TW202344936A - 照明源及相關的方法裝置 - Google Patents

照明源及相關的方法裝置 Download PDF

Info

Publication number
TW202344936A
TW202344936A TW112126644A TW112126644A TW202344936A TW 202344936 A TW202344936 A TW 202344936A TW 112126644 A TW112126644 A TW 112126644A TW 112126644 A TW112126644 A TW 112126644A TW 202344936 A TW202344936 A TW 202344936A
Authority
TW
Taiwan
Prior art keywords
radiation
assembly
optionally
gas
substrate
Prior art date
Application number
TW112126644A
Other languages
English (en)
Other versions
TWI842595B (zh
Inventor
史喬德 尼可拉斯 蘭伯特 唐德斯
比特斯 威爾赫瑪斯 史莫倫伯格
Original Assignee
荷蘭商Asml荷蘭公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from EP21190842.1A external-priority patent/EP4134734A1/en
Application filed by 荷蘭商Asml荷蘭公司 filed Critical 荷蘭商Asml荷蘭公司
Publication of TW202344936A publication Critical patent/TW202344936A/zh
Application granted granted Critical
Publication of TWI842595B publication Critical patent/TWI842595B/zh

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/35Non-linear optics
    • G02F1/365Non-linear optics in an optical waveguide structure
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/35Non-linear optics
    • G02F1/3528Non-linear optics for producing a supercontinuum
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/35Non-linear optics
    • G02F1/37Non-linear optics for second-harmonic generation
    • G02F1/377Non-linear optics for second-harmonic generation in an optical waveguide structure
    • G02F1/383Non-linear optics for second-harmonic generation in an optical waveguide structure of the optical fibre type

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Investigating Or Analyzing Materials Using Thermal Means (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)
  • Arrangement Of Elements, Cooling, Sealing, Or The Like Of Lighting Devices (AREA)
  • Eye Examination Apparatus (AREA)

Abstract

本發明提供一種用於接收一泵浦輻射以在一相互作用空間與一氣體介質相互作用以產生一發射輻射之總成。該總成包含:一物件,其具有一空芯,其中該空芯具有穿過該物件之一細長體積,其中該相互作用空間位於該空芯內部;及一導熱結構,其在該物件之一外壁之多個位置處連接以用於將在該相互作用空間產生之熱量轉移遠離該物件。

Description

照明源及相關的方法裝置
本發明係關於一種照明源及相關的方法及裝置。
微影裝置為經建構以將所要圖案施加於基板上之機器。微影裝置可用於例如積體電路(IC)之製造中。微影裝置可例如將圖案化器件(例如,光罩)處之圖案(經常亦稱為「設計佈局」或「設計」)投影至提供於基板(例如,晶圓)上之輻射敏感材料(抗蝕劑)層上。
為了將圖案投影於基板上,微影裝置可使用電磁輻射。此輻射之波長判定可形成於基板上之特徵的最小大小。當前使用之典型波長為365 nm (i線)、248 nm、193 nm及13.5 nm。相比於使用例如具有193 nm之波長之輻射的微影裝置,使用具有介於4 nm至20 nm範圍內之波長(例如6.7 nm或13.5 nm)之極紫外線(EUV)輻射的微影裝置可用於在基板上形成更小特徵。
低k 1微影可用於處理尺寸小於微影裝置之經典解析度極限的特徵。在此程序中,解析度公式可表達為CD = k 1×λ/NA,其中λ為所使用輻射之波長,NA為微影裝置中之投影光學器件之數值孔徑,CD為「臨界尺寸」(通常為經列印之最小特徵大小,但在此情況下為半間距),且k 1為經驗解析度因數。一般而言,k 1愈小,則愈難以在基板上再生類似於由電路設計者規劃之形狀及尺寸以便達成特定電功能性及效能的圖案。為了克服此等困難,可將複雜微調步驟應用於微影投影裝置及/或設計佈局。此等步驟包括例如但不限於NA之最佳化、定製照明方案、使用相移圖案化器件、設計佈局之各種最佳化,諸如設計佈局中之光學近接校正(OPC,有時亦稱為「光學及程序校正」),或通常定義為「解析度增強技術」(RET)之其他方法。替代地,用於控制微影裝置之穩定性之嚴格控制迴路可用於改良在低k1下之圖案之再生。
在微影程序中,需要頻繁地對所產生結構進行量測,例如,用於程序控制及驗證。用於進行此類量測之各種工具為吾人所知,包括經常用於量測臨界尺寸(CD)之掃描電子顯微鏡,及用以量測疊對(器件中之兩個層之對準的準確度)之特殊化工具。近來,已開發用於微影領域中之各種形式之散射計。
已知散射計之實例經常依賴於專用度量衡目標之佈建。舉例而言,方法可需要呈簡單光柵之形式的目標,該光柵足夠大以使得量測光束產生小於光柵之光點(亦即,光柵填充不足)。在所謂重建構方法中,可藉由模擬散射輻射與目標結構之數學模型的相互作用來計算光柵之屬性。調整該模型之參數,直至經模擬相互作用產生類似於自真實目標觀測到之繞射圖案的繞射圖案為止。
除了藉由重建構進行特徵形狀之量測以外,亦可使用此類裝置來量測基於繞射之疊對,如已公開專利申請案US2006066855A1中所描述。使用繞射階之暗場成像進行的基於繞射之疊對度量衡使得能夠對較小目標進行疊對量測。此等目標可小於照明光點,且可由晶圓上之產品結構圍繞。可在諸如US2011102753A1及US20120044470A之眾多公開專利申請案中發現暗場成像度量衡之實例。可使用複合光柵目標在一個影像中量測多個光柵。已知散射計趨向於使用在可見或近紅外線(IR)波範圍內之光,此要求光柵之節距比屬性實際上受到關注之實際產品結構粗略得多。可使用具有短得多之波長之深紫外線(DUV)、極紫外線(EUV)或X射線輻射來界定此類產品特徵。不幸地,此類波長通常不可用於或不能用於度量衡。
另一方面,現代產品結構之尺寸如此小以使得其無法藉由光學度量衡技術成像。小特徵包括例如藉由多個圖案化程序及/或間距倍增形成之特徵。因此,用於大容量度量衡之目標經常使用比疊對誤差或臨界尺寸為所關注屬性之產品大得多的特徵。量測結果僅與真實產品結構之尺寸間接地相關,且可能不準確,此係因為度量衡目標不遭受微影裝置中之光學投影下之相同失真及/或製造程序之其他步驟中之不同處理。雖然掃描電子顯微法(SEM)能夠直接地解析此等現代產品結構,但SEM比光學量測耗時多得多。此外,電子不能夠穿透厚程序層,此使得電子較不適合於度量衡應用。諸如使用接觸墊量測電屬性之其他技術亦為吾人所知,但其僅提供真實產品結構之間接跡象。
藉由減小在度量衡期間使用之輻射之波長,有可能解析較小結構,以增加對結構之結構變化之敏感度及/或進一步穿透至產品結構中。產生適當高頻率輻射(例如,硬X射線、軟X射線及/或EUV輻射)之一種此方法可為使用泵浦輻射(例如,紅外線IR輻射)激勵產生介質,藉此產生發射輻射,視情況包含高頻率輻射之高階諧波產生。
在本發明之第一態樣中,提供一種用於接收一泵浦輻射以在一相互作用空間與一氣體介質相互作用以產生一發射輻射之總成。該總成包含:一物件,其具有一空芯,其中該空芯具有穿過該物件之一細長體積,其中該相互作用空間位於該空芯內部;及一導熱結構,其在該物件之一外壁之多個位置處連接以用於將在該相互作用空間產生之熱量轉移遠離該物件。
在本發明之第二態樣中,提供一種包含如上文所描述之總成的輻射源。
在本發明之第三態樣中,提供一種包含如上文所描述之輻射源的微影裝置。
在本發明之第四態樣中,提供一種包含如上文所描述之輻射源的度量衡裝置。
在本發明之第五態樣中,提供一種包含如上文所描述之輻射源的微影單元。
在本發明文件中,術語「輻射」及「光束」用於涵蓋所有類型之電磁輻射及粒子輻射,包括紫外線輻射(例如,波長為365、248、193、157或126 nm)、極紫外線輻射(EUV,例如具有介於約5至100 nm範圍內之波長)、X射線輻射、電子束輻射及其他粒子輻射。
如本文中所採用之術語「倍縮光罩」、「光罩」或「圖案化器件」可廣泛地解譯為指代可用於向入射輻射光束賦予經圖案化橫截面之通用圖案化器件,該經圖案化橫截面對應於待在基板之目標部分中產生之圖案。在此上下文下,亦可使用術語「光閥」。除經典光罩(透射或反射、二進位、相移、混合式等)以外,其他此類圖案化器件之實例包括可程式化鏡面陣列及可程式化LCD陣列。
圖1示意性地描繪微影裝置LA。該微影裝置LA包括:照明系統(亦稱為照明器) IL,其經組態以調節輻射光束B (例如,UV輻射、DUV輻射、EUV輻射或X射線輻射);光罩支撐件(例如,光罩台) T,其經建構以支撐圖案化器件(例如,光罩) MA且連接至經組態以根據某些參數準確地定位圖案化器件MA之第一定位器PM;基板支撐件(例如,晶圓台) WT,其經建構以固持基板(例如,抗蝕劑塗佈晶圓) W且連接至經組態以根據某些參數準確地定位基板支撐件之第二定位器PW;及投影系統(例如,折射投影透鏡系統) PS,其經組態以將由圖案化器件MA賦予至輻射光束B之圖案投影至基板W之目標部分C (例如,包含一或多個晶粒)上。
在操作中,照明系統IL例如經由光束遞送系統BD自輻射源SO接收輻射光束。照明系統IL可包括各種類型之光學組件,諸如折射、反射、繞射、磁性、電磁、靜電及/或其他類型之光學組件或其任何組合以引導、塑形及/或控制輻射。照明器IL可用於調節輻射光束B,以在圖案化器件MA之平面處在其橫截面中具有所要空間及角強度分佈。
本文中所使用之術語「投影系統」PS應廣泛地解譯為涵蓋適於所使用之曝光輻射及/或適於諸如浸潤液體之使用或真空之使用之其他因素的各種類型之投影系統,包括折射、反射、繞射、折反射、合成、磁性、電磁及/或靜電光學系統,或其任何組合。可認為本文中對術語「投影透鏡」之任何使用與更一般術語「投影系統」PS同義。
微影裝置LA可屬於一種類型,其中基板之至少一部分可由具有相對高折射率之液體(例如,水)覆蓋,以便填充投影系統PS與基板W之間的空間,此亦稱為浸潤微影。在以全文引用之方式併入本文中之US6952253中給出關於浸潤技術之更多資訊。
微影裝置LA亦可屬於具有兩個或更多個基板支撐件WT (亦稱為「雙載物台」)之類型。在此「多載物台」機器中,可並行地使用基板支撐件WT,及/或可對位於基板支撐件WT中之一者上之基板W進行準備基板W之後續曝光的步驟,同時將另一基板支撐件WT上之另一基板W用於在另一基板W上曝光圖案。
除了基板支撐件WT以外,微影裝置LA可包含量測載物台。該量測載物台經配置以固持感測器及/或清潔器件。感測器可經配置以量測投影系統PS之屬性或輻射光束B之屬性。量測載物台可固持多個感測器。清潔器件可經配置以清潔微影裝置之部分,例如投影系統PS之一部分或提供浸潤液體之系統的一部分。量測載物台可在基板支撐件WT遠離投影系統PS時在投影系統PS之下移動。
在操作中,輻射光束B入射於固持於光罩支撐件T上之圖案化器件(例如光罩) MA上,且藉由存在於圖案化器件MA上之圖案(設計佈局)經圖案化。在已橫穿光罩MA之情況下,輻射光束B穿過投影系統PS,該投影系統PS將光束聚焦至基板W之目標部分C上。藉助於第二定位器PW及位置量測系統IF,可準確地移動基板支撐件WT,例如以便使不同目標部分C在輻射光束B之路徑中定位於經聚焦且對準之位置處。類似地,第一定位器PM及可能另一位置感測器(其未在圖1中明確地描繪)可用於相對於輻射光束B之路徑準確地定位圖案化器件MA。可使用光罩對準標記M1、M2及基板對準標記P1、P2來對準圖案化器件MA及基板W。儘管如所說明之基板對準標記P1、P2佔據專用目標部分,但該等標記可位於目標部分之間的空間中。在基板對準標記P1、P2位於目標部分C之間時,此等基板對準標記稱為切割道對準標記。
如圖2中所展示,微影裝置LA可形成微影單元LC (有時亦稱為微影製造單元(lithocell)或(微影製造單元(litho)叢集)之部分,該微影單元LC經常亦包括對基板W執行曝光前程序及曝光後程序之裝置。習知地,此等裝置包括用以沈積抗蝕劑層之旋塗器SC、用以顯影經曝光抗蝕劑之顯影器DE、例如用於調節基板W之溫度(例如,用於調節抗蝕劑層中之溶劑)的冷卻板CH及烘烤板BK。基板處置器或機器人RO自輸入/輸出埠I/O1、I/O2拾取基板W,在不同程序裝置之間移動基板,且將基板W遞送至微影裝置LA之裝載匣LB。微影製造單元中經常亦統稱為塗佈顯影系統之器件可處於塗佈顯影系統控制單元TCU之控制下,該塗佈顯影系統控制單元TCU自身可由監督控制系統SCS控制,該監督控制系統SCS亦可例如經由微影控制單元LACU來控制微影裝置LA。
在微影程序中,需要頻繁地對所產生結構進行量測,例如以用於程序控制及驗證。用以進行此量測之工具可稱為度量衡工具MT。用於進行此類量測之不同類型之度量衡工具MT為吾人所知,包括掃描電子顯微鏡或各種形式之散射計度量衡工具MT。散射計為多功能儀器,其允許藉由在光瞳或與散射計之接物鏡之光瞳共軛的平面中或附近具有感測器來量測微影程序之參數,量測通常稱為基於光瞳之量測,或藉由在影像平面或與影像平面共軛之平面中或附近具有感測器來量測微影程序之參數,在此情況下量測通常稱為基於影像或場之量測。以全文引用之方式併入本文中之專利申請案US20100328655、US2011102753A1、US20120044470A、US20110249244、US20110026032或EP1,628,164A中進一步描述此類散射計及相關聯之量測技術。前述散射計可使用來自硬X射線(HXR)、軟X射線(SXR)、極紫外線(EUV)、可見光至近紅外線(IR)及IR波長範圍之光來量測光柵。在輻射為硬X射線或軟X射線之情況下,前述散射計可視情況為小角度X射線散射度量衡工具。
為了正確且一致地曝光由微影裝置LA曝光之基板W,需要檢測基板以量測經圖案化結構之屬性,諸如後續層之間的疊對誤差、線厚度、臨界尺寸(CD)、結構之形狀等。出於此目的,可在微影製造單元LC中包括檢測工具及/或度量衡工具(未展示)。若偵測到誤差,則可例如對後續基板之曝光或對待對基板W執行之其他處理步驟進行調整,在同一批量或批次之其他基板W仍待曝光或處理之前進行檢測的情況下尤其如此。
亦可稱為度量衡裝置之檢測裝置用於判定基板W之屬性,且特定言之,判定不同基板W之屬性如何變化或與同一基板W之不同層相關聯之屬性在層與層間如何變化。檢測裝置可替代地經建構以識別基板W上之缺陷,且可例如為微影製造單元LC之部分,或可整合至微影裝置LA中,或可甚至為獨立器件。檢測裝置可量測潛影(在曝光之後在抗蝕劑層中之影像)上之屬性,或半潛影(在曝光後烘烤步驟PEB之後在抗蝕劑層中之影像)上之屬性,或經顯影抗蝕劑影像(其中抗蝕劑之曝光部分或未曝光部分已經移除)上之屬性,或甚至經蝕刻影像(在諸如蝕刻之圖案轉印步驟之後)上之屬性。
在第一實施例中,散射計MT為角度解析散射計。在此散射計中,重建構方法可應用於經量測信號以重建構或計算光柵之屬性。此重建構可例如由模擬散射輻射與目標結構之數學模型之相互作用且比較模擬結果與量測之結果引起。調整數學模型之參數,直至經模擬相互作用產生類似於自真實目標觀測到之繞射圖案的繞射圖案為止。
在第二實施例中,散射計MT為光譜散射計MT。在此光譜散射計MT中,由輻射源發射之輻射經引導至目標上,且來自目標之反射、透射或散射輻射經引導至光譜儀偵測器,該光譜儀偵測器量測鏡面反射輻射之光譜(亦即,隨波長變化之強度之量測)。根據此資料,可例如藉由嚴密耦合波分析及非線性回歸或藉由與經模擬光譜庫比較來重建構產生經偵測光譜的目標之結構或剖面。
在第三實施例中,散射計MT為橢圓量測散射計。橢圓量測散射計允許藉由量測針對各偏振狀態之散射或透射輻射來判定微影程序之參數。此度量衡裝置藉由在度量衡裝置之照明區段中使用例如適當偏振濾光器來發射偏振光(諸如,線性、環狀或橢圓)。適合於度量衡裝置之源亦可提供偏振輻射。在以全文引用之方式併入本文中之美國專利申請案11/451,599、11/708,678、12/256,780、12/486,449、12/920,968、12/922,587、13/000,229、13/033,135、13/533,110及13/891,410中描述現有橢圓量測散射計之各種實施例。
在散射計MT之一個實施例中,散射計MT適用於藉由量測反射光譜及/或偵測組態中之不對稱性來量測兩個未對準光柵或週期性結構之疊對,該不對稱性與疊對程度相關。可將兩個(可重疊)光柵結構應用於兩個不同層(未必為連續層)中,且該等兩個光柵結構可形成為處於晶圓上實質上相同的位置。散射計可具有如例如共同擁有之專利申請案EP1,628,164A中所描述之對稱偵測組態,使得任何不對稱性為可明確區分的。此提供一種用以量測光柵中之未對準之直接方式。可在以全文引用之方式併入本文中之PCT專利申請公開案第WO 2011/012624號或美國專利申請案US 20160161863中發現當經由週期性結構之不對稱性來量測目標時用於量測含有該等週期性結構之兩個層之間的疊對誤差的其他實例。
其他所關注參數可為焦點及劑量。可藉由如以全文引用之方式併入本文中之美國專利申請案US2011-0249244中所描述之散射量測術(或替代地藉由掃描電子顯微法)同時判定焦點及劑量。可使用具有針對焦點能量矩陣(FEM -亦稱為焦點曝光矩陣)中之各點之臨界尺寸及側壁角量測之獨特組合的單一結構。若可得到臨界尺寸及側壁角之此等獨特組合,則可根據此等量測獨特地判定焦點及劑量值。
度量衡目標可為藉由微影程序主要在抗蝕劑中形成且亦在例如蝕刻程序之後形成之複合光柵的整體。光柵中之結構之間距及線寬可在很大程度上取決於量測光學器件(特定言之,光學器件之NA)以能夠捕捉來自度量衡目標之繞射階。如較早所指示,繞射信號可用於判定兩個層之間的移位(亦稱為『疊對』),或可用於重建構如由微影程序所產生之原始光柵之至少部分。此重建構可用於提供微影程序之品質指導,且可用於控制微影程序之至少部分。目標可具有經組態以模仿目標中之設計佈局之功能性部分之尺寸的較小子分段。由於此子分段,目標將表現得更類似於設計佈局之功能性部分,使得總體程序參數量測較佳地類似於設計佈局之功能性部分。可在填充不足模式中或在填充過度模式中量測目標。在填充不足模式中,量測光束產生小於總體目標之光點。在填充過度模式中,量測光束產生大於總體目標之光點。在此填充過度模式中,亦有可能同時量測不同目標,因此同時判定不同處理參數。
使用特定目標之微影參數之總體量測品質至少部分地藉由用於量測此微影參數之量測配方來判定。術語「基板量測配方」可包括量測自身之一或多個參數、經量測之一或多個圖案之一或多個參數,或兩者。舉例而言,若用於基板量測配方中之量測為基於繞射之光學量測,則量測之參數中之一或多者可包括輻射之波長、輻射之偏振、輻射相對於基板之入射角、輻射相對於基板上之圖案之定向等。用以選擇量測配方之準則中之一者可例如為量測參數中之一者對於處理變化之敏感度。以全文引用之方式併入本文中之美國專利申請案US2016-0161863及已公開美國專利申請案US 2016/0370717A1中描述更多實例。
微影裝置LA中之圖案化程序可為處理中之最關鍵步驟中之一者,其需要基板W上之結構之尺寸標定及置放之高準確度。為了確保此高準確度,可將三個系統組合於所謂的「整體」控制環境中,如圖3中示意性地描繪。此等系統中之一者為微影裝置LA,其(實際上)連接至度量衡工具MT (第二系統)且連接至電腦系統CL (第三系統)。此「整體」環境之關鍵在於最佳化此等三個系統之間的合作以增強總體程序窗且提供嚴格控制迴路,以確保由微影裝置LA執行之圖案化保持在程序窗內。程序窗界定程序參數(例如,劑量、焦點、疊對)之範圍,在該程序參數範圍內,特定製造程序產生經界定結果(例如,功能半導體器件)——也許在該程序參數範圍內允許微影程序或圖案化程序中之程序參數變化。
電腦系統CL可使用待圖案化之設計佈局(之部分)來預測使用哪種解析度增強技術且執行計算微影模擬及計算以判定哪種光罩佈局及微影裝置設定實現圖案化程序之最大總體程序窗(在圖3中藉由第一標度SC1中之雙箭頭描繪)。解析度增強技術可經配置以匹配微影裝置LA之圖案化可能性。電腦系統CL亦可用於偵測在程序窗內微影裝置LA當前正在何處進行操作(例如,使用來自度量衡工具MET之輸入)以預測歸因於例如次佳處理是否可存在缺陷(在圖3中藉由第二標度SC2中之指向「0」之箭頭描繪)。
度量衡工具MT可將輸入提供至電腦系統CL以使得能夠準確模擬及預測,且可將回饋提供至微影裝置LA以識別例如微影裝置LA之校準狀態中之可能漂移(在圖3中藉由第三標度SC3中之多個箭頭描繪)。
可提供用於量測使用微影圖案化裝置產生之結構的許多不同形式之度量衡工具MT。度量衡工具MT可使用電磁輻射查詢結構。輻射之屬性(例如,波長、頻寬、功率)可影響工具之不同量測特性,其中較短波長通常允許增加的解析度。輻射波長對度量衡工具可達成之解析度有影響。因此,為了能夠利用具有小尺寸之特徵來量測結構,具有短波長輻射源之度量衡工具MT為較佳的。
輻射波長可影響量測特性之另一方式為穿透深度及待檢測材料在輻射波長下之透明度/不透明度。取決於不透明度及/或穿透深度,輻射可用於透射或反射之量測。量測之類型可影響是否獲得關於結構/基板之表面及/或塊體內部之資訊。因此,當選擇用於度量衡工具之輻射波長時,穿透深度及不透明度為待考量之另一元素。
為了達成經微影圖案化之結構之量測的較高解析度,具有短波長之度量衡工具MT為較佳的。此可包括短於可見波長之波長,例如,在電磁光譜之UV、EUV及X射線部分中。諸如透射小角度X射線散射(TSAXS)之硬X射線方法利用硬X射線之高解析度及高穿透深度,且可因此在透射中操作。另一方面,軟X射線及EUV到目前為止並不穿透目標,而是可誘發待探測之材料中的豐富光學回應。此可歸因於許多半導體材料之光學屬性,且歸因於結構之大小與探測波長相當。因此,EUV及/或軟X射線度量衡工具MT可在反射中操作,例如藉由成像或藉由分析來自經微影圖案化之結構之繞射圖案。
對於硬X射線、軟X射線及EUV輻射,可歸因於在所需波長下不具有可用高亮度輻射源而限制高量製造(HVM)應用中之應用。在硬X射線之情況下,工業應用中常用之源包括X射線管。包括進階X射線管(例如,基於液態金屬陽極或旋轉陽極)之X射線管可相對負擔得起且緊密,但可能缺乏HVM應用所需之亮度。當前存在諸如同步輻射光源(SLS)及X射線自由電子雷射(XFEL)之高亮度X射線源,但其大小(> 100m)及高成本(數億歐元)使得其對於度量衡應用而言過於龐大及昂貴。類似地,缺乏足夠明亮的EUV及軟X射線輻射源之可用性。
圖4中描繪度量衡裝置之一個實例,諸如散射計,其可包含將輻射5投影至基板W上之寬頻帶(例如,白光)輻射投影儀2。將反射或散射輻射10傳遞至光譜儀偵測器4,該光譜儀偵測器4量測鏡面反射輻射之光譜6 (亦即,隨波長λ變化之強度I之量測)。根據此資料,可藉由處理單元PU,例如藉由嚴密耦合波分析及非線性回歸或藉由與如圖4底部所展示之經模擬光譜庫的比較來重建構產生經偵測光譜之結構或剖面8。一般而言,對於重建構,已知結構之一般形式為,且根據藉以製造結構之程序的知識假定一些參數,從而僅留下結構之幾個參數自散射量測資料判定。此散射計可經組態為正入射散射計或斜入射散射計。
圖5中描繪度量衡裝置之實例(諸如圖4中所展示之散射計)之透射版本。透射輻射11傳遞至光譜儀偵測器4,該光譜儀偵測器4量測如針對圖4所論述之光譜6。此散射計可經組態為正入射散射計或斜入射散射計。視情況,透射版本使用波長< 1 nm、視情況< 0.1 nm、視情況< 0.01 nm之硬X射線輻射。
作為對光學度量衡方法之替代方案,亦已考慮使用硬X射線、軟X射線或EUV輻射,例如具有以下波長範圍中之至少一者的輻射:< 0.01 nm、< 0.1 nm、< 1 nm、在0.01 nm與100 nm之間、在0.01 nm與50 nm之間、在1nm與50 nm之間、在1 nm與20 nm之間、在5 nm與20 nm之間及在10 nm與20 nm之間。在上文所呈現之波長範圍中之一者中起作用之度量衡工具的一個實例為透射小角度X射線散射(如內容以全文引用之方式併入本文中之US 2007224518A中的T-SAXS)。Lemaillet等人在「FinFET結構之光學與X射線散射量測之間的相互比較」(Proc. of SPIE,2013年,8681)中論述了使用T-SAXS之剖面(CD)量測。應注意,在以全文引用之方式併入本文中的美國專利公開案第2019/003988A1號及美國專利公開案第2019/215940A1號中描述雷射產生電漿(LPP) x射線源之使用。在掠入射下使用X射線(GI-XRS)及極紫外線(EUV)輻射之反射量測技術可用於量測基板上之膜及層堆疊的屬性。在一般反射量測領域內,可應用測角及/或光譜技術。在測角術中,可量測具有不同入射角之反射光束之變化。另一方面,光譜反射量測術量測在給定角度下反射之波長的光譜(使用寬頻帶輻射)。舉例而言,EUV反射量測術已在製造用於EUV微影中之倍縮光罩(圖案化器件)之前用於光罩基底之檢測。
應用範圍可能使得在例如硬X射線、軟X射線或EUV域中之波長之使用不充分。已公開專利申請案US 20130304424Al及US2014019097A1 (Bakeman等人/KLA)描述混合度量衡技術,其中將使用x射線進行之量測及利用介於120 nm與2000 nm範圍內之波長的光學量測組合在一起以獲得諸如CD之參數的量測。CD量測藉由經由一或多個共同部分耦合x射線數學模型及光學數學模型來獲得。所列舉美國專利申請案之內容以全文引用之方式併入本文中。
圖6描繪前述輻射可用於量測基板上之結構之參數的度量衡裝置302之示意性表示。圖6中所表示之度量衡裝置302可適用於硬X射線、軟X射線及/或EUV域。
圖6說明包含視情況在掠入射中使用硬X射線、軟X射線及/或EUV輻射之光譜散射計的度量衡裝置302之示意性實體配置,其純粹藉助於實例。檢測裝置之替代形式可以角度解析散射計之形式提供,該角度解析散射計與在較長波長下操作之習知散射計類似可使用在正入射或近正入射下之輻射,且其亦可使用具有與平行於基板之方向成大於1°或2°之方向的輻射。檢測裝置之替代形式可以透射散射計之形式提供,圖5中之組態應用於該透射散射計。
檢測裝置302包含輻射源或稱為照明源310、照明系統312、基板支撐件316、偵測系統318、398以及度量衡處理單元(MPU) 320。
此實例中之照明源310用於產生EUV、硬X射線或軟X射線輻射。照明源310可基於如圖6中所展示之高階諧波產生(HHG)技術,且其亦可為其他類型之照明源,例如液態金屬射流源、逆康普頓散射(ICS)源、電漿通道源、磁性波盪器源、自由電子雷射(FEL)源、緊密儲存環源、放電產生電漿源、軟X射線雷射源、旋轉陽極源、固體陽極源、粒子加速器源、微焦源或雷射產生電漿源。
HHG源可為氣體射流/噴嘴源、毛細管/光纖源或氣胞源。
對於HHG源之實例,如圖6中所展示,輻射源之主要組件為可操作以發射泵浦輻射之泵浦輻射源330及氣體遞送系統332。視情況泵浦輻射源330為雷射,視情況泵浦輻射源330為脈衝式高功率紅外線或光學雷射。泵浦輻射源330可為例如具有光學放大器之基於光纖之雷射,從而產生每脈衝可持續例如小於1奈秒(1 ns)的紅外線輻射之脈衝,其中脈衝重複率視需要達至若干兆赫茲。泵浦輻射包含具有介於200 nm至10 μm、視情況500 nm至2000 nm、視情況800 nm至1500 nm範圍內之一或多個波長的輻射,例如大約1微米(1 μm)。視情況,雷射脈衝作為第一泵浦輻射340遞送至氣體遞送系統332,其中在氣體中,輻射之一部分轉換為比第一輻射更高的頻率而成為發射輻射342。氣體供應件334將合適氣體供應至氣體遞送系統332,其中該合適氣體視情況藉由電源336電離。氣體遞送系統332可為切割管。
由氣體遞送系統332提供之氣體界定氣體目標,其可為氣體流或靜態體積。氣體可為例如空氣、氖氣(Ne)、氦氣(He)、氮氣(N 2)、氧氣(O 2)、氬氣(Ar)、氪氣(Kr)、氙氣(Xe)、二氧化碳(CO 2)及其組合。此等氣體可為同一裝置內可選擇之選項。發射輻射可含有多個波長。若發射輻射為單色的,則可簡化量測計算(例如重建構),但較易於產生具有若干波長之輻射。發射輻射之發射發散角可為波長相依的。不同波長將例如在對不同材料之結構成像時提供不同等級之對比度。舉例而言,為了檢測金屬結構或矽結構,可將不同波長選擇為用於使(碳基)抗蝕劑之特徵成像或用於偵測此類不同材料之污染的波長。可提供一或多個濾光器件344。舉例而言,諸如鋁(Al)或鋯(Zr)之薄膜的濾光器可用於切斷基諧IR輻射以免進一步傳遞至檢驗裝置中。可提供光柵(未展示)以自所產生波長當中選擇一或多個特定波長。視情況,照明源包含經組態以待抽空之空間,且氣體遞送系統經組態以在該空間中提供氣體目標。視情況,可在真空環境內含有光束路徑中之一些或全部,應記住,SXR及/或EUV輻射在空氣中行進時會被吸收。輻射源310及照明光學器件312之各種組件可為可調整的以在同一裝置內實施不同度量衡「配方」。舉例而言,可使不同波長及/或偏振為可選擇的。
取決於在檢測中之結構之材料,不同波長可提供至下部層中之所要程度之穿透。為了解析最小器件特徵及最小器件特徵當中之缺陷,則短波長很可能為較佳的。舉例而言,可選擇介於0.01至20 nm範圍內或視情況介於1至10 nm範圍內或視情況介於10至20 nm範圍內之一或多個波長。短於5 nm之波長可在自半導體製造中之所關注材料反射時遭受極低臨界角。因此,選擇大於5 nm之波長可在較高入射角處提供較強信號。另一方面,若檢測任務為偵測某一材料之存在例如以偵測污染,則高達50 nm之波長可為有用的。
經濾光光束342可自輻射源310進入檢測腔室350,在檢測腔室350中,包括所關注結構之基板W由基板支撐件316固持以用於在量測位置處進行檢測。所關注結構標記為T。視情況,檢測腔室350內之大氣可由真空泵352維持為接近真空,使得SXR及/或EUV輻射可在無不當衰減之情況下傳遞通過該大氣。照明系統312具有將輻射聚焦至經聚焦光束356中之功能,且可包含例如二維曲面鏡面或一系列一維曲面鏡面,如上文所提及的已公開美國專利申請案US2017/0184981A1 (其內容以全文引用之方式併入本文中)中所描述。執行聚焦以在投影至所關注結構上時達成直徑低於10 μm之圓形或橢圓形光點S。基板支撐件316包含例如X-Y平移載物台及旋轉載物台,藉由X-Y平移載物台及旋轉載物台,可使基板W之任何部分在所要定向上到達光束之焦點。因此,輻射光點S形成於所關注結構上。替代地或另外,基板支撐件316包含例如傾斜載物台,其可以某一角度使基板W傾斜以控制所關注結構T上之經聚焦光束的入射角。
視情況,照明系統312將參考輻射光束提供至參考偵測器314,該參考偵測器314可經組態以量測經濾光光束342中之不同波長的光譜及/或強度。參考偵測器314可經組態以產生提供至處理器320之信號315,且該濾光器可包含關於經濾光光束342之光譜及/或經濾光光束中之不同波長之強度的資訊。
反射輻射360由偵測器318捕捉,且光譜經提供至處理器320以用於計算目標結構T之屬性。照明系統312及偵測系統318因此形成檢測裝置。此檢測裝置可包含屬於內容以全文引用之方式併入本文中之US2016282282A1中所描述之種類的硬X射線、軟X射線及/或EUV光譜反射計。
若目標Ta具有某一週期性,則經聚焦光束356之輻射亦可經部分地繞射。繞射輻射397以相對於入射角明確定義之角度遵循另一路徑,接著為反射輻射360。在圖6中,以示意性方式繪製所繪製繞射輻射397,且繞射輻射397可遵循除所繪製路徑之外的許多其他路徑。檢測裝置302亦可包含偵測繞射輻射397之至少一部分及/或使該部分成像的其他偵測系統398。在圖6中,繪製單個其他偵測系統398,但檢測裝置302之實施例亦可包含多於一個其他偵測系統398,該偵測系統經配置於不同位置處以在複數個繞射方向上偵測繞射輻射397及/或使繞射輻射397成像。換言之,照射於目標Ta上之經聚焦輻射光束的(較高)繞射階由一或多個其他偵測系統398偵測及/或成像。一或多個偵測系統398產生提供至度量衡處理器320之信號399。信號399可包括繞射光397之資訊及/或可包括自繞射光397獲得之影像。
為了輔助光點S與所要產品結構之對準及聚焦,檢測裝置302亦可提供在度量衡處理器320之控制下使用輔助輻射之輔助光學器件。度量衡處理器320亦可與操作平移載物台、旋轉載物台及/或傾斜載物台之位置控制器372通信。處理器320經由感測器接收關於基板之位置及定向之高度準確的回饋。感測器374可包括例如干涉計,其可給出大約數皮米之準確度。在檢測裝置302之操作中,由偵測系統318捕捉之光譜資料382經遞送至度量衡處理單元320。
如所提及,檢測裝置之替代形式使用視情況處於正入射或近正入射之硬X射線、軟X射線及/或EUV輻射,例如以執行基於繞射之不對稱性量測。檢測裝置之另一替代形式使用具有與平行於基板之方向成大於1°或2°之方向的硬X射線、軟X射線及/或EUV輻射。兩種類型之檢測裝置皆可提供於混合度量衡系統中。待量測之效能參數可包括疊對(OVL)、臨界尺寸(CD)、當微影裝置列印目標結構時微影裝置之焦點、相干繞射成像(CDI)及依解析度疊對(ARO)度量衡。硬X射線、軟X射線及/或EUV輻射可例如具有小於100 nm之波長,例如使用介於5至30 nm範圍內,視情況介於10 nm至20 nm範圍內的輻射。該輻射在特性上可為窄頻帶或寬頻帶。該輻射可在特定波長帶中具有離散峰值或可具有更連續之特性。
類似於用於當今生產設施中之光學散射計,檢測裝置302可用於量測在微影單元內處理之抗蝕劑材料內之結構(顯影後檢測或ADI),及/或用於在結構已在較硬材料中形成之後量測該等結構(蝕刻後檢測或AEI)。舉例而言,可在基板已由顯影裝置、蝕刻裝置、退火裝置及/或其他裝置處理之後使用檢測裝置302檢測基板。
包括但不限於上文所提及之散射計之度量衡工具MT可使用來自輻射源之輻射以執行量測。由度量衡工具MT使用之輻射可為電磁輻射。輻射可為光輻射,例如電磁光譜之紅外線部分、可見光部分及/或紫外線部分中之輻射。度量衡工具MT可使用輻射來量測或檢測基板之屬性及態樣,例如半導體基板上之微影曝光圖案。量測之類型及品質可取決於由度量衡工具MT使用之輻射的若干屬性。舉例而言,電磁量測之解析度可取決於輻射之波長,其中較小波長例如歸因於繞射限制能夠量測較小特徵。為了量測具有小尺寸之特徵,可較佳地使用具有短波長之輻射,例如EUV、硬X射線(HXR)及/或軟X射線(SXR)輻射,以執行量測。為了在特定波長或波長範圍下執行度量衡,度量衡工具MT需要存取提供在彼/彼等波長下之輻射的源。存在用於提供不同波長之輻射的不同類型之源。取決於由源提供之波長,可使用不同類型之輻射產生方法。對於極紫外線(EUV)輻射(例如1 nm至100 nm)及/或軟X射線(SXR)輻射(例如0.1 nm至10 nm),源可使用高階諧波產生(HHG)或逆康普頓散射(ICS)以獲得在所要波長下之輻射。
圖7展示照明源310之實施例600的簡化示意圖,該照明源可為用於高階諧波產生(HHG)之照明源。關於圖6所描述之度量衡工具中之照明源之特徵中的一或多者亦可視需要存在於照明源600中。照明源600包含腔室601,且經組態以接收具有由箭頭指示之傳播方向之泵浦輻射611。此處展示之泵浦輻射611為來自泵浦輻射源330之泵浦輻射340的實例,如圖6中所展示。泵浦輻射611可經由輻射輸入605引導至腔室601中,該輻射輸入605可為視情況由熔融矽石或可相當材料製成之檢視區。泵浦輻射611可具有高斯或中空(例如環形)橫向橫截面剖面且可入射(視情況聚焦)於腔室601內之氣體流615上,該氣體流615具有由第二箭頭指示之流動方向。氣體流615包含氣體壓力高於某一值之特定氣體(例如,空氣、氖氣(Ne)、氦氣(He)、氮氣(N2)、氧氣(O2)、氬氣(Ar)、氪氣(Kr)、氙氣(Xe)、二氧化碳(CO 2)及其中之兩者或更多者的組合)的稱為氣體體積或氣體目標的小體積(例如,幾立方mm)。氣體流615可為穩定流。亦可使用諸如金屬電漿(例如鋁電漿)之其他介質。
照明源600之氣體遞送系統經組態以提供氣體流615。照明源600經組態以在氣體流615中提供泵浦輻射611以驅動發射輻射613之產生。產生發射輻射613之至少大部分的區稱為相互作用空間。相互作用空間可自幾十微米(用於緊密聚焦泵浦輻射)變化至幾mm或cm (用於適度聚焦泵浦輻射)或甚至高達幾公尺(用於極其鬆散聚焦泵浦輻射)。氣體遞送系統經組態以提供氣體目標以用於在氣體目標之相互作用空間產生發射輻射,且視情況,照明源經組態以接收泵浦輻射且在相互作用區提供泵浦輻射。視情況,氣體流615藉由氣體遞送系統提供至抽空或幾乎抽空的空間中。氣體遞送系統可包含氣體噴嘴609,如圖6中所展示,該氣體噴嘴609包含在氣體噴嘴609之射出平面中之開口617。自開口617提供氣體流615。視情況,存在接近於開口617之氣體捕獲器。氣體捕獲器用於藉由提取殘餘氣體流且在腔室601內部維持真空或接近真空之大氣而將氣體流615限制在某一體積內。視情況,氣體噴嘴609可由厚壁管及/或高導熱材料製成以避免歸因於高功率泵浦輻射611之熱變形。
氣體噴嘴609之尺寸可想像地亦可用於範圍介於微米大小噴嘴至公尺大小噴嘴的按比例增加或按比例縮小之版本中。此廣泛範圍之尺寸標定來自如下事實:可按比例調整設置以使得氣體流處之泵浦輻射之強度最終處於可對發射輻射有益之特定範圍內,此需要針對可為脈衝雷射之不同泵浦輻射能量之不同尺寸標定,且脈衝能量可在數十微焦耳至數焦耳之間變化。視情況,氣體噴嘴609具有較厚壁以減少由可由例如攝影機偵測到之熱膨脹效應引起的噴嘴變形。具有較厚壁之氣體噴嘴可產生變化減少之穩定氣體體積。視情況,照明源包含接近於氣體噴嘴以維持腔室601之壓力的氣體捕獲器。
歸因於泵浦輻射611與氣體流615之氣體原子的相互作用,氣體流615將使泵浦輻射611之部分轉換成發射輻射613,該發射輻射613可為圖6中所展示之發射輻射342的實例。發射輻射613之中心軸線可與泵浦輻射611之中心軸線共線。發射輻射613可包含具有在X射線或EUV範圍內之一或多個波長的輻射,其中該波長在0.01 nm至100 nm、視情況0.1 nm至100 nm、視情況1 nm至100 nm、視情況1 nm至50 nm、視情況10 nm至50 nm、且視情況10 nm至20 nm之範圍內。泵浦輻射及發射輻射可具有未重疊波長。
在操作中,發射輻射613光束可穿過輻射輸出607,且可隨後藉由照明系統603操控及引導至待檢測以用於度量衡量測之基板,該照明系統603可為圖6中之照明系統312的實例。發射輻射613可經引導(視情況聚焦)至基板上之結構。
因為空氣(及實際上任何氣體)大量地吸收SXR或EUV輻射,所以氣體流615與待檢測之晶圓之間的體積可經抽空或幾乎抽空。由於發射輻射613之中心軸線可與泵浦輻射611之中心軸線共線,因此泵浦輻射611可能需要被阻擋以防止其傳遞通過輻射輸出607且進入照明系統603。此可藉由將圖6中所展示之濾光器件344併入至輻射輸出607中而進行,該輻射輸出607置放於發射光束路徑中,且對泵浦輻射不透明或幾乎不透明(例如,對紅外線或可見光不透明或幾乎不透明)但對發射輻射光束至少部分透明。可使用在多個層中組合之鋯或多種材料來製造濾光器。當泵浦輻射611具有中空(視情況環形)橫向橫截面剖面時,濾光器可為中空(視情況環形)塊體。視情況,濾光器不垂直且不平行於發射輻射光束之傳播方向,以具有高效泵浦輻射濾光。視情況,濾光器件344包含中空塊體及薄膜濾光器,諸如鋁(Al)、矽(Si)或鋯(Zr)薄膜濾光器。視情況,濾光器件344亦可包含有效反射發射輻射但不良反射泵浦輻射之鏡面,或包含有效透射發射輻射但不良透射泵浦輻射之金屬絲網。
本文中描述用以獲得視情況在泵浦輻射之高階諧波頻率下之發射輻射的方法、裝置及總成。經由程序(視情況使用非線性效應以產生視情況在所提供泵浦輻射之諧波頻率下之輻射的HHG)產生之輻射可作為輻射提供於度量衡工具MT中以用於基板之檢測及/或量測。若泵浦輻射包含短脈衝(亦即,少週期),則所產生輻射不必精確地在泵浦輻射頻率之諧波處。基板可為經微影圖案化之基板。經由程序獲得的輻射亦可經提供於微影裝置LA及/或微影單元LC中。泵浦輻射可為脈衝式輻射,其可在短時間叢發內提供高峰值強度。
泵浦輻射611可包含具有高於發射輻射之一或多個波長的一或多個波長之輻射。泵浦輻射可包含紅外線輻射。泵浦輻射可包含具有介於500 nm至1500 nm範圍內之波長的輻射。泵浦輻射可包含具有介於800 nm至1300 nm範圍內之波長的輻射。泵浦輻射可包含具有介於900 nm至1300 nm範圍內之波長的輻射。視情況,泵浦輻射包含以下波長中之一或多者:1064 nm、1080 nm及1032 nm。泵浦輻射可為脈衝式輻射。脈衝式泵浦輻射可包含具有在飛秒範圍內之持續時間的脈衝。
對於一些實施例,發射輻射(視情況高階諧波輻射)可包含具有泵浦輻射波長之一或多個諧波。發射輻射可包含在電磁光譜之極紫外線、軟X射線及/或硬X射線部分中之波長。發射輻射613可包含在以下範圍中之一或多者中的波長:小於1 nm、小於0.1 nm、小於0.01 nm、0.01 nm至100 nm、0.1 nm至100 nm、0.1 nm至50 nm、1 nm至50 nm及10 nm至20 nm。
諸如上文所描述之高階諧波輻射之輻射可經提供為度量衡工具MT中之源輻射。度量衡工具MT可使用源輻射以對由微影裝置曝光之基板執行量測。該等量測可用於判定基板上之結構之一或多個參數。相比於使用較長波長(例如,可見輻射、紅外線輻射),使用在較短波長下(例如,在如包含於上文所描述之波長範圍內的EUV、SXR及/或HXR波長下)之輻射可允許由度量衡工具解析結構之較小特徵。具有較短波長之輻射(諸如EUV、SXR及/或HXR輻射)亦可更深地穿透至諸如經圖案化基板之材料中,此意謂基板上之較深層之度量衡為可能的。此等較深層可能無法藉由具有較長波長(例如,可見波長)之輻射到達。
在度量衡工具MT中,源輻射可自輻射源發射,且引導至基板上之目標結構(或其他結構)上。源輻射可包含EUV、SXR及/或HXR輻射。目標結構可反射、透射及/或繞射入射於目標結構上之源輻射。度量衡工具MT可包含用於偵測繞射輻射之一或多個感測器。舉例而言,度量衡工具MT可包含用於偵測正一(+1)及負一(-1)繞射階之偵測器。度量衡工具MT亦可量測鏡面反射(0階繞射輻射)或透射輻射。用於度量衡之其他感測器可存在於度量衡工具MT中例如以量測其他繞射階(例如,較高繞射階)。
在實例微影度量衡應用中,可使用光學柱將HHG產生之輻射聚焦至基板上之目標上,該光學柱可稱為照明器,其將來自HHG源之輻射轉移至該目標。HHG輻射可接著自目標散射、經偵測及經處理例如以量測及/或推斷該目標之屬性。
氣體目標/介質HHG組態可廣泛地分成三個單獨類別:氣體射流、氣胞及氣體毛細管。圖7描繪氣體介質為引入至泵浦輻射中之氣體流的實例氣體射流組態。在氣體射流組態中,將泵浦輻射與固體部分之相互作用保持為最小值。氣體體積可例如包含垂直於泵浦輻射光束之氣體流/流,該氣體流/流不同於具有封閉於氣胞內部之固定體積的氣體介質(圖9作為一個實例)。圖8中所展示之毛細管為具有空芯之物件,且空芯在通過該物件之細長方向上具有細長體積。空芯用於固持氣體介質,且相互作用空間位於空芯內部以產生發射輻射。毛細管可例如為空芯纖維。毛細管可包含軸向空芯區及內部包層區,該內部包層區包含圍繞芯區之抗諧振元件(ARE)的配置。毛細管可例如具有包含參考EP 3341771 A1 (其以全文引用之方式併入本文中)中所描述之結構中之一或多者的橫截面。毛細管可提供泵浦輻射及氣態介質之增加的相互作用區,此可最佳化HHG程序。另一方面,氣體射流HHG組態可提供相對自由度以在遠場中塑形泵浦輻射光束之空間剖面,此係由於其不受由毛細管強加之約束限制。氣體射流組態亦可具有較不嚴格之對準容限。
圖8展示照明源310之實施例800的簡化示意圖,該照明源可為用於高階諧波產生(HHG)之照明源。上文例如關於圖6所描述之度量衡工具中之照明源之特徵中的一或多者亦可視需要存在於照明源800中。照明源800可包含腔室作為圖7中之腔室601,該腔室在此處未展示且經組態以接收具有由箭頭指示之傳播方向的泵浦輻射811。箭頭亦指示細長體積之細長方向。此處所展示之泵浦輻射811可為來自如圖6中所展示之泵浦輻射源330之泵浦輻射340的實例。泵浦輻射811可經由輻射輸入導引至腔室且進一步至毛細管809中,該毛細管809視情況為空芯纖維及視情況為薄石英或玻璃毛細管。在一個實施例中,固持氣體介質之毛細管809之尺寸可在側向方向上較小以使得其顯著地影響泵浦輻射光束之傳播。在一個實施例中,固持氣體介質之毛細管809之尺寸在側向方向上足夠大以使得其將不影響泵浦輻射之傳播。照明源800進一步包含用以將氣體介質提供至空芯中之氣體遞送系統,該氣體遞送系統可為上文所提及之氣體遞送系統332之一個實例。氣體遞送系統可包含氣體入口817及氣體出口819以用於利用氣體介質填充毛細管809,該氣體介質在操作中可為氣體流815。在操作中,氣體流815之至少一部分具有沿著空芯之至少一部分的流動方向。毛細管809內部之氣體流815之氣體壓力可經最佳化,視情況氣體壓力高於一個大氣壓,視情況氣體壓力高於五個大氣壓,視情況氣體壓力高於十個大氣壓。氣體流815可包含以下氣體中之一或多者:空氣、氖氣(Ne)、氦氣(He)、氮氣(N 2)、氧氣(O 2)、氬氣(Ar)、氪氣(Kr)、氙氣(Xe)、二氧化碳(CO 2)及其中之兩者或更多者的組合。視情況,氣體入口817可包含多個氣體入口,其視情況沿著細長方向分佈於不同位置處,以修改氣體流815之密度分佈之剖面。視情況,氣體出口819可包含多個氣體出口,以修改氣體流815之密度分佈之剖面。視情況,當存在多個氣體入口時,不同氣體可經由不同氣體入口流入毛細管809中以修改氣體流815之密度分佈之剖面及組成。氣體流815之密度分佈可進一步影響發射輻射之屬性。
歸因於泵浦輻射811與毛細管809中之氣體介質之相互作用,氣體介質將視情況經由高階諧波產生程序將泵浦輻射811之部分轉換成毛細管之空芯內部的發射輻射813。發射輻射813可為圖6中所展示之發射輻射342之實例。發射輻射813之中心軸線可與泵浦輻射811之中心軸線共線。在操作中,泵浦輻射811及發射輻射813沿著光學傳播方向且沿著空芯之至少一部分同軸地傳播。發射輻射813可具有在X射線或EUV範圍內之波長,其中該波長為在0.01 nm至100 nm、視情況0.1 nm至100 nm、視情況1 nm至100 nm、視情況1 nm至50 nm、視情況10 nm至50 nm、或視情況10 nm至20 nm之範圍內。
圖9展示照明源310之實施例900的簡化示意圖,該照明源可為用於高階諧波產生(HHG)之照明源。上文例如關於圖6及圖8所描述之度量衡工具中之照明源之特徵中的一或多者亦可視需要存在於照明源900中。泵浦輻射911及發射輻射913與實施例800中所提及之泵浦輻射811及發射輻射813相同。在操作中,氣體介質915可為靜態的而非如圖8中之氣體流。氣胞909可類似於氣體毛細管809,但不具有氣體入口817及氣體出口819。在一個實施例中,固持氣體介質之氣胞之尺寸可在側向方向上較小以使得其顯著地影響泵浦輻射光束之傳播。在一個實施例中,固持氣體介質之氣胞之尺寸在側向方向上足夠大以使得其將不影響泵浦輻射之傳播。
充氣毛細管及胞為產生高轉換效率(CE)之高效方法,此係由於內部氣體壓力與上文所提及之氣體噴嘴中之氣體流的氣體壓力相比可維持在更高水平處。然而,可聚焦至毛細管或胞中之泵浦輻射之功率受到可由毛細管或胞處置之最大熱負荷的限制。將需要具有高輸入功率之泵浦輻射以產生用於HVM之度量衡量測之所需發射輻射功率。在操作中,泵浦輻射之功率可高於30W、視情況高於50W、視情況高於100W、視情況高於200W、視情況高於300W、視情況高於500W、視情況高於1000W且視情況高於2000W。增加泵浦輻射之功率將導致毛細管或胞之損害及不穩定性,且因此可限制發射輻射之功率。舉例而言,當按比例增加毛細管中之泵浦輻射功率超出上述值時,熱問題可變得愈來愈顯著。熱膨脹將使得毛細管移動,此將進一步改變泵浦輻射與毛細管之匹配,亦即泵浦輻射與毛細管之間的對準。毛細管之運動可進一步改變所吸收之功率,亦即泵浦輻射之更多功率可由毛細管吸收,從而導致更多熱膨脹及運動。上述熱問題可不僅觸發非想要動力,且亦減少毛細管之壽命。
此等毛細管及胞可由熔融石英或玻璃製成以最大化歸因於泵浦輻射波長之透明度的損害臨限值。但熔融石英及玻璃具有相對較低導熱率,此使得其難以冷卻毛細管或胞。此外,在大部分應用中,石英毛細管由O形環或黏著劑支撐,該毛細管尤其在真空中自周圍環境分離。O形環材料包括PTFE、腈(Buna)、氯丁橡膠、EPDM橡膠及碳氟化合物(Viton)。在高溫應用中,廣泛使用聚矽氧及Kalrez® O形環材料。黏著劑包括光聚合物及光活化樹脂。
可實施下文中所描述之特徵以改良至毛細管或胞上之最大功率以改良發射輻射之功率。此等特徵可產生較高熱機械穩定性。儘管可特定地參考毛細管,但應注意,此等實施例中所提及之特徵亦可實施至如圖9中所展示之氣胞中。
圖10中展示自垂直於細長方向之方向檢視之第一實施例1000的實例。此處所展示之毛細管1002可為來自如圖8中所展示之輻射源800之毛細管809的實例。毛細管1002分別在圖11、圖12及圖13中稱為1102、1202及1302。在一個實例中,為了視情況在高諧波程序期間將在相互作用空間產生之熱量轉移遠離毛細管1002,在毛細管1002之外壁的多個位置處連接導熱結構1008。導熱結構1008可具有細長形狀,且視情況包含電線、編織物、鰭片及彈簧中之至少一者。在一個實例中,毛細管1002之外壁的至少部分包含導熱外表面1004。導熱外表面1004可包含塗層、層、管及區塊中之至少一者,且可具有與毛細管之匹配熱膨脹係數。導熱結構1008可硬焊至毛細管之外壁上及/或導熱外表面1004上。在一個實例中,第一實施例1000進一步包含一或多個散熱片1006,且導熱結構1004連接至散熱片1006且將熱量轉移遠離毛細管1002至散熱片1006。散熱片1006可進一步藉由冷卻液體或一或多個冷卻表面1010而冷卻。冷卻表面1010為視情況冷卻之液體冷卻、視情況水冷卻之表面。毛細管1002與散熱片1006之間的距離可保持較短,以結合高穩定性獲得高冷卻能力。導熱外表面1004及導熱結構1008可具有高導熱率之相同或不同材料,包含錫、金、銅、鋁、碳化矽(SiC)、氧化鈹(BeO)、鎢、鋅、石墨及銀中之一或多者。視情況,導熱外表面1004包含人造金剛石或具有良好導熱率之任何其他類金剛石材料。類金剛石材料為顯示金剛石之一些典型屬性的材料,諸如低摩擦、高硬度、高耐腐蝕性及紅外線中之良好透射性,其中之一個實例為類金剛石碳。在圖10中,在毛細管1002之相對側處存在具有冷卻表面1010之兩個散熱片,而實際上可存在相對於毛細管1002分佈於任何位置處之其他數目的散熱片。視情況,導熱結構1008均勻地沿著毛細管方向及/或均勻地圍繞毛細管1002分佈。
在一個實例中,當泵浦輻射行進通過毛細管之細長體積時,其可能在導熱結構1008上感應電流,此可引起相互作用空間中之功率衰減。對於包含導熱外表面1004之實施例,歸因於導熱外表面上之經感應電流,亦可能發生功率衰減。因此,導熱外表面1004及/或導熱結構1008可置放得更遠離相互作用空間。為了找到低功率衰減與高導熱性之間的最佳點,導熱外表面及/或導熱結構與毛細管之間的總接觸面積小於毛細管之外壁之總面積的75%、視情況小於50%、視情況小於10%且視情況小於5%。
圖11中展示第二實施例1100之實例。關於圖10所描述之第一實施例1000之特徵中的一或多者亦可視需要存在於第二實施例1100中。具有空芯1103之毛細管1102的至少部分置放於管1104 (視情況,金屬管)內部。管1104可視為導熱外表面1004之一個實例。在一個實例中,管1104可包含具有高導熱率之一或多種材料。舉例而言,管1104可包含錫、金、銅、鋁、碳化矽(SiC)、氧化鈹(BeO)、鎢、鋅、石墨及銀中之一或多者。在一個實例中,管1104可具有與毛細管1102之匹配熱膨脹係數(CTE)及高導熱性。匹配CTE為防止毛細管開裂且具有熱機械穩定系統。舉例而言,包含鉬銅合金(MoCu)之管可具有與毛細管1102之匹配CTE。管1104可包含視情況沿著細長方向之冷卻線1106,視情況為水冷卻線。管1104可藉由如第一實施例1000中所論述之多個連接件或藉由使用液態金屬而連接至毛細管1102。當液體金屬用作連接件時,毛細管與管之間的CTE匹配為不必要的。在圖11中所展示之實例中,存在分佈於毛細管之橫截面的四個隅角處之四個冷卻線,而實際上可存在視情況以旋轉/徑向對稱分佈於毛細管周圍之其他數目的冷卻線。
圖12中展示沿著細長方向檢視之第三實施例1200的實例。關於圖10及圖11所描述之第一實施例1000及第二實施例1100之特徵中的一或多者亦可視需要存在於第三實施例1200中。具有空芯1203之毛細管1202經硬焊或夾持至彈簧巢1206中,視情況接下來為金屬彈簧。彈簧巢1206可充當如第一實施例1000中所論述之導熱結構1008的一個實例。視情況,彈簧巢1206將毛細管1202連接至彈簧巢固持器1204以將熱量轉移遠離毛細管至彈簧巢固持器1204。彈簧巢固持器可為上文所論述之散熱片1006的一個實例。彈簧巢固持器1204可例如藉由水冷卻,且可將毛細管1202固持於其熱中心中。彈簧巢固持器1204可具有與毛細管1202之匹配熱膨脹係數(CTE)及高導熱性以防止毛細管開裂且具有熱機械穩定系統。舉例而言,包含鉬銅合金(MoCu)之彈簧巢固持器1204可具有與毛細管1202之匹配CTE。彈簧巢固持器1204可具有冷卻線,視情況水冷卻線。舉例而言,彈簧巢固持器1204可包含錫、金、銅、鋁、碳化矽(SiC)、氧化鈹(BeO)、鎢、鋅、石墨及銀中之一或多者。
圖13中展示第四實施例1300之實例。關於圖10、圖11及圖12所描述之第一實施例1000、第二實施例1100及第三實施例1200之特徵中的一或多者亦可視需要存在於第四實施例1300中。具有空芯1303之毛細管1302具有一或多個冷卻線1304,視情況為水冷卻線。不同於上文所提及之實施例中之冷卻線,圖13中之冷卻線整合於毛細管1302之管壁內部。冷卻線將熱量自毛細管轉移至其他組件。
對於上文所提及之實施例,毛細管809、1002、1102、1202及1302可包含玻璃、石英、結晶氧化鋁AlO 2、藍寶石、碳化矽SiC或氮化矽Si 3N 4中之一或多種材料。視情況,毛細管為具有經研磨內壁之金屬纖維,視情況為空芯金屬纖維。毛細管可由3D列印製造。對於上文所提及之實施例,毛細管809、1002、1102、1202及1302之管壁可包含具有上文所列之不同材料的多個層。
為了得到高功率發射輻射,重要的係使毛細管與泵浦輻射對準且保持穩定,此增強CE且防止泵浦輻射之高功率引起的損害。為了具有高穩定性之毛細管,重要的係毛細管之材料及/或設計使得其具有高導熱率及低CTE。
實施例可使得毛細管具有較佳導熱率,此可縮短度量衡量測期間的穩定時間。本發明可使得發射輻射具有較高功率,此可改良度量衡量測產出量。
儘管可特定地參考包含毛細管或氣胞之照明源,但應瞭解,在上下文允許之情況下,本發明可用於其他源中。舉例而言,上述實施例之一些特徵可應用於具有含有預定氣態大氣之容器(例如玻璃膠囊)的雷射泵浦電漿源(LPPS)中,如US9357626B2中所描述,以改良容器之導熱率。舉例而言,上述實施例之一些特徵可應用於具有光纖(例如,空芯光纖)之寬頻帶光源中,如WO2021037472A1中所描述,以改良光纖之導熱率。
照明源可經提供於例如度量衡裝置MT、檢測裝置、微影裝置LA及/或微影單元LC中。
用於執行量測之發射輻射之屬性可影響所獲得量測之品質。舉例而言,輻射光束之橫向光束剖面(橫截面)的形狀及大小、輻射之強度、輻射之功率譜密度等可影響藉由輻射執行之量測。因此,具有提供具有引起高品質量測之屬性之輻射的源係有益的。
在後續編號條項中揭示其他實施例: 1.一種用於接收一泵浦輻射以在一相互作用空間與一氣體介質相互作用以產生一發射輻射之總成,該總成包含: 一物件,其具有一空芯, 其中該空芯具有穿過該物件之一細長體積, 其中該相互作用空間位於該空芯內部, 及一導熱結構,其在該物件之一外壁之多個位置處連接以用於將在該相互作用空間產生之熱量轉移遠離該物件。 2.如條項1之總成,其中該總成經組態用於高階諧波產生程序,其中視情況選擇該氣體介質以使得經由高階諧波產生程序產生該發射輻射,且其中視情況選擇該泵浦輻射以使得經由高階諧波產生程序產生該發射輻射。 3.如前述條項中任一項之總成,其中在操作中,該泵浦輻射之功率高於30W、視情況高於50W、視情況高於100W、視情況高於200W、視情況高於300W、視情況高於500W、視情況高於1000W且視情況高於2000W。 4.如前述條項中任一項之總成,其中在操作中,該氣體介質為一氣體流。 5.如條項4之總成,其中在操作中,該氣體流之至少一部分具有沿著該空芯之至少一部分的一流動方向。 6.如前述條項中任一項之總成,其中該導熱結構具有細長形狀,視情況該導熱結構包含電線、編織物、鰭片及彈簧中之至少一者。 7.如前述條項中任一項之總成,其中該導熱結構包含錫、金、銅、鋁、碳化矽、氧化鈹、鎢、鋅、石墨及銀中之至少一者。 8.如前述條項中任一項之總成,其中該物件包含在該等多個位置處與該導熱結構接觸之一導熱外表面,視情況該導熱外表面包含一塗層、層、管及區塊中之至少一者。 9.如條項8之總成,其中該導熱外表面包含錫、金、銅、鋁、碳化矽、氧化鈹、鎢、鋅、石墨、銀、人造金剛石及任何其他類金剛石材料中之至少一者。 10.如條項8或9之總成,其中導熱外表面與該物件之間的總接觸面積小於該物件之該外壁的總面積之75%、視情況小於50%、視情況小於10%且視情況小於5%。 11.如條項8至10中任一項之總成,其中該導熱外表面具有與該物件之一匹配熱膨脹係數。 12.如前述條項中任一項之總成,其中該導熱結構與該物件之間的總接觸面積小於該物件之該外壁的總面積之75%、視情況小於50%、視情況小於10%且視情況小於5%。 13.如前述條項中任一項之總成,其中該總成進一步包含一散熱片,其中該導熱結構連接至該散熱片且將該熱量轉移遠離該物件至該散熱片。 14.如前述條項中任一項之總成,其中該泵浦輻射及該發射輻射具有未重疊波長。 15.如前述條項中任一項之總成,其中該氣體介質包含空氣、氖氣(Ne)、氦氣(He)、氮氣(N 2)、氧氣(O 2)、氬氣(Ar)、氪氣(Kr)、氙氣(Xe)及二氧化碳(CO 2)中之至少一者。 16.如前述條項中任一項之總成,其中該發射輻射包含具有介於1 nm至50 nm、視情況10 nm至50 nm且視情況10 nm至20 nm之一範圍內的一或多個波長之輻射。 17.如前述條項中任一項之總成,其中該泵浦輻射包含具有介於200 nm至10 µm、視情況500 nm至2000 nm、視情況800 nm至1500 nm之一範圍內的一或多個波長之輻射。 18.如前述條項中任一項之總成,其中在操作中,該泵浦輻射及該發射輻射沿著一光學傳播方向且沿著該空芯之至少一部分同軸地傳播。 19.如前述條項中任一項之總成,其中該總成包含用以將該氣體介質提供至該空芯中之一氣體遞送系統。 20.一種輻射源,其包含如前述條項中任一項之總成。 21.一種微影裝置,其包含如條項20之輻射源。 22.一種度量衡裝置,其包含如條項20之輻射源。 23.一種微影單元,其包含如條項20之輻射源。
儘管可在本文中特定地參考在IC製造中微影裝置之使用,但應理解,本文中所描述之微影裝置可具有其他應用。可能的其他應用包括整合光學系統之製造、用於磁疇記憶體之引導及偵測圖案、平板顯示器、液晶顯示器(LCD)、薄膜磁頭等。
儘管可在本文中特定地參考在微影裝置之上下文中之實施例,但實施例可用於其他裝置中。實施例可形成光罩檢測裝置、度量衡裝置或量測或處理諸如晶圓(或其他基板)或光罩(或其他圖案化器件)之物件之任何裝置的部分。此等裝置可通常稱為微影工具。此微影工具可使用真空條件或環境(非真空)條件。
儘管可在本文中特定地參考在檢測或度量衡裝置之上下文中之實施例,但實施例可用於其他裝置中。實施例可形成光罩檢測裝置、微影裝置或量測或處理諸如晶圓(或其他基板)或光罩(或其他圖案化器件)之物件之任何裝置的部分。術語「度量衡裝置」(或「檢測裝置」)亦可指檢測裝置或檢測系統(或度量衡裝置或度量衡系統)。例如,包含實施例之檢測裝置可用於偵測基板之缺陷或基板上之結構之缺陷。在此實施例中,基板上之結構之所關注特性可能係關於結構中之缺陷、結構之特定部分的不存在或基板上之非所需結構的存在。
儘管上文可能已特定地參考在光學微影之上下文中之實施例之使用,但應瞭解,本發明在上下文允許之情況下不限於光學微影且可用於其他應用(例如,壓印微影)中。
雖然上文所描述之目標或目標結構(更一般而言,基板上之結構)為出於量測之目的而特定設計及形成的度量衡目標結構,但在其他實施例中,可對作為在基板上形成之器件之功能性部分的一或多個結構量測所關注屬性。許多器件具有規則的類光柵結構。如本文中所使用之術語結構、目標光柵及目標結構不要求已特定針對正執行之量測來提供結構。此外,度量衡目標之節距可接近於散射計之光學系統的解析度極限或可能更小,但可能比目標部分C中之藉由微影程序製得的典型非目標結構(視情況產品結構)之尺寸大得多。實際上,可使目標結構內之疊對光柵之線及/或空間包括在尺寸上與非目標結構類似之較小結構。
雖然上文已描述特定實施例,但應瞭解,可以與所描述之方式不同的其他方式來實踐本發明。以上描述意欲為說明性的,而非限制性的。因此,對於熟習此項技術者將顯而易見,可在不脫離下文所闡述之申請專利範圍之範疇的情況下對如所描述之本發明進行修改。
儘管特定地參考「度量衡裝置/工具/系統」或「檢測裝置/工具/系統」,但此等術語可指相同或類似類型之工具、裝置或系統。例如,包含本發明之實施例之檢測或度量衡裝置可用於判定基板上或晶圓上之結構的特性。例如,包含本發明之實施例之檢測裝置或度量衡裝置可用於偵測基板之缺陷或基板上或晶圓上之結構的缺陷。在此實施例中,基板上之結構之所關注特性可能係關於結構中之缺陷、結構之特定部分的不存在或基板上或晶圓上之非所需結構的存在。
儘管特定地參考HXR、SXR及EUV電磁輻射,但應瞭解,本發明在上下文允許之情況下可藉由所有電磁輻射來實踐,該等電磁輻射包括無線電波、微波、紅外線、(可見)光、紫外線、X射線及伽馬射線。
雖然上文已描述特定實施例,但應瞭解,一個實施例中之特徵中的一或多者亦可存在於不同實施例中,且亦可組合兩個或更多個不同實施例中之特徵。
2:輻射投影儀 4:光譜偵測器 5:輻射 6:光譜 8:結構或剖面 10:反射或散射輻射 11:透射輻射 302:度量衡裝置 310:照明源/輻射源 312:照明系統/照明光學器件 314:參考偵測器 315:信號 316:基板支撐件 318:偵測系統/偵測器 320:度量衡處理單元/處理器/度量衡處理器 330:泵浦輻射源 332:氣體遞送系統 334:氣體供應件 336:電源 340:第一泵浦輻射 342:發射輻射/經濾光光束 344:濾光器件 350:檢測腔室 352:真空泵 356:經聚焦光束 360:反射輻射 372:位置控制器 374:感測器 382:光譜資料 397:繞射輻射/繞射光 398:偵測系統 399:信號 600:實施例/照明源 601:腔室 603:照明系統 605:輻射輸入 607:輻射輸出 609:氣體噴嘴 611:泵浦輻射 613:發射輻射 615:氣體流 617:開口 800:實施例/照明源 809:毛細管 811:泵浦輻射 813:發射輻射 815:氣體流 817:氣體入口 819:氣體出口 900:實施例/照明源 909:氣胞 911:泵浦輻射 913:發射輻射 915:氣體介質 1000:第一實施例 1002:毛細管 1004:導熱外表面 1006:散熱片 1008:導熱結構 1010:冷卻表面 1100:第二實施例 1102:毛細管 1103:空芯 1104:管 1106:冷卻線 1200:第三實施例 1202:毛細管 1203:空芯 1204:彈簧巢固持器 1206:彈簧巢 1300:第四實施例 1302:毛細管 1303:空芯 1304:冷卻線 B:輻射光束 BD:光束遞送系統 BK:烘烤板 C:目標部分 CH:冷卻板 CL:電腦系統 DE:顯影器 I:強度 IF:位置量測系統 IL:照明系統/照明器 I/O1:輸入/輸出埠 I/O2:輸入/輸出埠 LA:微影裝置 LACU:微影控制單元 LB:裝載匣 LC:微影單元/微影製造單元 M1:光罩對準標記 M2:光罩對準標記 MA:圖案化器件/光罩 MT:度量衡工具/散射計 P1:基板對準標記 P2:基板對準標記 PM:第一定位器 PS:投影系統 PU:處理單元 PW:第二定位器 RO:機器人 S:光點 SC:旋塗器 SC1:第一標度 SC2:第二標度 SC3:第三標度 SCS:監督控制系統 SO:輻射源 T:光罩支撐件/所關注結構/目標結構 Ta:目標 TCU:塗佈顯影系統控制單元 W:基板 WT:基板支撐件 λ:波長
現將參考隨附示意圖僅藉助於實例來描述實施例,在該等圖式中: -  圖1描繪微影裝置之示意性綜述; -  圖2描繪微影單元之示意性綜述; -  圖3描繪整體微影之示意性表示,其表示最佳化半導體製造之三種關鍵技術之間的合作; -  圖4示意性說明散射量測裝置; -  圖5示意性說明透射性散射量測裝置; -  圖6描繪使用EUV及/或SXR輻射之度量衡裝置之示意性表示; -  圖7描繪氣體噴嘴照明源之示意圖; -  圖8描繪毛細管照明源之示意圖; -  圖9描繪單元照明源之示意圖; -  圖10描繪第一實施例之實例之示意圖; -  圖11描繪第二實施例之實例之示意圖; -  圖12描繪第三實施例之實例之示意圖; -  圖13描繪第四實施例之實例之示意圖。
800:實施例/照明源
809:毛細管
811:泵浦輻射
813:發射輻射
815:氣體流
817:氣體入口
819:氣體出口

Claims (10)

  1. 一種用於接收一泵浦輻射(pump radiation)以在一相互作用空間與一氣體介質相互作用以產生一發射輻射之總成,該總成包含: 一物件,其具有一空芯(hollow core), 其中該空芯具有穿過該物件之一細長體積(elongated volume), 其中該相互作用空間位於該空芯內部,及 一管, 其中該物件置放於該管內部,且該管藉由多個連接件或藉由使用一液態金屬而連接至該物件。
  2. 如請求項1之總成,其中該管包含冷卻線。
  3. 如請求項2之總成,其中該等冷卻線係水冷卻線。
  4. 如請求項2或3之總成,其中該等冷卻線係沿著該細長體積之細長方向。
  5. 如請求項2或3之總成,其中該等冷卻線係分佈於該物件周圍。
  6. 如請求項5之總成,其中該等冷卻線係以徑向對稱分佈於該物件周圍。
  7. 如請求項1至3中任一項之總成,其中該管包含具有高導熱率之一或多種材料。
  8. 如請求項7之總成,其中該管包含錫、金、銅、鋁、碳化矽(SiC)、氧化鈹(BeO)、鎢、鋅、石墨、銀、及鉬銅合金(MoCu)中之一或多者。
  9. 如請求項1至3中任一項之總成,其中該管具有與該物件匹配之一熱膨脹係數。
  10. 一種輻射源,其包含如請求項1至9中任一項之總成。
TW112126644A 2021-06-14 2022-06-10 照明源及相關的方法裝置 TWI842595B (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
EP21179230 2021-06-14
EP21179230.4 2021-06-14
EP21190842.1A EP4134734A1 (en) 2021-08-11 2021-08-11 An illumination source and associated method apparatus
EP21190842.1 2021-08-11

Publications (2)

Publication Number Publication Date
TW202344936A true TW202344936A (zh) 2023-11-16
TWI842595B TWI842595B (zh) 2024-05-11

Family

ID=

Also Published As

Publication number Publication date
KR20240007276A (ko) 2024-01-16
TWI812269B (zh) 2023-08-11
TW202314391A (zh) 2023-04-01
WO2022263102A1 (en) 2022-12-22
EP4356194A1 (en) 2024-04-24

Similar Documents

Publication Publication Date Title
US10634490B2 (en) Determining edge roughness parameters
KR102507137B1 (ko) 검사 장치용 조명 소스, 검사 장치 및 검사 방법
TW202014805A (zh) 高階諧波產生輻射源
KR20210044289A (ko) 광학 시스템, 계측 장치 및 관련 방법
KR20230041761A (ko) 노광된 패턴을 측정하기 위한 계측 방법 및 관련 계측 장치
NL2024462A (en) An illumination source and associated metrology apparatus
US20220397834A1 (en) Measuring method and measuring apparatus
TWI812269B (zh) 照明源及相關的方法裝置
EP4134734A1 (en) An illumination source and associated method apparatus
KR20220035963A (ko) 광대역 방사선을 시준하기 위한 어셈블리
TWI755098B (zh) 照明源及相關聯度量衡設備
TWI814356B (zh) 光學總成、輻射源、用於光學元件之清潔方法、及相關的非暫時性電腦程式產品
TWI795975B (zh) 基於從繞射結構產生高階諧波之度量衡設備及度量衡方法
EP4336262A1 (en) Metrology method and associated metrology device
EP4321933A1 (en) A radiation source
EP4296779A1 (en) Method for aligning an illumination-detection system of a metrology device and associated metrology device
TW202401138A (zh) 用於過濾量測輻射之設備及方法
EP3839621A1 (en) An illumination source and associated metrology apparatus
EP3869270A1 (en) Assemblies and methods for guiding radiation
TW202414074A (zh) 用於對準度量衡裝置之照明偵測系統之方法及相關聯度量衡裝置
TW202403465A (zh) 度量衡裝置的參數重構方法及相關度量衡裝置
WO2023232397A1 (en) Method for aligning an illumination-detection system of a metrology device and associated metrology device
CN117178228A (zh) 清洁方法和相关联照射源量测设备
NL2024935A (en) Assemblies and methods for guiding radiation