TW202339305A - Optoelectronic semiconductor device - Google Patents

Optoelectronic semiconductor device Download PDF

Info

Publication number
TW202339305A
TW202339305A TW111109950A TW111109950A TW202339305A TW 202339305 A TW202339305 A TW 202339305A TW 111109950 A TW111109950 A TW 111109950A TW 111109950 A TW111109950 A TW 111109950A TW 202339305 A TW202339305 A TW 202339305A
Authority
TW
Taiwan
Prior art keywords
semiconductor
layer
substrate
optoelectronic semiconductor
stack
Prior art date
Application number
TW111109950A
Other languages
Chinese (zh)
Other versions
TWI816330B (en
Inventor
陳世益
顧浩民
黃靖恩
Original Assignee
晶成半導體股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 晶成半導體股份有限公司 filed Critical 晶成半導體股份有限公司
Priority to TW111109950A priority Critical patent/TWI816330B/en
Application granted granted Critical
Publication of TWI816330B publication Critical patent/TWI816330B/en
Publication of TW202339305A publication Critical patent/TW202339305A/en

Links

Images

Landscapes

  • Led Device Packages (AREA)
  • Light Receiving Elements (AREA)
  • Led Devices (AREA)
  • Solid State Image Pick-Up Elements (AREA)
  • Bipolar Transistors (AREA)

Abstract

An optoelectronic semiconductor device is provided, including: a base; a stack of semiconductor layer located on the base; an adhesive layer located between the base and the stack of semiconductor layer; and a release layer located between the adhesive layer and the base and in direct contact with the base. The release layer includes an inorganic insulating material and has a thickness of 30Å to 1000Å.

Description

光電半導體元件Optoelectronic semiconductor components

本揭露是關於一種光電半導體元件,且特別是關於一種微型光電半導體元件。The present disclosure relates to an optoelectronic semiconductor device, and in particular to a micro optoelectronic semiconductor device.

半導體元件的用途十分廣泛,相關材料的開發研究也持續進行。舉例來說,包含三族及五族元素的III-V族半導體材料可應用於各種光電半導體元件如發光晶片(例如:發光二極體或雷射二極體)、吸光晶片(光電偵測器或太陽能電池)或不發光晶片(例如:開關或整流器的功率元件),能用於照明、醫療、顯示、通訊、感測、電源系統等領域。Semiconductor components are used in a wide range of applications, and research and development on related materials continues. For example, III-V semiconductor materials containing Group III and Group V elements can be used in various optoelectronic semiconductor components such as light-emitting wafers (such as light-emitting diodes or laser diodes), light-absorbing wafers (photodetectors) or solar cells) or non-luminous wafers (such as power components of switches or rectifiers), which can be used in lighting, medical, display, communications, sensing, power systems and other fields.

隨著科技的進步,光電半導體元件的體積逐漸往小型化發展。近幾年來由於發光二極體(light-emitting diode,LED)製作尺寸上的突破,目前將發光二極體以陣列排列製作的微型發光二極體(micro-LED)顯示器在市場上逐漸受到重視。微型發光二極體顯示器相較於有機發光二極體(organic light-emitting diode,OLED)顯示器而言,更為省電、具有較佳的可靠性、更長的使用壽命以及較佳的對比度表現,而可在陽光下具有可視性。隨著科技的發展,現今對於光電半導體元件仍存在許多技術研發的需求。雖然現有的光電半導體元件大致上已經符合多種需求,但並非在各方面皆令人滿意,仍需要進一步改良。With the advancement of technology, the size of optoelectronic semiconductor components is gradually becoming smaller. In recent years, due to breakthroughs in the production size of light-emitting diodes (LEDs), micro-LED displays, which are produced by arranging light-emitting diodes in an array, are gradually gaining attention in the market. . Compared with organic light-emitting diode (OLED) displays, micro-light-emitting diode displays are more power-saving, have better reliability, longer service life and better contrast performance , and can be viewed in sunlight. With the development of science and technology, there are still many technical research and development needs for optoelectronic semiconductor components. Although existing optoelectronic semiconductor devices have generally met various needs, they are not satisfactory in all aspects and require further improvement.

本揭露的一些實施例提供一種光電半導體元件,包括:基底;半導體疊層,位於基底上;黏結層,位於基底及半導體疊層之間;及解離層,位於黏結層及基底之間且與基底直接接觸;其中解離層包括無機絕緣材料,且具有30Å至1000Å的厚度。Some embodiments of the present disclosure provide an optoelectronic semiconductor device, including: a substrate; a semiconductor stack located on the substrate; an adhesive layer located between the substrate and the semiconductor stack; and a dissociation layer located between the adhesive layer and the substrate and with the substrate Direct contact; where the dissociation layer includes inorganic insulating materials and has a thickness of 30Å to 1000Å.

以下揭露提供了許多的實施例或範例,用於實施所提供的標的物之不同元件。各元件和其配置的具體範例描述如下,以簡化本揭露實施例之說明。當然,這些僅僅是範例,並非用以限定本揭露實施例。舉例而言,敘述中若提及第一元件形成在第二元件之上,可能包含第一和第二元件直接接觸的實施例,也可能包含額外的元件形成在第一和第二元件之間,使得它們不直接接觸的實施例。此外,本揭露實施例可能在各種範例使用重複的元件符號。如此重複是為了簡明和清楚之目的,而非用以表示所討論的不同實施例及∕或配置之間的關係。The following disclosure provides numerous embodiments, or examples, for implementing different elements of the provided subject matter. Specific examples of each component and its configuration are described below to simplify the description of the embodiments of the present disclosure. Of course, these are only examples and are not intended to limit the embodiments of the present disclosure. For example, if the description mentions that a first element is formed on a second element, it may include an embodiment in which the first and second elements are in direct contact, or may include an additional element formed between the first and second elements. , so that they are not in direct contact. In addition, embodiments of the present disclosure may use repeated element symbols in various examples. Such repetition is for the sake of simplicity and clarity and is not intended to represent the relationship between the various embodiments and/or configurations discussed.

再者,此處可使用空間上相關的用語,如「在…之下」、「下方的」、「低於」、「在…上方」、「上方的」、和類似用語可用於此,以便描述如圖所示一元件或部件和其他元件或部件之間的關係。這些空間用語除了包括圖式繪示的方位外,也企圖包括使用或操作中的裝置的不同方位。舉例來說,如果圖中的裝置被反過來,原本被形容為「低於」或在其他元件或部件「下方」的元件,就會被轉為「高於」其他元件或部件。所以,例示性用語「下方」可同時具有「上方」和「下方」的方位。當裝置被轉至其他方位(旋轉90°或其他方位),則在此所使用的空間相對描述可同樣依旋轉後的方位來解讀。Furthermore, spatially related terms may be used here, such as "under", "below", "below", "above", "above", and similar terms may be used here so that Describe the relationship between one element or component and other elements or components as shown in the figure. These spatial terms are intended to cover the various orientations of the device in use or operation, in addition to the orientation depicted in the diagrams. For example, if the device in the picture is turned over, elements described as "lower than" or "beneath" other elements or features would then be described as "above" the other elements or features. Therefore, the exemplary term "below" can have both the orientations of "above" and "below". When the device is rotated 90° or at any other orientation, the spatially relative descriptors used herein may be interpreted similarly to the rotated orientation.

除非另外定義,在此使用的全部用語(包含技術及科學用語)具有與本揭露所屬技術領域中具通常知識者所理解的相同涵義。應理解的是,這些用語例如在通常使用的字典中定義用語,應被解讀成具有與相關技術及本揭露的背景或上下文一致的意思,而不應以一理想化或過度正式的方式解讀,除非在本揭露實施例有特別定義。Unless otherwise defined, all terms (including technical and scientific terms) used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this disclosure belongs. It should be understood that these terms, such as those defined in commonly used dictionaries, should be interpreted to have a meaning consistent with the relevant technology and the background or context of the present disclosure, and should not be interpreted in an idealized or overly formal manner. Unless otherwise defined in the embodiments of this disclosure.

本揭露內容的半導體元件包含的各層組成、摻質(dopant)及缺陷可用任何適合的方式分析而得,例如:二次離子質譜儀(secondary ion mass spectrometer,SIMS)、穿透式電子顯微鏡(transmissionelectron microscopy,TEM)或是掃描式電子顯微鏡(scanning electron microscope,SEM);各層的厚度也可用任何適合的方式分析而得,例如:穿透式電子顯微鏡(transmissionelectron microscopy,TEM)或是掃描式電子顯微鏡(scanning electron microscope,SEM)。The composition of each layer, dopant, and defects included in the semiconductor device disclosed in this disclosure can be analyzed by any suitable method, such as: secondary ion mass spectrometer (SIMS), transmission electron microscope (transmission electron microscopy (TEM) or scanning electron microscope (SEM); the thickness of each layer can also be analyzed by any suitable method, such as: transmission electron microscopy (TEM) or scanning electron microscope (scanning electron microscope, SEM).

一般而言,微型發光二極體可以透過雷射剝離(laser-liftoff, LLO)製程進行巨量轉移,以將微型發光二極體的半導體疊層與基底分離。微型發光二極體中的半導體疊層與基底之間需有一層作為雷射剝離製程的犧牲層。由於在微型發光二極體製程期間形成歐姆接觸結構需進行高溫製程(例如:300℃至500℃),因此犧牲層需為可進行雷射剝離製程且可承受高溫製程的材料,習知的技術普遍使用半導體材料(例如:GaN)或有機材料(例如:苯並環丁烯(benzocyclobutene,BCB))將半導體疊層與基底黏接並作為後續雷射剝離(laser-liftoff, LLO)製程的解離層。Generally speaking, micro-LEDs can be mass-transferred through a laser-liftoff (LLO) process to separate the semiconductor stack of the micro-LEDs from the substrate. There needs to be a sacrificial layer between the semiconductor stack and the substrate in the micro light-emitting diode as a sacrificial layer for the laser lift-off process. Since forming the ohmic contact structure during the micro light-emitting diode process requires a high-temperature process (for example: 300°C to 500°C), the sacrificial layer needs to be a material that can undergo a laser lift-off process and can withstand the high-temperature process. Conventional technology Semiconductor materials (such as GaN) or organic materials (such as benzocyclobutene (BCB)) are commonly used to bond the semiconductor stack to the substrate and serve as dissociators for subsequent laser-liftoff (LLO) processes. layer.

然而,當解離層為半導體材料時,在長晶期間常會產生磊晶缺陷,導致鍵合製程良率較低;而當解離層為有機材料時,常因無法承受高溫,導致高溫合金的製程良率不高。根據本揭露的一些實施例,藉由無機絕緣材料所形成的解離層,可進行雷射剝離製程且可承受高溫製程,此外,亦無磊晶缺陷產生,因此可提升鍵合製程的良率,進而提升光電半導體元件的發光效率。However, when the dissociation layer is a semiconductor material, epitaxial defects often occur during the crystal growth period, resulting in a low bonding process yield. When the dissociation layer is an organic material, it is often unable to withstand high temperatures, resulting in poor quality of the high-temperature alloy process. The rate is not high. According to some embodiments of the present disclosure, the dissociation layer formed by the inorganic insulating material can be processed by laser lift-off and can withstand high-temperature processes. In addition, no epitaxial defects are generated, so the yield of the bonding process can be improved. This further improves the luminous efficiency of optoelectronic semiconductor components.

一併參照第1A圖及第1B圖,第1A圖係根據本揭露的一實施例,繪示出光電半導體元件的俯視圖,第1B圖係為光電半導體元件10沿著第1A圖的A-A’線段的剖面圖。在本實施例中,光電半導體元件10包含基底100、解離層200、黏結層300及半導體疊層400。如第1B圖所示,半導體疊層400位於基底100之上,黏結層300位於半導體疊層400與基底100之間,解離層200位於黏結層300與基底100之間並且直接接觸基底100,換言之,半導體疊層400與基底100藉由黏結層300及解離層200彼此接合。Referring to Figures 1A and 1B together, Figure 1A is a top view of an optoelectronic semiconductor element according to an embodiment of the present disclosure, and Figure 1B is an optoelectronic semiconductor element 10 along A-A of Figure 1A 'Profile of the line segment. In this embodiment, the optoelectronic semiconductor device 10 includes a substrate 100, a dissociation layer 200, an adhesive layer 300 and a semiconductor stack 400. As shown in Figure 1B, the semiconductor stack 400 is located on the substrate 100, the adhesive layer 300 is located between the semiconductor stack 400 and the substrate 100, and the dissociation layer 200 is located between the adhesive layer 300 and the substrate 100 and directly contacts the substrate 100. In other words , the semiconductor stack 400 and the substrate 100 are bonded to each other through the adhesive layer 300 and the dissociation layer 200 .

應理解的是,在形成光電半導體元件10時,是先在另外的成長基板(未繪示)上藉由例如金屬有機化學氣相沉積(metal-organic chemical vapor deposition, MOCVD)、氫化物氣相磊晶法(hydride vapor phase epitaxy, HVPE)、分子束磊晶(molecular beam epitaxy, MBE)或液相磊晶法(liquid-phase epitaxy, LPE)、氣相磊晶(vapor phase epitaxy, VPE)、或其他合適的磊晶成長製程來形成半導體疊層400,之後倒置成長基板並透過黏結層300接合到基底100上,再移除成長基板。因此在本揭露的各種實施例中,各種示意圖中的元件的上下順序並不代表其實際的形成順序。It should be understood that when the optoelectronic semiconductor element 10 is formed, it is first formed on another growth substrate (not shown) by, for example, metal-organic chemical vapor deposition (MOCVD), hydride vapor deposition, etc. Epitaxy (hydride vapor phase epitaxy, HVPE), molecular beam epitaxy (MBE) or liquid-phase epitaxy (LPE), vapor phase epitaxy (VPE), or other suitable epitaxial growth processes to form the semiconductor stack 400, and then the growth substrate is inverted and bonded to the substrate 100 through the adhesive layer 300, and then the growth substrate is removed. Therefore, in various embodiments of the present disclosure, the upper and lower order of elements in various schematic diagrams does not represent their actual formation order.

在一些實施例中,如第1B圖所示,半導體疊層400包括第一半導體結構410、第二半導體結構420、以及主動區430(active region),主動區430位於第一半導體結構410及第二半導體結構420之間。半導體疊層400可區分為第一高台部400A、第二高台部400C、第一平台部400B、第二平台部400D、以及第三平台部400E。第一平台部400B位於第一高台部400A與第二高台部400C之間,第二平台部400D及第三平台部400E分別位於第一平台部400B的相反側上,第一高台部400A位於第一平台部400B與第二平台部400D之間,第二高台部400C位於第一平台部400B與第三平台部400E之間。由俯視觀之,第一高台部400A及第二高台部400C被平台部(例如:第一平台部400B、及/或第二平台部400D、及/或第三平台部400E)環繞,且第一平台部400B被第一高台部400A及第二高台部400C環繞。第一高台部400A的頂表面400a1及第二高台部400C的頂表面400a1共平面,且第一平台部400B的頂表面400a2低於主動區430。高台部400A、400C的厚度大於平台部400B、400D、400E的厚度。在其他實施例中,第二半導體結構420具有一下表面420a遠離第一半導體結構410,且下表面420a具有粗化結構(未繪示),粗化結構可以為規則粗化或不規則粗化,藉此增加光電半導體元件10的出光效率。In some embodiments, as shown in FIG. 1B , the semiconductor stack 400 includes a first semiconductor structure 410 , a second semiconductor structure 420 , and an active region 430 . The active region 430 is located between the first semiconductor structure 410 and the second semiconductor structure 420 . between two semiconductor structures 420. The semiconductor stack 400 can be divided into a first platform portion 400A, a second platform portion 400C, a first platform portion 400B, a second platform portion 400D, and a third platform portion 400E. The first platform part 400B is located between the first platform part 400A and the second platform part 400C. The second platform part 400D and the third platform part 400E are respectively located on the opposite sides of the first platform part 400B. The first platform part 400A is located on the third platform part 400B. Between the first platform part 400B and the second platform part 400D, the second high platform part 400C is located between the first platform part 400B and the third platform part 400E. Viewed from a top view, the first high platform portion 400A and the second high platform portion 400C are surrounded by a platform portion (for example: the first platform portion 400B, and/or the second platform portion 400D, and/or the third platform portion 400E), and the A platform part 400B is surrounded by a first high platform part 400A and a second high platform part 400C. The top surface 400a1 of the first platform portion 400A and the top surface 400a1 of the second platform portion 400C are coplanar, and the top surface 400a2 of the first platform portion 400B is lower than the active area 430. The thickness of the plateau portions 400A and 400C is greater than the thickness of the platform portions 400B, 400D and 400E. In other embodiments, the second semiconductor structure 420 has a lower surface 420a away from the first semiconductor structure 410, and the lower surface 420a has a roughened structure (not shown). The roughened structure may be regular roughening or irregular roughening. Thereby, the light extraction efficiency of the optoelectronic semiconductor element 10 is increased.

在一些實施例中,基底100為透明材料,載此所述之「透明」係指該材料對於後續雷射剝離製程所使用的波長具有高穿透率。具體而言,基底100對於波長200nm至700nm具有80%至99.99%的穿透率,例如穿透率大於95%。基底100可為藍寶石(sapphire)、玻璃(glass)、環氧樹脂(epoxy)、石英(quartz)、壓克力(acrylic resin)、或其他透明材料。再一實施例中,基底100為藍寶石。在一實施例中,基底100具有一第一上表面100a面對半導體疊層400,黏結層300包含一第二上表面300a面對半導體疊層400,第一上表面100a包含一圖案化圖形(未繪示),使解離層200可依基底100之圖案化圖形具有相應的表面形貌,第二上表面300a則為一平坦表面,藉由平坦的第二上表面300a可以增加半導體疊層400與基底100之間之黏著力。In some embodiments, the substrate 100 is a transparent material, and "transparent" as described herein means that the material has high transmittance for the wavelength used in the subsequent laser lift-off process. Specifically, the substrate 100 has a transmittance of 80% to 99.99% for a wavelength of 200 nm to 700 nm, for example, the transmittance is greater than 95%. The substrate 100 may be sapphire, glass, epoxy, quartz, acrylic resin, or other transparent materials. In yet another embodiment, the substrate 100 is sapphire. In one embodiment, the substrate 100 has a first upper surface 100a facing the semiconductor stack 400, the adhesive layer 300 includes a second upper surface 300a facing the semiconductor stack 400, and the first upper surface 100a includes a patterned pattern ( (not shown), so that the dissociation layer 200 can have a corresponding surface topography according to the pattern pattern of the substrate 100, and the second upper surface 300a is a flat surface. The semiconductor stack 400 can be increased through the flat second upper surface 300a. Adhesion to the substrate 100.

上述光電半導體元件10可為微型發光二極體(micro light emitting diode;Micro LED),且於俯視圖(第1A圖)中具有長度L及寬度W,換言之,半導體疊層400(或第二半導體結構420)具有長度L及寬度W。上述長度L不大於150微米,例如為20微米至150微米,例如:20微米至60微米、60微米至150微米。上述寬度W不大於100微米,例如為10微米至100微米,例如:10微米至30微米、30微米至75微米。The above-mentioned optoelectronic semiconductor device 10 can be a micro light emitting diode (Micro LED), and has a length L and a width W in a top view (FIG. 1A). In other words, the semiconductor stack 400 (or the second semiconductor structure 420) has length L and width W. The above-mentioned length L is not greater than 150 microns, for example, it is 20 microns to 150 microns, for example: 20 microns to 60 microns, or 60 microns to 150 microns. The above-mentioned width W is not greater than 100 microns, for example, 10 microns to 100 microns, for example: 10 microns to 30 microns, 30 microns to 75 microns.

解離層200為無機絕緣材料,可承受後續的高溫製程(350℃至500℃),並具有一能隙(band gap)介於3eV至6eV,例如:3.5 eV至5.5eV、4eV至5.2eV,藉此使解離層200對於雷射剝離製程所使用的UV光波段(例如:200nm至400nm)具有高吸收率,以有效地分離基底100及半導體疊層400,且在分離過程中不對半導體疊層400造成損傷,進而提升製程良率。具體而言,上述解離層200材料對於波長200nm至300nm可具有大於或等於10 2cm -1的吸收係數,例如1x10 2cm -1至1x10 5cm -1的吸收係數。在本實施例中,解離層200可以為氮化矽(SiN x)、氮化鋁(AlN)、氮氧化矽(SiNO)或銦錫氧化玻璃(ITO)或其組合。在一些實施例中,解離層200可以為非晶(amorphous)材料。 The dissociation layer 200 is an inorganic insulating material that can withstand subsequent high-temperature processes (350°C to 500°C) and has a band gap between 3eV and 6eV, for example: 3.5eV to 5.5eV, 4eV to 5.2eV. Thereby, the dissociation layer 200 has a high absorption rate for the UV light band (for example: 200nm to 400nm) used in the laser lift-off process, so as to effectively separate the substrate 100 and the semiconductor stack 400 without damaging the semiconductor stack during the separation process. 400 causes damage, thereby improving process yield. Specifically, the above-mentioned dissociation layer 200 material may have an absorption coefficient greater than or equal to 10 2 cm -1 for a wavelength of 200 nm to 300 nm, such as an absorption coefficient of 1x10 2 cm -1 to 1x10 5 cm -1 . In this embodiment, the dissociation layer 200 may be silicon nitride (SiN x ), aluminum nitride (AlN), silicon oxynitride (SiNO), indium tin oxide glass (ITO), or a combination thereof. In some embodiments, the dissociation layer 200 may be an amorphous material.

在一些實施例中,如第1B圖所示,解離層200具有一厚度T介於30Å至1000Å,例如為50Å至500Å、60Å至300Å或80Å至200Å。如果解離層200的厚度T小於30Å,可能不易控制製程的均勻性,造成較低的接合產率。如果解離層200的厚度T大於1000Å,可能導致後續半導體疊層400與基底100的分離製程中,無法有效地分離,並且在雷射剝離製程之後可能會有部分殘留解離層200於半導體疊層400上,進而造成元件損壞並影響良率。In some embodiments, as shown in Figure 1B, the dissociation layer 200 has a thickness T ranging from 30Å to 1000Å, such as 50Å to 500Å, 60Å to 300Å, or 80Å to 200Å. If the thickness T of the dissociation layer 200 is less than 30Å, it may be difficult to control the uniformity of the process, resulting in a lower bonding yield. If the thickness T of the dissociation layer 200 is greater than 1000Å, the subsequent separation process of the semiconductor stack 400 and the substrate 100 may not be effectively separated, and part of the dissociation layer 200 may remain in the semiconductor stack 400 after the laser lift-off process. on, causing component damage and affecting yield.

在一些實施例中,由於本揭露的解離層200為無機絕緣材料,因此,可利用沉積製程將解離層200形成於基底100之上,且避免前述之當解離層為半導體材料時所造成磊晶缺陷進而導致鍵合製程良率較低之問題。上述沉積製程例如化學氣相沉積(chemical vapor deposition, CVD)、次氣壓化學氣相沉積(subatmospheric CVD, SACVD)、流動式化學氣相沉積(flowable CVD, FCVD)、旋轉塗佈(spin coating)、及/或其他合適的製程。In some embodiments, since the dissociation layer 200 of the present disclosure is an inorganic insulating material, a deposition process can be used to form the dissociation layer 200 on the substrate 100 and avoid the aforementioned epitaxy caused when the dissociation layer is a semiconductor material. Defects in turn lead to lower yields in the bonding process. The above deposition processes include chemical vapor deposition (CVD), subatmospheric chemical vapor deposition (SACVD), flowable chemical vapor deposition (FCD), spin coating, and/or other suitable processes.

在一些實施例中,可藉由在磊晶成長期間原位(in-situ)摻雜及/或通過在磊晶成長之後使用摻質進行佈植(implanting)以進行第一半導體結構410及第二半導體結構420的摻雜。第一半導體結構410可包含第一摻質使其具有第一導電型,第二半導體結構420可包含第二摻質使其具有第二導電型。第一半導體結構410及第二半導體結構420具有不同的導電型,亦即第一導電型與第二導電型不同。第一導電型例如為p型及第二導電型例如為n型,或者,第一導電型例如為n型及第二導電型例如為p型。當光電半導體元件為一發光元件時,於操作下,第一半導體結構410及第二半導體結構420分別提供電洞及電子或分別提供電子或電洞以於主動區430結合以發光。在一實施例中,第一摻質或第二摻質可為鎂(Mg)、鋅(Zn)、矽(Si)、碳(C)或碲(Te)。In some embodiments, the first and second semiconductor structures 410 and 410 may be formed by in-situ doping during epitaxial growth and/or by implanting with dopants after epitaxial growth. Doping of the second semiconductor structure 420. The first semiconductor structure 410 may include a first dopant to have a first conductivity type, and the second semiconductor structure 420 may include a second dopant to have a second conductivity type. The first semiconductor structure 410 and the second semiconductor structure 420 have different conductivity types, that is, the first conductivity type and the second conductivity type are different. The first conductivity type is, for example, p-type and the second conductivity type is, for example, n-type. Alternatively, the first conductivity type is, for example, n-type and the second conductivity type is, for example, p-type. When the optoelectronic semiconductor element is a light-emitting element, under operation, the first semiconductor structure 410 and the second semiconductor structure 420 respectively provide holes and electrons or provide electrons or holes respectively to combine in the active region 430 to emit light. In an embodiment, the first dopant or the second dopant may be magnesium (Mg), zinc (Zn), silicon (Si), carbon (C) or tellurium (Te).

在本揭露實施例中,第一半導體結構410、第二半導體結構420、主動區430可包含III-V族半導體材料,例如包含鋁(Al)、鎵(Ga)、砷(As)、磷(P)或銦(In)。具體而言,在本揭露實施例中,上述III-V族半導體材料可為二元化合物半導體(如GaAs、GaP、或GaN)、三元化合物半導體(如InGaAs、AlGaAs、InGaP、AlInP、InGaN、或AlGaN)、或四元化合物半導體(如AlGaInAs、AlGaInP、AlInGaN、InGaAsP、InGaAsN、或AlGaAsP)。In the embodiment of the present disclosure, the first semiconductor structure 410, the second semiconductor structure 420, and the active region 430 may include III-V semiconductor materials, such as aluminum (Al), gallium (Ga), arsenic (As), phosphorus ( P) or indium (In). Specifically, in the embodiment of the present disclosure, the III-V group semiconductor material may be a binary compound semiconductor (such as GaAs, GaP, or GaN), a ternary compound semiconductor (such as InGaAs, AlGaAs, InGaP, AlInP, InGaN, or AlGaN), or quaternary compound semiconductors (such as AlGaInAs, AlGaInP, AlInGaN, InGaAsP, InGaAsN, or AlGaAsP).

在本揭露實施例中,半導體疊層400可包含多重量子井結構(Multi Quantum Wells, MQWs)(未繪示),發出峰值波長為700奈米至1700奈米的紅外光或峰值波長為610奈米至700奈米的紅光、峰值波長介於400 nm及490 nm之間的藍光或深藍光、或峰值波長介於490 nm及550 nm之間的綠光。In the embodiment of the disclosure, the semiconductor stack 400 may include multiple quantum wells (MQWs) (not shown), emitting infrared light with a peak wavelength of 700 nanometers to 1700 nanometers or a peak wavelength of 610 nanometers. Meters to 700 nanometers of red light, blue or deep blue light with a peak wavelength between 400 nm and 490 nm, or green light with a peak wavelength between 490 nm and 550 nm.

在本實施例中,光電半導體元件10另包含一中間結構900位於半導體疊層400及黏結層300之間,中間結構900可用來優化半導體疊層400與黏結層300之間之附著能力、及/或增加半導體疊層400往基底100的光反射回遠離基底100的機率,中間結構900的材料可以為導電材料或不導電材料,具體而言,中間結構900可以為無機絕緣材料(例如:氮化矽(SiN x)、氧化矽(SiO 2)等)、透明導電材料(例如:氧化銦錫(ITO)、氧化銦(InO)、氧化錫(SnO)、氧化鎘錫(CTO)、氧化銻錫(ATO)、氧化鋁鋅(AZO)、氧化鋅錫(ZTO)、氧化鎵鋅(GZO)、氧化銦鎢(IWO)、氧化鋅(ZnO)或氧化銦鋅(IZO))。在一實施例中,中間結構900包含布拉格反射結構(distributed bragg reflector structure;DBR),其由兩種以上具有不同折射率的材料交替堆疊而形成。在本實施例中,中間結構900與解離層200具有相同材料,且中間結構900的厚度大於解離層200的厚度。 In this embodiment, the optoelectronic semiconductor device 10 further includes an intermediate structure 900 located between the semiconductor stack 400 and the adhesive layer 300. The intermediate structure 900 can be used to optimize the adhesion between the semiconductor stack 400 and the adhesive layer 300, and/ Or increase the probability that the light from the semiconductor stack 400 to the substrate 100 is reflected back away from the substrate 100. The material of the intermediate structure 900 can be a conductive material or a non-conductive material. Specifically, the intermediate structure 900 can be an inorganic insulating material (for example, nitride Silicon ( SiN (ATO), aluminum zinc oxide (AZO), zinc tin oxide (ZTO), gallium zinc oxide (GZO), indium tungsten oxide (IWO), zinc oxide (ZnO) or indium zinc oxide (IZO)). In one embodiment, the intermediate structure 900 includes a distributed bragg reflector structure (DBR), which is formed by alternately stacking two or more materials with different refractive indexes. In this embodiment, the intermediate structure 900 and the dissociation layer 200 are made of the same material, and the thickness of the intermediate structure 900 is greater than the thickness of the dissociation layer 200 .

如前文所述,雖然半導體疊層400在第1B圖中被繪示為位於基底100上方,但在其中一個實施例中,半導體疊層400以及黏結層300實際上是先形成於另外的成長基板上(未繪出)後,再倒置接合到基底100。換言之,在成長基板上依序形成第一半導體結構410、主動區430、第二半導體結構420、中間結構900及一部分的黏結層300,並在基底100上形成解離層200及另一部分的黏結層300後,再透過接合兩面的黏結層300使基底100及半導體疊層400相連接,之後再移除成長基板。As mentioned above, although the semiconductor stack 400 is shown as being located above the substrate 100 in FIG. 1B, in one embodiment, the semiconductor stack 400 and the adhesive layer 300 are actually formed on another growth substrate first. After being mounted (not shown), it is then inverted and bonded to the substrate 100 . In other words, the first semiconductor structure 410, the active region 430, the second semiconductor structure 420, the intermediate structure 900 and a part of the adhesive layer 300 are sequentially formed on the growth substrate, and the dissociation layer 200 and another part of the adhesive layer are formed on the substrate 100. 300, the substrate 100 and the semiconductor stack 400 are connected through the adhesive layer 300 on both sides, and then the growth substrate is removed.

在半導體疊層400透過黏結層300及解離層200連接至基底100後,可藉由蝕刻製程來蝕刻部分的半導體疊層400以露出第二半導體結構420供後續進行電性連接,上述蝕刻製程例如乾式蝕刻製程、濕式蝕刻製程、或其組合。舉例而言,乾式蝕刻製程可包括電漿蝕刻(plasma etching, PE)、反應離子蝕刻(reactive ion etching, RIE)、感應耦合電漿活性離子蝕刻(inductively coupled plasma reactive ion etching, ICP-RIE);濕式蝕刻製程可採用酸性溶液或鹼性溶液。此外,上述的蝕刻製程將半導體疊層400定義為平台部(400B、400D、以及400E)以及高台部(400A及400C),平台部400B、400D、以及400E僅包含第二半導體結構420,高台區400A、400C包含第一半導體結構410、主動區430及第二半導體結構420。在本實施例中,半導體疊層400的寬度小於基底100,且暴露出部分的中間結構900,換言之,半導體疊層400未覆蓋部分的中間結構900。在其他實施例中,可藉由上述蝕刻製程,移除部分的中間結構900、黏結層300或解離層200以暴露出部分的黏結層300、解離層200或基底100 。After the semiconductor stack 400 is connected to the substrate 100 through the adhesive layer 300 and the dissociation layer 200, a portion of the semiconductor stack 400 can be etched through an etching process to expose the second semiconductor structure 420 for subsequent electrical connection. The etching process can be, for example, Dry etching process, wet etching process, or a combination thereof. For example, the dry etching process may include plasma etching (PE), reactive ion etching (RIE), inductively coupled plasma reactive ion etching (ICP-RIE); The wet etching process can use acidic solutions or alkaline solutions. In addition, the above-mentioned etching process defines the semiconductor stack 400 as a platform portion (400B, 400D, and 400E) and a high platform portion (400A and 400C). The platform portions 400B, 400D, and 400E only include the second semiconductor structure 420. The high platform portion 400A and 400C include a first semiconductor structure 410, an active region 430, and a second semiconductor structure 420. In this embodiment, the width of the semiconductor stack 400 is smaller than the substrate 100 , and a portion of the intermediate structure 900 is exposed. In other words, the semiconductor stack 400 does not cover a portion of the intermediate structure 900 . In other embodiments, part of the intermediate structure 900, the bonding layer 300 or the dissociation layer 200 can be removed through the above etching process to expose part of the bonding layer 300, the dissociation layer 200 or the substrate 100.

繼續參照第1B圖,光電半導體元件10選擇性地包含絕緣層500,絕緣層500順應地覆蓋於半導體疊層400之上,以保護半導體疊層400。絕緣層500在半導體疊層400的第一高台部400A及第一平台部400B上分別具有第一開孔510及第二開孔520。在本揭露實施例中,絕緣層500可包含氧化物絕緣材料、非氧化物絕緣材料、或前述之組合。舉例而言,氧化物絕緣材料可以包含氧化矽(SiO x);非氧化物絕緣材料可以包含氮化矽(SiN x)、苯並環丁烯(benzocyclobutene,BCB)、環烯烴聚合物(cycloolefin copolymer,COC)或氟碳聚合物(fluorocarbon polymer)、氟化鈣(calciumfluoride,CaF 2)或氟化鎂(magnesium fluoride,MgF 2)。在一實施例中,絕緣層500可具有反射功能且包含布拉格反射結構(distributed bragg reflector structure;DBR),其由兩種以上具有不同折射率的半導體材料交替堆疊而形成,例如:氮化矽(SiN x)、氧化鋁(AlO x)、氧化矽(SiO x)、氟化鎂(MgF x)、氧化鈦(TiO 2)或氧化鈮(Nb 2O 5)。 Continuing to refer to FIG. 1B , the optoelectronic semiconductor device 10 selectively includes an insulating layer 500 , and the insulating layer 500 conformably covers the semiconductor stack 400 to protect the semiconductor stack 400 . The insulating layer 500 has a first opening 510 and a second opening 520 respectively on the first elevated portion 400A and the first platform portion 400B of the semiconductor stack 400 . In the embodiment of the present disclosure, the insulating layer 500 may include an oxide insulating material, a non-oxide insulating material, or a combination of the foregoing. For example, the oxide insulating material may include silicon oxide (SiO x ); the non-oxide insulating material may include silicon nitride (SiN x ), benzocyclobutene (BCB), cycloolefin copolymer (cycloolefin copolymer) , COC) or fluorocarbon polymer, calcium fluoride (CaF 2 ) or magnesium fluoride (MgF 2 ). In one embodiment, the insulating layer 500 may have a reflective function and include a distributed bragg reflector structure (DBR), which is formed by alternately stacking two or more semiconductor materials with different refractive indexes, such as silicon nitride ( SiN x ), aluminum oxide (AlO x ), silicon oxide (SiO x ), magnesium fluoride (MgF x ), titanium oxide (TiO 2 ) or niobium oxide (Nb 2 O 5 ).

繼續參照第1B圖,光電半導體元件10選擇性地包含第一接觸結構610及第二接觸結構620。第一接觸結構610及第二接觸結構620可分別位於絕緣層500的第一開孔510及第二開孔520中。在本實施例中,第一接觸結構610具有一第一寬度W1、第二接觸結構620具有一第二寬度W2大於或等於第一寬度W1。第一開孔510的寬度W3大於第一寬度W1,故當第一接觸結構610位於第一半導體結構410上時,部分半導體疊層400之頂表面400a1會被暴露出來,亦即,部分半導體疊層400之頂表面400a1未被第一接觸結構610所覆蓋;同樣地,第二開孔520的寬度W4大於第二寬度W2,故當第二接觸結構620位於第二半導體結構420上時,部分半導體疊層400之頂表面400a2會被暴露出來,亦即,部分半導體疊層400之頂表面400a2會被暴露出來未被第二接觸結構620所覆蓋。第一接觸結構610直接接觸且電性連接於第一半導體結構410,第二接觸結構620直接接觸且電性連接於第二半導體結構420。第一接觸結構610及第二接觸結構620可分別與第一半導體結構410及第二半導體結構420形成歐姆接觸,進而降低光電半導體元件10的順向電壓(Vf)。Continuing to refer to FIG. 1B , the optoelectronic semiconductor device 10 selectively includes a first contact structure 610 and a second contact structure 620 . The first contact structure 610 and the second contact structure 620 may be respectively located in the first opening 510 and the second opening 520 of the insulation layer 500 . In this embodiment, the first contact structure 610 has a first width W1, and the second contact structure 620 has a second width W2 that is greater than or equal to the first width W1. The width W3 of the first opening 510 is greater than the first width W1, so when the first contact structure 610 is located on the first semiconductor structure 410, part of the top surface 400a1 of the semiconductor stack 400 will be exposed, that is, part of the semiconductor stack 400 will be exposed. The top surface 400a1 of the layer 400 is not covered by the first contact structure 610; similarly, the width W4 of the second opening 520 is greater than the second width W2, so when the second contact structure 620 is located on the second semiconductor structure 420, part of the The top surface 400a2 of the semiconductor stack 400 will be exposed, that is, part of the top surface 400a2 of the semiconductor stack 400 will be exposed and not covered by the second contact structure 620. The first contact structure 610 is directly in contact with and electrically connected to the first semiconductor structure 410 , and the second contact structure 620 is in direct contact with and electrically connected to the second semiconductor structure 420 . The first contact structure 610 and the second contact structure 620 can form ohmic contacts with the first semiconductor structure 410 and the second semiconductor structure 420 respectively, thereby reducing the forward voltage (Vf) of the optoelectronic semiconductor device 10 .

上述第一開孔510及第二開孔520可藉由蝕刻製程來蝕刻部分的絕緣層500而產生,第一開孔510及第二開孔520分別暴露出第一接觸結構610及部分第一半導體結構410、第二接觸結構620及第二半導體結構420。上述蝕刻製程可以為乾式蝕刻製程或濕式蝕刻製程。在本揭露實施例中,第一接觸結構610以及第二接觸結構620可各自包含金屬材料、合金材料、金屬氧化物材料等。金屬材料例如鍺(Ge)、鈹(Be)、鋅(Zn)、金(Au)、鎳(Ni)或銅(Cu)的金屬材料;合金材料可包含至少兩者之上述金屬的合金,例如鍺金鎳(GeAuNi)、鈹金(BeAu)、鍺金(GeAu)、或鋅金(ZnAu);金屬氧化物材料可以包含氧化銦錫(ITO)、氧化銦(InO)、氧化錫(SnO)、氧化鎘錫(CTO)、氧化銻錫(ATO)、氧化鋁鋅(AZO)、氧化鋅錫(ZTO)、氧化鎵鋅(GZO)、氧化銦鎢(IWO)、氧化鋅(ZnO)或氧化銦鋅(IZO)等。在一實施例中,第一接觸結構610以及第二接觸結構620分別為GeAu合金及BeAu合金。The first opening 510 and the second opening 520 can be produced by etching part of the insulating layer 500 through an etching process. The first opening 510 and the second opening 520 respectively expose the first contact structure 610 and part of the first opening 500 . Semiconductor structure 410, second contact structure 620 and second semiconductor structure 420. The above etching process may be a dry etching process or a wet etching process. In the embodiment of the present disclosure, the first contact structure 610 and the second contact structure 620 may each include metal materials, alloy materials, metal oxide materials, etc. Metal materials such as germanium (Ge), beryllium (Be), zinc (Zn), gold (Au), nickel (Ni) or copper (Cu); the alloy material may include an alloy of at least two of the above metals, for example Germanium gold nickel (GeAuNi), beryllium gold (BeAu), germanium gold (GeAu), or zinc gold (ZnAu); metal oxide materials can include indium tin oxide (ITO), indium oxide (InO), tin oxide (SnO) , cadmium tin oxide (CTO), antimony tin oxide (ATO), aluminum zinc oxide (AZO), zinc tin oxide (ZTO), gallium zinc oxide (GZO), indium tungsten oxide (IWO), zinc oxide (ZnO) or oxide Indium zinc (IZO), etc. In one embodiment, the first contact structure 610 and the second contact structure 620 are GeAu alloy and BeAu alloy respectively.

第一開孔510與第二開孔520可以具有相同或不同之形狀,第一接觸結構610及第二接觸結構620也可以具有相同或不同之形狀,例如圓形、方形或多邊形。第一開孔510之形狀與第一接觸結構610之形狀可以選擇為相同或不同之形狀,且/或第二開孔520之形狀與第二接觸結構620之形狀可以選擇為相同或不同之形狀。The first opening 510 and the second opening 520 may have the same or different shapes, and the first contact structure 610 and the second contact structure 620 may also have the same or different shapes, such as circular, square or polygonal. The shape of the first opening 510 and the shape of the first contact structure 610 can be selected to be the same or different shapes, and/or the shape of the second opening 520 and the shape of the second contact structure 620 can be selected to be the same or different shapes. .

繼續參照第1B圖,光電半導體元件10包含第一電極710及第二電極720。第一電極710位於絕緣層500及第一接觸結構610之上,並且透過第一接觸結構610與第一半導體結構410電性連接,且第一電極710覆蓋部分的半導體疊層400之頂表面400a1;第二電極720順應地覆蓋於絕緣層500及第二接觸結構620之上,並且透過第二接觸結構620與第二半導體結構420電性連接,且第二電極720完全覆蓋半導體疊層400之頂表面400a2。在本實施例中,第一電極710的頂表面710a與第二電極720位於第一高台部400A之上及第二高台部400C之上的頂表面720a共平面。第一電極710與第二電極720可用來將光電半導體元件10與外部電源電性連接。電流可藉由第一電極710與第二電極720在光電半導體元件10中導通,並驅動半導體疊層400中的載子(電子和電洞)複合並發出光線,光線可朝基底100方向射出或者是朝遠離基底100的方向射出。Continuing to refer to FIG. 1B , the optoelectronic semiconductor element 10 includes a first electrode 710 and a second electrode 720 . The first electrode 710 is located on the insulating layer 500 and the first contact structure 610 and is electrically connected to the first semiconductor structure 410 through the first contact structure 610. The first electrode 710 covers part of the top surface 400a1 of the semiconductor stack 400. ; The second electrode 720 compliantly covers the insulating layer 500 and the second contact structure 620, and is electrically connected to the second semiconductor structure 420 through the second contact structure 620, and the second electrode 720 completely covers the semiconductor stack 400 Top surface 400a2. In this embodiment, the top surface 710a of the first electrode 710 is coplanar with the top surface 720a of the second electrode 720 located above the first elevated portion 400A and the second elevated portion 400C. The first electrode 710 and the second electrode 720 can be used to electrically connect the optoelectronic semiconductor element 10 with an external power source. The current can be conducted in the optoelectronic semiconductor device 10 through the first electrode 710 and the second electrode 720 and drive the carriers (electrons and holes) in the semiconductor stack 400 to recombine and emit light. The light can be emitted toward the substrate 100 or It is emitted in a direction away from the base 100 .

在本揭露實施例中,第一電極710及第二電極720的材料可相同或不同,且可各自包含金屬氧化材料、金屬或合金。金屬氧化材料包含如氧化銦錫(ITO)、氧化銦(InO)、氧化錫(SnO)、氧化鎘錫(CTO)、氧化銻錫(ATO)、氧化鋁鋅(AZO)、氧化鋅錫(ZTO)、氧化鎵鋅(GZO)、氧化銦鎢(IWO)、氧化鋅(ZnO)或氧化銦鋅(IZO)。金屬可列舉如鍺(Ge)、鈹(Be)、鋅(Zn)、金(Au)、鉑(Pt)、鈦(Ti)、鋁(Al)、鎳(Ni)、銦(In)、錫(Sn)、銀(Ag)或銅(Cu)。合金可包含選自由上述金屬所組成的群組中的至少兩者,例如金錫(AuSn)、錫銀銅合金、錫合金、金銦(AuIn)、鍺金鎳(GeAuNi)、鈹金(BeAu)、鍺金(GeAu)、鋅金(ZnAu)。In the embodiment of the present disclosure, the materials of the first electrode 710 and the second electrode 720 may be the same or different, and each may include a metal oxide material, a metal or an alloy. Metal oxide materials include indium tin oxide (ITO), indium oxide (InO), tin oxide (SnO), cadmium tin oxide (CTO), antimony tin oxide (ATO), aluminum zinc oxide (AZO), zinc tin oxide (ZTO) ), gallium zinc oxide (GZO), indium tungsten oxide (IWO), zinc oxide (ZnO) or indium zinc oxide (IZO). Examples of metals include germanium (Ge), beryllium (Be), zinc (Zn), gold (Au), platinum (Pt), titanium (Ti), aluminum (Al), nickel (Ni), indium (In), and tin. (Sn), silver (Ag) or copper (Cu). The alloy may include at least two selected from the group consisting of the above metals, such as gold tin (AuSn), tin silver copper alloy, tin alloy, gold indium (AuIn), germanium gold nickel (GeAuNi), beryllium gold (BeAu ), germanium gold (GeAu), zinc gold (ZnAu).

在一些實施例中,可使用沉積製程形成第一電極710及第二電極720,在此不予贅述。在一實施例中,可進行平坦化製程(例如,化學機械平坦化(chemical mechanical planarization , CMP)製程),使得第一電極710的頂表面710a與第二電極720的頂表面720a共平面,以提供平坦的表面以利於第一電極710及第二電極720可在相同的水平高度上與外部電路連接,進而提升良率及可靠度。In some embodiments, a deposition process may be used to form the first electrode 710 and the second electrode 720, which will not be described in detail here. In one embodiment, a planarization process (eg, chemical mechanical planarization (CMP) process) may be performed so that the top surface 710a of the first electrode 710 and the top surface 720a of the second electrode 720 are coplanar, so that A flat surface is provided so that the first electrode 710 and the second electrode 720 can be connected to external circuits at the same level, thereby improving yield and reliability.

第2圖係根據本揭露的又一實施例,繪示出光電半導體元件20的剖面圖。光電半導體元件20具有近似於光電半導體元件10(第1B圖)的結構,差別在於光電半導體元件20具有反射層800位於半導體疊層400與解離層200之間,具體而言,反射層800位於黏結層300與解離層200之間。反射層800可反射主動區430所發出的光線,使光線朝遠離基底100的方向射出光電半導體元件20外,藉此提升發光效率。在本揭露實施例中,反射層800可包含半導體材料,如III-V族半導體材料;金屬材料,包含但不限於銅(Cu)、鋁(Al)、錫(Sn)、金(Au)、或銀(Ag);或上述之合金材料。在其他實施例中,反射層800亦可包含布拉格反射結構(distributed bragg reflector structure;DBR),其由兩種以上具有不同折射率的半導體材料或絕緣材料交替堆疊而形成,諸如由AlAs∕GaAs、AlGaAs∕GaAs、InGaP∕GaAs、SiO 2/TiO 2所交替堆疊形成。在一些實施例中,在形成解離層200於基底100上之後,將反射層800形成在解離層200上,再藉由接合反射層800及黏結層300將半導體疊層400與基底100相連接;或者,在半導體疊層400上依序形成黏結層300及反射層800,並於基底100上形成解離層200,後續藉由接合反射層800及解離層200將半導體疊層400與基底100相連接。 Figure 2 is a cross-sectional view of an optoelectronic semiconductor device 20 according to yet another embodiment of the present disclosure. The optoelectronic semiconductor element 20 has a structure similar to that of the optoelectronic semiconductor element 10 (FIG. 1B). The difference is that the optoelectronic semiconductor element 20 has a reflective layer 800 located between the semiconductor stack 400 and the dissociation layer 200. Specifically, the reflective layer 800 is located between the bonding layer 400 and the dissociation layer 200. between layer 300 and dissociation layer 200. The reflective layer 800 can reflect the light emitted from the active area 430 so that the light emits out of the optoelectronic semiconductor element 20 in a direction away from the substrate 100, thereby improving the luminous efficiency. In the embodiment of the present disclosure, the reflective layer 800 may include semiconductor materials, such as III-V semiconductor materials; metal materials, including but not limited to copper (Cu), aluminum (Al), tin (Sn), gold (Au), Or silver (Ag); or the above alloy materials. In other embodiments, the reflective layer 800 may also include a distributed bragg reflector structure (DBR), which is formed by alternately stacking two or more semiconductor materials or insulating materials with different refractive indexes, such as AlAs/GaAs, AlGaAs∕GaAs, InGaP∕GaAs, SiO 2 /TiO 2 are alternately stacked. In some embodiments, after forming the dissociation layer 200 on the substrate 100, the reflective layer 800 is formed on the dissociation layer 200, and then the semiconductor stack 400 is connected to the substrate 100 by bonding the reflective layer 800 and the adhesive layer 300; Alternatively, the adhesive layer 300 and the reflective layer 800 are sequentially formed on the semiconductor stack 400, and the dissociation layer 200 is formed on the substrate 100. Subsequently, the semiconductor stack 400 and the substrate 100 are connected by bonding the reflective layer 800 and the dissociation layer 200. .

第3A圖係根據本揭露的再一實施例,繪示出光電半導體元件的俯視圖。第3B圖係為沿著第3A圖中A-A’線段的剖面圖。光電半導體元件30具有近似於光電半導體元件20(第2圖)的結構,但差別在於光電半導體元件30不具有第二平台部400D及第三平台部400E。Figure 3A is a top view of an optoelectronic semiconductor device according to yet another embodiment of the present disclosure. Figure 3B is a cross-sectional view along line A-A’ in Figure 3A. The optoelectronic semiconductor element 30 has a structure similar to the optoelectronic semiconductor element 20 (FIG. 2), but the difference is that the optoelectronic semiconductor element 30 does not have the second platform portion 400D and the third platform portion 400E.

如第3A圖及第3B圖所示,半導體疊層400可被區分為第一高台部400A、第二高台部400C、以及第一平台部400B,第一平台部400B位於第一高台部400A與第二高台部400C之間,第一高台部400A及第二高台部400C分別位於第一平台部400B的相反側上。相較於第2圖所示之實施例的光電半導體元件20,由於本實施例不具有第二平台部400D及第三平台部400E,因此可以進一步降低元件面積,以獲得更小尺寸的光電半導體元件30。As shown in FIGS. 3A and 3B , the semiconductor stack 400 can be divided into a first platform portion 400A, a second platform portion 400C, and a first platform portion 400B. The first platform portion 400B is located between the first platform portion 400A and the first platform portion 400C. Between the second elevated portions 400C, the first elevated portion 400A and the second elevated portion 400C are respectively located on opposite sides of the first platform portion 400B. Compared with the optoelectronic semiconductor device 20 of the embodiment shown in Figure 2, since this embodiment does not have the second platform portion 400D and the third platform portion 400E, the device area can be further reduced to obtain a smaller size optoelectronic semiconductor. Element 30.

綜上所述,本揭露光電半導體元件提供了一種對高溫製程耐受性高、無磊晶缺陷並且可搭配後續雷射剝離製程的解離層200。具體而言,本揭露的解離層200為無機絕緣材料,可以透過雷射剝離製程有效地移除基底100且不損害光電半導體元件,進而提升製程良率。In summary, the optoelectronic semiconductor device of the present disclosure provides a dissociation layer 200 that is highly resistant to high-temperature processes, has no epitaxial defects, and can be used with subsequent laser lift-off processes. Specifically, the dissociation layer 200 of the present disclosure is an inorganic insulating material, which can effectively remove the substrate 100 through the laser lift-off process without damaging the optoelectronic semiconductor components, thereby improving the process yield.

以上概述數個實施例之部件,以便在本揭露所屬技術領域中具有通常知識者可更易理解本揭露實施例的觀點。在本揭露所屬技術領域中具有通常知識者應理解,他們能以本揭露實施例為基礎,設計或修改其他製程和結構,以達到與在此介紹的實施例相同之目的及/或優勢。在本揭露所屬技術領域中具有通常知識者也應理解到,此類等效的製程和結構並無悖離本揭露的精神與範圍,且他們能在不違背本揭露之精神和範圍之下,做各式各樣的改變、取代和替換。The components of several embodiments are summarized above so that those with ordinary skill in the technical field to which this disclosure belongs can more easily understand the concepts of the embodiments of this disclosure. Those with ordinary skill in the technical field of this disclosure should understand that they can design or modify other processes and structures based on the embodiments of this disclosure to achieve the same purposes and/or advantages as the embodiments introduced here. Those with ordinary knowledge in the technical field to which the present disclosure belongs should also understand that such equivalent processes and structures do not deviate from the spirit and scope of the present disclosure, and they can be used without departing from the spirit and scope of the present disclosure. Make all kinds of changes, substitutions and substitutions.

10:光電半導體元件 20:光電半導體元件 30:光電半導體元件 100:基底 100a:第一上表面 200:解離層 300:黏結層 300a:第二上表面 400:半導體疊層 400a1:頂表面 400a2:頂表面 400A:第一高台部 400B:第一平台部 400C:第二高台部 400D:第二平台部 400E:第三平台部 410:第一半導體結構 420:第二半導體結構 430:主動區 500:絕緣層 510:第一開孔 520:第二開孔 610:第一接觸結構 620:第二接觸結構 710:第一電極 710a:頂表面 720:第二電極 720a:頂表面 800:反射層 900:中間結構 L:長度 T:厚度 W:寬度 AA’:線段 W1:第一寬度 W2:第二寬度 W3、W4:寬度 10: Optoelectronic semiconductor components 20: Optoelectronic semiconductor components 30: Optoelectronic semiconductor components 100:Base 100a: First upper surface 200: dissociation layer 300: Adhesive layer 300a: Second upper surface 400: Semiconductor stack 400a1: Top surface 400a2: Top surface 400A: The first high platform 400B: First platform department 400C: The second highest platform 400D: Second platform department 400E: Third platform department 410: First semiconductor structure 420: Second semiconductor structure 430:Active zone 500: Insulation layer 510: First opening 520: Second opening 610: First contact structure 620: Second contact structure 710: first electrode 710a: Top surface 720: Second electrode 720a: Top surface 800: Reflective layer 900: Intermediate structure L: length T:Thickness W: Width AA’: line segment W1: first width W2: second width W3, W4: Width

由以下的詳細敘述配合所附圖式,可最好地理解本揭露實施例。應注意的是,依據在業界的標準做法,各種特徵並未按照比例繪製且僅用於說明。事實上,可任意地放大或縮小各種元件的尺寸,以清楚地表現出本揭露實施例之特徵。 第1A圖係根據本揭露的一實施例,繪示出光電半導體元件的俯視圖。 第1B圖係根據本揭露的一實施例,繪示出沿著第1A圖中A-A’線段的剖面圖。 第2圖係根據本揭露的另一實施例,繪示出光電半導體元件的剖面圖。 第3A圖係根據本揭露再一實施例,繪示出光電半導體元件的俯視圖。 第3B圖係根據本揭露的再一實施例,繪示出沿著第3A圖中A-A’線段的剖面圖。 Embodiments of the present disclosure can be best understood from the following detailed description in conjunction with the accompanying drawings. It should be noted that, in accordance with standard practice in the industry, various features are not drawn to scale and are for illustration only. In fact, the dimensions of various elements may be arbitrarily enlarged or reduced to clearly illustrate the features of the embodiments of the present disclosure. FIG. 1A is a top view of an optoelectronic semiconductor device according to an embodiment of the present disclosure. Figure 1B is a cross-sectional view along line A-A' in Figure 1A according to an embodiment of the present disclosure. Figure 2 is a cross-sectional view of an optoelectronic semiconductor device according to another embodiment of the present disclosure. Figure 3A is a top view of an optoelectronic semiconductor device according to yet another embodiment of the present disclosure. Figure 3B is a cross-sectional view along line A-A' in Figure 3A according to yet another embodiment of the present disclosure.

10:光電半導體元件 10: Optoelectronic semiconductor components

100:基底 100:Base

100a:第一上表面 100a: First upper surface

200:解離層 200: dissociation layer

300:黏結層 300: Adhesive layer

300a:第二上表面 300a: Second upper surface

400:半導體疊層 400: Semiconductor stack

400a1:頂表面 400a1: Top surface

400a2:頂表面 400a2: Top surface

400A:第一高台部 400A: The first high platform

400B:第一平台部 400B: First platform department

400C:第二高台部 400C: The second highest platform

400D:第二平台部 400D: Second platform department

400E:第三平台部 400E: Third platform department

410:第一半導體結構 410: First semiconductor structure

420:第二半導體結構 420: Second semiconductor structure

430:主動區 430:Active zone

500:絕緣層 500: Insulation layer

510:第一開孔 510: First opening

520:第二開孔 520: Second opening

610:第一接觸結構 610: First contact structure

620:第二接觸結構 620: Second contact structure

710:第一電極 710: first electrode

710a:頂表面 710a: Top surface

720:第二電極 720: Second electrode

720a:頂表面 720a: Top surface

900:中間結構 900: Intermediate structure

T:厚度 T:Thickness

AA’:線段 AA’: line segment

W1:第一寬度 W1: first width

W2:第二寬度 W2: second width

W3、W4:寬度 W3, W4: Width

Claims (10)

一種光電半導體元件,包括: 一基底; 一半導體疊層,位於該基底上; 一黏結層,位於該基底及該半導體疊層之間;及 一解離層,位於該黏結層及該基底之間且與該基底直接接觸; 其中該解離層包括一無機絕緣材料,且具有30Å至1000Å的一厚度。 An optoelectronic semiconductor component, including: a base; a semiconductor stack located on the substrate; an adhesive layer between the substrate and the semiconductor stack; and a dissociation layer located between the adhesive layer and the substrate and in direct contact with the substrate; The dissociation layer includes an inorganic insulating material and has a thickness of 30Å to 1000Å. 如請求項1所述之光電半導體元件,其中該無機絕緣材料為二氧化矽、氮化矽、氮化鋁或其組合。The optoelectronic semiconductor element according to claim 1, wherein the inorganic insulating material is silicon dioxide, silicon nitride, aluminum nitride or a combination thereof. 如請求項1所述之光電半導體元件,其中該解離層對於200nm至300nm的波長具有大於或等於10 2cm -1的一吸收係數。 The optoelectronic semiconductor element according to claim 1, wherein the dissociation layer has an absorption coefficient greater than or equal to 10 2 cm -1 for a wavelength of 200 nm to 300 nm. 如請求項1所述之光電半導體元件,其中該半導體疊層具有10 至1000 的一寬度。 The optoelectronic semiconductor component according to claim 1, wherein the semiconductor stack has 10 to 1000 of a width. 如請求項1所述之光電半導體元件,其中該半導體疊層被配置用以發出紅光或紅外光。The optoelectronic semiconductor device according to claim 1, wherein the semiconductor stack is configured to emit red light or infrared light. 如請求項1所述之光電半導體元件,更包括: 一反射層,位於該半導體疊層及該解離層之間。 The optoelectronic semiconductor component as described in claim 1 further includes: A reflective layer is located between the semiconductor stack and the dissociation layer. 如請求項1所述之光電半導體元件,其中該半導體疊層包括: 一第一半導體結構; 一第二半導體結構,位於該第一半導體結構之下;及 一主動區,位於該第一半導體結構及該第二半導體結構之間。 The optoelectronic semiconductor component as claimed in claim 1, wherein the semiconductor stack includes: a first semiconductor structure; a second semiconductor structure located beneath the first semiconductor structure; and An active region is located between the first semiconductor structure and the second semiconductor structure. 如請求項7所述之光電半導體元件,其中該半導體疊層具有一第一高台部、一第二高台部及一平台部,其中該平台部位於該第一高台部及該第二高台部之間並露出該第二半導體結構。The optoelectronic semiconductor device as claimed in claim 7, wherein the semiconductor stack has a first elevated portion, a second elevated portion and a platform portion, wherein the platform portion is located between the first elevated portion and the second elevated portion. and expose the second semiconductor structure. 如請求項8所述之光電半導體元件,更包括一第一接觸結構位於該第一高台部上、及一第二接觸結構位於該平台部上。The optoelectronic semiconductor device according to claim 8, further comprising a first contact structure located on the first elevated portion, and a second contact structure located on the platform portion. 如請求項9所述之光電半導體元件,更包括一絕緣層位於該半導體疊層之上,且具有一第一開孔位於該第一高台部上、及一第二開孔位於該平台部上,該第一接觸結構位於該第一開孔中且該第二接觸結構位於該該第二開孔中。The optoelectronic semiconductor element according to claim 9, further comprising an insulating layer located on the semiconductor stack, and having a first opening located on the first high platform portion, and a second opening located on the platform portion. , the first contact structure is located in the first opening and the second contact structure is located in the second opening.
TW111109950A 2022-03-17 2022-03-17 Optoelectronic semiconductor device TWI816330B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW111109950A TWI816330B (en) 2022-03-17 2022-03-17 Optoelectronic semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW111109950A TWI816330B (en) 2022-03-17 2022-03-17 Optoelectronic semiconductor device

Publications (2)

Publication Number Publication Date
TWI816330B TWI816330B (en) 2023-09-21
TW202339305A true TW202339305A (en) 2023-10-01

Family

ID=88966246

Family Applications (1)

Application Number Title Priority Date Filing Date
TW111109950A TWI816330B (en) 2022-03-17 2022-03-17 Optoelectronic semiconductor device

Country Status (1)

Country Link
TW (1) TWI816330B (en)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI762428B (en) * 2016-11-15 2022-04-21 愛爾蘭商艾克斯展示公司技術有限公司 Micro-transfer-printable flip-chip structures and methods
TWI657595B (en) * 2017-03-09 2019-04-21 晶元光電股份有限公司 Optoelectronic semiconductor device
KR20200015076A (en) * 2018-08-02 2020-02-12 (주)포인트엔지니어링 Hot air supplying head for transfering micro led and micro led transfer system using the same
TWI821302B (en) * 2018-11-12 2023-11-11 晶元光電股份有限公司 Semiconductor device and package structure thereof
US11380653B2 (en) * 2019-08-27 2022-07-05 Taiwan Semiconductor Manufacturing Company, Ltd. Die stack structure and manufacturing method thereof

Also Published As

Publication number Publication date
TWI816330B (en) 2023-09-21

Similar Documents

Publication Publication Date Title
US10559717B2 (en) Light-emitting device and manufacturing method thereof
TWI795205B (en) Light-emitting device
KR20090101604A (en) Group 3 nitride-based semiconductor light emitting diodes and methods to fabricate them
TWI718182B (en) A method for reusing a substrate for making light-emitting device
US20130062657A1 (en) Light emitting diode structure and manufacturing method thereof
US11990575B2 (en) Light-emitting device
WO2023093446A1 (en) Light-emitting diode chip and light-emitting apparatus
US20230135799A1 (en) Light-emitting device
TWI816330B (en) Optoelectronic semiconductor device
TWI786503B (en) Light-emitting device and manufacturing method thereof
TW202401853A (en) Optoelectronic semiconductor device
TWI834220B (en) Optoelectronic semiconductor device
TWI838740B (en) Optoelectronic semiconductor device and semiconductor device containing the same
TW202416552A (en) Optoelectronic semiconductor device
US20240222566A1 (en) Optoelectronic semiconductor device
TW202038482A (en) Semiconductor device
TWM641018U (en) Optoelectronic semiconductor device
TW202345415A (en) Optoelectronic semiconductor device and semiconductor device containing the same
TWI811778B (en) Optoelectronic semiconductor device
CN219873571U (en) Optoelectronic semiconductor component
TW202410482A (en) Optoelectronic semiconductor device and semiconductor device containing the same
TWI833439B (en) Light-emitting device and manufacturing method thereof
TWI845841B (en) Light-emitting device
TWI828116B (en) Semiconductor device
US11894487B2 (en) Light emitting device