TW202345443A - 高熵過渡金屬層狀結構氧化物、正極材料以及鈉離子電池 - Google Patents

高熵過渡金屬層狀結構氧化物、正極材料以及鈉離子電池 Download PDF

Info

Publication number
TW202345443A
TW202345443A TW111117917A TW111117917A TW202345443A TW 202345443 A TW202345443 A TW 202345443A TW 111117917 A TW111117917 A TW 111117917A TW 111117917 A TW111117917 A TW 111117917A TW 202345443 A TW202345443 A TW 202345443A
Authority
TW
Taiwan
Prior art keywords
transition metal
layered structure
metal layered
entropy
structure oxide
Prior art date
Application number
TW111117917A
Other languages
English (en)
Inventor
林佳慶
康晉瑋
陳翰儀
Original Assignee
國立清華大學
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 國立清華大學 filed Critical 國立清華大學
Priority to TW111117917A priority Critical patent/TW202345443A/zh
Priority to US17/858,979 priority patent/US20230369581A1/en
Publication of TW202345443A publication Critical patent/TW202345443A/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/054Accumulators with insertion or intercalation of metals other than lithium, e.g. with magnesium or aluminium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)
  • Compounds Of Iron (AREA)

Abstract

一種高熵過渡金屬層狀結構氧化物,是下式(1)表示的O3型高熵過渡金屬層狀結構氧化物。 Na[Ni aFe bMn cM1 dM2 e]O 2(1) 式(1)中,M1與M2是選自由V、Cr、Co、Cu、Zn及Ti組成的群組,a+b+c+d+e=1,0.05≤a≤0.35,0.05≤b≤0.35,0.05≤c≤0.35,0.05≤d≤0.35,且0.05≤e≤0.35。

Description

高熵過渡金屬層狀結構氧化物、正極材料以及鈉離子電池
本發明是有關於一種高熵氧化物技術,且特別是有關於一種高熵過渡金屬層狀結構氧化物、將其應用於正極材料以及含有前述正極材料的鈉離子電池。
隨著再生能源、電動車等領域的快速發展,對於高能量密度與功率密度之儲能系統的需求不斷增加。
鈉離子電池因擁有高能量密度、低自放電、充放電快速及循環壽命長等優點,且其生產成本低於鋰離子電池,因此在儲能設備上有著成本上的優勢。而為了提高鈉離子電池的表現,正極材料的發展對於增加鈉離子電池的電化學性質至關重要。
然而,傳統層狀結構氧化物作為鈉離子電池的正極材料,由於在反應過程中會有不可逆結構改變產生,使得循環壽命不佳。
本發明提供一種高熵過渡金屬層狀結構氧化物,適用於鈉離子電池的正極材料。
本發明另提供一種鈉離子電池的正極材料,具有結構穩定性佳以及循環穩定性優異的功效。
本發明再提供一種鈉離子電池,含有上述正極材料。
本發明的高熵過渡金屬層狀結構氧化物,是以下式(1)表示的O3型高熵過渡金屬層狀結構氧化物。 Na[Ni aFe bMn cM1 dM2 e]O 2(1) 式(1)中,M1與M2是選自由V、Cr、Co、Cu、Zn及Ti組成的群組,a+b+c+d+e=1,0.05≤a≤0.35,0.05≤b≤0.35,0.05≤c≤0.35,0.05≤d≤0.35,且0.05≤e≤0.35。
在本發明的一實施例中,上述O3型高熵過渡金屬層狀結構氧化物包括Na[Ni 0.2Fe 0.2Mn 0.2Cu 0.2Ti 0.2]O 2、Na[Ni 0.2Fe 0.2Mn 0.2Co 0.2Ti 0.2]O 2、Na[Ni 0.2Fe 0.2Mn 0.2Cu 0.2Co 0.2]O 2或Na[Ni 0.3Fe 0.2Mn 0.2Cu 0.1Ti 0.2]O 2
在本發明的一實施例中,上述式(1)中的M1與M2是Cu與Ti。
在本發明的一實施例中,上述式(1)中,0.2≤a≤0.35。
在本發明的一實施例中,上述式(1)中的M1如為Cu,則0.05≤d≤0.2。
在本發明的一實施例中,上述O3型高熵過渡金屬層狀結構氧化物表面可有碳塗佈。
在本發明的一實施例中,上述O3型高熵過渡金屬層狀結構氧化物是以溶膠凝膠法、共沉澱法、固相燒結法或水熱法合成。
本發明的鈉離子電池的正極材料,包括上述高熵過渡金屬層狀結構氧化物、助導劑以及黏結劑。
在本發明的另一實施例中,上述高熵過渡金屬層狀結構氧化物的含量為70 wt.%~ 95 wt.%,上述助導劑的含量為5 wt.%~ 15 wt.%,上述黏結劑的含量為5 wt.%~ 15 wt.%。
本發明的鈉離子電池包括正極、負極、隔離膜與電解液,其中正極含有上述的正極材料,且隔離膜介於所述正極與所述負極之間。
基於上述,本發明採用含有過渡金屬之高熵層狀結構氧化物(HEO)作為正極材料,且前述HEO通過溶膠凝膠法合成,能使前驅物達到原子水平的混合,並合成出均勻的過渡金屬氧化物,而能凸顯高熵效應。由於高熵效應能使多元過渡金屬形成單相氧化物,因此將其應用於鈉離子電池正極材料,能形成結構穩定性佳且循環穩定性優異的正極材料。另外,藉由調整元素比例可調變鈉離子電池的電容量及反應電位。
為讓本發明的上述特徵和優點能更明顯易懂,下文特舉實施例,並配合所附圖式作詳細說明如下。
以下內容提供許多不同的實施例,用於實現本發明的不同特徵。然而,這些實施例僅為示範例,並不用來限制本發明的範圍與應用。
本發明的一實施例中的一種高熵過渡金屬層狀結構氧化物,是以下式(1)表示的O3型高熵過渡金屬層狀結構氧化物。 Na[Ni aFe bMn cM1 dM2 e]O 2(1) 式(1)中,M1與M2是選自由V、Cr、Co、Cu、Zn及Ti組成的群組,a+b+c+d+e=1,0.05≤a≤0.35,0.05≤b≤0.35,0.05≤c≤0.35,0.05≤d≤0.35,且0.05≤e≤0.35。
在一實施例中,式(1)中,0.2≤a≤0.35。
在一實施例中,式(1)中的M1如為Cu,則0.05≤d≤0.2。
上述O3型高熵過渡金屬層狀結構氧化物可利用溶膠凝膠法合成,且所製得的高熵過渡金屬氧化物的元素分布均勻並且呈現層狀結構。另外,可通過表面改質,使上述O3型高熵過渡金屬層狀結構氧化物的表面可有碳塗佈,以增加導電性。然而,本發明並不限於此,O3型高熵過渡金屬層狀結構氧化物也可利用共沉澱法、固相燒結法、水熱法等方式合成。
在一實施例中,式(1)中的M1與M2是選自由Co、Cu及Ti組成的群組。在本實施例中,上述O3型高熵過渡金屬層狀結構氧化物可列舉但不限於Na[Ni 0.2Fe 0.2Mn 0.2Cu 0.2Ti 0.2]O 2、Na[Ni 0.2Fe 0.2Mn 0.2Cu 0.2Co 0.2]O 2、Na[Ni 0.3Fe 0.2Mn 0.2Cu 0.1Ti 0.2]O 2或Na[Ni 0.2Fe 0.2Mn 0.2Co 0.2Ti 0.2]O 2。在一較佳實施例中,上述O3型高熵過渡金屬層狀結構氧化物是Na[Ni 0.2Fe 0.2Mn 0.2Cu 0.2Ti 0.2]O 2或Na[Ni 0.3Fe 0.2Mn 0.2Cu 0.1Ti 0.2]O 2
本發明的另一實施例中的正極材料包括上述高熵過渡金屬層狀結構氧化物、助導劑以及黏結劑。在所述正極材料中,高熵過渡金屬層狀結構氧化物的含量例如70 wt.%~ 95 wt.%,可以是75 wt.%~ 85 wt.%;助導劑的含量例如20 wt.%以下,可以是5 wt.%~ 15 wt.%;黏結劑的含量例如20 wt.%以下,可以是5 wt.%~ 15 wt.%。
所述導電劑可列舉但不限於:石墨、碳黑、碳纖維、奈米碳管、乙炔黑、介穩相球狀碳(MCMB)、石墨烯或其組合。
所述黏合劑可列舉但不限於:苯乙烯丁二烯橡膠(styrene-butadiene rubber latex, SBR)、羧甲基纖維素(carboxymethyl cellulose, CMC)、聚偏二氟乙烯(polyvinylidene difluoride, PVDF)、聚醯亞胺、丙烯酸樹脂、丁醛樹脂、聚四氟乙烯乳液(polytetrafluoroethylene latex, PTFE)、聚丙烯酸酯(polyacrylate, PAA)或其組合。
本發明的再一實施例中的鈉離子電池基本上包括正極、負極、隔離膜與電解液,其中正極含有上述正極材料,且隔離膜介於正極與負極之間。
以下列舉實驗來驗證本發明的實施效果,但本發明並不侷限於以下的內容。
製備例1:溶膠凝膠法合成Na[Ni 0.2Fe 0.2Mn 0.2Cu 0.2Ti 0.2]O 2
首先,準備Ni:Fe:Mn:Cu:Ti莫耳比例為1:1:1:1:1的Ni(NO 3) 2‧6H 2O、Fe(NO 3) 3‧9H 2O、Mn(NO 3) 2‧4H 2O、Cu(NO 3) 2‧2.5H 2O以及C 12H 28O 4Ti作為前驅物(總重量為12.16 g)。然後將所有前驅物加入的40 ml去離子水水中,混合後再添加含11.64 g的檸檬酸(C 6H 8O 7)與30 ml去離子水之溶液中,得到混合溶液。
然後,將混合溶液升溫至80°C並加入9.5 ml的氨水(NH 4OH)和13.42 ml的乙二醇(C 2H 4(OH) 2)形成水凝膠,並於乾燥後加入NaNO 3混合研磨成粉末,再進行480°C、6小時的鍛燒,將鍛燒後的粉末壓成錠並接續進行850°C、12小時的高溫燒結。燒結後的錠狀物經過研磨成為Na[Ni 0.2Fe 0.2Mn 0.2Cu 0.2Ti 0.2]O 2粉末。
製備例2:溶膠凝膠法合成Na[Ni 0.2Fe 0.2Mn 0.2Cu 0.2Co 0.2]O 2
除了將C 12H 28O 4Ti改為Co(NO 3) 2‧6H 2O,其餘步驟均與製備例1一樣。
製備例3:溶膠凝膠法合成Na[Ni 0.3Fe 0.2Mn 0.2Cu 0.1Co 0.2]O 2
除了將Ni:Fe:Mn:Cu:Ti莫耳比例改為1.5:1:1:0.5:1,其餘步驟均與製備例1一樣。
製備例4:溶膠凝膠法合成Na[Ni 0.2Fe 0.2Mn 0.2Co 0.2Ti 0.2]O 2
除了將Cu(NO 3) 2‧2.5H 2O改為Co(NO 3) 2‧6H 2O,其餘步驟均與製備例1一樣。
〈結構分析〉
1. 對製備例1~4的產物進行X光晶體繞射分析(XRD),其結果顯示於圖1。根據圖1可得到,通過溶膠凝膠法合成的本發明的高熵過渡金屬氧化物是O3型高熵過渡金屬氧化物。
2. 對製備例1~4的產物進行SEM分析,其結果顯示於圖2。根據圖2可得到,通過溶膠凝膠法合成的本發明的高熵過渡金屬氧化物是片狀的(flake-shaped)層狀結構,且均勻分散,粒徑約在1µm~5µm。
〈鈕扣電池製作〉
首先,將製備例1~4的產物分別與碳黑混合研磨,再將其加入PVDF溶液(6 wt.% PVDF溶於NMP溶劑)混合,其中製備例1~4的產物、碳黑、PVDF的重量比例是80:10:10。
利用刮刀(doctor blade)將上述混合物塗佈在鋁箔(厚度20 µm)上,並經過烘乾(80°C)、滾壓、裁切成片,得到分別含有製備例1~4的產物的電極板。
將所得到的電極板與其他構件組成如圖3所示的鈕扣電池,其中隔離膜是Glassy fiber (GF/C)、正極板是上述電極板、負極板是鈉、電解液是1M NaClO 4EC+PC 1:1(體積比)。
〈電化學分析〉
利用具有不同正極板所製得的鈕扣電池進行充放電試驗,得到圖4的恆流充放電圖。從圖4可以觀察到,分別含有製備例1~4的產物的電極板,在2 V到4.1 V vs Na/Na+的電壓範圍下,隨著添加元素的不同,顯現出不同的反應電位與電容量表現。
然後,在2 V~4.1 V vs Na/Na +的電壓範圍與13 mA g -1電流密度下,紀錄循環次數與電容量的變化,結果得到圖5。
從圖5可以觀察到,鈕扣電池的電容量介於70 mAh g -1~130 mAh g -1之間,其經歷100圈循環後仍保有80%~87%的電容量保持率。而且,製備例1和製備例3的電容量明顯優於其它製備例,顯示同時含Ni、Fe、Mn、Cu與Ti的高熵過渡金屬層狀結構氧化物的電化學特性較佳。此外,製備例3的電容量優於製備例1的電容量,代表含有相同過渡金屬元素的高熵氧化物中,Ni的含量較多有利於電化學特性;而含有較少的Cu經推測應不易析出氧化銅,所以有利於導電性。
接著,採用圖5中放電容量最高的鈕扣電池(製備例3的高熵過渡金屬層狀結構氧化物Na[Ni 0.3Fe 0.2Mn 0.2Cu 0.1Co 0.2]O 2),在13 mA g 1(0.1 C)、26 mA g 1(0.2 C)、65 mA g 1(0.5 C)、130 mA g 1(1 C)、260 mA g -1(2 C)和650 mA g -1(5 C)電流密度下進行恆流充放電測試,結果顯示在圖6,其中充電的電容量稍大於放電的電容量。
從圖6可得到,在不同充放電速率下所獲得的放電電容量分別為130 mAh g −1、129 mAh g −1、127 mAh g −1、122 mAh g −1、116 mAh g −1、108 mAh g −1和85 mAh g −1。由此可知製備例3的高熵過渡金屬層狀結構氧化物具有優異的倍率性能。
另外,同樣使用含製備例3的電極的鈕扣電池65 mA g 1(0.5 C)電流密度下進行500圈循環測試,結果顯示在圖7,其中充電的電容量稍大於放電的電容量。
從圖7可以觀察到,在充放電速率0.5 C經歷270圈循環後仍保有80%的電容量保持率。
〈全電池分析〉
將含有製備例3的正極材料製成的正極板與硬碳負極組成鈉離子全電池,其餘構件與鈕扣電池所使用的一樣。
然後在0.5 V~3.9 V的電壓範圍內分別以13 mA g 1(0.1 C)、26 mA g 1(0.2 C)、65 mA g 1(0.5 C)及130 mA g 1(1 C)之電流密度(根據正極材料之重量)進行恆流充放電測試,得到圖8與圖9。
從圖8可得到,在不同充放電速率下的電容量分別為80 mAh g −1、70 mAh g −1、60 mAh g −1、53 mAh g −1,測得的能量密度分別為225.0 Wh kg −1、194.6 Wh kg −1、165.8 Wh kg −1和144.2 Wh kg −1,表示製備例3的產物Na[Ni 0.3Fe 0.2Mn 0.2Cu 0.1Co 0.2]O 2作為鈉離子電池正極具有極佳的潛力。
從圖9可以觀察到,鈉離子全電池的電容量介於55 mAh g -1~80 mAh g -1之間,其經歷40圈循環後仍保有接近70%的電容量保持率。
綜上所述,本發明利用高熵效應能使多元過渡金屬形成單相氧化物,並因此形成結構穩定性佳且循環穩定性優異之鈉離子電池正極材料。而且,通過調整元素比例可控制電容量及反應電位。
雖然本發明已以實施例揭露如上,然其並非用以限定本發明,任何所屬技術領域中具有通常知識者,在不脫離本發明的精神和範圍內,當可作些許的更動與潤飾,故本發明的保護範圍當視後附的申請專利範圍所界定者為準。
圖1是製備例1~4的產物的X光晶體繞射(XRD)圖。 圖2是製備例1~4的產物的掃描式電子顯微鏡(SEM)影像。 圖3是本發明的實驗中所用的鈕扣電池的爆炸圖。 圖4是含有製備例1~4的電極之半電池的恆流充放電圖。 圖5是含有製備例1~4的電極之半電池的充放電循環測試圖。 圖6是含有製備例3的電極之半電池在不同充放電速率下充放電循環測試圖。 圖7是含製備例3的電極之半電池在0.5 C充放電循環測試圖。 圖8是含有製備例3的電極之鈉離子全電池在不同充放電速率下恆流充放電圖。 圖9是含有製備例3的電極之鈉離子全電池在不同倍率下充放電循環測試圖。

Claims (10)

  1. 一種高熵過渡金屬層狀結構氧化物,是以下式(1)表示的O3型高熵過渡金屬層狀結構氧化物: Na[Ni aFe bMn cM1 dM2 e]O 2(1) 式(1)中,M1與M2是選自由V、Cr、Co、Cu、Zn及Ti組成的群組,a+b+c+d+e=1,0.05≤a≤0.35,0.05≤b≤0.35,0.05≤c≤0.35,0.05≤d≤0.35,且0.05≤e≤0.35。
  2. 如請求項1所述的高熵過渡金屬層狀結構氧化物,其中所述O3型高熵過渡金屬層狀結構氧化物包括Na[Ni 0.2Fe 0.2Mn 0.2Cu 0.2Ti 0.2]O 2、Na[Ni 0.2Fe 0.2Mn 0.2Co 0.2Ti 0.2]O 2、Na[Ni 0.2Fe 0.2Mn 0.2Cu 0.2Co 0.2]O 2或Na[Ni 0.3Fe 0.2Mn 0.2Cu 0.1Ti 0.2]O 2
  3. 如請求項1所述的高熵過渡金屬層狀結構氧化物,其中M1與M2是Cu與Ti。
  4. 如請求項1所述的高熵過渡金屬層狀結構氧化物,其中0.2≤a≤0.35。
  5. 如請求項1所述的高熵過渡金屬層狀結構氧化物,其中M1是Cu,且0.05≤d≤0.2。
  6. 如請求項1所述的高熵過渡金屬層狀結構氧化物,其中所述O3型高熵過渡金屬層狀結構氧化物表面有碳塗佈。
  7. 如請求項1所述的高熵過渡金屬層狀結構氧化物,其中所述O3型高熵過渡金屬層狀結構氧化物是以溶膠凝膠法、共沉澱法、固相燒結法或水熱法合成。
  8. 一種鈉離子電池的正極材料,包括: 如請求項1~7中任一項所述的高熵過渡金屬層狀結構氧化物; 助導劑;以及 黏結劑。
  9. 如請求項8所述的鈉離子電池的正極材料,其中所述高熵過渡金屬層狀結構氧化物的含量為70 wt.%~ 95 wt.%,所述助導劑的含量為5 wt.%~ 15 wt.%,所述黏結劑的含量為5 wt.%~ 15 wt.%。
  10. 一種鈉離子電池,包括: 正極,含有如請求項8或9所述的正極材料; 負極; 隔離膜,介於所述正極與所述負極之間;以及 電解液。
TW111117917A 2022-05-12 2022-05-12 高熵過渡金屬層狀結構氧化物、正極材料以及鈉離子電池 TW202345443A (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
TW111117917A TW202345443A (zh) 2022-05-12 2022-05-12 高熵過渡金屬層狀結構氧化物、正極材料以及鈉離子電池
US17/858,979 US20230369581A1 (en) 2022-05-12 2022-07-06 High-entropy transition metal layered oxides, positive electrode material, and sodium ion battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW111117917A TW202345443A (zh) 2022-05-12 2022-05-12 高熵過渡金屬層狀結構氧化物、正極材料以及鈉離子電池

Publications (1)

Publication Number Publication Date
TW202345443A true TW202345443A (zh) 2023-11-16

Family

ID=88698432

Family Applications (1)

Application Number Title Priority Date Filing Date
TW111117917A TW202345443A (zh) 2022-05-12 2022-05-12 高熵過渡金屬層狀結構氧化物、正極材料以及鈉離子電池

Country Status (2)

Country Link
US (1) US20230369581A1 (zh)
TW (1) TW202345443A (zh)

Also Published As

Publication number Publication date
US20230369581A1 (en) 2023-11-16

Similar Documents

Publication Publication Date Title
Jia et al. Nd-doped LiNi0. 5Co0. 2Mn0. 3O2 as a cathode material for better rate capability in high voltage cycling of Li-ion batteries
TWI725822B (zh) 鋰電池及其負極材料
Qian et al. Sub-micrometer-sized LiMn1. 5Ni0. 5O4 spheres as high rate cathode materials for long-life lithium ion batteries
KR20150041078A (ko) 리튬 이온 배터리용 제어된 비가역 용량 손실을 갖는 복합체 캐소드 물질
Idris et al. Effects of polypyrrole on the performance of nickel oxide anode materials for rechargeable lithium-ion batteries
Yi et al. Enhanced rate performance of Li4Ti5O12 anode material by ethanol-assisted hydrothermal synthesis for lithium-ion battery
CN114094068B (zh) 钴包覆的正极材料及其制备方法、正极片和锂离子电池
CN113562714A (zh) 一种高压实密度磷酸铁锂及其制备方法
JP2024026613A (ja) リチウム二次電池用正極活物質
TW201921781A (zh) 二次電池用負極活性物質及二次電池
Hou et al. Facile hydrothermal method synthesis of coralline-like Li1. 2Mn0. 54Ni0. 13Co0. 13O2 hierarchical architectures as superior cathode materials for lithium-ion batteries
Hwang et al. Mesoporous spinel LiMn2O4 nanomaterial as a cathode for high-performance lithium ion batteries
Li et al. Synthesis and electrochemical characterizations of LiMn2O4 prepared by high temperature ball milling combustion method with citric acid as fuel
Mao et al. Synthesis of TiNb6O17/C composite with enhanced rate capability for lithium ion batteries
Liu et al. Effect of spherical particle size on the electrochemical properties of lithium iron phosphate
Sovizi et al. Effect of praseodymium doping on structural and electrochemical performance of lithium titanate oxide (Li4Ti5O12) as new anode material for lithium-sulfur batteries
Fu et al. Synthesis and electrochemical properties of Mg-doped LiNi 0.6 Co 0.2 Mn 0.2 O 2 cathode materials for Li-ion battery
Wei et al. High power LiMn2O4 hollow microsphere cathode materials for lithium ion batteries
He et al. Synthesis and electrochemical properties of chemically substituted LiMn2O4 prepared by a solution-based gel method
Deng et al. Effect of carbon nanotubes addition on electrochemical performance and thermal stability of Li4Ti5O12 anode in commercial LiMn2O4/Li4Ti5O12 full-cell
JP2016081716A (ja) リチウムイオン二次電池用正極活物質及びその製造方法並びにリチウムイオン二次電池
CN107195884B (zh) 一种偏硅酸锂掺杂石墨烯锂离子电池负极材料及其制备方法
Li et al. Morphological evolution of spinel disordered LiNi 0.5 Mn 1.5 O 4 cathode materials for lithium-ion batteries by modified solid-state method
Song et al. Effect of drying time on electrochemical properties of Li1. 2Mn0. 54Ni0. 13Co0. 13O2 cathode material
JP5707707B2 (ja) リチウムイオン二次電池用負極材、該負極材を用いたリチウムイオン二次電池用負極及びリチウムイオン二次電池