TW202342534A - 一種雙特異性抗原結合分子及其應用 - Google Patents

一種雙特異性抗原結合分子及其應用 Download PDF

Info

Publication number
TW202342534A
TW202342534A TW112104582A TW112104582A TW202342534A TW 202342534 A TW202342534 A TW 202342534A TW 112104582 A TW112104582 A TW 112104582A TW 112104582 A TW112104582 A TW 112104582A TW 202342534 A TW202342534 A TW 202342534A
Authority
TW
Taiwan
Prior art keywords
domain
terminus
linker
seq
variable region
Prior art date
Application number
TW112104582A
Other languages
English (en)
Inventor
楊柳青
李瑞梅
錢宏亮
Original Assignee
大陸商上海齊魯製藥研究中心有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大陸商上海齊魯製藥研究中心有限公司 filed Critical 大陸商上海齊魯製藥研究中心有限公司
Publication of TW202342534A publication Critical patent/TW202342534A/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/395Antibodies; Immunoglobulins; Immune serum, e.g. antilymphocytic serum
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/46Hybrid immunoglobulins
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Genetics & Genomics (AREA)
  • General Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Immunology (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biophysics (AREA)
  • Molecular Biology (AREA)
  • Biochemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Biotechnology (AREA)
  • Zoology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Wood Science & Technology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • General Engineering & Computer Science (AREA)
  • Microbiology (AREA)
  • Biomedical Technology (AREA)
  • Physics & Mathematics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Plant Pathology (AREA)
  • Epidemiology (AREA)
  • Mycology (AREA)
  • Peptides Or Proteins (AREA)

Abstract

本發明提供了雙特異性抗原結合分子的形式,還提供了基於該形式構建的針對DLL3的雙特異性抗原結合分子、包含所述雙特異性抗原結合分子的藥物組合物及其在治療腫瘤方面的相關應用。

Description

一種雙特異性抗原結合分子及其應用
本發明要求申請日為2022/02/10的中國專利申請2022101238168的優先權,本發明引用上述中國專利申請的全文。
本發明屬於免疫學領域,本發明關於一種雙特異性抗原結合分子。本發明還關於相關的編碼核酸、載體、宿主細胞、藥物,以及在治療癌症方面的相關應用。
單株抗體已廣泛應用於治療包括腫瘤在內的多種疾病,但腫瘤免疫逃避等機制限制了單抗治療的長期有效性。一個解決辦法是開發雙特異性抗體,這類抗體能夠結合兩種不同抗原或兩個不同表位,從而能夠同時阻斷腫瘤發生發展過程中的不同訊號通路,或者直接將免疫細胞靶向腫瘤細胞,因而可能產生更強的細胞毒性、更好地避免免疫逃避。目前已經開發了多種形式的雙特異性抗體,然而仍然存在開發雙特異性抗體的新的形式的需求。
小細胞肺癌(SCLC)約占肺癌的15%-20%,其特徵在於高血管分佈,腫瘤快速生長,基因組不穩定,早期轉移性傳播等。據估計,每年確診的小細胞肺癌患者數超過23.4萬例,每年在全球造成的死亡人數約25萬人。手術、放療或者兩者聯合等局部治療的方法,幾乎不可能將SCLC完全治癒。以鉑類為基礎的聯合化療依然是治療的基石,雖然對一線化療的反應率很高,但復發率也很高,對於局限期的患者中位生存期只有14-20個月,廣泛期則只有9-11個月,而復發的患者,生存期更短,也幾乎無治療可選。唯一被FDA推薦的拓撲替康由於其血液學毒性受到限制,治療反應率也不盡人意,只有5-24%,中位生存期不足25周。目前暫無具體的三線治療方案推薦,因此急需一種新的有效的治療藥物。
δ樣蛋白-3(Delta-like 3)也稱為DLL3,是一種由DLL3基因編碼的蛋白質,是Notch家族的配體之一。該蛋白參與影響Notch調節訊號通路,導致Notch通路發出的訊號促使腫瘤細胞不受限制地生長。研究發現,DLL3在大約85%的小細胞肺癌和大細胞神經內分泌癌患者的腫瘤細胞表面表達,另外還高表達於多形性膠質母細胞瘤、黑色素瘤、胰腺癌和直腸癌等。但在健康組織和非神經內分泌腫瘤中不表達,所以DLL3是一個比較理想的小細胞肺癌靶點。
靶向CD3抗原和腫瘤相關抗原的雙特異性抗體能夠將T細胞與腫瘤細胞在空間上拉近,利用T細胞對腫瘤細胞實現特異性的殺傷作用,這類抗體被稱為T細胞銜接器(T cell-engager,TCE雙抗)。在臨床階段的雙特異性抗體中,有接近一半的候選物靶向CD3抗原,研究TCE雙抗的安全性和有效性。雖然相關研究取得了一定進展,但仍存在許多挑戰,例如如何平衡抗腫瘤活性和安全性的問題。開發高效低毒的新型T細胞雙特異性抗體就顯得尤為關鍵。
因此,需要開發雙特異性抗體的新形式,並利用其進一步開發高效低毒的雙特異性抗體。
本發明的第一個目的在於提供一種具有新穎形式的雙特異性抗原結合分子,其第二抗原結合部分包裹在第一抗原結合部分與Fc結構之間,可以減少第二抗原結合部分的暴露,從而減弱非特異細胞因子釋放的風險。該雙特異性抗原結合分子的一個形式是包含: (A) 第一多肽,其包含:(i)特異性針對第一抗原的抗原結合片段(Fab)重鏈結構域,(ii)能夠特異性結合第二抗原的單鏈抗體(scFv)結構域,和(iii)第一Fc結構域; (B) 第二多肽,其包含:第二Fc結構域; (C) 第三多肽,其包含:特異性針對第一抗原的抗原結合片段(Fab)輕鏈結構域; 所述抗原結合片段(Fab)重鏈結構域與所述抗原結合片段(Fab)輕鏈結構域形成針對第一抗原的第一結合位點,所述單鏈抗體(scFv)結構域形成針對第二抗原的第二結合位點,所述第一Fc結構域和所述第二Fc結構域相互締合。
在一個實施方案中,所述單鏈抗體(scFv)結構域包含第二重鏈可變區和第二輕鏈可變區; 較佳地,所述第二重鏈可變區與所述第二輕鏈可變區藉由第一接頭連接或者直接連接,其中: 第二重鏈可變區的C端與第一接頭的N端融合,第一接頭的C端與第二輕鏈可變區的N端融合;或者 第二輕鏈可變區的C端與第一接頭的N端融合,第一接頭的C端與第二重鏈可變區的N端融合;或者 第二重鏈可變區的C端與第二輕鏈可變區的N端融合;或者 第二輕鏈可變區的C端與第二重鏈可變區的N端融合; 更佳地,所述第一接頭包含胺基酸序列(G 4S) n,n為1-10中的任意整數。
在一個實施方案中,所述第一Fc結構域包含免疫球蛋白的第一CH2結構域和第一CH3結構域,所述第一CH2結構域的C端與第一CH3結構域的N端融合;所述第二Fc結構域包含免疫球蛋白的第二CH2結構域和第二CH3結構域,所述第二CH2結構域的C端與第二CH3結構域的N端融合; 較佳地,所述第一CH3結構域包含「節」(knob)結構,所述第二CH3結構域包含「穴」(hole)結構;更佳地,所述「節」(knob)結構包含胺基酸取代S354C和T366W,所述「穴」(hole)結構包含胺基酸取代Y349C、T366S、L368A和Y407V; 較佳地,所述Fc結構域來源於IgG1; 較佳地,所述單鏈抗體(scFv)結構域與所述第一Fc結構域藉由第二接頭連接或者直接連接,其中: 單鏈抗體(scFv)結構域的C端與第二接頭的N端融合,第二接頭的C端與第一Fc結構域的N端融合;或者 單鏈抗體(scFv)結構域的C端與第一Fc結構域的N端融合; 更佳地,所述第二接頭包含胺基酸序列EPKSS(SEQ ID NO:34)。
在一個實施方案中,所述抗原結合片段(Fab)重鏈結構域包含免疫球蛋白的第一重鏈可變區和CH1結構域,所述第一重鏈可變區的C端與CH1結構域的N端融合;所述抗原結合片段(Fab)輕鏈結構域包含免疫球蛋白的第一輕鏈可變區和輕鏈恆定區,所述第一輕鏈可變區的C端與輕鏈恆定區的N端融合; 較佳地,所述抗原結合片段(Fab)重鏈結構域與所述單鏈抗體(scFv)結構域藉由第三接頭連接或者直接連接,其中: 抗原結合片段(Fab)重鏈結構域的C端與第三接頭的N端融合,第三接頭的C端與單鏈抗體(scFv)結構域的N端融合;或者 單鏈抗體(scFv)結構域的C端與第三接頭的N端融合,第三接頭的C端與抗原結合片段(Fab)重鏈結構域的N端融合;或者 抗原結合片段(Fab)重鏈結構域的C端與單鏈抗體(scFv)結構域的N端融合;或者 單鏈抗體(scFv)結構域的C端與抗原結合片段(Fab)重鏈結構域的N端融合; 更佳地,所述第三接頭包含胺基酸序列(G 4S) n,n為1-10中的任意整數。
在一個實施方案中,所述第一多肽包含如下結構:Fab重鏈結構域-第三接頭-scFv結構域-第二接頭-第一Fc結構域或者scFv結構域-第三接頭-Fab重鏈結構域-第二接頭-第一Fc結構域; 較佳地,所述第一多肽包含如下結構:第一重鏈可變區-CH1-第三接頭-第二重鏈可變區-第一接頭-第二輕鏈可變區-第二接頭-第一CH2-第一CH3;或者第一重鏈可變區-CH1-第三接頭-第二輕鏈可變區-第一接頭-第二重鏈可變區-第二接頭-第一CH2-第一CH3;或者第二重鏈可變區-第一接頭-第二輕鏈可變區-CH1-第三接頭-第一重鏈可變區-第二接頭-第一CH2-第一CH3;或者第二輕鏈可變區-第一接頭-第二重鏈可變區-CH1-第三接頭-第一重鏈可變區-第二接頭-第一CH2-第一CH3;所述第二多肽包含如下結構:第二CH2-第二CH3;所述第三多肽包含如下結構:第一輕鏈可變區-輕鏈恆定區。
在一個實施方案中,所述雙特異性抗原結合分子包含一個或多個選自以下組的胺基酸取代:(i)L234A和L235A;(ii)H435R;較佳地,所述H435R取代是第二多肽上的取代。
在一個實施方案中,所述第二抗原為CD3,較佳為CD3ε;較佳地,所述單鏈抗體(scFv)結構域包含序列如SEQ ID NO:24所示的HCDR1、序列如SEQ ID NO:25所示的HCDR2、序列如SEQ ID NO:26所示的HCDR3、序列如SEQ ID NO:27所示的LCDR1、序列如SEQ ID NO:28所示的LCDR2和序列如SEQ ID NO:29所示的LCDR3; 更佳地,所述單鏈抗體(scFv)結構域包含序列如SEQ ID NO:21所示的第二重鏈可變區和序列如SEQ ID NO:22所示的第二輕鏈可變區; 更佳地,所述單鏈抗體(scFv)結構域包含SEQ ID NO:23所示的胺基酸序列。
在一個實施方案中,所述第一Fc結構域包含SEQ ID NO:31所示的胺基酸序列;所述第二Fc結構域包含SEQ ID NO:3所示的胺基酸序列。
在一個實施方案中,所述第一抗原為DLL3;較佳地,所述抗原結合片段(Fab)重鏈結構域包含序列如SEQ ID NO:13所示的HCDR1、序列如SEQ ID NO:14所示的HCDR2和序列如SEQ ID NO:15所示的HCDR3;所述抗原結合片段(Fab)輕鏈結構域包含序列如SEQ ID NO:16所示的LCDR1、序列如SEQ ID NO:17所示的LCDR2和序列如SEQ ID NO:18所示的LCDR3; 更佳地,所述抗原結合片段(Fab)重鏈結構域包含序列如SEQ ID NO:11所示的第一重鏈可變區;所述抗原結合片段(Fab)輕鏈結構域包含序列如SEQ ID NO:12所示的第一輕鏈可變區; 更佳地,所述抗原結合片段(Fab)重鏈結構域包含序列如SEQ ID NO:33所示的胺基酸序列;所述抗原結合片段(Fab)輕鏈結構域包含序列如SEQ ID NO:4所示的胺基酸序列。
在一個實施方案中,第一多肽包含SEQ ID NO:2所示的胺基酸序列;第二多肽包含SEQ ID NO:3所示的胺基酸序列;第三多肽包含SEQ ID NO:4所示的胺基酸序列。
該雙特異性抗原結合分子的另一個形式是包含同源的兩條多肽,每條多肽包含:(i)能夠特異性結合第一抗原的奈米抗體(VHH)結構域,(ii)能夠特異性結合第二抗原的單鏈抗體(scFv)結構域,和(iii)Fc結構域;所述兩條多肽的Fc結構域相互締合。
在一個實施方案中,所述單鏈抗體(scFv)結構域包含重鏈可變區和輕鏈可變區; 較佳地,所述重鏈可變區與所述輕鏈可變區藉由第一接頭連接或者直接連接,其中: 重鏈可變區的C端與第一接頭的N端融合,第一接頭的C端與輕鏈可變區的N端融合;或者 輕鏈可變區的C端與第一接頭的N端融合,第一接頭的C端與重鏈可變區的N端融合;或者 重鏈可變區的C端與輕鏈可變區的N端融合;或者 輕鏈可變區的C端與重鏈可變區的N端融合; 更佳地,所述第一接頭包含胺基酸序列(G 4S) n,n為1-10中的任意整數。
在一個實施方案中,所述Fc結構域包含免疫球蛋白的CH2結構域和CH3結構域,所述CH2結構域的C端與CH3結構域的N端融合; 較佳地,所述Fc結構域來源於IgG1; 較佳地,所述Fc結構域與所述單鏈抗體(scFv)結構域藉由第二接頭連接或者直接連接,其中: 單鏈抗體(scFv)結構域的C端與第二接頭的N端融合,第二接頭的C端與Fc結構域的N端融合;或者 單鏈抗體(scFv)結構域的C端與Fc結構域的N端融合; 更佳地,所述第二接頭包含胺基酸序列EPKSS(SEQ ID NO:34)。
在一個實施方案中,所述奈米抗體(VHH)結構域與所述單鏈抗體(scFv)結構域藉由第三接頭連接或者直接連接,其中: 奈米抗體(VHH)結構域的C端與第三接頭的N端融合,第三接頭的C端與單鏈抗體(scFv)結構域的N端融合;或者 單鏈抗體(scFv)結構域的C端與第三接頭的N端融合,第三接頭的C端與奈米抗體(VHH)結構域的N端融合;或者 奈米抗體(VHH)結構域的C端與單鏈抗體(scFv)結構域的N端融合;或者 單鏈抗體(scFv)結構域的N端與奈米抗體(VHH)結構域的C端融合; 更佳地,所述第三接頭包含胺基酸序列(G 4S) n,n為1-10中的任意整數。
在一個實施方案中,每條多肽包含如下結構:VHH結構域-第三接頭-scFv結構域-第二接頭-Fc結構域或者scFv結構域-第三接頭-VHH結構域-第二接頭-Fc結構域; 較佳地,每條多肽包含如下結構:VHH結構域-第三接頭-重鏈可變區-第一接頭-輕鏈可變區-第二接頭-CH2-CH3,或者 VHH結構域-第三接頭-輕鏈可變區-第一接頭-重鏈可變區-第二接頭-CH2-CH3,或者 重鏈可變區-第一接頭-輕鏈可變區-第三接頭-VHH結構域-第二接頭-CH2-CH3,或者 輕鏈可變區-第一接頭-重鏈可變區-第三接頭-VHH結構域-第二接頭-CH2-CH3。
在一個實施方案中,所述雙特異性抗原結合分子包含以下胺基酸取代:L234A和L235A。
在一個實施方案中,所述第二抗原為CD3,較佳為CD3ε;較佳地,所述單鏈抗體(scFv)結構域包含序列如SEQ ID NO:24所示的HCDR1、序列如SEQ ID NO:25所示的HCDR2、序列如SEQ ID NO:26所示的HCDR3、序列如SEQ ID NO:27所示的LCDR1、序列如SEQ ID NO:28所示的LCDR2和序列如SEQ ID NO:29所示的LCDR3; 更佳地,所述單鏈抗體(scFv)結構域包含序列如SEQ ID NO:21所示的重鏈可變區和序列如SEQ ID NO:22所示的輕鏈可變區; 更佳地,所述單鏈抗體(scFv)結構域包含SEQ ID NO:23所示的胺基酸序列。
在一個實施方案中,所述Fc結構域包含SEQ ID NO:30所示的胺基酸序列。
在一個實施方案中,所述第一抗原為DLL3;較佳地,所述奈米抗體(VHH)結構域包含序列如SEQ ID NO:6所示的HCDR1、序列如SEQ ID NO:7所示的HCDR2和序列如SEQ ID NO:8所示的HCDR3; 更佳地,所述奈米抗體(VHH)結構域包含SEQ ID NO:32所示的胺基酸序列。
在一個實施方案中,所述雙特異性抗原結合分子的每條多肽包含SEQ ID NO:1所示的胺基酸序列。
本發明的第二個目的在於提供一種抗DLL3(較佳抗DLL3和CD3)的雙特異性抗原結合分子,該分子能夠藉由靶向免疫細胞表面抗原(較佳CD3抗原)招募T細胞到腫瘤部位,特異性地殺傷高表達DLL3的腫瘤細胞,而體外細胞因子的釋放水平較低,安全性好。
基於此,本發明提供了一種結合特定表位的雙特異性抗原結合分子,其能夠結合的表位: (i)與包含序列如SEQ ID NO:6所示的HCDR1、序列如SEQ ID NO:7所示的HCDR2和序列如SEQ ID NO:8所示的HCDR3的奈米抗體針對的表位相同或重疊;或者 (ii)與包含序列如SEQ ID NO:13所示的HCDR1、序列如SEQ ID NO:14所示的HCDR2、序列如SEQ ID NO:15所示的HCDR3、序列如SEQ ID NO:16所示的LCDR1、序列如SEQ ID NO:17所示的LCDR2和序列如SEQ ID NO:18所示的LCDR3的抗體針對的表位相同或重疊。
在一個實施方案中,所述雙特異性抗原結合分子能夠結合的表位: (i)與包含SEQ ID NO:32所示的胺基酸序列的奈米抗體針對的表位相同或重疊;或者 (ii)與包含序列如SEQ ID NO:11所示的第一重鏈可變區和序列如SEQ ID NO:12所示的第一輕鏈可變區的抗體針對的表位相同或重疊。
在一個實施方案中,所述雙特異性抗原結合分子能與CD3結合,較佳能與CD3ε結合。
本發明還提供了一種雙特異性抗原結合分子,其包含: (A) 能夠特異性結合DLL3的第一結合部分;以及 (B) 第二結合部分,所述第二結合部分特異性結合的抗原或表位與第一結合部分不同; 所述第一結合部分包含: (i)序列如SEQ ID NO:6所示的HCDR1、序列如SEQ ID NO:7所示的HCDR2和序列如SEQ ID NO:8所示的HCDR3;或者 (ii)序列如SEQ ID NO:13所示的HCDR1、序列如SEQ ID NO:14所示的HCDR2、序列如SEQ ID NO:15所示的HCDR3、序列如SEQ ID NO:16所示的LCDR1、序列如SEQ ID NO:17所示的LCDR2和序列如SEQ ID NO:18所示的LCDR3。
在一個實施方案中,所述第一結合部分包含: (i) SEQ ID NO:32所示的胺基酸序列;或者 (ii) 序列如SEQ ID NO:11所示的第一重鏈可變區和序列如SEQ ID NO:12所示的第一輕鏈可變區。
在一個實施方案中,所述第二結合部分能與CD3結合,較佳能與CD3ε結合。
本發明還提供了核酸分子,其編碼前述雙特異性抗原結合分子。
本發明還提供了表達載體,其包含前述核酸分子。
本發明還提供了宿主細胞,其包含前述核酸分子或者表達載體;較佳地,所述宿主細胞為原核細胞或真核細胞;所述原核細胞較佳大腸桿菌;所述真核細胞較佳哺乳動物細胞或酵母;更佳地,所述哺乳動物細胞為CHO細胞、Expi293或HEK293細胞。
本發明還提供了製備雙特異性抗原結合分子的方法,所述方法包括:在適合的條件下培養前述宿主細胞。
本發明還提供了抗體藥物偶聯物,其是將前述雙特異性抗原結合分子與其他生物活性分子偶聯形成;較佳地,所述其他生物活性分子為小分子藥物;較佳地,所述雙特異性抗原結合分子與所述其他生物活性分子藉由接頭連接。
本發明還提供了藥物組合物,其包含前述雙特異性抗原結合分子、核酸分子、表達載體、宿主細胞和/或抗體藥物偶聯物。
在一個實施方案中,所述藥物組合物還包含藥學上可接受的載體。
在一個實施方案中,所述藥物組合物還包含一種或多種額外的治療劑。
本發明還提供了前述雙特異性抗原結合分子、核酸分子、表達載體、宿主細胞和/或抗體藥物偶聯物在製備治療、緩解和/或預防腫瘤的藥物中的用途。較佳地,所述腫瘤是DLL3陽性的腫瘤。
本發明還提供一種誘導表達DLL3的細胞死亡的方法,所述方法包括使所述細胞與前述雙特異性抗原結合分子、核酸分子、表達載體、宿主細胞、抗體藥物偶聯物和/或藥物組合物接觸,所述表達DLL3的細胞是腫瘤細胞。
本發明還提供一種治療受試者中與表達DLL3相關的疾病的方法,所述方法包括向有需要的受試者施用前述雙特異性抗原結合分子、核酸分子、表達載體、宿主細胞、抗體藥物偶聯物和/或藥物組合物。較佳地,所述疾病是腫瘤。
較佳地,本發明所述腫瘤/腫瘤細胞選自:小細胞肺癌、膠質母細胞瘤、神經內分泌癌、黑色素瘤、胰腺癌、直腸癌以及上述腫瘤的轉移癌。
在一個實施方案中,所述方法還包括向所述受試者給予額外的治療劑。
本發明所稱取代較佳採用EU編號系統表示。 本發明的技術方案具有如下有益效果:保持較強體外腫瘤細胞殺傷能力的同時,體外非特異細胞因子釋放水平較弱或無,安全性好。
[術語]
本說明書中提及的所有公佈、專利和專利申請都以引用的方式併入本文,所述引用的程度就如同已特定地和個別地指示將各個別公佈、專利或專利申請以引用的方式併入本文。
在下文詳細描述本發明前,應理解本發明不限於本文中描述的特定方法學、方案和試劑,因為這些可以變化。還應理解本文中使用的術語僅為了描述具體實施方案,而並不意圖限制本發明的範圍。除非另外定義,本文中使用的所有技術和科學術語與本發明所屬領域中普通技術人員通常的理解具有相同的含義。
本文所公開的某些實施方案包含了數值範圍,並且本發明的某些方面可採用範圍的方式描述。除非另有說明,應當理解數值範圍或者以範圍描述的方式僅是出於簡潔、便利的目的,並不應當認為是對本發明的範圍的嚴格限定。因此,採用範圍方式的描述應當被認為具體地公開了所有可能的子範圍以及在該範圍內的所有可能的具體數值點,正如這些子範圍和數值點在本文中已經明確寫出。不論所述數值的寬窄,上述原則均同等適用。當採用範圍描述時,該範圍包括範圍的端點。
當涉及可測量值比如量、暫時持續時間等時,術語「約」是指包括指定值的±20%、或在某些情況下±10%、或在某些情況下±5%、或在某些情況下±1%、或在某些情況下±0.1%的變化。
本文中的術語「抗體」可以包含完整抗體(例如全長單株抗體)及其任何抗原結合片段(即抗原結合部分)或其單鏈,還可以包含在完整抗體或其抗原結合片段或其單鏈的基礎上進行改造(例如連接其他肽段、功能單位重排等)而形成的具有抗原特異性結合能力的產物。
在一個實施方案中,抗體典型是指包含藉由共價二硫鍵和非共價相互作用保持在一起的兩條重(H)多肽鏈和兩條輕(L)多肽鏈的Y型四聚蛋白。天然IgG抗體即具有這樣的結構。每條輕鏈由一個可變結構域(VL)和一個恆定結構域(CL)組成。每條重鏈包含一個可變結構域(VH)和恆定區。
本領域已知五個主要類別的抗體:IgA,IgD,IgE,IgG和IgM,對應的重鏈恆定結構域分別被稱為α,δ,ε,γ和μ,IgG和IgA可以進一步分為不同的亞類,例如IgG可分為IgG1,IgG2,IgG3,IgG4,IgA可分為IgA1和IgA2。來自任何脊椎動物物種的抗體的輕鏈基於其恆定結構域的胺基酸序列可以被分配到兩種明顯相異的類型之一,稱為κ和λ。
在IgG、IgA和IgD抗體的情形中,該恆定區包含稱為CH1、CH2和CH3的三個結構域(IgM和IgE具有第四結構域CH4)。在IgG、IgA和IgD類別中,CH1和CH2結構域被柔性鉸鏈區分離,該鉸鏈區是可變長度的富含脯胺酸和半胱胺酸的區段。每類抗體進一步包含由配對半胱胺酸殘基形成的鏈間和鏈內二硫鍵。
術語「可變區」或「可變結構域」顯示出從一種抗體到另一種抗體的胺基酸組成的顯著變化,並且主要負責抗原識別和結合。每個輕鏈/重鏈對的可變區形成抗體結合位點,使得完整的IgG抗體具有兩個結合位點(即它是二價的)。重鏈的可變區(VH)和輕鏈的可變區(VL)結構域各包含具有極端變異性的三個區域,被稱為高變區(HVR),或更通常地,被稱為互補決定區(CDR),VH和VL各有4個骨架區FR,分別用FR1,FR2,FR3,FR4表示。因此,CDR和FR序列通常出現在重鏈可變結構域(或輕鏈可變結構域)的以下序列中:FR1-HCDR1(LCDR1)-FR2-HCDR2(LCDR2)-FR3-HCDR3(LCDR3)-FR4。
術語「奈米抗體」是指具有下述(通用)結構的胺基酸序列:FR1-CDR1-FR2-CDR2-FR3-CDR3-FR4。其中,FR1-FR4分別是指構架區(Frame)1-4,並且其中CDR1-CDR3分別是指互補決定區1-3。「VHH」涉及來自駱駝科(駱駝、單峰駱駝、美洲駝、羊駝等)重鏈抗體的可變抗原結合結構域。
術語「scFv」是指包含至少一個包括輕鏈的可變區抗體片段和至少一個包括重鏈的可變區的抗體片段的融合蛋白,其中所述輕鏈和重鏈可變區是鄰接的(例如經由合成接頭例如短的柔性多肽接頭),並且能夠以單鏈多肽形式表達,且其中所述scFv保留其所來源的完整抗體的特異性。除非指定,scFv可以以任何順序(例如相對於多肽的N-末端和C-末端)具有所述的VL和VH可變區,scFv可以包括VL-接頭-VH或可以包括VH-接頭-VL。
術語「Fc」用於定義免疫球蛋白重鏈的C端區域,所述區域包含至少一部分的恆定區。該術語包括天然序列Fc區和變體Fc區。雖然IgG重鏈的Fc區的邊界可以略微變化,但是人IgG重鏈Fc區通常定義為自Cys226或Pro230延伸至重鏈的羧基端,例如,IgG Fc域包含IgG CH2和IgG CH3恆定域。除非本文中另外指定,Fc區或恆定區中胺基酸殘基的編號方式依照EU編號系統,也稱作EU索引。
術語「締合」(association)是指兩個或更多個多肽鏈和/或單一多肽鏈的兩個或更多個部分之間的功能性關係。特別地,所述術語「締合」意指兩個或更多個多肽(或單一多肽的部分)彼此締合,例如,藉由分子相互作用非共價締合和/或藉由一個或多個二硫橋或化學交聯共價締合,從而產生功能性抗原結合結構域。抗原結合分子中可能存在的締合的實例包括(但不限於)Fc結構域中的Fc區之間的締合、Fab或Fv中的VH區和VL區之間的締合、以及Fab中的CH1和CL之間的締合。
術語「節-入-穴」(Knob-into-Hole)是指一種用於促進Fc的兩條多肽鏈締合的修飾,其包含在Fc的兩個多肽鏈之一中的「節」(knob)修飾和在Fc的兩個多肽鏈之另一中的「穴」(hole)修飾。該技術記載於例如US 5,731,168和US 7,695,936。一般地,該方法牽涉在第一多肽鏈的介面處引入隆起(「節」)並在第二多肽鏈的介面中引入相應的空腔(「穴」),使得隆起可以置於空腔中從而促進異二聚體形成並阻礙同二聚體形成。藉由將來自第一多肽鏈介面的小胺基酸側鏈用更大的側鏈(例如酪胺酸或色胺酸)替換來構建隆起。在第二多肽鏈的介面中創建具有與隆起相同或相似大小的互補性空腔,其藉由將大胺基酸側鏈用更小的胺基酸側鏈(例如丙胺酸或蘇胺酸)替換進行。
因而,在一個具體的實施方案中,在本發明的雙特異性抗體的Fc域的第一多肽鏈的CH3域中,一個胺基酸殘基用具有更大側鏈體積的胺基酸殘基替換,由此在第一多肽鏈的CH3域內生成隆起,其可安置於第二多肽鏈的CH3域內的空腔中,而且在Fc域的第二多肽鏈的CH3域中,一個胺基酸殘基用具有更小側鏈體積的胺基酸殘基替換,由此在第二多肽鏈的CH3域內生成空腔,其中可安置第一多肽鏈的CH3域內的隆起。較佳地,所述具有更大側鏈體積的胺基酸殘基選自下組:精胺酸(R),苯丙胺酸(F),酪胺酸(Y),和色胺酸(W)。較佳地,所述具有更小側鏈體積的胺基酸殘基選自下組:丙胺酸(A),絲胺酸(S),蘇胺酸(T),和纈胺酸(V)。
術語「接頭」是指用於連接兩個不同功能單元(例如抗原結合片段)的任何工具。接頭的類型包括但不限於化學接頭和多肽接頭。多肽接頭的序列不受限制。多肽接頭較佳是非免疫原性和柔性的,例如包含絲胺酸和甘胺酸序列的那些。取決於具體的構建體,接頭可以長或短。
根據本發明,連接不同功能單元的接頭較佳包含柔性肽接頭,例如甘胺酸-絲胺酸肽接頭。在一個實施方案中,接頭包含胺基酸序列(G 4S) n或(G 4S) nA,其中n是1-10中的任意整數選擇,較佳包含胺基酸序列(G 4S) 3或(G 4S) 3A。連接VH和VL結構域以形成VH-VL或VL-VH的scFv結構域的接頭較佳包含柔性肽接頭,例如甘胺酸-絲胺酸肽接頭。在一個實施方案中,接頭包含胺基酸序列(G 4S) n或(G 4S) nA,其中n是1-10中的任意整數選擇,較佳包含胺基酸序列(G 4S) 3或(G 4S)。
本文中「抗體」可在最廣的意義上使用,可包括如多株抗體(polyclonal antibodies)、單株抗體、嵌合抗體、人源化抗體及靈長類化抗體、CDR移植抗體(CDR-grafted antibody)、人類抗體(包括重組產生的人類抗體)、重組產生的抗體、胞內抗體、多特異性抗體、雙特異性抗體、單價抗體、多價抗體、抗個體基因型抗體、合成抗體(包括突變蛋白及其變體)等等。
術語「單株抗體」(或稱「單抗」)指由單一細胞轉殖產生的基本均質、僅針對某一特定抗原表位的抗體。單株抗體可以使用本領域中已知的多種技術製備,包括雜交瘤技術、重組技術、噬菌體展示技術、轉基因動物、合成技術或上述技術的組合等。
需說明的是,本發明的抗體和雙特異性抗原結合分子的可變區的CDR和FR的劃分是根據Kabat定義確定的。而其他命名和編號系統,例如Chothia、IMGT或AHo等,也是本領域技術人員已知的。因此,以本發明的單抗序列為基礎,包含任何命名系統衍生的一種或多種CDR的人源化抗體均明確地保持在本發明的範圍內。
術語「人源化抗體」是指其中非人抗體(如小鼠抗體)CDR以外的所有或部分胺基酸被源自人免疫球蛋白的相應胺基酸置換的抗體。胺基酸的少量添加、缺失、插入、取代或修飾是容許的,只要它們不消除抗體結合特定抗原的能力。「人源化」抗體保持與原抗體類似的抗原特異性。
術語「嵌合抗體」是指其中可變區源自一個物種而恆定區源自另一物種的抗體,例如其中可變區源自小鼠抗體而恆定區源自人抗體的抗體。
術語「抗體片段」包含完整抗體的至少一部分。如在此所使用,抗體分子的「片段」包括抗體的「抗原結合片段」,並且術語「抗原結合片段」是指免疫球蛋白或抗體中與所選抗原或其免疫原性決定部分特異性結合或反應的多肽片段,或由此片段進一步衍生的融合蛋白產物,例如單鏈抗體,嵌合抗原受體中的胞外結合區等。示例性的抗體片段或其抗原結合片段包括但不限於:可變輕鏈片段、可變重鏈片段、Fab片段、F(ab’)2片段、Fd片段、Fv片段、單結構域抗體、線性抗體、單鏈抗體(scFv)及由抗體片段形成的雙特異性抗體或多特異性抗體等。
術語「抗原」是指被抗體或抗體結合片段識別並特異性結合的物質,廣義上,抗原可以包括所選靶標的任何免疫原性片段或決定簇,包括單表位、多表位、單結構域、多結構域、完整的胞外結構域(ECD)或蛋白質。肽、蛋白質、糖蛋白、多糖和脂質,其部分及其組合均可構成抗原。非限制性示例性抗原包括腫瘤抗原或病原體抗原等。「抗原」也可以指引發免疫反應的分子。任何形式的抗原或含有該抗原的細胞或製劑都可以用於生成對抗原決定簇具有特異性的抗體。抗原可以是分離的全長蛋白質、細胞表面蛋白(例如,用在其表面上表達至少一部分抗原的細胞進行免疫的)、或可溶性蛋白質(例如,僅用該蛋白質的ECD部分進行免疫的)或蛋白質構建體(例如,Fc抗原)。該抗原可以在基因修飾的細胞中產生。前述任何抗原可以單獨或與本領域已知的一種或多種免疫原性增強佐劑組合使用。編碼該抗原的DNA可以是基因組的或非基因組的(例如,cDNA),並且可以編碼足以引起免疫原性反應的至少一部分ECD。可以使用任何載體來轉化其中表達抗原的細胞,所述載體包括但不限於腺病毒載體、慢病毒載體、質粒以及非病毒載體如陽離子脂質。
術語「表位」、「抗原決定簇」是指抗原上與免疫球蛋白或抗體特異性結合的位點。表位可以由相鄰的胺基酸、或藉由蛋白質的三級折疊而並列的不相鄰的胺基酸形成。由相鄰的胺基酸形成的表位通常在暴露於變性溶劑後保持,而藉由三級折疊形成的表位通常在變性溶劑處理後喪失。表位通常以獨特的空間構象存在並且包括至少3-15個胺基酸。由給定的抗體確定其結合的表位的方法是本領域熟知的,包括免疫印跡和免疫沉澱檢測分析等。確定表位的空間構象的方法包括本領域中的技術,例如X射線晶體分析法和二維核磁共振等。
術語「雙特異性的」是指抗原結合分子能夠特異性結合兩個不同的抗原決定簇。術語「抗原結合分子」在其最廣泛的含義上指特異性結合抗原決定簇的分子。抗原結合分子的實例是免疫球蛋白及其衍生物,例如片段。術語「雙特異性抗原結合分子」指對兩種不同抗原(或表位)具有特異性的結合分子(例如抗體或包含抗體片段的分子),較佳雙特異性抗體。
術語「特異性結合」是指該結合對抗原具有選擇性,且可以與不想要或非特異的相互作用區分開。可以藉由酶聯免疫吸附測定(ELISA)或本領域技術人員熟悉的其他技術來測定抗體結合特異性抗原決定簇的能力,該其他技術例如表面電漿共振(SPR)技術(在BIAcore儀器上分析)。
本發明中的可變區製作抗體、結合分子、雙特異性結合分子或多特異性結合分子時,恆定區沒有特別限定,可以使用本領域技術人員公知的恆定區或者自行獲得的恆定區,還可以在恆定區部分導入胺基酸突變(例如提高或降低與Fcγ受體或FcRn的結合的突變)。
獲得本發明的結合分子、抗原結合片段、抗體、雙特異性結合分子或多特異性結合分子的方法沒有特別限制,可藉由任意方法獲得,例如冷泉港的抗體實驗技術指南,5-8章和15章。本發明的結合分子、抗原結合片段、抗體、雙特異性結合分子或多特異性結合分子可用常規方法製備和純化。比如,編碼重鏈和輕鏈的cDNA序列,可以轉殖並重組至表達載體。重組的免疫球蛋白表達載體可以穩定地轉染CHO細胞。作為一種更推薦的現有技術,哺乳動物類表達系統會導致抗體的糖基化,特別是在Fc區的高度保守N端。藉由表達與人源抗原特異性結合的抗體得到穩定的轉殖。陽性的轉殖在生物反應器的無血清培養基中擴大培養以生產抗體。分泌了抗體的培養液可以用常規技術純化、收集。抗體可用常規方法進行過濾濃縮。可溶的混合物和多聚體,也可以用常規方法去除,比如分子篩、離子交換。
術語「抗體藥物偶聯物」(ADC)是指已共價偶聯治療活性物質或活性藥物成分(API)的抗體,從而治療活性物質或活性藥物成分(API)可以靶向至抗體的結合靶標以表現出其藥理學功能。治療活性物質或活性藥物成分可以是能夠殺死ADC靶向的細胞的細胞毒素,較佳惡性或癌細胞。治療活性物質、活性藥物成分或細胞毒素的共價連接可以以非位點特異性方式利用偶聯有效載荷至離胺酸或半胱胺酸殘基的標準化學接頭進行,或者較佳地,綴合以位點特異性方式進行,其允許完全控制綴合位點以及產生的ADC的藥物比抗體比例。
術語「胺基酸取代」或「取代」或「替代」意指用另一種胺基酸替換親本多肽序列中特定位置上的胺基酸。
術語「親和力」或「結合親和力」指分子(例如抗體)的單一結合位點與其結合配偶體(例如抗原)之間全部非共價相互作用總和的強度。術語「KD」是指特定的抗體-抗原相互作用的解離常數。可以使用本領域已知的各種技術來確定結合親和力,例如表面電漿共振、生物層干涉法、雙極化干涉法、靜態光散射、動態光散射、等溫滴定量熱法、ELISA、分析超速離心和流式細胞術等。
術語「生物學活性」指抗體結合抗原並導致可測量的生物學反應的能力,所述生物學反應可以在體外或體內進行測量。
本發明的藥物組合物,可以根據需要與對其為惰性的適當的藥學上可接受的載體、介質等進行混和而製劑化。例如:生理鹽水、滅菌水、賦形劑、穩定劑、抗氧化劑(如抗壞血酸等)、緩衝劑、防腐劑、表面活性劑、螯合劑(如EDTA等)或黏合劑等。另外,還可以含有其它低分子量的多肽、血清白蛋白、明膠和免疫球蛋白等蛋白質、甘胺酸、麩醯胺酸、天冬醯胺、麩胺酸、天冬胺酸、甲硫胺酸、精胺酸和離胺酸等胺基酸、多糖和單糖等糖類或碳水化物、甘露糖醇和山梨糖醇等糖醇。在制為注射用水溶液時,可舉出例如生理鹽水、含葡萄糖和其它輔藥的等滲液,例如,D-山梨糖醇、D-甘露糖、D-甘露糖醇、氯化鈉,還可以與適當的助溶劑,例如醇(乙醇等)、多元醇(丙二醇、PEG等)、非離子型表面活性劑(聚山梨醇酯80、聚山梨醇酯20、泊洛沙姆188、HCO-50)等並用。另外,藉由在製劑中混合透明質酸酶(hyaluronidase),還可以進行更大液量的皮下給藥。
本發明的結合分子或抗原結合片段可與其他藥物聯合使用,活性成分可以混合在一起形成單一的給藥單元,也可分別獨立成為給藥單元,分別使用。
術語「有效量」指本發明的抗體或片段的藥物製劑的劑量,其以單一或多次劑量施用患者後,在治療的患者中產生預期效果。有效量可以由作為本領域技術人員的主治醫師藉由考慮以下多種因素來容易地確定:諸如人種差異;體重、年齡和健康狀況;涉及的具體疾病;疾病的嚴重程度;個體患者的反應;施用的具體抗體;施用模式;施用製劑的生物利用率特徵;選擇的給藥方案;和任何伴隨療法的使用。
本文所用的術語「個體」或「受試者」是指任何動物,例如哺乳動物或有袋動物。本發明的個體包括但不限於人類、非人類靈長類動物(例如食蟹猴或恆河猴或其他類型的獼猴)、小鼠、豬、馬、驢、牛、綿羊、大鼠和任何種類的家禽。
本文所用的術語「疾病」或「病症」或「紊亂」等是指任何損害或干擾細胞、組織或器官的正常功能的改變或失調。例如,所述的「疾病」包括但不限於:腫瘤、病原體感染、自身免疫性疾病、T細胞功能障礙性疾病、或免疫耐受能力缺陷(如移植排斥)。
本文所用的術語「腫瘤」指的是一種以細胞或組織的病理性增生為特徵的疾病,及其隨後的遷移或侵襲其他組織或器官。腫瘤生長通常是不受控制的和進行性的,不誘導或抑制正常細胞增殖。
本文所用的術語「治療」是指在試圖改變個人或處理細胞引起的的疾病過程中的臨床干預,既可以進行預防也可以在臨床病理過程干預。治療效果包括但不限於,防止疾病的發生或復發、減輕症狀、減少任何疾病直接或間接的病理後果、防止轉移、減慢疾病的進展速度、改善或緩解病情、緩解或改善預後等。
[具體實施方式]
下面結合具體實施例,進一步闡述本發明。應理解,這些實施例僅用於說明本發明而不用於限制本發明的範圍。下列實施例中未注明具體條件的實驗方法,通常按照常規條件或按照製造廠商所建議的條件。
實施例1.  抗CD3-DLL3雙特異性抗體的設計及序列
實施例中構建的雙特異性抗原結合分子(以下簡稱雙特異性抗體)是將抗DLL3奈米抗體或抗DLL3全長抗體Fab段重鏈與人T細胞受體亞基CD3ε的結合結構域藉由柔性接頭連接形成。其中,抗DLL3奈米抗體為hDLL3-3-1-NA,序列如SEQ ID NO:5所示。抗DLL3全長抗體為H2-39E2D11-NA,其重鏈序列如SEQ ID NO:9所示,輕鏈序列如SEQ ID NO:10所示。CD3ε結合結構域來自於全長抗體h160C9AA,其重鏈序列如SEQ ID NO:19所示,輕鏈序列如SEQ ID NO:20所示。為降低抗體的ADCC活性,最終構建的雙特異性抗體的Fc段均已進行了L234A和L235A的胺基酸取代。
將h160C9AA的重鏈可變區和輕鏈可變區經由柔性接頭連接形成單鏈抗體scFv,其結構為:VH-(G 4S) 3-VL,序列如SEQ ID NO:23所示。所述scFv再藉由柔性連接頭融合到DLL3全長抗體Fab段重鏈或DLL3奈米抗體的C末端。
當scFv融合至DLL3奈米抗體的C末端時,則所形成的雙特異性抗體被命名為雙抗1,包含同源的兩條鏈,融合後的鏈的序列如SEQ ID NO:1所示,示意圖見圖1A。
當scFv融合至DLL3全長抗體Fab段重鏈的C末端時,則所形成的雙特異性抗體被命名為雙抗2,包含一條輕鏈(即第三多肽)和異源的兩條重鏈(即第一多肽和第二多肽)。異源的兩條重鏈中,含有scFv的重鏈被設計為「節」(knob)結構(命名為雙抗2的「節」結構重鏈),包括S354C和T366W兩個位點的胺基酸取代。異源的兩條重鏈中,不含有scFv的重鏈被設計為「穴」(hole)結構(命名為雙抗2的「穴」結構重鏈),包括Y349C、T366S、L368A和Y407V四個位點的胺基酸取代。以及,為便於雙特異性抗體的純化,「穴」結構的重鏈還要進行H435R的取代。改造後的「節」結構重鏈的序列如SEQ ID NO:2所示,「穴」結構重鏈的序列如SEQ ID NO:3所示,輕鏈序列如SEQ ID NO:4所示(命名為雙抗2的輕鏈),示意圖見圖1B。
雙抗1和雙抗2的結構以及相關的分子序列分別總結於表1和表2。
表1 雙特異性抗體的結構
分子名稱 分子結構描述 SEQ ID NO:
雙抗1 DLL3 VHH - (G 4S) - CD3VH - (G 4S) 3- CD3VL - (EPKSS) - IgG1 Fc 1
雙抗2 「節」結構重鏈 DLL3 VH - DLL3 CH1 - (G 4S) 3- CD3VH - (G 4S) 3-CD3VL - (EPKSS) - IgG1 Fc(節) 2
「穴」結構重鏈 IgG1 Fc(穴) 3
輕鏈 DLL3 VL - DLL3 CL(即DLL3 LC) 4
hDLL3-3-1-NA DLL3 VHH - IgG1 Fc 5
H2-39E2D11-NA DLL3 HC 9
DLL3 LC 10
h160C9AA CD3 HC 19
CD3 LC 20
h160C9AA scFv CD3VH - (G 4S) 3- CD3VL 23
表2 雙特異性抗體的胺基酸序列
名稱 SEQ ID NO: 胺基酸序列
雙抗1 1 EVQLVESGGGLVQPGGSLRLSCAASTYTISSGYMGWFRQAPGKEREGVAAIYIGGSTTLYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCAAQLRPNAAYHPLDGRKYNYWGQGTLVTVSSGGGGSEVKLVESGGGLVQPGGSLKLSCAASGFTFNTYAMNWVRQAPGKGLEWVARIRSKYNNYATYYADSVKDRFTISRDDAKNTLYLQMNNLRTEDTAVYYCVRHGNFGNSYVSWFAYWGQGTLVTVSSGGGGSGGGGSGGGGSQAVVTQEPSLTVSPGGTVTLTCRSSTGAVTTSNYANWVQQKPGQAPRGLIGGTNKRAPGTPARFSGSLLGGKAALTLSGAQPEDEAEYYCALWYSNLWVFGGGTKLTVLEPKSSDKTHTCPPCPAPEAAGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSRDELTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK
雙抗2的「節」結構重鏈 2 QVQLVQSGAEVKKPGASVKVSCKASGYTFISYWITWVRQAPGQGLEWMGDIYPGSGSTTNYNEKFKSRVTMTRDTSTSTVYMELSSLRSEDTAVYYCARETTVGGAYAMDYWGQGTLVTVSSASTKGPSVFPLAPSSKSTSGGTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNHKPSNTKVDKKVEPKSCGGGGSGGGGSGGGGSEVKLVESGGGLVQPGGSLKLSCAASGFTFNTYAMNWVRQAPGKGLEWVARIRSKYNNYATYYADSVKDRFTISRDDAKNTLYLQMNNLRTEDTAVYYCVRHGNFGNSYVSWFAYWGQGTLVTVSSGGGGSGGGGSGGGGSQAVVTQEPSLTVSPGGTVTLTCRSSTGAVTTSNYANWVQQKPGQAPRGLIGGTNKRAPGTPARFSGSLLGGKAALTLSGAQPEDEAEYYCALWYSNLWVFGGGTKLTVLEPKSSDKTHTCPPCPAPEAAGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPCRDELTKNQVSLWCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK
雙抗2的「穴」結構重鏈 3 DKTHTCPPCPAPEAAGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVCTLPPSRDELTKNQVSLSCAVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLVSKLTVDKSRWQQGNVFSCSVMHEALHNRYTQKSLSLSPGK
雙抗2的輕鏈 4 EIVLTQSPATLSLSPGERATLSCRASQSINNNLHWYQQKPGQAPRLLIKYVSQSISGIPARFSGSGSGTDFTLTISSLEPEDFAVYYCQQTNAWPLTFGGGTKLEIKRTVAAPSVFIFPPSDEQLKSGTASVVCLLNNFYPREAKVQWKVDNALQSGNSQESVTEQDSKDSTYSLSSTLTLSKADYEKHKVYACEVTHQGLSSPVTKSFNRGEC
hDLL3-3-1-NA奈米抗體 5 EVQLVESGGGLVQPGGSLRLSCAASTYTISSGYMGWFRQAPGKEREGVAAIYIGGSTTLYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCAAQLRPNAAYHPLDGRKYNYWGQGTLVTVSSGGGGSDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSRDELTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPG
hDLL3-3-1-NA奈米抗體HCDR1 6 SGYMG
hDLL3-3-1-NA奈米抗體HCDR2 7 AAIYIGGSTTLYADSVKG
hDLL3-3-1-NA奈米抗體HCDR3 8 QLRPNAAYHPLDGRKYNY
H2-39E2D11-NA重鏈 9 QVQLVQSGAEVKKPGASVKVSCKASGYTFISYWITWVRQAPGQGLEWMGDIYPGSGSTTNYNEKFKSRVTMTRDTSTSTVYMELSSLRSEDTAVYYCARETTVGGAYAMDYWGQGTLVTVSSASTKGPSVFPLAPSSKSTSGGTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNHKPSNTKVDKKVEPKSCDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSRDELTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK
H2-39E2D11-NA輕鏈 10 EIVLTQSPATLSLSPGERATLSCRASQSINNNLHWYQQKPGQAPRLLIKYVSQSISGIPARFSGSGSGTDFTLTISSLEPEDFAVYYCQQTNAWPLTFGGGTKLEIKRTVAAPSVFIFPPSDEQLKSGTASVVCLLNNFYPREAKVQWKVDNALQSGNSQESVTEQDSKDSTYSLSSTLTLSKADYEKHKVYACEVTHQGLSSPVTKSFNRGEC
H2-39E2D11-NA重鏈可變區VH 11 QVQLVQSGAEVKKPGASVKVSCKASGYTFISYWITWVRQAPGQGLEWMGDIYPGSGSTTNYNEKFKSRVTMTRDTSTSTVYMELSSLRSEDTAVYYCARETTVGGAYAMDYWGQGTLVTVSS
H2-39E2D11-NA輕鏈可變區VL 12 EIVLTQSPATLSLSPGERATLSCRASQSINNNLHWYQQKPGQAPRLLIKYVSQSISGIPARFSGSGSGTDFTLTISSLEPEDFAVYYCQQTNAWPLTFGGGTKLEIK
H2-39E2D11-NA重鏈HCDR1 13 SYWIT
H2-39E2D11-NA重鏈HCDR2 14 DIYPGSGSTTNYNEKFKS
H2-39E2D11-NA重鏈HCDR3 15 ETTVGGAYAMDY
H2-39E2D11-NA輕鏈LCDR1 16 RASQSINNNLH
H2-39E2D11-NA輕鏈LCDR2 17 YVSQSIS
H2-39E2D11-NA輕鏈LCDR3 18 QQTNAWPLT
h160C9AA重鏈 19 EVKLVESGGGLVQPGGSLKLSCAASGFTFNTYAMNWVRQAPGKGLEWVARIRSKYNNYATYYADSVKDRFTISRDDAKNTLYLQMNNLRTEDTAVYYCVRHGNFGNSYVSWFAYWGQGTLVTVSSASTKGPSVFPLAPSSKSTSGGTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNHKPSNTKVDKKVEPKSCDKTHTCPPCPAPEAAGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSRDELTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK
h160C9AA輕鏈 20 QAVVTQEPSLTVSPGGTVTLTCRSSTGAVTTSNYANWVQQKPGQAPRGLIGGTNKRAPGTPARFSGSLLGGKAALTLSGAQPEDEAEYYCALWYSNLWVFGGGTKLTVLGQPKANPTVTLFPPSSEELQANKATLVCLISDFYPGAVTVAWKADSSPVKAGVETTTPSKQSNNKYAASSYLSLTPEQWKSHRSYSCQVTHEGSTVEKTVAPTEC
h160C9AA重鏈可變區VH 21 EVKLVESGGGLVQPGGSLKLSCAASGFTFNTYAMNWVRQAPGKGLEWVARIRSKYNNYATYYADSVKDRFTISRDDAKNTLYLQMNNLRTEDTAVYYCVRHGNFGNSYVSWFAYWGQGTLVTVSS
h160C9AA輕鏈可變區VL 22 QAVVTQEPSLTVSPGGTVTLTCRSSTGAVTTSNYANWVQQKPGQAPRGLIGGTNKRAPGTPARFSGSLLGGKAALTLSGAQPEDEAEYYCALWYSNLWVFGGGTKLTVL
h160C9AA的scFv 23 EVKLVESGGGLVQPGGSLKLSCAASGFTFNTYAMNWVRQAPGKGLEWVARIRSKYNNYATYYADSVKDRFTISRDDAKNTLYLQMNNLRTEDTAVYYCVRHGNFGNSYVSWFAYWGQGTLVTVSSGGGGSGGGGSGGGGSQAVVTQEPSLTVSPGGTVTLTCRSSTGAVTTSNYANWVQQKPGQAPRGLIGGTNKRAPGTPARFSGSLLGGKAALTLSGAQPEDEAEYYCALWYSNLWVFGGGTKLTVL
h160C9AA重鏈HCDR1 24 TYAMN
h160C9AA重鏈HCDR2 25 RIRSKYNNYATYYADSVKD
h160C9AA重鏈HCDR3 26 HGNFGNSYVSWFAY
h160C9AA輕鏈LCDR1 27 RSSTGAVTTSNYAN
h160C9AA輕鏈LCDR2 28 GTNKRAP
h160C9AA輕鏈LCDR3 29 ALWYSNLWV
雙抗1中的Fc 30 DKTHTCPPCPAPEAAGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSRDELTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK
雙抗2中含“節”結構的Fc 31 DKTHTCPPCPAPEAAGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPCRDELTKNQVSLWCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK
雙抗1中VHH 32 EVQLVESGGGLVQPGGSLRLSCAASTYTISSGYMGWFRQAPGKEREGVAAIYIGGSTTLYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCAAQLRPNAAYHPLDGRKYNYWGQGTLVTVSS
雙抗2中Fab重鏈 33 QVQLVQSGAEVKKPGASVKVSCKASGYTFISYWITWVRQAPGQGLEWMGDIYPGSGSTTNYNEKFKSRVTMTRDTSTSTVYMELSSLRSEDTAVYYCARETTVGGAYAMDYWGQGTLVTVSSASTKGPSVFPLAPSSKSTSGGTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNHKPSNTKVDKKVEPKSC
實施例2. 抗CD3-DLL3雙特異性抗體的構建及其在真核細胞中的暫態轉染表達
將前述雙特異性抗體分子的基因片段分別轉殖到PTT5表達載體中,製備轉染級別的表達質粒。
在無血清培養基中培養Expi293FTM細胞(Thermo Fisher Scientific),將細胞接種在搖瓶(Corning Inc.)中,並在37°C,8% CO 2的環境中置於搖床上培養。調整細胞密度,將含有目的基因片段的重組表達載體和PEI轉染試劑按照合適的比例混合,並添加進細胞培養搖瓶中,細胞培養6天後收集表達上清,高速離心去除細胞碎片,用Protein A柱進行親和純化。用PBS沖洗柱子,至A280讀數降至基線。用pH3.0-pH3.5的酸性洗脫液洗脫目的蛋白,用1M Tris-HCl,pH8.0-9.0中和。洗脫樣品適當濃縮後,利用PBS平衡好的凝膠層析Superdex200(GE)進一步純化,以去除聚體,收集單體峰,換液到PBS分裝備用。對最終純化的抗體進行SDS-PAGE及HPLC純度分析和A280濃度測定。
實施例3. 抗CD3-DLL3雙特異性抗體的親和力檢測試驗
A. 抗CD3-DLL3雙特異性抗體與表達hDLL3和hCD3的細胞親和力檢測
使用FACS檢測抗CD3-DLL3 雙特異性抗體與表達hDLL3的SHP-77細胞、天然表達hCD3的T 淋巴細胞(Jurkat)的結合情況。
培養SHP-77細胞(ATCC,CRL-2195)和Jurkat細胞(ATCC,TIB-152),SHP-77細胞和Jurkat細胞的培養基均為RPMI1640+10%FBS,使用T75細胞培養瓶置於37℃ 5%CO 2培養箱培養。待細胞使用時使用無菌DPBS洗SHP-77細胞,0.25%胰酶EDTA消化約5分鐘後用完全培養基終止,放入50mL離心管中。Jurkat細胞直接放入50mL離心管中,無需消化。
將SHP-77及Jurkat 1000rpm轉速常溫離心5分鐘,棄上清,用100μL 1%BSA(in PBS)重懸細胞。細胞計數,並將細胞密度調整到1E6/mL。將細胞鋪到96孔圓底培養板(corning,貨號3799)中,1500rpm轉速4℃離心5分鐘,棄上清,4℃放置備用。使用1%BSA(in PBS)稀釋待測抗體及陰性對照IgG1 LALA(購買自百英生物,貨號B109802),起始濃度為100nM,10倍往下稀釋7個濃度。用稀釋好的抗體重懸細胞,100μL/孔,4℃培養1小時。1500rpm轉速4℃離心5分鐘,棄上清。160μL 1%BSA(in PBS)重懸洗滌,1500rpm轉速4℃離心5分鐘,棄上清。用1%BSA(in PBS)按照說明書1:200稀釋二抗(goat anti human IgG Fc PE),用稀釋好的二抗重懸細胞,100μL/孔,4℃培養0.5小時。1500rpm轉速4℃離心5分鐘,棄上清。160μL 1%BSA(in PBS)重懸洗滌,1500rpm 4℃離心5分鐘,棄上清。100μL 1%BSA(in PBS)重懸細胞,300目紗布過濾細胞,流式細胞儀檢測PE通道平均螢光強度。
從流式細胞儀匯出FCS檔,用flowjo軟體分析每個樣本的PE通道平均螢光強度(以下簡稱MFI),將分析得出的平均螢光強度導入Graphpad 分析抗體與細胞的半數結合濃度(以下簡稱EC 50),結果如表3,圖2(SHP-77細胞)及圖3(Jurkat細胞)所示。兩個雙抗分子對Jurkat細胞株的結合能力均弱於SHP-77細胞株,且雙抗2分子對兩種細胞的結合能力均弱於雙抗1分子。
表3 雙特異性抗體分別與hDLL3(SHP-77細胞株)和hCD3(Jurkat細胞株)的親和力
分子編號 SHP-77細胞株 Jurkat細胞株
EC 50(nM) EC 50(nM)
雙抗1 0.14 5.28
雙抗2 3.11 57.92
B. 抗CD3-DLL3雙特異性抗體的體外重組蛋白結合親和力和動力學
使用Biacore 8K儀器分析抗CD3-DLL3雙特異性抗體分子與人源/食蟹猴源DLL3和人源/食蟹猴源CD3的親和力和動力學性質。
為測定與人源DLL3(購自愷佧,貨號DLL-HM103)/食蟹猴源DLL3(購自愷佧,貨號DLL-RM103)的親和力與動力學性質,CM5晶片先用EDC和NHS活化,然後固定抗人 Fc的鼠單抗,再用乙醇胺封閉。抗CD3-DLL3雙特異性抗體分子用HBS-EP+(10 mM HEPES, pH 7.4, 150 mM NaCl, 3 mM EDTA, 0.05% P20)緩衝液稀釋至0.5μg/mL,以10μL/min的流速捕獲45s。人源/食蟹猴源DLL3兩倍逐級稀釋至系列濃度(100nM-0.78nM),以50μL/min的流速結合90s,解離450s。
每一輪實驗結束後,使用3M MgCl2溶液沖洗以30μL/min的流速沖洗30s,將捕獲的抗體連同抗原一起去除,完成晶片的再生。原始資料使用Biacore Insight Evaluation Software(3.0.12.15655)軟體進行分析,以(1:1)Langmuir模型進行擬合,得到的雙特異性抗體親和力和動力學實驗資料如表4所示。
表4 抗CD3-DLL3雙特異性抗體與人源/食蟹猴源DLL3蛋白的結合親和力和動力學
分子編號 抗原 結合速率k a(1/M*s) 解離速率 k d(1/s) 親和力 K D(M)
雙抗1 人源DLL3 1.03E+06 1.64E-04 1.59E-10
雙抗2 人源DLL3 1.22E+05 7.92E-05 6.47E-10
雙抗1 食蟹猴源DLL3 3.19E+05 1.32E-03 4.15E-09
雙抗2 食蟹猴源DLL3 9.70E+04 8.60E-05 8.87E-10
為測定與人源CD3(購自Acro,貨號CDD-H52W1)/食蟹猴源CD3(購自Acro,貨號CDD-C52W4)的親和力與動力學性質,採用CM5晶片直接固化人源/食蟹猴源CD3分子的方法。CM5晶片先用EDC和NHS活化,人源/食蟹猴源CD3分子用PH=5的醋酸鹽溶液稀釋至1μg/ml,以10μL/min的流速固化60s,再用乙醇胺封閉抗CD3-DLL3雙特異性抗體分子用HBS-EP+(10 mM HEPES, pH 7.4, 150 mM NaCl, 3 mM EDTA, 0.05% P20)緩衝液兩倍比稀釋至系列濃度(100nM-0.39nM),以50μL/min的流速結合90s,解離360s。
每一輪實驗結束後,使用3M MgCl2溶液沖洗,以30μL/min的流速沖洗30s,將抗CD3-DLL3雙特異性抗體分子去除,完成晶片的再生。原始資料使用Biacore Insight Evaluation Software(3.0.12.15655)軟體進行分析,以(1:1)Langmuir模型進行擬合,得到的雙特異性抗體親和力和動力學實驗資料如表5所示。
表5 抗CD3-DLL3雙特異性抗體與人源/食蟹猴源CD3蛋白的結合親和力和動力學
分子編號 抗原 結合速率k a(1/M*s) 解離速率 k d(1/s) 親和力 K D(M)
雙抗1 人源CD3 3.19E+06 7.84E-04 2.46E-10
雙抗2 人源CD3 4.56E+05 4.14E-03 9.09E-09
雙抗1 食蟹猴源CD3 2.54E+06 6.11E-04 2.40E-10
雙抗2 食蟹猴源CD3 3.65E+05 4.05E-03 1.11E-08
實驗結果顯示,兩個雙抗分子對人源/食蟹猴源DLL3及人源/食蟹猴源CD3均有結合,雙抗1分子的CD3端親和力強於DLL3端或與DLL3端相當;雙抗2分子的DLL3端親和力強於CD3端。
實施例4.  抗CD3-DLL3雙特異性抗體的體外功能實驗
A.T細胞介導的細胞毒性實驗(TDCC),靶細胞為SHP-77
培養SHP-77細胞,SHP-77細胞的培養基為RPMI1640+10%FBS,使用T75細胞培養瓶置於37℃ 5%CO 2培養箱培養。待細胞使用時使用無菌DPBS洗細胞,0.25%胰酶EDTA消化約5分鐘後用完全培養基終止。放入50mL離心管中,1000rpm轉速離心5分鐘,棄上清,使用完全培養基重懸並計數細胞,將細胞密度調整到5E4/mL。
將靶細胞鋪到greiner黑色底透壁不透96孔板(貨號655090)中,100μL/孔,37℃ 5%CO2培養過夜。用T細胞陰選試劑盒(StemCell,貨號17951)從新鮮PBMC中分選CD3 +T細胞,計數細胞並用RPMI1640+10%FBS將細胞密度調整到5E5/mL。將效應細胞鋪到96孔板中,100μL/孔,37℃ 5%CO 2培養。
用完全培養基稀釋抗體,起始濃度為110nM(11X),5倍往下稀釋。將稀釋好的抗體加入到細胞培養板中,20μL/孔,故起始終濃度為10nM。37℃ 5%CO 2培養48小時。用槍頭將板子中的淋巴細胞吸去,每孔加入100μL CTG檢測試劑,300rpm搖晃避光培養10分鐘,Envision上讀取化學發光。
TDCC效應引起的細胞殺傷百分比採用以下公式進行計算: 細胞殺傷%=1-(樣品孔讀值-T細胞孔讀值)/(最大訊號值-T細胞孔讀值) 其中T細胞孔讀值為只加T細胞不加靶細胞SHP-77的孔的讀值。
GraphPad軟體計算EC 50和最大殺傷,結果如表6及圖4所示。兩個雙抗分子對SHP-77細胞最大殺傷能力均能達到100%,半數有效濃度雙抗1分子低於雙抗2分子。
B.T細胞介導的細胞毒性實驗(TDCC),靶細胞為NCI-H82
培養NCI-H82細胞(ATCC,HTB-175),NCI-H82細胞的培養基為RPMI1640+10%FBS,使用T75細胞培養瓶置於37℃ 5%CO 2培養箱培養。1000rpm轉速離心5分鐘,DPBS重懸細胞。計數細胞並將細胞密度調整到1E6/ml, 加入30nM CellTrace Far Red Cell Proliferation Kit,37℃ 5%CO 2培養箱培養染色20分鐘。加入等體積完全培養基,1000rpm離心5分鐘,棄上清,DPBS洗滌一遍。
用完全培養基重懸靶細胞,計數,將細胞密度調整到2E5/mL並鋪到圓底培養板(corning,貨號3799)中,50μL/孔。用T細胞陰選試劑盒(StemCell,貨號17951)從新鮮PBMC中分選CD3 +T細胞,計數細胞並用RPMI1640+10%FBS將細胞密度調整到2E6/mL。將效應細胞鋪到96孔板中,100μL/孔,37℃ 5%CO 2培養。
抗體稀釋及加樣:用完全培養基稀釋抗體,起始濃度為110nM(11X),5倍往下稀釋。將稀釋好的抗體加入到細胞培養板中,10μL/孔,故起始終濃度為10nM。37℃ 5%CO 2培養48小時。每孔加入10μL死活染料PI,PI終濃度為4μg/mL,混勻,常溫染色10分鐘。300目紗布過濾細胞,流式細胞儀檢測APC通道(染靶細胞)及PE通道(染死活)的比例。
TDCC效應引起的細胞殺傷百分比採用以下公式進行計算: 靶細胞死亡%=(Far Red+PI+細胞)/[( Far Red+PI+細胞) + (Far Red+PI-細胞)] 細胞殺傷%=靶細胞死亡% - 靶細胞自發死亡% 其中,靶細胞自發死亡% 為只加靶細胞(NCI-H82)不加T細胞的孔死亡的細胞數
GraphPad軟體計算EC 50和最大殺傷,結果如表6及圖5所示。文獻報導NCI-H82細胞DLL3表達量只有SHP-77細胞DLL3表達量的1/3,因此兩個雙抗分子對NCI-H82細胞最大殺傷能力遠弱於SHP-77細胞,均為15%左右;半數有效濃度雙抗1分子低於雙抗2分子。
表6 抗CD3-DLL3雙特異性抗體的T細胞介導的細胞毒性實驗(TDCC)結果
分子編號 SHP-77細胞株 NCI-H82細胞株
EC 50(nM) 最大殺傷(%) EC 50(nM) 最大殺傷(%)
雙抗1 0.58 100 2.94 15
雙抗2 135.7 100 80.16 15
C. 細胞因子釋放實驗
培養SHP-77細胞,SHP-77細胞的培養基為RPMI1640+10%FBS,使用T75細胞培養瓶置於37℃ 5%CO 2培養箱培養。待細胞使用時使用無菌DPBS洗細胞,0.25%胰酶EDTA消化約5分鐘後用完全培養基終止。放入50mL離心管中,1000rpm轉速離心5分鐘,棄上清,使用完全培養基重懸並計數細胞,將細胞密度調整到1E5/mL。將SHP-77細胞鋪到96孔板(corning 3799)中,100μL/孔,37℃ 5%CO 2培養。
購買新鮮PBMC,細胞計數,並用RPMI1640+10%FBS將細胞密度調整到2E6/mL。將效應細胞鋪到96孔板中,100μL/孔,37℃ 5%CO 2培養。
用完全培養基稀釋抗體,起始濃度為110nM(11X),5倍往下稀釋。將稀釋好的抗體加入到細胞培養板中,20μL/孔,故起始終濃度為10nM。37℃ 5%CO 2培養48小時。
將培養板400g轉速離心10分鐘,取80μL上清凍存在-80℃備用。
按照CBA流式試劑盒(BD,551809)說明書稀釋細胞因子標準品,兩倍稀釋,最高濃度為5000pg/mL,最低濃度為20pg/mL。渦旋混勻微珠(beads),1:1混合human Th1/Th2 cytokine capture beads,6種細胞因子beads等比例混合,加入到96孔板中(corning 3799),40μL/孔。將配置好的標準品或者解凍後的樣品加到96孔板中,40μL/孔。將human Th1/Th2-II PE檢測試劑加入到96孔板中,1100rpm轉速避光搖晃5分鐘,室溫避光培養3小時。Wash buffer洗板,160μL/孔,洗兩遍。300目紗布過濾樣本,流式檢測APC通道及PE通道螢光讀值。
從儀器上匯出FCS檔,導入FCAP軟體進行分析每個樣本細胞因子釋放量,結果如圖6所示(圖6A-圖6E分別為有無靶細胞的情況下雙抗1分子的IFNγ,TNFα,IL-10,IL-6和IL4細胞因子釋放結果;圖6F-圖6J分別為有無靶細胞的情況下雙抗2分子的IFNγ,TNFα,IL-10,IL-6和IL4細胞因子釋放結果。),雙抗2分子誘導各類細胞因子釋放的水平均弱於雙抗1分子,兩個雙抗分子在僅有PBMC的條件下細胞因子釋放水平均較弱或無,與PBMC和SHP-77腫瘤細胞共培養條件有合適的安全窗。
實施例5.  抗CD3-DLL3雙特異性抗體的物理穩定性測試
利用NanoDSF(差示螢光掃描技術)檢測不同抗體在PH7.4 PBS緩衝液中的熱穩定性。樣品濃度在1mg/ml左右,利用Prometheus NT.Plex(nano DSF)進行檢測。檢測前,將各個樣品10000g 離心10分鐘。樣品板每個孔加入40μl樣品(儀器上樣量為10μl,每個樣品均有一個複孔)。掃描溫度從30℃開始到95℃結束,掃描速率0.5℃/min。實驗結果如表7所示。兩個雙抗分子均表現出良好的熱穩定性,雙抗2分子的開始聚集溫度(Tagg)高於雙抗1分子。
表7 抗CD3-DLL3雙特異性抗體的NanoDSF檢測結果
分子編號 Tm Onset Tm1 Tm2 Tm3 Tagg
雙抗1 58.3°C 61.5°C 68.9°C 81.8°C 62.1°C
雙抗2 58.5°C 62.2°C 70.1°C / 70.1°C
實施例6. 抗CD3-DLL3雙特異性抗體的藥代動力學實驗
實驗用naive食蟹猴兩隻,自由飲水。雙特異性抗體給藥劑量為1mg/kg,30min完成靜脈輸注。採血時間點為Pre-dose,5min (滴注中),30min (給藥結束),2 hr,4 hr,6 hr,24hr (1d),48hr (2d),72hr (3d),120hr (5d),168hr (7d),336hr (14d), 504hr (21d),672hr(28d)。將全血樣品收集在無抗凝劑的聚乙烯管中,室溫放置約1小時,6000 g,25℃離心,立即分裝兩份(PK樣品及細胞因子檢測樣本)立即置於乾冰上,轉移至-80℃冰箱長期保存。
採用ELISA法檢測血清中的DLL3/CD3完整分子的濃度。使用人源DLL3蛋白按1μg/ml濃度包被96孔板,每孔100μL,4℃放置過夜;每孔200μL PBST洗板3次,加入300μL封閉試劑5%奶粉,37℃培養1h;每孔200μL PBST洗板3次,加入100μL待測樣品,37℃培養1h;每孔300μL PBST洗板6次,再加入100μL Biotin-CD3e(1:10000),SA-HRP(1:10000)和TMB,避光放置10min後,加入100μL終止液停止顯色反應。根據顏色反應定量檢測DLL3/CD3完整分子的濃度。
MD公司的M5讀板儀檢測450nm波長的吸亮度值,並使用softmax軟體處理資料。
採用Phoenix Winnolin 8.2軟體對雙特異性抗體雙抗2的猴血清濃度進行計算,得到藥代參數,如下表8所示。
表8 雙特異性抗體雙抗2的猴血清濃度和PK參數
時間點(小時) 食蟹猴1 食蟹猴2 平均值 SD RSD (%)
0.083 3.778 3.478 3.63 0.2 5.8
0.5 26.185 24.430 25.31 1.2 4.9
2 22.431 22.569 22.50 0.1 0.4
4 21.657 20.502 21.08 0.8 3.9
6 17.863 18.996 18.43 0.8 4.3
24 9.500 10.141 9.82 0.5 4.6
48 6.680 6.815 6.75 0.1 1.4
72 5.054 5.417 5.24 0.3 4.9
120 3.323 3.699 3.51 0.3 7.6
168 2.479 2.550 2.51 0.1 2.0
336 0.891 0.793 0.84 0.1 8.2
504 0.327 0.155 0.24 0.1 50.5
672 BLQ BLQ / / /
T1/2 (day) 4.78 3.54 4.2 0.9 21.0
T1/2 (hr) 114.73 85.07 99.9 21.0 21.0
Tmax (hr) 0.50 0.50 0.5 0.0 0.0
Cmax (μg/ml) 26.19 24.43 25.3 1.2 4.9
AUClast (day*μg/ml) 59.72 61.06 60.4 0.9 1.6
AUCINF_obs (day*μg/ml) 61.98 61.85 61.9 0.1 0.1
Vz_obs (ml/kg) 111.28 82.68 97.0 20.2 20.9
Cl_obs (ml/day/kg) 16.13 16.17 16.2 0.0 0.1
MRTINF_obs (hr) 128.43 107.00 117.7 15.2 12.9
上表中濃度的單位均為μg/mL,BLQ為低於檢測限。
雙特異性抗體雙抗2在猴體內的半衰期為99.9±21h,Cmax為25.3±1.2 μg/mL,AUC為60.4±0.9 day*μg/mL,因此該雙特異性抗體在猴體內性質穩定,不存在明顯的脫靶結合,藥代性質良好。
實施例7. 抗CD3-DLL3雙特異性抗體的藥代動力學實驗伴隨細胞因子檢測
檢測試劑盒為Muti-Analyte  Flow  assay kit(Biolegend,貨號740391)使用前,用250μL緩衝液加入到凍乾的NHP Th細胞因子中,混勻,室溫靜置10分鐘。用試劑盒中的assay buffer按照1:4稀釋標準品,用試劑盒中的assay buffer按照1:4稀釋PK血清樣本。將10mL LEGENDplex Assay Buffer加入到lyophilized Matrix B中,室溫溶解15分鐘備用。
將25μL Matrix B及25μL標準品加入到標準品孔中,將25μL assay buffer及25μL血清樣品加入到樣品孔中。渦旋混勻檢測微珠(beads),然後將各種檢測beads 1:1混合,並用assay buffer稀釋到工作濃度,每孔加25μL。封口膜封板,800rpm轉速搖晃避光培養2小時。250g轉速離心5分鐘,棄上清,200μL/孔 wash buffer洗滌。加25μL檢測抗體到板子中,封口膜封板,600rpm室溫搖晃避光培養1小時,加25μL SA-PE, 封口膜封板,600rpm室溫搖晃避光培養0.5小時。250g轉速室溫離心5分鐘,棄上清,200μL/孔 wash buffer洗滌。1%BSA(in PBS)重懸樣本,300目紗布過濾,流式檢測。
匯出FCS檔,用LENEGDplex 8.0軟體分析樣本的細胞因子釋放量,結果如表9所示。
表9 抗CD3-DLL3雙特異性抗體的藥代動力學實驗伴隨細胞因子檢測結果
動物 採樣時間點 IL-2(pg/ml) IL-6(pg/ml) IL-10(pg/ml) TNFa(pg/ml) IFNg(pg/ml)
食蟹猴1 0h 40.63 <4.42 <7.29 <8.04 <9.81
2h 46.86 13.32 27.67 <8.04 <9.81
4h <14.87 <4.42 <7.29 <8.04 <9.81
6h <14.87 <4.42 <7.29 <8.04 <9.81
24h 171.96 5.04 20.48 <8.04 15.85
食蟹猴2 0h 46.86 <4.42 13.52 <8.04 <9.81
2h 194.61 5.55 22.86 11.36 45.45
4h 218.22 5.81 16.96 15.67 39.81
6h 268.04 6.6 26.46 22.77 74.56
24h <14.87 <4.42 <7.29 <8.04 <9.81
實驗結果顯示,雙抗2伴隨食蟹猴藥代動力學檢測各類細胞因子,整體釋放水平很低,均<300pg/ml,安全性較好。
實施例8. 抗CD3-DLL3雙特異性抗體的體內藥效實驗
實驗動物均飼養於恆溫恆濕的獨立通風盒內,飼養室溫度20.0-26.0 ℃,濕度40-70%,晝夜明暗交替時間12h/12h。
人肺癌細胞SHP-77復甦,收集對數生長期的SHP-77細胞,去除培養液並用PBS洗兩次後接種(荷瘤前、荷瘤後SHP-77細胞存活率分別為:98.8% 及96.6%),接種量:5×10 6/100 μL/隻,與基質膠1:1混合後接種NCG小鼠皮下,接種位置:小鼠右前肢(圖7所示3號位)。
PBMC來源於正常人外周血,在接種腫瘤細胞48小時後,PBMC(捐贈者編號5039)去除凍存液並用PBS洗兩次後以0.8×10 7/100μL/隻尾靜脈移植小鼠,建立人源免疫細胞重建小鼠模型。接種前、接種後細胞存活率分別為:97.7% 及95.8%。
腫瘤接種後第3天,平均腫瘤體積達到87.91 mm3時,35隻小鼠根據腫瘤體積隨機分成5組,分為human IgG1 (AA)陰性對照組(購買自百英生物,貨號B109802),0.5 mg/kg 雙抗2治療組,0.1 mg/kg 雙抗2治療組,0.02 mg/kg 雙抗2治療組和0.004 mg/kg 雙抗2治療組,每組7隻。分組當天定義為D0天,並於D0天開始腹腔注射給藥,每三天一次,給藥6次(見表10)。
表10 實驗分組及給藥方案
組號 每組小鼠數量 測試藥 劑量(mg/kg) 給藥途徑 實際給藥頻率週期
G1 7 hIgG1(AA) 0.5 腹腔給藥 每3天一次,共給藥6次
G2 7 雙抗2 0.5 腹腔給藥 每3天一次,共給藥6次
G3 7 雙抗2 0.1 腹腔給藥 每3天一次,共給藥6次
G4 7 雙抗2 0.02 腹腔給藥 每3天一次,共給藥6次
G5 7 雙抗2 0.004 腹腔給藥 每3天一次,共給藥6次
給藥後每天監測動物日常行為表現,共進行17天。整個實驗過程中,用遊標卡尺每週測量2次腫瘤長徑和寬徑,腫瘤體積(mm 3)= 0.5 ×(腫瘤長徑×腫瘤短徑2)計算。相對腫瘤抑制率TGI(%):TGI%=(1-T/C)× 100%。T/C % 為相對腫瘤增值率,即在某一時間點,治療組和PBS對照組相對腫瘤體積或瘤重的百分比值。T和C分別為治療組和PBS對照組在某一特定時間點的腫瘤體積(TV)或瘤重(TW)。各組動物的腫瘤體積、小鼠體重、腫瘤重量等實驗結果以平均值±標準誤差(Mean±SEM)表示。採用獨立樣本T檢驗比較不同治療組與對照組相比有無顯著性差異。資料使用SPSS進行分析。P < 0.05為具有顯著性差異。作圖軟體為Graphpad prism。
根據藥效終點腫瘤體積及腫瘤重量綜合資料統計分析(見表11,圖8),與對照組G1組hIgG1 (AA)相比,測試藥雙抗2的G2、G3、G4三個較高劑量組(0.5 mg/kg、0.1 mg/kg、0.02 mg/kg)對腫瘤體積和瘤重的抑瘤率分別均達到90%以上,具有極顯著的腫瘤生長抑制效果(***P<0.001);僅最低劑量G5組雙抗2(0.004 mg/kg)對腫瘤的生長無顯著抑制作用(TGI=17.31%,P>0.05)。
在當前的測試系統下,與G1組hIgG1 (AA)對照組相比, G2組雙抗2 (0.5 mg/kg)、G3組雙抗2 (0.1 mg/kg)、G4組雙抗2 (0.02 mg/kg)對小鼠腫瘤體積及腫瘤瘤重均表現出明顯的生長抑制效果;且這種腫瘤抑制作用是藉由T細胞對腫瘤的殺傷來發揮作用。
表11 各給藥組腫瘤體積大小及抑瘤率
組號 測試藥 劑量 (mg/kg) 平均腫瘤體積(mm 3) 抑瘤率%
第0天 第17天
1 IgG1(AA) 0.5 88.00 1587.51 /
2 雙抗2 0.5 87.85 14.32 99.11
3 雙抗2 0.1 87.84 6.52 99.61
4 雙抗2 0.02 87.98 116.28 92.66
5 雙抗2 0.004 87.97 1319.62 17.31
上文所述的本發明的實施方案僅為示例性的,任何本領域技術人員都可以認識到或者可以確定無數的特定化合物、材料和操作的等價物,而不需要進行超出常規的試驗。所有這些等價物都是在本發明範圍之內的,並且被申請專利範圍所包含。
3:右前肢
圖式更進一步說明了本說明書所公開的新特性。參照這些圖式將能更好地理解本說明書中所公開的特性和優點,但應當理解,這些圖式僅用於說明本文所公開原理的具體的實施方案,而非意欲對所附申請專利範圍的範圍加以限制。
圖1顯示了實施例中構建的2個雙特異性抗體的結構。圖1A為雙抗1,圖1B為雙抗2。
圖2顯示了雙抗1和雙抗2與表達hDLL3的SHP-77細胞的結合情況。
圖3顯示了雙抗1和雙抗2與天然表達hCD3的Jurkat細胞的結合情況。
圖4顯示了雙抗1和雙抗2介導的CD3 +T細胞對SHP-77細胞的細胞毒性實驗結果(TDCC)。
圖5顯示了雙抗1和雙抗2介導的CD3 +T細胞對NCI-H82細胞的細胞毒性實驗結果(TDCC)。
圖6顯示了雙抗1和雙抗2在有無靶細胞的條件下細胞因子釋放的實驗結果。圖6A-圖6E為雙抗1分子的細胞因子釋放結果,分別為IFNγ,TNFα,IL-10,IL-6和IL4;圖6F-圖6J為雙抗2分子的細胞因子釋放結果,分別為IFNγ,TNFα,IL-10,IL-6和IL4。
圖7是雙抗2體內藥效實驗中小鼠腫瘤接種位置示意圖。
圖8顯示了雙抗2對SHP-77小細胞肺癌模型腫瘤生長重量的影響。
TW202342534A_112104582_SEQL.xml

Claims (12)

  1. 一種雙特異性抗原結合分子,其包含: (A) 第一多肽,其包含:(i)特異性針對第一抗原的抗原結合片段(Fab)重鏈結構域,(ii)能夠特異性結合第二抗原的單鏈抗體(scFv)結構域,和(iii)第一Fc結構域; (B) 第二多肽,其包含:第二Fc結構域; (C) 第三多肽,其包含:特異性針對第一抗原的抗原結合片段(Fab)輕鏈結構域; 所述抗原結合片段(Fab)重鏈結構域與所述抗原結合片段(Fab)輕鏈結構域形成針對第一抗原的第一結合位點,所述單鏈抗體(scFv)結構域形成針對第二抗原的第二結合位點,所述第一Fc結構域和所述第二Fc結構域相互締合。
  2. 如請求項1所述之雙特異性抗原結合分子,其具有以下特徵中的一種或多種: (1)所述第一抗原為DLL3; 較佳地,所述抗原結合片段(Fab)重鏈結構域包含序列如SEQ ID NO:13所示的HCDR1、序列如SEQ ID NO:14所示的HCDR2和序列如SEQ ID NO:15所示的HCDR3;所述抗原結合片段(Fab)輕鏈結構域包含序列如SEQ ID NO:16所示的LCDR1、序列如SEQ ID NO:17所示的LCDR2和序列如SEQ ID NO:18所示的LCDR3; 更佳地,所述抗原結合片段(Fab)重鏈結構域包含序列如SEQ ID NO:11所示的第一重鏈可變區;所述抗原結合片段(Fab)輕鏈結構域包含序列如SEQ ID NO:12所示的第一輕鏈可變區; 更佳地,所述抗原結合片段(Fab)重鏈結構域包含序列如SEQ ID NO:33所示的胺基酸序列;所述抗原結合片段(Fab)輕鏈結構域包含序列如SEQ ID NO:4所示的胺基酸序列; (2)所述單鏈抗體(scFv)結構域包含第二重鏈可變區和第二輕鏈可變區; 較佳地,所述第二重鏈可變區與所述第二輕鏈可變區藉由第一接頭連接或者直接連接,其中: 第二重鏈可變區的C端與第一接頭的N端融合,第一接頭的C端與第二輕鏈可變區的N端融合;或者 第二輕鏈可變區的C端與第一接頭的N端融合,第一接頭的C端與第二重鏈可變區的N端融合;或者 第二重鏈可變區的C端與第二輕鏈可變區的N端融合;或者 第二輕鏈可變區的C端與第二重鏈可變區的N端融合; 更佳地,所述第一接頭包含胺基酸序列(G4S)n,n為1-10中的任意整數; (3)所述第二抗原為CD3, 較佳為CD3ε; 較佳地,所述單鏈抗體(scFv)結構域包含序列如SEQ ID NO:24所示的HCDR1、序列如SEQ ID NO:25所示的HCDR2、序列如SEQ ID NO:26所示的HCDR3、序列如SEQ ID NO:27所示的LCDR1、序列如SEQ ID NO:28所示的LCDR2和序列如SEQ ID NO:29所示的LCDR3; 更佳地,所述單鏈抗體(scFv)結構域包含序列如SEQ ID NO:21所示的第二重鏈可變區和序列如SEQ ID NO:22所示的第二輕鏈可變區; 更佳地,所述單鏈抗體(scFv)結構域包含SEQ ID NO:23所示的胺基酸序列; (4)所述第一Fc結構域包含免疫球蛋白的第一CH2結構域和第一CH3結構域,所述第一CH2結構域的C端與第一CH3結構域的N端融合;所述第二Fc結構域包含免疫球蛋白的第二CH2結構域和第二CH3結構域,所述第二CH2結構域的C端與第二CH3結構域的N端融合; 較佳地,所述第一CH3結構域包含「節」(knob)結構,所述第二CH3結構域包含「穴」(hole)結構; 更佳地,所述「節」(knob)結構包含胺基酸取代S354C和T366W,所述「穴」(hole)結構包含胺基酸取代Y349C、T366S、L368A和Y407V; 較佳地,所述Fc結構域來源於IgG1; 較佳地,所述單鏈抗體(scFv)結構域與所述第一Fc結構域藉由第二接頭連接或者直接連接,其中: 單鏈抗體(scFv)結構域的C端與第二接頭的N端融合,第二接頭的C端與第一Fc結構域的N端融合;或者 單鏈抗體(scFv)結構域的C端與第一Fc結構域的N端融合; 更佳地,所述第二接頭包含胺基酸序列EPKSS(SEQ ID NO:34); 更佳地,所述第一Fc結構域包含SEQ ID NO:31所示的胺基酸序列;所述第二Fc結構域包含SEQ ID NO:3所示的胺基酸序列; (5)所述抗原結合片段(Fab)重鏈結構域包含免疫球蛋白的第一重鏈可變區和CH1結構域,所述第一重鏈可變區的C端與CH1結構域的N端融合;所述抗原結合片段(Fab)輕鏈結構域包含免疫球蛋白的第一輕鏈可變區和輕鏈恆定區,所述第一輕鏈可變區的C端與輕鏈恆定區的N端融合; 較佳地,所述抗原結合片段(Fab)重鏈結構域與所述單鏈抗體(scFv)結構域藉由第三接頭連接或者直接連接,其中: 抗原結合片段(Fab)重鏈結構域的C端與第三接頭的N端融合,第三接頭的C端與單鏈抗體(scFv)結構域的N端融合;或者 單鏈抗體(scFv)結構域的C端與第三接頭的N端融合,第三接頭的C端與抗原結合片段(Fab)重鏈結構域的N端融合;或者 抗原結合片段(Fab)重鏈結構域的C端與單鏈抗體(scFv)結構域的N端融合;或者 單鏈抗體(scFv)結構域的C端與抗原結合片段(Fab)重鏈結構域的N端融合; 更佳地,所述第三接頭包含胺基酸序列(G4S)n,n為1-10中的任意整數; (6)所述第一多肽包含如下結構: Fab重鏈結構域-第三接頭-scFv結構域-第二接頭-第一Fc結構域或者scFv結構域-第三接頭-Fab重鏈結構域-第二接頭-第一Fc結構域; 較佳地,所述第一多肽包含如下結構: 第一重鏈可變區-CH1-第三接頭-第二重鏈可變區-第一接頭-第二輕鏈可變區-第二接頭-第一CH2-第一CH3;或者 第一重鏈可變區-CH1-第三接頭-第二輕鏈可變區-第一接頭-第二重鏈可變區-第二接頭-第一CH2-第一CH3;或者 第二重鏈可變區-第一接頭-第二輕鏈可變區-CH1-第三接頭-第一重鏈可變區-第二接頭-第一CH2-第一CH3;或者 第二輕鏈可變區-第一接頭-第二重鏈可變區-CH1-第三接頭-第一重鏈可變區-第二接頭-第一CH2-第一CH3; 所述第二多肽包含如下結構:第二CH2-第二CH3;所述第三多肽包含如下結構:第一輕鏈可變區-輕鏈恆定區; 更佳地,所述第一多肽包含SEQ ID NO:2所示的胺基酸序列;所述第二多肽包含SEQ ID NO:3所示的胺基酸序列;所述第三多肽包含SEQ ID NO:4所示的胺基酸序列; (7)所述雙特異性抗原結合分子包含一個或多個選自以下組的胺基酸取代:(i)L234A和L235A;(ii)H435R;較佳地,所述H435R取代是第二多肽上的取代;和/或 (8)所述雙特異性抗原結合分子結合的表位: (i)與包含序列如SEQ ID NO:13所示的HCDR1、序列如SEQ ID NO:14所示的HCDR2、序列如SEQ ID NO:15所示的HCDR3、序列如SEQ ID NO:16所示的LCDR1、序列如SEQ ID NO:17所示的LCDR2和序列如SEQ ID NO:18所示的LCDR3的抗體針對的表位相同或重疊;或者 (ii)與包含序列如SEQ ID NO:11所示的第一重鏈可變區和序列如SEQ ID NO:12所示的第一輕鏈可變區的抗體針對的表位相同或重疊。
  3. 一種雙特異性抗原結合分子,其包含同源的兩條多肽,每條多肽包含:(i)能夠特異性結合第一抗原的奈米抗體(VHH)結構域,(ii)能夠特異性結合第二抗原的單鏈抗體(scFv)結構域,和(iii)Fc結構域;所述兩條多肽的Fc結構域相互締合。
  4. 如請求項3所述之雙特異性抗原結合分子,其具有以下特徵中的一種或多種: (1)所述第一抗原為DLL3; 較佳地,所述奈米抗體(VHH)結構域包含序列如SEQ ID NO:6所示的HCDR1、序列如SEQ ID NO:7所示的HCDR2和序列如SEQ ID NO:8所示的HCDR3; 更佳地,所述奈米抗體(VHH)結構域包含SEQ ID NO:32所示的胺基酸序列; (2)所述單鏈抗體(scFv)結構域包含重鏈可變區和輕鏈可變區; 較佳地,所述重鏈可變區與所述輕鏈可變區藉由第一接頭連接或者直接連接,其中: 重鏈可變區的C端與第一接頭的N端融合,第一接頭的C端與輕鏈可變區的N端融合;或者 輕鏈可變區的C端與第一接頭的N端融合,第一接頭的C端與重鏈可變區的N端融合;或者 重鏈可變區的C端與輕鏈可變區的N端融合;或者 輕鏈可變區的C端與重鏈可變區的N端融合; 更佳地,所述第一接頭包含胺基酸序列(G4S)n,n為1-10中的任意整數; (3)所述第二抗原為CD3, 較佳為CD3ε; 較佳地,所述單鏈抗體(scFv)結構域包含序列如SEQ ID NO:24所示的HCDR1、序列如SEQ ID NO:25所示的HCDR2、序列如SEQ ID NO:26所示的HCDR3、序列如SEQ ID NO:27所示的LCDR1、序列如SEQ ID NO:28所示的LCDR2和序列如SEQ ID NO:29所示的LCDR3; 更佳地,所述單鏈抗體(scFv)結構域包含序列如SEQ ID NO:21所示的重鏈可變區和序列如SEQ ID NO:22所示的輕鏈可變區; 更佳地,所述單鏈抗體(scFv)結構域包含SEQ ID NO:23所示的胺基酸序列; (4)所述Fc結構域包含免疫球蛋白的CH2結構域和CH3結構域,所述CH2結構域的C端與CH3結構域的N端融合; 較佳地,所述Fc結構域來源於IgG1; 較佳地,所述Fc結構域與所述單鏈抗體(scFv)結構域藉由第二接頭連接或者直接連接,其中: 單鏈抗體(scFv)結構域的C端與第二接頭的N端融合,第二接頭的C端與Fc結構域的N端融合;或者 單鏈抗體(scFv)結構域的C端與Fc結構域的N端融合; 更佳地,所述第二接頭包含胺基酸序列EPKSS(SEQ ID NO:34); 更佳地,所述Fc結構域包含SEQ ID NO:30所示的胺基酸序列; (5)所述奈米抗體(VHH)結構域與所述單鏈抗體(scFv)結構域藉由第三接頭連接或者直接連接,其中: 奈米抗體(VHH)結構域的C端與第三接頭的N端融合,第三接頭的C端與單鏈抗體(scFv)結構域的N端融合;或者 單鏈抗體(scFv)結構域的C端與第三接頭的N端融合,第三接頭的C端與奈米抗體(VHH)結構域的N端融合;或者 奈米抗體(VHH)結構域的C端與單鏈抗體(scFv)結構域的N端融合;或者 單鏈抗體(scFv)結構域的N端與奈米抗體(VHH)結構域的C端融合; 更佳地,所述第三接頭包含胺基酸序列(G4S)n,n為1-10中的任意整數; (6)所述每條多肽包含如下結構:VHH結構域-第三接頭-scFv結構域-第二接頭-Fc結構域或者scFv結構域-第三接頭-VHH結構域-第二接頭-Fc結構域; 較佳地,所述每條多肽包含如下結構: VHH結構域-第三接頭-重鏈可變區-第一接頭-輕鏈可變區-第二接頭-CH2-CH3,或者 VHH結構域-第三接頭-輕鏈可變區-第一接頭-重鏈可變區-第二接頭-CH2-CH3,或者 重鏈可變區-第一接頭-輕鏈可變區-第三接頭-VHH結構域-第二接頭-CH2-CH3,或者 輕鏈可變區-第一接頭-重鏈可變區-第三接頭-VHH結構域-第二接頭-CH2-CH3; 更佳地,所述每條多肽包含SEQ ID NO:1所示的胺基酸序列; (7)所述雙特異性抗原結合分子包含以下胺基酸取代:L234A和L235A;和/或 (8)所述雙特異性抗原結合分子結合的表位: (i)與包含序列如SEQ ID NO:6所示的HCDR1、序列如SEQ ID NO:7所示的HCDR2和序列如SEQ ID NO:8所示的HCDR3的奈米抗體針對的表位相同或重疊;或者 (ii)與包含SEQ ID NO:32所示的胺基酸序列的奈米抗體針對的表位相同或重疊。
  5. 一種雙特異性抗原結合分子,其包含: (A) 能夠特異性結合DLL3的第一結合部分;以及 (B) 第二結合部分,所述第二結合部分特異性結合的抗原或表位與第一結合部分不同; 所述第一結合部分包含: (i)序列如SEQ ID NO:6所示的HCDR1、序列如SEQ ID NO:7所示的HCDR2和序列如SEQ ID NO:8所示的HCDR3;或者 (ii)序列如SEQ ID NO:13所示的HCDR1、序列如SEQ ID NO:14所示的HCDR2、序列如SEQ ID NO:15所示的HCDR3、序列如SEQ ID NO:16所示的LCDR1、序列如SEQ ID NO:17所示的LCDR2和序列如SEQ ID NO:18所示的LCDR3;或者 (iii) SEQ ID NO:32所示的胺基酸序列;或者 (iv) 序列如SEQ ID NO:11所示的第一重鏈可變區和序列如SEQ ID NO:12所示的第一輕鏈可變區。
  6. 編碼如前述任一請求項所述之雙特異性抗原結合分子的核酸,或者包含所述核酸的表達載體,或者包含所述核酸或所述表達載體的宿主細胞;較佳地,所述宿主細胞為原核細胞(較佳大腸桿菌),或者真核細胞(較佳哺乳動物細胞或酵母;進一步較佳地,所述哺乳動物細胞為CHO細胞、Expi293或HEK293細胞)。
  7. 製備如請求項1至5中任一項所述之雙特異性抗原結合分子的方法,所述方法包括:在適合的條件下培養如請求項6所述之宿主細胞。
  8. 抗體藥物偶聯物,其是將如請求項1至5中任一項所述之雙特異性抗原結合分子與其他生物活性分子偶聯形成;較佳地,所述其他生物活性分子為小分子藥物;較佳地,所述雙特異性抗原結合分子與所述其他生物活性分子藉由接頭連接。
  9. 藥物組合物,其包含如請求項1至5中任一項所述之雙特異性抗原結合分子,或者如請求項6所述之核酸、表達載體或宿主細胞,或者如請求項8所述之抗體藥物偶聯物; 較佳地,所述藥物組合物還包含藥學上可接受的載體; 較佳地,所述藥物組合物還包含一種或多種額外的治療劑。
  10. 如請求項1至5中任一項所述之雙特異性抗原結合分子、如請求項6所述之核酸、表達載體或宿主細胞、或者如請求項8所述之抗體藥物偶聯物在製備治療、緩解和/或預防腫瘤的藥物中的用途; 較佳地,所述腫瘤是DLL3陽性的腫瘤;更佳地,所述腫瘤選自:小細胞肺癌、膠質母細胞瘤、神經內分泌癌、黑色素瘤、胰腺癌、直腸癌以及上述腫瘤的轉移癌。
  11. 一種誘導表達DLL3的細胞死亡的方法,所述方法包括使所述細胞與如請求項1至5中任一項所述之雙特異性抗原結合分子、如請求項6所述之核酸、表達載體或宿主細胞、如請求項8所述之抗體藥物偶聯物、或者如請求項9所述之藥物組合物接觸,所述表達DLL3的細胞是腫瘤細胞; 較佳地,所述腫瘤細胞是選自以下腫瘤的細胞:小細胞肺癌、膠質母細胞瘤、神經內分泌癌、黑色素瘤、胰腺癌、直腸癌以及上述腫瘤的轉移癌。
  12. 一種治療受試者中與表達DLL3相關的疾病的方法,所述方法包括向有需要的受試者施用如請求項1至5中任一項所述之雙特異性抗原結合分子、如請求項6所述之核酸、表達載體或宿主細胞、如請求項8所述之抗體藥物偶聯物、或者如請求項9所述之藥物組合物; 較佳地,所述疾病是腫瘤;更佳地,所述腫瘤是小細胞肺癌、膠質母細胞瘤、神經內分泌癌、黑色素瘤、胰腺癌、直腸癌以及上述腫瘤的轉移癌; 較佳地,所述方法還包括向所述受試者給予額外的治療劑。
TW112104582A 2022-02-10 2023-02-09 一種雙特異性抗原結合分子及其應用 TW202342534A (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210123816.8 2022-02-10
CN202210123816 2022-02-10

Publications (1)

Publication Number Publication Date
TW202342534A true TW202342534A (zh) 2023-11-01

Family

ID=87563652

Family Applications (1)

Application Number Title Priority Date Filing Date
TW112104582A TW202342534A (zh) 2022-02-10 2023-02-09 一種雙特異性抗原結合分子及其應用

Country Status (2)

Country Link
TW (1) TW202342534A (zh)
WO (1) WO2023151613A1 (zh)

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW202346349A (zh) * 2015-07-31 2023-12-01 德商安美基研究(慕尼黑)公司 Dll3及cd3抗體構築體
TW202016151A (zh) * 2018-06-09 2020-05-01 德商百靈佳殷格翰國際股份有限公司 針對癌症治療之多特異性結合蛋白
US11066476B2 (en) * 2018-09-14 2021-07-20 Shanghai tongji hospital Asymmetric bispecific antibody
JP2023505724A (ja) * 2019-12-11 2023-02-10 ウーシー バイオロジックス アイルランド リミテッド PD-LI及びTGFβに対する二機能性抗体
EP4097135A1 (en) * 2020-01-31 2022-12-07 Gensun Biopharma Inc. Bispecific t cell engagers
MX2023012614A (es) * 2021-05-08 2023-11-03 Shanghai Qilu Pharmaceutical Res And Development Centre Ltd Molecula de union contra dll3 y uso de la misma.

Also Published As

Publication number Publication date
WO2023151613A1 (zh) 2023-08-17

Similar Documents

Publication Publication Date Title
JP6906653B2 (ja) 三重特異性結合タンパク質と使用方法
KR102646468B1 (ko) 항-cd47 항체 및 이의 용도
ES2784131T3 (es) Polipéptidos de unión beta del receptor PDGF
BR112020015479A2 (pt) Anticorpos anticlaudina 18.2 e usos dos mesmos
WO2021042694A1 (zh) 抗vegf单域抗体及其应用
WO2019024911A1 (zh) B7h3抗体-药物偶联物及其医药用途
JP7455388B2 (ja) 抗dll3抗体及びその使用
US20220356246A1 (en) Anti-ROR1 antibodies and preparation method and uses thereof
CN111050792B (zh) 抗lag-3抗体及其用途
US20220073616A1 (en) Methods of administering anti-tim-3 antibodies
WO2022068914A1 (zh) 一种含抗体药物偶联物的药物组合物及其用途
JP7433236B2 (ja) 抗葉酸受容体1抗体及びその使用
JP2021500916A (ja) 抗tim−3抗体及びその使用
WO2019226658A1 (en) Multispecific antigen-binding compositions and methods of use
JP2022514786A (ja) Muc18に特異的な抗体
TW202241519A (zh) 腫瘤特異性密連蛋白18﹒2抗體藥物結合物
WO2022237647A1 (zh) 针对dll3的结合分子及其应用
CN116323657B (zh) 同时靶向PD-L1和TGFβ的双功能分子及其医药用途
WO2022068894A1 (zh) 同时靶向pd-l1和vegf的双功能分子及其医药用途
WO2023151613A1 (zh) 一种双特异性抗原结合分子及其应用
US20220111047A1 (en) Formulations of antibodies that bind human cd137 and uses thereof
WO2023185732A1 (zh) 包含抗Claudin18.2和CD3双特异性抗体的制剂及其制备方法和用途
CA3196933A1 (en) Anti-cd3 antibody and uses thereof
EA043281B1 (ru) Анти-cd47 антитела и их применение
EA046422B1 (ru) Антитела против рецептора фолата 1 и их применения