TWI828116B - Semiconductor device - Google Patents

Semiconductor device Download PDF

Info

Publication number
TWI828116B
TWI828116B TW111114393A TW111114393A TWI828116B TW I828116 B TWI828116 B TW I828116B TW 111114393 A TW111114393 A TW 111114393A TW 111114393 A TW111114393 A TW 111114393A TW I828116 B TWI828116 B TW I828116B
Authority
TW
Taiwan
Prior art keywords
metal layer
metal
type semiconductor
groove
semiconductor device
Prior art date
Application number
TW111114393A
Other languages
Chinese (zh)
Other versions
TW202343713A (en
Inventor
楊姿玲
林雅雯
廖庭德
顧浩民
陳世益
黃靖恩
Original Assignee
晶成半導體股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 晶成半導體股份有限公司 filed Critical 晶成半導體股份有限公司
Priority to TW111114393A priority Critical patent/TWI828116B/en
Publication of TW202343713A publication Critical patent/TW202343713A/en
Application granted granted Critical
Publication of TWI828116B publication Critical patent/TWI828116B/en

Links

Images

Abstract

A semiconductor device is provided, including: a first-type semiconductor structure, an active structure, a second-type semiconductor structure, an insulating structure, a recess and a metal structure. The first-type semiconductor structure has a first area, a second area and a side wall. The active structure is disposed on the first-type semiconductor structure. The second-type semiconductor structure is disposed on the active layer. The insulating structure covers the first area of the first-type semiconductor structure and has a first opening. The recess is formed in the first-type semiconductor structure at a position corresponding to the first opening. The metal structure includes a first metal filling in the recess.

Description

半導體元件Semiconductor components

本揭露是關於半導體元件,特別是關於一種具有良好歐姆接觸的半導體元件。The present disclosure relates to a semiconductor device, and in particular to a semiconductor device having good ohmic contact.

半導體元件的用途十分廣泛,相關材料的開發研究也持續進行。舉例來說,包含III族及V族元素的III-V族半導體材料可應用於各種半導體元件如發光晶片(例如:發光二極體或雷射二極體)、吸光晶片(光電偵測器或太陽能電池)或不發光晶片(例如:開關或整流器的功率元件),能用於照明、醫療、顯示、通訊、感測、電源系統等領域。隨著科技的發展,現今對於半導體元件仍存在許多技術研發的需求。雖然現有的半導體元件大致上已經符合一般需求,但並非在各方面皆令人滿意,仍需要進一步的改良。Semiconductor components are used in a wide range of applications, and research and development on related materials continues. For example, III-V semiconductor materials containing III and V elements can be used in various semiconductor devices such as light-emitting wafers (such as light-emitting diodes or laser diodes), light-absorbing wafers (photodetectors or Solar cells) or non-luminous wafers (such as power components of switches or rectifiers), can be used in lighting, medical, display, communications, sensing, power systems and other fields. With the development of science and technology, there are still many technical research and development needs for semiconductor components. Although existing semiconductor devices have generally met general requirements, they are not satisfactory in all aspects and further improvements are still needed.

本揭露實施例提供一種半導體元件。半導體元件包含一第一型半導體結構、一活性結構、一第二型半導體結構、一絕緣結構、一凹槽及一金屬結構。第一型半導體層包含一第一區域、一第二區域及一第一側壁。活性結構位於第一型半導體結構之第二區域上。第二型半導體結構位於活性結構上。 絕緣結構覆蓋第一型半導體結構的第一區域且具有一第一開口。凹槽,位於第一型半導體結構內且對應於第一開口。金屬結構包括一第一金屬層,第一金屬層填入凹槽。Embodiments of the present disclosure provide a semiconductor device. The semiconductor element includes a first-type semiconductor structure, an active structure, a second-type semiconductor structure, an insulation structure, a groove and a metal structure. The first type semiconductor layer includes a first region, a second region and a first sidewall. The active structure is located on the second region of the first-type semiconductor structure. The second type semiconductor structure is located on the active structure. The insulation structure covers the first region of the first-type semiconductor structure and has a first opening. The groove is located in the first type semiconductor structure and corresponds to the first opening. The metal structure includes a first metal layer, and the first metal layer fills the groove.

以下揭露提供了許多的實施例或範例,用於實施所提供的標的物之不同元件。各元件和其配置的具體範例描述如下,以簡化本揭露實施例之說明。當然,這些僅僅是範例,並非用以限定本揭露實施例。舉例而言,敘述中若提及第一元件形成在第二元件之上,可能包含第一和第二元件直接接觸的實施例,也可能包含額外的元件形成在第一和第二元件之間,使得它們不直接接觸的實施例。此外,本揭露實施例可能在各種範例中重複參考數值以及∕或字母。如此重複是為了簡明和清楚之目的,而非用以表示所討論的不同實施例及∕或配置之間的關係。The following disclosure provides numerous embodiments, or examples, for implementing different elements of the provided subject matter. Specific examples of each component and its configuration are described below to simplify the description of the embodiments of the present disclosure. Of course, these are only examples and are not intended to limit the embodiments of the present disclosure. For example, if the description mentions that a first element is formed on a second element, it may include an embodiment in which the first and second elements are in direct contact, or may include an additional element formed between the first and second elements. , so that they are not in direct contact. In addition, embodiments of the present disclosure may repeat reference numbers and/or letters in various examples. Such repetition is for the sake of simplicity and clarity and is not intended to represent the relationship between the various embodiments and/or configurations discussed.

再者,其中可能用到與空間相對用詞,例如「在……之下」、「下方」、「較低的」、「上方」、「較高的」等類似用詞,是為了便於描述圖式中一個(些)部件或特徵與另一個(些)部件或特徵之間的關係。空間相對用詞用以包括使用中或操作中的裝置之不同方位,以及圖式中所描述的方位。當裝置被轉向不同方位時(旋轉90度或其他方位),其中所使用的空間相對形容詞也將依轉向後的方位來解釋。Furthermore, words relative to space may be used, such as "under", "below", "lower", "above", "higher" and other similar words, for the convenience of description. The relationship between one component(s) or feature(s) and another(s) component(s) or feature(s) in the diagram. Spatially relative terms are used to encompass different orientations of equipment in use or operation and the orientation depicted in the drawings. When the device is turned at a different orientation (rotated 90 degrees or at any other orientation), the spatially relative adjectives used therein will also be interpreted in accordance with the rotated orientation.

第1圖至第5圖係根據本揭露的一實施例,繪示繪示出半導體元件10的製程剖面示意圖。在下方描述的各種示意圖和例示性實施例中,相似的元件符號用來表示相似的元件。本揭露之半導體元件10可包含發光晶片(例如,發光二極體或雷射二極體)、吸光晶片(例如,光電偵測器或太陽能電池)、或者不發光晶片(例如,開關或整流器的功率元件)。在本揭露實施例中,半導體元件10之長度不大於150微米,較佳的範圍為10微米至150微米、或10微米至60微米、或60微米至150微米,以及寬度不大於100微米,較佳的範圍為5微米至100微米、或5微米至30微米、或30微米至75微米。FIGS. 1 to 5 are schematic cross-sectional views of the manufacturing process of the semiconductor device 10 according to an embodiment of the present disclosure. In the various schematic diagrams and illustrative embodiments described below, similar reference numbers are used to represent similar elements. The semiconductor device 10 of the present disclosure may include a light-emitting chip (such as a light-emitting diode or a laser diode), a light-absorbing chip (such as a photodetector or a solar cell), or a non-light-emitting chip (such as a switch or rectifier). power components). In the embodiment of the present disclosure, the length of the semiconductor element 10 is no more than 150 microns, preferably in the range of 10 microns to 150 microns, or 10 microns to 60 microns, or 60 microns to 150 microns, and the width is no more than 100 microns, preferably The preferred range is 5 microns to 100 microns, or 5 microns to 30 microns, or 30 microns to 75 microns.

請參照第1圖, 提供基底100,且於基底100上依序形成第一型半導體結構102、活性結構104、第二型半導體結構106,並可藉由諸如乾式蝕刻製程、濕式蝕刻製程、或上述之組合來蝕刻部分的第一型半導體結構102、活性結構104、第二型半導體結構106,以露出一部分的第一型半導體結構102。如第1圖所示,第一型半導體結構102包含第一區域及第二區域。在本實施例中,於一剖面圖中,第一型半導體結構102包含三個第一區域110a1、110a2、110a3及二個第二區域110b1、110b2。第一區域110a1被第二區域110b1、110b2所圍繞且第一區域110a1位於另外兩個第一區域110a2、110a3之間。活性結構104及第二型半導體結構106位於第二區域110b1、110b2且未位於第一區域110a1、110a2、110a3。Referring to Figure 1, a substrate 100 is provided, and a first-type semiconductor structure 102, an active structure 104, and a second-type semiconductor structure 106 are sequentially formed on the substrate 100, and can be performed by, for example, a dry etching process, a wet etching process, Or a combination of the above is used to etch part of the first-type semiconductor structure 102, the active structure 104, and the second-type semiconductor structure 106 to expose a part of the first-type semiconductor structure 102. As shown in FIG. 1 , the first type semiconductor structure 102 includes a first region and a second region. In this embodiment, in a cross-sectional view, the first type semiconductor structure 102 includes three first regions 110a1, 110a2, 110a3 and two second regions 110b1, 110b2. The first area 110a1 is surrounded by the second areas 110b1 and 110b2, and the first area 110a1 is located between the other two first areas 110a2 and 110a3. The active structure 104 and the second-type semiconductor structure 106 are located in the second regions 110b1 and 110b2 and are not located in the first regions 110a1, 110a2 and 110a3.

在一些實施例中,基底100可包含絕緣材料、半導體材料或兩者。絕緣材料可包含例如下列材料:藍寶石(Sapphire)、金剛石、玻璃、石英、或AlN。半導體材料可包含例如下列材料:砷化鎵(GaAs)、磷化銦(InP)、碳化矽(SiC)、磷化鎵(GaP)、磷砷化鎵(GaAsP)、氧化鋅(ZnO)、硒化鋅(ZnSe)、氮化鎵(GaN)、氮化鋁(AlN)、鎵酸鋰(LiGaO 2)、鋁酸鋰(LiAlO 2)、鍺(Ge)或矽(Si)。在一些實施例中,基底100為砷化鎵基底。在一些實施例中,基底100的厚度可介於50μm至1300μm之間。 In some embodiments, substrate 100 may include insulating materials, semiconductor materials, or both. The insulating material may include, for example, the following materials: sapphire, diamond, glass, quartz, or AlN. Semiconductor materials may include, for example, the following materials: gallium arsenide (GaAs), indium phosphide (InP), silicon carbide (SiC), gallium phosphide (GaP), gallium arsenic phosphide (GaAsP), zinc oxide (ZnO), selenium Zinc (ZnSe), gallium nitride (GaN), aluminum nitride (AlN), lithium gallate (LiGaO 2 ), lithium aluminate (LiAlO 2 ), germanium (Ge) or silicon (Si). In some embodiments, substrate 100 is a gallium arsenide substrate. In some embodiments, the thickness of the substrate 100 may range from 50 μm to 1300 μm.

在本揭露實施例中,第一型半導體結構102、第二型半導體結構106、活性結構104包含為單層或多層。第一型半導體結構102、第二型半導體結構106、活性結構104可分別包含III-V族半導體材料,例如鋁(Al)、鎵(Ga)、砷(As)、磷(P)、銦(In)、或氮(N)。具體而言,在本揭露實施例中,上述III-V族半導體材料可為二元化合物半導體(如GaAs、GaP、或GaN)、三元化合物半導體(如InGaAs、AlGaAs、InGaP、AlInP、InGaN、或AlGaN)、或四元化合物半導體(如AlGaInAs、AlGaInP、AlInGaN、InGaAsP、InGaAsN、或AlGaAsP)。在一些實施例中,第一型半導體結構102的厚度可介於1.5μm至4μm之間。在一些實施例中,第二型半導體結構106的厚度可介於0.1μm至2μm之間。在一些實施例中,活性結構104的厚度可介於0.01μm至1.0μm之間。第一型半導體結構102或第二型半導體結構106可包括布拉格反射結構(distributed bragg reflector structure;DBR),其由兩種以上具有不同折射率的半導體材料交替堆疊而形成。In the embodiment of the present disclosure, the first type semiconductor structure 102, the second type semiconductor structure 106, and the active structure 104 include a single layer or multiple layers. The first type semiconductor structure 102, the second type semiconductor structure 106, and the active structure 104 may respectively include III-V semiconductor materials, such as aluminum (Al), gallium (Ga), arsenic (As), phosphorus (P), indium ( In), or nitrogen (N). Specifically, in the embodiment of the present disclosure, the above-mentioned III-V semiconductor material may be a binary compound semiconductor (such as GaAs, GaP, or GaN), a ternary compound semiconductor (such as InGaAs, AlGaAs, InGaP, AlInP, InGaN, or AlGaN), or quaternary compound semiconductors (such as AlGaInAs, AlGaInP, AlInGaN, InGaAsP, InGaAsN, or AlGaAsP). In some embodiments, the thickness of the first-type semiconductor structure 102 may be between 1.5 μm and 4 μm. In some embodiments, the thickness of the second-type semiconductor structure 106 may be between 0.1 μm and 2 μm. In some embodiments, the thickness of active structure 104 may be between 0.01 μm and 1.0 μm. The first type semiconductor structure 102 or the second type semiconductor structure 106 may include a distributed bragg reflector structure (DBR), which is formed by alternately stacking two or more semiconductor materials with different refractive indexes.

在一些實施例中,可藉由下列磊晶成長製程來形成第一型半導體結構102、第二型半導體結構106及活性結構104,例如:金屬有機化學氣相沉積(metal-organic chemical vapor deposition, MOCVD)、氫化物氣相磊晶法(hydride vapor phase epitaxy, HVPE)、分子束磊晶(molecular beam epitaxy, MBE)或液相磊晶法(liquid-phase epitaxy, LPE)、氣相磊晶(vapor phase epitaxy, VPE)、或前述之組合。In some embodiments, the first type semiconductor structure 102, the second type semiconductor structure 106 and the active structure 104 can be formed by the following epitaxial growth process, such as metal-organic chemical vapor deposition, MOCVD), hydride vapor phase epitaxy (HVPE), molecular beam epitaxy (MBE) or liquid-phase epitaxy (LPE), vapor phase epitaxy ( vapor phase epitaxy (VPE), or a combination of the above.

在一些實施例中,可藉由在磊晶成長期間原位(in-situ)摻雜及/或通過在磊晶成長之後使用摻質進行佈植(implanting)以進行第一型半導體結構102及第二型半導體結構106的摻雜。 第一型半導體結構102可包含第一摻質使其具有第一導電型,第二型半導體結構106可包含第二摻質使其具有第二導電型。第一型半導體結構102及第二型半導體結構106具有不同的導電型,亦即第一導電型與第二導電型不同。第一導電型例如為p型及第二導電型例如為n型或第一導電型例如為n型及第二導電型例如為p型。當半導體元件10為發光元件時,第一型半導體結構102及第二型半導體結構106分別提供電洞及電子或,電子或電洞以於活性結構104中結合以發光。第一摻質或第二摻質可包含矽、碲、碳、鈹、鎂)。In some embodiments, the first type semiconductor structure 102 may be formed by in-situ doping during epitaxial growth and/or by implanting with dopants after epitaxial growth. Doping of the second type semiconductor structure 106 . The first type semiconductor structure 102 may include a first dopant to have a first conductivity type, and the second type semiconductor structure 106 may include a second dopant to have a second conductivity type. The first type semiconductor structure 102 and the second type semiconductor structure 106 have different conductivity types, that is, the first conductivity type and the second conductivity type are different. The first conductivity type is, for example, p-type and the second conductivity type is, for example, n-type. The first conductivity type, for example, is n-type and the second conductivity type is, for example, p-type. When the semiconductor device 10 is a light-emitting device, the first-type semiconductor structure 102 and the second-type semiconductor structure 106 respectively provide holes and electrons or holes, and the electrons or holes are combined in the active structure 104 to emit light. The first dopant or the second dopant may include silicon, tellurium, carbon, beryllium, magnesium).

在一些實施例中,半導體元件10可包括多層量子井(multiple quantum well, MQW)、單一量子井(single-quantum well, SQW)、同質接面(homojunction)、異質接面(heterojunction)。In some embodiments, the semiconductor device 10 may include a multiple quantum well (MQW), a single-quantum well (SQW), a homojunction, or a heterojunction.

當半導體元件10為發光元件且於半導體元件10操作時,活性結構104可發出光線。活性結構104所發出的光線包含可見光或不可見光。半導體元件10發出的光線的波長取決於活性結構104的材料組成。舉例來說,當活性結構104的材料包含InGaN系列時,可發出峰值波長(peak wavelength)為400奈米至490奈米的藍光、深藍光,或是峰值波長為490奈米至550奈米的綠光;當活性結構104的材料包含AlGaN系列時,可發出峰值波長為250奈米至400奈米的紫外光;當活性結構104的材料包含InGaAs系列、InGaAsP系列、AlGaAs系列、或AlGaInAs系列時,可發出峰值波長為700奈米至1700奈米的紅外光;當活性結構104的材料包含InGaP系列或AlGaInP系列時,可發出峰值波長為610奈米至700奈米的紅光、或是峰值波長為530奈米至600奈米的黃光。When the semiconductor device 10 is a light-emitting device and operates on the semiconductor device 10 , the active structure 104 can emit light. The light emitted by the active structure 104 includes visible light or invisible light. The wavelength of the light emitted by the semiconductor element 10 depends on the material composition of the active structure 104 . For example, when the material of the active structure 104 includes the InGaN series, it can emit blue light or deep blue light with a peak wavelength of 400 nanometers to 490 nanometers, or a peak wavelength of 490 nanometers to 550 nanometers. Green light; when the material of the active structure 104 includes the AlGaN series, it can emit ultraviolet light with a peak wavelength of 250 nanometers to 400 nanometers; when the material of the active structure 104 includes the InGaAs series, InGaAsP series, AlGaAs series, or AlGaInAs series , can emit infrared light with a peak wavelength of 700 nanometers to 1700 nanometers; when the material of the active structure 104 includes InGaP series or AlGaInP series, can emit red light with a peak wavelength of 610 nanometers to 700 nanometers, or peak wavelength Yellow light with a wavelength of 530 nanometers to 600 nanometers.

參照第2圖,絕緣結構108順應地覆蓋第1圖所示結構的上表面,換言之,絕緣結構108順應地覆蓋第一型半導體結構102、活性結構104及第二型半導體結構106上。雖然在圖中絕緣結構108僅繪示成一層,但絕緣結構108可為一層以上的膜層。在一些實施例中,絕緣結構108可以是非導電材料所形成,包含有機材料,例如苯并環丁烯(BCB)、過氟環丁烷(PFCB)、環氧樹脂(Epoxy)、丙烯酸樹脂(Acrylic Resin)、環烯烴聚合物(COC)、聚甲基丙烯酸甲酯(PMMA)、聚對苯二甲酸乙二酯(PET)、聚碳酸酯(PC)、聚醚醯亞胺(Polyetherimide)、氟碳聚合物(Fluorocarbon Polymer),或是無機材料,例如矽膠(Silicone)、玻璃(Glass),或是介電材料,例如氧化鋁(Al 2O 3)、氮化矽(SiN x)、氧化矽(SiO x)、氧化鈦(TiO x),或氟化鎂(MgF x)。在本揭露一實施例中,絕緣結構108為絕緣反射結構,使半導體元件10往基底100方向出光,以減少在電極側的光損耗,從而增加半導體元件10的光量輸出。在一實施例中,絕緣結構108可包括布拉格反射結構(distributed bragg reflector structure;DBR),其由兩種以上具有不同折射率的絕緣材料交替堆疊而形成,例如,可通過層疊SiO 2/TiO 2、SiO 2/Nb 2O 5等層來形成高反射率的絕緣反射層。 Referring to FIG. 2 , the insulating structure 108 compliantly covers the upper surface of the structure shown in FIG. 1 . In other words, the insulating structure 108 compliantly covers the first-type semiconductor structure 102 , the active structure 104 and the second-type semiconductor structure 106 . Although the insulating structure 108 is only shown as one layer in the figure, the insulating structure 108 may be more than one film layer. In some embodiments, the insulating structure 108 may be formed of non-conductive materials, including organic materials, such as benzocyclobutene (BCB), perfluorocyclobutane (PFCB), epoxy resin (Epoxy), and acrylic resin (Acrylic resin). Resin), cyclic olefin polymer (COC), polymethyl methacrylate (PMMA), polyethylene terephthalate (PET), polycarbonate (PC), polyetherimide (Polyetherimide), fluorine Carbon polymer (Fluorocarbon Polymer), or inorganic materials, such as silicone, glass, or dielectric materials, such as aluminum oxide (Al 2 O 3 ), silicon nitride (SiN x ), silicon oxide (SiO x ), titanium oxide (TiO x ), or magnesium fluoride (MgF x ). In an embodiment of the present disclosure, the insulating structure 108 is an insulating reflective structure, allowing the semiconductor element 10 to emit light toward the substrate 100 to reduce light loss on the electrode side, thereby increasing the light output of the semiconductor element 10 . In one embodiment, the insulating structure 108 may include a distributed bragg reflector structure (DBR), which is formed by alternately stacking two or more insulating materials with different refractive indexes, for example, by stacking SiO 2 /TiO 2 , SiO 2 /Nb 2 O 5 and other layers to form an insulating reflective layer with high reflectivity.

在一些實施例中,可利用沉積製程來形成絕緣結構108。上述沉積製程例如物理氣相沉積(physical vapor deposition, PVD)、化學氣相沉積(chemical vapor deposition, CVD)、金屬有機物化學氣相沉積(metal organic chemical vapor deposition; MOCVD)、原子層沉積(atomic layer deposition, ALD)或其組合。In some embodiments, a deposition process may be used to form the insulating structure 108 . The above-mentioned deposition processes include physical vapor deposition (PVD), chemical vapor deposition (CVD), metal organic chemical vapor deposition (MOCVD), and atomic layer deposition. deposition, ALD) or a combination thereof.

參照第3圖,可藉由蝕刻製程來蝕刻位於第一區域110a1及第二區域110b1的絕緣結構108,以形成第一開口112及第二開口114,露出第一型半導體結構102及第二型半導體結構106。蝕刻絕緣結構108所使用的製程可包括乾式蝕刻製程、濕式蝕刻製程、或其組合。舉例而言,濕式蝕刻製程可採用酸性溶液或鹼性溶液。酸性溶液可包括氫氟酸、磷酸、硝酸、醋酸或前述之組合的溶液;鹼性溶液可包括含有氫氧化鉀、氨、過氧化氫或前述之組合的溶液。舉例而言,乾式蝕刻製程可包括電漿蝕刻(plasma etching, PE)、反應離子蝕刻(reactive ion etching, RIE)、感應耦合電漿活性離子蝕刻(inductively coupled plasma reactive ion etching, ICP-RIE)。上述蝕刻反應的氣體可包括含氧氣體、含氟氣體、含氯氣體、含硼氣體、含氬氣體、及/或上述之組合。Referring to FIG. 3, the insulating structure 108 located in the first region 110a1 and the second region 110b1 can be etched through an etching process to form the first opening 112 and the second opening 114, exposing the first type semiconductor structure 102 and the second type semiconductor structure 102. Semiconductor structure 106. The process used to etch the insulating structure 108 may include a dry etching process, a wet etching process, or a combination thereof. For example, the wet etching process may use an acidic solution or an alkaline solution. The acidic solution may include a solution containing hydrofluoric acid, phosphoric acid, nitric acid, acetic acid or a combination thereof; the alkaline solution may include a solution containing potassium hydroxide, ammonia, hydrogen peroxide or a combination thereof. For example, the dry etching process may include plasma etching (PE), reactive ion etching (RIE), and inductively coupled plasma reactive ion etching (ICP-RIE). The gas for the etching reaction may include oxygen-containing gas, fluorine-containing gas, chlorine-containing gas, boron-containing gas, argon-containing gas, and/or a combination of the above.

接著,參照第4圖,經由第一開口112進一步對第一區域110a1的第一型半導體結構102進行蝕刻,以形成凹槽116,凹槽係對應於第一開口的位置且與第一開口重疊。第一型半導體結構102具有第一頂表面121及一第二頂表面122。第一頂表面121係為凹槽之底部且第二頂表面122係被絕緣結構108所覆蓋。第一頂表面121較第二頂表面122靠近基底100。在一實施例中,凹槽116具有一深度D可大於0.001μm或介於0.001um及0.1um之間。Next, referring to FIG. 4 , the first type semiconductor structure 102 in the first region 110 a 1 is further etched through the first opening 112 to form a groove 116 , which corresponds to the position of the first opening and overlaps the first opening. . The first type semiconductor structure 102 has a first top surface 121 and a second top surface 122 . The first top surface 121 is the bottom of the groove and the second top surface 122 is covered by the insulating structure 108 . The first top surface 121 is closer to the substrate 100 than the second top surface 122 . In one embodiment, the groove 116 has a depth D greater than 0.001 μm or between 0.001 μm and 0.1 μm.

在一些實施例中,如第3圖及第4圖所示,可採用二段式乾式蝕刻方法,先以第一段蝕刻製程形成第一開口112與第二開口114,再以第二段蝕刻製程形成凹槽116。詳言之,第一段蝕刻製程可為乾式蝕刻,對部分絕緣結構108進行蝕刻,以形成第一開口112及第二開口114。第二段蝕刻製程亦為乾式蝕刻,將部份的第一型半導體結構102及在第一段蝕刻製程中所產生的副產物進行蝕刻,以形成凹槽116。第一段蝕刻製程之反應氣體與第二段蝕刻製程之反應氣體不同。在其他實施例中,乾式蝕刻方法可包括一或多段製程,例如,三段或三段以上的蝕刻製程。In some embodiments, as shown in Figures 3 and 4, a two-stage dry etching method can be used. The first opening 112 and the second opening 114 are formed in the first stage of the etching process, and then the second stage of etching is used. The process forms grooves 116 . Specifically, the first stage of the etching process may be dry etching to etch part of the insulating structure 108 to form the first opening 112 and the second opening 114 . The second stage of the etching process is also dry etching, and a portion of the first-type semiconductor structure 102 and the by-products produced in the first stage of the etching process are etched to form the groove 116 . The reactive gas in the first stage of the etching process is different from the reactive gas in the second stage of the etching process. In other embodiments, the dry etching method may include one or more stages of process, for example, three or more stages of etching process.

在一實施例中,一接觸層(未繪示)可形成於第二型半導體結構上106,接著,如第2圖所示,絕緣結構108覆蓋接觸層。接觸層可為透明且包含金屬氧化物(例如:ITO)或半導體材料(例如是GaAs或InGaAs)。如第3圖所示,於進行蝕刻製程來蝕刻位於第一區域110a1及第二區域110b1的絕緣結構108以形成第一開口112及第二開口114的步驟中,部分接觸層會被蝕刻。In one embodiment, a contact layer (not shown) may be formed on the second type semiconductor structure 106, and then, as shown in FIG. 2, an insulating structure 108 covers the contact layer. The contact layer may be transparent and include metal oxide (eg, ITO) or semiconductor material (eg, GaAs or InGaAs). As shown in FIG. 3 , during the step of performing an etching process to etch the insulating structure 108 located in the first region 110a1 and the second region 110b1 to form the first opening 112 and the second opening 114 , part of the contact layer will be etched.

參照第5圖,於凹槽116及第一開口112中填入第一金屬結構118,並於第二開口114中填入第二金屬結構119。第6圖為半導體元件10之上視示意圖,第5圖為第6圖沿著I-I線之剖面示意圖。Referring to FIG. 5 , the first metal structure 118 is filled in the groove 116 and the first opening 112 , and the second metal structure 119 is filled in the second opening 114 . FIG. 6 is a schematic top view of the semiconductor device 10 , and FIG. 5 is a schematic cross-sectional view along line I-I in FIG. 6 .

如第5圖所示,第一金屬結構118及第二金屬結構119覆蓋絕緣結構108的部分頂表面。在一實施例中,第一金屬結構118以及第二金屬結構119各自可包含金屬材料,諸如鍺(Ge)、鈹(Be)、鋅(Zn)、鉻(Cr)、鎢(W)、金(Au)、鉑(Pt)、鈦(Ti)、鋁(Al)、銦(In)、錫(Sn)、鎳(Ni)、或銅(Cu)等金屬或上述材料之合金;第一金屬結構118以及第二金屬結構119可由多個層所組成,例如,可包括Cr/Au層、Cr/Cu層、Ni/Au層、Ti/Au層、Ti/Cu層、Cr/Pt/Au層、Ni/Pt/Au層、Ti/Pt/Au層、Cr/Ti/Pt/Au層、Au/Be層、Cr/Ti/Pt/Ni/Au/Sn層、Cr/Ti/Pt/Ni/Au/In層、Au/GeAu/Au層或Cr/Al/Ti/Ni/Au層。As shown in FIG. 5 , the first metal structure 118 and the second metal structure 119 cover part of the top surface of the insulation structure 108 . In one embodiment, each of the first metal structure 118 and the second metal structure 119 may include a metal material, such as germanium (Ge), beryllium (Be), zinc (Zn), chromium (Cr), tungsten (W), gold (Au), platinum (Pt), titanium (Ti), aluminum (Al), indium (In), tin (Sn), nickel (Ni), copper (Cu) and other metals or alloys of the above materials; first metal The structure 118 and the second metal structure 119 may be composed of multiple layers, for example, may include a Cr/Au layer, a Cr/Cu layer, a Ni/Au layer, a Ti/Au layer, a Ti/Cu layer, and a Cr/Pt/Au layer. , Ni/Pt/Au layer, Ti/Pt/Au layer, Cr/Ti/Pt/Au layer, Au/Be layer, Cr/Ti/Pt/Ni/Au/Sn layer, Cr/Ti/Pt/Ni/ Au/In layer, Au/GeAu/Au layer or Cr/Al/Ti/Ni/Au layer.

如第5圖所示,絕緣結構108具有側壁1081及側壁1082,且側壁1081較側壁1082靠近凹槽116。第一型半導體結構102具有一側壁120,側壁120定義凹槽116且側壁1081定義第一開口112。第一型半導體結構102的側壁120及絕緣結構108的側壁1081分別具有第一傾斜角度θ1及第二傾斜角度θ2。在一些實施例中,第一傾斜角度θ1不同於第二傾斜角度θ2,亦即,側壁120的第一斜率不同於側壁1081的第二斜率。在一些實施例中,第一傾斜角度θ1大於第二傾斜角度θ2(第一斜率大於第二斜率),如此可幫助第一金屬結構118在凹槽116的填充時與第一型半導體結構102之附著性及披覆性。在一實施例中,第一傾斜角度θ1的角度範圍可為20至80度。若第一傾斜角度θ1大於80度,可能使得第一金屬結構118在凹槽116內之披覆性較差,而使得半導體元件10於操作時,會有無法順利導通或元件信賴性失效問題;若第一傾斜角度θ1小於20度,則可能造成製程良率不佳。相反地,對第二傾斜角度θ2(第二斜率)而言,較小的第二傾斜角度θ2(即,較小的第二斜率)可使第一金屬結構118在第一開口112內具有較佳的附著性及披覆性。在一實施例中,第二傾斜角度θ2的角度範圍可為10至70度。若第二傾斜角度θ2小於10度,可能造成製程良率不佳;若第二傾斜角度θ2大於70,第一金屬結構118在第一開口112內與絕緣結構108有較差之披覆性,而使得半導體元件10於操作時,會有無法順利導通或元件信賴性失效問題。As shown in FIG. 5 , the insulation structure 108 has a side wall 1081 and a side wall 1082 , and the side wall 1081 is closer to the groove 116 than the side wall 1082 . The first type semiconductor structure 102 has a sidewall 120 defining the groove 116 and a sidewall 1081 defining the first opening 112 . The sidewall 120 of the first type semiconductor structure 102 and the sidewall 1081 of the insulating structure 108 have a first tilt angle θ1 and a second tilt angle θ2 respectively. In some embodiments, the first tilt angle θ1 is different from the second tilt angle θ2 , that is, the first slope of the side wall 120 is different from the second slope of the side wall 1081 . In some embodiments, the first tilt angle θ1 is greater than the second tilt angle θ2 (the first slope is greater than the second slope), which can help the first metal structure 118 to connect with the first-type semiconductor structure 102 when filling the groove 116 . Adhesion and coverage. In an embodiment, the first tilt angle θ1 may range from 20 to 80 degrees. If the first tilt angle θ1 is greater than 80 degrees, the coverage of the first metal structure 118 in the groove 116 may be poor, which may cause the semiconductor device 10 to fail to conduct smoothly or cause reliability problems during operation; if If the first tilt angle θ1 is less than 20 degrees, the process yield may be poor. On the contrary, for the second tilt angle θ2 (second slope), a smaller second tilt angle θ2 (ie, a smaller second slope) can make the first metal structure 118 have a smaller shape in the first opening 112 . Excellent adhesion and coverage. In an embodiment, the second tilt angle θ2 may range from 10 to 70 degrees. If the second tilt angle θ2 is less than 10 degrees, the process yield may be poor; if the second tilt angle θ2 is greater than 70 degrees, the first metal structure 118 has poor coverage with the insulating structure 108 in the first opening 112 , and As a result, the semiconductor device 10 may not conduct smoothly or the device reliability may fail during operation.

在本實施例中,第一金屬結構118依序包括第一金屬層118a、第二金屬層118b、第三金屬層118c,且其各自平均寬度Wa<Wb<Wc。第一金屬層118a填入凹槽116,形成於第一型半導體結構102上並直接接觸凹槽116底部與側壁(即,直接接觸第一型半導體結構102的側壁120與第一頂表面121)。第二金屬層118b形成於第一金屬層118a上且填入第一開口112並與絕緣結構108的側壁1081直接接觸。第三金屬層118c形成於第二金屬層118b上並與絕緣結構108的側壁1082直接接觸。凹槽116的設置可增加第一金屬層118a與第一型半導體結構102之間的接觸面積,從而降低順向電壓(forward voltage,Vf),改善元件性能。同樣地,第二金屬結構119可依序包括第一金屬層119a、第二金屬層119b、第三金屬層119c,如第5圖所示。In this embodiment, the first metal structure 118 includes a first metal layer 118a, a second metal layer 118b, and a third metal layer 118c in sequence, and their respective average widths are Wa<Wb<Wc. The first metal layer 118a fills the groove 116, is formed on the first-type semiconductor structure 102, and directly contacts the bottom and sidewalls of the groove 116 (ie, directly contacts the sidewalls 120 and the first top surface 121 of the first-type semiconductor structure 102). . The second metal layer 118b is formed on the first metal layer 118a and fills the first opening 112 and is in direct contact with the sidewall 1081 of the insulation structure 108 . The third metal layer 118c is formed on the second metal layer 118b and is in direct contact with the sidewall 1082 of the insulating structure 108. The arrangement of the groove 116 can increase the contact area between the first metal layer 118a and the first-type semiconductor structure 102, thereby reducing the forward voltage (Vf) and improving device performance. Similarly, the second metal structure 119 may include a first metal layer 119a, a second metal layer 119b, and a third metal layer 119c in sequence, as shown in FIG. 5 .

在一些實施例中,第一金屬層118a/119a、第二金屬層118b/119b及第三金屬層118c/119c各包括不相同的金屬材料。第一金屬層118a/119a可選用適合與半導體形成歐姆接觸的材料,例如Cr、Ti、Ni、BeAu、GeAu。第二金屬層118b/119b可選用金屬材料且具有反射功能,例如Pt、Al、Ti、Ni、TiW、Au。第三金屬層118c/119c可選用適合作為外部連接的導電材料,例如Au、AuSn、Sn、Sn 合金、In 、Cu、Ni 。在一實施例中,第一金屬結構118與第二金屬結構119各自可由Cr/Pt/Au層所組成的三層結構。但應可理解的是,在其他實施例中,第一金屬結構118及第二金屬結構119可各自為單層結構、雙層結構或三層以上的多層結構,其各膜層的材料可選自上述第一金屬層、第二金屬層與第三金屬層所使用的材料或其組合。In some embodiments, the first metal layer 118a/119a, the second metal layer 118b/119b and the third metal layer 118c/119c each include different metal materials. The first metal layer 118a/119a may be made of materials suitable for forming ohmic contact with the semiconductor, such as Cr, Ti, Ni, BeAu, and GeAu. The second metal layer 118b/119b can be made of metal material and has a reflective function, such as Pt, Al, Ti, Ni, TiW, and Au. The third metal layer 118c/119c may be made of conductive materials suitable for external connections, such as Au, AuSn, Sn, Sn alloy, In, Cu, and Ni. In one embodiment, each of the first metal structure 118 and the second metal structure 119 may be a three-layer structure composed of Cr/Pt/Au layers. However, it should be understood that in other embodiments, the first metal structure 118 and the second metal structure 119 can each be a single-layer structure, a double-layer structure, or a multi-layer structure of three or more layers, and the materials of each film layer can be selected. Materials used in the above-mentioned first metal layer, second metal layer and third metal layer or combinations thereof.

在一實施例中第二金屬結構119可與第一金屬結構118在相同或不同的沉積製程中分別填入第一開口112及第二開口114。在一些實施例中,第一金屬層118a的厚度T可介於50Å至500Å之間。第二金屬層118b的厚度可介於50Å至1000Å之間。第三金屬層118c的厚度可介於0.1μm至3μm之間。在一些實施例中,第一金屬層119a的厚度可介於50Å至500Å之間。第二金屬層119b的厚度可介於50Å至1000Å之間。第三金屬層119c的厚度可介於0.1μm至3μm之間。在一實施例中,第一金屬層118a的厚度T小於第二金屬層118b, 第二金屬層118b的厚度小於第三金屬層118c。詳言之,第一金屬層118a、119a具有較薄的厚度,可增加第一金屬層118a、119a之透光性,且活性結構104所發出的光線可透過第一金屬層118a、119a且被第二金屬層118b、119b反射。由於第二金屬層118b、119b係作為反射層,其需具有一定厚度且具有大於第一金屬層118a、119a之厚度。第三金屬層118c、119c係用於與外部電路連接,若具有較厚的厚度可增加半導體元件10與外部電路連接之接合良率,以提升半導體元件10之光電特性。In one embodiment, the second metal structure 119 and the first metal structure 118 can be filled in the first opening 112 and the second opening 114 respectively in the same or different deposition processes. In some embodiments, the thickness T of the first metal layer 118a may range from 50Å to 500Å. The thickness of the second metal layer 118b may range from 50Å to 1000Å. The thickness of the third metal layer 118c may be between 0.1 μm and 3 μm. In some embodiments, the thickness of the first metal layer 119a may be between 50Å and 500Å. The thickness of the second metal layer 119b may range from 50Å to 1000Å. The thickness of the third metal layer 119c may be between 0.1 μm and 3 μm. In one embodiment, the thickness T of the first metal layer 118a is smaller than that of the second metal layer 118b, and the thickness T of the second metal layer 118b is smaller than that of the third metal layer 118c. In detail, the first metal layers 118a and 119a have a thin thickness, which can increase the light transmittance of the first metal layers 118a and 119a, and the light emitted by the active structure 104 can pass through the first metal layers 118a and 119a and be The second metal layers 118b, 119b are reflective. Since the second metal layers 118b and 119b serve as reflective layers, they need to have a certain thickness that is greater than the thickness of the first metal layers 118a and 119a. The third metal layers 118c and 119c are used to connect to external circuits. A thicker thickness can increase the bonding yield of the semiconductor element 10 and the external circuit, thereby improving the optoelectronic characteristics of the semiconductor element 10.

在一些實施例中,第一金屬層118a厚度T與凹槽116深度D的比值介於0.5-2之間。在一實施例中,如第5圖所示,第一金屬層118a的厚度T大於凹槽116的深度D。在一實施例中,第一金屬層118a厚度T與凹槽116深度D的比值大於1.0且小於或等於2.0。在此實施例中,第一金屬層118a填入凹槽116,與第一型半導體結構102的側壁120直接接觸,並覆蓋絕緣結構108一部分的側壁1081,但未覆蓋側壁1082。In some embodiments, the ratio of the thickness T of the first metal layer 118a to the depth D of the groove 116 is between 0.5-2. In one embodiment, as shown in FIG. 5 , the thickness T of the first metal layer 118 a is greater than the depth D of the groove 116 . In one embodiment, the ratio of the thickness T of the first metal layer 118 a to the depth D of the groove 116 is greater than 1.0 and less than or equal to 2.0. In this embodiment, the first metal layer 118a fills the groove 116, is in direct contact with the sidewall 120 of the first-type semiconductor structure 102, and covers a portion of the sidewall 1081 of the insulating structure 108, but does not cover the sidewall 1082.

第7圖是根據本揭露另一實施例的半導體元件10’之剖面示意圖,其與第5圖的主要差別在於第一金屬層118a的厚度T等於凹槽116的深度D,且第一金屬層118a僅填入凹槽116,亦即,第一金屬層118a厚度T與凹槽116深度D的比值等於1.0。Figure 7 is a schematic cross-sectional view of a semiconductor device 10' according to another embodiment of the present disclosure. The main difference from Figure 5 is that the thickness T of the first metal layer 118a is equal to the depth D of the groove 116, and the first metal layer 118a only fills the groove 116, that is, the ratio of the thickness T of the first metal layer 118a to the depth D of the groove 116 is equal to 1.0.

第8圖是根據本揭露又一實施例的半導體元件10’’之剖面示意圖,其與第5圖的主要差別在於第一金屬層118a的厚度T小於凹槽116的深度D,且第二金屬層118b填入凹槽116並與側壁120直接接觸。亦即,第一金屬層118a厚度T與凹槽116深度D的比值大於或等於0.5,且小於1.0。Figure 8 is a schematic cross-sectional view of a semiconductor device 10'' according to another embodiment of the present disclosure. The main difference from Figure 5 is that the thickness T of the first metal layer 118a is less than the depth D of the groove 116, and the second metal layer Layer 118b fills recess 116 and is in direct contact with sidewall 120. That is, the ratio of the thickness T of the first metal layer 118 a to the depth D of the groove 116 is greater than or equal to 0.5 and less than 1.0.

第9圖是根據本揭露另一實施例之半導體元件20之上視示意圖。半導體元件20與半導體元件10具有類似的結構。在本實施例中,半導體元件20之形狀可為方形或長方形且包含二短邊S1、S2及二長邊L1、L2。一短邊中心線SC通過二短邊S1、S2的中心,以將半導體元件20分成上半部與下半部;一長邊中心線LC通過二長邊L1、L2的中心,以將半導體元件20分成左半部與右半部。一左部長邊線LL位於長邊中心線LC及短邊S1之間,且將左半部分成兩等分;一右部長邊線LR位於長邊中心線LC及短邊S2之間,且將右半部分成兩等分。第一開口112、凹槽116與第一金屬結構118設置在半導體元件20之左半部,以及第二開口114與第二金屬結構119設置在半導體元件20之右半部。當第一開口112、凹槽116或第一金屬結構118之上視形狀為圓形或方形時,其圓心或中心設置在短邊中心線SC或/且左部長邊線LL,換言之,第一開口112、凹槽116或第一金屬結構118之圓心或中心與短邊中心線SC或/且左部長邊線LL重疊。當第二開口114或第二金屬結構119之形狀為圓形或方形時,其圓心或中心,設置在短邊中心線SC或/且右部長邊線LR上,換言之,第二開口114或第二金屬結構119之圓心或中心與短邊中心線SC或/且右部長邊線LR重疊。第一開口112或第一金屬結構118的圓心或中心係相對於長邊中心線LC分別與第二開口114或第二金屬結構119的圓心或中心對稱或鏡射。在一實施例中,左部長邊線LL、長邊中心線LC及右部長邊線LR將長邊分成相等的四等分。 FIG. 9 is a schematic top view of a semiconductor device 20 according to another embodiment of the present disclosure. Semiconductor element 20 has a similar structure to semiconductor element 10 . In this embodiment, the shape of the semiconductor device 20 may be a square or a rectangle and includes two short sides S1 and S2 and two long sides L1 and L2. A short side center line SC passes through the center of the two short sides S1 and S2 to divide the semiconductor element 20 into an upper half and a lower half; a long side center line LC passes through the center of the two long sides L1 and L2 to divide the semiconductor element 20 into an upper half and a lower half. 20 is divided into left and right halves. A left long side line LL is located between the long side center line LC and the short side S1, and divides the left half into two equal parts; a right long side line LR is located between the long side center line LC and the short side S2, and divides the right half Part into two equal parts. The first opening 112 , the groove 116 and the first metal structure 118 are disposed on the left half of the semiconductor device 20 , and the second opening 114 and the second metal structure 119 are disposed on the right half of the semiconductor device 20 . When the first opening 112, the groove 116 or the first metal structure 118 is circular or square in top view, its center or center is set at the short side center line SC or/and the left long side line LL. In other words, the first opening 112. The center or center of the groove 116 or the first metal structure 118 overlaps with the short side center line SC or/and the left long side line LL. When the shape of the second opening 114 or the second metal structure 119 is circular or square, its center or center is set on the short side center line SC or/and the right long side line LR. In other words, the second opening 114 or the second The center or center of the metal structure 119 overlaps with the short side center line SC or/and the right long side line LR. The center of the circle or the center of the first opening 112 or the first metal structure 118 is symmetrical or mirrored with the center of the circle or the center of the second opening 114 or the second metal structure 119 respectively relative to the long side centerline LC. In one embodiment, the left long side line LL, the long side center line LC and the right long side line LR divide the long side into equal quarters.

綜上所述,本揭露實施例藉由對部份半導體層做進一步蝕刻以形成凹槽的設置,使金屬結構直接與於凹槽中露出的半導體層側壁接觸,可改善金屬與半導體之間的電性接觸,從而改善元件電壓異常的情形,以維持產品的性能。應理解的是,並非全部的優點皆已必然在此討論,也非所有實施例都需要具備特定的優點,且其他實施例可提供不同的優點。 In summary, the embodiments of the present disclosure can improve the contact between the metal and the semiconductor by further etching part of the semiconductor layer to form a groove, so that the metal structure is directly in contact with the sidewalls of the semiconductor layer exposed in the groove. Electrical contact to improve component voltage abnormalities to maintain product performance. It should be understood that not all advantages have necessarily been discussed here, not all embodiments are required to possess specific advantages, and other embodiments may provide different advantages.

以上概述數個實施例之部件,以便在本發明所屬技術領域中具有通常知識者可更易理解本揭露實施例的觀點。在本發明所屬技術領域中具有通常知識者應理解,他們能以本揭露實施例為基礎,設計或修改其他製程和結構,以達到與在此介紹的實施例相同之目的及/或優勢。在本發明所屬技術領域中具有通常知識者也應理解到,此類等效的製程和結構並無悖離本發明的精神與範圍,且他們能在不違背本發明之精神和範圍之下,做各式各樣的改變、取代和替換。 The components of several embodiments are summarized above so that those with ordinary skill in the technical field to which the present invention belongs can more easily understand the concepts of the disclosed embodiments. Those with ordinary skill in the technical field of the present invention should understand that they can design or modify other processes and structures based on the embodiments of the present disclosure to achieve the same purposes and/or advantages as the embodiments introduced here. Those with ordinary skill in the technical field to which the present invention belongs should also understand that such equivalent processes and structures do not deviate from the spirit and scope of the present invention, and they can be used without departing from the spirit and scope of the present invention. Make all kinds of changes, substitutions and substitutions.

10、10’、10”:半導體元件 10, 10’, 10”: semiconductor components

100:基底 100:Base

102:第一型半導體結構 102: Type 1 semiconductor structure

104:活性結構 104:Active structure

106:第二型半導體結構 106: Type 2 semiconductor structure

108:絕緣結構 108:Insulation structure

112:第一開口 112:First opening

114:第二開口 114:Second opening

116:凹槽 116: Groove

118:第一金屬結構 118:First metal structure

119:第二金屬結構 119: Second metal structure

118a、119a:第一金屬層 118a, 119a: first metal layer

118b、119b:第二金屬層 118b, 119b: second metal layer

118c、119c:第三金屬層 118c, 119c: third metal layer

120:側壁 120:Side wall

121:第一頂表面 121: First top surface

122:第二頂表面 122: Second top surface

1081-1082:側壁 1081-1082: Side wall

110a1、110a2、110a3:第一區域 110a1, 110a2, 110a3: first area

110b1、110b2:第二區域 110b1, 110b2: Second area

20:半導體元件 20:Semiconductor components

θ1-θ2:傾斜角度 θ1-θ2: tilt angle

Wa-Wc:寬度 Wa-Wc: Width

D:深度 D: Depth

T:厚度 T:Thickness

S1、S2:短邊 S1, S2: short side

L1、L2:長邊 L1, L2: Long side

SC:短邊中心線 SC: short side center line

LC:長邊中心線 LC: long side center line

LL:左部長邊線 LL: left long side line

LR:右部長邊線 LR: right long border

由以下的詳細敘述配合所附圖式,可最好地理解本揭露實施例。應注意的是,依據在業界的標準做法,各種特徵並未按照比例繪製且僅用於說明。事實上,可任意地放大或縮小各種元件的尺寸,以清楚地表現出本揭露實施例之特徵。 第1圖至第5圖是根據本揭露的一實施例,繪示出半導體元件的製程剖面示意圖。 第6圖是根據本揭露的一實施例,繪示出半導體元件之上視示意圖。 第7圖是根據本揭露的另一實施例,繪示出半導體元件之剖面示意圖。 第8圖是根據本揭露的又一實施例,繪示出半導體元件之剖面示意圖。 第9圖是根據本揭露的另一實施例,繪示出半導體元件之上視示意圖。 Embodiments of the present disclosure can be best understood from the following detailed description in conjunction with the accompanying drawings. It should be noted that, in accordance with standard practice in the industry, various features are not drawn to scale and are for illustration only. In fact, the dimensions of various elements may be arbitrarily enlarged or reduced to clearly illustrate the features of the embodiments of the present disclosure. FIGS. 1 to 5 are schematic cross-sectional views of a semiconductor device manufacturing process according to an embodiment of the present disclosure. FIG. 6 is a schematic top view of a semiconductor device according to an embodiment of the present disclosure. FIG. 7 is a schematic cross-sectional view of a semiconductor device according to another embodiment of the present disclosure. FIG. 8 is a schematic cross-sectional view of a semiconductor device according to yet another embodiment of the present disclosure. FIG. 9 is a schematic top view of a semiconductor device according to another embodiment of the present disclosure.

104: 活性結構 106: 第二型半導體結構 110a1、110a2、110a3: 第一區域 110b1、110b2: 第二區域 112:第一開口 116:凹槽 118: 第一金屬結構 119: 第二金屬結構 118a, 119a: 第一金屬層 118b, 119b: 第二金屬層 118c, 119c: 第三金屬層 120: 側壁 121: 第一頂表面 122: 第二頂表面 1081、1082: 側壁 θ1-θ2: 傾斜角度 Wa-Wc: 寬度 D: 深度 T: 厚度 104: Active structure 106: Type 2 Semiconductor Structure 110a1, 110a2, 110a3: First area 110b1, 110b2: Second area 112: First opening 116: Groove 118: First Metal Structure 119: Second metal structure 118a, 119a: first metal layer 118b, 119b: Second metal layer 118c, 119c: third metal layer 120: side wall 121: First top surface 122: Second top surface 1081, 1082: Side wall θ1-θ2: tilt angle Wa-Wc: Width D: Depth T: Thickness

Claims (10)

一種半導體元件,包含:一第一型半導體結構,包含一第一區域、一第二區域及一第一側壁;一活性結構,位於該第一型半導體結構之該第二區域上;一第二型半導體結構,位於該活性結構上;一絕緣結構,覆蓋該第一型半導體結構的該第一區域且具有一第一開口;一凹槽,位於該第一型半導體結構內且對應於該第一開口;以及一金屬結構,包括一第一金屬層,該第一金屬層填入該凹槽;其中該第一型半導體結構具有一第一側壁定義該凹槽,該第一金屬層填入該凹槽並與該第一側壁直接接觸。 A semiconductor element includes: a first-type semiconductor structure including a first region, a second region and a first sidewall; an active structure located on the second region of the first-type semiconductor structure; a second A type semiconductor structure is located on the active structure; an insulating structure covers the first region of the first type semiconductor structure and has a first opening; a groove is located in the first type semiconductor structure and corresponds to the first opening. an opening; and a metal structure including a first metal layer, the first metal layer filling the groove; wherein the first type semiconductor structure has a first sidewall defining the groove, the first metal layer filling the groove The groove is in direct contact with the first side wall. 如請求項1之半導體元件,其中該金屬結構更包含一第二金屬層,該第二金屬層形成於該第一金屬層上且具有大於該第一金屬層的一平均寬度。 The semiconductor device of claim 1, wherein the metal structure further includes a second metal layer, the second metal layer is formed on the first metal layer and has an average width greater than the first metal layer. 如請求項2之半導體元件,其中該金屬結構更包含一第三金屬層,形成於該第二金屬層上且具有大於該第二金屬層的一寬度。 The semiconductor device of claim 2, wherein the metal structure further includes a third metal layer formed on the second metal layer and having a width greater than the second metal layer. 如請求項3之半導體元件,其中該第一金屬層、該第二金屬層及該第三金屬層各包括不相同的金屬材料。 The semiconductor device of claim 3, wherein the first metal layer, the second metal layer and the third metal layer each include different metal materials. 如請求項1之半導體元件,其中該金屬結構更包含 一第二金屬層,該第二金屬層填入該凹槽並與該第一側壁直接接觸。 The semiconductor device of claim 1, wherein the metal structure further includes A second metal layer fills the groove and is in direct contact with the first side wall. 如請求項1之半導體元件,其中該金屬結構更包含一第二金屬層,該第一金屬層的厚度小於該第二金屬層的厚度。 The semiconductor device of claim 1, wherein the metal structure further includes a second metal layer, and the thickness of the first metal layer is smaller than the thickness of the second metal layer. 如請求項1之半導體元件,其中該凹槽具有一深度,該第一金屬層具有一厚度,該厚度與該深度的比值介於0.5-2之間。 The semiconductor device of claim 1, wherein the groove has a depth, the first metal layer has a thickness, and a ratio of the thickness to the depth is between 0.5-2. 如請求項1之半導體元件,其中該絕緣結構具有一第二側壁及一第三側壁,該第二側壁較該第三側壁靠近該凹槽,且該第一金屬層覆蓋該第二側壁。 The semiconductor device of claim 1, wherein the insulating structure has a second sidewall and a third sidewall, the second sidewall is closer to the groove than the third sidewall, and the first metal layer covers the second sidewall. 如請求項1之半導體元件,其中該絕緣結構具有一第二側壁,該第一側壁具有一第一斜率,該第二側壁具有一第二斜率,該第一斜率不同於該第二斜率。 The semiconductor device of claim 1, wherein the insulating structure has a second sidewall, the first sidewall has a first slope, the second sidewall has a second slope, and the first slope is different from the second slope. 如請求項9之半導體元件,其中該第一斜率大於該第二斜率。 The semiconductor device of claim 9, wherein the first slope is greater than the second slope.
TW111114393A 2022-04-15 2022-04-15 Semiconductor device TWI828116B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW111114393A TWI828116B (en) 2022-04-15 2022-04-15 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW111114393A TWI828116B (en) 2022-04-15 2022-04-15 Semiconductor device

Publications (2)

Publication Number Publication Date
TW202343713A TW202343713A (en) 2023-11-01
TWI828116B true TWI828116B (en) 2024-01-01

Family

ID=89720196

Family Applications (1)

Application Number Title Priority Date Filing Date
TW111114393A TWI828116B (en) 2022-04-15 2022-04-15 Semiconductor device

Country Status (1)

Country Link
TW (1) TWI828116B (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW202029521A (en) * 2019-01-25 2020-08-01 晶元光電股份有限公司 Light-emitting device
TW202137581A (en) * 2020-03-17 2021-10-01 晶元光電股份有限公司 Semiconductor light-emitting device
TW202147639A (en) * 2020-05-13 2021-12-16 日商日機裝股份有限公司 Semiconductor light-emitting element and method of manufacturing semiconductor light-emitting element

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW202029521A (en) * 2019-01-25 2020-08-01 晶元光電股份有限公司 Light-emitting device
TW202137581A (en) * 2020-03-17 2021-10-01 晶元光電股份有限公司 Semiconductor light-emitting device
TW202147639A (en) * 2020-05-13 2021-12-16 日商日機裝股份有限公司 Semiconductor light-emitting element and method of manufacturing semiconductor light-emitting element

Also Published As

Publication number Publication date
TW202343713A (en) 2023-11-01

Similar Documents

Publication Publication Date Title
KR102606543B1 (en) Light-emitting device
US10559717B2 (en) Light-emitting device and manufacturing method thereof
EP1256987B1 (en) Semiconductor LED flip-chip with high reflectivity dielectric coating on the mesa
US20170373226A1 (en) Light-emitting device
CN108630718A (en) Light emitting element
US20230317898A1 (en) Light-emitting device
CN112349826A (en) Optoelectronic semiconductor device
US20230135799A1 (en) Light-emitting device
CN111864533A (en) Laser element
TWI828116B (en) Semiconductor device
TWI816330B (en) Optoelectronic semiconductor device
CN219873571U (en) Optoelectronic semiconductor component
TWI816191B (en) Light emitting device
TWI811778B (en) Optoelectronic semiconductor device
TWI790622B (en) Laser device and semiconductor device having the same
US20230058195A1 (en) Semiconductor device
US20210336091A1 (en) Optically transparent adhesion layer to connect noble metals to oxides
TWM641018U (en) Optoelectronic semiconductor device
TW202401853A (en) Optoelectronic semiconductor device
TW202406173A (en) Semiconductor device
TW202337043A (en) Optoelectronic semiconductor device
TW202201812A (en) Light-emitting device
TW202339322A (en) Micro led structure and micro display panel
TW202345415A (en) Optoelectronic semiconductor device and semiconductor device containing the same
CN111971806A (en) Optically transparent adhesive layer for attaching noble metals to oxides