine with high accuracy whether the substrate processing device is normal or abnormal based on the calculated health value.

又,處理資料D係在基板處理裝置(FPD製造裝置1)中實施基板處理時多個感測器8的每一個所測定的參數。藉此,處理資料D的分析方法可使用基板處理時的參數來良好地監視基板處理裝置的健全狀態。In addition, the process data D are parameters measured by each of the plurality of sensors 8 when the substrate is processed in the substrate processing apparatus (FPD manufacturing apparatus 1). Thereby, the analysis method of the processing data D can use the parameters during substrate processing to effectively monitor the health status of the substrate processing device.

又,基板處理裝置(FPD製造裝置1)係對基板實施電漿處理之電漿處理裝置;多個感測器8係包含測定RF源行進波及RF源反射波來作為參數之RF源用功率感測器81及測定RF偏壓行進波及RF偏壓反射波來作為參數之RF偏壓用功率感測器82;在劃分成多個區段之工序中,以RF源行進波或RF偏壓行進波由零變化的時刻作為區段的開始時刻,並以在區段的開始時刻後RF源反射波或RF偏壓反射波穩定為零的時刻作為區段的結束時刻。藉此,處理資料D的分析方法可根據RF源行進波、RF源反射波、RF偏壓行進波及RF偏壓反射波來適當地設定劃分處理資料D的區段。In addition, the substrate processing device (FPD manufacturing device 1) is a plasma processing device that performs plasma processing on the substrate; the plurality of sensors 8 include power sensors for the RF source that measure the RF source traveling wave and the RF source reflected wave as parameters. The detector 81 and the RF bias power sensor 82 that measure the RF bias traveling wave and the RF bias reflected wave as parameters; in the process divided into multiple sections, the RF source traveling wave or the RF bias traveling wave is used. The time when the wave changes from zero is regarded as the start time of the section, and the time when the RF source reflection wave or the RF bias reflection wave stabilizes to zero after the start time of the section is the end time of the section. Thereby, the analysis method of processing the data D can appropriately set the sections that divide the processing data D according to the RF source traveling wave, the RF source reflected wave, the RF bias traveling wave, and the RF bias reflected wave.

又,本揭露之第2態樣為一種資訊處理裝置(裝置控制器9、伺服器110),係分析在基板處理裝置(FPD製造裝置1)運轉時所取得的處理資料D;處理資料D係已使基板處理裝置的多個感測器8的每一個所測定出的參數與所測定出的時間建立關聯性之資料;該資訊處理裝置係實施以下工序:取得處理資料D並儲存在儲存部(HDD508)之工序;從儲存部讀取處理資料D,並將處理資料D在依照所測定出的時間之時序中劃分成多個區段之工序;以及根據劃分後之多個區段當中的特定區段(關注區段)中的處理資料D來診斷基板處理裝置的健全狀態之工序;在劃分成多個區段之工序中,針對選自多個感測器8的參數之一個或二個以上的參數,藉由成為預設的指定值之時刻或自指定值變化的時刻來設定多個區段的開始時刻與結束時刻。此情況下,資訊處理裝置也可以縮短處理資料D的分析所需時間且穩定地分析處理資料D的適當部分。In addition, the second aspect of the present disclosure is an information processing device (device controller 9, server 110) that analyzes the processing data D obtained when the substrate processing device (FPD manufacturing device 1) is operating; the processing data D is Data that correlates the parameters measured by each of the plurality of sensors 8 of the substrate processing device with the measured time; the information processing device performs the following steps: obtains the processing data D and stores it in the storage unit The process of (HDD508); the process of reading the processed data D from the storage unit and dividing the processed data D into a plurality of sections in a sequence according to the measured time; and according to the process of dividing the plurality of sections. A process of diagnosing the health status of the substrate processing device by processing data D in a specific section (section of interest); in a process divided into multiple sections, one or two parameters selected from a plurality of sensors 8 are For more than one parameter, the start time and end time of multiple sections are set by the time when it becomes the default specified value or the time when it changes from the specified value. In this case, the information processing device can shorten the time required for analysis of the data D and stably analyze and process an appropriate part of the data D.

本說明書所揭示之實施型態相關之處理資料D的分析方法及資訊處理裝置應被認為在所有方面僅為例示而非用以限制本發明之內容。實施型態可在未脫離申請專利範圍及其要旨的情況下,以各種型態做變形及改良。上述多個實施型態中記載的事項可在未矛盾之範圍內亦採用其他構成,又,可在未矛盾之範圍內加以組合。The analysis methods and information processing devices for processing data D related to the embodiments disclosed in this specification should be considered to be illustrative in all respects and not intended to limit the scope of the present invention. The implementation may be modified and improved in various forms without departing from the scope and gist of the patent application. The matters described in the plurality of embodiments described above may be constructed in other ways within the scope of non-inconsistency, and may be combined within the scope of non-inconsistency.

本揭露之基板處理裝置當然可應用FPD製造裝置1以外例如對半導體晶圓進行處理之基板處理裝置。又,本揭露中雖已對使用介電板作為窗構件的感應耦合型電漿(ICP)處理裝置進行說明,惟亦可為取代介電板而使用金屬板作為窗構件的感應耦合型電漿(ICP)處理裝置。又,不限於感應耦合型電漿(ICP)處理裝置,作為基板處理裝置,舉例有Atomic Layer Deposition(ALD)裝置、Capacitively Coupled Plasma(CCP)裝置、Radial Line Slot Antenna(RLSA)裝置、Electron Cyclotron Resonance Plasma(ECR)裝置、Helicon Wave Plasma(HWP)裝置等。Of course, the substrate processing device of the present disclosure can be applied to a substrate processing device other than the FPD manufacturing device 1, such as a semiconductor wafer processing device. In addition, although the inductively coupled plasma (ICP) processing device using a dielectric plate as a window member has been described in this disclosure, an inductively coupled plasma (ICP) processing device using a metal plate as a window member may also be used instead of the dielectric plate. (ICP) processing device. In addition, it is not limited to the inductively coupled plasma (ICP) processing device. Examples of the substrate processing device include an Atomic Layer Deposition (ALD) device, a Capacitively Coupled Plasma (CCP) device, a Radial Line Slot Antenna (RLSA) device, and an Electron Cyclotron Resonance device. Plasma (ECR) device, Helicon Wave Plasma (HWP) device, etc.

1:FPD製造裝置 8:感測器 9:裝置控制器 110:伺服器 508:HDD D:處理資料 1:FPD manufacturing equipment 8: Sensor 9:Device controller 110:Server 508: HDD D: Process data

圖1係顯示具有一實施型態相關的資訊處理裝置之資訊處理系統的一例之構成圖。 圖2係顯示FPD製造裝置的整體構成之剖面示意圖。 圖3係顯示電腦的一例之硬體構成圖。 圖4係例示高頻功率的參數的時間變化之圖表。 圖5係顯示用於實施處理資料分析方法之伺服器的功能模塊之方塊圖。 圖6係顯示處理資料的區段劃分處理之流程圖。 圖7係顯示將高頻功率的參數劃分成多個區段之範例的圖表。 圖8係顯示健全值計算處理之流程圖。 圖9係顯示處理資料的分析方法之流程圖。 FIG. 1 is a block diagram showing an example of an information processing system including an information processing device according to an embodiment. FIG. 2 is a schematic cross-sectional view showing the overall structure of the FPD manufacturing device. FIG. 3 is a hardware configuration diagram showing an example of a computer. FIG. 4 is a graph illustrating time changes of parameters of high-frequency power. Figure 5 is a block diagram showing functional modules of a server for implementing a data analysis method. FIG. 6 is a flowchart showing the segmentation process of processing data. FIG. 7 is a diagram showing an example of dividing the parameters of high frequency power into multiple sections. Figure 8 is a flowchart showing the soundness value calculation process. Figure 9 is a flow chart showing an analysis method for processing data.

83:RF源行進波 83: RF source traveling wave

84:RF源反射波 84: RF source reflected wave

85:RF偏壓行進波 85: RF bias traveling wave

86:RF偏壓反射波 86: RF bias reflected wave

Claims (10)

一種處理資料的分析方法,係分析在基板處理裝置運轉時所取得的處理資料之方法; 該處理資料係已使該基板處理裝置的多個感測器的每一個所測定出的參數與所測定出的時間建立關聯性之資料; 該處理資料的分析方法係具有以下工序: 取得該處理資料並儲存在儲存部之工序; 從該儲存部讀取該處理資料,並將該處理資料在依照該所測定出的時間之時序中劃分成多個區段之工序;以及 根據劃分後之多個該區段當中的特定區段中的該處理資料來診斷該基板處理裝置的健全狀態之工序; 在劃分成多個該區段之工序中,針對選自多個該感測器的該參數之一個或二個以上的該參數,藉由成為預設的指定值之時刻或自該指定值變化的時刻來設定多個該區段的開始時刻與結束時刻。 A method of analyzing processing data, which is a method of analyzing processing data obtained when a substrate processing device is operating; The processing data is data that correlates the measured parameters of each of the plurality of sensors of the substrate processing device with the measured time; The analysis method for processing data has the following steps: The process of obtaining the processed data and storing it in the storage department; The process of reading the processing data from the storage unit and dividing the processing data into a plurality of sections in a sequence according to the measured time; and The process of diagnosing the health status of the substrate processing device based on the processing data in a specific section among the divided sections; In a process divided into a plurality of sections, one or more parameters selected from a plurality of sensors are determined by the time at which they become the default specified value or the change from the specified value. time to set the start time and end time of multiple sections. 如申請專利範圍第1項之處理資料的分析方法,其中在劃分成多個該區段之工序中,當一個或二個以上的該參數發生變化的情況,係劃分成包含伴隨著該變化而成為不穩定狀態的該參數之區段,與僅包含在該變化後處於穩定狀態的該參數之區段。For example, in the analysis method for processing data in Item 1 of the patent application scope, in the process that is divided into multiple sections, when one or more of the parameters change, it is divided into sections that include the changes accompanying the change. The section of that parameter that becomes unstable, and the section that contains only that parameter that is in a stable state after the change. 如申請專利範圍第2項之處理資料的分析方法,其中該不穩定狀態係在一個或二個以上的該參數由零變化時發生。For example, in the data processing analysis method of item 2 of the patent application, the unstable state occurs when one or more of the parameters change from zero. 如申請專利範圍第1至3項中任一項之處理資料的分析方法,其係以一個該區段的結束時刻作為接續在一個該區段後之下一個該區段的開始時刻。For the analysis method of processing data in any one of items 1 to 3 of the patent application scope, the end time of one such section is used as the starting time of the next section following one such section. 如申請專利範圍第1至3項中任一項之處理資料的分析方法,其中在劃分成多個該區段之工序中,係特定出該參數變得比該指定值大預設數值範圍以上的時刻,或變得比該指定值小預設數值範圍以上的時刻,來作為自該指定值變化的時刻。If the data processing analysis method of any one of the patent scope items 1 to 3 is applied for, in the process divided into multiple sections, it is specified that the parameter becomes larger than the specified value and exceeds the preset value range. The time of change from the specified value, or the time when it becomes smaller than the specified value by more than a preset numerical range, is regarded as the time of change from the specified value. 如申請專利範圍第1至3項中任一項之處理資料的分析方法,其中在診斷該基板處理裝置的健全狀態之工序中,係根據該特定區段的該處理資料來計算健全值,該健全值為表示該基板處理裝置的健全狀態之指標的數值。If the processing data analysis method in any one of items 1 to 3 of the patent scope is applied for, in the process of diagnosing the health status of the substrate processing device, the health value is calculated based on the processing data of the specific section, the The health value is a numerical value that indicates the health status of the substrate processing apparatus. 如申請專利範圍第6項之處理資料的分析方法,其中在診斷該基板處理裝置的健全狀態之工序中,比較所計算出之該健全值是否在已設定的容許範圍內,當該健全值在該容許範圍內的情況,便判定該基板處理裝置為正常,當該健全值不在該容許範圍內的情況,則判定該基板處理裝置為異常。For example, in the process data analysis method of Item 6 of the patent application, in the process of diagnosing the health status of the substrate processing device, whether the calculated health value is within the set allowable range is compared. When the health value is within If the health value is within the allowable range, the substrate processing device is determined to be normal. When the health value is not within the allowable range, the substrate processing device is determined to be abnormal. 如申請專利範圍第1至3項中任一項之處理資料的分析方法,其中該處理資料係在該基板處理裝置中實施基板處理時多個該感測器的每一個所測定的參數。For example, the processing data analysis method of any one of items 1 to 3 of the patent application scope, wherein the processing data is a parameter measured by each of the plurality of sensors when the substrate processing is performed in the substrate processing device. 如申請專利範圍第1至3項中任一項之處理資料的分析方法,其中該基板處理裝置係對基板實施電漿處理之電漿處理裝置; 多個該感測器係包含測定RF源行進波及RF源反射波來作為該參數之RF源用功率感測器及測定RF偏壓行進波及RF偏壓反射波來作為該參數之RF偏壓用功率感測器; 在劃分成多個該區段之工序中,以該RF源行進波或該RF偏壓行進波由零變化的時刻作為該區段的開始時刻,並以在該區段的開始時刻後該RF源反射波或該RF偏壓反射波穩定為零的時刻作為該區段的結束時刻。 For example, the processing data analysis method of any one of items 1 to 3 of the patent scope, wherein the substrate processing device is a plasma processing device that performs plasma processing on the substrate; A plurality of the sensors include an RF source power sensor that measures the RF source traveling wave and the RF source reflected wave as the parameter, and an RF bias sensor that measures the RF bias traveling wave and the RF bias reflected wave as the parameter. power sensor; In the process of dividing the section into multiple sections, the time when the RF source traveling wave or the RF bias traveling wave changes from zero is regarded as the starting time of the section, and the RF source time after the starting time of the section is The time when the source reflection wave or the RF bias reflection wave stabilizes to zero is regarded as the end time of this section. 一種資訊處理裝置,係分析在基板處理裝置運轉時所取得的處理資料; 該處理資料係已使該基板處理裝置的多個感測器的每一個所測定出的參數與所測定出的時間建立關聯性之資料; 該資訊處理裝置係實施以下工序: 取得該處理資料並儲存在儲存部之工序; 從該儲存部讀取該處理資料,並將該處理資料在依照該所測定出的時間之時序中劃分成多個區段之工序;以及 根據劃分後之多個該區段當中的特定區段中的該處理資料來診斷該基板處理裝置的健全狀態之工序; 在劃分成多個該區段之工序中,針對選自多個該感測器的該參數之一個或二個以上的該參數,藉由成為預設的指定值之時刻或自該指定值變化的時刻來設定多個該區段的開始時刻與結束時刻。 An information processing device that analyzes processing data obtained when a substrate processing device is operating; The processing data is data that correlates the measured parameters of each of the plurality of sensors of the substrate processing device with the measured time; The information processing device performs the following processes: The process of obtaining the processed data and storing it in the storage department; The process of reading the processing data from the storage unit and dividing the processing data into a plurality of sections in a sequence according to the measured time; and The process of diagnosing the health status of the substrate processing device based on the processing data in a specific section among the divided sections; In the process divided into multiple sections, one or more of the parameters selected from multiple sensors are determined by the time when they become the default specified value or the change from the specified value. time to set the start time and end time of multiple sections.
TW112112182A 2022-04-12 2023-03-30 Processing data analysis method and information processing device TW202405866A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022065845A JP2023156153A (en) 2022-04-12 2022-04-12 Processed data analysis method and information processing device
JP2022-065845 2022-04-12

Publications (1)

Publication Number Publication Date
TW202405866A true TW202405866A (en) 2024-02-01

Family

ID=88357072

Family Applications (1)

Application Number Title Priority Date Filing Date
TW112112182A TW202405866A (en) 2022-04-12 2023-03-30 Processing data analysis method and information processing device

Country Status (4)

Country Link
JP (1) JP2023156153A (en)
KR (1) KR20230146449A (en)
CN (1) CN116913750A (en)
TW (1) TW202405866A (en)

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6990634B2 (en) 2018-08-21 2022-02-03 株式会社日立ハイテク State prediction device and semiconductor manufacturing device

Also Published As

Publication number Publication date
JP2023156153A (en) 2023-10-24
CN116913750A (en) 2023-10-20
KR20230146449A (en) 2023-10-19

Similar Documents

Publication Publication Date Title
US7289866B2 (en) Plasma processing method and apparatus
KR102546407B1 (en) Wear detection of consumable part in semiconductor manufacturing equipment
KR100819296B1 (en) Substrate processing apparatus, deposit monitoring apparatus, and deposit monitoring method
JP4464276B2 (en) Plasma processing method and plasma processing apparatus
CN100552889C (en) Plasma processing apparatus
US7341954B2 (en) Method and apparatus for determining an operation status of a plasma processing apparatus, program and storage medium storing same
JP4317701B2 (en) Processing result prediction method and prediction apparatus
KR101644257B1 (en) Substrate processing system, management device, and display method
JP4224454B2 (en) Multivariate analysis model creation method for processing device, multivariate analysis method for processing device, control device for processing device, control system for processing device
JP4220378B2 (en) Processing result prediction method and processing apparatus
JP2020057712A (en) Plasma processing apparatus and ring member thickness measurement method
TW202405866A (en) Processing data analysis method and information processing device
KR20200118758A (en) Impedance matching device, abnormality diagnosis method, and storage medium for abnormality diagnosis program
JP4675266B2 (en) Prediction method and prediction apparatus for processing result of substrate processing apparatus
JP2014022695A (en) Plasma processing apparatus and calibration method therefor
JP4643392B2 (en) Operating state determination method, operating state determination apparatus, program, and storage medium for plasma processing apparatus
JP2023111455A (en) Etching control method and etching control system
KR20070069359A (en) Apparatus for forming plasma and method of controlling plasma using the same
JP2021034345A (en) Plasma processing system and plasma ignition support method
JP7413081B2 (en) Substrate processing system
KR20230136034A (en) Prediction method and information processing apparatus
KR20230055609A (en) Real time monitoring method and system for plasma appatus
WO2023121923A1 (en) Substrate support characterization to build a digital twin
CN114823269A (en) Abnormality detection method for plasma processing apparatus and plasma processing apparatus
JP2016009720A (en) Estimation method, and plasma processing apparatus