TWI833439B - Light-emitting device and manufacturing method thereof - Google Patents

Light-emitting device and manufacturing method thereof Download PDF

Info

Publication number
TWI833439B
TWI833439B TW111143092A TW111143092A TWI833439B TW I833439 B TWI833439 B TW I833439B TW 111143092 A TW111143092 A TW 111143092A TW 111143092 A TW111143092 A TW 111143092A TW I833439 B TWI833439 B TW I833439B
Authority
TW
Taiwan
Prior art keywords
semiconductor layer
layer
type semiconductor
light
region
Prior art date
Application number
TW111143092A
Other languages
Chinese (zh)
Other versions
TW202310444A (en
Inventor
鄭穎澤
蕭辰字
潘永中
王志銘
井長慧
陳鵬壬
林文祥
Original Assignee
晶元光電股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 晶元光電股份有限公司 filed Critical 晶元光電股份有限公司
Priority to TW111143092A priority Critical patent/TWI833439B/en
Publication of TW202310444A publication Critical patent/TW202310444A/en
Application granted granted Critical
Publication of TWI833439B publication Critical patent/TWI833439B/en

Links

Images

Landscapes

  • Led Devices (AREA)

Abstract

A light emitting device is disclosed. The light emitting device includes: a support substrate; a semiconductor stack located on the support substrate and including a first type semiconductor layer, a second type semiconductor layer, an active layer located between the first type semiconductor layer and the second type semiconductor layer, and an undoped semiconductor layer located on the first type semiconductor layer; and a first electrode located on the undoped semiconductor layer and the first type semiconductor layer, wherein the first type semiconductor layer includes a first region and a second region, the undoped semiconductor layer is located on the first region, the second region is not covered by the undoped semiconductor layer, the undoped semiconductor layer includes a first rough structure, the first type semiconductor layer includes a second rough structure in the second region, and the first electrode contacts with the second rough structure.

Description

發光元件及其製造方法Light-emitting element and manufacturing method thereof

本申請案係關於一種發光元件,更詳言之,係關於一種提升亮度的發光元件。This application relates to a light-emitting element, and more specifically, to a light-emitting element that improves brightness.

固態發光元件中的發光二極體(LEDs)具有具低耗電量、低產熱、壽命長、體積小、反應速度快以及良好光電特性,例如具有穩定的發光波長等特性,故已被廣泛的應用於家用裝置、指示燈及光電產品等。Light-emitting diodes (LEDs) in solid-state light-emitting components have low power consumption, low heat production, long life, small size, fast response speed, and good optoelectronic properties, such as stable luminescence wavelength, so they have been widely used. Used in household devices, indicator lights and optoelectronic products, etc.

習知的發光二極體包含一基板、一n型半導體層、一活性層及一p型半導體層形成於基板上、以及分別形成於p型/n型半導體層上的p、n-電極。當透過電極對發光二極體通電,且在一特定值的順向偏壓時,來自p型半導體層的電洞及來自n型半導體層的電子在活性層內結合以放出光。然而,隨著發光二極體應用於不同的光電產品,對於發光二極體的亮度規格也提高,如何提升其亮度,為本技術領域人員所研究開發的目標之一。A conventional light emitting diode includes a substrate, an n-type semiconductor layer, an active layer and a p-type semiconductor layer formed on the substrate, and p and n-electrodes formed on the p-type/n-type semiconductor layer respectively. When the light-emitting diode is energized through the electrode and is forward biased at a specific value, the holes from the p-type semiconductor layer and the electrons from the n-type semiconductor layer are combined in the active layer to emit light. However, as light-emitting diodes are used in different optoelectronic products, the brightness specifications of light-emitting diodes are also improved. How to improve their brightness is one of the research and development goals of those in the technical field.

本申請案揭露一種晶圓載體,包含支撐基板;半導體疊層設置於該支撐基板上,包含第一型半導體層、第二型半導體層、主動層位於第一型半導體層及第二型半導體層之間及未摻雜半導體層設置於第一型半導體層上;以及第一電極設置於未摻雜半導體層及第一型半導體層上;其中,第一型半導體層包含第一區域及第二區域,未摻雜半導體層設置於第一區域上,第二區域未被未摻雜半導體層覆蓋,未摻雜半導體層具有第一粗糙結構及第一型半導體層於第二區域具有第二粗糙結構,第一電極接觸第二粗糙結構。This application discloses a wafer carrier, including a supporting substrate; a semiconductor stack is provided on the supporting substrate, including a first-type semiconductor layer, a second-type semiconductor layer, and an active layer located on the first-type semiconductor layer and the second-type semiconductor layer. The undoped semiconductor layer is disposed between the undoped semiconductor layer and the first type semiconductor layer; and the first electrode is disposed on the undoped semiconductor layer and the first type semiconductor layer; wherein the first type semiconductor layer includes a first region and a second region, the undoped semiconductor layer is disposed on the first region, the second region is not covered by the undoped semiconductor layer, the undoped semiconductor layer has a first rough structure and the first type semiconductor layer has a second roughness in the second region structure, the first electrode contacts the second rough structure.

本申請案揭露一種發光元件的製造方法,包含提供成長基板;依序形成緩衝層、未摻雜半導體層、第一型半導體層、主動層及第二型半導體層於成長基板上;依序形成反射金屬層及阻障層於第二型半導體層上;提供支撐基板;形成連接層連接阻障層及支撐基板;移除成長基板及緩衝層;圖案化未摻雜半導體層以形成第一粗糙結構;形成絕緣層於未摻雜半導體層上;圖案化絕緣層及未摻雜半導體層形成凹陷區以暴露第一型半導體層的上表面;以及形成第一電極填入凹陷區以接觸上表面。This application discloses a method for manufacturing a light-emitting element, which includes providing a growth substrate; sequentially forming a buffer layer, an undoped semiconductor layer, a first-type semiconductor layer, an active layer and a second-type semiconductor layer on the growth substrate; sequentially forming Reflective metal layer and barrier layer on the second type semiconductor layer; providing a supporting substrate; forming a connection layer to connect the barrier layer and the supporting substrate; removing the growth substrate and buffer layer; patterning the undoped semiconductor layer to form the first roughness Structure; forming an insulating layer on the undoped semiconductor layer; patterning the insulating layer and the undoped semiconductor layer to form a recessed area to expose the upper surface of the first type semiconductor layer; and forming a first electrode to fill the recessed area to contact the upper surface. .

下文中,將參照圖示詳細地描述本發明之示例性實施例,已使得本發明領域技術人員能夠充分地理解本發明之精神。本發明並不限於以下之實施例,而是可以以其他形式實施。在本說明書中,有一些相同的符號,其表示具有相同或是類似之結構、功能、原理的元件,且為業界具有一般知識能力者可以依據本說明書之教導而推知。為說明書之簡潔度考量,相同之符號的元件將不再重述。Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the accompanying drawings to enable those skilled in the art to fully understand the spirit of the present invention. The present invention is not limited to the following embodiments, but can be implemented in other forms. In this specification, there are some identical symbols, which represent components with the same or similar structures, functions, and principles, and those with general knowledge in the industry can deduce them based on the teachings of this specification. For the sake of simplicity in the description, components with the same symbols will not be repeated.

圖1顯示本申請案一實施例發光元件1之截面示意圖。發光元件1包含支撐基板100,半導體疊層110形成於支撐基板100上且包含上表面S及第一表面S1遠離支撐基板100,圖案化介電層120形成於半導體疊層110朝向支撐基板100的另一表面上,反射金屬層130覆蓋圖案化介電層120,阻障層132覆蓋反射金屬層130及圖案化介電層120,於一實施例中,阻障層132可包覆反射金屬層130的邊緣,阻障層132之一斷面寬度可略寬於半導體疊層110。連接層134覆蓋阻障層132且連接支撐基板100,絕緣層140及第一電極150形成於半導體疊層110上。FIG. 1 shows a schematic cross-sectional view of a light-emitting element 1 according to an embodiment of the present application. The light-emitting element 1 includes a support substrate 100 , a semiconductor stack 110 is formed on the support substrate 100 and includes an upper surface S and a first surface S1 away from the support substrate 100 , and a patterned dielectric layer 120 is formed on the semiconductor stack 110 facing the support substrate 100 On the other surface, the reflective metal layer 130 covers the patterned dielectric layer 120, and the barrier layer 132 covers the reflective metal layer 130 and the patterned dielectric layer 120. In one embodiment, the barrier layer 132 can cover the reflective metal layer. At the edge of 130 , a cross-sectional width of the barrier layer 132 may be slightly wider than that of the semiconductor stack 110 . The connection layer 134 covers the barrier layer 132 and is connected to the supporting substrate 100. The insulating layer 140 and the first electrode 150 are formed on the semiconductor stack 110.

如圖1所示,於本實施例中,半導體疊層110包含未摻雜半導體層112、第一型半導體層114、主動層116、第二型半導體層118,沿垂直支撐基板100的方向由上往下依序堆疊,其中第一型半導體層114包含半導體疊層110的上表面S,未摻雜半導體層112形成於第一型半導體層114上,未摻雜半導體層112具有第一表面S1,第一型半導體層114包含被未摻雜半導體層112覆蓋的第一區域R1及未被未摻雜半導體層112覆蓋的第二區域R2,其中第二區域R2具有第一型半導體層114的上表面S,第一電極150形成於第一型半導體層114及未摻雜半導體層112上並接觸第一型半導體層114的上表面S,絕緣層140可順應半導體疊層110之形狀覆蓋於未摻雜半導體層112之第一表面S1,並覆蓋未摻雜半導體層112之側表面及半導體疊層110之側表面,絕緣層140之下端係與圖案化介電層120相接。As shown in FIG. 1 , in this embodiment, the semiconductor stack 110 includes an undoped semiconductor layer 112 , a first-type semiconductor layer 114 , an active layer 116 , and a second-type semiconductor layer 118 . Stacked in sequence from top to bottom, the first type semiconductor layer 114 includes the upper surface S of the semiconductor stack 110 , and the undoped semiconductor layer 112 is formed on the first type semiconductor layer 114 . The undoped semiconductor layer 112 has a first surface. S1, the first type semiconductor layer 114 includes a first region R1 covered by the undoped semiconductor layer 112 and a second region R2 not covered by the undoped semiconductor layer 112, wherein the second region R2 has the first type semiconductor layer 114 The first electrode 150 is formed on the first type semiconductor layer 114 and the undoped semiconductor layer 112 and contacts the upper surface S of the first type semiconductor layer 114. The insulating layer 140 can cover the shape of the semiconductor stack 110. On the first surface S1 of the undoped semiconductor layer 112 and covering the side surface of the undoped semiconductor layer 112 and the side surface of the semiconductor stack 110 , the lower end of the insulating layer 140 is connected to the patterned dielectric layer 120 .

於一實施例中,第一型半導體層114和第二型半導體層118,例如為包覆層(cladding layer)或侷限層(confinement layer),具有不同的導電型態、電性、極性或用於提供電子或電洞的摻雜元素。例如,第一型半導體層114是n型半導體,以及第二型半導體層118是p型半導體。主動層116形成於第一型半導體層114與第二型半導體層118之間。電子與電洞在電流驅動下在主動層116中結合,將電能轉換成光能以發光。可藉由改變半導體疊層110中一個或多個層別的物理特性和化學組成,來調整發光元件1或半導體疊層110所發出的光之波長。半導體疊層110的材料可包含Al xIn yGa (1-x-y)N或Al xIn yGa (1-x-y)P的III-V族半導體材料,其中0≤x,y≤1;x+y≤1。當半導體疊層110的材料是AlInGaP系列時,可以發出波長介於610nm和650nm之間的紅光或波長介於550nm和570nm之間的黃光。當半導體疊層110的材料是InGaN系列時,可以發出波長介於400nm和490nm之間的藍光或深藍光或波長介於490nm和550nm之間綠光。當半導體疊層110的材料是AlGaN系列時,可以發出波長介於400nm和250nm之間的UV光。主動層116可以是單異質結構(single heterostructure; SH)、雙異質結構(double heterostructure; DH)、雙面雙異質結構(double-side double heterostructure; DDH)、多重量子井(multi-quantum well; MQW)。主動層116的材料可以是i型、p型或n型半導體。未摻雜半導體層112的材料可包含GaN、AlGaN或AlN。 In one embodiment, the first type semiconductor layer 114 and the second type semiconductor layer 118, such as a cladding layer or a confinement layer, have different conductive types, electrical properties, polarities or uses. Doping elements that provide electrons or holes. For example, the first type semiconductor layer 114 is an n-type semiconductor, and the second type semiconductor layer 118 is a p-type semiconductor. The active layer 116 is formed between the first type semiconductor layer 114 and the second type semiconductor layer 118 . Electrons and holes are combined in the active layer 116 driven by current to convert electrical energy into light energy to emit light. The wavelength of light emitted by the light-emitting element 1 or the semiconductor stack 110 can be adjusted by changing the physical properties and chemical composition of one or more layers in the semiconductor stack 110 . The material of the semiconductor stack 110 may include a III-V semiconductor material of Al x In y Ga (1-xy) N or Al x In y Ga (1-xy) P, where 0≤x, y≤1; x+ y≤1. When the material of the semiconductor stack 110 is AlInGaP series, it can emit red light with a wavelength between 610 nm and 650 nm or yellow light with a wavelength between 550 nm and 570 nm. When the material of the semiconductor stack 110 is the InGaN series, it can emit blue light or deep blue light with a wavelength between 400 nm and 490 nm or green light with a wavelength between 490 nm and 550 nm. When the material of the semiconductor stack 110 is AlGaN series, UV light with a wavelength between 400 nm and 250 nm can be emitted. The active layer 116 may be a single heterostructure (SH), a double heterostructure (DH), a double-side double heterostructure (DDH), or a multi-quantum well (MQW). ). The material of active layer 116 may be i-type, p-type or n-type semiconductor. The material of the undoped semiconductor layer 112 may include GaN, AlGaN, or AIN.

如圖1所示,於本實施例中,未摻雜半導體層112之第一表面S1具有第一粗糙結構P1,第一型半導體層114之上表面S具有第二粗糙結構P2,第一粗糙結構P1及第二粗糙結構P2分別可包含角椎、圓錐、圓頂等形狀,其中角錐可包含三角錐、四角錐等多角椎,圓錐可包含正圓錐或/及橢圓椎,圓頂可包含正圓頂或/及橢圓頂,第一粗糙結構P1及第二粗糙結構P2的形狀可不同或相同,第一粗糙結構P1及第二粗糙結構P2的尺寸可不同或相同。於一實施例中,絕緣層140具有順應第一粗糙結構P1之凹凸表面S2。未摻雜半導體層112覆蓋第一型半導體層114上兩側的第一區域R1,未覆蓋第一型半導體層114上中間的第二區域R2,發光元件1對應第二區域R2具有一凹陷區G,第一電極150形成於第二區域R2及部分第一區域R1上,第一電極150對應第二區域R2具有一凹陷C,絕緣層140位於第一區域上並形成於第一電極150及未摻雜半導體層112之間,第一電極150覆蓋絕緣層140的一部份。於一實施例中,第一電極150對應第一區域R1及第二區域R2具有分別順應第一粗糙結構P1及第二粗糙結構P2的凹凸表面。As shown in FIG. 1 , in this embodiment, the first surface S1 of the undoped semiconductor layer 112 has a first rough structure P1, and the upper surface S of the first type semiconductor layer 114 has a second rough structure P2. The structure P1 and the second rough structure P2 may respectively include angular cones, cones, domes and other shapes. The angular cones may include polygonal cones such as triangular pyramids and quadrangular pyramids. The cones may include right cones or/and elliptical cones. The domes may include regular cones. For the dome or/or elliptical dome, the shapes of the first rough structure P1 and the second rough structure P2 may be different or the same, and the sizes of the first rough structure P1 and the second rough structure P2 may be different or the same. In one embodiment, the insulating layer 140 has a concave and convex surface S2 conforming to the first rough structure P1. The undoped semiconductor layer 112 covers the first regions R1 on both sides of the first-type semiconductor layer 114 and does not cover the middle second region R2 on the first-type semiconductor layer 114. The light-emitting element 1 has a recessed region corresponding to the second region R2. G, the first electrode 150 is formed on the second region R2 and part of the first region R1. The first electrode 150 has a recess C corresponding to the second region R2. The insulating layer 140 is located on the first region and formed on the first electrode 150 and Between the undoped semiconductor layers 112, the first electrode 150 covers a part of the insulating layer 140. In one embodiment, the first electrode 150 has an uneven surface corresponding to the first region R1 and the second region R2, respectively conforming to the first rough structure P1 and the second rough structure P2.

於一實施例中,圖案化介電層120之材料可包含一絶緣氧化物、氮化物、矽氧化合物、氧化鈦、氧化鋁、氟化鎂或氮化矽。絕緣層140之材料可包含氮化矽或氧化矽。圖案化介電層120之材料可不同於絕緣層140之材料。於一實施例中,圖案化介電層120之材料可為二氧化鈦(TiO 2),絕緣層140之材料可為二氧化矽(SiO 2)或氮化矽(SiN x或Si 3N 4)。第一電極150的材料可包含銀(Ag)、金(Au)、鋁(Al)、鈦(Ti)、鉻(Cr)、銅(Cu)、鎳(Ni)、鉑(Pt)、釕(Ru) 、鎢(W)或上述材料之合金或疊層,反射金屬層130的材料可包含銀(Ag)、金(Au)、鋁(Al)、鈦(Ti)、鉻(Cr)、銅(Cu)、鎳(Ni)、鉑(Pt)、釕(Ru)或上述材料之合金或疊層。於一實施例中,發光元件1可包含透明導電層(未圖示)形成於圖案化介電層120與反射金屬層130之間。透明導電層的材料可包含石墨烯、銦錫氧化物(ITO)、氧化鋁鋅(AZO)、氧化鎵鋅(GZO)、氧化鋅(ZnO)或銦鋅氧化物(IZO)等材料。阻障層132的材料可包含鉻(Cr)、鉑(Pt)、鈦(Ti)、鎢(W)、鋅(Zn) 或上述材料之合金或疊層。於一實施例中,當阻障層132為金屬疊層時,阻障層132係由兩層或兩層以上的金屬交替堆疊而形成,例如Cr/Pt、Cr/Ti、Cr/TiW、Cr/W、Cr/Zn、Ti/Pt、Ti/W、Ti/TiW、Ti/Zn、Pt/TiW、Pt/W、Pt/Zn、TiW/W、TiW/Zn、或W/Zn等。連接層134的材料可包含金(Au)、鈦(Ti)、鉻(Cr)、鎢(W)、鋅(Zn)、鉑(Pt) 或上述材料之合金或疊層。於一實施例中,當連接層134為金屬疊層時,連接層134係由兩層或兩層以上的金屬交替堆疊而形成,例如Ti/Au、Cr/Pt、Cr/Ti、Cr/TiW、Cr/W、Cr/Zn、Ti/Pt、Ti/W、Ti/TiW、Ti/Zn、Pt/TiW、Pt/W、Pt/Zn、TiW/W、TiW/Zn、或W/Zn等。支撐基板100的材料可包含導電基板或絕緣基板;導電基板的材料可包含金屬材料或半導體材料,其中金屬材料包含銅(Cu)、金(Au)、鎳(Ni)、鉬(Mo)、鎢化銅(Cu-W) 或上述材料之合金或疊層,半導體材料包含Si、Ge、GaAs、ZnO、SiC、或SiSe。絕緣基板的材料可包含藍寶石(Sapphire)、或氮化鋁(AlN)。 於一實施例中,支撐基板100為導電基板時,支撐基板100可作為電極提供電能給發光元件1,或另形成一第二電極(圖未示)於支撐基板100遠離半導體疊層110的一表面上。當支撐基板100為絕緣基板時,可另外藉由黃光顯影製程移除部分第一型半導體層114、主動層116,暴露出部份第二型半導體層118或反射金屬層130,並於暴露區其上形成第二電極(圖未示)與第二型半導體層118電性連接。 In one embodiment, the material of patterned dielectric layer 120 may include an insulating oxide, nitride, silicon oxide, titanium oxide, aluminum oxide, magnesium fluoride or silicon nitride. The material of the insulating layer 140 may include silicon nitride or silicon oxide. The material of the patterned dielectric layer 120 may be different from the material of the insulating layer 140 . In one embodiment, the material of the patterned dielectric layer 120 may be titanium dioxide (TiO 2 ), and the material of the insulating layer 140 may be silicon dioxide (SiO 2 ) or silicon nitride (SiN x or Si 3 N 4 ). The material of the first electrode 150 may include silver (Ag), gold (Au), aluminum (Al), titanium (Ti), chromium (Cr), copper (Cu), nickel (Ni), platinum (Pt), ruthenium ( Ru), tungsten (W) or an alloy or laminate of the above materials. The material of the reflective metal layer 130 may include silver (Ag), gold (Au), aluminum (Al), titanium (Ti), chromium (Cr), copper (Cu), nickel (Ni), platinum (Pt), ruthenium (Ru) or alloys or laminates of the above materials. In one embodiment, the light-emitting element 1 may include a transparent conductive layer (not shown) formed between the patterned dielectric layer 120 and the reflective metal layer 130 . The material of the transparent conductive layer may include graphene, indium tin oxide (ITO), aluminum zinc oxide (AZO), gallium zinc oxide (GZO), zinc oxide (ZnO) or indium zinc oxide (IZO). The material of the barrier layer 132 may include chromium (Cr), platinum (Pt), titanium (Ti), tungsten (W), zinc (Zn), or alloys or laminates of the above materials. In one embodiment, when the barrier layer 132 is a metal stack, the barrier layer 132 is formed by alternately stacking two or more layers of metal, such as Cr/Pt, Cr/Ti, Cr/TiW, Cr /W, Cr/Zn, Ti/Pt, Ti/W, Ti/TiW, Ti/Zn, Pt/TiW, Pt/W, Pt/Zn, TiW/W, TiW/Zn, or W/Zn, etc. The material of the connection layer 134 may include gold (Au), titanium (Ti), chromium (Cr), tungsten (W), zinc (Zn), platinum (Pt), or alloys or laminates of the above materials. In one embodiment, when the connection layer 134 is a metal stack, the connection layer 134 is formed by alternately stacking two or more layers of metal, such as Ti/Au, Cr/Pt, Cr/Ti, Cr/TiW. , Cr/W, Cr/Zn, Ti/Pt, Ti/W, Ti/TiW, Ti/Zn, Pt/TiW, Pt/W, Pt/Zn, TiW/W, TiW/Zn, or W/Zn, etc. . The material of the support substrate 100 may include a conductive substrate or an insulating substrate; the material of the conductive substrate may include a metal material or a semiconductor material, where the metal material includes copper (Cu), gold (Au), nickel (Ni), molybdenum (Mo), tungsten Copper (Cu-W) or alloys or laminates of the above materials, semiconductor materials include Si, Ge, GaAs, ZnO, SiC, or SiSe. The material of the insulating substrate may include sapphire (Sapphire) or aluminum nitride (AlN). In one embodiment, when the supporting substrate 100 is a conductive substrate, the supporting substrate 100 can be used as an electrode to provide electric energy to the light-emitting element 1, or a second electrode (not shown) can be formed on a side of the supporting substrate 100 away from the semiconductor stack 110. On the surface. When the supporting substrate 100 is an insulating substrate, a portion of the first-type semiconductor layer 114 and the active layer 116 can be removed through a yellow light development process to expose a portion of the second-type semiconductor layer 118 or the reflective metal layer 130. A second electrode (not shown) is formed thereon and is electrically connected to the second type semiconductor layer 118 .

圖2A至圖2K顯示本申請案一實施例發光元件2製造方法中於各階段之截面示意圖。在圖2A至圖2K的實施例中,發光元件2與圖1所示的發光元件1的結構、材料大致上相同,故於此不再贅述。下述之發光元件2的製程步驟亦適用於上述發光元件1之相關實施例,故於此亦不再贅述。2A to 2K show schematic cross-sectional views at various stages in the manufacturing method of the light-emitting element 2 according to an embodiment of the present application. In the embodiments shown in FIGS. 2A to 2K , the structure and materials of the light-emitting element 2 and the light-emitting element 1 shown in FIG. 1 are substantially the same, so the details will not be described again. The following process steps of the light-emitting element 2 are also applicable to the related embodiments of the above-mentioned light-emitting element 1, and therefore will not be described again here.

如圖2A所示,首先,在成長基板201上方依序形成緩衝層211、未摻雜半導體層212、第一型半導體層214、主動層216及第二型半導體層218,成長基板201可包含用於生長磷化鎵銦(AlGaInP)的砷化鎵(GaAs)基板、及磷化鎵(GaP)基板,或用於生長氮化銦鎵(InGaN)或氮化鋁鎵(AlGaN)的藍寶石(Al2O3)基板、氮化鎵(GaN)基板、碳化矽(SiC)基板、及氮化鋁(AlN)基板。成長基板201可以是一圖案化基板,即,成長基板201上具有圖案化結構。於一實施例中,圖案化結構減緩或抑制了成長基板201與半導體疊層210之間因晶格不匹配而導致的錯位,從而改善半導體疊層210的磊晶品質。於一實施例中,在成長基板201上形成半導體疊層210的方法包含有機金屬化學氣相沉積(MOCVD)、分子束磊晶法(MBE)、氫化物氣相磊晶(HVPE)或離子鍍,例如濺鍍或蒸鍍等。緩衝層211可減小上述的晶格不匹配並抑制錯位,從而改善磊晶品質。緩衝層211的材料可包含GaN、AlGaN或AlN。於一實施例中,緩衝層211包括多個子層(圖未示) ,子層包括相同材料或不同材料。於一實施例中,緩衝層211包括兩個子層,其中第一子層的生長方式為濺鍍,第二子層的生長方式為MOCVD。於一實施例中,緩衝層211另包含第三子層。其中第三子層的生長方式為MOCVD,第二子層的生長溫度高於或低於第三子層的生長溫度。於一實施例中,第一、第二及第三子層包括相同的材料或不同材料,例如AlN、GaN、AlGaN。於一實施例中,緩衝層211包括AlN和GaN兩個子層,其中AlN子層可以濺鍍方式生長,GaN子層可以MOCVD方式生長。於一實施例中, AlN子層及GaN子層都以MOCVD方式生長。接著,繼續參照圖2A,於第二型半導體層218上依序形成圖案化介電層220、反射金屬層230及阻障層232。As shown in FIG. 2A , first, a buffer layer 211 , an undoped semiconductor layer 212 , a first-type semiconductor layer 214 , an active layer 216 and a second-type semiconductor layer 218 are sequentially formed on the growth substrate 201 . The growth substrate 201 may include Gallium arsenide (GaAs) substrate used to grow gallium indium phosphide (AlGaInP), and gallium phosphide (GaP) substrate, or sapphire (Sapphire) used to grow indium gallium nitride (InGaN) or aluminum gallium nitride (AlGaN) Al2O3) substrate, gallium nitride (GaN) substrate, silicon carbide (SiC) substrate, and aluminum nitride (AlN) substrate. The growth substrate 201 may be a patterned substrate, that is, the growth substrate 201 has a patterned structure. In one embodiment, the patterned structure slows down or suppresses the dislocation caused by lattice mismatch between the growth substrate 201 and the semiconductor stack 210, thereby improving the epitaxial quality of the semiconductor stack 210. In one embodiment, the method of forming the semiconductor stack 210 on the growth substrate 201 includes metal-organic chemical vapor deposition (MOCVD), molecular beam epitaxy (MBE), hydride vapor phase epitaxy (HVPE) or ion plating. , such as sputtering or evaporation, etc. The buffer layer 211 can reduce the above-mentioned lattice mismatch and suppress dislocation, thereby improving the epitaxial quality. The material of the buffer layer 211 may include GaN, AlGaN or AIN. In one embodiment, the buffer layer 211 includes multiple sub-layers (not shown), and the sub-layers include the same material or different materials. In one embodiment, the buffer layer 211 includes two sub-layers, wherein the growth method of the first sub-layer is sputtering, and the growth method of the second sub-layer is MOCVD. In one embodiment, the buffer layer 211 further includes a third sub-layer. The growth method of the third sub-layer is MOCVD, and the growth temperature of the second sub-layer is higher or lower than the growth temperature of the third sub-layer. In one embodiment, the first, second and third sub-layers include the same material or different materials, such as AlN, GaN, AlGaN. In one embodiment, the buffer layer 211 includes two sub-layers, AlN and GaN. The AlN sub-layer can be grown by sputtering, and the GaN sub-layer can be grown by MOCVD. In one embodiment, both the AlN sublayer and the GaN sublayer are grown by MOCVD. Next, continuing to refer to FIG. 2A , a patterned dielectric layer 220 , a reflective metal layer 230 and a barrier layer 232 are sequentially formed on the second type semiconductor layer 218 .

如圖2B所示,可藉由連接層234將支撐基板200連接於半導體疊層210,阻障層232可介於連接層234與反射金屬層230之間,而連接層234可介於阻障層232與支撐基板200之間。於一實施例中,連接層234連接阻障層232與支撐基板200可透過高溫高壓的製程進行鍵合。接著,如圖2C-2D所示,在支撐基板200連接於半導體疊層210之後,可將成長基板201移除而暴露出緩衝層211。移除成長基板201後暴露出的緩衝層211會因成長基板201的圖案化結構轉印至緩衝層211的表面而形成一圖案化表面。移除成長基板201的方式包含 雷射剝離(laser lift off,LLO)或研磨,其中研磨可包含化學機械研磨/平坦(chemical mechanical polishing/planarization,CMP )。支撐基板200的材料可包含導電基板或絕緣基板;導電基板的材料可包含金屬材料或半導體材料,其中金屬材料包含銅(Cu)、金(Au)、鎳(Ni)、鉬(Mo)、鎢化銅(Cu-W) 或上述材料之合金或疊層,半導體材料包含Si、Ge、GaAs、ZnO、SiC、或SiSe。絕緣基板的材料可包含藍寶石(Sapphire)、或氮化鋁(AlN)。 於一實施例中,支撐基板200為導電基板時,支撐基板200可作為電極提供電能給發光元件1,或另形成一第二電極(圖未示)於支撐基板200遠離半導體疊層210的一表面上。當支撐基板200為絕緣基板時,可另外藉由黃光顯影製程移除部分第一型半導體層214、主動層216,暴露出部份第二型半導體層218或反射金屬層230,並於暴露區其上形成第二電極(圖未示)與第二型半導體層218電性連接。As shown in FIG. 2B , the support substrate 200 can be connected to the semiconductor stack 210 through the connection layer 234 . The barrier layer 232 can be between the connection layer 234 and the reflective metal layer 230 . The connection layer 234 can be between the barrier layer 234 and the reflective metal layer 230 . between layer 232 and support substrate 200 . In one embodiment, the connection layer 234 connecting the barrier layer 232 and the supporting substrate 200 can be bonded through a high temperature and high pressure process. Next, as shown in FIGS. 2C-2D , after the support substrate 200 is connected to the semiconductor stack 210 , the growth substrate 201 can be removed to expose the buffer layer 211 . The buffer layer 211 exposed after the growth substrate 201 is removed will form a patterned surface due to the patterned structure of the growth substrate 201 being transferred to the surface of the buffer layer 211 . The method of removing the growth substrate 201 includes laser lift off (LLO) or grinding, wherein grinding may include chemical mechanical polishing/planarization (CMP). The material of the support substrate 200 may include a conductive substrate or an insulating substrate; the material of the conductive substrate may include a metal material or a semiconductor material, where the metal material includes copper (Cu), gold (Au), nickel (Ni), molybdenum (Mo), tungsten Copper (Cu-W) or alloys or laminates of the above materials, semiconductor materials include Si, Ge, GaAs, ZnO, SiC, or SiSe. The material of the insulating substrate may include sapphire (Sapphire) or aluminum nitride (AlN). In one embodiment, when the supporting substrate 200 is a conductive substrate, the supporting substrate 200 can be used as an electrode to provide electric energy to the light-emitting element 1, or a second electrode (not shown) can be formed on a side of the supporting substrate 200 away from the semiconductor stack 210. On the surface. When the supporting substrate 200 is an insulating substrate, a portion of the first-type semiconductor layer 214 and the active layer 216 can be removed through a yellow light development process to expose a portion of the second-type semiconductor layer 218 or the reflective metal layer 230, and then exposed A second electrode (not shown) is formed thereon and is electrically connected to the second type semiconductor layer 218 .

如圖2E所示,移除緩衝層211而暴露出未摻雜半導體層212,移除緩衝層211的方式可包含乾式蝕刻或濕式蝕刻,其中乾式蝕刻例如為感應耦合核電漿(inductively coupled plasma,ICP)蝕刻、反應離子蝕刻(reactive ion etching ,RIE)等,濕式蝕刻的蝕刻液例如為氫氟酸(HF)、磷酸(HPO 3)、硫酸(H 2SO 4)、氫氧化鉀(KOH)等。於一實施例中,在移除緩衝層211之前,可先磨平緩衝層211表面的圖案化結構,磨平方式可包含研磨、乾式蝕刻等方式,其中研磨可包含化學機械研磨/平坦(chemical mechanical polishing/planarization,CMP ),乾式蝕刻可包含感應耦合核電漿蝕刻、反應離子蝕刻等,如此可減少緩衝層211表面的高低差,例如,高低差介於0到0.5μm之間,以降低後續蝕刻製程產生過蝕刻的情形。於一實施例中,移除緩衝層211暴露出的未摻雜半導體層212因移除緩衝層211的蝕刻製程,使其表面成為一非平坦面。 As shown in FIG. 2E , the buffer layer 211 is removed to expose the undoped semiconductor layer 212 . The method of removing the buffer layer 211 may include dry etching or wet etching, where dry etching is, for example, inductively coupled plasma. , ICP) etching, reactive ion etching (RIE), etc. The etching liquid for wet etching is, for example, hydrofluoric acid (HF), phosphoric acid (HPO 3 ), sulfuric acid (H 2 SO 4 ), potassium hydroxide ( KOH) etc. In one embodiment, before removing the buffer layer 211, the patterned structure on the surface of the buffer layer 211 may be polished first. The polishing method may include grinding, dry etching, etc., wherein the grinding may include chemical mechanical polishing/planarization. mechanical polishing/planarization (CMP), dry etching may include inductively coupled nuclear plasma etching, reactive ion etching, etc., which can reduce the height difference on the surface of the buffer layer 211. For example, the height difference is between 0 and 0.5 μm, so as to reduce subsequent The etching process produces over-etching. In one embodiment, the surface of the undoped semiconductor layer 212 exposed by removing the buffer layer 211 becomes a non-flat surface due to the etching process of removing the buffer layer 211 .

接著,如圖2F所示,自表面圖案化未摻雜半導體層212以形成第一粗糙結構P1,其中,第一粗糙結構P1的表面構成圖案化未摻雜半導體層212的第一表面S1,且第一表面S1是一粗糙化表面。藉由第一粗糙結構P1可提高光取出率。圖案化未摻雜半導體層212的方式可包含乾式蝕刻或/及濕式蝕刻,其中乾式蝕刻例如為感應耦合核電漿蝕刻、反應離子蝕刻等,濕式蝕刻的蝕刻液例如為氫氟酸、磷酸、硫酸、氫氧化鉀等。於一實施例中,在圖案化未摻雜半導體層212之前,可先減薄未摻雜半導體層212的厚度,減薄方式可包含研磨、乾式蝕刻等方式,其中乾式蝕刻例如為感應耦合核電漿蝕刻、反應離子蝕刻等,研磨例如為化學機械研磨/平坦等,於一實施例中,圖案化後之未摻雜半導體層212的厚度約為0.5到2.5μm。減薄及圖案化後之未摻雜半導體層212的厚度約為圖2J中之第一電極250厚度的0.1倍到0.7倍,於一實施例中,未摻雜半導體層212的厚度約為第一電極250厚度的0.12倍到0.63倍。藉由調整未摻雜半導體層212的高低差,可使形成第一電極250於未摻雜半導體層212及第一型半導體層214上時,第一電極250的覆蓋率提升,以提升後續電性連接的可靠度。Next, as shown in FIG. 2F , the undoped semiconductor layer 212 is patterned from the surface to form a first rough structure P1, wherein the surface of the first rough structure P1 constitutes the first surface S1 of the patterned undoped semiconductor layer 212, And the first surface S1 is a roughened surface. The light extraction rate can be improved through the first rough structure P1. Methods for patterning the undoped semiconductor layer 212 may include dry etching and/or wet etching. Dry etching is, for example, inductively coupled nuclear plasma etching, reactive ion etching, etc., and the etching liquid for wet etching is, for example, hydrofluoric acid or phosphoric acid. , sulfuric acid, potassium hydroxide, etc. In one embodiment, before patterning the undoped semiconductor layer 212, the thickness of the undoped semiconductor layer 212 can be thinned first. The thinning method can include grinding, dry etching, etc. The dry etching can be, for example, inductively coupled nuclear power generation. Slurry etching, reactive ion etching, etc., polishing such as chemical mechanical polishing/planarization, etc., in one embodiment, the thickness of the undoped semiconductor layer 212 after patterning is about 0.5 to 2.5 μm. The thickness of the undoped semiconductor layer 212 after thinning and patterning is approximately 0.1 to 0.7 times the thickness of the first electrode 250 in FIG. 2J . In one embodiment, the thickness of the undoped semiconductor layer 212 is approximately 0.12 times to 0.63 times the thickness of an electrode 250. By adjusting the height difference of the undoped semiconductor layer 212, when the first electrode 250 is formed on the undoped semiconductor layer 212 and the first type semiconductor layer 214, the coverage of the first electrode 250 can be improved, thereby improving subsequent electrical conductivity. Reliability of sexual connections.

如圖2G所示,藉由將半導體疊層210圖案化,移除部分半導體疊層210至暴露出圖案化介電層220,來形成晶片分離區域,其中晶片分離區域定義出發光元件2之周圍。圖案化半導體疊層210的方式可包含乾式蝕刻或濕式蝕刻,其中乾式蝕刻例如為感應耦合核電漿蝕刻、反應離子蝕刻等,濕式蝕刻的蝕刻液例如為氫氟酸、磷酸、硫酸、氫氧化鉀等。於一實施例中,被暴露的圖案化介電層220的厚度小於未被暴露的圖案化介電層220的厚度。接著,如圖2H所示,形成絕緣層240於未摻雜半導體層212上,絕緣層240覆蓋未摻雜半導體層212的第一表面S1及半導體疊層210的側表面,且絕緣層240可順應未摻雜半導體層212的第一粗糙結構P1而形成凹凸表面S2,形成絕緣層240的方式可包含電漿增強化學氣相沉積法(plasma-enhanced chemical vapor deposition,PECVD)。As shown in FIG. 2G , a die separation area is formed by patterning the semiconductor stack 210 and removing part of the semiconductor stack 210 to expose the patterned dielectric layer 220 , wherein the die separation area defines the periphery of the light emitting element 2 . The method of patterning the semiconductor stack 210 may include dry etching or wet etching. The dry etching is, for example, inductively coupled nuclear plasma etching, reactive ion etching, etc., and the etching liquid for the wet etching is, for example, hydrofluoric acid, phosphoric acid, sulfuric acid, or hydrogen. Potassium oxide, etc. In one embodiment, the thickness of the exposed patterned dielectric layer 220 is smaller than the thickness of the unexposed patterned dielectric layer 220 . Next, as shown in FIG. 2H , an insulating layer 240 is formed on the undoped semiconductor layer 212 . The insulating layer 240 covers the first surface S1 of the undoped semiconductor layer 212 and the side surfaces of the semiconductor stack 210 , and the insulating layer 240 can The uneven surface S2 is formed according to the first rough structure P1 of the undoped semiconductor layer 212. The insulating layer 240 may be formed by plasma-enhanced chemical vapor deposition (PECVD).

如圖2I所示,圖案化前述絕緣層240及未摻雜半導體層212形成凹陷區G以暴露第一型半導體層214的上表面S,其中第一型半導體層214具有被絕緣層240及未摻雜半導體層212覆蓋的第一區域R1及未被絕緣層240及未摻雜半導體層212覆蓋的第二區域R2,且第二區域R2對應凹陷區G,圖案化前述絕緣層240及未摻雜半導體層212的方式可包含乾式蝕刻或濕式蝕刻,其中乾式蝕刻例如為感應耦合核電漿蝕刻、反應離子蝕刻等,濕式蝕刻的蝕刻液例如為氫氟酸、磷酸、硫酸、氫氧化鉀等。第一型半導體層214於第一區域R1的厚度約為第一電極250厚度的0.1倍到0.6倍,較佳為0.12倍到0.5倍,第一型半導體層214於第二區域R2的厚度約為第一電極250厚度的0.1倍到0.5倍,較佳為0.12倍到0.45倍,其中第一型半導體層214於第二區域R2的厚度小於第一型半導體層214於第一區域R1的厚度。於一實施例中,第一型半導體層214於第一區域R1的厚度約為0.5到2μm,第一型半導體層214於第二區域R2的厚度約為0.5到1.8μm。As shown in FIG. 2I , the insulating layer 240 and the undoped semiconductor layer 212 are patterned to form a recessed region G to expose the upper surface S of the first type semiconductor layer 214 , wherein the first type semiconductor layer 214 has an insulated layer 240 and an undoped semiconductor layer 212 . The first region R1 covered by the doped semiconductor layer 212 and the second region R2 not covered by the insulating layer 240 and the undoped semiconductor layer 212, and the second region R2 corresponds to the recessed area G, pattern the aforementioned insulating layer 240 and the undoped semiconductor layer 212. The method of heterosemiconductor layer 212 may include dry etching or wet etching. Dry etching is, for example, inductively coupled nuclear plasma etching, reactive ion etching, etc., and the etching liquid for wet etching is, for example, hydrofluoric acid, phosphoric acid, sulfuric acid, or potassium hydroxide. wait. The thickness of the first type semiconductor layer 214 in the first region R1 is approximately 0.1 to 0.6 times the thickness of the first electrode 250 , preferably 0.12 times to 0.5 times. The thickness of the first type semiconductor layer 214 in the second region R2 is approximately 0.1 to 0.6 times the thickness of the first electrode 250 . It is 0.1 times to 0.5 times the thickness of the first electrode 250 , preferably 0.12 times to 0.45 times, wherein the thickness of the first type semiconductor layer 214 in the second region R2 is smaller than the thickness of the first type semiconductor layer 214 in the first region R1 . In one embodiment, the thickness of the first type semiconductor layer 214 in the first region R1 is approximately 0.5 to 2 μm, and the thickness of the first type semiconductor layer 214 in the second region R2 is approximately 0.5 to 1.8 μm.

如圖2J所示,形成第一電極250填入凹陷區G以接觸第一型半導體層214的上表面S,其中第一電極250覆蓋部分在第一區域R1上的絕緣層240及未摻雜半導體層212,且第一電極250於對應凹陷區G(即第二區域R2)具有凹陷C,形成第一電極250的方式可包含濺鍍(sputtering)或/及電子束蒸鍍(electron-beam gun evaporation)。於一實施例中,在形成第一電極250前可以黃光微影製程定義光阻開口後,再用濺鍍或/及蒸鍍的方式形成第一電極250,而在圖案化前述絕緣層240及未摻雜半導體層212形成凹陷區G前亦可黃光微影製程定義光阻開口,其中用於形成第一電極250的光阻開口大於用於圖案化前述絕緣層240及未摻雜半導體層212的光阻開口,可使第一電極250完全覆蓋第一型半導體層214,可提升抗濕效果。最後,沿著晶片分離區域切割支撐基板200及其上之疊層,分割成個別晶片,形成如圖2K所示之發光元件2。As shown in FIG. 2J , a first electrode 250 is formed to fill the recessed region G to contact the upper surface S of the first type semiconductor layer 214 , wherein the first electrode 250 covers part of the insulating layer 240 on the first region R1 and is undoped. The semiconductor layer 212, and the first electrode 250 has a recess C in the corresponding recessed region G (ie, the second region R2). The method of forming the first electrode 250 may include sputtering or/and electron-beam evaporation. gun evaporation). In one embodiment, before forming the first electrode 250, the photoresist openings can be defined by a photolithography process, and then the first electrode 250 can be formed by sputtering or/and evaporation. After patterning the insulating layer 240 and not Before forming the recessed region G in the doped semiconductor layer 212, a photoresist opening can also be defined by a yellow photolithography process. The photoresist opening used to form the first electrode 250 is larger than the light used to pattern the insulating layer 240 and the undoped semiconductor layer 212. By blocking the opening, the first electrode 250 can completely cover the first type semiconductor layer 214, which can improve the anti-humidity effect. Finally, the support substrate 200 and the stacked layer thereon are cut along the wafer separation area and divided into individual wafers to form the light-emitting element 2 as shown in FIG. 2K .

圖3顯示本申請案一實施例發光元件3之截面圖。在圖3的實施例中,發光元件3與圖1所示的發光元件1及圖2K所示的發光元件2的結構、材料、製程步驟大致上相同,故於此不再贅述。差異在於發光元件3的絕緣層340除了覆蓋未摻雜半導體層312之部分上表面S1及半導體疊層310之側表面外,更形成於第一電極350上且覆蓋第一電極350之上表面及側表面。FIG. 3 shows a cross-sectional view of the light-emitting element 3 according to an embodiment of the present application. In the embodiment of FIG. 3 , the structure, materials, and process steps of the light-emitting element 3 are substantially the same as those of the light-emitting element 1 shown in FIG. 1 and the light-emitting element 2 shown in FIG. 2K , and therefore will not be described again. The difference is that in addition to covering part of the upper surface S1 of the undoped semiconductor layer 312 and the side surfaces of the semiconductor stack 310, the insulating layer 340 of the light-emitting element 3 is also formed on the first electrode 350 and covers the upper surface of the first electrode 350. side surface.

惟上述實施例僅為例示性說明本申請案之原理及其功效,而非用於限制本申請案。任何本申請案所屬技術領域中具有通常知識者均可在不違背本申請案之技術原理及精神的情況下,對上述實施例進行修改及變化。舉凡依本申請案申請專利範圍所述之形狀、構造、特徵及精神所為之均等變化與修飾,均應包括於本申請案之申請專利範圍內。However, the above embodiments are only illustrative to illustrate the principle and effect of the present application, and are not used to limit the present application. Anyone with ordinary knowledge in the technical field to which this application belongs can make modifications and changes to the above embodiments without violating the technical principles and spirit of this application. All changes and modifications made equally to the shape, structure, characteristics and spirit described in the patentable scope of this application shall be included in the patentable scope of this application.

1、2、3:發光元件 100、200、300:支撐基板 201:成長基板 211:緩衝層 112、212、312:未摻雜半導體層 114、214、314:第一型半導體層 116、216、316:主動層 118、218、318:第二型半導體層 120、220、320:圖案化介電層 130、230、330:反射金屬層 132、232、332:阻障層 134、234、334:連接層 140、240、340:絕緣層 150、250、350:第一電極 C:凹陷 G:凹陷區 P1:第一粗糙結構 P2:第二粗糙結構 R1:第一區域 R2:第二區域 S:上表面 S1:第一表面 S2:凹凸表面 1, 2, 3: Light-emitting components 100, 200, 300: Support base plate 201:Growth substrate 211:Buffer layer 112, 212, 312: Undoped semiconductor layer 114, 214, 314: first type semiconductor layer 116, 216, 316: active layer 118, 218, 318: second type semiconductor layer 120, 220, 320: Patterned dielectric layer 130, 230, 330: Reflective metal layer 132, 232, 332: barrier layer 134, 234, 334: connection layer 140, 240, 340: Insulation layer 150, 250, 350: first electrode C:dent G: concave area P1: First rough structure P2: Second rough structure R1: first area R2: Second area S: upper surface S1: first surface S2: Concave-convex surface

﹝圖1﹞顯示本申請案一實施例發光元件1之截面示意圖。 ﹝圖2A至圖2K﹞顯示本申請案一實施例發光元件2製造方法中於各階段之截面示意圖。 ﹝圖3﹞顯示本申請案一實施例發光元件3之截面示意圖。 ﹝Figure 1﹞ shows a schematic cross-sectional view of a light-emitting element 1 according to an embodiment of the present application. ﹝ FIGS. 2A to 2K ﹞ show schematic cross-sectional views at various stages in the manufacturing method of the light-emitting element 2 according to an embodiment of the present application. ﹝Figure 3﹞ shows a schematic cross-sectional view of the light-emitting element 3 according to an embodiment of the present application.

1:發光元件 1:Light-emitting component

100:支撐基板 100:Support base plate

110:半導體疊層 110: Semiconductor stack

112:未摻雜半導體層 112: Undoped semiconductor layer

114:第一型半導體層 114: First type semiconductor layer

116:主動層 116:Active layer

118:第二型半導體層 118: Second type semiconductor layer

120:圖案化介電層 120:Patterned dielectric layer

130:反射金屬層 130: Reflective metal layer

132:阻障層 132:Barrier layer

134:連接層 134: Connection layer

140:絕緣層 140:Insulation layer

150:第一電極 150: first electrode

C:凹陷 C:dent

G:凹陷區 G: concave area

P1:第一粗糙結構 P1: First rough structure

P2:第二粗糙結構 P2: Second rough structure

R1:第一區域 R1: first area

R2:第二區域 R2: Second area

S:上表面 S: upper surface

S1:第一表面 S1: first surface

S2:凹凸表面 S2: Concave-convex surface

Claims (9)

一種發光元件,包含:一第一型半導體層,包含一第一區域及一第二區域;一第二型半導體層;一主動層,位於該第一型半導體層及該第二型半導體層之間;一粗糙結構,包含一未摻雜半導體層設置於該第一型半導體層的該第一區域上,以及該第二區域上未設置該未摻雜半導體層;以及一第一電極,設置於該第二區域上;其中,該粗糙結構更包含該第一型半導體層的該第二區域。 A light-emitting element includes: a first-type semiconductor layer including a first region and a second region; a second-type semiconductor layer; and an active layer located between the first-type semiconductor layer and the second-type semiconductor layer. between; a rough structure including an undoped semiconductor layer disposed on the first region of the first-type semiconductor layer, and the undoped semiconductor layer is not disposed on the second region; and a first electrode disposed on the second region; wherein the rough structure further includes the second region of the first-type semiconductor layer. 如申請專利範圍第1項所述的發光元件,其中於該粗糙結構中,該未摻雜半導體層包含一第一表面具有一第一粗糙結構,及該第一型半導體層的該第二區域包含一第二表面具有一第二粗糙結構。 The light-emitting element as described in item 1 of the patent application, wherein in the rough structure, the undoped semiconductor layer includes a first surface with a first rough structure, and the second region of the first-type semiconductor layer Includes a second surface with a second rough structure. 如申請專利範圍第2項所述的發光元件,其中該第一粗糙結構及/或該第二粗糙結構包含角椎或圓錐。 As described in claim 2 of the patent application, the light-emitting element, wherein the first rough structure and/or the second rough structure includes a pyramid or a cone. 如申請專利範圍第2項所述的發光元件,其中該第二表面比第一表面接近該主動層。 As for the light-emitting element described in claim 2 of the patent application, the second surface is closer to the active layer than the first surface. 如申請專利範圍第1項所述的發光元件,其中該第一型半導體層於該第二區域的厚度小於該第一型半導體層於該第一區域的厚度。 As for the light-emitting element described in claim 1, wherein the thickness of the first-type semiconductor layer in the second region is smaller than the thickness of the first-type semiconductor layer in the first region. 如申請專利範圍第1項所述的發光元件,其中該第一電極設置於該未摻雜半導體層及該第二區域上,該發光元件更包含一絕緣層設置於該未摻雜半導體層與該第一電極之間,且該第一電極覆蓋該絕緣層的一部分,或該絕 緣層設置於該未摻雜半導體層與該第一電極上,且該絕緣層覆蓋該第一電極的一部分。 The light-emitting element described in item 1 of the patent application, wherein the first electrode is disposed on the undoped semiconductor layer and the second region, and the light-emitting element further includes an insulating layer disposed on the undoped semiconductor layer and the second region. between the first electrodes, and the first electrode covers a part of the insulating layer, or the insulating layer The insulating layer is disposed on the undoped semiconductor layer and the first electrode, and the insulating layer covers a part of the first electrode. 如申請專利範圍第6項所述的發光元件,其中該絕緣層覆蓋該半導體疊層的一側表面。 In the light-emitting element described in claim 6 of the patent application, the insulating layer covers one side surface of the semiconductor stack. 如申請專利範圍第1項所述的發光元件,更包含一絕緣層設置於該粗糙結構上,其中該絕緣層具有順應該粗糙結構的一凹凸表面。 The light-emitting element described in claim 1 of the patent application further includes an insulating layer disposed on the rough structure, wherein the insulating layer has a concave and convex surface conforming to the rough structure. 如申請專利範圍第1項所述的發光元件,其中該第一電極具有對應該第二區域的一凹陷。 As described in claim 1 of the patent application, the first electrode has a recess corresponding to the second area.
TW111143092A 2020-12-29 2020-12-29 Light-emitting device and manufacturing method thereof TWI833439B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW111143092A TWI833439B (en) 2020-12-29 2020-12-29 Light-emitting device and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW111143092A TWI833439B (en) 2020-12-29 2020-12-29 Light-emitting device and manufacturing method thereof

Publications (2)

Publication Number Publication Date
TW202310444A TW202310444A (en) 2023-03-01
TWI833439B true TWI833439B (en) 2024-02-21

Family

ID=86690820

Family Applications (1)

Application Number Title Priority Date Filing Date
TW111143092A TWI833439B (en) 2020-12-29 2020-12-29 Light-emitting device and manufacturing method thereof

Country Status (1)

Country Link
TW (1) TWI833439B (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104638069A (en) * 2015-02-04 2015-05-20 映瑞光电科技(上海)有限公司 Vertical LED (Light-Emitting Diode) chip structure and manufacturing method thereof
US20180114880A1 (en) * 2005-02-21 2018-04-26 Epistar Corporation Optoelectronic semiconductor device
US20180158981A1 (en) * 2015-06-25 2018-06-07 Lg Innotek Co., Ltd. Ultraviolet light emitting diode, light emitting diode package, and lighting device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180114880A1 (en) * 2005-02-21 2018-04-26 Epistar Corporation Optoelectronic semiconductor device
CN104638069A (en) * 2015-02-04 2015-05-20 映瑞光电科技(上海)有限公司 Vertical LED (Light-Emitting Diode) chip structure and manufacturing method thereof
US20180158981A1 (en) * 2015-06-25 2018-06-07 Lg Innotek Co., Ltd. Ultraviolet light emitting diode, light emitting diode package, and lighting device

Also Published As

Publication number Publication date
TW202310444A (en) 2023-03-01

Similar Documents

Publication Publication Date Title
TWI795205B (en) Light-emitting device
TWI487133B (en) Roughened high refractive index layer/led for high light extraction
US8361880B2 (en) Semiconductor light-emitting device with metal support substrate
US8791480B2 (en) Light emitting device and manufacturing method thereof
US11810943B2 (en) Light-emitting device and manufacturing method thereof
US9362449B2 (en) High efficiency light emitting diode and method of fabricating the same
KR20100035846A (en) Light emitting device and method for fabricating the same
US20200373472A1 (en) Light-emitting diode and manufacturing method thereof
US20130062657A1 (en) Light emitting diode structure and manufacturing method thereof
CN103794686A (en) Semiconductor light emitting device and manufacturing method thereof
TW201547053A (en) Method of forming a light-emitting device
TWI786503B (en) Light-emitting device and manufacturing method thereof
TWI833439B (en) Light-emitting device and manufacturing method thereof
TW202141814A (en) Light-emitting device and manufacturing method thereof
CN113380932A (en) Flip-chip light emitting diode structure and manufacturing method thereof
TWI816330B (en) Optoelectronic semiconductor device
TWI834220B (en) Optoelectronic semiconductor device
TWI761645B (en) Semiconductor devices and the manufacturing methods thereof
TW202416552A (en) Optoelectronic semiconductor device
TW202427826A (en) Light-emitting device
TWI395349B (en) Light emitting diode chip and fabricating method thereof
TW202429729A (en) Optoelectronic semiconductor device
TW202401853A (en) Optoelectronic semiconductor device
TWI336142B (en) Light-emitting diode and manufacturing method thereof
TW202226616A (en) Semiconductor devices and the manufacturing methods thereof