TW202344183A - Electromagnetic wave absorber and sensing system - Google Patents

Electromagnetic wave absorber and sensing system Download PDF

Info

Publication number
TW202344183A
TW202344183A TW112106620A TW112106620A TW202344183A TW 202344183 A TW202344183 A TW 202344183A TW 112106620 A TW112106620 A TW 112106620A TW 112106620 A TW112106620 A TW 112106620A TW 202344183 A TW202344183 A TW 202344183A
Authority
TW
Taiwan
Prior art keywords
electromagnetic wave
absorption amount
wave absorber
layer
ghz
Prior art date
Application number
TW112106620A
Other languages
Chinese (zh)
Inventor
西山碩芳
正田亮
今井美穗
Original Assignee
日商凸版印刷股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日商凸版印刷股份有限公司 filed Critical 日商凸版印刷股份有限公司
Publication of TW202344183A publication Critical patent/TW202344183A/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/02Physical, chemical or physicochemical properties
    • B32B7/023Optical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/02Physical, chemical or physicochemical properties
    • B32B7/025Electric or magnetic properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q17/00Devices for absorbing waves radiated from an antenna; Combinations of such devices with active antenna elements or systems
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K9/00Screening of apparatus or components against electric or magnetic fields

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)
  • Laminated Bodies (AREA)
  • Aerials With Secondary Devices (AREA)

Abstract

This electromagnetic wave absorber is an interference-type electromagnetic wave absorber that comprises a resistance layer, a dielectric layer, and a reflective layer in this order, and that absorbs a specific frequency band of electromagnetic waves. The electromagnetic wave absorber exhibits a maximum absorption amount A0 of less than or equal to 15 dB in the frequency band, and satisfies at least one of expressions (1) and (2). (1): A0-A1 ≤ 8(dB) (2): A0-A2 ≤ 8(dB) (In expression (1) or (2), if the peak frequency when the amount of absorption is at a maximum is f0(GHz), A1 represents the amount of absorption (dB) at f0-7(GHz), and A2 represents the amount of absorption (dB) at f0+7(GHz).).

Description

電磁波吸收體及感測系統Electromagnetic wave absorber and sensing system

本揭露係有關電磁波吸收體及感測系統(sensing system)。This disclosure relates to electromagnetic wave absorbers and sensing systems.

近年來,無線LAN(Local Area Network;區域網路)等藉由無線通信進行的資訊傳輸技術係被利用在辦公室(office)、工廠、倉庫等當中。在如上述的辦公室等之中因來自外部的電波、複數個通信裝置之間的交互作用、或通信裝置與牆壁和地板等建築物的一部分之間的交互作用而發生之電波妨礙、干擾等電波障礙。為了防止上述的電波障礙,在辦公室等中,於牆壁、天花板或地板配設電磁波吸收體。In recent years, information transmission technology through wireless communication such as wireless LAN (Local Area Network) has been used in offices, factories, warehouses, etc. Radio wave obstruction, interference and other radio waves that occur in an office such as the one described above due to radio waves from the outside, interaction between a plurality of communication devices, or interaction between communication devices and parts of the building such as walls and floors. obstacles. In order to prevent the above-mentioned radio wave interference, electromagnetic wave absorbers are installed on walls, ceilings, or floors in offices and the like.

電磁波吸收體大致區分為干涉型與穿透型。干涉型的電磁波吸收體係藉由干涉使射入的電磁波與反射的電磁波相消來減少電磁波。穿透型的電磁波吸收體係利用具電磁波吸收能力的磁性體和介電體,藉由讓電磁波通過含有該等之層來減少電磁波。其中,尤其常使用干涉型的電磁波吸收體,因為無需進行吸收特定頻率的電磁波的介電體的材料設計,憑藉相應於介電係數之厚度的調整就能夠使任意頻率的電磁波的反射衰減。例如,下述專利文獻1係揭示依序具備電阻層、介電體層及反射層的干涉型的電磁波吸收體。該干涉型的電磁波吸收體係藉由將電阻層使用的材料之表面電阻值最佳化以確保在特定頻率有高吸收量。 [先前技術文獻] [專利文獻] Electromagnetic wave absorbers are roughly divided into interference type and penetration type. Interference-type electromagnetic wave absorption systems reduce electromagnetic waves by causing interference between incident electromagnetic waves and reflected electromagnetic waves to cancel them. Penetrating electromagnetic wave absorption systems utilize magnetic bodies and dielectrics with electromagnetic wave absorption capabilities to reduce electromagnetic waves by allowing electromagnetic waves to pass through layers containing these. Among them, interference-type electromagnetic wave absorbers are often used because there is no need to design a material for a dielectric that absorbs electromagnetic waves of a specific frequency. The reflection of electromagnetic waves of any frequency can be attenuated by adjusting the thickness corresponding to the dielectric coefficient. For example, the following Patent Document 1 discloses an interference type electromagnetic wave absorber including a resistive layer, a dielectric layer, and a reflective layer in this order. This interference type electromagnetic wave absorption system ensures high absorption at specific frequencies by optimizing the surface resistance value of the material used in the resistive layer. [Prior technical literature] [Patent Document]

專利文獻1:日本特開平10-13082號公報Patent Document 1: Japanese Patent Application Publication No. 10-13082

[發明欲解決之課題][Problem to be solved by the invention]

此外,近年來,因屬於社會課題的高齡化少子化的惡化和新型冠狀病毒(coronavirus)肺炎疫情的擴大,使用雷達(radar)技術進行的高齡單身生活者的安心照護系統、非接觸.非面對面的感測技術的需求急遽地升高。其中,運用毫米波(millimeter wave)波段的雷達進行的跌倒偵測、在/不在監測(monitoring)、人的呼吸和心跳的偵測等感測技術,在現在尤其受到矚目。設想為使用於上述用途的感測系統係將發送自雷達的特定頻段(例如60GHz至66GHz)分成複數個頻帶,將複數個頻帶分開使用,藉此進行位置資訊等的感測。In addition, in recent years, due to the worsening of the aging population and low birthrate, which are social issues, and the spread of the new coronavirus (coronavirus) pneumonia epidemic, safe care systems for elderly singles using radar technology and non-contact care systems have been developed. The demand for non-face-to-face sensing technology is rapidly increasing. Among them, sensing technologies such as fall detection, presence/absence monitoring, and human breathing and heartbeat detection using radar in the millimeter wave band are currently attracting particular attention. It is assumed that the sensing system used for the above-mentioned purposes divides a specific frequency band (for example, 60 GHz to 66 GHz) transmitted from the radar into a plurality of frequency bands, and uses the plurality of frequency bands separately to sense position information and the like.

然而,上述專利文獻1記載的電磁波吸收體係有下述的課題。 亦即,上述專利文獻1記載的電磁波吸收體係藉由將電阻層使用的材料之表面電阻值最佳化以確保在特定頻率有高吸收量,但在另一方面,隨著偏離特定頻率,吸收量亦急遽地減少。因此,當由雷達發送頻帶所構成的複數個頻帶之電磁波射入電磁波吸收體時,特定頻率的電磁波被設置在牆壁等的電磁波吸收體大量吸收,該頻率以外的電磁波則不會被充分吸收。結果,例如當發送自雷達的複數個頻帶的電磁波的強度為一定時,在雷達所接收的電磁波中,即使特定頻率以外的電磁波的強度大,特定頻率的電磁波的強度卻相當小。因此,在感測系統中,針對特定頻率的電磁波,信噪(S/N)比相當小,由於作為信號並不易辨識,故難以適切地進行感測。此處,可考慮在感測系統導入程式(program)來補正特定頻率的電磁波的強度,但該類程式需要複雜的程式設計(programming),故程式的開發要花費龐大的時間與成本(cost)。 However, the electromagnetic wave absorption system described in the above-mentioned Patent Document 1 has the following problems. That is, the electromagnetic wave absorption system described in the above-mentioned Patent Document 1 ensures a high absorption amount at a specific frequency by optimizing the surface resistance value of the material used for the resistance layer. However, on the other hand, the absorption decreases as the specific frequency deviates. The quantity also decreased rapidly. Therefore, when electromagnetic waves of a plurality of frequency bands constituted by the radar transmission band are incident on an electromagnetic wave absorber, electromagnetic waves of a specific frequency are largely absorbed by the electromagnetic wave absorber installed on walls or the like, while electromagnetic waves of other frequencies are not fully absorbed. As a result, for example, when the intensity of electromagnetic waves transmitted from a radar in a plurality of frequency bands is constant, among the electromagnetic waves received by the radar, even if the intensity of electromagnetic waves other than a specific frequency is high, the intensity of electromagnetic waves of a specific frequency is quite small. Therefore, in the sensing system, for electromagnetic waves of a specific frequency, the signal-to-noise (S/N) ratio is quite small, and since it is not easy to identify the signal as a signal, it is difficult to perform appropriate sensing. Here, you can consider introducing a program into the sensing system to correct the intensity of the electromagnetic wave at a specific frequency. However, this type of program requires complex programming, so the development of the program will take a huge amount of time and cost. .

本揭露係鑒於上述課題而所成,目的在於提供無需在感測系統導入需要複雜程式設計的程式就能夠適當地進行感測之電磁波吸收體及感測系統。 [用以解決課題之手段] The present disclosure is made in view of the above-mentioned issues, and aims to provide an electromagnetic wave absorber and a sensing system that can appropriately perform sensing without introducing a program that requires complex programming into the sensing system. [Means used to solve problems]

本案發明人等係針對產生上述課題的原因進行了研究。其結果,本案發明人等推測產生上述課題的原因在於,在發送自感測系統的雷達之特定頻帶中,特定頻率的電磁波被大量吸收,偏離該特定頻率的頻率的電磁波的吸收量小,故該特定頻帶中的電磁波的最大吸收量與最小吸收量之差變大。有鑒於此,本案發明人等為了將特定頻帶中的電磁波的最大吸收量與最小吸收量之差縮小,不斷致力研究,結果發現能夠藉由下述揭露解決上述課題。The inventors of the present case conducted research on the causes of the above-mentioned problems. As a result, the inventors of the present application speculated that the cause of the above-mentioned problem is that electromagnetic waves of a specific frequency are absorbed in a large amount in a specific frequency band of a radar transmitted from a sensing system, and electromagnetic waves of frequencies deviating from the specific frequency are absorbed in a small amount. The difference between the maximum absorption amount and the minimum absorption amount of electromagnetic waves in this specific frequency band becomes large. In view of this, the inventors of the present invention have been conducting research to reduce the difference between the maximum absorption amount and the minimum absorption amount of electromagnetic waves in a specific frequency band. As a result, they have found that the above problems can be solved through the following disclosure.

亦即,本揭露係一種電磁波吸收體,係依序具備電阻層、介電體層及反射層,吸收特定頻帶的電磁波之干涉型電磁波吸收體;在前述頻帶中展現15dB以下的最大吸收量A 0且滿足下式(1)及下式(2)的至少一者。 A 0-A 1≦8(dB) … (1) A 0-A 2≦8(dB) … (2) (在上式(1)或上式(2)中,當設吸收量為最大時之峰值(peak)頻率為f 0(GHz)時,A 1代表在f 0-7(GHz)的吸收量(dB),A 2代表在f 0+7(GHz)的吸收量(dB)。) That is to say, the present disclosure is an electromagnetic wave absorber, which is an interference type electromagnetic wave absorber that has a resistive layer, a dielectric layer and a reflective layer in sequence, and absorbs electromagnetic waves in a specific frequency band; it exhibits a maximum absorption amount A 0 of less than 15dB in the aforementioned frequency band. And satisfy at least one of the following formula (1) and the following formula (2). A 0 -A 1 ≦8(dB) … (1) A 0 -A 2 ≦8(dB) … (2) (In the above equation (1) or the above equation (2), when the absorption amount is assumed to be the maximum When the peak frequency is f 0 (GHz), A 1 represents the absorption amount (dB) at f 0 -7 (GHz), and A 2 represents the absorption amount (dB) at f 0 +7 (GHz). )

依據該電磁波吸收體,在具備發送且接收被電磁波吸收體吸收的頻帶的電磁波,且能夠對所接收的電磁波進行處理的電磁波發送/接收裝置之感測系統中,當發送自電磁波發送/接收裝置的特定頻帶之電磁波從電阻層側射入時,電磁波便通過電阻層、介電體層,在反射層反射。此時,在介電體層中,由於射入的電磁波與反射的反射波相消,藉此而吸收電磁波,故特定頻率的電磁波的吸收量成為最大。惟此時,藉由電磁波吸收體展現15dB以下的最大吸收量且滿足上式(1)及上式(2)的至少一者,能夠在上述頻帶將最大吸收量與最小吸收量之差縮小。因此,當發送自電磁波發送/接收裝置的頻帶的電磁波的強度為一定時,在電磁波發送/接收裝置接收的電磁波中,特定頻率以外的電磁波的強度能維持在高強度,使特定頻率的電磁波強度的下降充分獲得抑制。因此,在感測系統中,針對特定頻率的電磁波,信噪(S/N)比的下降獲得抑制,由於作為信號變得易於辨識,故無需在感測系統導入需要複雜程式設計的程式即能夠適當地進行感測。According to this electromagnetic wave absorber, in a sensing system including an electromagnetic wave transmitting/receiving device that transmits and receives electromagnetic waves in a frequency band absorbed by the electromagnetic wave absorber and can process the received electromagnetic waves, when the electromagnetic wave transmitting/receiving device transmits When an electromagnetic wave of a specific frequency band is injected from the resistive layer side, the electromagnetic wave passes through the resistive layer and the dielectric layer and is reflected on the reflective layer. At this time, in the dielectric layer, the incident electromagnetic wave and the reflected reflected wave cancel each other, thereby absorbing the electromagnetic wave. Therefore, the absorption amount of the electromagnetic wave of a specific frequency becomes maximum. However, at this time, the difference between the maximum absorption amount and the minimum absorption amount can be reduced in the above frequency band by the electromagnetic wave absorber exhibiting a maximum absorption amount of 15 dB or less and satisfying at least one of the above equations (1) and (2). Therefore, when the intensity of the electromagnetic wave in the frequency band transmitted from the electromagnetic wave transmitting/receiving device is constant, among the electromagnetic waves received by the electromagnetic wave transmitting/receiving device, the intensity of the electromagnetic wave other than the specific frequency can be maintained at a high intensity, so that the intensity of the electromagnetic wave of the specific frequency can be maintained The decline is fully suppressed. Therefore, in the sensing system, the decrease in the signal-to-noise (S/N) ratio for electromagnetic waves of a specific frequency is suppressed, and since the signal becomes easily identifiable, there is no need to introduce a program that requires complex programming into the sensing system. Sensing appropriately.

較佳為,在本揭露的電磁波吸收體中,藉由下式(3)至下式(5)算出的反射係數Γ的絕對值係在峰值頻率f 0(GHz)為3.12至5.62。 [算式1] (在上式(3)至上式(5)中,Γ代表反射係數,Z L代表從前述電阻層中與前述反射層為相反側的面看進去的輸入阻抗(impedance)(Ω/□),Z 0代表真空阻抗(Ω/□),Z´ L代表從前述電阻層的前述反射層側往前述反射層看進去的輸入阻抗(Ω/□),R代表前述電阻層的表面電阻值(Ω/□),ε r代表前述介電體層的複數相對介電係數,d代表前述介電體層的厚度(μm),λ代表射入的電磁波的波長(μm)。) 另外, 係表示Γ、Z L、Z´ L及ε r為複數。 Preferably, in the electromagnetic wave absorber of the present disclosure, the absolute value of the reflection coefficient Γ calculated by the following equation (3) to the following equation (5) is 3.12 to 5.62 at the peak frequency f 0 (GHz). [Formula 1] (In the above equations (3) to (5), Γ represents the reflection coefficient, and Z L represents the input impedance (impedance) (Ω/□) viewed from the surface of the resistance layer opposite to the reflection layer. Z 0 represents the vacuum impedance (Ω/□), Z´ L represents the input impedance (Ω/□) viewed from the reflective layer side of the resistive layer toward the reflective layer, and R represents the surface resistance value of the resistive layer (Ω /□), ε r represents the complex relative dielectric coefficient of the aforementioned dielectric layer, d represents the thickness of the aforementioned dielectric layer (μm), and λ represents the wavelength of the incident electromagnetic wave (μm).) In addition, and The system indicates that Γ, Z L , Z´ L and ε r are complex numbers.

此時,藉由反射係數Γ的絕對值在峰值頻率f 0(GHz)中為5.62以下,使特定頻帶中的特定頻率的電磁波能被更加充分地吸收的關係,故能夠更加抑制電波障礙。此外,當反射係數Γ的絕對值在峰值頻率f 0(GHz)為3.12以上時,在上述頻帶中最大吸收量與最小吸收量之差能進一步縮小。因此,當發送自電磁波發送/接收裝置的頻帶的電磁波的強度為一定時,在電磁波發送/接收裝置接收的電磁波中,在特定頻率以外的電磁波的強度維持在高強度下,能進一步抑制特定頻率電磁波之強度下降。因此,在感測系統中,針對特定頻率的電磁波,信噪(S/N)比的下降進一步獲得抑制,由於作為信號變得更加易於辨識,故無需在感測系統導入需要複雜程式設計的程式即能夠進一步適當地進行感測。 At this time, since the absolute value of the reflection coefficient Γ is 5.62 or less at the peak frequency f 0 (GHz), the electromagnetic wave of the specific frequency in the specific frequency band can be more fully absorbed, so that the radio wave interference can be further suppressed. In addition, when the absolute value of the reflection coefficient Γ is 3.12 or more at the peak frequency f 0 (GHz), the difference between the maximum absorption amount and the minimum absorption amount in the above-mentioned frequency band can be further reduced. Therefore, when the intensity of the electromagnetic wave in the frequency band transmitted from the electromagnetic wave transmitting/receiving device is constant, the intensity of electromagnetic waves other than the specific frequency among the electromagnetic waves received by the electromagnetic wave transmitting/receiving device is maintained at a high intensity, and the specific frequency can be further suppressed. The intensity of electromagnetic waves decreases. Therefore, in the sensing system, for electromagnetic waves of a specific frequency, the decrease in the signal-to-noise (S/N) ratio is further suppressed. Since the signal becomes easier to identify, there is no need to introduce programs that require complex programming into the sensing system. That is, sensing can be performed more appropriately.

較佳為,上述電磁波吸收體係滿足下式(6)及下式(7)的至少一者。 A 0-B 1≦0.5(dB)…(6) A 0-B 2≦0.5(dB)…(7) (在上式(6)或上式(7)中,B 1代表在f 0-2(GHz)的吸收量(dB),B 2代表在f 0+2(GHz)的吸收量(dB)。) Preferably, the electromagnetic wave absorption system satisfies at least one of the following formula (6) and the following formula (7). A 0 -B 1 ≦0.5(dB)…(6) A 0 -B 2 ≦0.5(dB)…(7) (In the above equation (6) or the above equation (7), B 1 represents f 0 - The absorption amount (dB) at 2 (GHz), B 2 represents the absorption amount (dB) at f 0 +2 (GHz).)

此時,在感測系統中,針對特定頻率的電磁波,更進一步抑制信噪(S/N)比的下降,由於作為信號更進一步變得易於辨識,故無需在感測系統導入需要複雜程式設計的程式即能夠再更進一步適當地進行感測。 較佳為,上述電磁波吸收體在滿足前述式(6)及前述式(7)雙方。 此時,電磁波吸收體能夠在感測系統所使用的頻率中,將特定頻帶中的電磁波的最大吸收量與最小吸收量之差(以下,或亦稱為「吸收量之差」)縮小。 At this time, in the sensing system, for electromagnetic waves of specific frequencies, the decrease in the signal-to-noise (S/N) ratio is further suppressed, and since the signal becomes easier to identify, there is no need to introduce complex programming in the sensing system. The program can then go one step further and perform sensing appropriately. Preferably, the electromagnetic wave absorber satisfies both the above-mentioned equation (6) and the above-mentioned equation (7). At this time, the electromagnetic wave absorber can reduce the difference between the maximum absorption amount and the minimum absorption amount of electromagnetic waves in a specific frequency band (hereinafter, also referred to as the "absorption amount difference") at the frequency used by the sensing system.

較佳為,在上述電磁波吸收體中,前述介電體層的複數相對介電係數的實部為10以上。Preferably, in the electromagnetic wave absorber, the real part of the complex relative permittivity of the dielectric layer is 10 or more.

此時,能夠提高介電體層的介電係數,由於能夠減少介電體層的厚度,故能夠使電磁波吸收體更加薄型化。 上述電磁波吸收體亦可在前述頻帶中展現3dB以上的最大吸收量A 0。 較佳為,上述電磁波吸收體以滿足前述式(1)及前述式(2)雙方。 此時,電磁波吸收體能夠簡易地以良好精度進行感測。 In this case, the dielectric coefficient of the dielectric layer can be increased, and the thickness of the dielectric layer can be reduced, so that the electromagnetic wave absorber can be made even thinner. The above-mentioned electromagnetic wave absorber may also exhibit a maximum absorption amount A 0 of 3dB or more in the aforementioned frequency band. Preferably, the electromagnetic wave absorber satisfies both the above-mentioned formula (1) and the above-mentioned formula (2). At this time, the electromagnetic wave absorber can easily perform sensing with good accuracy.

此外,本揭露係為一種感測系統,其具備:上述之電磁波吸收體;及電磁波發送/接收裝置,係發送/接收被前述電磁波吸收體吸收的前述頻帶之電磁波,且能夠對所接收的電磁波進行處理。In addition, the present disclosure is a sensing system, which is provided with: the above-mentioned electromagnetic wave absorber; and an electromagnetic wave transmitting/receiving device, which transmits/receives the electromagnetic wave in the aforementioned frequency band absorbed by the aforementioned electromagnetic wave absorber, and can detect the received electromagnetic wave. for processing.

依據該感測系統,當發送自電磁波發送/接收裝置的特定頻帶的電磁波從電阻層側射入時,電磁波便通過電阻層、介電體層,在反射層反射。此時,在介電體層中,由於射入的電磁波與反射的反射波相消而吸收電磁波,故特定頻率的電磁波的吸收量成為最大。惟此時,藉由最大吸收量為15dB以下且滿足上式(1)及上式(2)的至少一者,能夠在上述頻帶中將最大吸收量與最小吸收量之差縮小。因此,當發送自電磁波發送/接收裝置的頻帶的電磁波的強度為一定時,在以電磁波發送/接收裝置接收的電磁波中,特定頻率以外的電磁波的強度維持在高的強度下,特定頻率電磁波的強度下降能充分獲得抑制。因此,在感測系統中,針對特定頻率的電磁波,信噪(S/N)比的下降獲得抑制,由於作為信號變得易於辨識,故無需導入需要複雜程式設計的程式就能夠適當地進行感測。 在上述感測系統中,前述電磁波發送/接收裝置亦可為雷達裝置。 較佳為,在上述感測系統中,稱前述雷達裝置為頻率調變連續波雷達裝置。 此時,即使沒有來自雷達裝置的高發送功率仍能夠實現高信噪(S/N)比。 [發明之效果] According to this sensing system, when an electromagnetic wave of a specific frequency band transmitted from the electromagnetic wave transmitting/receiving device is incident from the resistive layer side, the electromagnetic wave passes through the resistive layer and the dielectric layer and is reflected on the reflective layer. At this time, in the dielectric layer, the incident electromagnetic wave and the reflected reflected wave are destructive and the electromagnetic wave is absorbed. Therefore, the absorption amount of the electromagnetic wave of a specific frequency becomes maximum. However, in this case, by having the maximum absorption amount be 15 dB or less and satisfying at least one of the above equations (1) and (2), the difference between the maximum absorption amount and the minimum absorption amount can be reduced in the above frequency band. Therefore, when the intensity of the electromagnetic wave in the frequency band transmitted from the electromagnetic wave transmitting/receiving apparatus is constant, among the electromagnetic waves received by the electromagnetic wave transmitting/receiving apparatus, the intensity of the electromagnetic wave other than the specific frequency is maintained at a high intensity, and the electromagnetic wave of the specific frequency is maintained at a high intensity. The intensity drop can be fully suppressed. Therefore, in the sensing system, the decrease in the signal-to-noise (S/N) ratio for electromagnetic waves of a specific frequency is suppressed, and since the signal becomes easily identifiable, appropriate sensing can be performed without introducing a program that requires complex programming. Test. In the above sensing system, the electromagnetic wave transmitting/receiving device may also be a radar device. Preferably, in the above sensing system, the aforementioned radar device is called a frequency modulated continuous wave radar device. At this time, a high signal-to-noise (S/N) ratio can be achieved even without high transmission power from the radar device. [Effects of the invention]

依據本揭露,能提供無需在感測系統導入需要複雜程式設計的程式即能夠令感測適當地進行之電磁波吸收體及感測系統。According to the present disclosure, it is possible to provide an electromagnetic wave absorber and a sensing system that can properly perform sensing without introducing a program that requires complex programming into the sensing system.

[用以實施發明的形態][Form used to implement the invention]

以下,針對本揭露的實施形態,詳細進行說明。Hereinafter, embodiments of the present disclosure will be described in detail.

<電磁波吸收體> 首先,針對本揭露的電磁波吸收體的實施形態,參照圖1進行說明。圖1係顯示本揭露的電磁波吸收體的一實施形態之剖面圖。 <Electromagnetic wave absorber> First, an embodiment of the electromagnetic wave absorber of the present disclosure will be described with reference to FIG. 1 . FIG. 1 is a cross-sectional view showing an embodiment of the electromagnetic wave absorber of the present disclosure.

如圖1所示,電磁波吸收體100乃係吸收特定頻帶電磁波的干涉型電磁波吸收體,依序具備電阻層10、介電體層20及反射層30。另外,電阻層10與介電體層20可直接接著,亦可藉由黏著劑層來接著。同樣地,介電體層20與反射層30可直接接著,亦可藉由黏著劑層而接著。As shown in FIG. 1 , the electromagnetic wave absorber 100 is an interference type electromagnetic wave absorber that absorbs electromagnetic waves in a specific frequency band, and includes a resistive layer 10 , a dielectric layer 20 and a reflective layer 30 in this order. In addition, the resistive layer 10 and the dielectric layer 20 may be directly connected or connected through an adhesive layer. Similarly, the dielectric layer 20 and the reflective layer 30 can be directly connected or connected through an adhesive layer.

電磁波吸收體100係在上述頻帶展現15dB以下的最大吸收量A 0且滿足下式(1)及下式(2)的至少一者。 A 0-A 1≦8(dB) … (1) A 0-A 2≦8(dB) … (2) (在上式(1)或上式(2)中,當設吸收量為最大時的峰值頻率為f 0(GHz)時,A 1代表在f 0-7(GHz)的吸收量(dB),A 2代表在f 0+7(GHz)的吸收量(dB)。) The electromagnetic wave absorber 100 exhibits a maximum absorption amount A 0 of 15 dB or less in the above-mentioned frequency band and satisfies at least one of the following equations (1) and (2). A 0 -A 1 ≦8(dB) … (1) A 0 -A 2 ≦8(dB) … (2) (In the above equation (1) or the above equation (2), when the absorption amount is assumed to be the maximum When the peak frequency is f 0 (GHz), A 1 represents the absorption amount (dB) at f 0 -7 (GHz), and A 2 represents the absorption amount (dB) at f 0 +7 (GHz).)

依據電磁波吸收體100,其具備發送/接收被電磁波吸收體100吸收的頻帶之電磁波,在能夠對所接收的電磁波進行處理的電磁波發送/接收裝置之感測系統中,當發送自電磁波發送/接收裝置的特定頻帶之電磁波從電阻層10側射入時,電磁波通過電阻層10、介電體層20,在反射層30反射。此時,在介電體層20中,由於射入的電磁波與反射的反射波相消,藉此而吸收電磁波,故特定頻率的電磁波的吸收量成為最大。惟此時,藉由展現15dB以下的最大吸收量,且滿足上式(1)及上式(2)的至少一者,能夠在上述頻帶中將最大吸收量與最小吸收量之差縮小。因此,當發送自電磁波發送/接收裝置的頻帶之電磁波的強度為一定時,在以電磁波發送/接收裝置接收的電磁波中,特定頻率以外的電磁波的強度維持在高的強度下,特定頻率電磁波的強度下降能充分獲得抑制。因此,在感測系統中,針對特定頻率的電磁波,信噪(S/N)比的下降能獲得抑制,由於作為信號變得易於辨識,故無需在感測系統導入需要複雜程式設計的程式即能夠令感測適當地進行。According to the electromagnetic wave absorber 100, which is capable of transmitting/receiving electromagnetic waves in the frequency band absorbed by the electromagnetic wave absorber 100, in the sensing system of the electromagnetic wave transmitting/receiving device capable of processing the received electromagnetic waves, when the electromagnetic wave transmitting/receiving device is sent from When electromagnetic waves in a specific frequency band of the device are incident from the resistive layer 10 side, the electromagnetic waves pass through the resistive layer 10 and the dielectric layer 20 and are reflected on the reflective layer 30 . At this time, in the dielectric layer 20 , the incident electromagnetic wave and the reflected reflected wave cancel each other, thereby absorbing the electromagnetic wave. Therefore, the absorption amount of the electromagnetic wave of a specific frequency becomes maximum. However, at this time, by exhibiting a maximum absorption amount of 15 dB or less and satisfying at least one of the above equations (1) and (2), the difference between the maximum absorption amount and the minimum absorption amount can be reduced in the above frequency band. Therefore, when the intensity of the electromagnetic wave in the frequency band transmitted from the electromagnetic wave transmitting/receiving apparatus is constant, the intensity of electromagnetic waves other than the specific frequency among the electromagnetic waves received by the electromagnetic wave transmitting/receiving apparatus is maintained at a high intensity, and the electromagnetic wave of the specific frequency is maintained at a high intensity. The intensity drop can be fully suppressed. Therefore, in the sensing system, for electromagnetic waves of a specific frequency, the decrease in the signal-to-noise (S/N) ratio can be suppressed. Since the signal becomes easy to identify, there is no need to introduce a program that requires complex programming into the sensing system. Sensing can be performed appropriately.

以下,針對電阻層10、介電體層20及反射層30,詳細進行說明。Hereinafter, the resistive layer 10 , the dielectric layer 20 and the reflective layer 30 will be described in detail.

(電阻層) 電阻層10係使從外側射入的電磁波到達介電體層20之用的層。電阻層10一般而言係使阻抗匹配(impedance matching)實現之用的層,但在本揭露中係作為使阻抗匹配不實現之用的層而發揮功能。 (resistance layer) The resistive layer 10 is a layer that allows electromagnetic waves incident from the outside to reach the dielectric layer 20 . The resistance layer 10 is generally a layer for realizing impedance matching, but in the present disclosure, it functions as a layer for not realizing impedance matching.

電阻層10係含有以導電性無機材料及導電性有機材料的至少一者所構成的層。就導電性無機材料而言,例如,可舉出從由氧化銦錫(ITO;Indium Tin Oxide)、氧化銦鋅(IZO;Indium Zinc Oxide)、氧化鋁鋅(AZO;Aluminum Zinc Oxide)、碳(carbon)、石墨烯(graphene)、Ag、Al、Au、Pt、Pd、Cu、Co、Cr、In、Ag-Cu、Cu-Au及Ni組成的群中選擇一者以上。導電性無機材料的形狀並無特別限定,例如為粒子狀或線(wire)狀。就導電性有機材料而言,可舉出聚噻吩(polythiophene)衍生物、聚乙炔(polyacetylene)衍生物、聚苯胺(polyaniline)衍生物及聚吡咯(polypyrrole)衍生物。特別就導電性有機材料而言,從柔軟性、成膜性、安定性、表面電阻的觀點來看,較佳為含有聚乙烯基二氧噻吩(polyethylenedioxythiophene;PEDOT)的導電性聚合物(polymer)。電阻層10亦可為含有聚乙烯基二氧噻吩(PEDOT)與聚苯乙烯磺酸(polystyrene sulfonate;PPS)的混合物(PEDOT/PSS)。電阻層10係可僅以導電性無機材料及導電性有機材料的至少一者構成的層所構成,亦可為將由導電性無機材料及導電性有機材料的至少一者構成的層設在基材上而成。就基材而言,可舉出聚對苯二甲酸乙二酯(polyethylene terephthalate;PET)、聚乙烯(polyethylene;PE)、聚丙烯(polypropylene;PP)等。特別從柔軟性、成膜性、安定性、表面電阻的觀點來看,電阻層10較佳為,以形成由含有PEDOT的導電性聚合物構成的膜而成之PET膜所構成。The resistance layer 10 includes a layer made of at least one of a conductive inorganic material and a conductive organic material. Examples of conductive inorganic materials include indium tin oxide (ITO; Indium Tin Oxide), indium zinc oxide (IZO; Indium Zinc Oxide), aluminum zinc oxide (AZO; Aluminum Zinc Oxide), carbon ( Select one or more from the group consisting of carbon, graphene, Ag, Al, Au, Pt, Pd, Cu, Co, Cr, In, Ag-Cu, Cu-Au and Ni. The shape of the conductive inorganic material is not particularly limited, and may be in the form of particles or wires, for example. Examples of conductive organic materials include polythiophene derivatives, polyacetylene derivatives, polyaniline derivatives, and polypyrrole derivatives. Especially for conductive organic materials, from the viewpoint of flexibility, film-forming properties, stability, and surface resistance, conductive polymers (polymers) containing polyethylenedioxythiophene (PEDOT) are preferred. . The resistance layer 10 may also be a mixture (PEDOT/PSS) containing polyethylenedioxythiophene (PEDOT) and polystyrene sulfonate (PPS). The resistance layer 10 may be composed of only a layer composed of at least one of a conductive inorganic material and a conductive organic material, or a layer composed of at least one of a conductive inorganic material and a conductive organic material may be provided on the base material Made from above. Examples of the base material include polyethylene terephthalate (PET), polyethylene (PE), polypropylene (PP), and the like. Particularly from the viewpoints of flexibility, film-forming properties, stability, and surface resistance, the resistance layer 10 is preferably composed of a PET film formed of a conductive polymer containing PEDOT.

電阻層10的表面電阻值舉例而言能夠依導電性無機材料或導電性有機材料的選定、電阻層10的厚度的調節而適宜設定。例如電阻層10的表面電阻值能夠使用Loresta-GP MCP-T610(商品名,三菱Chemical Analytech公司製)進行量測。電阻層10可為單一層,亦可為由複數層組成的積層體。The surface resistance value of the resistive layer 10 can be appropriately set according to the selection of the conductive inorganic material or the conductive organic material and the adjustment of the thickness of the resistive layer 10 , for example. For example, the surface resistance value of the resistive layer 10 can be measured using Loresta-GP MCP-T610 (trade name, manufactured by Mitsubishi Chemical Analytech Co., Ltd.). The resistive layer 10 may be a single layer or a laminate composed of a plurality of layers.

電阻層10的厚度(膜厚)係由相應於表面電阻值R 1而適宜決定,只要電阻層10以無機材料構成,則較佳為設定在0.1nm至100nm的範圍內,更佳為設定在1nm至50nm的範圍內。當膜厚為0.1nm以上時,電阻層10便容易以均一的膜的形式形成,有能夠更充分地達成作為電阻層10的功能之傾向。另一方面,當膜厚為100nm以下時,電磁波吸收體100便能夠保持充分的撓性(flexibility),能夠更確實地防止電阻層10在製膜後因彎折、拉伸等外在原因使薄膜即電阻層10產生龜裂,且有抑制因給基材的熱造成的損傷和收縮之傾向。若電阻層10為以有機材料構成,則電阻層10的厚度(膜厚)較佳為設定在0.1μm至2.0μm的範圍內,更佳為設定在0.1μm至0.4μm的範圍內。當膜厚為0.1μm以上時,電阻層10便能夠以均一的膜的形式形成,有能夠更充分地達成作為電阻層10的功能之傾向。另一方面,當膜厚為2.0μm以下,便能夠使電磁波吸收體100保持充分的撓性,有能夠更確實地防止在電阻層10製膜後因彎折、拉伸等外在原因使薄膜即電阻層10產生龜裂之傾向。 The thickness (film thickness) of the resistance layer 10 is appropriately determined according to the surface resistance value R1 . As long as the resistance layer 10 is made of an inorganic material, it is preferably set in the range of 0.1 nm to 100 nm, and more preferably set in the range of 0.1 nm to 100 nm. Within the range of 1nm to 50nm. When the film thickness is 0.1 nm or more, the resistive layer 10 is easily formed as a uniform film, and the function of the resistive layer 10 tends to be more fully achieved. On the other hand, when the film thickness is 100 nm or less, the electromagnetic wave absorber 100 can maintain sufficient flexibility, and can more reliably prevent the resistive layer 10 from being damaged due to external reasons such as bending and stretching after film formation. The resistive layer 10, which is a thin film, tends to crack and suppress damage and shrinkage due to heat applied to the base material. If the resistance layer 10 is made of an organic material, the thickness (film thickness) of the resistance layer 10 is preferably set in the range of 0.1 μm to 2.0 μm, and more preferably is set in the range of 0.1 μm to 0.4 μm. When the film thickness is 0.1 μm or more, the resistive layer 10 can be formed as a uniform film, and the function of the resistive layer 10 tends to be more fully achieved. On the other hand, when the film thickness is 2.0 μm or less, the electromagnetic wave absorber 100 can maintain sufficient flexibility, and it is possible to more reliably prevent the film from being damaged due to external reasons such as bending and stretching after the resistive layer 10 is formed. That is, the resistance layer 10 tends to have cracks.

(介電體層) 介電體層20係藉由干涉使特定頻率的電磁波的入射波與反射波相消而使射入的電磁波衰減之用的層。介電體層20含有樹脂。就樹脂而言,例如,可舉出(甲基)丙烯酸((meth)acrylic)樹脂、聚胺基甲酸酯(polyurethane)樹脂、聚酯(polyester)樹脂、聚乙烯樹脂、聚碳酸酯(polycarbonate)樹脂、聚丙烯樹脂、聚苯乙烯樹脂、聚醯胺(polyamide)樹脂、聚乙烯甲醛(polyvinyl formal)樹脂、聚氯乙烯(polyvinyl chloride)樹脂、聚丙烯腈(polyacrylonitrile)樹脂、聚甲基丙烯酸甲酯(polymethylmethacrylate)樹脂、聚縮醛(polyacetal)樹脂、聚偏二氟乙烯(polyvinylidene fluoride)樹脂、環氧(epoxy)樹脂、酚(phenol)樹脂、尿素(urea)樹脂、聚氯丁二烯(polychloroprene)樹脂。其中,由優異的成形性來看,就樹脂而言,尤佳為(甲基)丙烯酸酯樹脂、聚胺基甲酸酯、聚酯、聚乙烯、聚碳酸酯、聚丙烯、聚苯乙烯、聚醯胺或彼等兩種以上的混合樹脂。特別是當樹脂的介電係數高時,能夠使介電體粒子的添加量減少,由於能夠實現(1)薄膜化、(2)成形性、(3)低成本,因此,就樹脂而言,較佳為(甲基)丙烯酸酯樹脂、聚胺基甲酸酯樹脂或彼等的混合樹脂。 (dielectric layer) The dielectric layer 20 is a layer for attenuating the incident electromagnetic wave by destructing the incident wave and the reflected wave of the electromagnetic wave of a specific frequency through interference. Dielectric layer 20 contains resin. Examples of the resin include (meth)acrylic resin, polyurethane resin, polyester resin, polyethylene resin, and polycarbonate. ) resin, polypropylene resin, polystyrene resin, polyamide resin, polyvinyl formal resin, polyvinyl chloride resin, polyacrylonitrile resin, polymethacrylic acid Methylmethacrylate resin, polyacetal resin, polyvinylidene fluoride resin, epoxy resin, phenol resin, urea resin, polychloroprene (polychloroprene) resin. Among them, in terms of resins, (meth)acrylate resin, polyurethane, polyester, polyethylene, polycarbonate, polypropylene, polystyrene, Polyamide or a mixture of two or more of them. In particular, when the dielectric coefficient of the resin is high, the amount of dielectric particles added can be reduced, and (1) thin film, (2) formability, and (3) low cost can be achieved. Therefore, in terms of resin, Preferred are (meth)acrylate resin, polyurethane resin or a mixed resin thereof.

介電體層20亦可進一步含有具有比樹脂的相對介電係數更大的相對介電係數之介電體粒子。就介電體粒子而言,從分散的安定性及介電體層20的高介電係數化的觀點來看,較佳為無機化合物。就無機化合物而言,較佳為無機氧化物。就無機氧化物而言,可舉出鈦酸鋇、氧化鈦、氧化鋅、氧化鋁及氧化鋯。其中,就無機氧化物而言,從使用時的省空間(sapce)化和卷對卷成形(Roll to Roll)的加工性、彎曲剛性的觀點來看,尤佳為鈦酸鋇、氧化鈦或氧化鋁。The dielectric layer 20 may further contain dielectric particles having a relative dielectric coefficient greater than that of the resin. Regarding the dielectric particles, inorganic compounds are preferred from the viewpoint of dispersion stability and high dielectric constant of the dielectric layer 20 . As an inorganic compound, an inorganic oxide is preferable. Examples of inorganic oxides include barium titanate, titanium oxide, zinc oxide, aluminum oxide and zirconium oxide. Among them, among the inorganic oxides, barium titanate, titanium oxide or aluminum oxide.

介電體層20的相對介電係數雖無特別限制,但從介電體層20的薄型化的觀點來看,愈大愈佳。具體而言,介電體層20的相對介電係數係較佳為10.0以上,更佳為15.0以上。Although the relative dielectric coefficient of the dielectric layer 20 is not particularly limited, from the viewpoint of thinning the dielectric layer 20 , the larger the better. Specifically, the relative permittivity of the dielectric layer 20 is preferably 10.0 or more, more preferably 15.0 or more.

介電體層20的複數相對介電係數的實部並無特別限制,較佳為10以上,更佳為15.0以上。當介電體層20的複數相對介電係數的實部為10以上時,能夠提高介電體層20的介電係數,從而能夠減少介電體層20的厚度,故能夠使電磁波吸收體100更加薄型化。惟,介電體層20的複數相對介電係數的實部係較佳為30.0以下,更佳為20.0以下。藉由介電體層20的複數相對介電係數的實部為20.0以下,能夠使介電體層具有更加充分的強度。The real part of the complex relative permittivity of the dielectric layer 20 is not particularly limited, but is preferably 10 or more, and more preferably 15.0 or more. When the real part of the complex relative dielectric coefficient of the dielectric layer 20 is 10 or more, the dielectric coefficient of the dielectric layer 20 can be increased, and the thickness of the dielectric layer 20 can be reduced. Therefore, the electromagnetic wave absorber 100 can be made thinner. . However, the real part of the complex relative permittivity of the dielectric layer 20 is preferably 30.0 or less, more preferably 20.0 or less. When the real part of the complex relative permittivity of the dielectric layer 20 is 20.0 or less, the dielectric layer can have more sufficient strength.

介電體層20的厚度係相應於電磁波吸收體100中應設定的最大吸收量的值做適當調整,較佳為20μm以上,更佳為50μm以上。將介電體層20的厚度設為50μm以上能使介電體層20變得更不易破損。The thickness of the dielectric layer 20 is appropriately adjusted according to the value of the maximum absorption amount that should be set in the electromagnetic wave absorber 100, and is preferably 20 μm or more, and more preferably 50 μm or more. Setting the thickness of the dielectric layer 20 to 50 μm or more can make the dielectric layer 20 less likely to be damaged.

惟,介電體層20的厚度較佳為1000μm以下,更佳為400μm以下。此時,在將介電體層20與電阻層10和反射層30進行積層時,不易發生皺褶、隧道效應(tunneling)、脫層(delamination)等現象。However, the thickness of the dielectric layer 20 is preferably 1000 μm or less, more preferably 400 μm or less. At this time, when the dielectric layer 20, the resistive layer 10, and the reflective layer 30 are laminated, phenomena such as wrinkles, tunneling, and delamination are less likely to occur.

(反射層) 反射層30係使從介電體層20射入的電磁波反射到達介電體層20之用的層。例如,反射層30為含有以導電性無機材料及導電性有機材料的至少一者構成的層。就導電性無機材料而言,例如,可舉出從由氧化銦錫(ITO)、氧化銦鋅(IZO)、氧化鋁鋅(AZO)、碳、石墨烯、Ag、Al、Au、Pt、Pd、Cu、Co、Cr、In、Ag-Cu、Cu-Au及Ni組成的群中選擇一者以上。導電性無機材料的形狀並無特別限定,例如為粒子狀或線狀。就導電性有機材料而言,可舉出聚噻吩衍生物、聚乙炔衍生物、聚苯胺衍生物及聚吡咯衍生物。反射層30可僅以導電性無機材料及導電性有機材料的至少一者構成的層所構成,將由導電性無機材料及導電性有機材料至少一者構成的層設在基材上而成亦可。就基材而言,可舉出聚對苯二甲酸乙二酯(PET)、聚乙烯(PE)、聚丙烯(PP)等。特別從柔軟性、成膜性、安定性、表面電阻的觀點來看,反射層30較佳為以有鋁蒸鍍膜形成的PET膜所構成。反射層30的表面電阻值並無特別限制,較佳為100Ω/□以下。反射層30可為單一層,亦可為由複數層組成的積層體。 (reflective layer) The reflective layer 30 is a layer that reflects electromagnetic waves incident from the dielectric layer 20 and reaches the dielectric layer 20 . For example, the reflective layer 30 includes a layer made of at least one of a conductive inorganic material and a conductive organic material. Examples of conductive inorganic materials include indium tin oxide (ITO), indium zinc oxide (IZO), aluminum zinc oxide (AZO), carbon, graphene, Ag, Al, Au, Pt, and Pd. Select one or more from the group consisting of , Cu, Co, Cr, In, Ag-Cu, Cu-Au and Ni. The shape of the conductive inorganic material is not particularly limited, and may be in the form of particles or lines, for example. Examples of conductive organic materials include polythiophene derivatives, polyacetylene derivatives, polyaniline derivatives, and polypyrrole derivatives. The reflective layer 30 may be composed of only a layer composed of at least one of a conductive inorganic material and a conductive organic material, or may be provided on a base material with a layer composed of at least one of a conductive inorganic material and a conductive organic material. . Examples of the base material include polyethylene terephthalate (PET), polyethylene (PE), polypropylene (PP), and the like. Especially from the viewpoint of flexibility, film-forming property, stability, and surface resistance, the reflective layer 30 is preferably composed of a PET film formed of an aluminum vapor-deposited film. The surface resistance value of the reflective layer 30 is not particularly limited, but is preferably 100Ω/□ or less. The reflective layer 30 may be a single layer or a laminate composed of a plurality of layers.

反射層30的厚度並無特別限制,但較佳為0.05μm至100μm,更佳為12μm至80μm。當膜厚為0.05μm以上時,便易於形成均一的膜,有能夠更充分地達成作為反射層30的功能之傾向。另一方面,當膜厚為100μm以下時,能夠賦予反射層30充分的撓性,有能夠進一步抑制因電磁波吸收體100的彎折、拉伸等外在原因使反射層30產生龜裂之傾向。The thickness of the reflective layer 30 is not particularly limited, but is preferably 0.05 μm to 100 μm, more preferably 12 μm to 80 μm. When the film thickness is 0.05 μm or more, it is easier to form a uniform film, and the function as the reflective layer 30 tends to be more fully achieved. On the other hand, when the film thickness is 100 μm or less, sufficient flexibility can be provided to the reflective layer 30, and the tendency of the reflective layer 30 to crack due to external factors such as bending and stretching of the electromagnetic wave absorber 100 can be further suppressed. .

(黏著層) 黏著層係將介電體層20與電阻層10接著在一起或將介電體層20與反射層30接著在一起的層。就黏著劑層而言,例如,能夠使用胺基甲酸酯(urethane)系黏著劑、橡膠系黏著劑、丙烯酸(acrylic)系黏著劑、聚矽氧(silicone)系黏著劑等黏著劑。其中,尤佳為使用胺基甲酸酯系黏著劑,因為能夠有效地將介電體層20與電阻層10接著在一起及有效地將介電體層20與反射層30接著在一起且成本低廉。 (adhesive layer) The adhesive layer is a layer that bonds the dielectric layer 20 and the resistive layer 10 together or bonds the dielectric layer 20 and the reflective layer 30 together. For the adhesive layer, for example, adhesives such as urethane adhesives, rubber adhesives, acrylic adhesives, and silicone adhesives can be used. Among them, the use of urethane adhesive is particularly preferred because it can effectively bond the dielectric layer 20 and the resistive layer 10 together and the dielectric layer 20 and the reflective layer 30 together at low cost.

(最大吸收量) 在特定頻帶中最大吸收量A 0為15dB以下,但較佳為13dB以下。惟,最大吸收量A 0較佳為3dB以上,更佳為5dB以上。 例如,最大吸收量A 0能夠藉由適當調整介電體層20的厚度及複數相對介電係數來進行調整。此外,最大吸收量A 0亦能夠藉由調整電阻層10的表面電阻值來進行調整。 (Maximum absorption amount) The maximum absorption amount A 0 in a specific frequency band is 15 dB or less, but preferably 13 dB or less. However, the maximum absorption amount A 0 is preferably 3dB or more, more preferably 5dB or more. For example, the maximum absorption amount A 0 can be adjusted by appropriately adjusting the thickness and relative dielectric coefficient of the dielectric layer 20 . In addition, the maximum absorption amount A 0 can also be adjusted by adjusting the surface resistance value of the resistive layer 10 .

(A 0-A 1及A 0-A 2) 電磁波吸收體100係滿足上式(1)及上式(2)至少其中一者。基於此,電磁波吸收體100可滿足上式(1)及上式(2)雙方,亦可滿足上式(1)與(2)的其中任一方。惟從能簡易且良好精度進行感測的觀點來看,電磁波吸收體100較佳為能滿足上式(1)及上式(2)雙方。 (A 0 -A 1 and A 0 -A 2 ) The electromagnetic wave absorber 100 satisfies at least one of the above formula (1) and the above formula (2). Based on this, the electromagnetic wave absorber 100 can satisfy both of the above equations (1) and (2), and can also satisfy either one of the above equations (1) and (2). However, from the viewpoint of enabling simple and highly accurate sensing, the electromagnetic wave absorber 100 is preferably one that satisfies both the above equation (1) and the above equation (2).

A 0-A 1只要為8dB以下即可,但從在感測系統使用的頻率中能將吸收量之差縮小的觀點來看,較佳為5dB以下,更佳為3dB以下。 A 0 -A 1 only needs to be 8 dB or less. However, from the viewpoint of reducing the difference in absorption amounts at the frequency used in the sensing system, it is preferably 5 dB or less, and more preferably 3 dB or less.

A 0-A 2只要為8dB以下即可,但從在感測系統使用的頻率中能將吸收量之差縮小的觀點來看,較佳為5dB以下,更佳為3dB以下。 A 0 -A 2 only needs to be 8 dB or less. However, from the viewpoint of reducing the difference in absorption amounts at the frequency used in the sensing system, it is preferably 5 dB or less, and more preferably 3 dB or less.

A 0-A 1及A 0-A 2可為彼此相同,亦可為相異。 A 0 -A 1 and A 0 -A 2 may be the same as each other or different.

(反射係數Γ的絕對值) 在電磁波吸收體100中,由下式(3)至下式(5)算出的反射係數Γ之絕對值並無特別限制,但在峰值頻率f 0(GHz)中較佳為3.12至5.62。 [算式2] (Absolute value of reflection coefficient Γ) In the electromagnetic wave absorber 100, the absolute value of the reflection coefficient Γ calculated from the following equation (3) to the following equation (5) is not particularly limited, but at the peak frequency f 0 (GHz) Preferably it is 3.12 to 5.62. [Formula 2]

在上式(3)至上式(5)中,Γ代表反射係數,Z L代表從電阻層10中與從反射層30為相反側的面看進去的輸入阻抗(Ω/□),Z 0代表真空阻抗(Ω/□),Z´ L代表從電阻層10的反射層30側往反射層30看進去的輸入阻抗(Ω/□),R代表電阻層10的表面電阻值(Ω/□),ε r代表介電體層20的複數相對介電係數,d代表介電體層20的厚度(μm),λ代表射入的電磁波的波長(μm)。 反射係數Γ只要決定Z 0、R、d、λ及ε r,便能夠使用上式(3)至上式(5)求得。 In the above equations (3) to (5), Γ represents the reflection coefficient, Z L represents the input impedance (Ω/□) viewed from the surface of the resistive layer 10 opposite to the reflective layer 30 , and Z 0 represents Vacuum impedance (Ω/□), Z´ L represents the input impedance (Ω/□) viewed from the reflective layer 30 side of the resistive layer 10 toward the reflective layer 30, and R represents the surface resistance value of the resistive layer 10 (Ω/□) , ε r represents the complex relative dielectric coefficient of the dielectric layer 20 , d represents the thickness of the dielectric layer 20 (μm), and λ represents the wavelength of the incident electromagnetic wave (μm). The reflection coefficient Γ can be obtained using the above equation (3) to the above equation (5) as long as Z 0 , R, d, λ and ε r are determined.

反射係數Γ的絕對值更佳為3.2至5.62,特佳為4.0至5.62。The absolute value of the reflection coefficient Γ is preferably 3.2 to 5.62, and particularly preferably 4.0 to 5.62.

反射係數Γ的絕對值能夠藉由調整電阻層10的表面電阻值來進行調整。此外,反射係數Γ的絕對值能夠藉由適當調整介電體層20的厚度及複數相對介電係數來進行調整。The absolute value of the reflection coefficient Γ can be adjusted by adjusting the surface resistance value of the resistive layer 10 . In addition, the absolute value of the reflection coefficient Γ can be adjusted by appropriately adjusting the thickness of the dielectric layer 20 and the complex relative dielectric coefficient.

(A 0-B 1及A 0-B 2) 電磁波吸收體100較佳為滿足上式(6)及上式(7)的至少一者。基於此,電磁波吸收體100可滿足上式(6)及上式(7)雙方,滿足上式(6)與(7)的其中任一方亦可。惟,從在感測系統使用的頻率中將吸收量之差縮小的觀點來看,電磁波吸收體100較佳為滿足上式(6)及上式(7)雙方。 (A 0 -B 1 and A 0 -B 2 ) The electromagnetic wave absorber 100 preferably satisfies at least one of the above equations (6) and (7). Based on this, the electromagnetic wave absorber 100 may satisfy both of the above equations (6) and (7), or may satisfy any one of the above equations (6) and (7). However, from the viewpoint of reducing the difference in absorption amounts at the frequency used in the sensing system, the electromagnetic wave absorber 100 preferably satisfies both the above equation (6) and the above equation (7).

A 0-B 1只要為0.5dB以下即可,但從能簡易且良好精度進行感測的觀點來看,較佳為0.4dB以下,更佳為0.3dB以下。 A 0 -B 1 only needs to be 0.5dB or less, but from the viewpoint of enabling simple and highly accurate sensing, it is preferably 0.4dB or less, and more preferably 0.3dB or less.

A 0-B 2只要為0.5dB以下即可,但從能簡易且良好精度進行感測的觀點來看,較佳為0.4dB以下,更佳為0.3dB以下。 A 0 -B 2 only needs to be 0.5dB or less, but from the viewpoint of enabling simple and highly accurate sensing, it is preferably 0.4dB or less, and more preferably 0.3dB or less.

電磁波吸收體100能夠藉由將電阻層10及反射層30分別使用乾式層壓(dry lamination)法或熱層壓法對介電體層20作貼附而得。The electromagnetic wave absorber 100 can be obtained by attaching the resistive layer 10 and the reflective layer 30 to the dielectric layer 20 using a dry lamination method or a thermal lamination method respectively.

電磁波吸收體100能吸收的電磁波的特定頻帶並無特別限制,通常為1GHz至350GHz。特定頻帶能夠相應於電磁波吸收體100的用途而適當地決定。此時,特定頻帶以含有電磁波的吸收量能達到最大的頻率的方式來做設定。電磁波的吸收量達到最大的頻率能夠藉由適當調整介電體層20的厚度及介電體層20的複數相對介電係數的值來進行調整。The specific frequency band of electromagnetic waves that the electromagnetic wave absorber 100 can absorb is not particularly limited, but is usually 1 GHz to 350 GHz. The specific frequency band can be appropriately determined according to the use of the electromagnetic wave absorber 100 . At this time, the specific frequency band is set to include the frequency at which the absorption amount of electromagnetic waves reaches the maximum. The frequency at which the absorption amount of electromagnetic waves reaches the maximum can be adjusted by appropriately adjusting the thickness of the dielectric layer 20 and the value of the complex relative dielectric coefficient of the dielectric layer 20 .

(驗證) 接著,針對藉由本揭露的電磁波吸收體是否能夠在特定頻帶中將最大吸收量與最小吸收量之差縮小,藉由模擬進行驗證。此時,就構成電磁波吸收體的電阻層、介電體層及反射層而言,假設使用下述的層。另外,複數相對介電係數係遵照JIS-C2138:2007進行量測。具體而言,複數相對介電係數係使用空腔諧振器法介電係數量測裝置(安捷倫科技股份有限公司(Agilent Technologies)製,製品名「Agilent E4991A RF阻抗/材料分析儀(material analyzer)」),在頻率1GHz、溫度25℃、相對濕度50%的條件下量測之值。 (電阻層) .電阻層A:在東麗製PET(S-10,厚度50μm)塗佈Heraeus製PEDOT(Clevios PH1000)而成。 .電阻層B:在東麗製PET(S-10,厚度50μm)使用ITO靶材(target)進行濺鍍(sputtering)形成ITO膜而成。 .電阻層C:在東麗製PET(S-10,厚度50μm)使用含鉬靶材進行濺鍍形成含鉬膜而成。 (介電體層) .介電體層A:使用信越化學工業製聚矽氧黏著劑KR-3700而成的塗佈膜(複數相對介電係數的實部:3.2、虛部:0.0) .介電體層B:在SAIDEN化學製 SAIVINOL OC3405,將堺化學工業製鈣鈦礦(perovskite)BT-01(鈦酸鋇)以達到體積百分比35%的方式來進行調配而成的塗佈膜(複數相對介電係數的實部:10.6、虛部:1.0) (反射層) .尾池工業製TETOLIGHT SC(鋁蒸鍍PET) (verify) Next, it was verified through simulation whether the electromagnetic wave absorber of the present disclosure can reduce the difference between the maximum absorption amount and the minimum absorption amount in a specific frequency band. At this time, it is assumed that the following layers are used as the resistive layer, dielectric layer, and reflective layer constituting the electromagnetic wave absorber. In addition, the complex relative dielectric coefficient is measured in accordance with JIS-C2138:2007. Specifically, the complex relative permittivity is measured using a cavity resonator method permittivity measuring device (manufactured by Agilent Technologies, product name "Agilent E4991A RF impedance/material analyzer"). ), measured at a frequency of 1GHz, a temperature of 25°C, and a relative humidity of 50%. (resistance layer) . Resistive layer A: PET (S-10 made by Toray, thickness 50 μm) is coated with PEDOT (Clevios PH1000) made by Heraeus. . Resistance layer B: An ITO film was formed by sputtering on PET (S-10, thickness 50 μm) manufactured by Toray using an ITO target. . Resistance layer C: A molybdenum-containing film is formed by sputtering a molybdenum-containing target on PET (S-10, thickness 50 μm) manufactured by Toray. (dielectric layer) . Dielectric layer A: Coated film using silicone adhesive KR-3700 manufactured by Shin-Etsu Chemical Industry (real part of complex relative dielectric coefficient: 3.2, imaginary part: 0.0) . Dielectric layer B: Coating film (plural) prepared by blending SAIVINOL OC3405 manufactured by Sakai Chemical Industries, Ltd. with perovskite BT-01 (barium titanate) manufactured by Sakai Chemical Industries, Ltd. at a volume percentage of 35%. Real part of relative permittivity: 10.6, imaginary part: 1.0) (reflective layer) . TETOLIGHT SC (aluminum evaporated PET) made by Oike Industrial Co., Ltd.

(模擬A1至模擬A20) 就反射層而言係使用上述反射層,就電阻層及介電體層而言係使用上述電阻層及介電體層當中顯示於下表1的電阻層及介電體層來構成電磁波吸收體。並且針對該電磁波吸收體,藉由模擬,求得將頻帶如同下表1所示設定為50GHz至70GHz時的頻率與吸收量之關係。於圖2至圖4顯示結果。另外,在圖2至圖4中,反射衰減量係吸收量乘上-1所得之值。 此外,於下表1顯示電阻層的表面電阻值R 1(Ω/□)、在峰值頻率f 0的吸收量(最大吸收量)A 0(dB)、在f 0-7(GHz)的吸收量A 1(dB)、A 0-A 1、在f 0+7(GHz)的吸收量A 2(dB)、在峰值頻率f 0的反射係數Γ的絕對值、在f 0-2(GHz)的吸收量B 1(dB)、A 0-B 1、在f 0+2(GHz)的吸收量B 2(dB)、A 0-B 2、最大吸收量與最小吸收量之差ΔA(dB)的絕對值。從圖2至圖4及下表1所示的結果可知,在頻帶中展現15dB以下的最大吸收量A 0且滿足上式(1)及上式(2)的至少一者的電磁波吸收體,相較於展現比15dB大的最大吸收量A 0或未滿足上式(1)及上式(2)任一者的電磁波吸收體,ΔA變得十分地小。 (Simulation A1 to Simulation A20) For the reflective layer, the above-mentioned reflective layer is used, and for the resistive layer and dielectric layer, the resistive layer and dielectric layer shown in Table 1 below are used. Constitute an electromagnetic wave absorber. And for this electromagnetic wave absorber, through simulation, the relationship between the frequency and the absorption amount was obtained when the frequency band was set to 50 GHz to 70 GHz as shown in Table 1 below. The results are shown in Figures 2 to 4. In addition, in Figures 2 to 4, the reflection attenuation amount is the value obtained by multiplying the absorption amount by -1. In addition, Table 1 below shows the surface resistance value R 1 (Ω/□) of the resistive layer, the absorption amount (maximum absorption amount) A 0 (dB) at the peak frequency f 0 , and the absorption amount at f 0 -7 (GHz). The amount A 1 (dB), A 0 -A 1 , the absorption amount A 2 (dB) at f 0 +7 (GHz), the absolute value of the reflection coefficient Γ at the peak frequency f 0 , the absolute value of the reflection coefficient Γ at f 0 -2 (GHz) ), the absorption amount B 1 (dB), A 0 -B 1 , the absorption amount B 2 (dB) at f 0 +2 (GHz), A 0 -B 2 , the difference between the maximum absorption amount and the minimum absorption amount ΔA ( dB) absolute value. From the results shown in Figures 2 to 4 and Table 1 below, it can be seen that an electromagnetic wave absorber exhibits a maximum absorption amount A 0 of 15 dB or less in the frequency band and satisfies at least one of the above equations (1) and (2), Compared with an electromagnetic wave absorber that exhibits a maximum absorption amount A 0 greater than 15 dB or does not satisfy either of the above equations (1) and (2), ΔA becomes significantly smaller.

(模擬B1至模擬B4) 就反射層而言係使用上述反射層,就電阻層及介電體層而言係使用上述電阻層及介電體層當中顯示於下表2的電阻層及介電體層來構成電磁波吸收體。並且針對該電磁波吸收體,藉由模擬,求得將頻帶如同下表2所示設定為20GHz至40GHz時的頻率與吸收量之關係。於圖5顯示結果。另外,在圖5中,反射衰減量係吸收量乘上-1所得之值。 此外,於下表2顯示電阻層的表面電阻值R 1(Ω/□)、在峰值頻率f 0的吸收量(最大吸收量)A 0(dB)、在f 0-7(GHz)的吸收量A 1(dB)、A 0-A 1、在f 0+7(GHz)的吸收量A 2(dB)、在峰值頻率f 0的反射係數Γ的絕對值、在f 0-2(GHz)的吸收量B 1(dB)、A 0-B 1、在f 0+2(GHz)的吸收量B 2(dB)、A 0-B 2、最大吸收量與最小吸收量之差ΔA(dB)的絕對值。從圖5及下表2所示的結果可知,在頻帶中展現15dB以下的最大吸收量A 0且滿足上式(1)及上式(2)的至少一者的電磁波吸收體,相較於展現比15dB大的最大吸收量A 0或未滿足上式(1)及上式(2)任一者的電磁波吸收體,ΔA變得十分地小。 (Simulation B1 to Simulation B4) For the reflective layer, the above-mentioned reflective layer is used, and for the resistive layer and dielectric layer, the resistive layer and dielectric layer shown in Table 2 below are used. Constitute an electromagnetic wave absorber. And for this electromagnetic wave absorber, through simulation, the relationship between the frequency and the absorption amount was obtained when the frequency band was set to 20 GHz to 40 GHz as shown in Table 2 below. The results are shown in Figure 5. In addition, in Fig. 5, the reflection attenuation amount is the value obtained by multiplying the absorption amount by -1. In addition, Table 2 below shows the surface resistance value R 1 (Ω/□) of the resistive layer, the absorption amount (maximum absorption amount) A 0 (dB) at the peak frequency f 0 , and the absorption amount at f 0 -7 (GHz). The amount A 1 (dB), A 0 -A 1 , the absorption amount A 2 (dB) at f 0 +7 (GHz), the absolute value of the reflection coefficient Γ at the peak frequency f 0 , the absolute value of the reflection coefficient Γ at f 0 -2 (GHz) ), the absorption amount B 1 (dB), A 0 -B 1 , the absorption amount B 2 (dB) at f 0 +2 (GHz), A 0 -B 2 , the difference between the maximum absorption amount and the minimum absorption amount ΔA( dB) absolute value. It can be seen from the results shown in Figure 5 and Table 2 below that an electromagnetic wave absorber that exhibits a maximum absorption amount A 0 of 15 dB or less in the frequency band and satisfies at least one of the above equations (1) and (2) has a better performance than For an electromagnetic wave absorber that exhibits a maximum absorption amount A 0 greater than 15 dB or does not satisfy either of the above equations (1) and (2), ΔA becomes extremely small.

(模擬C1至模擬C4) 就反射層而言係使用上述反射層,就電阻層及介電體層而言係使用上述電阻層及介電體層當中顯示於下表3的電阻層及介電體層來構成電磁波吸收體。並且針對該電磁波吸收體,藉由模擬,求得將頻帶中如同下表3所示設定為70GHz至90GHz時的頻率與吸收量之關係。於圖6顯示結果。另外,在圖6中,反射衰減量係吸收量乘上-1所得之值。 此外,於下表3顯示電阻層的表面電阻值R 1(Ω/□)、在峰值頻率f 0的吸收量(最大吸收量)A 0(dB)、在f 0-7(GHz)的吸收量A 1(dB)、A 0-A 1、在f 0+7(GHz)的吸收量A 2(dB)、在峰值頻率f 0的反射係數Γ的絕對值、在f 0-2(GHz)的吸收量B 1(dB)、A 0-B 1、在f 0+2(GHz)的吸收量B 2(dB)、A 0-B 2、最大吸收量與最小吸收量之差ΔA(dB)的絕對值。從圖6及下表3所示的結果可知,在頻帶中展現15dB以下的最大吸收量A 0且滿足上式(1)及上式(2)的至少一者的電磁波吸收體,相較於展現比15dB大的最大吸收量A 0或未滿足上式(1)及上式(2)任一者的電磁波吸收體,ΔA變得十分地小。 (Simulation C1 to Simulation C4) For the reflective layer, the above-mentioned reflective layer is used, and for the resistive layer and dielectric layer, the resistive layer and dielectric layer shown in Table 3 below are used. Constitute an electromagnetic wave absorber. And for this electromagnetic wave absorber, through simulation, the relationship between the frequency and the absorption amount was obtained when the frequency band was set to 70 GHz to 90 GHz as shown in Table 3 below. The results are shown in Figure 6. In addition, in Fig. 6, the reflection attenuation amount is the value obtained by multiplying the absorption amount by -1. In addition, Table 3 below shows the surface resistance value R 1 (Ω/□) of the resistive layer, the absorption amount (maximum absorption amount) A 0 (dB) at the peak frequency f 0 , and the absorption amount at f 0 -7 (GHz). The amount A 1 (dB), A 0 -A 1 , the absorption amount A 2 (dB) at f 0 +7 (GHz), the absolute value of the reflection coefficient Γ at the peak frequency f 0 , the absolute value of the reflection coefficient Γ at f 0 -2 (GHz) ), the absorption amount B 1 (dB), A 0 -B 1 , the absorption amount B 2 (dB) at f 0 +2 (GHz), A 0 -B 2 , the difference between the maximum absorption amount and the minimum absorption amount ΔA ( dB) absolute value. It can be seen from the results shown in Figure 6 and Table 3 below that an electromagnetic wave absorber that exhibits a maximum absorption amount A 0 of 15 dB or less in the frequency band and satisfies at least one of the above equations (1) and (2) has a better performance than For an electromagnetic wave absorber that exhibits a maximum absorption amount A 0 greater than 15 dB or does not satisfy either of the above equations (1) and (2), ΔA becomes extremely small.

[表1]   頻帶 (GHz) 電阻層 介電體層 R 1(Ω/□) 在峰值頻率 f 0(GHz) 的吸收量A 0(dB) 在f 0-7(GHz) 的吸收量A 1(dB) A 0-A 1 在f 0+7(GHz) 的吸收量A 2(dB) A 0-A 2 在峰值頻率 f 0(GHz) 的反射係數Γ 的絕對值 在f 0-2(GHz) 的吸收量B 1(dB) A 0-B 1 在f 0+2(GHz) 的吸收量B 2(dB) A 0-B 2 ΔA (dB) 模擬A1 50-70 A A 540 14.8 11.8 3.0 11.8 3.0 5.5 14.5 0.3 14.4 0.4 6.2 模擬A2 50-70 A A 261 14.9 13.2 1.7 13.2 1.7 5.6 14.8 0.1 14.8 0.1 4.3 模擬A3 50-70 A B 801 14.9 8.6 6.3 9.1 5.8 5.6 13.9 1 13.9 1 10.2 模擬A4 50-70 A B 300 14.4 10.5 3.9 10.8 3.6 5.2 13.9 0.5 13.9 0.5 7.1 模擬A5 50-70 A B 1002 12.1 7.6 4.5 8.0 4.1 4.0 11.5 0.6 11.5 0.6 8.0 模擬A6 50-70 B A 580 13.3 10.9 2.4 10.9 2.4 4.6 13.0 0.3 13.0 0.3 5.2 模擬A7 50-70 B A 233 12.7 11.7 1.0 11.7 1.0 4.3 12.6 0.1 12.6 0.1 2.7 模擬A8 50-70 B B 797 14.9 8.6 6.3 9.1 5.8 5.6 13.9 1 14.0 0.9 10.2 模擬A9 50-70 B B 280 13.2 10.2 3.0 10.3 2.9 4.6 12.9 0.3 12.8 0.4 5.9 模擬A10 50-70 C A 543 14.7 11.7 3.0 11.8 2.9 5.4 14.3 0.4 14.3 0.4 6.1 模擬A11 50-70 C A 245 13.6 12.3 1.3 12.4 1.2 4.8 13.5 0.1 13.5 0.1 3.3 模擬A12 50-70 C B 810 14.7 8.6 6.1 9.1 5.6 5.5 13.7 1 13.8 0.9 10 模擬A13 50-70 C B 310 14.9 10.6 4.3 11.0 3.9 5.6 14.4 0.5 14.5 0.4 7.7 模擬A14 50-70 A A 379 46.9 16.0 30.9 16.2 30.7 220.2 26.9 20 26.9 20 35.9 模擬A15 50-70 A A 430 23.1 14.8 8.3 14.9 8.2 14.2 21.4 1.7 21.4 1.7 12.8 模擬A16 50-70 A B 600 21.9 10.1 11.8 10.6 11.3 12.4 18.5 3.4 18.5 3.4 16.2 模擬A17 50-70 B A 360 34.6 16.1 18.5 16.3 18.3 54.0 26.4 8.2 26.5 8.1 23.5 模擬A18 50-70 B B 468 37.8 11.0 26.8 11.5 26.3 77.4 21.8 16 21.8 16 31.3 模擬A19 50-70 C A 400 29.3 15.6 13.7 15.7 13.6 29.3 24.8 4.5 24.8 4.5 18.7 模擬A20 50-70 C B 499 38.5 10.8 27.7 11.4 27.1 84.2 21.4 17.1 21.9 16.6 32.2 [Table 1] Frequency band(GHz) resistive layer dielectric layer R 1 (Ω/□) Absorption amount A 0 (dB) at peak frequency f 0 (GHz) Absorption amount A 1 (dB) at f 0 -7(GHz) A 0 -A 1 Absorption amount A 2 (dB) at f 0 +7(GHz) A 0 -A 2 The absolute value of the reflection coefficient Γ at the peak frequency f 0 (GHz) Absorption amount B 1 (dB) at f 0 -2(GHz) A 0 -B 1 Absorption amount B 2 (dB) at f 0 +2(GHz) A 0 -B 2 ΔA (dB) Analog A1 50-70 A A 540 14.8 11.8 3.0 11.8 3.0 5.5 14.5 0.3 14.4 0.4 6.2 Analog A2 50-70 A A 261 14.9 13.2 1.7 13.2 1.7 5.6 14.8 0.1 14.8 0.1 4.3 Analog A3 50-70 A B 801 14.9 8.6 6.3 9.1 5.8 5.6 13.9 1 13.9 1 10.2 Analog A4 50-70 A B 300 14.4 10.5 3.9 10.8 3.6 5.2 13.9 0.5 13.9 0.5 7.1 Analog A5 50-70 A B 1002 12.1 7.6 4.5 8.0 4.1 4.0 11.5 0.6 11.5 0.6 8.0 Analog A6 50-70 B A 580 13.3 10.9 2.4 10.9 2.4 4.6 13.0 0.3 13.0 0.3 5.2 Analog A7 50-70 B A 233 12.7 11.7 1.0 11.7 1.0 4.3 12.6 0.1 12.6 0.1 2.7 Analog A8 50-70 B B 797 14.9 8.6 6.3 9.1 5.8 5.6 13.9 1 14.0 0.9 10.2 Analog A9 50-70 B B 280 13.2 10.2 3.0 10.3 2.9 4.6 12.9 0.3 12.8 0.4 5.9 Analog A10 50-70 C A 543 14.7 11.7 3.0 11.8 2.9 5.4 14.3 0.4 14.3 0.4 6.1 Analog A11 50-70 C A 245 13.6 12.3 1.3 12.4 1.2 4.8 13.5 0.1 13.5 0.1 3.3 Analog A12 50-70 C B 810 14.7 8.6 6.1 9.1 5.6 5.5 13.7 1 13.8 0.9 10 Analog A13 50-70 C B 310 14.9 10.6 4.3 11.0 3.9 5.6 14.4 0.5 14.5 0.4 7.7 Analog A14 50-70 A A 379 46.9 16.0 30.9 16.2 30.7 220.2 26.9 20 26.9 20 35.9 Analog A15 50-70 A A 430 23.1 14.8 8.3 14.9 8.2 14.2 21.4 1.7 21.4 1.7 12.8 Analog A16 50-70 A B 600 21.9 10.1 11.8 10.6 11.3 12.4 18.5 3.4 18.5 3.4 16.2 Analog A17 50-70 B A 360 34.6 16.1 18.5 16.3 18.3 54.0 26.4 8.2 26.5 8.1 23.5 Analog A18 50-70 B B 468 37.8 11.0 26.8 11.5 26.3 77.4 21.8 16 21.8 16 31.3 Analog A19 50-70 C A 400 29.3 15.6 13.7 15.7 13.6 29.3 24.8 4.5 24.8 4.5 18.7 Analog A20 50-70 C B 499 38.5 10.8 27.7 11.4 27.1 84.2 21.4 17.1 21.9 16.6 32.2

[表2] 頻帶 (GHz) 電阻層 介電體層 R 1(Ω/□) 在峰值頻率 f 0(GHz) 的吸收量A 0(dB) 在f 0-7(GHz) 的吸收量A 1(dB) A 0-A 1 在f 0+7(GHz) 的吸收量A 2(dB) A 0-A 2 在峰值頻率 f 0(GHz) 的反射係數Γ 的絕對值 在f 0-2(GHz) 的吸收量B 1(dB) A 0-B 1 在f 0+2(GHz) 的吸收量B 2(dB) A 0-B 2 ΔA (dB) 模擬B1 20-40 A A 540 14.9 7.2 7.7 7.3 7.6 5.6 13.4 1.5 13.4 1.5 11.4 模擬B2 20-40 B B 960 10.5 3.1 7.4 4.0 6.5 3.3 8.7 1.8 8.8 1.7 8.7 模擬B3 20-40 A A 398 31.0 8.8 22.2 9.0 22 35.3 19.4 11.6 19.3 11.7 26.5 模擬B4 20-40 B B 544 28.4 4.8 23.6 5.7 22.7 26.3 14.5 13.9 15.1 13.3 25.3 [Table 2] Frequency band(GHz) resistive layer dielectric layer R 1 (Ω/□) Absorption amount A 0 (dB) at peak frequency f 0 (GHz) Absorption amount A 1 (dB) at f 0 -7(GHz) A 0 -A 1 Absorption amount A 2 (dB) at f 0 +7(GHz) A 0 -A 2 The absolute value of the reflection coefficient Γ at the peak frequency f 0 (GHz) Absorption amount B 1 (dB) at f 0 -2(GHz) A 0 -B 1 Absorption amount B 2 (dB) at f 0 +2(GHz) A 0 -B 2 ΔA (dB) Analog B1 20-40 A A 540 14.9 7.2 7.7 7.3 7.6 5.6 13.4 1.5 13.4 1.5 11.4 Analog B2 20-40 B B 960 10.5 3.1 7.4 4.0 6.5 3.3 8.7 1.8 8.8 1.7 8.7 Analog B3 20-40 A A 398 31.0 8.8 22.2 9.0 twenty two 35.3 19.4 11.6 19.3 11.7 26.5 Analog B4 20-40 B B 544 28.4 4.8 23.6 5.7 22.7 26.3 14.5 13.9 15.1 13.3 25.3

[表3]   頻帶 (GHz) 電阻層 介電體層 R 1(Ω/□) 在峰值頻率 f 0(GHz) 的吸收量A 0(dB) 在f 0-7(GHz) 的吸收量A 1(dB) A 0-A 1 在f 0+7(GHz) 的吸收量A 2(dB) A 0-A 2 在峰值頻率 f 0(GHz) 的反射係數Γ 的絕對值 在f 0-2(GHz) 的吸收量B 1(dB) A 0-B 1 在f 0+2(GHz) 的吸收量B 2(dB) A 0-B 2 ΔA (dB) 模擬C1 70-90 A A 540 14.7 12.6 2.1 12.7 2.0 5.4 14.5 0.2 14.5 0.2 3.9 模擬C2 70-90 B B 856 13.8 9.6 4.2 10.0 3.8 4.9 13.2 0.6 13.3 0.5 6.3 模擬C3 70-90 A A 450 20.4 16.4 4 15.8 4.6 10.5 19.7 0.7 19.8 0.6 7.6 模擬C4 70-90 B B 602 21.3 11.9 9.4 12.3 9.0 11.6 19.2 2.1 19.2 2.1 12.1 [table 3] Frequency band(GHz) resistive layer dielectric layer R 1 (Ω/□) Absorption amount A 0 (dB) at peak frequency f 0 (GHz) Absorption amount A 1 (dB) at f 0 -7(GHz) A 0 -A 1 Absorption amount A 2 (dB) at f 0 +7(GHz) A 0 -A 2 The absolute value of the reflection coefficient Γ at the peak frequency f 0 (GHz) Absorption amount B 1 (dB) at f 0 -2(GHz) A 0 -B 1 Absorption amount B 2 (dB) at f 0 +2(GHz) A 0 -B 2 ΔA (dB) Analog C1 70-90 A A 540 14.7 12.6 2.1 12.7 2.0 5.4 14.5 0.2 14.5 0.2 3.9 Analog C2 70-90 B B 856 13.8 9.6 4.2 10.0 3.8 4.9 13.2 0.6 13.3 0.5 6.3 Analog C3 70-90 A A 450 20.4 16.4 4 15.8 4.6 10.5 19.7 0.7 19.8 0.6 7.6 Analog C4 70-90 B B 602 21.3 11.9 9.4 12.3 9.0 11.6 19.2 2.1 19.2 2.1 12.1

<感測系統> 接著,針對本揭露的感測系統的實施形態進行說明。圖7係顯示本揭露的感測系統的一實施形態之剖面圖(概略圖)。 <Sensing system> Next, implementation forms of the sensing system of the present disclosure will be described. FIG. 7 is a cross-sectional view (schematic diagram) showing an embodiment of the sensing system of the present disclosure.

如圖7所示,感測系統200係在空間S內具備:電磁波吸收體100;電磁波發送/接收裝置201,係發送/接收被電磁波吸收體100吸收的頻帶之電磁波,且能夠對所接收的電磁波進行處理。As shown in Figure 7, the sensing system 200 is provided in the space S: an electromagnetic wave absorber 100; an electromagnetic wave transmitting/receiving device 201, which transmits/receives electromagnetic waves in the frequency band absorbed by the electromagnetic wave absorber 100, and can detect the received electromagnetic wave. Electromagnetic waves are processed.

依據感測系統200,當發送自電磁波發送/接收裝置201的特定頻帶之電磁波從電阻層10側射入時,電磁波通過電阻層10、介電體層20,在反射層30反射。此時,在介電體層20中,由於射入的電磁波與反射的反射波相消,藉此而吸收電磁波,故特定頻率的電磁波的吸收量成為最大。惟此時,最大吸收量為15dB以下且滿足上式(1)及上式(2)的至少一者,能夠在上述頻帶中將最大吸收量與最小吸收量之差縮小。因此,當發送自電磁波發送/接收裝置201的頻帶的電磁波的強度為一定時,在電磁波發送/接收裝置201接收的電磁波中,特定頻率以外的電磁波的強度維持在高的強度下,特定頻率的電磁波之強度下降能充分獲得抑制。因此,在感測系統200中,針對特定頻率的電磁波,信噪(S/N)比的下降獲得抑制,由於作為信號變得易於辨識,故無需導入需要複雜程式設計的程式就能夠適當地進行感測。According to the sensing system 200 , when the electromagnetic wave of a specific frequency band transmitted from the electromagnetic wave transmitting/receiving device 201 is incident from the resistive layer 10 side, the electromagnetic wave passes through the resistive layer 10 and the dielectric layer 20 and is reflected on the reflective layer 30 . At this time, in the dielectric layer 20 , the incident electromagnetic wave and the reflected reflected wave cancel each other, thereby absorbing the electromagnetic wave. Therefore, the absorption amount of the electromagnetic wave of a specific frequency becomes maximum. However, at this time, if the maximum absorption amount is 15 dB or less and satisfies at least one of the above equations (1) and (2), the difference between the maximum absorption amount and the minimum absorption amount can be reduced in the above frequency band. Therefore, when the intensity of the electromagnetic wave in the frequency band transmitted from the electromagnetic wave transmitting/receiving apparatus 201 is constant, among the electromagnetic waves received by the electromagnetic wave transmitting/receiving apparatus 201, the intensity of electromagnetic waves other than the specific frequency is maintained at a high intensity, and the intensity of the electromagnetic wave of the specific frequency is maintained at a high intensity. The decrease in the intensity of electromagnetic waves can be fully suppressed. Therefore, in the sensing system 200 , the decrease in the signal-to-noise (S/N) ratio for electromagnetic waves of a specific frequency is suppressed, and since the signal becomes easily identifiable, it can be appropriately performed without introducing a program that requires complex programming. sensing.

就電磁波發送/接收裝置201而言,例如可舉出雷達裝置等。就雷達裝置而言,可舉出脈衝雷達(pulse radar)裝置及頻率調變連續波(FM-CW;Frequency Modulation-Continuous Wave)雷達裝置。其中,從即使沒有來自雷達裝置的高發送功率仍能夠實現高信噪(S/N)比來看,尤佳為FM-CW雷達裝置。Examples of the electromagnetic wave transmitting/receiving device 201 include a radar device. Examples of radar devices include pulse radar devices and frequency modulation continuous wave (FM-CW; Frequency Modulation-Continuous Wave) radar devices. Among them, the FM-CW radar device is particularly preferred because it can achieve a high signal-to-noise (S/N) ratio even without high transmission power from the radar device.

雷達裝置係具有:發送用天線(antenna)、接收用天線、發送部、接收部及信號處理部。惟當雷達裝置具有切換發送與接收的雙工器(duplexer)時,發送用天線能夠兼作接收用天線。The radar device includes a transmitting antenna, a receiving antenna, a transmitting unit, a receiving unit, and a signal processing unit. Only when the radar device has a duplexer that switches transmission and reception, the transmitting antenna can also serve as a receiving antenna.

就感測系統200而言,例如為可舉出偵測高齡者等活動的系統。An example of the sensing system 200 is a system that detects activities of an elderly person or the like.

10:電阻層 20:介電體層 30:反射層 100:電磁波吸收體 200:感測系統 201:電磁波發送/接收裝置 10:Resistance layer 20: Dielectric layer 30: Reflective layer 100:Electromagnetic wave absorber 200: Sensing system 201: Electromagnetic wave transmitting/receiving device

圖1係顯示本揭露的電磁波吸收體的一實施形態之剖面圖。 圖2係使用本揭露的電磁波吸收體,藉由模擬(simulation)來求取在50GHz至70GHz頻帶的頻率與反射衰減量(吸收量)之關係之圖表(graph)。 圖3係使用本揭露的電磁波吸收體,藉由模擬來求取在50GHz至70GHz頻帶的頻率與反射衰減量(吸收量)之關係之圖表。 圖4係使用本揭露的電磁波吸收體,藉由模擬來求取在50GHz至70GHz頻帶的頻率與反射衰減量(吸收量)之關係之圖表。 圖5係使用本揭露的電磁波吸收體,藉由模擬來求取在20GHz至40GHz頻帶的頻率與反射衰減量(吸收量)之關係之圖表。 圖6係使用本揭露的電磁波吸收體,藉由模擬來求取在70GHz至90GHz頻帶的頻率與反射衰減量(吸收量)之關係之圖表。 圖7係顯示本揭露的感測系統的一實施形態之概略圖。 FIG. 1 is a cross-sectional view showing an embodiment of the electromagnetic wave absorber of the present disclosure. FIG. 2 is a graph showing the relationship between frequency and reflection attenuation (absorption amount) in the 50 GHz to 70 GHz frequency band obtained through simulation using the electromagnetic wave absorber of the present disclosure. FIG. 3 is a graph showing the relationship between frequency and reflection attenuation (absorption amount) in the 50 GHz to 70 GHz frequency band obtained through simulation using the electromagnetic wave absorber of the present disclosure. FIG. 4 is a graph showing the relationship between frequency and reflection attenuation (absorption amount) in the 50 GHz to 70 GHz frequency band obtained through simulation using the electromagnetic wave absorber of the present disclosure. FIG. 5 is a graph showing the relationship between frequency and reflection attenuation (absorption amount) in the 20 GHz to 40 GHz frequency band obtained through simulation using the electromagnetic wave absorber of the present disclosure. FIG. 6 is a graph showing the relationship between frequency and reflection attenuation (absorption amount) in the 70 GHz to 90 GHz frequency band obtained through simulation using the electromagnetic wave absorber of the present disclosure. FIG. 7 is a schematic diagram showing an implementation form of the sensing system of the present disclosure.

無。without.

Claims (10)

一種電磁波吸收體,係依序具備電阻層、介電體層及反射層,吸收特定頻帶的電磁波之干涉型電磁波吸收體; 在前述頻帶中展現15dB以下的最大吸收量A 0且滿足下式(1)及下式(2)的至少一者; A 0-A 1≦8(dB) … (1) A 0-A 2≦8(dB) … (2) (在前述式(1)或前述(2)中,當設吸收量為最大時的峰值頻率為f 0(GHz)時,A 1代表在f 0-7(GHz)的吸收量(dB),A 2代表在f 0+7(GHz)的吸收量(dB))。 An electromagnetic wave absorber, which is an interference type electromagnetic wave absorber that has a resistive layer, a dielectric layer and a reflective layer in order, and absorbs electromagnetic waves in a specific frequency band; exhibits a maximum absorption amount A 0 of less than 15dB in the aforementioned frequency band and satisfies the following formula (1 ) and at least one of the following formula (2); A 0 -A 1 ≦8(dB) … (1) A 0 -A 2 ≦8(dB) … (2) (In the aforementioned formula (1) or the aforementioned ( In 2), when the peak frequency when the absorption amount is maximum is f 0 (GHz), A 1 represents the absorption amount (dB) at f 0 -7 (GHz), and A 2 represents the absorption amount (dB) at f 0 +7 (GHz). ) absorption amount (dB)). 如請求項1之電磁波吸收體,其中藉由下式(3)至下式(5)算出的反射係數Γ的絕對值在峰值頻率f 0(GHz)為3.12至5.62; [算式1] (在前述式(3)至前述(5)中,Γ代表反射係數,Z L代表從前述電阻層中與從前述反射層為相反側的面看進去的輸入阻抗(Ω/□),Z 0代表真空阻抗(Ω/□),Z´ L代表從前述電阻層的前述反射層側往前述反射層看進去的輸入阻抗(Ω/□),R代表前述電阻層的表面電阻值(Ω/□),ε r代表前述介電體層的複數相對介電係數,d代表前述介電體層的厚度(μm),λ代表射入的電磁波的波長(μm))。 For the electromagnetic wave absorber of claim 1, the absolute value of the reflection coefficient Γ calculated by the following equation (3) to the following equation (5) is 3.12 to 5.62 at the peak frequency f 0 (GHz); [Formula 1] (In the above-mentioned formulas (3) to (5), Γ represents the reflection coefficient, Z L represents the input impedance (Ω/□) seen from the side of the resistance layer opposite to the reflection layer, Z 0 represents the vacuum impedance (Ω/□), Z´ L represents the input impedance (Ω/□) viewed from the reflective layer side of the resistive layer toward the reflective layer, and R represents the surface resistance value of the resistive layer (Ω/□ ), ε r represents the complex relative dielectric coefficient of the aforementioned dielectric layer, d represents the thickness of the aforementioned dielectric layer (μm), and λ represents the wavelength of the incident electromagnetic wave (μm)). 如請求項1或2之電磁波吸收體,其中滿足下式(6)及下式(7)的至少一者; A 0-B 1≦0.5(dB) … (6) A 0-B 2≦0.5(dB) … (7) (在前述式(6)或前述(7)中,B 1代表在f 0-2(GHz)的吸收量(dB),B 2代表在f 0+2(GHz)的吸收量(dB))。 For example, the electromagnetic wave absorber of claim 1 or 2 satisfies at least one of the following equations (6) and (7): A 0 -B 1 ≦0.5 (dB) ... (6) A 0 -B 2 ≦0.5 (dB) … (7) (In the aforementioned formula (6) or the aforementioned (7), B 1 represents the absorption amount (dB) at f 0 -2 (GHz), and B 2 represents the absorption at f 0 +2 (GHz) The amount of absorption (dB)). 如請求項3之電磁波吸收體,其中滿足前述式(6)及前述式(7)雙方。An electromagnetic wave absorber according to claim 3, which satisfies both the above-mentioned formula (6) and the above-mentioned formula (7). 如請求項1至4中任一項之電磁波吸收體,其中前述介電體層的複數相對介電係數的實部為10以上。The electromagnetic wave absorber according to any one of claims 1 to 4, wherein the real part of the complex relative permittivity of the dielectric layer is 10 or more. 如請求項1至5中任一項之電磁波吸收體,其中在前述頻帶中展現3dB以上的最大吸收量A 0The electromagnetic wave absorber according to any one of claims 1 to 5, which exhibits a maximum absorption amount A 0 of more than 3 dB in the aforementioned frequency band. 如請求項1至6中任一項之電磁波吸收體,其中滿足前述式(1)及前述式(2)雙方。The electromagnetic wave absorber according to any one of claims 1 to 6, which satisfies both the aforementioned formula (1) and the aforementioned formula (2). 一種感測系統,係具備: 如請求項1至7中任一項之電磁波吸收體;及 電磁波發送/接收裝置,係發送且接收被前述電磁波吸收體吸收的前述頻帶之電磁波,且能夠對所接收的電磁波進行處理。 A sensing system having: Such as the electromagnetic wave absorber in any one of claims 1 to 7; and The electromagnetic wave transmitting/receiving device transmits and receives electromagnetic waves in the frequency band absorbed by the electromagnetic wave absorber, and is capable of processing the received electromagnetic waves. 如請求項8之感測系統,其中前述電磁波發送/接收裝置為雷達裝置。The sensing system of claim 8, wherein the electromagnetic wave transmitting/receiving device is a radar device. 如請求項9之感測系統,其中前述雷達裝置為頻率調變連續波雷達裝置。The sensing system of claim 9, wherein the aforementioned radar device is a frequency modulated continuous wave radar device.
TW112106620A 2022-02-25 2023-02-23 Electromagnetic wave absorber and sensing system TW202344183A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022027728A JP2023124129A (en) 2022-02-25 2022-02-25 Electromagnetic wave absorber and sensing system
JP2022-027728 2022-02-25

Publications (1)

Publication Number Publication Date
TW202344183A true TW202344183A (en) 2023-11-01

Family

ID=87765688

Family Applications (1)

Application Number Title Priority Date Filing Date
TW112106620A TW202344183A (en) 2022-02-25 2023-02-23 Electromagnetic wave absorber and sensing system

Country Status (3)

Country Link
JP (1) JP2023124129A (en)
TW (1) TW202344183A (en)
WO (1) WO2023162831A1 (en)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102012017669A1 (en) * 2012-09-07 2014-03-13 Valeo Schalter Und Sensoren Gmbh Arrangement with a trim part and a radar sensor, motor vehicle and method for producing an arrangement
WO2018163584A1 (en) * 2017-03-10 2018-09-13 マクセルホールディングス株式会社 Electromagnetic wave absorbing sheet
JP2021163792A (en) * 2020-03-30 2021-10-11 株式会社ニフコ Manufacturing method of radio wave absorber, radio wave absorber, and radar mechanism

Also Published As

Publication number Publication date
JP2023124129A (en) 2023-09-06
WO2023162831A1 (en) 2023-08-31

Similar Documents

Publication Publication Date Title
US11145988B2 (en) Electromagnetic wave absorber
JP7267912B2 (en) electromagnetic wave absorption sheet
US6300894B1 (en) Antenna having electrically controllable radar cross-section
CN110771274B (en) Electromagnetic wave absorber and molded article with electromagnetic wave absorber
TWI771486B (en) Electromagnetic wave absorbing sheet
JP7350048B2 (en) electromagnetic wave absorber
JP2021015988A (en) λ/4 TYPE ELECTROMAGNETIC WAVE ABSORBER
CN111837464B (en) Electromagnetic wave absorbing sheet
TW202344183A (en) Electromagnetic wave absorber and sensing system
US20220015275A1 (en) Electromagnetic wave absorber
JP2021103785A (en) Electromagnetic wave absorber
US20240040758A1 (en) Designed electromagnetic wave suppressor, and building material, electromagnetic wave suppression chamber, and system provided with the suppressor
JP2023124127A (en) Electromagnetic wave absorber and sensing system
JP6901630B2 (en) Radio wave absorber
TW202233050A (en) Electromagnetic wave shielding body
JP7494880B2 (en) Electromagnetic wave absorber
JP2023100090A (en) Dielectric sheet for electromagnetic wave absorber and electromagnetic wave absorber
WO2023042799A1 (en) Electromagnetic wave suppressor
JP2003069278A (en) Radio wave absorber
EP4266850A1 (en) Method for manufacturing dielectric layer, resin composition, and laminate including dielectric layer
TWI787258B (en) Electromagnetic wave absorbing sheet
JP2023132076A (en) radio wave absorber
WO2023243485A1 (en) Electromagnetic wave absorber
JP2023182308A (en) electromagnetic wave absorber
JP2023167269A (en) Electromagnetic wave absorber, manufacturing method thereof, and stable communication space