TW202347806A - Optical sensing apparatus and sensing method thereof - Google Patents

Optical sensing apparatus and sensing method thereof Download PDF

Info

Publication number
TW202347806A
TW202347806A TW111144159A TW111144159A TW202347806A TW 202347806 A TW202347806 A TW 202347806A TW 111144159 A TW111144159 A TW 111144159A TW 111144159 A TW111144159 A TW 111144159A TW 202347806 A TW202347806 A TW 202347806A
Authority
TW
Taiwan
Prior art keywords
light
sensing
ambient light
diode
count value
Prior art date
Application number
TW111144159A
Other languages
Chinese (zh)
Inventor
孫伯偉
陳經緯
胡耀升
Original Assignee
神盾股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 神盾股份有限公司 filed Critical 神盾股份有限公司
Publication of TW202347806A publication Critical patent/TW202347806A/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • G01S17/06Systems determining position data of a target
    • G01S17/08Systems determining position data of a target for measuring distance only
    • G01S17/10Systems determining position data of a target for measuring distance only using transmission of interrupted, pulse-modulated waves
    • G01S17/14Systems determining position data of a target for measuring distance only using transmission of interrupted, pulse-modulated waves wherein a voltage or current pulse is initiated and terminated in accordance with the pulse transmission and echo reception respectively, e.g. using counters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/483Details of pulse systems
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/483Details of pulse systems
    • G01S7/486Receivers
    • G01S7/4861Circuits for detection, sampling, integration or read-out

Abstract

An optical sensing apparatus and sensing method thereof are provided. A breakdown bias voltage is provided to a photo-sense diode. A count value is generated by counting breakdown times of a photo-sensing diode according to a photo-sensing signal generated by sensing ambient light by the photo-sensing diode. Sampling values are generated by sampling the count value. Determining light characteristics of the ambient light according to the Sampling values.

Description

光學感測裝置及其感測方法Optical sensing device and sensing method thereof

本發明是有關於一種感測裝置,且特別是有關於一種光學感測裝置及其感測方法。The present invention relates to a sensing device, and in particular, to an optical sensing device and a sensing method thereof.

諸多現代電子裝置中皆存在具有光子裝置的積體晶片(Integrated chip,IC)。舉例而言,包括影像感測器的光子裝置用於相機、錄影機及其他類型的攝影系統中來捕獲影像。一般來說,光感測晶片常利用光電流積分的方式,將電流轉到電壓,再利用類比數位轉換器來進行解碼。類比數位轉換器具有設計複雜且耗電的缺點,且在弱環境光的情形下,需要高精度的類比數位轉換電路進行雜訊控制或增加光感測二極體的數量,來提高感測靈敏度,然如此將提高電路面積且會使成本上升。此外,以光電流積分的方式來進行信號處理,需要足夠的積分時間來避免訊雜比過低,然如此將大幅地限制資料回報速率(report rate)。Integrated chips (ICs) with photonic devices exist in many modern electronic devices. For example, photonic devices including image sensors are used in cameras, video recorders, and other types of photography systems to capture images. Generally speaking, light sensing chips often use photocurrent integration to convert the current into voltage, and then use an analog-to-digital converter for decoding. Analog-to-digital converters have the disadvantages of complex design and power consumption. In the case of weak ambient light, high-precision analog-to-digital conversion circuits are required for noise control or to increase the number of light sensing diodes to improve sensing sensitivity. , however, this will increase the circuit area and increase the cost. In addition, using photocurrent integration for signal processing requires sufficient integration time to prevent the signal-to-noise ratio from being too low, which will significantly limit the data report rate.

本發明提供一種光學感測裝置及其感測方法,在弱環境光的情形下,可在不增加電路面積、成本以及功耗的情形下,準確地判斷環境光的光特性,提供良好的感測品質以及資料回報速率,且相較於傳統的光感測二極體,可以更小的電路面積達到相同的感測敏感度。The present invention provides an optical sensing device and a sensing method thereof. In the case of weak ambient light, the optical characteristics of the ambient light can be accurately judged without increasing the circuit area, cost and power consumption, and provide good sensing. Compared with traditional light sensing diodes, it can achieve the same sensing sensitivity in a smaller circuit area.

本發明的光學感測裝置,包括偏壓電壓產生電路、至少一光感測二極體、淬熄電路、計數器電路以及信號處理電路。偏壓電壓產生電路提供崩潰偏壓電壓或標準偏壓電壓。光感測二極體的陰極端耦接偏壓電壓產生電路,感測環境光而產生光感測信號。淬熄電路耦接光感測二極體的陽極端,淬熄光感測二極體。計數器電路耦接光感測二極體的陽極端,依據光感測二極體在接收崩潰偏壓電壓期間產生的光感測信號計數光感測二極體的崩潰次數而產生計數值。信號處理電路耦接計數器電路,取樣計數值而產生多個取樣值,依據取樣值判斷環境光的光特性。The optical sensing device of the present invention includes a bias voltage generating circuit, at least one light sensing diode, a quenching circuit, a counter circuit and a signal processing circuit. The bias voltage generating circuit provides a collapse bias voltage or a standard bias voltage. The cathode terminal of the light sensing diode is coupled to the bias voltage generating circuit, and senses ambient light to generate a light sensing signal. The quenching circuit is coupled to the anode terminal of the light sensing diode to quench the light sensing diode. The counter circuit is coupled to the anode terminal of the light sensing diode, and counts the number of collapses of the light sensing diode according to the light sensing signal generated by the light sensing diode during receiving the breakdown bias voltage to generate a count value. The signal processing circuit is coupled to the counter circuit, samples the count value to generate a plurality of sample values, and determines the optical characteristics of the ambient light based on the sample values.

本發明還提供一種光學感測裝置的感測方法,包括下列步驟。提供崩潰偏壓電壓給至少一光感測二極體。依據光感測二極體感測環境光而產生的光感測信號計數光感測二極體的崩潰次數而產生計數值。取樣計數值而產生多個取樣值。依據取樣值判斷環境光的光特性。The invention also provides a sensing method of an optical sensing device, which includes the following steps. A collapse bias voltage is provided to at least one light sensing diode. According to the light sensing signal generated by the light sensing diode sensing the ambient light, the number of collapses of the light sensing diode is counted to generate a count value. Sampling the count value produces multiple sample values. Determine the light characteristics of the ambient light based on the sampled values.

基於上述,本發明實施例的光感測二極體可接收崩潰偏壓電壓並感測環境光而產生光感測信號,計數器電路可依據光感測信號計數光感測二極體的崩潰次數而產生計數值,信號處理電路可取樣計數值而產生多個取樣值,並依據多個取樣值判斷環境光的光特性。如此利用在極度逆偏狀態下的光感測二極體來感測環境光,並利用計數器電路的計數值來計算光感測二極體所感測到的光強度,可避免使用積分器電路,而可在弱環境光的條件下,在不增加電路面積、成本以及功耗的情形下,準確地判斷環境光的光特性,提供良好的感測品質以及資料回報速率,且相較於傳統的光感測二極體,可以更小的電路面積達到相同的感測敏感度。Based on the above, the light sensing diode according to the embodiment of the present invention can receive the collapse bias voltage and sense the ambient light to generate a light sensing signal. The counter circuit can count the number of collapses of the light sensing diode based on the light sensing signal. To generate a count value, the signal processing circuit can sample the count value to generate multiple sample values, and determine the light characteristics of the ambient light based on the multiple sample values. In this way, the light sensing diode in an extremely reverse biased state is used to sense ambient light, and the counting value of the counter circuit is used to calculate the light intensity sensed by the light sensing diode, thereby avoiding the use of an integrator circuit. Under the condition of weak ambient light, it can accurately judge the optical characteristics of ambient light without increasing circuit area, cost and power consumption, providing good sensing quality and data return rate, and compared with traditional Light sensing diodes can achieve the same sensing sensitivity in a smaller circuit area.

為了使本發明之內容可以被更容易明瞭,以下特舉實施例做為本發明確實能夠據以實施的範例。另外,凡可能之處,在圖式及實施方式中使用相同標號的元件/構件/步驟,係代表相同或類似部件。In order to make the content of the present invention easier to understand, the following embodiments are given as examples according to which the present invention can be implemented. In addition, wherever possible, elements/components/steps with the same reference numbers in the drawings and embodiments represent the same or similar parts.

以下請參照圖1,圖1是依照本發明一實施例所繪示的光學感測裝置的示意圖。光學感測裝置可包括偏壓電壓產生電路102、光感測二極體PD1(例如,單光子崩潰二極體Single Photon Avalanche Diode,SPAD)、淬熄(quenching)電路104、計數器電路106以及信號處理電路108,偏壓電壓產生電路102耦接光感測二極體PD1的陰極端,淬熄電路104耦接光感測二極體PD1的陽極端。偏壓電壓產生電路102可用以提供崩潰偏壓電壓或標準偏壓電壓至光感測二極體PD1,而使光感測二極體PD1進入極度逆偏或逆偏的狀態。在光感測二極體PD1處於極度逆偏的狀態下,當環境光L1的光子注入光感測二極體PD1的空乏層時,可觸發光感測二極體PD1產生崩潰(avalanche)電流,而提供光感測信號S1。此外,淬熄電路104可在光感測二極體PD1提供光感測信號S1後淬熄光感測二極體PD1,以將光感測二極體PD1的陽極端電壓回復到提供光感測信號S1前的電壓,淬熄電路104為主動式或被動式,本發明並不限定。值得注意的是,在圖1實施例中雖僅繪示一個由光感測二極體PD1與淬熄電路104形成的光感測單元,然不以此為限,在其它實施例中,光學感測裝置可包括更多個光感測單元,例如由多個光感測單元與計數器電路106形成的光感測單元陣列。Please refer to FIG. 1 below. FIG. 1 is a schematic diagram of an optical sensing device according to an embodiment of the present invention. The optical sensing device may include a bias voltage generating circuit 102, a light sensing diode PD1 (eg, a Single Photon Avalanche Diode, SPAD), a quenching circuit 104, a counter circuit 106, and a signal In the processing circuit 108, the bias voltage generating circuit 102 is coupled to the cathode terminal of the light sensing diode PD1, and the quenching circuit 104 is coupled to the anode terminal of the light sensing diode PD1. The bias voltage generating circuit 102 can be used to provide a collapse bias voltage or a standard bias voltage to the light sensing diode PD1, so that the light sensing diode PD1 enters an extreme reverse bias or reverse bias state. When the photo-sensing diode PD1 is in an extremely reverse-biased state, when the photons of the ambient light L1 are injected into the depletion layer of the photo-sensing diode PD1, the photo-sensing diode PD1 can be triggered to generate an avalanche current. , and provide the light sensing signal S1. In addition, the quenching circuit 104 can quench the light sensing diode PD1 after the light sensing diode PD1 provides the light sensing signal S1, so as to restore the anode terminal voltage of the light sensing diode PD1 to provide light sensing. The invention does not limit whether the quenching circuit 104 is active or passive based on the voltage before the signal S1 is measured. It is worth noting that although only one light sensing unit formed by the light sensing diode PD1 and the quenching circuit 104 is shown in the embodiment of FIG. 1, it is not limited to this. In other embodiments, optical The sensing device may include more light sensing units, such as a light sensing unit array formed by a plurality of light sensing units and a counter circuit 106 .

計數器電路106可依據光感測二極體PD1在接收崩潰偏壓電壓期間產生的光感測信號S1計數光感測二極體PD1的崩潰次數而產生計數值C1給信號處理電路108,信號處理電路108可依據計數值C1判斷光感測二極體PD1所感測到的光強度。舉例來說,如圖2所示,信號處理電路108可依據計數器電路106計數光感測期間T1光感測信號S1的脈衝數量(也就是光感測二極體PD1於光感測期間T1的崩潰次數)所得到的計數值C1,來判斷光感測二極體PD1於光感測期間T1所感測到的光強度,其中計數值C1越大代表光感測二極體PD1於光感測期間T1所感測到的光強度越強。其中光感測期間T1可例如為光感測二極體PD1接收崩潰偏壓電壓的期間,然不以此為限,也可依使用者需求設定為其它期間,例如光感測二極體PD1接收環境光L1的期間或計數器電路106執行計數的期間。舉例來說,在部分實施例中,計數器電路106可週期性地重新計數光感測信號S1的脈衝數量,例如每隔光感測期間T1便重新計數光感測信號S1的脈衝數量,如此在環境光L1的強度變化具有特定頻率的情形下,計數器電路106所產生的計數值變化也將如圖3所示具有特定頻率。The counter circuit 106 can count the number of collapses of the light sensing diode PD1 according to the light sensing signal S1 generated by the light sensing diode PD1 during receiving the collapse bias voltage and generate the count value C1 to the signal processing circuit 108. The signal processing The circuit 108 can determine the light intensity sensed by the light sensing diode PD1 according to the count value C1. For example, as shown in FIG. 2 , the signal processing circuit 108 can count the number of pulses of the light sensing signal S1 during the light sensing period T1 according to the counter circuit 106 (that is, the number of pulses of the light sensing diode PD1 during the light sensing period T1 The count value C1 obtained by the number of collapses) is used to determine the light intensity sensed by the light sensing diode PD1 during the light sensing period T1. The larger the count value C1 is, the greater the count value C1 is, which means that the light sensing diode PD1 is in the light sensing period. The stronger the light intensity sensed during T1. The light sensing period T1 can be, for example, the period during which the light sensing diode PD1 receives the collapse bias voltage. However, it is not limited to this. It can also be set to other periods according to the user's needs, such as the light sensing diode PD1 A period during which the ambient light L1 is received or a period during which the counter circuit 106 performs counting. For example, in some embodiments, the counter circuit 106 can periodically re-count the number of pulses of the light sensing signal S1, for example, re-count the number of pulses of the light sensing signal S1 every light sensing period T1, so that in In the case where the intensity change of the ambient light L1 has a specific frequency, the change in the count value generated by the counter circuit 106 will also have a specific frequency as shown in FIG. 3 .

如圖3所示,信號處理電路108可取樣計數器電路106所產生的計數值而產生多個取樣值,例如依據預設取樣頻率取樣計數器電路106所產生的計數值而產生多個取樣值。值得注意的是,信號處理電路108的取樣頻率並不以圖3為限,信號處理電路108也可以更高或更低的預設取樣頻率對計數值進行取樣,取樣時間可例如為取樣頻率的倒數的2 N倍,其中N為正整數,然不以此為限。信號處理電路108可依據取樣值判斷環境光L1的光特性。信號處理電路108可依據取樣值的振幅隨時間的變化判斷環境光L1的頻率。在部分實施例中,信號處理電路108也可對取樣值進行頻譜分析,例如對取樣值進行快速傅立葉轉換(FFT),以獲得光感測信號S1的諧波分佈。此外,信號處理電路108還可依據頻域中諧波的振幅判斷是否有閃爍現象,例如當在頻域中某一頻率的諧波振幅高於預設閾值時,代表環境光L1以此頻率閃爍,例如當在頻域中頻率100Hz處的諧波振幅高於預設閾值時,代表環境光L1的閃爍頻率為100Hz。在部分實施例中,信號處理電路108可也先計算取樣值的平均值,而後將取樣值減去平均值,以去除取樣值的直流成分,而後再對去除直流成分的取樣值進行快速傅立葉轉換。 As shown in FIG. 3 , the signal processing circuit 108 may sample the count value generated by the counter circuit 106 to generate multiple sample values, for example, generate multiple sample values based on the count value generated by the sampling counter circuit 106 at a preset sampling frequency. It is worth noting that the sampling frequency of the signal processing circuit 108 is not limited to FIG. 3 . The signal processing circuit 108 can also sample the count value at a higher or lower preset sampling frequency. The sampling time can be, for example, the sampling frequency. 2 N times the reciprocal, where N is a positive integer, but it is not limited to this. The signal processing circuit 108 can determine the light characteristics of the ambient light L1 based on the sampled values. The signal processing circuit 108 can determine the frequency of the ambient light L1 based on the change in amplitude of the sampled value over time. In some embodiments, the signal processing circuit 108 may also perform spectrum analysis on the sampled values, such as fast Fourier transform (FFT) on the sampled values, to obtain the harmonic distribution of the light sensing signal S1. In addition, the signal processing circuit 108 can also determine whether there is a flicker phenomenon based on the amplitude of the harmonic in the frequency domain. For example, when the harmonic amplitude of a certain frequency in the frequency domain is higher than a preset threshold, it means that the ambient light L1 flickers at this frequency. , for example, when the harmonic amplitude at a frequency of 100 Hz in the frequency domain is higher than a preset threshold, it represents that the flicker frequency of the ambient light L1 is 100 Hz. In some embodiments, the signal processing circuit 108 may also first calculate the average value of the sampled values, and then subtract the average value from the sampled values to remove the DC component of the sampled values, and then perform a fast Fourier transform on the sampled values with the DC component removed. .

如此藉由將光感測二極體PD1偏壓至極度逆偏的狀態,並利用計數器電路計數光感測二極體的崩潰次數所產生計數值來判斷環境光的光特性,可提高光學感測裝置對雜訊的抵抗能力,在弱環境光的條件下仍可準確地判斷環境光的光特性,而使光感測裝置具有良好的感測品質以及資料回報速率,此外還可不需設置積分器與類比數位轉換器,而可進一步縮小電路面積、降低功率消耗並降低生產成本,相較於傳統的光感測二極體,可以更小的電路面積達到相同的感測敏感度。In this way, by biasing the light sensing diode PD1 to an extremely reverse biased state, and using a counter circuit to count the number of collapses of the light sensing diode to generate a count value to determine the optical characteristics of the ambient light, the optical sensitivity can be improved. The detection device's resistance to noise can still accurately determine the light characteristics of ambient light under weak ambient light conditions, so that the light sensing device has good sensing quality and data reporting rate. In addition, there is no need to set up an integral converters and analog-to-digital converters, which can further reduce the circuit area, reduce power consumption and reduce production costs. Compared with traditional light sensing diodes, the same sensing sensitivity can be achieved in a smaller circuit area.

此外,在部分實施例中,信號處理電路108還可依據誤差補償值來對計數值進行補償,校正計數器電路106提供的計數值,其中誤差補償值可例如包括對應光感測二極體PD1的暗電流的計數值或對應相鄰光感測二極體間的串音干擾的計數值至少其中之一。信號處理電路108可例如將計數值C1減去誤差補償值,以更精確地獲得對應環境光L1的計數值,從而進一步提高光學感測裝置的感測品質。In addition, in some embodiments, the signal processing circuit 108 can also compensate the count value according to the error compensation value and correct the count value provided by the counter circuit 106, where the error compensation value can, for example, include the value corresponding to the light sensing diode PD1. At least one of a count value of dark current or a count value corresponding to crosstalk interference between adjacent light sensing diodes. The signal processing circuit 108 may, for example, subtract the error compensation value from the count value C1 to more accurately obtain the count value corresponding to the ambient light L1, thereby further improving the sensing quality of the optical sensing device.

圖4是依照本發明另一實施例的光學感測裝置的示意圖。在本實施例中,光學感測裝置還可包括濾光層F1,濾光層F1可例如為彩色濾光片,例如綠色、紅色或藍色的彩色濾光片,然不以此為限。濾光層F1可對環境光L1進行帶通濾波,而使計數器電路106提供的計數值代表對應彩色濾光片的帶寬範圍內的環境光L1的光特性。例如彩色濾光片的帶寬範圍內的環境光L1的光強度以及閃爍頻率,然不以此為限。信號處理電路108可依據預設取樣頻率取樣計數器電路106產生的計數值而產生對應的取樣值,並依據光感測二極體PD1的取樣值判斷環境光L1在濾光層F1的帶寬範圍內的光強度。例如當濾光層F1為紅色濾光片時,信號處理電路108可依據取樣值判斷環境光L1在紅色光波長範圍內的光強度。FIG. 4 is a schematic diagram of an optical sensing device according to another embodiment of the present invention. In this embodiment, the optical sensing device may further include a filter layer F1. The filter layer F1 may be, for example, a color filter, such as a green, red or blue color filter, but is not limited thereto. The filter layer F1 can band-pass filter the ambient light L1, so that the count value provided by the counter circuit 106 represents the optical characteristics of the ambient light L1 within the bandwidth range of the corresponding color filter. For example, the light intensity and flicker frequency of the ambient light L1 within the bandwidth range of the color filter are not limited to this. The signal processing circuit 108 can generate a corresponding sampling value based on the count value generated by the preset sampling frequency sampling counter circuit 106, and determine that the ambient light L1 is within the bandwidth range of the filter layer F1 based on the sampling value of the light sensing diode PD1. of light intensity. For example, when the filter layer F1 is a red filter, the signal processing circuit 108 can determine the light intensity of the ambient light L1 in the red light wavelength range based on the sampled value.

值得注意的是,在其它實施例中,光學感測裝置也可包括多個不同的濾光層,如圖5所示,光學感測裝置可包括多個濾光層F1~F3,濾光層F1~F3可例如具有不同的帶寬範圍,例如分別以綠色、紅色以及藍色的彩色濾光片來實施,然不以此為限。濾光層F1~F3對應不同的光感測單元陣列AR1~AR3,而可分別對照射至光感測單元陣列AR1~AR3的環境光L1進行帶通濾波。光感測單元陣列AR1~AR3的光感測二極體PD1可分別通過對應的濾光層F1~F3接收環境光L1,光感測單元陣列AR1~AR3的計數器電路106可分別計數其所耦接的光感測二極體PD1的崩潰次數而產生對應的計數值。It is worth noting that in other embodiments, the optical sensing device may also include multiple different filter layers. As shown in FIG. 5 , the optical sensing device may include multiple filter layers F1 to F3. The filter layers F1 to F3 may, for example, have different bandwidth ranges, for example, implemented with green, red, and blue color filters respectively, but are not limited thereto. The filter layers F1 to F3 correspond to different light sensing unit arrays AR1 to AR3, and can respectively perform bandpass filtering on the ambient light L1 that illuminates the light sensing unit arrays AR1 to AR3. The light sensing diodes PD1 of the light sensing unit arrays AR1 ~ AR3 can respectively receive the ambient light L1 through the corresponding filter layers F1 ~ F3, and the counter circuits 106 of the light sensing unit arrays AR1 ~ AR3 can respectively count the coupled The number of collapses of the connected light sensing diode PD1 is generated to generate a corresponding count value.

信號處理電路108可依據預設取樣頻率取樣各光感測單元陣列AR1~AR3的光感測二極體PD1的計數值而產生對應的取樣值。由於不同的感測單元陣列AR1~AR3對應不同的濾光層F1~F3,不同的感測單元陣列AR1~AR3的計數器電路106所產生的計數值可代表環境光L1在不同帶寬範圍內的光強度,因此信號處理電路108可依據取樣計數值所得到的取樣值判斷環境光L1的色溫,並進一步判斷環境光L1的光源類型以及照度,例如LED、白熾燈、太陽光…等等。舉例來說,假設濾光層F1~F3分別為綠色、紅色以及藍色的彩色濾光片,信號處理電路108可依據取樣值判斷環境光L1在綠色光波長範圍、紅色光波長範圍以及藍色光波長範圍的光強度,而可得知環境光L1的波長分布,進而判斷環境光L1的色溫、光源類型以及照度。在部分實施例中,還可先將對應感測單元陣列AR1~AR3的計數值分別先減去對應的誤差補償值,例如分別減去對應感測單元陣列AR1~AR3的暗電流的計數值以及串音干擾的計數值,以更精確地獲得對應環境光L1的計數值,從而進一步提高光學感測裝置的感測品質。The signal processing circuit 108 may sample the count values of the photo-sensing diodes PD1 of each of the photo-sensing unit arrays AR1 - AR3 according to a preset sampling frequency to generate corresponding sampling values. Since different sensing unit arrays AR1 ~ AR3 correspond to different filter layers F1 ~ F3, the count values generated by the counter circuits 106 of different sensing unit arrays AR1 ~ AR3 can represent the light of the ambient light L1 in different bandwidth ranges. Therefore, the signal processing circuit 108 can determine the color temperature of the ambient light L1 based on the sampled value obtained by the sampling count value, and further determine the light source type and illumination of the ambient light L1, such as LED, incandescent lamp, sunlight, etc. For example, assuming that the filter layers F1 to F3 are green, red, and blue color filters respectively, the signal processing circuit 108 can determine whether the ambient light L1 is in the green light wavelength range, the red light wavelength range, and the blue light based on the sampled values. The light intensity in the wavelength range can be used to know the wavelength distribution of the ambient light L1, and then determine the color temperature, light source type and illumination of the ambient light L1. In some embodiments, the corresponding error compensation values can also be subtracted from the count values corresponding to the sensing unit arrays AR1 ~ AR3 , for example, the count values of the dark current corresponding to the sensing unit arrays AR1 ~ AR3 are subtracted respectively. The count value of the crosstalk interference is used to more accurately obtain the count value corresponding to the ambient light L1, thereby further improving the sensing quality of the optical sensing device.

值得注意的是,在部分實施例中,濾光層F1~F3可僅覆蓋部分的感測單元陣列AR1~AR3,而使感測單元陣列AR1~AR3中部分的光感測二極體PD1通過濾光層F1~F3接收環境光L1,部分的光感測二極體PD1直接接收環境光L1,例如感測單元陣列AR1~AR3分別有部分的光感測二極體PD1直接接收環境光L1,然不以此為限,也可例如感測單元陣列AR1~AR3其中之一有部分的光感測二極體PD1直接接收環境光L1。如此,信號處理電路108可依據取樣計數值所得到的取樣值判斷環境光L1在濾光層F1~F3的帶寬範圍內的光強度,並依據環境光L1在濾光層F1~F3的帶寬範圍內的光強度判斷色溫,此外還可依據對應直接接收環境光L1的光感測二極體PD1的計數值判斷環境光L1的光強度。It is worth noting that in some embodiments, the filter layers F1 ~ F3 may only cover part of the sensing unit arrays AR1 ~ AR3, and allow part of the light sensing diodes PD1 in the sensing unit arrays AR1 ~ AR3 to pass The filter light layers F1~F3 receive ambient light L1, and part of the light sensing diodes PD1 directly receive the ambient light L1. For example, the sensing unit arrays AR1~AR3 respectively have part of the light sensing diodes PD1 directly receiving the ambient light L1. , but is not limited to this, for example, one of the sensing unit arrays AR1 ~ AR3 may have a part of the light sensing diode PD1 to directly receive the ambient light L1. In this way, the signal processing circuit 108 can determine the light intensity of the ambient light L1 in the bandwidth range of the filter layers F1 to F3 based on the sampled values obtained from the sampling count value, and determine the light intensity of the ambient light L1 in the bandwidth range of the filter layers F1 to F3 based on the sampled values. The color temperature can be determined by the light intensity in the device. In addition, the light intensity of the ambient light L1 can also be determined based on the count value of the light sensing diode PD1 corresponding to the direct reception of the ambient light L1.

圖6是依照本發明另一實施例的光學感測裝置的示意圖。在本實施例中,光學感測裝置還可包括開關SW1、切換電路602以及讀出電路604,其中開關SW1耦接於光感測二極體PD1的陽極端與淬熄電路104之間,切換電路602耦接於光感測二極體PD1的陽極端、計數器電路106與讀出電路604之間,讀出電路604還耦接信號處理電路108。其中讀出電路604可例如以開關SW2與SW3來實施,開關SW2耦接於光感測二極體PD1的陽極端與計數器電路106之間,開關SW3耦接於光感測二極體PD1的陽極端與讀出電路604之間。FIG. 6 is a schematic diagram of an optical sensing device according to another embodiment of the present invention. In this embodiment, the optical sensing device may further include a switch SW1, a switching circuit 602 and a readout circuit 604. The switch SW1 is coupled between the anode terminal of the photo sensing diode PD1 and the quenching circuit 104. The circuit 602 is coupled between the anode terminal of the light sensing diode PD1, the counter circuit 106 and the readout circuit 604. The readout circuit 604 is also coupled to the signal processing circuit 108. The readout circuit 604 can be implemented by, for example, switches SW2 and SW3. The switch SW2 is coupled between the anode terminal of the photo-sensing diode PD1 and the counter circuit 106. The switch SW3 is coupled to the anode terminal of the photo-sensing diode PD1. between the anode terminal and the readout circuit 604.

信號處理電路108可依據光學感測裝置的感測模式控制開關SW1~SW3的導通狀態。例如當光學感測裝置處於弱環境光感測模式時,控制偏壓電壓產生電路102提供崩潰偏壓電壓給光感測二極體PD1,控制開關SW1導通並控制切換電路502將光感測二極體PD的陽極端切換連接至計數器電路106(也就是控制開關SW2導通,並控制開關SW3斷開),以使光學感測裝置在低光照環境下也可準確地判斷環境光L1的光特性,而保持良好的感測品質。而在光學感測裝置處於一般感測模式時,信號處理電路108可控制偏壓電壓產生電路102提供標準偏壓電壓,控制開關SW1斷開並控制切換電路502將光感測二極體PD1的陽極端切換連接至讀出電路504(也就是控制開關SW2斷開,並控制開關SW3導通),以使光學感測裝置適於在較高光照環境下進行環境光L1的感測。The signal processing circuit 108 can control the conduction state of the switches SW1 to SW3 according to the sensing mode of the optical sensing device. For example, when the optical sensing device is in a weak ambient light sensing mode, the control bias voltage generating circuit 102 provides a collapse bias voltage to the light sensing diode PD1, controls the switch SW1 to be turned on, and controls the switching circuit 502 to switch the light sensing diode PD1 on. The anode end of the pole body PD is switched and connected to the counter circuit 106 (that is, the switch SW2 is controlled to be turned on and the switch SW3 is turned off), so that the optical sensing device can accurately determine the optical characteristics of the ambient light L1 in a low-light environment. , while maintaining good sensing quality. When the optical sensing device is in the general sensing mode, the signal processing circuit 108 can control the bias voltage generating circuit 102 to provide a standard bias voltage, control the switch SW1 to turn off and control the switching circuit 502 to turn off the light sensing diode PD1. The anode end is switched and connected to the readout circuit 504 (that is, the switch SW2 is controlled to be off and the switch SW3 is controlled to be on), so that the optical sensing device is suitable for sensing the ambient light L1 in a higher illumination environment.

其中標準偏壓電壓小於崩潰偏壓電壓,標準偏壓電壓可使光感測二極體PD1進入逆偏狀態但未達進入極度逆偏的狀態,也就是說光感測二極體PD1此時不具有單光子雪崩二極體的特性。讀出電路504可例如包括積分器與類比數位轉換器,積分器可對光感測二極體PD1提供的光感測信號進行積分操作而產生積分信號,類比數位轉換器可將積分信號轉換為數位信號而產生感測值SD1給信號處理電路108。如此在不同的光照環境下將光感測二極體PD1切換接至計數器電路106或讀出電路504,可擴大光學感測裝置進行光感測的光強度適用範圍,而提高光學感測裝置的使用便利性。The standard bias voltage is smaller than the collapse bias voltage. The standard bias voltage can make the light sensing diode PD1 enter the reverse bias state but does not reach the extreme reverse bias state. That is to say, the light sensing diode PD1 is at this time Does not have the characteristics of a single photon avalanche diode. The readout circuit 504 may, for example, include an integrator and an analog-to-digital converter. The integrator may integrate the light sensing signal provided by the light sensing diode PD1 to generate an integrated signal. The analog-to-digital converter may convert the integrated signal into The digital signal is generated to generate the sensing value SD1 to the signal processing circuit 108 . In this way, switching the light sensing diode PD1 to the counter circuit 106 or the readout circuit 504 under different lighting environments can expand the light intensity applicable range of the optical sensing device for light sensing, and improve the performance of the optical sensing device. Ease of use.

圖7是依照本發明實施例的光學感測裝置的感測方法的流程圖。由上述實施例可知,光學感測裝置的感測方法可至少包括下列步驟。首先,提供崩潰偏壓電壓至光感測二極體(步驟S702)。接著,依據光感測二極體感測環境光而產生的光感測信號計數光感測二極體的崩潰次數而產生計數值(步驟S704)。然後,取樣計數值而產生多個取樣值(步驟S706),例如可依據預設取樣頻率取樣計數值而產生多個取樣值。之後,依據該些取樣值判斷該環境光的光特性(步驟S708),例如可對取樣值進行頻譜分析,以獲得光感測信號的諧波分佈,或者依據是否有諧波的振福大於預設閾值可判斷是否出現特定頻率的閃爍現象。FIG. 7 is a flow chart of a sensing method of an optical sensing device according to an embodiment of the present invention. As can be seen from the above embodiments, the sensing method of the optical sensing device may include at least the following steps. First, a collapse bias voltage is provided to the light sensing diode (step S702). Next, the number of collapses of the light sensing diode is counted according to the light sensing signal generated by the light sensing diode sensing ambient light to generate a count value (step S704). Then, the count value is sampled to generate multiple sample values (step S706). For example, the count value may be sampled according to a preset sampling frequency to generate multiple sample values. After that, the optical characteristics of the ambient light are determined based on the sampled values (step S708). For example, spectrum analysis can be performed on the sampled values to obtain the harmonic distribution of the light sensing signal, or whether the vibration of any harmonic is greater than a predetermined value. Set a threshold to determine whether flickering of a specific frequency occurs.

圖8是依照本發明另一實施例的光學感測裝置的感測方法的流程圖。在本實施例中,光學感測裝置可包括至少一濾光層,濾光層可對環境光進行帶通濾波,光感測二極體通過對應的濾光層接收環境光,濾光層可例如為彩色濾光片。在步驟S702後,可依據光感測二極體經由濾光層感測環境光而產生的光感測信號計數光感測二極體的崩潰次數而產生計數值(步驟S802)。在部分實施例中,不同的光感測二極體還可經由具有不同頻帶的濾光層接收環境光,又或者是,部分的光感測二極體通過濾光層接收環境光,部分的光感測二極體直接接收環境光。此外,在本實施例中,還可依據誤差補償值對計數值進行補償(步驟S804),例如將計數值減去誤差補償值來對計數值進行補償。其中誤差補償值可例如包括對應光感測二極體的暗電流的計數值或對應相鄰光感測二極體間的串音干擾的計數值至少其中之一,然不以此為限。藉由誤差補償值來對計數值進行補償可更精確地獲得對應環境光L1的計數值,從而提高光學感測裝置的感測品質。FIG. 8 is a flow chart of a sensing method of an optical sensing device according to another embodiment of the present invention. In this embodiment, the optical sensing device may include at least one filter layer. The filter layer may band-pass filter the ambient light. The light sensing diode receives the ambient light through the corresponding filter layer. The filter layer may For example, color filters. After step S702, the number of collapses of the light-sensing diode can be counted according to the light-sensing signal generated by the light-sensing diode sensing ambient light through the filter layer (step S802). In some embodiments, different light sensing diodes can also receive ambient light through filter layers with different frequency bands, or some of the light sensing diodes receive ambient light through the filter layer, and some The light-sensing diode receives ambient light directly. In addition, in this embodiment, the count value can also be compensated based on the error compensation value (step S804), for example, the count value is compensated by subtracting the error compensation value from the count value. The error compensation value may include, for example, at least one of the count value corresponding to the dark current of the light sensing diode or the count value corresponding to the crosstalk interference between adjacent light sensing diodes, but is not limited to this. By compensating the count value with the error compensation value, the count value corresponding to the ambient light L1 can be obtained more accurately, thereby improving the sensing quality of the optical sensing device.

在步驟S708中,由於本實施例的光感測二極體為經由濾光層接收環境光,因此依據取樣值可判斷環境光在帶寬範圍內的光特性。例如彩色濾光片的帶寬範圍內的環境光的光強度以及閃爍頻率,然不以此為限。在不同的光感測二極體經由具有不同頻帶的濾光層接收環境光的情形下,還可依據取樣計數值所得到的取樣值判斷環境光在各濾光層的帶寬範圍內的光強度,並依據環境光在各濾光層的帶寬範圍內的光強度判斷環境光的色溫,並進一步判斷提供環境光的光源類型以及照度。此外,在部分的光感測二極體通過濾光層接收環境光,部分的光感測二極體直接接收環境光的情形下,除了可依據對應通過濾光層接收環境光的光感測二極體的取樣值判斷環境光在各濾光層的帶寬範圍內的光強度,並依據環境光在各濾光層的帶寬範圍內的光強度判斷環境光的色溫外,還可依據對應直接接收環境光的光感測二極體的取樣值判斷環境光的光強度。In step S708, since the light sensing diode of this embodiment receives ambient light through the filter layer, the optical characteristics of the ambient light within the bandwidth range can be determined based on the sampled values. For example, the light intensity of the ambient light and the flicker frequency within the bandwidth range of the color filter, but are not limited to this. In the case where different light sensing diodes receive ambient light through filter layers with different frequency bands, the light intensity of the ambient light within the bandwidth range of each filter layer can also be determined based on the sampled values obtained from the sampling count values. , and determine the color temperature of the ambient light based on the light intensity of the ambient light within the bandwidth range of each filter layer, and further determine the type and illumination of the light source that provides the ambient light. In addition, in the case where some of the light sensing diodes receive ambient light through the filter layer and some of the light sensing diodes directly receive the ambient light, in addition to the corresponding light sensing that receives the ambient light through the filter layer The sampling value of the diode determines the light intensity of the ambient light within the bandwidth range of each filter layer, and determines the color temperature of the ambient light based on the light intensity of the ambient light within the bandwidth range of each filter layer. It can also be used directly based on the corresponding The light intensity of the ambient light is determined by the sampled value of the light sensing diode that receives the ambient light.

綜上所述,本發明實施例的光感測二極體可接收崩潰偏壓電壓並感測環境光而產生光感測信號,計數器電路可依據光感測信號計數光感測二極體的崩潰次數而產生計數值,信號處理電路可取樣計數值而產生多個取樣值,依據多個取樣值判斷環境光的光特性。如此利用在極度逆偏狀態下的光感測二極體來感測環境光,並利用計數器電路的計數值來計算光感測二極體所感測到的光強度,可避免使用積分器電路,而可在弱環境光的條件下,在不增加電路面積、成本以及功耗的情形下,準確地判斷環境光的光特性,提供良好的感測品質以及資料回報速率,且相較於傳統的光感測二極體,可以更小的電路面積達到相同的感測敏感度。In summary, the light sensing diode according to the embodiment of the present invention can receive the collapse bias voltage and sense the ambient light to generate a light sensing signal, and the counter circuit can count the number of times of the light sensing diode based on the light sensing signal. The count value is generated by collapsing the number of times. The signal processing circuit can sample the count value to generate multiple sampling values, and determine the light characteristics of the ambient light based on the multiple sampling values. In this way, the light sensing diode in an extremely reverse biased state is used to sense ambient light, and the counting value of the counter circuit is used to calculate the light intensity sensed by the light sensing diode, thereby avoiding the use of an integrator circuit. Under the condition of weak ambient light, it can accurately judge the optical characteristics of ambient light without increasing circuit area, cost and power consumption, providing good sensing quality and data return rate, and compared with traditional Light sensing diodes can achieve the same sensing sensitivity in a smaller circuit area.

雖然本發明已以實施例揭露如上,然其並非用以限定本發明,任何所屬技術領域中具有通常知識者,在不脫離本發明的精神和範圍內,當可作些許的更動與潤飾,故本發明的保護範圍當視後附的申請專利範圍所界定者為準。Although the present invention has been disclosed above through embodiments, they are not intended to limit the present invention. Anyone with ordinary knowledge in the technical field may make some modifications and modifications without departing from the spirit and scope of the present invention. Therefore, The protection scope of the present invention shall be determined by the appended patent application scope.

102:偏壓電壓產生電路 104:淬熄電路 106:計數器電路 108:信號處理電路 602:切換電路 604:讀出電路 L1:環境光 PD1:光感測二極體 S1:光感測信號 C1:計數值 T1:光感測期間 F1~F3:濾光層 SW1~SW3:開關 SD1:感測值 AR1~AR3:光感測單元陣列 S702~S708、S802~S804:光學感測裝置的感測方法步驟 102: Bias voltage generation circuit 104:Quenching circuit 106: Counter circuit 108:Signal processing circuit 602: switching circuit 604: Readout circuit L1: ambient light PD1: light sensing diode S1: Light sensing signal C1: count value T1: Light sensing period F1~F3: filter layer SW1~SW3: switch SD1: Sensing value AR1~AR3: light sensing unit array S702~S708, S802~S804: Sensing method steps of optical sensing device

圖1是依照本發明實施例的光學感測裝置的示意圖。 圖2是依照本發明實施例的光感測信號的波形圖。 圖3是依照本發明實施例的計數值的波形圖。 圖4是依照本發明另一實施例的光學感測裝置的示意圖。 圖5是依照本發明另一實施例的光學感測裝置的示意圖。 圖6是依照本發明另一實施例的光學感測裝置的示意圖。 圖7是依照本發明實施例的光學感測裝置的感測方法的流程圖。 圖8是依照本發明另一實施例的光學感測裝置的感測方法的流程圖。 FIG. 1 is a schematic diagram of an optical sensing device according to an embodiment of the present invention. FIG. 2 is a waveform diagram of a light sensing signal according to an embodiment of the present invention. FIG. 3 is a waveform diagram of a count value according to an embodiment of the present invention. FIG. 4 is a schematic diagram of an optical sensing device according to another embodiment of the present invention. FIG. 5 is a schematic diagram of an optical sensing device according to another embodiment of the present invention. FIG. 6 is a schematic diagram of an optical sensing device according to another embodiment of the present invention. FIG. 7 is a flow chart of a sensing method of an optical sensing device according to an embodiment of the present invention. FIG. 8 is a flow chart of a sensing method of an optical sensing device according to another embodiment of the present invention.

102:偏壓電壓產生電路 102: Bias voltage generation circuit

104:淬熄電路 104:Quenching circuit

106:計數器電路 106: Counter circuit

108:信號處理電路 108:Signal processing circuit

PD1:光感測二極體 PD1: light sensing diode

S1:光感測信號 S1: Light sensing signal

C1:計數值 C1: count value

L1:環境光 L1: ambient light

Claims (23)

一種光學感測裝置,包括: 一偏壓電壓產生電路,提供一崩潰偏壓電壓或一標準偏壓電壓; 至少一光感測二極體,其陰極端耦接該偏壓電壓產生電路,感測一環境光而產生一光感測信號; 一淬熄電路,耦接該光感測二極體的陽極端,淬熄該光感測二極體; 一計數器電路,耦接該光感測二極體的陽極端,依據該光感測二極體在接收該崩潰偏壓電壓期間產生的該光感測信號計數該光感測二極體的崩潰次數而產生一計數值;以及 一信號處理電路,耦接該計數器電路,取樣該計數值而產生多個取樣值,依據該些取樣值判斷該環境光的光特性。 An optical sensing device including: a bias voltage generating circuit that provides a collapse bias voltage or a standard bias voltage; At least one light sensing diode, the cathode terminal of which is coupled to the bias voltage generating circuit, senses an ambient light and generates a light sensing signal; A quenching circuit, coupled to the anode terminal of the light sensing diode, quenches the light sensing diode; A counter circuit, coupled to the anode terminal of the light sensing diode, counts the collapse of the light sensing diode based on the light sensing signal generated by the light sensing diode during receiving the collapse bias voltage. times to generate a count value; and A signal processing circuit, coupled to the counter circuit, samples the count value to generate a plurality of sample values, and determines the optical characteristics of the ambient light based on the sample values. 如請求項1所述的光學感測裝置,其中該信號處理電路對該些取樣值進行頻譜分析,以獲得該光感測信號的諧波分佈。The optical sensing device as claimed in claim 1, wherein the signal processing circuit performs spectrum analysis on the sampled values to obtain the harmonic distribution of the light sensing signal. 如請求項2所述的光學感測裝置,其中該信號處理電路依據是否有諧波的振福大於預設閾值判斷是否出現閃爍現象。The optical sensing device as claimed in claim 2, wherein the signal processing circuit determines whether a flicker phenomenon occurs based on whether the vibration of a harmonic is greater than a preset threshold. 如請求項1所述的光學感測裝置,還包括: 至少一濾光層,對該環境光進行帶通濾波,該光感測二極體通過對應的濾光層接收該環境光。 The optical sensing device as described in claim 1, further comprising: At least one filter layer performs band-pass filtering on the ambient light, and the light sensing diode receives the ambient light through the corresponding filter layer. 如請求項1所述的光學感測裝置,還包括: 一濾光層,對該環境光進行帶通濾波,該光感測二極體通過該濾光層接收該環境光,該計數器電路計數該光感測二極體的崩潰次數而產生對應的計數值,該信號處理電路取樣該光感測二極體的計數值而產生多個取樣值,依據該光感測二極體的該些取樣值判斷該環境光在該濾光層的帶寬範圍內的光強度。 The optical sensing device as described in claim 1, further comprising: A filter layer performs band-pass filtering on the ambient light. The light sensing diode receives the ambient light through the filter layer. The counter circuit counts the number of collapses of the light sensing diode to generate a corresponding count. The signal processing circuit samples the count value of the light sensing diode to generate a plurality of sampling values, and determines that the ambient light is within the bandwidth range of the filter layer based on the sampling values of the light sensing diode. of light intensity. 如請求項1所述的光學感測裝置,該光學感測裝置包括多個光感測二極體以及多個濾光層,該些濾光層具有不同的頻帶,對該環境光進行帶通濾波,該些光感測二極體分別通過對應的濾光層接收該環境光,該計數器電路分別計數各光感測二極體的崩潰次數而產生對應的計數值,該信號處理電路取樣各光感測二極體的計數值而產生對應的取樣值,依據該些光感測二極體的取樣值判斷該環境光在各濾光層的帶寬範圍內的光強度,並依據該環境光在各濾光層的帶寬範圍內的光強度判斷該環境光的色溫。The optical sensing device according to claim 1, which includes a plurality of light sensing diodes and a plurality of filter layers. The filter layers have different frequency bands and band-pass the ambient light. Filtering, the light-sensing diodes respectively receive the ambient light through the corresponding filter layer, the counter circuit counts the number of collapses of each light-sensing diode to generate a corresponding count value, and the signal processing circuit samples each The counting values of the light sensing diodes generate corresponding sampling values, and the light intensity of the ambient light within the bandwidth range of each filter layer is determined based on the sampling values of the light sensing diodes, and the ambient light is determined based on the sampling values of the light sensing diodes. The light intensity within the bandwidth range of each filter layer determines the color temperature of the ambient light. 如請求項6所述的光學感測裝置,該信號處理電路依據環境光的色溫判斷該環境光的光源類型。As in the optical sensing device of claim 6, the signal processing circuit determines the light source type of the ambient light based on the color temperature of the ambient light. 如請求項1所述的光學感測裝置,該光學感測裝置包括多個光感測二極體以及多個濾光層,該些濾光層具有不同的頻帶,對該環境光進行帶通濾波,部分的該些光感測二極體分別通過對應的濾光層接收該環境光,該計數器電路分別計數各光感測二極體的崩潰次數而產生對應的計數值,該信號處理電路取樣各光感測二極體的計數值而產生對應的取樣值,依據該些光感測二極體的取樣值判斷該環境光的光強度以及該環境光在各濾光層的帶寬範圍內的光強度,並依據該環境光在各濾光層的帶寬範圍內的光強度判斷該環境光的色溫。The optical sensing device according to claim 1, which includes a plurality of light sensing diodes and a plurality of filter layers. The filter layers have different frequency bands and band-pass the ambient light. Filtering, some of the light sensing diodes receive the ambient light through corresponding filter layers, the counter circuit counts the number of collapses of each light sensing diode to generate a corresponding count value, and the signal processing circuit Sampling the count value of each light-sensing diode to generate a corresponding sampling value, and judging the light intensity of the ambient light and the bandwidth range of each filter layer based on the sampling values of the light-sensing diodes. The light intensity of the ambient light is determined based on the light intensity of the ambient light within the bandwidth range of each filter layer. 如請求項1所述的光學感測裝置,其中該信號處理電路還依據一誤差補償值對該計數值進行補償。The optical sensing device of claim 1, wherein the signal processing circuit further compensates the count value based on an error compensation value. 如請求項9所述的光學感測裝置,其中該誤差補償值包括對應該光感測二極體的暗電流的計數值或對應相鄰光感測二極體間的串音干擾的計數值至少其中之一。The optical sensing device of claim 9, wherein the error compensation value includes a count value corresponding to the dark current of the light sensing diode or a count value corresponding to crosstalk interference between adjacent light sensing diodes. At least one of them. 如請求項1所述的光學感測裝置,其中該信號處理電路,依據一預設取樣頻率取樣該計數值而產生該些取樣值。The optical sensing device as claimed in claim 1, wherein the signal processing circuit samples the count value according to a preset sampling frequency to generate the sample values. 如請求項1所述的光學感測裝置,還包括: 一開關,耦接於該光感測二極體的陽極端與該淬熄電路之間; 一切換電路,耦接於該光感測二極體的陽極端與該計數器電路之間;以及 一讀出電路,耦接於該切換電路與該信號處理電路之間,對該光感測信號進行積分操作,以產生一感測值給該信號處理電路,該信號處理電路於該光學感測裝置處於一弱環境光感測模式時,控制該偏壓電壓產生電路提供該崩潰偏壓電壓至該光感測二極體的陰極端,控制該開關導通並控制該切換電路將該光感測二極體的陽極端切換連接至該計數器電路,於該光學感測裝置處於一一般感測模式時,控制該偏壓電壓產生電路提供該標準偏壓電壓至該光感測二極體的陰極端,並控制該開關斷開控制該切換電路將該光感測二極體的陽極端切換連接至該讀出電路,其中該標準偏壓電壓小於該崩潰偏壓電壓。 The optical sensing device as described in claim 1, further comprising: a switch coupled between the anode terminal of the light sensing diode and the quenching circuit; a switching circuit coupled between the anode terminal of the light sensing diode and the counter circuit; and A readout circuit, coupled between the switching circuit and the signal processing circuit, performs an integration operation on the optical sensing signal to generate a sensing value for the signal processing circuit, and the signal processing circuit performs an integral operation on the optical sensing signal. When the device is in a weak ambient light sensing mode, the bias voltage generating circuit is controlled to provide the collapse bias voltage to the cathode terminal of the light sensing diode, the switch is controlled to be turned on, and the switching circuit is controlled to sense the light. The anode end of the diode is switched and connected to the counter circuit, and when the optical sensing device is in a normal sensing mode, the bias voltage generating circuit is controlled to provide the standard bias voltage to the cathode of the light sensing diode. extreme, and controls the switch to turn off and controls the switching circuit to switch and connect the anode terminal of the light sensing diode to the readout circuit, wherein the standard bias voltage is smaller than the collapse bias voltage. 一種光學感測裝置的感測方法,包括: 提供一崩潰偏壓電壓給至少一光感測二極體; 依據該光感測二極體感測一環境光而產生的一光感測信號計數該光感測二極體的崩潰次數而產生一計數值; 取樣該計數值而產生多個取樣值;以及 依據該些取樣值判斷該環境光的光特性。 A sensing method of an optical sensing device, including: providing a collapse bias voltage to at least one light sensing diode; Counting the number of collapses of the light sensing diode based on a light sensing signal generated by the light sensing diode sensing an ambient light to generate a count value; Sampling the count value to generate multiple sample values; and The light characteristics of the ambient light are determined based on the sampled values. 如請求項13所述的光學感測裝置的感測方法,包括: 對該些取樣值進行頻譜分析,以獲得該光感測信號的諧波分佈。 The sensing method of the optical sensing device as described in claim 13 includes: Spectrum analysis is performed on these sampled values to obtain the harmonic distribution of the light sensing signal. 如請求項14所述的光學感測裝置的感測方法,包括: 依據是否有諧波的振福大於預設閾值判斷是否出現閃爍現象。 The sensing method of the optical sensing device as described in claim 14 includes: Determine whether flickering occurs based on whether the harmonic vibration is greater than the preset threshold. 如請求項13所述的光學感測裝置的感測方法,其中該光學感測裝置還包括至少一濾光層,該濾光層對該環境光進行帶通濾波,該光感測二極體通過對應的濾光層接收該環境光。The sensing method of the optical sensing device according to claim 13, wherein the optical sensing device further includes at least one filter layer that performs band-pass filtering on the ambient light, and the light sensing diode The ambient light is received through the corresponding filter layer. 如請求項13所述的光學感測裝置的感測方法,其中該光學感測裝置包括一濾光層,該濾光層對該環境光進行帶通濾波,該光感測二極體通過該濾光層接收該環境光,該感測方法包括: 計數該光感測二極體的崩潰次數而產生對應的計數值; 取樣該光感測二極體的計數值而產生多個取樣值;以及 依據該光感測二極體的該些取樣值判斷該環境光在該濾光層的帶寬範圍內的光強度。 The sensing method of an optical sensing device as claimed in claim 13, wherein the optical sensing device includes a filter layer that band-pass filters the ambient light, and the light sensing diode passes through the The filter layer receives the ambient light, and the sensing method includes: Count the number of collapses of the light sensing diode to generate a corresponding count value; Sampling the count value of the light sensing diode to generate a plurality of sampling values; and The light intensity of the ambient light within the bandwidth range of the filter layer is determined based on the sample values of the light sensing diode. 如請求項13所述的光學感測裝置的感測方法,其中該光學感測裝置包括多個光感測二極體以及多個濾光層,該些濾光層具有不同的頻帶,對該環境光進行帶通濾波,該些光感測二極體分別通過對應的濾光層接收該環境光,該感測方法包括: 分別計數各光感測二極體的崩潰次數而產生對應的計數值; 取樣各光感測二極體的計數值而產生對應的取樣值;以及 依據該些光感測二極體的取樣值判斷該環境光在各濾光層的帶寬範圍內的光強度,並依據該環境光在各濾光層的帶寬範圍內的光強度判斷該環境光的色溫。 The sensing method of an optical sensing device as claimed in claim 13, wherein the optical sensing device includes a plurality of light sensing diodes and a plurality of filter layers, and the filter layers have different frequency bands. The ambient light is band-pass filtered, and the light sensing diodes receive the ambient light through corresponding filter layers. The sensing method includes: Count the number of collapses of each light sensing diode respectively to generate corresponding count values; Sampling the count value of each light sensing diode to generate a corresponding sampling value; and Determine the light intensity of the ambient light within the bandwidth range of each filter layer based on the sampled values of the light sensing diodes, and determine the ambient light based on the light intensity of the ambient light within the bandwidth range of each filter layer. color temperature. 如請求項18所述的光學感測裝置的感測方法,包括: 依據環境光的色溫判斷該環境光的光源類型。 The sensing method of the optical sensing device as described in claim 18 includes: Determine the type of light source of the ambient light based on the color temperature of the ambient light. 如請求項13所述的光學感測裝置的感測方法,其中 該光學感測裝置包括多個光感測二極體以及多個濾光層,該些濾光層具有不同的頻帶,對該環境光進行帶通濾波,部分的該些光感測二極體分別通過對應的濾光層接收該環境光,該感測方法包括: 分別計數各光感測二極體的崩潰次數而產生對應的計數值; 取樣各光感測二極體的計數值而產生對應的取樣值;以及 依據該些光感測二極體的取樣值判斷該環境光的光強度以及該環境光在各濾光層的帶寬範圍內的光強度,並依據該環境光在各濾光層的帶寬範圍內的光強度判斷該環境光的色溫。 The sensing method of the optical sensing device according to claim 13, wherein The optical sensing device includes a plurality of light sensing diodes and a plurality of filter layers. The filter layers have different frequency bands and band-pass filter the ambient light. Some of the light sensing diodes The ambient light is received through corresponding filter layers respectively. The sensing method includes: Count the number of collapses of each light sensing diode respectively to generate corresponding count values; Sampling the count value of each light sensing diode to generate a corresponding sampling value; and Determine the light intensity of the ambient light and the light intensity of the ambient light within the bandwidth range of each filter layer based on the sample values of the light sensing diodes, and determine the ambient light within the bandwidth range of each filter layer based on the ambient light. The light intensity determines the color temperature of the ambient light. 如請求項13所述的光學感測裝置的感測方法,包括: 依據一誤差補償值對該計數值進行補償。 The sensing method of the optical sensing device as described in claim 13 includes: The count value is compensated according to an error compensation value. 如請求項21所述的光學感測裝置的感測方法,其中該誤差補償值包括對應該光感測二極體的暗電流的計數值或對應相鄰光感測二極體間的串音干擾的計數值至少其中之一。The sensing method of an optical sensing device as claimed in claim 21, wherein the error compensation value includes a count value corresponding to the dark current of the light sensing diode or corresponding to the crosstalk between adjacent light sensing diodes. The interference count value is at least one of them. 如請求項13所述的光學感測裝置的感測方法,包括: 依據一預設取樣頻率取樣該計數值而產生該些取樣值。 The sensing method of the optical sensing device as described in claim 13 includes: The sample values are generated by sampling the count value according to a preset sampling frequency.
TW111144159A 2022-05-30 2022-11-18 Optical sensing apparatus and sensing method thereof TW202347806A (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US202263346913P 2022-05-30 2022-05-30
US63/346,913 2022-05-30
US202263392495P 2022-07-27 2022-07-27
US63/392,495 2022-07-27

Publications (1)

Publication Number Publication Date
TW202347806A true TW202347806A (en) 2023-12-01

Family

ID=86026325

Family Applications (4)

Application Number Title Priority Date Filing Date
TW111212663U TWM640855U (en) 2022-05-30 2022-11-18 Distance sensing apparatus
TW111144159A TW202347806A (en) 2022-05-30 2022-11-18 Optical sensing apparatus and sensing method thereof
TW111212662U TWM641708U (en) 2022-05-30 2022-11-18 Optical sensing apparatus
TW111144160A TW202346892A (en) 2022-05-30 2022-11-18 Distance sensing apparatus and sensing method thereof

Family Applications Before (1)

Application Number Title Priority Date Filing Date
TW111212663U TWM640855U (en) 2022-05-30 2022-11-18 Distance sensing apparatus

Family Applications After (2)

Application Number Title Priority Date Filing Date
TW111212662U TWM641708U (en) 2022-05-30 2022-11-18 Optical sensing apparatus
TW111144160A TW202346892A (en) 2022-05-30 2022-11-18 Distance sensing apparatus and sensing method thereof

Country Status (3)

Country Link
CN (4) CN219142015U (en)
TW (4) TWM640855U (en)
WO (2) WO2023231315A1 (en)

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7262402B2 (en) * 2005-02-14 2007-08-28 Ecole Polytechnique Federal De Lausanne Integrated imager circuit comprising a monolithic array of single photon avalanche diodes
US9608027B2 (en) * 2015-02-17 2017-03-28 Omnivision Technologies, Inc. Stacked embedded SPAD image sensor for attached 3D information
CN108885264B (en) * 2015-12-18 2022-07-22 杰拉德·迪尔克·施密茨 Real-time position sensing of objects
JP6860467B2 (en) * 2017-10-26 2021-04-14 ソニーセミコンダクタソリューションズ株式会社 Photodiodes, pixel circuits, and methods for manufacturing photodiodes
CN109459149A (en) * 2018-10-11 2019-03-12 桂林电子科技大学 A kind of measurement of high-precision single photon detection chip real time temperature and performance optimization system
CN111121986B (en) * 2019-12-25 2021-06-29 桂林电子科技大学 Single photon detection system with rear pulse correction function
KR20210150765A (en) * 2020-06-04 2021-12-13 에스케이하이닉스 주식회사 Image Sensing Device and Image photographing apparatus including the same
TWI759213B (en) * 2020-07-10 2022-03-21 大陸商廣州印芯半導體技術有限公司 Light sensor and sensing method thereof
CN112397542B (en) * 2020-11-16 2023-04-07 Oppo(重庆)智能科技有限公司 Image sensing module, time flight device and electronic equipment

Also Published As

Publication number Publication date
TW202346892A (en) 2023-12-01
TWM640855U (en) 2023-05-11
CN219016582U (en) 2023-05-12
TWM641708U (en) 2023-06-01
WO2023231315A1 (en) 2023-12-07
CN219142015U (en) 2023-06-06
CN116400370A (en) 2023-07-07
CN116007748A (en) 2023-04-25
WO2023231314A1 (en) 2023-12-07

Similar Documents

Publication Publication Date Title
JP5305387B2 (en) Photodetection device and image display device
CN101189885B (en) Illumination flicker detection method and device, and image sensor
US20090160830A1 (en) Photodetection semiconductor device, photodetector, and image display device
US8610808B2 (en) Color CMOS imager with single photon counting capability
US5619262A (en) Solid-state image pickup apparatus including a unit cell array
KR20090069247A (en) Photodetection semiconductor device, photodetector, and image display device
WO2009081971A1 (en) Optical detection device, and image display device
KR20030088323A (en) Signal converting circuit and Signal converting method for automatically adjusting offset
US20070126895A1 (en) Flicker detection gain control circuit, digital imaging system, and method
WO2019214400A1 (en) Optical detection circuit and driving method therefor, and flat panel detector
CN115988348B (en) Image sensor, image output method thereof and photoelectric equipment
WO2023231315A1 (en) Optical sensing apparatus and sensing method thereof
CN112969111B (en) OAM demodulation circuit for optical module and optical module
US5010394A (en) Automatic white balance circuit capable of effectively adjusting white balance under a flashing light source
JP4029135B2 (en) Photoelectric conversion element and photoelectric conversion device
CN115396612B (en) Pixel circuit and sensor for suppressing noise event
RU2250478C2 (en) Method of detecting objects
SU1532821A1 (en) Device for registering light flux
KR101329170B1 (en) Ambient light sensor based on haman visual characteristic
JPS63180825A (en) Photoelectric conversion apparatus
JP2004072542A (en) Optical sensor
JPS6086976A (en) Solid-state image pickup device