TWI657595B - Optoelectronic semiconductor device - Google Patents
Optoelectronic semiconductor device Download PDFInfo
- Publication number
- TWI657595B TWI657595B TW106107846A TW106107846A TWI657595B TW I657595 B TWI657595 B TW I657595B TW 106107846 A TW106107846 A TW 106107846A TW 106107846 A TW106107846 A TW 106107846A TW I657595 B TWI657595 B TW I657595B
- Authority
- TW
- Taiwan
- Prior art keywords
- layer
- current dispersion
- dispersion layer
- thickness
- current
- Prior art date
Links
Landscapes
- Led Devices (AREA)
Abstract
一種光電半導體元件包括:一磊晶疊層,該磊晶疊層之一表面具有一第一區域以及除了該第一區域外的一第二區域;一第一電極,位於該磊晶疊層上,且與該磊晶疊層電性連接,其中該第一區域係大致位於該第一電極下方;一第一電流分散層,具有一主體部以及自該主體部延伸的一延伸部,該延伸部位於該第二區域上;以及一第二電流分散層,該第二電流分散層及該主體部位於該磊晶疊層與該第一電極之間且位於該第一區域上。An optoelectronic semiconductor component includes: an epitaxial stack having a first region on a surface thereof and a second region except the first region; a first electrode on the epitaxial stack And electrically connected to the epitaxial layer, wherein the first region is substantially below the first electrode; a first current dispersion layer having a body portion and an extension extending from the body portion, the extension The portion is located on the second region; and a second current dispersion layer, the second current dispersion layer and the body portion are located between the epitaxial layer and the first electrode and located on the first region.
Description
本發明是有關於一種光電半導體元件,特別是關於一種具有電流分散層結構的光電半導體元件。The present invention relates to an optoelectronic semiconductor component, and more particularly to an optoelectronic semiconductor component having a current dispersion layer structure.
隨著半導體科技的進步,現今的光電半導體元件如雷射或發光二極體(Light Emitting Diode, LED)已被廣泛地應用在許多領域,例如通訊、照明、顯示等等,尤其發光二極體具備了高亮度與高演色性等特性,加上具有省電、體積小、低電壓驅動以及不含汞等優點,發光二極體更已廣泛地取代傳統照明技術而應用在顯示器與照明等領域。因此,提升光電半導體元件的光電轉換效率,例如如何兼顧發光二極體的發光效率以及導電能力,實為一直以來研發人員研發的重點之一。With the advancement of semiconductor technology, today's optoelectronic semiconductor components such as laser or light emitting diodes (LEDs) have been widely used in many fields, such as communication, lighting, display, etc., especially LEDs. With high brightness and high color rendering, coupled with power saving, small size, low voltage drive and mercury free, LEDs have been widely used to replace traditional lighting technology in display and lighting applications. . Therefore, improving the photoelectric conversion efficiency of the optoelectronic semiconductor component, for example, how to balance the luminous efficiency and the electrical conductivity of the light-emitting diode, has been one of the focuses of research and development by researchers.
本發明提供一種光電半導體元件包括:一磊晶疊層,該磊晶疊層之一表面具有一第一區域以及除了該第一區域外的一第二區域;一第一電極,位於該磊晶疊層上,且與該磊晶疊層電性連接,其中該第一區域係大致位於該第一電極下方;一第一電流分散層,具有一主體部以及自該主體部延伸的一延伸部,該延伸部位於該第二區域上;以及一第二電流分散層,該第二電流分散層及該主體部位於該磊晶疊層與該第一電極之間且位於該第一區域上。The present invention provides an optoelectronic semiconductor device comprising: an epitaxial layer, a surface of one of the epitaxial layers having a first region and a second region other than the first region; a first electrode located at the epitaxial layer And electrically connected to the epitaxial layer, wherein the first region is substantially below the first electrode; a first current dispersion layer having a body portion and an extension extending from the body portion The extension portion is located on the second region; and a second current dispersion layer, the second current dispersion layer and the body portion are located between the epitaxial layer and the first electrode and located on the first region.
以下實施例將伴隨著圖式說明本發明之概念,在圖式或說明中,相似或相同之部分係使用相同之標號,並且在圖式中,元件之形狀或厚度可擴大或縮小。需特別注意的是,圖中未繪示或說明書未描述之元件,可以是熟習此技藝之人士所知之形式。The present invention will be described with reference to the drawings, in which the same or the same reference numerals are used in the drawings or the description, and in the drawings, the shape or thickness of the elements may be enlarged or reduced. It is to be noted that elements not shown or described in the specification may be in a form known to those skilled in the art.
圖1A是本發明的第一實施例的光電半導體元件的上視示意圖,圖1B是圖1A沿著剖線I-I’的剖面示意圖,圖1C為圖1B的部分放大圖。如圖1A~1C所示,在本實施例中,光電半導體元件100包括一磊晶疊層110、一第一電極120、一電流分散層14設於磊晶疊層110及第一電極120之間,其中,光電半導體元件100為一發光二極體,但不以此為限,例如在本發明一些實施例中,光電半導體元件100亦可為一雷射、光感測器或太陽能電池等。磊晶疊層110具有一表面S,表面S包含一第一區域R1以及除了第一區域R1外的一第二區域R2,第一區域R1位於第一電極120下方或正下方。磊晶疊層110包括一第一型摻雜半導體層112、一第二型摻雜半導體層116以及一主動層114位於第一型摻雜半導體層112與第二型摻雜半導體層116之間。第一型摻雜半導體層112及第二型摻雜半導體層116係根據其中不同的載子種類而具有不同的極性。部分第一型摻雜半導體層112及部分主動層114係被移除以暴露出第二摻雜半導體層116,並將磊晶疊層110劃分為一平台部P及一凹陷部E,平台部P包含第一型摻雜半導體層112、部分主動層114以及部分第二型摻雜半導體層116,凹陷部E則包含另一部分之第二型摻雜半導體層116。在一實施例中,磊晶疊層110的表面S即為位於平台部P之第一型摻雜半導體層112的上表面。在本實施例中,光電半導體元件100還包含一基板170,且第一型摻雜半導體層112、主動層114及第二型摻雜半導體層116係依序堆疊於基板170上,但不以此為限,例如在本發明一些實施例中,光電半導體元件100亦可不包含基板170。第一型摻雜半導體層112、第二型摻雜半導體層116及主動層114之材料為化合物半導體,例如可以為三五族化合物半導體如:GaAs、InGaAs、AlGaAs、AlInGaAs、GaP、InGaP、AlInP、AlGaInP、GaN、InGaN、AlGaN、AlInGaN、AlAsSb、InGaAsP、InGaAsN、AlGaAsP等。在本發明各實施例中,若無特別說明,上述化學表示式包含「符合化學劑量之化合物」及「非符合化學劑量之化合物」,其中,「符合化學劑量之化合物」例如為三族元素的總元素劑量與五族元素的總元素劑量相同,反之,「非符合化學劑量之化合物」例如為三族元素的總元素劑量與五族元素的總元素劑量不同。舉例而言,化學表示式為AlGaAs即代表包含三族元素鋁(Al)及/或鎵(Ga),以及包含五族元素砷(As),其中三族元素(鋁及/或鎵)的總元素劑量可以與五族元素(砷)的總元素劑量相同或相異。另外,若上述由化學表示式表示的各化合物為符合化學劑量之化合物時,AlGaAs 即代表 Alx Ga(1-x) As,其中,0≦x≦1;AlInP 代表Alx In(1-x) P,其中,0≦x≦1;AlGaInP代表(Aly Ga(1-y) )1-x Inx P,其中,0≦x≦1,0≦y≦1;AlGaN 代表Alx Ga(1-x) N,其中,0≦x≦1;AlAsSb 代表 AlAsx Sb(1-x) ,其中,0≦x≦1;InGaP代表Inx Ga1-x P,其中,0≦x≦1;InGaAsP代表Inx Ga1-x As1-y Py ,其中,0≦x≦1, 0≦y≦1;InGaAsN 代表 Inx Ga1-x As1-y Ny ,其中,0≦x≦1,0≦y≦1;AlGaAsP代表Alx Ga1-x As1-y Py ,其中,0≦x≦1,0≦y≦1;InGaAs代表Inx Ga1-x As,其中,0≦x≦1。在第一實施例中,第一型摻雜半導體層112可以為P型摻雜半導體層,且其材質例如是P型氮化鎵;第二型摻雜半導體層116可以為N型摻雜半導體層,且其材質例如是N型氮化鎵;主動層114可包含由多個交替堆疊的井層(well layers)以及阻障層(barrier layer)所構成的多層量子井結構(multiple quantum wells),以於光電半導體元件100驅動時進行發光或光電轉換,但不以此為限,例如在本發明一些實施例中,主動層114亦可包含單異質結構(single heterostructure)或雙異質結構(double heterostructure)等。此外,本發明各實施例之磊晶疊層110係可以透過有機金屬化學氣相沉積法(MOCVD)、分子束磊晶法(MBE)或氫化物氣相磊晶法(HVPE)等方法形成。1A is a top plan view of a photoelectric semiconductor device according to a first embodiment of the present invention, FIG. 1B is a cross-sectional view taken along line II' of FIG. 1A, and FIG. 1C is a partially enlarged view of FIG. 1B. As shown in FIG. 1A to FIG. 1C , in the present embodiment, the optoelectronic semiconductor device 100 includes an epitaxial layer 110 , a first electrode 120 , and a current dispersion layer 14 disposed on the epitaxial layer 110 and the first electrode 120 . The photo-semiconductor device 100 is a light-emitting diode, but is not limited thereto. For example, in some embodiments of the present invention, the optoelectronic semiconductor device 100 can also be a laser, a photo sensor, or a solar cell. . The epitaxial layer stack 110 has a surface S including a first region R1 and a second region R2 other than the first region R1. The first region R1 is located below or directly below the first electrode 120. The epitaxial layer stack 110 includes a first type doped semiconductor layer 112 , a second type doped semiconductor layer 116 , and an active layer 114 between the first type doped semiconductor layer 112 and the second type doped semiconductor layer 116 . . The first type doped semiconductor layer 112 and the second type doped semiconductor layer 116 have different polarities depending on different carrier types therein. A portion of the first type doped semiconductor layer 112 and a portion of the active layer 114 are removed to expose the second doped semiconductor layer 116, and the epitaxial layer 110 is divided into a land portion P and a recess portion E, the platform portion P includes a first type doped semiconductor layer 112, a portion of the active layer 114, and a portion of the second type doped semiconductor layer 116, and the recess E includes another portion of the second type doped semiconductor layer 116. In one embodiment, the surface S of the epitaxial layer 110 is the upper surface of the first type doped semiconductor layer 112 of the land portion P. In this embodiment, the optoelectronic semiconductor component 100 further includes a substrate 170, and the first doped semiconductor layer 112, the active layer 114, and the second doped semiconductor layer 116 are sequentially stacked on the substrate 170, but not For example, in some embodiments of the present invention, the optoelectronic semiconductor component 100 may not include the substrate 170. The material of the first type doped semiconductor layer 112, the second type doped semiconductor layer 116, and the active layer 114 is a compound semiconductor, and may be, for example, a tri-five compound semiconductor such as GaAs, InGaAs, AlGaAs, AlInGaAs, GaP, InGaP, AlInP. AlGaInP, GaN, InGaN, AlGaN, AlInGaN, AlAsSb, InGaAsP, InGaAsN, AlGaAsP, and the like. In the embodiments of the present invention, unless otherwise specified, the chemical expressions include "chemically-accepting compounds" and "non-chemically-accepting compounds", wherein "chemically-accepting compounds" are, for example, tri-family elements. The total elemental dose is the same as the total elemental dose of the Group 5 element. Conversely, the "non-chemically-accepting compound" such as the total elemental dose of the Group III element is different from the total elemental dose of the Group V element. For example, the chemical expression is AlGaAs, which means that the tri-group element aluminum (Al) and/or gallium (Ga), and the five-element element arsenic (As), of which the tri-group elements (aluminum and/or gallium) are total. The elemental dose may be the same as or different from the total elemental dose of the Group V element (arsenic). Further, if each of the compounds represented by the chemical expression is a chemical compound, AlGaAs represents Al x Ga (1-x) As, wherein 0 ≦ x ≦ 1; and AlInP represents Al x In (1-x ) P, wherein, 0 ≦ x ≦ 1; AlGaInP representative of (Al y Ga (1-y )) 1-x In x P, wherein, 0 ≦ x ≦ 1,0 ≦ y ≦ 1; AlGaN Representative Al x Ga ( 1-x) N, where 0≦x≦1; AlAsSb represents AlAs x Sb (1-x) , where 0≦x≦1; InGaP represents In x Ga 1-x P, where 0≦x≦1 InGaAsP represents In x Ga 1-x As 1-y P y , where 0≦x≦1, 0≦y≦1; InGaAsN represents In x Ga 1-x As 1-y N y , where 0≦x ≦1,0≦y≦1; AlGaAsP represents Al x Ga 1-x As 1-y P y , where 0≦x≦1,0≦y≦1; InGaAs represents In x Ga 1-x As, wherein 0≦x≦1. In the first embodiment, the first type doped semiconductor layer 112 may be a P type doped semiconductor layer, and the material thereof is, for example, P type gallium nitride; the second type doped semiconductor layer 116 may be an N type doped semiconductor. a layer, and the material thereof is, for example, N-type gallium nitride; the active layer 114 may comprise a plurality of quantum wells composed of a plurality of alternately stacked well layers and a barrier layer. For example, in some embodiments of the invention, the active layer 114 may also comprise a single heterostructure or a double heterostructure (double). Heterostructure) and so on. In addition, the epitaxial laminate 110 of each embodiment of the present invention can be formed by a method such as metalorganic chemical vapor deposition (MOCVD), molecular beam epitaxy (MBE) or hydride vapor phase epitaxy (HVPE).
如圖1A~1C所示,本實施例之光電半導體元件100另包含一第二電極130,第一電極120及第二電極130係分別電性連接於磊晶疊層110之第一型摻雜半導體層112及第二型摻雜半導體層116,其中,第一電極120與第二電極130設於磊晶疊層110之同一面,以形成一水平式(horizontal type)發光二極體,且第一電極120位於平台部P之第一型摻雜半導體層112上而與第一型摻雜半導體層112電性連接,第二電極130位於凹陷區E之第二型摻雜半導體層116上而與第二型摻雜半導體層116電性連接。在另一實施例中,第一電極120可設置於磊晶疊層110之表面S,而第二電極130則設置於磊晶疊層110之表面S的相對面,以形成一垂直式(vertical type)發光二極體(圖未示)。請參照圖1A,本實施例之第一電極120包括一第一電極墊122以及一第一延伸部124;第二電極130包括一第二電極墊132以及一第二延伸部134,且光電半導體元件100具有相對的一第一邊緣E1以及一第二邊緣E2,第一電極墊122及第二電極墊132係分別設置於靠近第二邊緣E2及第一邊緣E1的磊晶疊層110上,且第一延伸部124係自第一電極墊122往第一邊緣E1延伸,第二延伸部134係自第二電極墊132朝第二邊緣E2延伸。第一延伸部124的數量及第二延伸部134的數量可為數個,且數個第一延伸部124與數個第二延伸部134彼此交錯排列於第一電極墊122及第二電極墊132之間,但不以此為限,例如在本發明一些實施例中,第一延伸部124及第二延伸部134可各為一個,或第一延伸部124及第二延伸部134分別排列於光電半導體元件100的相對兩側。在第一實施例中,第一電極120與第二電極130分別是與第一型摻雜半導體層112以及第二型摻雜半導體層114具有低接觸電阻的金屬材質,舉例來說,第一電極120以及第二電極130的材質包含但不限於鋁(Al)、鉻(Cr)、銅(Cu)、錫(Sn)、金(Au)、鎳(Ni)、鈦(Ti)、鉑(Pt)、鉛(Pb)、鋅(Zn)、鎘(Cd)、銻(Sb)、鈷(Co)或上述材料之合金等。形成第一電極120以及第二電極130的方法可包含蒸鍍或者濺鍍,本發明並不以此為限。As shown in FIG. 1A to FIG. 1C, the optoelectronic semiconductor device 100 of the present embodiment further includes a second electrode 130. The first electrode 120 and the second electrode 130 are electrically connected to the first type doping of the epitaxial layer 110, respectively. a semiconductor layer 112 and a second type doped semiconductor layer 116, wherein the first electrode 120 and the second electrode 130 are disposed on the same side of the epitaxial layer 110 to form a horizontal type light emitting diode, and The first electrode 120 is located on the first type doped semiconductor layer 112 of the platform portion P and is electrically connected to the first type doped semiconductor layer 112. The second electrode 130 is located on the second type doped semiconductor layer 116 of the recessed region E. The second type doped semiconductor layer 116 is electrically connected. In another embodiment, the first electrode 120 may be disposed on the surface S of the epitaxial layer 110, and the second electrode 130 is disposed on the opposite surface of the surface S of the epitaxial layer 110 to form a vertical type (vertical) Type) Light-emitting diode (not shown). Referring to FIG. 1A, the first electrode 120 of the present embodiment includes a first electrode pad 122 and a first extension portion 124. The second electrode 130 includes a second electrode pad 132 and a second extension portion 134, and the optoelectronic semiconductor The element 100 has a first edge E1 and a second edge E2. The first electrode pad 122 and the second electrode pad 132 are respectively disposed on the epitaxial layer 110 adjacent to the second edge E2 and the first edge E1. The first extension portion 124 extends from the first electrode pad 122 to the first edge E1, and the second extension portion 134 extends from the second electrode pad 132 toward the second edge E2. The number of the first extending portions 124 and the number of the second extending portions 134 may be several, and the plurality of first extending portions 124 and the plurality of second extending portions 134 are staggered with each other on the first electrode pad 122 and the second electrode pad 132. Between the first extension 124 and the second extension 134, respectively, or the first extension 124 and the second extension 134 are respectively arranged in the embodiment. Opposite sides of the optoelectronic semiconductor component 100. In the first embodiment, the first electrode 120 and the second electrode 130 are respectively made of a metal material having a low contact resistance with the first type doped semiconductor layer 112 and the second type doped semiconductor layer 114, for example, the first The material of the electrode 120 and the second electrode 130 includes, but is not limited to, aluminum (Al), chromium (Cr), copper (Cu), tin (Sn), gold (Au), nickel (Ni), titanium (Ti), platinum ( Pt), lead (Pb), zinc (Zn), cadmium (Cd), antimony (Sb), cobalt (Co) or an alloy of the above materials. The method of forming the first electrode 120 and the second electrode 130 may include evaporation or sputtering, and the invention is not limited thereto.
請續參照圖1A~1C,在本實施例中,電流分散層14包含一第一電流分散層140及一第二電流分散層150。第一電流分散層140包含一主體部142以及連接於主體部142之一延伸部144,主體部142位於磊晶疊層110之第一區域R1上,而延伸部144係自主體部142向外延伸至磊晶疊層110之第二區域R2上。第二電流分散層150以及第一電流分散層140的主體部142位於磊晶疊層110與第一電極120之間,且第二電流分散層150與第一電流分散層140的主體部142係堆疊於第一區域R1上,在一實施例中,磊晶疊層110與第一電極120共同夾設第二電流分散層150以及第一電流分散層140的主體部142。具體來說,第二電流分散層150僅位於第一區域R1上而未延伸至第二區域R1,且第二電流分散層150係位於第一電流分散層140及磊晶疊層110之間。詳言之,請參照圖1C所示,第二電流分散層150具有一第一上表面152以及一第一側表面154,第一上表面152係為第二電流分散層150遠離磊晶疊層110的面,第一側表面154則與第一上表面152非共平面且彼此連接。第一電流分散層140覆蓋至少部分的第一上表面152及第一側表面154,在本實施例中,第一電流分散層140係完整覆蓋在第二電流分散層150之第一上表面152及第一側表面154上。第一電流分散層140與第二電流分散層150對主動層114之放射或吸收光具有85%以上之穿透率,舉例而言,第一電流分散層140與第二電流分散層150包含一材質係選自由氧化銦錫(ITO)、氧化銦(InO)、氧化錫(SnO)、氧化鎘錫(CTO)、氧化銻錫(ATO)、氧化鋁鋅(AZO)、氧化鋅錫(ZTO)、氧化鎵鋅(GZO)、氧化鋅(ZnO)、磷化鎵(GaP)、氧化銦鋅(IZO)、類鑽碳薄膜(DLC)、氧化銦鎵(IGO)、氧化鎵鋁鋅(GAZO)、石墨烯(Graphene)所組成之群組,本發明並不以此為限。另外,第一電流分散層140與第二電流分散層150的材質可以是相同或者不相同;另一實施例中,第一電流分散層140與第二電流分散層150的導電率可以是相同或不相同;又一實施例中,在磊晶疊層110的堆疊方向上,第一電流分散層140與第二電流分散層150可具有相同或不同厚度;再一實施例中,第一電流分散層140與第二電流分散層150的導電率相同,且兩者在磊晶疊層110的堆疊方向上具有不同厚度;再一實施例中,第一電流分散層140與第二電流分散層150係具有不同導電率之不同材料,且第一電流分散層140在磊晶疊層110的堆疊方向上的厚度小於第二電流分散層150的厚度。本發明之各實施例中所述的厚度,若無特別說明,係為沿著磊晶疊層110的堆疊方向上量測各別元件的長度。Referring to FIG. 1A to FIG. 1C , in the embodiment, the current dispersion layer 14 includes a first current dispersion layer 140 and a second current dispersion layer 150 . The first current dispersion layer 140 includes a body portion 142 and an extension portion 144 connected to the body portion 142. The body portion 142 is located on the first region R1 of the epitaxial layer 110, and the extension portion 144 is outward from the body portion 142. Extending to the second region R2 of the epitaxial stack 110. The second current dispersion layer 150 and the main body portion 142 of the first current dispersion layer 140 are located between the epitaxial layer 110 and the first electrode 120, and the second current dispersion layer 150 and the body portion 142 of the first current dispersion layer 140 are Stacked on the first region R1, in one embodiment, the epitaxial layer 110 and the first electrode 120 are interposed between the second current dispersion layer 150 and the body portion 142 of the first current dispersion layer 140. Specifically, the second current dispersion layer 150 is only located on the first region R1 and does not extend to the second region R1, and the second current dispersion layer 150 is located between the first current dispersion layer 140 and the epitaxial laminate 110. In detail, referring to FIG. 1C, the second current dispersion layer 150 has a first upper surface 152 and a first side surface 154, and the first upper surface 152 is a second current dispersion layer 150 away from the epitaxial layer. The faces of the first side surface 154 are then non-coplanar with the first upper surface 152 and are connected to each other. The first current dispersion layer 140 covers at least a portion of the first upper surface 152 and the first side surface 154. In the embodiment, the first current dispersion layer 140 completely covers the first upper surface 152 of the second current dispersion layer 150. And on the first side surface 154. The first current dispersion layer 140 and the second current dispersion layer 150 have a transmittance of 85% or more for the radiation or absorption light of the active layer 114. For example, the first current dispersion layer 140 and the second current dispersion layer 150 include one. The material is selected from indium tin oxide (ITO), indium oxide (InO), tin oxide (SnO), cadmium tin oxide (CTO), antimony tin oxide (ATO), aluminum zinc oxide (AZO), zinc tin oxide (ZTO). , gallium zinc oxide (GZO), zinc oxide (ZnO), gallium phosphide (GaP), indium zinc oxide (IZO), diamond-like carbon film (DLC), indium gallium oxide (IGO), gallium aluminum zinc oxide (GAZO) The group consisting of graphene (Graphene) is not limited thereto. In addition, the materials of the first current dispersion layer 140 and the second current dispersion layer 150 may be the same or different; in another embodiment, the conductivity of the first current dispersion layer 140 and the second current dispersion layer 150 may be the same or In another embodiment, in the stacking direction of the epitaxial layer 110, the first current dispersion layer 140 and the second current dispersion layer 150 may have the same or different thicknesses; in still another embodiment, the first current dispersion The conductivity of the layer 140 and the second current dispersion layer 150 are the same, and both have different thicknesses in the stacking direction of the epitaxial layer 110; in still another embodiment, the first current dispersion layer 140 and the second current dispersion layer 150 Different materials having different electrical conductivities, and the thickness of the first current dispersion layer 140 in the stacking direction of the epitaxial layer 110 is smaller than the thickness of the second current dispersion layer 150. The thicknesses described in the various embodiments of the present invention are measured along the stacking direction of the epitaxial stack 110, unless otherwise specified.
請再參照圖1C,在第一區域R1上,第一電流分散層140的主體部142具有一第一厚度T1,第二電流分散層150具有一第二厚度T2,第一厚度T1與第二厚度T2的總和為一第三厚度T3。在第二區域R2上,第一電流分散層140的延伸部144具有一第四厚度T4。在一實施例中,第四厚度T4與第二電流分散層150之第二厚度T2相異,即第四厚度T4可小於或大於第二厚度T2;又一實施例中,第四厚度T4等於第二電流分散層150之第二厚度T2;又一實施例中,第一電流分散層140具有一均勻厚度,即位於第一區域R1的主體部142之第一厚度T1等於位於第二區域R2的延伸部144之第四厚度T4。又一實施例中,第一厚度T1與第四厚度T4相異,即第四厚度T4可小於或大於第一厚度T1。又一實施例中,第四厚度T4具有一不均勻厚度,例如延伸部144的第四厚度T4由主體部142往光電半導體元件100邊緣的方向逐漸減少,或延伸部144在接近主體部142的第四厚度T4大於延伸部144在接近光電半導體元件100邊緣的第四厚度T4;反之亦可。在一實施例中,第二電流分散層150的第二厚度T2可為第一電流分散層140的第一厚度T1的2-3倍,使電流分散層的14在第一電極120下的總和厚度T3大於第一電流分散層140的延伸部144具有一第四厚度T4,以取得更佳的電流擴散效果,但不以此為限,例如第二電流分散層150的第二厚度T2亦可與第一電流分散層140的第一厚度T1相同。Referring to FIG. 1C again, in the first region R1, the main body portion 142 of the first current dispersion layer 140 has a first thickness T1, and the second current dispersion layer 150 has a second thickness T2, the first thickness T1 and the second portion. The sum of the thicknesses T2 is a third thickness T3. On the second region R2, the extension 144 of the first current dispersion layer 140 has a fourth thickness T4. In an embodiment, the fourth thickness T4 is different from the second thickness T2 of the second current dispersion layer 150, that is, the fourth thickness T4 may be smaller or larger than the second thickness T2; in still another embodiment, the fourth thickness T4 is equal to The second thickness T2 of the second current dispersion layer 150; in still another embodiment, the first current dispersion layer 140 has a uniform thickness, that is, the first thickness T1 of the body portion 142 located in the first region R1 is equal to the second region R2. The fourth thickness T4 of the extension 144. In still another embodiment, the first thickness T1 is different from the fourth thickness T4, that is, the fourth thickness T4 may be smaller or larger than the first thickness T1. In still another embodiment, the fourth thickness T4 has a non-uniform thickness, for example, the fourth thickness T4 of the extension portion 144 is gradually reduced from the main body portion 142 toward the edge of the optoelectronic semiconductor component 100, or the extension portion 144 is adjacent to the main body portion 142. The fourth thickness T4 is greater than the fourth thickness T4 of the extension portion 144 near the edge of the optoelectronic semiconductor component 100; vice versa. In an embodiment, the second thickness T2 of the second current dispersion layer 150 may be 2-3 times the first thickness T1 of the first current dispersion layer 140, and the sum of the current dispersion layer 14 under the first electrode 120. The thickness T3 is greater than the extension 144 of the first current dispersion layer 140 and has a fourth thickness T4 to achieve a better current spreading effect, but not limited thereto. For example, the second thickness T2 of the second current dispersion layer 150 may also be It is the same as the first thickness T1 of the first current dispersion layer 140.
在第一實施例中,第四厚度T4係小於第二厚度T2,且第三厚度T3與第四厚度T4的比值範圍為1.5至15,較佳地,在比值範圍為4至10時,光電半導體元件100能夠獲得更高的亮度提升。下表一係呈現不同的第三厚度T3與第四厚度T4的比值條件下,發光二極體之順向電壓(亦稱起始電壓,forward voltage/ Vf )及亮度的表現,其中,第一厚度T1及第四厚度T4固定於330 埃(Å),並調整第二厚度T2分別為0 Å(第A1組)、1000 Å(第A2組)、2000 Å(第A3組)及3000 Å(第A4組)。由表一可知,相對於不具有第二電流分散層150之發光二極體(第A1組),當設置有厚度為1000~3000 Å之第二電流分散層150時,確實能夠降低發光二極體之順向電壓並提升發光二極體之亮度,亦即本發明之光電半導體元件具有較習知技術更好的光電轉換效率。In the first embodiment, the fourth thickness T4 is smaller than the second thickness T2, and the ratio of the third thickness T3 to the fourth thickness T4 ranges from 1.5 to 15, preferably, when the ratio ranges from 4 to 10, the photoelectric The semiconductor component 100 is capable of achieving a higher brightness enhancement. The following table shows the forward voltage (also known as the starting voltage, forward voltage/V f ) and the brightness of the light-emitting diode under different conditions of the ratio of the third thickness T3 to the fourth thickness T4, wherein A thickness T1 and a fourth thickness T4 are fixed at 330 Å (Å), and the second thickness T2 is adjusted to 0 Å (Group A1), 1000 Å (Group A2), 2000 Å (Group A3), and 3000 Å. (Group A4). As can be seen from Table 1, with respect to the light-emitting diode (Group A1) having no second current dispersion layer 150, when the second current dispersion layer 150 having a thickness of 1000 to 3000 Å is provided, the light-emitting diode can be reduced. The forward voltage of the body enhances the brightness of the light-emitting diode, that is, the photoelectric semiconductor element of the present invention has better photoelectric conversion efficiency than the conventional technology.
表一
承上述,在本實施例的光電半導體元件100中,第二電流分散層150以及第一電流分散層140的主體部142位於磊晶疊層110與第一電極120之間,使第一區域R1上的電流分散層14的厚度較第二區域R2上的電流分散層14的厚度厚,提升載子由第一區域R1往第二區域R2橫向擴散的能力。因此,本實施例的光電半導體元件100具有較佳的電流分散能力,順向電壓亦可以隨之降低。另外,在本實施例的光電半導體元件100中,第一區域R1係位於第一電極120下方,因此磊晶疊層110往第一區域R1發射的光線被第一電極120所遮蔽,故即使在第一區域R1與第一電極120之間的電流分散層14的厚度較厚,本實施例的光電半導體元件100在增進電流分散的同時仍能維持發光效率,而避免較厚電流分散層14造成遮光效應的影響。As described above, in the optoelectronic semiconductor device 100 of the present embodiment, the second current dispersion layer 150 and the main body portion 142 of the first current dispersion layer 140 are located between the epitaxial layer 110 and the first electrode 120, so that the first region R1 The thickness of the current dispersion layer 14 is thicker than the thickness of the current dispersion layer 14 on the second region R2, and the ability of the carrier to laterally diffuse from the first region R1 to the second region R2 is enhanced. Therefore, the optoelectronic semiconductor component 100 of the present embodiment has a better current dispersion capability, and the forward voltage can also be reduced. In addition, in the optoelectronic semiconductor device 100 of the present embodiment, the first region R1 is located under the first electrode 120, so the light emitted from the epitaxial layer 110 to the first region R1 is shielded by the first electrode 120, so even in The thickness of the current dispersion layer 14 between the first region R1 and the first electrode 120 is relatively thick, and the optoelectronic semiconductor device 100 of the present embodiment can maintain the luminous efficiency while increasing the current dispersion, while avoiding the thick current dispersion layer 14 The effect of the shading effect.
請參照圖1A,在本實施例中,由光電半導體元件100之上視圖觀之,第一電極120之延伸部124具有一第一寬度W1,位於第一區域R1上且大致位於延伸部124下方的第二電流分散層150具有一第二寬度W2,第二寬度W2與第一寬度W1的比值約為2~5,例如第一寬度W1為3 mm,第二寬度W2為10 mm,第二寬度W2與第一寬度W1的比值為3.33。Referring to FIG. 1A, in the embodiment, the extension portion 124 of the first electrode 120 has a first width W1 located on the first region R1 and substantially below the extension portion 124. The second current dispersion layer 150 has a second width W2, and the ratio of the second width W2 to the first width W1 is about 2 to 5, for example, the first width W1 is 3 mm, and the second width W2 is 10 mm. The ratio of the width W2 to the first width W1 is 3.33.
請續參照圖1A~1C,本實施例之第一電流分散層140具有一第一內輪廓140’及一第一外輪廓140’’環繞第一內輪廓140’,第二電流分散層150具有一第二內輪廓150’及一第二外輪廓150’’環繞第二內輪廓150’,其中,第一內輪廓140’及第二內輪廓150’係位於第一區域R1上,且位於第一電極墊122的下方,第一外輪廓140’’則靠近第一邊緣E1及第二邊緣E2。第一內輪廓140’及第二內輪廓150’的形狀係與第一電極墊122的外輪廓形狀大致相同或相似,且第二內輪廓150’係環繞第一內輪廓140’,舉例來說,當第一電極墊122由光電半導體元件100的上視觀之大致為圓形時,該第一內輪廓140’及第二內輪廓150’的形狀亦大致為圓形。詳言之,第一內輪廓140’環繞形成一第一開口O1,且第一開口O1暴露磊晶疊層110之第一區域R1,第二內輪廓150’環繞形成一第二開口O2,且由光電半導體元件100的上視觀之,第二開口O2的面積係大於第一開口O1的面積。另外,在本實施例中,部分的第一電極120填充於第一開口O1內,並與第一型摻雜半導體層112電性連接。1A to 1C, the first current dispersion layer 140 of the present embodiment has a first inner contour 140' and a first outer contour 140'' surrounding the first inner contour 140', and the second current dispersion layer 150 has A second inner contour 150 ′ and a second outer contour 150 ′′ surround the second inner contour 150 ′, wherein the first inner contour 140 ′ and the second inner contour 150 ′ are located on the first region R1 and are located at the first Below the electrode pad 122, the first outer profile 140'' is adjacent to the first edge E1 and the second edge E2. The shapes of the first inner contour 140' and the second inner contour 150' are substantially the same or similar to the outer contour shape of the first electrode pad 122, and the second inner contour 150' surrounds the first inner contour 140', for example, for example. When the first electrode pad 122 is substantially circular from the upper side of the optoelectronic semiconductor component 100, the first inner profile 140' and the second inner profile 150' are also substantially circular in shape. In detail, the first inner contour 140' surrounds a first opening O1, and the first opening O1 exposes the first region R1 of the epitaxial layer 110, and the second inner contour 150' surrounds and forms a second opening O2. From the top of the optoelectronic semiconductor component 100, the area of the second opening O2 is larger than the area of the first opening O1. In addition, in this embodiment, a portion of the first electrode 120 is filled in the first opening O1 and electrically connected to the first type doped semiconductor layer 112.
請再參照圖1A所示,第二電流分散層150的外輪廓150’’形狀係與該第一電極120的外輪廓形狀大致相同或相似。另外,由上視觀之,第二電流分散層150的第二外輪廓150’’係位於第一電極120的外輪廓外,且第二電流分散層150之上表面積與第一電極120的上表面積的比值範圍為1.4至2.5。在本實施例中,較佳地,第二電流分散層150的上表面積與第一電極120的上表面積的比值範圍為1.4至2,更佳為1.6至1.9。在如圖3所示的另一實施例中,第二電流分散層150為實心結構而未具有第二開口O2,故具體來說,由上視觀之,此實施例之第二電流分散層150的上表面積與第一電極120的上表面積的比值範圍為1.8至2.5,較佳為2.2至2.4,但並不以此為限。在第一實施例中,由於第一電流分散層140之主體部142及延伸部144可具有相同厚度,且第二電流分散層150僅設於第一區域R1上,故可將上視圖所觀察到第二電流分散層150之第二外輪廓150’’環繞第一電極120所形成之區域界定為第一區域R1的範圍。Referring again to FIG. 1A, the outer contour 150'' of the second current dispersion layer 150 is substantially the same or similar in shape to the outer contour of the first electrode 120. In addition, from a top view, the second outer contour 150'' of the second current dispersion layer 150 is located outside the outer contour of the first electrode 120, and the surface area above the second current dispersion layer 150 is on the upper surface of the first electrode 120. The ratio of surface area ranges from 1.4 to 2.5. In the present embodiment, preferably, the ratio of the upper surface area of the second current dispersion layer 150 to the upper surface area of the first electrode 120 ranges from 1.4 to 2, more preferably from 1.6 to 1.9. In another embodiment as shown in FIG. 3, the second current dispersion layer 150 has a solid structure and does not have a second opening O2. Therefore, in particular, the second current dispersion layer of this embodiment is viewed from above. The ratio of the upper surface area of 150 to the upper surface area of the first electrode 120 ranges from 1.8 to 2.5, preferably from 2.2 to 2.4, but is not limited thereto. In the first embodiment, since the main body portion 142 and the extending portion 144 of the first current dispersion layer 140 may have the same thickness, and the second current dispersion layer 150 is disposed only on the first region R1, the upper view can be observed. A region formed by the second outer contour 150'' of the second current dispersion layer 150 around the first electrode 120 is defined as a range of the first region R1.
請再參照圖1B~1C,在本實施例中,光電半導體元件100更包括電流阻擋層160位於第一電極120與磊晶疊層110之間。詳言之,本實施例之電流阻擋層160位於磊晶疊層110與第一電流分散層140或第二電流分散層150之間。另外,如圖1B所示,電流阻擋層160亦可選擇性地設於第二電極130與磊晶疊層110之間。電流阻擋層160具有一第二上表面162及一第二側表面164,第二上表面162係電流阻擋層160遠離磊晶疊層110的面且第二上表面162與第二側表面164彼此連接,且第二側表面164不平行於第二上表面162。第二電流分散層150覆蓋電流阻擋層160的第二上表面162,且未凸伸至超出電流阻擋層160之邊緣,亦未覆蓋電流阻擋層160的第二側表面164。Referring to FIGS. 1B to 1C again, in the embodiment, the optoelectronic semiconductor component 100 further includes a current blocking layer 160 between the first electrode 120 and the epitaxial stack 110. In detail, the current blocking layer 160 of the present embodiment is located between the epitaxial layer 110 and the first current dispersion layer 140 or the second current dispersion layer 150. In addition, as shown in FIG. 1B, the current blocking layer 160 may also be selectively disposed between the second electrode 130 and the epitaxial layer stack 110. The current blocking layer 160 has a second upper surface 162 and a second side surface 164. The second upper surface 162 is a surface of the current blocking layer 160 away from the epitaxial layer 110 and the second upper surface 162 and the second side surface 164 are adjacent to each other. Connected, and the second side surface 164 is not parallel to the second upper surface 162. The second current spreading layer 150 covers the second upper surface 162 of the current blocking layer 160 and does not protrude beyond the edge of the current blocking layer 160 nor the second side surface 164 of the current blocking layer 160.
如圖1A所示,在本實施例中,由上視觀之,第二電流分散層150的面積小於電流阻擋層160的面積,且第二電流分散層150的位置大致對應於電流阻擋層160的位置,具體來說,第二電流分散層150與電流阻擋層160在磊晶疊層110的堆疊方向上係互相重疊,且第二電流分散層150之第二外輪廓150’’係在電流阻擋層160的第三外輪廓160’’所環繞形成之對應區域內,換言之,如圖1B或1C所示,第二電流分散層150在橫向方向上並未凸出於電流阻擋層160,即避免第二電流分散層150的邊緣懸空,如此可讓光電半導體元件100具有良好的靜電耐受力,並可降低電性失效的風險,但本發明不以此為限。例如在另一實施例中,第二電流分散層150之上表面積亦可大於電流阻擋層160之上表面積,但第二電流分散層150需同時覆蓋於電流阻擋層160之第二上表面162及第二側表面164。另外,如圖1C所示,在本實施例中,電流阻擋層160具有一第三內輪廓160’及一第三外輪廓160’’環繞第三內輪廓160’,且第三內輪廓160’係環繞形成一第三開口O3,其中,電流阻擋層160的第三開口O3係對應第二電流分散層150的第二開口O2,且由上視觀之,第二開孔O2的面積係大於第三開孔O3的面積。電流阻擋層160可包括一介電材料係選自由矽氧化物(SiOx )、氮化矽(SiNx )、氮氧化矽(SiOx Ny )或鈦氧化物(TiOx )等所組成之群組,本發明並不以此為限。As shown in FIG. 1A, in the present embodiment, the area of the second current dispersion layer 150 is smaller than the area of the current blocking layer 160, and the position of the second current dispersion layer 150 substantially corresponds to the current blocking layer 160. The position, in particular, the second current dispersion layer 150 and the current blocking layer 160 overlap each other in the stacking direction of the epitaxial layer 110, and the second outer contour 150'' of the second current dispersion layer 150 is tied to the current The second outer contour 160' of the barrier layer 160 is surrounded by a corresponding region, in other words, as shown in FIG. 1B or 1C, the second current dispersion layer 150 does not protrude from the current blocking layer 160 in the lateral direction, that is, The edge of the second current dispersion layer 150 is prevented from being suspended, so that the photoelectric semiconductor device 100 has good electrostatic resistance and can reduce the risk of electrical failure, but the invention is not limited thereto. For example, in another embodiment, the surface area of the second current dispersion layer 150 may be greater than the surface area of the current blocking layer 160, but the second current dispersion layer 150 needs to cover the second upper surface 162 of the current blocking layer 160 at the same time. Second side surface 164. In addition, as shown in FIG. 1C, in the present embodiment, the current blocking layer 160 has a third inner contour 160' and a third outer contour 160'' surrounding the third inner contour 160', and the third inner contour 160' A third opening O3 is formed around the third opening O3, wherein the third opening O3 of the current blocking layer 160 corresponds to the second opening O2 of the second current dispersion layer 150, and the area of the second opening O2 is larger than that of the second opening O2. The area of the third opening O3. The current blocking layer 160 may include a dielectric material selected from the group consisting of cerium oxide (SiO x ), cerium nitride (SiN x ), cerium oxynitride (SiO x N y ), or titanium oxide (TiO x ). The group, the invention is not limited thereto.
請參照圖1B,在本實施例中,光電半導體元件100更包括基板170、反射層180以及保護層190。基板170具有相對的第一側S1以及第二側S2,磊晶疊層110位於基板170之第一側S1上,反射層170則位於基板170之第二側S2上。保護層190覆蓋光電半導體元件100的表面並暴露出第一電極120的至少一部分以及第二電極130的至少一部分,以供後續與外界電源電性連接。本實施例的基板170為圖案化基板(Patterned Substrate),其位於第一側S1的表面具有多個圖案化結構172。在本發明之實施例中,基板170材質可包含藍寶石(Sapphire)、碳化矽(SiC)、矽(Si)、氮化鎵(GaN)、砷化鎵(GaAs)、磷化鎵(GaP)、鋁(Al)、銅(Cu)、鉬(Mo)或鎢(W)等元素又或這些元素的組合,反射層180可包含一金屬層及/或具有複數對副層的一布拉格反射鏡(distributed Bragg reflector, DBR),其中任一副層包含不同於相鄰副層的一折射係數(refractive index),例如在一實施例中,反射層180為布拉格反射鏡且包含複數層交疊的氧化矽(SiOx )及氧化鈦(TiOx )。又一實施例中,反射層180同時具有金屬層及布拉格反射鏡,且金屬層設於布拉格反射鏡下方,以共同形成一全方位反射鏡(omni- directionally reflector)。保護層190可包括一介電材料係選自由矽氧化物(SiOx )、氮化矽(SiNx )、氮氧化矽(SiOx Ny )或鈦氧化物(TiOx )所組成之群組,本發明並不以此為限。Referring to FIG. 1B , in the embodiment, the optoelectronic semiconductor component 100 further includes a substrate 170 , a reflective layer 180 , and a protective layer 190 . The substrate 170 has an opposite first side S1 and a second side S2. The epitaxial layer 110 is located on the first side S1 of the substrate 170, and the reflective layer 170 is located on the second side S2 of the substrate 170. The protective layer 190 covers the surface of the optoelectronic semiconductor component 100 and exposes at least a portion of the first electrode 120 and at least a portion of the second electrode 130 for subsequent electrical connection to an external power source. The substrate 170 of the present embodiment is a patterned substrate having a plurality of patterned structures 172 on the surface of the first side S1. In an embodiment of the invention, the substrate 170 may comprise sapphire, tantalum carbide (SiC), germanium (Si), gallium nitride (GaN), gallium arsenide (GaAs), gallium phosphide (GaP), An element such as aluminum (Al), copper (Cu), molybdenum (Mo) or tungsten (W) or a combination of these elements, the reflective layer 180 may comprise a metal layer and/or a Bragg mirror having a plurality of pairs of sub-layers ( Distributed Bragg reflector, DBR), any of the sub-layers comprising a refractive index different from the adjacent sub-layers, for example, in one embodiment, the reflective layer 180 is a Bragg mirror and comprises a plurality of layers of overlapping oxidation矽 (SiO x ) and titanium oxide (TiO x ). In still another embodiment, the reflective layer 180 has both a metal layer and a Bragg mirror, and the metal layer is disposed under the Bragg mirror to collectively form an omni-directionally reflector. The protective layer 190 may include a dielectric material selected from the group consisting of cerium oxide (SiO x ), cerium nitride (SiN x ), cerium oxynitride (SiO x N y ), or titanium oxide (TiO x ). The invention is not limited thereto.
下述實施例沿用前述實施例的元件標號與部分內容,其中採用相同的標號來表示相同或近似的元件,並且省略了相同技術內容的說明。關於省略部分的說明可參考前述實施例,下述實施例不再重複贅述。The following embodiments are used to identify the same or similar elements, and the description of the same technical content is omitted. For the description of the omitted portions, reference may be made to the foregoing embodiments, and the following embodiments are not repeated.
圖2A至圖2D是第一實施例的光電半導體元件100的不同製程階段之結構示意圖。於以下的段落中介紹本實施例之光電半導體元件100的製造方法。2A to 2D are schematic views showing the structure of different process stages of the optoelectronic semiconductor device 100 of the first embodiment. A method of manufacturing the optoelectronic semiconductor component 100 of the present embodiment is described in the following paragraphs.
請參照圖2A~2B,光電半導體元件100的製造方法包含提供一基板170,基板170具有相對之一第一側S1及一第二側S2,其中位於第一側S1的表面可為平面或具有多個圖案化結構172;以及設置磊晶疊層110在基板170的第一側S1的表面上。具體來說,在基板170的第一側S1的表面上依序形成第二型摻雜半導體層116、主動層114以及第一型摻雜半導體層112。接著,蝕刻部分第一型摻雜半導體層112以及部分主動層114,以暴露第二型摻雜半導體層116,藉此定義出磊晶疊層110之平台部P及凹陷區E。在本實施例中,磊晶疊層110可藉由前述之磊晶成長方法如有機金屬化學氣相沉積法、分子束磊晶法或氫化物氣相磊晶法等直接成長於基板121上,但不以此為限;在一些實施例中,磊晶疊層110亦可先磊晶成長於一成長基板後,再藉由轉移技術將磊晶疊層110透過一接合層接合基板170並移除所述之成長基板,其中接合層的材料可包含有機材料、無機材料、導電材料、介電材料、磁性材料或非磁性材料等等,接合的方法可以包含黏接、焊接或吸附等等;或者,在一些實施例中,磊晶疊層110在移除成長基板後不再接合任何基板,以形成不具有基板結構且厚度縮減的光電半導體元件100,而可使用於各種光電產品的薄型化應用,如電視、顯示器、廣告看板、車用或個人行動顯示裝置等等。Referring to FIGS. 2A-2B, the method of fabricating the optoelectronic semiconductor device 100 includes providing a substrate 170 having a first side S1 and a second side S2, wherein the surface on the first side S1 may be planar or have a plurality of patterned structures 172; and an epitaxial stack 110 disposed on a surface of the first side S1 of the substrate 170. Specifically, the second type doped semiconductor layer 116, the active layer 114, and the first type doped semiconductor layer 112 are sequentially formed on the surface of the first side S1 of the substrate 170. Next, a portion of the first type doped semiconductor layer 112 and a portion of the active layer 114 are etched to expose the second type doped semiconductor layer 116, thereby defining the land portion P and the recess region E of the epitaxial layer stack 110. In this embodiment, the epitaxial layer stack 110 can be directly grown on the substrate 121 by the above-described epitaxial growth method, such as an organometallic chemical vapor deposition method, a molecular beam epitaxy method, or a hydride vapor phase epitaxy method. However, in some embodiments, the epitaxial layer 110 may be epitaxially grown on a growth substrate, and then the epitaxial layer 110 is transferred to the substrate 170 through a bonding layer by a transfer technique. In addition to the growth substrate, wherein the material of the bonding layer may comprise an organic material, an inorganic material, a conductive material, a dielectric material, a magnetic material or a non-magnetic material, etc., the bonding method may include bonding, soldering or adsorption, and the like; Alternatively, in some embodiments, the epitaxial laminate 110 does not bond any substrate after removing the grown substrate to form the optoelectronic semiconductor component 100 having no substrate structure and reduced thickness, and can be used for thinning of various optoelectronic products. Applications such as televisions, displays, billboards, car or personal mobile display devices, and the like.
接著,請參照圖2C,本實施例之光電半導體元件100的製造方法還包含設置電流阻擋材料CB以及第一電流分散材料CS1在磊晶疊層110上,以覆蓋蝕刻後的磊晶疊層110;以及設置圖案化光阻層PR1在電流分散材料CS1上,以定義出第二電流分散層150以及電流阻擋層160的範圍與形狀。設置電流阻擋材料CB的方式例如是化學氣相沉積(Chemical Vapor Deposition, CVD)或物理氣相沉積(Physical Vapor Deposition, PVD),設置第一電流分散材料CS1的方式例如為濺鍍,惟本發明並不以此為限。Next, referring to FIG. 2C, the method for fabricating the optoelectronic semiconductor device 100 of the present embodiment further includes disposing a current blocking material CB and a first current dispersing material CS1 on the epitaxial layer 110 to cover the etched epitaxial layer 110. And setting the patterned photoresist layer PR1 on the current dispersion material CS1 to define the range and shape of the second current dispersion layer 150 and the current blocking layer 160. The method of setting the current blocking material CB is, for example, chemical vapor deposition (CVD) or physical vapor deposition (PVD), and the method of disposing the first current dispersion material CS1 is, for example, sputtering, but the invention Not limited to this.
之後,請參照圖2D,本實施例之光電半導體元件100的製造方法還包含依序蝕刻第一電流分散材料CS1以及電流阻擋材料CB,以分別形成第二電流分散層150以及電流阻擋層160,並移除圖案化光阻層PR1;接著,設置第二電流分散材料CS2以覆蓋磊晶疊層110、第二電流分散層150及電流阻擋層160,並在第二電流分散材料CS2上形成圖案化光阻層PR2,其中圖案化光阻層PR2用以定義出第一電流分散層140的範圍以及形狀。其中移除圖案化光阻層PR1及PR2的方法例如是透過顯影液來移除。2D, the method for fabricating the optoelectronic semiconductor device 100 of the present embodiment further includes sequentially etching the first current dispersion material CS1 and the current blocking material CB to form the second current dispersion layer 150 and the current blocking layer 160, respectively. And removing the patterned photoresist layer PR1; then, the second current dispersion material CS2 is disposed to cover the epitaxial layer 110, the second current dispersion layer 150, and the current blocking layer 160, and form a pattern on the second current dispersion material CS2. The photoresist layer PR2 is patterned, and the patterned photoresist layer PR2 is used to define the range and shape of the first current dispersion layer 140. The method in which the patterned photoresist layers PR1 and PR2 are removed is, for example, removed by a developer.
然後,請參照圖2E與1A,本實施例之光電半導體元件100的製造方法還包含蝕刻部分的第二電流分散材料CS2以形成第一電流分散層140,並同時一併蝕刻去除位於凹陷區E之電流阻擋層160上方的第二電流分散層150;接著,於第一電流分散層140上形成第一電極120以及於磊晶疊層110的凹陷部E上形成第二電極130;以及,形成保護層190在磊晶疊層110上,其中,保護層190暴露部分第一電極120以及部分第二電極130;之後,再將反射層180形成於基板170之第二側S2。2E and 1A, the method for fabricating the optoelectronic semiconductor device 100 of the present embodiment further includes etching a portion of the second current dispersion material CS2 to form the first current dispersion layer 140, and simultaneously etching and removing the recessed region E. a second current dispersion layer 150 over the current blocking layer 160; then, forming a first electrode 120 on the first current dispersion layer 140 and forming a second electrode 130 on the recess E of the epitaxial layer 110; and forming The protective layer 190 is on the epitaxial layer 110, wherein the protective layer 190 exposes a portion of the first electrode 120 and a portion of the second electrode 130; thereafter, the reflective layer 180 is formed on the second side S2 of the substrate 170.
在本發明一實施例中,光電半導體元件100的製造方法還可包含透過同一道黃光製程同時形成第二電流分散層150以及電流阻擋層160(如圖2C及圖2D所示),如此可將黃光製程的次數維持與習知技術相同的數量,故可提升光電半導體元件100的電流分散能力且不增加或維持與習知技術相同的製造成本。其中,透過同一道黃光製程形成第二電流分散層150以及電流阻擋層160的方式可包含在同一道黃光曝光之後,使用對第一電流分散材料CS1及電流阻擋材料CB有不同的蝕刻速率之蝕刻液進行蝕刻,以形成第二電流分散層150及電流阻擋層160,且電流阻擋層160的上表面積大於第二電流分散層150的上表面積,但本發明不以此為限。在一實施例中,光電半導體元件100的製造方法可包含以一第一蝕刻液先蝕刻第一電流分散材料CS1,再以不同於第一蝕刻液之一第二蝕刻液蝕刻電流阻擋材料CB,而後再以第一蝕刻液對第一電流分散材料CS1進行二次蝕刻,而使第二電流擴散層150的表面積小於電流阻擋層160的表面積。In an embodiment of the invention, the method of fabricating the optoelectronic semiconductor device 100 may further include simultaneously forming the second current dispersion layer 150 and the current blocking layer 160 through the same yellow light process (as shown in FIG. 2C and FIG. 2D). The number of times of the yellow light process is maintained the same as that of the prior art, so that the current dispersion capability of the optoelectronic semiconductor component 100 can be improved without increasing or maintaining the same manufacturing cost as the prior art. The manner of forming the second current dispersion layer 150 and the current blocking layer 160 through the same yellow light process may include using different etching rates for the first current dispersion material CS1 and the current blocking material CB after the same yellow light exposure. The etchant is etched to form the second current dispersion layer 150 and the current blocking layer 160, and the upper surface area of the current blocking layer 160 is larger than the upper surface area of the second current dispersion layer 150, but the invention is not limited thereto. In an embodiment, the manufacturing method of the optoelectronic semiconductor device 100 may include etching the first current dispersion material CS1 with a first etching solution, and etching the current blocking material CB with a second etching solution different from the first etching solution. Then, the first current dispersion material CS1 is secondarily etched with the first etching liquid, so that the surface area of the second current diffusion layer 150 is smaller than the surface area of the current blocking layer 160.
圖3至圖6為本發明第二至第五實施例的光電半導體元件的局部剖面示意圖。3 to 6 are partial cross-sectional views showing the photoelectric semiconductor element of the second to fifth embodiments of the present invention.
請先參照圖3,本發明第二實施例之光電半導體元件100a大體上類似於圖1C所示之第一實施例的光電半導體元件100,主要差異在於本實施例的光電半導體元件100a的第一電流分散層140及第二電流分散層150為實心,而不具有第一實施例所述的第一開口O1及第二開口O2。相較於第一實施例,本實施例之光電半導體元件100a係可避免電流直接由第一電極墊122注入磊晶疊層110,使電流可以透過第一電流分散層140及第二電流分散層150均勻注入光電半導體元件100a之主動層114中。Referring first to FIG. 3, the optoelectronic semiconductor component 100a of the second embodiment of the present invention is substantially similar to the optoelectronic semiconductor component 100 of the first embodiment shown in FIG. 1C, the main difference being the first of the optoelectronic semiconductor component 100a of the present embodiment. The current dispersion layer 140 and the second current dispersion layer 150 are solid without the first opening O1 and the second opening O2 described in the first embodiment. Compared with the first embodiment, the optoelectronic semiconductor component 100a of the present embodiment can prevent current from being directly injected into the epitaxial stack 110 by the first electrode pad 122, so that current can pass through the first current dispersion layer 140 and the second current dispersion layer. 150 is uniformly implanted into the active layer 114 of the optoelectronic semiconductor component 100a.
請參照圖4,本發明第三實施例之光電半導體元件100b大致上類似於圖3所示之第二實施例的光電半導體元件100a,主要差異在於本實施例之光電半導體元件100b未具有電流阻擋層160設於第一電極120及磊晶疊層110之間。Referring to FIG. 4, the optoelectronic semiconductor component 100b of the third embodiment of the present invention is substantially similar to the optoelectronic semiconductor component 100a of the second embodiment shown in FIG. 3. The main difference is that the optoelectronic semiconductor component 100b of the present embodiment does not have current blocking. The layer 160 is disposed between the first electrode 120 and the epitaxial layer 110.
請參照圖5,本發明第四實施例之光電半導體元件100c大致上類似於圖1C所示之第一實施例的光電半導體元件100,主要差異在於本實施例之光電半導體元件100c的第二電流分散層150覆蓋於電流阻擋層160之第二上表面162及第二側表面164,使第二電流分散層150的上表面積大於電流阻擋層160的上表面積,且第一電流分散層140覆蓋於第二電流分散層150的第一上表面152及第一側表面154。由上視觀之,本實施例之光電半導體元件100c的電流阻擋層160的第三內輪廓160’係環繞第二電流分散層150之第二內輪廓150’,且第一電流分散層140之第一內輪廓140’係由第二內輪廓150’所圍繞。換言之,由上視觀之,本實施例之光電半導體元件100c的第三開口O3的面積係大於第二開口O2的面積,且第二開口O2的面積大於第一開口O1的面積。Referring to FIG. 5, the optoelectronic semiconductor component 100c of the fourth embodiment of the present invention is substantially similar to the optoelectronic semiconductor component 100 of the first embodiment shown in FIG. 1C, and the main difference is the second current of the optoelectronic semiconductor component 100c of the present embodiment. The dispersion layer 150 covers the second upper surface 162 and the second side surface 164 of the current blocking layer 160 such that the upper surface area of the second current dispersion layer 150 is larger than the upper surface area of the current blocking layer 160, and the first current dispersion layer 140 covers The first upper surface 152 and the first side surface 154 of the second current dispersion layer 150. From a top view, the third inner contour 160 ′ of the current blocking layer 160 of the optoelectronic semiconductor component 100 c of the present embodiment surrounds the second inner contour 150 ′ of the second current dispersion layer 150 , and the first current dispersion layer 140 The first inner contour 140' is surrounded by a second inner contour 150'. In other words, the area of the third opening O3 of the optoelectronic semiconductor component 100c of the present embodiment is larger than the area of the second opening O2, and the area of the second opening O2 is larger than the area of the first opening O1.
請參照圖6,本發明第五實施例之光電半導體元件100d大體上類似於如圖1C所示之第一實施例的光電半導體元件100,主要差異在於本實施例之光電半導體元件100d的第一電流分散層140位於第二電流分散層150與磊晶疊層110之間,即第二電流分散層150覆蓋於第一電流分散層140,使第一電流分散層140設於第二電流分散層150及電流阻擋層160之間。本實施例之第一電流分散層140的第一厚度T1小於第二電流分散層150的第二厚度T2,即具有較厚厚度的第二電流分散層150位於第一電極120與具有較薄厚度的第一電流分散層140之間。第一電流分散層140可覆蓋於電流阻擋層160之第二上表面162及第二側表面164,且第二電流分散層150覆蓋於位於第一電流分散層140之主體部142上。由上視觀之,本實施例之光電半導體元件100d的第三內輪廓160’係環繞第一內輪廓140’或第二內輪廓150’,換言之,第三開口O3的面積可大於或等於第二開口O2的面積,且第一開口O1的面積不大於第二開口O2的面積。Referring to FIG. 6, the optoelectronic semiconductor component 100d of the fifth embodiment of the present invention is substantially similar to the optoelectronic semiconductor component 100 of the first embodiment as shown in FIG. 1C, the main difference being the first of the optoelectronic semiconductor component 100d of the present embodiment. The current dispersion layer 140 is located between the second current dispersion layer 150 and the epitaxial layer 110, that is, the second current dispersion layer 150 covers the first current dispersion layer 140, and the first current dispersion layer 140 is disposed on the second current dispersion layer. Between 150 and current blocking layer 160. The first thickness T1 of the first current dispersion layer 140 of the present embodiment is smaller than the second thickness T2 of the second current dispersion layer 150, that is, the second current dispersion layer 150 having a thick thickness is located at the first electrode 120 and has a thin thickness. Between the first current dispersion layers 140. The first current dispersion layer 140 may cover the second upper surface 162 and the second side surface 164 of the current blocking layer 160 , and the second current dispersion layer 150 covers the body portion 142 of the first current dispersion layer 140 . From a top view, the third inner contour 160' of the optoelectronic semiconductor component 100d of the present embodiment surrounds the first inner contour 140' or the second inner contour 150'. In other words, the area of the third opening O3 may be greater than or equal to the first The area of the second opening O2, and the area of the first opening O1 is not larger than the area of the second opening O2.
雖然本發明已以實施例揭露如上,然其並非用以限定本發明,各實施例之單獨或實施例間所揭示之部分或全部技術特徵的組合,皆屬本發明所揭示的內容,且任何所屬技術領域中具有通常知識者,在不脫離本發明的精神和範圍內,當可作些許的更動與潤飾,故本發明的保護範圍當視後附的申請專利範圍所界定者為準。The present invention has been disclosed in the above embodiments, and is not intended to limit the present invention. The combination of some or all of the technical features disclosed in the respective embodiments or between the embodiments is disclosed in the present invention. It is to be understood that the scope of the present invention is defined by the scope of the appended claims.
100、100a、100b、100c、100d‧‧‧光電半導體元件100, 100a, 100b, 100c, 100d‧‧‧Optoelectronic semiconductor components
110‧‧‧磊晶疊層110‧‧‧ epitaxial stack
112‧‧‧第一型摻雜半導體層112‧‧‧First type doped semiconductor layer
114‧‧‧主動層114‧‧‧Active layer
116‧‧‧第二型摻雜半導體層116‧‧‧Second type doped semiconductor layer
120‧‧‧第一電極120‧‧‧first electrode
122‧‧‧第一電極墊122‧‧‧First electrode pad
124‧‧‧第一延伸部124‧‧‧First Extension
130‧‧‧第二電極130‧‧‧second electrode
132‧‧‧第二電極墊132‧‧‧Second electrode pad
134‧‧‧第二延伸部134‧‧‧Second extension
140‧‧‧第一電流分散層140‧‧‧First current dispersion layer
140’‧‧‧第一內輪廓140’‧‧‧ first inner contour
140’’‧‧‧第一外輪廓140’’‧‧‧ first outline
142‧‧‧主體部142‧‧‧ Main body
144‧‧‧延伸部144‧‧‧Extension
150‧‧‧第二電流分散層150‧‧‧Second current dispersion layer
150’‧‧‧第二內輪廓150’‧‧‧Second inner contour
150’’‧‧‧第二外輪廓150’’‧‧‧ Second outline
152‧‧‧第一上表面152‧‧‧ first upper surface
154‧‧‧第一側表面154‧‧‧ first side surface
160‧‧‧電流阻擋層160‧‧‧current barrier
160’‧‧‧第三內輪廓160’‧‧‧ Third inner contour
160’’‧‧‧第三外輪廓160’’‧‧‧ Third outline
162‧‧‧第二上表面162‧‧‧Second upper surface
164‧‧‧第二側表面164‧‧‧ second side surface
170‧‧‧基板170‧‧‧Substrate
172‧‧‧圖案化結構172‧‧‧patterned structure
180‧‧‧反射層180‧‧‧reflective layer
190‧‧‧保護層190‧‧‧Protective layer
CS1‧‧‧第一電流分散材料CS1‧‧‧First current dispersion material
CS2‧‧‧第二電流分散材料CS2‧‧‧Second current dispersion material
CB‧‧‧電流阻擋材料CB‧‧‧current blocking material
E1‧‧‧第一邊緣E1‧‧‧ first edge
E2‧‧‧第二邊緣E2‧‧‧ second edge
P‧‧‧平台部P‧‧‧ Platform Department
E‧‧‧凹陷部E‧‧‧Depression
PR1、PR2‧‧‧圖案化光阻層PR1, PR2‧‧‧ patterned photoresist layer
S‧‧‧表面S‧‧‧ surface
S1‧‧‧第一側S1‧‧‧ first side
S2‧‧‧第二側S2‧‧‧ second side
T1‧‧‧第一厚度T1‧‧‧first thickness
T2‧‧‧第二厚度T2‧‧‧second thickness
T3‧‧‧第三厚度T3‧‧‧ third thickness
T4‧‧‧第四厚度T4‧‧‧fourth thickness
R1‧‧‧第一區域R1‧‧‧ first area
R2‧‧‧第二區域R2‧‧‧ second area
O1‧‧‧第一開口O1‧‧‧ first opening
O2‧‧‧第二開口O2‧‧‧ second opening
O3‧‧‧第三開口O3‧‧‧ third opening
I-I’‧‧‧剖線I-I’‧‧‧ cut line
圖1A是本發明的第一實施例之一光電半導體元件的上視示意圖。 圖1B是圖1A的光電半導體元件沿著剖線I-I’的剖面示意圖。 圖1C是圖1B之部分放大圖。 圖2A至圖2E是第一實施例的光電半導體元件的不同製程階段之結構示意圖。 圖3是本發明的第二實施例之一光電半導體元件的局部剖面示意圖。 圖4是本發明的第三實施例之一光電半導體元件的局部示意圖。 圖5是本發明的第四實施例之一光電半導體元件的局部示意圖。 圖6是本發明的第五實施例之一光電半導體元件的局部示意圖。Fig. 1A is a top plan view showing an optoelectronic semiconductor device of a first embodiment of the present invention. Fig. 1B is a schematic cross-sectional view of the optoelectronic semiconductor component of Fig. 1A taken along line I-I'. Fig. 1C is a partial enlarged view of Fig. 1B. 2A to 2E are schematic views showing the structure of different process stages of the optoelectronic semiconductor component of the first embodiment. Figure 3 is a partial cross-sectional view showing an optoelectronic semiconductor device according to a second embodiment of the present invention. Figure 4 is a partial schematic view showing an optoelectronic semiconductor device of a third embodiment of the present invention. Figure 5 is a partial schematic view of an optoelectronic semiconductor component of a fourth embodiment of the present invention. Figure 6 is a partial schematic view showing an optoelectronic semiconductor device of a fifth embodiment of the present invention.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW106107846A TWI657595B (en) | 2017-03-09 | 2017-03-09 | Optoelectronic semiconductor device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW106107846A TWI657595B (en) | 2017-03-09 | 2017-03-09 | Optoelectronic semiconductor device |
Publications (2)
Publication Number | Publication Date |
---|---|
TW201834265A TW201834265A (en) | 2018-09-16 |
TWI657595B true TWI657595B (en) | 2019-04-21 |
Family
ID=64426150
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW106107846A TWI657595B (en) | 2017-03-09 | 2017-03-09 | Optoelectronic semiconductor device |
Country Status (1)
Country | Link |
---|---|
TW (1) | TWI657595B (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US12002906B2 (en) | 2020-08-19 | 2024-06-04 | Epistar Corporation | Semiconductor device and semiconductor component |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI816330B (en) * | 2022-03-17 | 2023-09-21 | 晶成半導體股份有限公司 | Optoelectronic semiconductor device |
CN114551673A (en) * | 2022-04-27 | 2022-05-27 | 江西兆驰半导体有限公司 | Light emitting diode chip and preparation method thereof |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWM260003U (en) * | 2003-08-14 | 2005-03-21 | Global Fiberoptocs Inc | Light-emitting diode to increase the light-emitting efficiency of spontaneous emission |
-
2017
- 2017-03-09 TW TW106107846A patent/TWI657595B/en active
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWM260003U (en) * | 2003-08-14 | 2005-03-21 | Global Fiberoptocs Inc | Light-emitting diode to increase the light-emitting efficiency of spontaneous emission |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US12002906B2 (en) | 2020-08-19 | 2024-06-04 | Epistar Corporation | Semiconductor device and semiconductor component |
Also Published As
Publication number | Publication date |
---|---|
TW201834265A (en) | 2018-09-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10749075B2 (en) | Semiconductor light-emitting device | |
US10559717B2 (en) | Light-emitting device and manufacturing method thereof | |
CN108365065B (en) | Light emitting element | |
US10756134B2 (en) | Light-emitting device | |
TWI794849B (en) | Light-emitting device | |
US9978911B2 (en) | Light-emitting diode device for enhancing light extraction efficiency and current injection efficiency | |
US10263157B2 (en) | Light-emitting diode with transparent conductive electrodes for improvement in light extraction efficiency | |
US11764332B2 (en) | Semiconductor light-emitting device | |
US20200373472A1 (en) | Light-emitting diode and manufacturing method thereof | |
US20240297207A1 (en) | Light emitting device | |
US11784210B2 (en) | Light-emitting device and manufacturing method thereof | |
TWI657595B (en) | Optoelectronic semiconductor device | |
KR101154511B1 (en) | High efficiency light emitting diode and method of fabricating the same | |
US20210336090A1 (en) | Light-emitting device and manufacturing method thereof | |
CN109935671B (en) | Light emitting element | |
CN111354842B (en) | Semiconductor device with a semiconductor element having a plurality of electrodes | |
KR101239849B1 (en) | High efficiency light emitting diode | |
TWI816191B (en) | Light emitting device | |
US20220384687A1 (en) | Light-emitting device | |
TWI705532B (en) | Semiconductor device and method of manufacturing thereof | |
TWI789617B (en) | Semiconductor device and method of manufacturing thereof | |
TWI699904B (en) | Light-emitting device | |
TW201911595A (en) | Light-emitting device | |
KR20120040125A (en) | High efficiency light emitting diode and method of fabricating the same |