TW202338515A - 熱控制系統、模型、及微影中之製造程序 - Google Patents

熱控制系統、模型、及微影中之製造程序 Download PDF

Info

Publication number
TW202338515A
TW202338515A TW111147695A TW111147695A TW202338515A TW 202338515 A TW202338515 A TW 202338515A TW 111147695 A TW111147695 A TW 111147695A TW 111147695 A TW111147695 A TW 111147695A TW 202338515 A TW202338515 A TW 202338515A
Authority
TW
Taiwan
Prior art keywords
wavefront
optical
projection system
thermal
thermal device
Prior art date
Application number
TW111147695A
Other languages
English (en)
Inventor
端孚 徐
劉戈銳
金文杰
孫德政
Original Assignee
荷蘭商Asml荷蘭公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 荷蘭商Asml荷蘭公司 filed Critical 荷蘭商Asml荷蘭公司
Publication of TW202338515A publication Critical patent/TW202338515A/zh

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/708Construction of apparatus, e.g. environment aspects, hygiene aspects or materials
    • G03F7/70858Environment aspects, e.g. pressure of beam-path gas, temperature
    • G03F7/70883Environment aspects, e.g. pressure of beam-path gas, temperature of optical system
    • G03F7/70891Temperature
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70216Mask projection systems
    • G03F7/70258Projection system adjustments, e.g. adjustments during exposure or alignment during assembly of projection system
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70483Information management; Active and passive control; Testing; Wafer monitoring, e.g. pattern monitoring
    • G03F7/70491Information management, e.g. software; Active and passive control, e.g. details of controlling exposure processes or exposure tool monitoring processes
    • G03F7/705Modelling or simulating from physical phenomena up to complete wafer processes or whole workflow in wafer productions
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70483Information management; Active and passive control; Testing; Wafer monitoring, e.g. pattern monitoring
    • G03F7/70591Testing optical components
    • G03F7/706Aberration measurement

Abstract

本發明描述一半導體製造程序中之動態像差控制。在一些實施例中,可接收表示由一半導體處理裝置之一光學投影系統提供之一波前的波前資料。可基於該波前資料與目標波前資料之一比較而判定波前漂移。基於該波前漂移,可判定一或多個程序參數。該一或多個程序參數包括與一熱器件相關聯之參數,其中該熱器件經組態以在操作期間將熱能提供至該光學投影系統。

Description

熱控制系統、模型、及微影中之製造程序
本文中之描述大體上係關於半導體製造中之微影,且更特定言之係關於運算微影。
微影投影裝置可用於例如積體電路(IC)製造中。圖案化器件(例如,遮罩)可包括或提供對應於IC (「設計佈局」)之個別層之圖案,且可藉由諸如通過圖案化器件上之圖案輻照目標部分之方法將此圖案轉印至已塗佈有輻射敏感材料(「抗蝕劑」)層的基板(例如,矽晶圓)上之目標部分(例如,包含一或多個晶粒)上。一般而言,單個基板含有由微影投影裝置順次地將圖案轉印至其上的複數個鄰近目標部分,一次一個目標部分。在一種微影投影裝置中,在一個操作中將整個圖案化器件上之圖案轉印至一個目標部分上。此類裝置通常稱為步進器。在通常稱為步進掃描裝置之替代裝置中,投影光束在給定參考方向(「掃描」方向)上遍及圖案化器件進行掃描,同時平行或反平行於此參考方向而同步地移動基板。圖案化器件上之圖案之不同部分逐漸地轉印至一個目標部分。一般而言,由於微影投影裝置將具有縮減比率M (例如,4),因此基板被移動之速度F將為投影光束掃描圖案化器件之速度的1/M倍。關於微影器件之更多資訊可見於例如以全文引用之方式併入本文中的US 6,046,792。
在將圖案自圖案化器件轉印至基板之前,基板可經受各種工序,諸如上底漆、抗蝕劑塗佈及軟烘烤。在曝光之後,基板可經受其他工序(「曝光後工序」),諸如曝光後烘烤(PEB)、顯影、硬烘烤,及經轉印圖案之量測/檢測。此工序陣列用作製成器件(例如,IC)之個別層的基礎。基板可隨後經受各種程序,諸如蝕刻、離子植入(摻雜)、金屬化、氧化、化學機械研磨等,該等程序皆意欲精整器件之個別層。若在器件中需要若干層,則針對各層來重複整個工序或其變體。最終,在基板上之各目標部分中將存在器件。隨後藉由諸如切割或鋸割之技術來使此等器件彼此分隔開,使得可將個別器件安裝於載體上、連接至銷釘等。
製造諸如半導體器件之器件通常涉及使用數個製造程序來處理基板(例如,半導體晶圓)以形成該等器件之各種特徵及多個層。通常使用例如沈積、微影、蝕刻、化學機械研磨及離子植入來製造及處理此等層及特徵。可在基板上之複數個晶粒上製造多個器件,且隨後將該等器件分成個別器件。此器件製造程序可視為圖案化程序。圖案化程序涉及圖案化步驟,諸如使用微影裝置中之圖案化器件來將圖案化器件上之圖案轉印至基板之光學及/或奈米壓印微影,且圖案化程序通常但視情況涉及一或多個相關圖案處理步驟,諸如由顯影裝置進行抗蝕劑顯影、使用烘烤工具來烘烤基板、使用蝕刻裝置使用圖案進行蝕刻等。
微影為在諸如IC之器件之製造時的中心步驟,其中形成於基板上之圖案定義器件之功能元件,諸如微處理器、記憶體晶片等。類似微影技術亦用於形成平板顯示器、微機電系統(MEMS)及其他器件。
隨著半導體製造程序繼續前進,功能元件之尺寸已不斷地減小。同時,每器件功能元件(諸如,電晶體)之數目已穩定地增加,此遵循通常稱為「莫耳定律」之趨勢。在當前技術狀態下,使用微影投影裝置來製造器件之層,該等微影投影裝置使用來自深紫外照明源之照明將設計佈局投影至基板上,從而產生尺寸遠低於100 nm (亦即,小於來自照明源(例如,193 nm照明源)之輻射的波長之一半)的個別功能元件。
供印刷尺寸小於微影投影裝置之經典解析度極限之特徵的此程序根據解析度公式CD=k1×λ/NA而通常稱為低k1微影,其中λ為所使用輻射之波長(當前在大多數狀況下為248nm或193nm),NA為微影投影裝置中之投影光學件之數值孔徑,CD為「臨界尺寸」(通常為所印刷之最小特徵大小),且k1為經驗解析度因數。一般而言,k1愈小,則在基板上再現類似於由設計者規劃之形狀及尺寸以便達成特定電功能性及效能的圖案變得愈困難。為了克服此等困難,將複雜微調步驟應用於微影投影裝置、設計佈局或圖案化器件。此等步驟包括例如但不限於NA及光學相干設定之最佳化、定製照明方案、相移圖案化器件之使用、設計佈局中之光學近接校正(OPC,有時亦稱為「光學及程序校正」),或通常定義為「解析度增強技術」(RET)之其他方法。
OPC及其他RET利用描述微影程序之穩固電子模型。因此需要用於此類微影模型之校準工序,其跨程序窗提供有效、穩固及準確的模型。當前,使用運用晶圓量測之某一數目個1維及/或2維量規圖案進行校準。更特定言之,1維量規圖案包括具有變化間距及臨界尺寸(CD)之線空間圖案、隔離線、多個線等。2維量規圖案通常包括線端、接點及隨機選擇之靜態隨機存取記憶體(SRAM)圖案。
需要減少或以其他方式控制像差漂移以便在使用微影程序製造器件(諸如,半導體器件)時減少缺陷。像差漂移之一個原因為光學投影系統之一或多個組件的非所要或非預期熱變化。舉例而言,當光(例如,EUV光、DUV光)入射於光學投影系統之各種光學元件上時,彼等光學元件可能「變熱」。光學元件之「加熱」可使光學元件變形,此導致用於圖案化器件由光學投影系統提供的波前變化。
根據一些實施例,存在一種用於判定一或多個程序參數之方法。該方法包括獲得由一半導體處理裝置之一光學投影系統提供的一波前之一波前漂移。可基於表示該波前之波前資料與目標波前資料的一比較而判定該波前漂移。該方法可進一步包括基於該波前漂移而判定該一或多個程序參數。該一或多個程序參數可包括與一熱器件相關聯之參數,其中該熱器件可經組態以在操作期間將熱能提供(例如,將外部加熱或外部冷卻提供)至該光學投影系統。
根據一些實施例,存在一種非暫時性電腦可讀媒體,其儲存電腦程式指令,該等電腦程式指令在由一或多個處理器執行時實行包括上文所描述之該等方法中之任一者的操作。
根據一些實施例,存在一種包括該光學投影系統及該一或多個熱器件之半導體處理裝置,且其中可使用該半導體處理裝置執行上文所描述之該等方法中之任一者。
能夠控制或校正由半導體製造程序中之光學加熱誘發的波前漂移為有利的。舉例而言,藉由校正微影系統中之波前漂移(其中波前漂移藉由加熱微影系統之光學元件(例如,鏡面、透鏡等)誘發),可顯著減少經由半導體製造程序中之一或多者製造的器件中之缺陷。
在微影系統中,鏡面加熱、透鏡加熱及/或產生經圖案化器件(諸如,半導體器件)的其他動態改變因素可導致缺陷(例如,邊緣置放誤差、迭對誤差等)。此要求快速且精確的原位校正能力以在生產製造環境中達成穩定的成像效能。舉例而言,鏡面加熱可導致波前漂移,該波前漂移為在由微影系統之光學投影系統提供的波前不同於待由光學投影系統提供的目標波前時。
此快速原位控制的一個先前嘗試包括基於掃描器之光瞳位階屬性而定義優質化函數(例如,相對於參考狀態之差量波前之RMS),但未感知到基板(例如,晶圓)位階上之成像效能屬性。因此,儘管使光瞳位階上之像差最小化,但並不最佳化(基板或晶圓位階上之)成像效能。
基於替代成像效能之途徑包括計算大量臨界尺寸之任尼克敏感度。在使用此途徑的情況下,微影效能度量受限於臨界尺寸。此途徑不夠靈活,無法涵蓋其他類型之定製度量,包括離散度量(例如,缺陷計數等)。不同途徑涉及用於藉由使用源遮罩最佳化引擎執行像差(波前)最佳化而匹配不同掃描器之效能的方法。然而,此途徑經設計以用於冷透鏡設置而不考慮鏡面加熱,且其執行反覆最佳化,此需要用於每一反覆之全成像模擬。此運算量很大且不適合用於動態原位掃描器控制。又另一不同途徑使用經組態以接收圖案化系統像差資料且判定用於所接收圖案化系統像差資料之新圖案化程序影響資料之經校準像差影響模型。然而,歸因於驅動器透鏡模型(DLM)之投影光學件盒(POB)中的有限剛體鏡面移動量,此途徑不再足以應用波前校正以減輕EUV掃描器(其在高源功率下操作)之鏡面加熱影響。
參考圖式詳細描述本申請案之實施例,該等圖式提供為本發明之說明性實例以便使熟習此項技術者能夠實踐本發明。值得注意地,以下圖式及實例並不意欲將本發明之範疇限於單一實施例,但藉助於所描述或所說明元件中之一些或所有之互換而使其他實施例為可能的。此外,在可部分地或完全地使用已知組件來實施本發明之某些元件之情況下,將僅描述理解本發明所必需之此類已知組件之彼等部分,且將省略此類已知組件之其他部分之詳細描述以免混淆本發明。除非本文中另外規定,否則如對於熟習此項技術者將顯而易見的是,描述為以軟體實施之實施例不應限於此,但可包括以硬體或軟體與硬體之組合實施之實施例,且反之亦然。在本說明書中,展示單數組件之實施例不應被認為限制性的;實情為,除非本文中另有明確陳述,否則本發明意欲涵蓋包括複數個相同組件之其他實施例,且反之亦然。此外,除非如此明確闡述,否則申請者並不意欲使本說明書或申請專利範圍中之任何術語歸結於不常見或特殊涵義。此外,本發明涵蓋本文中藉助於說明而提及之已知組件的目前及未來已知等效物。
儘管在本文中可特定地參考IC製造,但應明確地理解,本文中之描述具有許多其他可能應用。舉例而言,其可用於製造整合式光學系統、用於磁疇記憶體之導引及偵測圖案、液晶顯示面板、薄膜磁頭等。熟習此項技術者將瞭解,在此類替代應用之上下文中,本文中對術語「倍縮光罩」、「晶圓」或「晶粒」之任何使用應視為可分別與更一般的術語「遮罩」、「基板」及「目標部分」互換。
在本文件中,術語「輻射」及「光束」用於涵蓋所有類型之電磁輻射,包括紫外線輻射(例如,具有365、248、193、157或126 nm之波長)及極紫外線輻射(EUV,例如具有在約5-100 nm之範圍內之波長)。
如本文中所使用之術語「投影光學件」應廣泛地解釋為涵蓋各種類型之光學系統及子系統,包括例如折射光學件、反射光學件、孔徑及折反射光學件。術語「投影光學件」亦可包括根據此等設計類型中任一者操作以用於共同地或單一地引導、塑形或控制投影輻射光束之組件。術語「投影光學件」可包括微影投影裝置中的任何光學組件,無論光學組件定位於微影投影裝置之光學路徑上之何處。投影光學件可包括用於在來自源之輻射穿過(例如,半導體)圖案化器件之前塑形、調整及/或投影該輻射的光學組件,及/或用於在輻射穿過圖案化器件之後塑形、調整及/或投影該輻射的光學組件。投影光學件通常不包括源及圖案化器件。
(例如,半導體)圖案化器件可包含或可形成一或多個設計佈局。可利用電腦輔助設計(CAD)程式來產生設計佈局,此程序通常稱為電子設計自動化(EDA)。大部分CAD程式遵循預定設計規則集合,以便產生功能設計佈局/圖案化器件。由處理及設計限制而設定此等規則。舉例而言,設計規則界定器件(諸如,閘極、電容器等)或互連線之間的空間容許度,以便確保器件或線不會以不合意的方式彼此相互作用。設計規則可包括及/或指定特定參數、關於參數之限制及/或參數範圍,及/或其他資訊。設計規則限制及/或參數中之一或多者可稱為「臨界尺寸」(CD)。器件之臨界尺寸可定義為線或孔之最小寬度或兩條線或兩個孔之間的最小空間,或其他特徵。因此,CD判定所設計器件之總體大小及密度。器件製造中之目標中之一者為在基板上如實地再現原始設計意圖(經由圖案化器件)。
如在本文中所使用之術語「遮罩」或「圖案化器件」可廣泛地解釋為係指可用於向入射輻射光束賦予經圖案化橫截面之通用半導體圖案化器件,該經圖案化橫截面對應於待在基板之目標部分中產生之圖案;術語「光閥」亦可用於此上下文中。除經典遮罩(透射或反射;二元、相移、混合式等)以外,其他此類圖案化器件之實例包括可程式化鏡面陣列及可程式化LCD陣列。
可程式化鏡面陣列之實例可為具有黏彈性控制層及反射表面的矩陣可定址表面。此裝置所隱含之基本原理為(例如):反射表面之定址區域使入射輻射反射為繞射輻射,而未定址區域使入射輻射反射為非繞射輻射。在使用適當濾光器之情況下,可自反射光束濾出該非繞射輻射,從而僅留下繞射輻射;以此方式,光束根據矩陣可定址表面之定址圖案而變得圖案化。可使用合適之電子構件可執行所需矩陣定址。可程式化LCD陣列之實例在以引用的方式併入本文中之美國專利第5,229,872號中給出。
如本文中所使用,術語「圖案化程序」通常意謂作為微影程序之部分的藉由施加光之指定圖案來產生經蝕刻基板的程序。然而,「圖案化程序」亦可包括電漿蝕刻,因為本文中所描述的許多特徵可為使用電漿處理形成印刷圖案提供益處。
如本文中所使用,術語「目標圖案」意謂待蝕刻於基板上之理想化圖案。
如本文中所使用,術語「印刷圖案」意謂基板上之基於目標圖案蝕刻的實體圖案。印刷圖案可包括例如凹槽、溝道、凹陷、邊緣或由微影程序產生之其他二維及三維特徵。
如本文中所使用,術語「預測模型」、「程序模型」及/或模型(其可互換使用)意謂包括模擬圖案化程序之一或多個模型之模型。舉例而言,預測及/或程序模型可包括光學模型(例如,模型化用於在微影程序中遞送光的透鏡系統/投影系統且可包括模型化進入光阻上之光之最終光學影像的光學模型)、抗蝕劑模型(例如,模型化抗蝕劑之物理效應,諸如歸因於光之化學效應的抗蝕劑模型),及/或OPC模型(例如,可用於製成目標圖案且可包括次解析度抗蝕劑特徵(SRAF)等的OPC模型)及/或其他模型。
如本文中所使用,術語「校準」意謂修改(例如,改良或調節)及/或驗證某物,諸如程序模型。
圖案化系統可為包含上文所描述之組件中之任一者或所有加經組態以執行與此等組件相關聯之操作中之任一者或所有的其他組件的系統。舉例而言,圖案化系統可包括微影投影裝置、掃描器及/或其他系統。
微影投影裝置可為包括上文所描述之組件中之任一者或所有的器件。在一些實施例中,微影投影裝置可在本文中可被互換地稱為半導體處理裝置。
如本文所描述,熱器件係指將熱能提供至或促進將熱能提供至對象之器件。熱能可能引起「加熱」(例如,溫度升高)、「冷卻」((例如,溫度降低),或可能不引起溫度變化。在不脫離本發明之範疇的情況下,熱器件可以任何合適之組態實施,可為加熱或冷卻機構、控制機構。
作為引言,圖1繪示實例微影投影裝置10A之各種子系統之圖。微影投影裝置10A包括各種組件,諸如輻射源12A,其可為深紫外線準分子雷射源或包括極紫外線(EUV)源之其他類型之源(如上文所論述,微影投影裝置自身無需具有輻射源);照明光學件,其例如界定部分相干性(表示為均方偏差)且可包括塑形來自源12A之輻射之光學件14A、16Aa及16Ab;圖案化器件18A;及透射光學件16Ac,其將圖案化器件圖案之影像投影至基板平面22A上。在投影光學件之光瞳平面處的可調整濾光器或孔徑20A可限定照射於基板平面22A上之光束角度之範圍,其中最大可能角度界定投影光學件之數值孔徑NA=n sin(Θ max),其中n為基板與投影光學件之最後元件之間的介質之折射率,且Θ max為自投影光學件射出的仍可照射於基板平面22A上之光束的最大角度。
在微影投影裝置中,源將照明(亦即,輻射)提供至圖案化器件,且投影光學件經由圖案化器件將照明導向至基板上且塑形該照明。投影光學件可包括組件14A、16Aa、16Ab及16Ac中的至少一些。空中影像(AI)為在基板位階處之輻射強度分佈。可使用抗蝕劑模型以自空中影像計算抗蝕劑影像,可在美國專利申請公開案第US 2009-0157630號中找到此之實例,該公開案之揭示內容特此以全文引用之方式併入。抗蝕劑模型係與抗蝕劑層之屬性(例如,在曝光、曝光後烘烤(PEB)及顯影期間發生的化學程序之效應)相關。微影投影裝置之光學屬性(例如,照明、圖案化器件及投影光學件之屬性)指示空中影像且可界定於光學模型中。由於可改變微影投影裝置中所使用之圖案化器件,因此需要將圖案化器件之光學屬性與包括至少源及投影光學件之微影投影裝置之其餘部分之光學屬性分離。用於將設計佈局變換至各種微影影像(例如,空中影像、抗蝕劑影像等)、使用彼等技術及模型應用OPC且評估效能(例如,依據程序窗)的技術及模型之細節描述於美國專利申請公開案US 2008-0301620、2007-0050749、2007-0031745、2008-0309897、2010-0162197及2010-0180251中,前述各案之揭示內容特此以全文引用之方式併入。
可能需要使用一或多個工具來產生例如可用於設計、控制、監視等圖案化程序的結果。可提供用於運算上控制、設計等圖案化程序之一或多個態樣的一或多個工具,諸如用於圖案化器件之圖案設計(包括例如添加次解析度輔助特徵或光學近接校正)、用於圖案化器件之照明等。因此,在用於運算上控制、設計等涉及圖案化之製造程序之系統中,製造系統組件及/或程序可由各種功能模組及/或模型描述。在一些實施例中,可提供描述圖案化程序之一或多個步驟及/或裝置之一或多個電子(例如,數學、參數化等)模型。在一些實施例中,可使用一或多個電子模型來執行圖案化程序之模擬以模擬圖案化程序使用由圖案化器件提供之設計圖案形成經圖案化基板之方式。
圖2中繪示用於模擬微影投影裝置中之微影的例示性流程圖。此可為例示性全微影模擬。照明模型31表示照明之光學特性(包括輻射強度分佈及/或相位分佈)。投影光學件模型32表示投影光學件之光學特性(包括由投影光學件引起的輻射強度分佈及/或相位分佈之變化)。設計佈局模型35表示設計佈局之光學特性(包括由給定設計佈局引起的輻射強度分佈及/或相位分佈之變化),該設計佈局為在圖案化器件上或由圖案化器件形成之特徵之配置的表示。可使用照明模型31、投影光學件模型32及設計佈局模型35來模擬空中影像36。可使用抗蝕劑模型37自空中影像36模擬抗蝕劑影像38。微影之模擬可例如預測抗蝕劑影像中之輪廓及/或CD。
更特定言之,照明模型31可表示照明之光學特性,該等光學特性包括但不限於NA-均方偏差(σ)設定,以及任何特定照明形狀(例如,離軸照明,諸如,環形、四極、偶極等)。投影光學件模型32可表示投影光學件之光學特性,包括例如像差、失真、折射率、實體大小或尺寸等。設計佈局模型35亦可表示實體圖案化器件之一或多個物理屬性,如例如以全文引用之方式併入的美國專利第7,587,704號中所描述。與微影投影裝置相關聯之光學屬性(例如,照明、圖案化器件及投影光學件之屬性)指示空中影像。由於微影投影裝置中使用之圖案化器件可改變,故需要將圖案化器件之光學屬性與包括至少照明及投影光學件之微影投影裝置之其餘部分的光學屬性分離(因此設計佈局模型35)。
可使用抗蝕劑模型37以自空中影像計算抗蝕劑影像,其實例可在美國專利第8,200,468號中找到,該美國專利特此以全文引用之方式併入。抗蝕劑模型通常與抗蝕劑層之屬性(例如,在曝光、曝光後烘烤及/或顯影期間發生的化學程序之效應)相關。
全模擬之目標中之一者為準確地預測(例如)邊緣置放、空中影像強度斜率及/或CD,可隨後將該等邊緣置放、空中影像強度斜率及/或CD與預期設計進行比較。預期設計通常定義為預OPC設計佈局,其可以諸如GDS、GDSII、OASIS或其他檔案格式之標準化數位檔案格式而提供。
自設計佈局,可識別稱為「剪輯(clip)」之一或多個部分。在實施例中,提取剪輯集合,其表示設計佈局中之複雜圖案(通常為約50個至1000個剪輯,但可使用任何數目個剪輯)。如熟習此項技術者應瞭解,此等圖案或剪輯表示設計之小部分(例如,電路、單元等),且該等剪輯尤其表示需要特定關注及/或驗證之小部分。換言之,剪輯可為設計佈局之部分,或可類似或具有臨界特徵係藉由體驗而識別(包括由客戶提供之剪輯)、藉由試誤法而識別或藉由執行全晶片模擬而識別的設計佈局之部分的類似行為。剪輯通常含有一或多個測試圖案或量規圖案。可由客戶基於設計佈局中要求特定影像最佳化之已知臨界特徵區域而先驗地提供初始較大剪輯集合。替代地,在另一實施例中,可藉由使用識別關鍵特徵區域之自動化(諸如,機器視覺)或手動演算法而自整個設計佈局提取初始較大剪輯集合。
舉例而言,模擬及模型化可用於組態圖案化器件圖案之一或多個特徵(例如,執行光學近接校正)、照明之一或多個特徵(例如,改變照明之空間/角強度分佈之一或多個特性,諸如改變形狀),及/或投影光學件之一或多個特徵(例如,數值孔徑等)。此組態通常可分別稱為遮罩最佳化、源最佳化及投影最佳化。可獨立地執行此最佳化或以不同組合形式組合此最佳化。一個此實例為源-遮罩最佳化(SMO),其涉及組態圖案化器件圖案之一或多個特徵以及照明之一或多個特徵。最佳化技術可聚焦於剪輯中之一或多者。最佳化可使用本文中所描述之機器學習模型以預測各種參數(包括影像等)之值。
在一些實施例中,可將系統之最佳化程序表示為成本函數。最佳化程序可包括判定系統之最小化成本函數之程序參數(例如,熱器件之操作設定)。成本函數可取決於最佳化之目的而具有任何合適形式。舉例而言,成本函數可為系統之某些特性(評估點)相對於此等特性之預期值(例如,理想值)之偏差的加權均方根(root mean square;RMS)。成本函數亦可為此等偏差之最大值(亦即,最差偏差)。術語「評估點」應廣泛地解釋為包括系統或製造方法之任何特性。歸因於系統及/或方法之實施的實務性,系統之設計及/或程序變數可受限於有限範圍及/或可相互相依。在微影投影裝置之情況下,約束通常與硬體之物理屬性及特性(諸如,可調諧範圍及/或圖案化器件可製造性設計規則)相關聯。評估點可包括基板上之抗蝕劑影像上之實體點,以及非物理特性,諸如(例如)劑量及焦點。
在微影投影裝置中,作為實例,可將成本函數表達為 等式1, 其中 為N個設計變數或其值,且 可為設計變數 之函數,諸如,針對 之設計變數之值集合的特性之實際值與預期值之間的差。在一些實施例中, 與相關聯之權重常數。舉例而言,特性可為在邊緣上之給定點處量測的圖案之邊緣之位置。不同 可具有不同權重 。舉例而言,若特定邊緣具有窄准許位置範圍,則用於表示邊緣之實際位置與預期位置之間的差之 之權重 可被給出較高值。 亦可為層間特性之函數,層間特性又為設計變數 之函數。當然, 不限於以上等式中之形式,且 可為任何其他合適之形式。
成本函數可表示微影投影裝置、微影程序或基板之任一或多個合適特性,例如,焦點、CD、影像移位、影像失真、影像旋轉、隨機變化、產出量、局部CD變化、程序窗、層間特性或其組合。在一些實施例中,成本函數可包括表示抗蝕劑影像之一或多個特性之函數。舉例而言, 可僅為抗蝕劑影像中之一點與彼點之預期位置之間的距離(亦即,邊緣置放誤差 )。參數(例如,設計變數)可包括任何可調整參數,諸如源、圖案化器件、投影光學件、劑量、焦點等之可調整參數。
參數(例如,設計變數)可具有約束,該等約束可表達為 ,其中 為設計變數之可能值集合。可藉由微影投影裝置之所要產出量強加對設計變數之一個可能約束。在無藉由所要產出量強加此約束的情況下,最佳化可得到不切實際的設計變數之值集合。約束不應解釋為必要性。舉例而言,產出量可受光瞳填充比影響。對於一些照明設計,低光瞳填充比可捨棄輻射,從而導致較低產出量。產出量亦可受到抗蝕劑化學反應影響。較慢抗蝕劑(例如,要求適當地曝光較高量之輻射的抗蝕劑)導致較低產出量。
在一些實施例中,照明模型31、投影光學件模型32、設計佈局模型35、抗蝕劑模型37及/或與積體電路製造程序相關聯及/或包括在積體電路製造程序中之其他模型可為執行本文中所描述之方法之操作的經驗模型。該經驗模型可基於各種輸入(例如,遮罩或晶圓影像之一或多個特性、設計佈局之一或多個特性、圖案化器件之一或多個特性、微影程序中所使用之照明之一或多個特性,諸如波長等)之間的相關性預測輸出。
作為實例,經驗模型可包含一或多個演算法。作為另一實例,經驗模型可為機器學習模型及/或任何其他參數化模型。在一些實施例中,機器學習模型(例如)可為及/或包括數學等式、演算法、標繪圖、圖表、網路(例如,神經網路),及/或其他工具及機器學習模型組件。舉例而言,機器學習模型可為及/或包括具有輸入層、輸出層及一或多個中間或隱藏層之一或多個神經網路。在一些實施例中,一或多個神經網路可為及/或包括深度神經網路(例如,在輸入層與輸出層之間具有一或多個中間或隱藏層的神經網路)。
作為實例,一或多個神經網路可基於大的神經單元(或人工神經元)集合。一或多個神經網路可不嚴格地模仿生物大腦工作之方式(例如,經由由軸突連接之大的生物神經元簇)。神經網路之各神經單元可與神經網路之許多其他神經單元連接。此類連接可加強或抑制其對所連接之神經單元之激活狀態之影響。在一些實施例中,各個別神經單元可具有將所有其輸入之值組合在一起之求和函數。在一些實施例中,各連接(或神經單元自身)可具有臨限函數,使得信號在其被允許傳播至其他神經單元之前必須超出臨限值。此等神經網路系統可為自學習及經訓練的,而非經明確程式化,且與傳統電腦程式相比,可在某些問題解決領域中顯著更佳地執行。在一些實施例中,一或多個神經網路可包括多個層(例如,其中信號路徑自前端層橫穿至後端層)。在一些實施例中,可由神經網路利用反向傳播技術,其中使用前向刺激以對「前端」神經單元重設權重。在一些實施例中,對一或多個神經網路之刺激及抑制可更自由流動,其中連接以較混亂且複雜之方式相互作用。在一些實施例中,一或多個神經網路之中間層包括一或多個卷積層、一或多個重現層及/或其他層。
可使用訓練資訊集合來訓練一或多個神經網路(亦即,判定其之參數)。訓練資訊可包括訓練樣本之集合。各樣本可為包含輸入物件(通常為向量,其可稱為特徵向量)及所要輸出值(亦稱為監督信號)之對。訓練演算法分析訓練資訊且藉由基於訓練資訊調整神經網路之參數(例如,一或多個層之權重)來調整神經網路之行為。舉例而言,給定形式為 之N個訓練樣本之集合使得 為第i實例之特徵向量且 為其監督信號,訓練演算法尋找神經網路 ,其中 為輸入空間,且 為輸出空間。特徵向量為表示一些物件(例如,經模擬空中影像、晶圓設計、剪輯等)之數值特徵之n維向量。與此等向量相關聯之向量空間通常稱為特徵空間。在訓練之後,神經網路可用於使用新樣本來進行預測。
期望減少具有缺陷之經圖案化器件的數量以及缺陷之量值(例如,大小)。此類缺陷之一個原因為微影系統之光學投影系統之一或多個組件的非所要或非預期熱變化。舉例而言,當光(例如,EUV光、DUV光)入射於光學投影系統之各種光學元件上時,彼等光學元件可能「變熱」。光學元件之「加熱」可導致光學元件變形,此導致用於圖案化器件由光學投影系統提供的波前之非預期變化,其稱為波前漂移。一些先前解決方案針對波前漂移藉由調整光學投影系統之組態進行校正。然而,各光學元件可調整之量受到限制,且隨著能階(例如,EUV光)增加,對光學元件之定向的調整可能不足以減輕波前漂移。
在一些實施例中,提供一種用於判定一或多個程序參數以減輕來自微影程序中之光學元件之加熱效應的方法。根據本發明之實施例,本發明之系統及方法判定待提供至光學投影系統的一或多個光學元件之一或多個區段的熱能之量,以及基於成像效能特性對一或多個光學元件之組態的調整。在一些實施例中,最佳化包括回應於波前漂移而調整熱器件組態,視情況以及微影系統中之其他可調諧參數(例如,光學元件)。在一些實施例中,最佳化可旨在縮減在波前像差方面之成本,例如最小化或以其他方式減少波前像差或收斂至目標波前。在一些實施例中,最佳化旨在最小化或以其他方式減少邊緣置放誤差(EPE)成本或其他半導體圖案化程序度量。儘管藉由提及「最小化」成本函數而詳細地描述本發明之實施例,但應瞭解,可在不脫離本發明之範疇的情況下使用相對於成本函數之任何其他最佳化機制。可在模型化或模擬程序中執行最佳化。在一些實施例中,最佳化包括最小化EPE成本可包括最小化成本函數。可例如將成本函數表示為 等式2, 其中 L表示一或多個半導體處理度量(例如,微影度量,在本文中亦可互換地稱為「微影度量(lithometric)」),且可基於由照明源(例如,EUV光源)輸出之光及圖案化器件、投影光學件(例如,投影光學系統之光學元件)及或微影裝置之其他組件的佈局而判定。半導體處理度量 L可充當括號中之項的權重。關於半導體處理度量 L之額外細節相對於等式6及7提供於下文中。項 WFM表示波前模型,該波前模型經組態以產生對由光學投影系統提供之波前的模擬。在一些實施例中,波前感測器可用於偵測由光學投影系統提供之波前。在一些實施例中,多個波前感測器可用於沿著光徑在各個點處偵測波前。波前模型WFM可基於包括於光學投影系統中之光學元件中之一些或所有的加熱狀態而計算波前。在一些其他實施例中,成本函數可不經組態以計算半導體處理度量,但包含表示波前像差之項。藉由使用此成本函數,最佳化反覆可旨在縮減波前像差之RMS,或收斂至目標波前。
在一些實施例中,諸如EUV光源之照明源可入射包括於光學投影系統中之光學元件中之一些或所有。可使用輸出具有任何其他波長或波長集合之光(諸如,DUV光)的光源而非EUV光源。該照明可使得光學元件變熱。因此,入射晶圓(例如,在入射於遮罩上且隨後光學投影系統之光學元件上之後)以形成特定圖案之光可與預期之圖案不同,從而導致最終產品產生缺陷。根據本發明之實施例,可使用熱模型考慮及模擬或模型化光學元件之加熱狀態(包括來自經組態以補償加熱影響之熱器件的熱影響),該熱模型將由照明源輸出之光、光學投影系統之組態或半導體處理裝置之其他設定之屬性用作輸入,且產生隨時間變化的經模擬波前。此經模擬波前基於光學元件之加熱。
本文中所描述之技術的技術效應可為改良之成像效能。舉例而言,在圖案化程序期間縮減像差可改良成像效能。為了以更確定性方式縮減像差或控制像差,可減輕晶圓圖案化程序的熱能之效應(例如,光學元件之歸因於熱變化的變形)。用以減輕熱能之效應之一種技術例如係藉由調整光學投影系統之組態。在一些實施例中,調整光學投影系統之組態可包括調整光學投影系統之一或多個光學元件的定向。光學元件之定向可影響光學元件之加熱狀態。舉例而言,調整光學元件之定向可使得由光學元件產生之加熱狀態改變以便減輕像差。可沿著一或多個自由度調整光學元件之各定向。舉例而言,各光學元件(例如,反射光學元件、透射光學元件等)可具有其可藉以調整其定向之六個(6)自由度。舉例而言,在笛卡爾座標中,可沿著x軸、y軸及/或z軸(例如,+/- Δx、Δy、Δz)調整各光學元件,沿著x軸、y軸及/或z軸旋轉各光學元件或兩者。因此,藉由沿著一或多個自由度調整定向,由照明源輸出之光誘發的波前與由光學元件之定向誘發的波前組合可最小化波前漂移之量(例如,由光學投影系統提供之波前與預期由光學投影系統輸出之目標或理想波前之間的差的量值)。
然而,如上文所提及,隨著半導體處理裝置之功率位準增加,諸如EUV掃描器中之光源,對光學元件之定向的調整並不足以減輕由照明源輸出之光誘發的熱。隨著光學元件加熱,物理特性(例如,形狀、反射率等)可改變,從而導致波前漂移且圖案化程序產生具有缺陷之產品。特定言之,缺陷可隨著晶圓之數目增加而變得更糟。舉例而言,如參考圖3所見,每基板(例如,每晶圓或每層)動態像差校正可用於減少缺陷計數及大小。圖3之圖表300使用鏡面加熱作為實例。圖表300描繪由鏡面加熱造成的像差(例如,Zernike i)隨著時間推移(在給定生產批次中)改變。圖表300中展示用於生產批次之晶圓1-8 (例如,w1、w2、……w8)。此外,圖表300標繪在無校正的情況下將發生之原始像差漂移302 (例如,由鏡面加熱引起之任尼克隨著時間推移之改變)。相比之下,圖3亦針對各晶圓展示鏡面加熱殘差308、投影光學件校正模型殘差304、用於鏡面加熱殘差308之最末場306 (其等於最差鏡面加熱殘差)及校正310。校正可基於如上文所描述之投影光學件校正模型而判定。歸因於像差影響模型之動態性質,相比於提供可僅離線執行(例如,不在生產製造設定中)之靜態校正之先前技術系統,校正可應用於每晶圓基礎。在各晶圓處,半導體處理度量(例如,微影度量)減少一定量的像差影響。
根據本發明之實施例,經組態以將熱能施加至一或多個光學元件之一或多個區段之一或多個熱器件受控制以減輕加熱誘發的成像影響。舉例而言,熱器件可為經組態以輸出在給定光學元件之一或多個特定區段處引導之輻照的加熱器。在一些實施例中,熱器件可用於調整光學元件之特定部分對光學元件之總體加熱狀態的貢獻,以便減少波前漂移(例如,由光學投影系統提供之波前與目標波前之間的差異)。待由熱器件輸出之熱能的量及光學元件上之待藉以施加熱能之位置可根據成像效能特性進行調整。舉例而言,進行調整以便最小化前述EPE成本函數或波前成本函數。舉例而言,相對於方程式2,可判定待提供至特定光學元件之特定位置的熱能之量。調整可經選擇使得由波前模型產生的波前與基於光學元件之組態產生的波前組合接近目標波前,該波前模型將光學元件之由熱器件輸出之熱能誘發的加熱狀態及由照明源輸出之光誘發的加熱狀態用作輸入。舉例而言,可對熱器件之功率位準進行調整及對光學投影系統之組態進行調整以最小化以下: 。參考判定熱器件之功率或能階而詳細地論述本發明之實施例。然而,應瞭解,此論述僅為例示性的。可在不脫離本發明之範疇的情況下判定對與熱器件相關聯之一或多個其他不同變數或參數(例如,電流、電壓、位置、定向等)的調整或進行對該一或多個其他不同變數或參數的調整,此可取決於熱器件之機械、電及邏輯組態及控制或使用者介面。
如上文所描述,全模擬可包括源、遮罩、劑量、焦點及/或微影程序之其他態樣的模擬(例如,參見圖2)。
有利地,前述最佳化程序促進快速及動態掃描器像差(及波前)控制,其為對EUV掃描器、DUV掃描器或使用其他光波長操作之掃描器有效的成像效能感知(例如,諸如用於控制由鏡面加熱及/或圖案化設備及/或圖案化程序之其他動態態樣引起的像差),且併有對光學元件之熱狀態有貢獻的輔助熱器件,其中功率位準可為高的。
圖4A繪示根據實施例之用於判定與熱器件相關聯的程序參數的例示性流程圖。在一些實施例中,方法400包括操作402,該操作包括接收表示由半導體處理裝置之光學投影系統提供之波前的波前資料。方法400進一步包括操作404,該操作包括基於波前資料與目標波前資料之比較而判定波前漂移。方法400又進一步包括操作406,該操作包括基於波前漂移判定與熱器件相關聯之一或多個變數(例如,熱器件之程序參數)。
在一些實施例中,經判定之變數可用於圖案化系統(例如,半導體處理裝置)之動態原位像差控制及/或其他操作。下文呈現之方法400的操作意欲為說明性的。在一些實施例中,方法400可藉由未描述之一或多個額外操作及/或在不具有所論述操作中之一或多者的情況下實現。另外,在圖4A中繪示及在下文描述方法400之操作的次序並不意欲為限制性的。
在操作402中,可接收表示由光學投影系統提供之波前資料的波前資料。光學投影系統可為用於產生經圖案化器件之半導體處理裝置(例如,微影裝置)之部分。在一些實施例中,波前資料可由波前感測器輸出,該波前感測器可為沿著半導體處理裝置之光程在各個位置處量測波前的物理感測器。在一些實施例中,波前資料自經模擬感測器產生,該經模擬感測器沿著經模型化半導體處理裝置之光程在一或多個位置處或該兩者處模擬波前。在一些實施例中,波前可基於波前模型產生。波前模型可將由自半導體處理裝置之照明源輸出之光誘發的加熱狀態及由在半導體處理裝置之光學投影系統之光學元件上的熱器件輸出之熱能誘發的加熱狀態用作輸入。輸出可為來自一或多個熱源之誘發性波前(例如,其中照明源及熱器件兩者將熱能提供至光學元件以加熱光學元件)。此誘發性波前可藉由光學投影系統之組態誘發的波前來計算。舉例而言,光學投影系統之組態可包括光學投影系統之一或多個光學元件的定向。光學元件之不同定向可導致誘發不同波前。
在操作404中,可基於波前資料與目標波前資料之比較而判定波前漂移。波前漂移為經量測波前(例如,由光學投影系統提供之波前)與由目標波前資料表示之目標波前之間的差之量值的量測。目標波前描繪在未出現像差相關效應的情況下待由光學投影系統提供之理想波前。在一些實施例中,可補償波前漂移以便減少波前與目標波前之間的差。舉例而言,可藉由調整光學投影系統之組態、調整經由熱器件提供至光學投影系統之熱能的量、調整沿著光學投影系統藉以施加經由熱器件提供之熱能的位置或經由其他技術來補償波前漂移。
在操作406中,可基於波前漂移而判定一或多個程序參數。一或多個程序參數可包括與經組態以將熱能提供至光學投影系統之熱器件相關聯的參數。提供至光學投影系統之熱能可補償來自波前漂移之影響,藉此減少缺陷計數及大小。在一些實施例中,可藉由最小化成本函數(諸如,由等式2表示之成本函數)來判定程序參數。舉例而言,成本函數可用於判定與不同程序參數相關聯的EPE成本或波前成本。另外或替代地,所判定之EPE成本可基於光學投影系統之不同組態。
圖4B繪示根據實施例之用於判定與熱器件相關聯的程序參數的另一例示性流程圖。在一些實施例中,方法450包括操作452,該操作包括獲得由半導體處理裝置之光學投影系統提供之波前的波前漂移。波前漂移可基於表示波前之波前資料與表示目標波前之目標波前資料的比較而判定。方法450進一步包括操作454,該操作包括基於波前漂移判定一或多個程序參數,其中程序參數包括與經組態以在操作期間將熱能提供至光學投影系統之熱器件相關聯的參數。
在一些實施例中,經判定之一或多個程序參數可用於圖案化系統(例如,半導體處理裝置)之動態原位像差控制及/或其他操作。下文呈現之方法450的操作意欲為說明性的。在一些實施例中,方法450可藉由未描述之一或多個額外操作及/或在不具有所論述操作中之一或多者的情況下實現。另外,在圖4B中繪示及在下文描述方法450之操作的次序並不意欲為限制性的。
在操作452中,可獲得波前資料漂移。在一些實施例中,波前漂移可由半導體處理裝置之一或多個組件(例如,波前感測器、控制邏輯、耦接至波前感測器之電腦系統等)計算。在一些實施例中,波前漂移可由通信地耦接至半導體處理裝置之一部分的波前感測器計算。波前漂移為經量測波前(例如,由光學投影系統提供之波前)與由目標波前資料表示之目標波前之間的差之量值的量測。目標波前描繪在未出現像差相關效應的情況下待由光學投影系統提供之理想波前。在一些實施例中,可例如藉由減小EPE成本或熟習此項技術者已知的任何其他形式之成本函數來補償波前漂移以便減小波前與目標波前之間的差,或最佳化成像效能。
在一些實施例中,波前資料可由波前感測器偵測,該波前感測器可為沿著半導體處理裝置之光程在一或多個位置處量測波前之物理感測器。在一些實施例中,經模擬感測器沿著經模型化半導體處理裝置之光程在一或多個位置處模擬波前。在一些實施例中,波前可基於波前模型而產生。在一些實施例中,可離線執行與波前模擬及/或波前偵測相關聯的步驟中之一些或所有,同時可在微影裝置之操作期間在線執行其他步驟。波前模型可將由自半導體處理裝置之照明源輸出之光誘發的加熱及由在半導體處理裝置之光學投影系統之光學元件上的熱器件輸出之熱能誘發的加熱用作輸入。輸出可為經預測波前(例如,其中照明源及熱器件兩者將熱能提供至光學元件以加熱光學元件)。此波前可藉由光學投影系統之組態誘發的波前來計算。舉例而言,光學投影系統之組態可包括光學投影系統之一或多個光學元件的定向。光學元件之不同定向可導致誘發不同波前。
在操作454中,可基於波前漂移而判定一或多個程序參數。一或多個程序參數可包括與經組態以將熱能提供至光學投影系統之熱器件相關聯的參數。提供至光學投影系統之熱能可補償波前漂移,藉此減少缺陷計數及大小。在一些實施例中,可藉由最小化成本函數(諸如,由等式2表示之成本函數)來判定程序參數。舉例而言,成本函數可用於判定與不同程序參數相關聯之EPE成本。另外或替代地,所判定之EPE成本可基於光學投影系統之不同組態。
如藉由圖5所見,光學投影系統可包括光學元件集合。在圖5之實例中,光學投影系統500可包括六個光學元件M1-M6。光束B (其可為使用圖案化器件圖案化之由自照明源輸出之光產生的經圖案化照明光束)可入射光學元件M1-M6。儘管光學投影系統500包括六個光學元件,但在不偏離本申請案之範疇的情況下可使用更多或更少光學元件。另外,儘管光學元件M1-M6描繪為反射光學元件(例如,各光學元件反射入射光束B而非允許光束穿過),但光學元件M1-M6中之一或多者或光學投影系統500之其他光學元件可為透射光學元件或為部分反射的及部分透射的。
光學元件M1-M6可調節光束B以形成光束B*,其經組態以入射遮罩以基於光學元件之組態而將圖案賦予至特定層或晶圓。舉例而言,光學元件之組態可指示光學元件之形狀、沿著光學元件之一或多個自由度對光學元件作出的調整(例如,旋轉、平移移動、沿著一或多個軸線)、光學元件之材料組成或光學元件之其他特性,或其組合。光學元件之單獨或彼此組合的不同組態可影響將如何向所得經圖案化器件(或經圖案化器件之層)誘發後續像差。
入射於光學元件上之光可使得光學元件之溫度改變。由入射光引起之溫度變化跨光學元件可不同。舉例而言,光學元件之一個區段可經歷溫度變化ΔT 1,而光學元件之另一區段可經歷不同溫度變化ΔT 2。溫度差變化可使得光學元件發生不同量的變形。舉例而言,經歷較大熱變化之區段(例如,變得「較熱」之區段)可比經歷較小熱變化之區段變形更多。光學元件之區段的變形可影響由光學元件提供之光(例如,經由光學元件傳輸之光、反射出光學元件之光)如何組態,此可影響圖案化程序之準確度。因此,識別一或多個光學元件之哪些區段由於由入射光引起之熱變化而變形及所引起的變形之程度可使得能夠對光學元件執行某些補償性動作。
作為實例,參考圖6A及圖6B,光學元件M可接收自照明源(例如,EUV源)輸出之光。光可入射於由圖案化器件圖案化之一或多個其他光學元件上,或在自光學元件M反射(或透射)之前及/或之後以其他方式調節。為簡單起見,光學投影系統展現為包括單一光學元件M。熱圖600描繪光學元件M由於入射光之熱回應。在實例中,光可為連續的且光學元件M可接收持續預定時間量之連續光以到達由熱圖600描繪之特定熱等級。歸因於光學元件M之組態(其可自然地引起或可經特定地設計),跨光學元件M之熱等級可不同。舉例而言,區602可具有與區604不同的熱等級(例如,區602可比區604「更熱」)。跨光學元件M之不同熱等級可使得光學元件M變形。光學元件M之給定區之變形的程度可與彼區之熱等級相關。舉例而言,如藉由圖6B之變形圖650所見,區652相較於光學元件M之區654可不同地變形,其中變形圖650之區652及654分別對應於熱圖600之區602及604。光學元件M之變形愈大,所得經圖案化器件的像差(例如,缺陷計數、缺陷大小等)可愈大。
在一些實施例中,調整光學元件(例如,由半導體處理裝置之光學投影系統包括的光學元件)之定向可補償光學元件由熱變化引起的變形。作為實例,參考圖7,可沿著光學元件M之一或多個自由度調整光學元件M之定向。如圖7中所繪示,可沿著x軸、y軸或z軸中之各者調整光學元件M之定向。可側向地(例如,± Δx、± Δy、± Δz)、旋轉地(例如,θ x、θ y、θ z),或側向地及旋轉地進行調整。此外,儘管光學元件M描繪為使其幾何中心居中於座標系統(例如,笛卡爾座標系統)之原點處,但光學元件M相對於座標系統之原點的對準可沿著一或多個軸線移位。
在一些實施例中,一或多個控制器件可控制對光學元件M沿著一或多個自由度之定向作出的調整。舉例而言,控制器件710、720、730可經組態以分別調整光學元件M沿著x軸、y軸及z軸之定向。然而,在一些實施例中,可包括額外控制器件或較少控制器件以控制光學元件M之移動。控制器件710、720、730可包括一或多個致動器或經組態以控制光學元件M之運動之其他機器。舉例而言,控制器件710、720、730可包括一或多個掃描器控制旋鈕。調整光學元件M之量可由δ表示(例如,δ表示可變掃描器控制旋鈕設定)。
在一些實施例中,可藉由使用使掃描器效能指紋與掃描器旋鈕調諧相關之相依性矩陣D來判定由光學投影系統之組態誘發的波前。如等式2中之 所定義,掃描器效能指紋可表示為D*δ,其中δ表示可變掃描器控制旋鈕設定。掃描器效能指紋可指示待對光學元件之定向作出之校正。判定校正可包括最佳化成本函數(例如,達成最小EPE或波前像差成本)。參考EPE成本函數詳細地論述本發明之實施例。然而,此論述僅為例示性的。可在不脫離本發明之範疇的情況下使用包括任何其他合適效能特性或度量之任何其他形式的成本函數。在一些實施例中,可模型化像差影響以判定等式2之項之最佳化值。在一些實施例中,可在離線或研究及開發階段期間產生像差影響模型,且隨後在操作期間將該像差影響模型用於微影裝置上。像差影響模型可基於經模擬圖案化系統像差校準資料及/或對應圖案化程序影響校準資料來校準。可基於不同遮罩設計、光瞳形狀及/或其他資訊運用模擬引擎來執行模擬。在一些實施例中,可對全晶片佈局執行模擬且藉此考慮全晶片佈局的所得成本函數(例如,等式2)、相依性矩陣(例如,光學元件定向相依性矩陣 D)或漢森(Hessian)矩陣。如本文中所描述,來自像差影響模型之成本函數經組態以供投影光學件校正模型(結合來自掃描器(圖案化系統)的經量測像差資料)使用以判定圖案化程序控制度量集合且促進動態原位像差控制。圖案化程序控制度量集合可包括一或多個程序參數,其可包括與經組態以將熱能提供至光學投影系統(例如,光學投影系統之光學元件)之一或多個熱器件相關聯的參數。像差影響模型可採取例如ADELasla檔案及/或任何其他掃描器友好的輕量資料格式之形式。在一些實施例中,單一經校準像差影響模型可由若干不同投影光學件校正模型(與若干不同掃描器相關聯)使用。
在一些實施例中,動態原位像差控制可包括在製造階段中時調整半導體器件製造程序之一或多個態樣。可基於來自投影光學件校正模型之輸出及/或其他資訊來作出調整。舉例而言,可判定製造程序參數調整(例如,應改變給定參數之量),且可將製造程序參數自先前參數設定點調整為新的參數設定點。根據本發明之實施例,可對待提供至熱器件以使得熱能施加至光學元件之功率位準、熱能將施加至光學元件上之位置及/或與熱器件相關聯之其他程序參數作出調整。此外,亦可由於模型而調整光瞳形狀、劑量、焦點、功率設定、材料材料組成。
再此外,程序參數可為光學投影系統之組態,且掃描器可調整光學投影系統之一或多個態樣的組態。舉例而言,掃描器可調整一或多個光學元件沿著光學元件之一或多個自由度之定向。可作出對定向之調整以誘發用於最小化EPE成本之波前。在一些實施例中,可原位作出調整以動態地控制像差影響。
程序參數可與待由熱器件在操作(例如,掃描器之操作)期間提供至光學投影系統之熱能之量相關。在一些實施例中,熱器件中之一或多者可用於向光學投影系統提供熱能以補償由光學投影系統之熱加熱引起的波前漂移。由熱器件提供之熱能可減少或重佈圍繞光學投影系統之熱能以達成較均勻及/或所要熱分佈。舉例而言,對於EUV照明源,EUV光之額外能量可導致光學投影系統之組件變形(例如,包括於光學投影系統中之光學元件(例如,鏡面)可歸因於由入射EUV光產生之加熱而在形狀上變形)。所得變形可導致由光學投影系統提供至目標之波前相對於目標波前移位,其稱為波前漂移。雖然調整光學投影系統之組態可幫助減少波前漂移,但可用於光學投影系統之有限調整可能無法足以補償波前漂移以最小化缺陷計數及大小。舉例而言,如上文所提及,雖然可沿著一或多個自由度調整光學投影系統中之光學元件,但彼等調整之範圍受到半導體處理裝置之光學元件及其他組件的大小及形狀限制。熱器件可充當用於誘發特定波前或對波前有貢獻以補償波前漂移的輔助熱能源。舉例而言,如藉由等式2所見,由波前模型 WFM產生之波前可基於兩個組分:(1)由自照明源輸出之光誘發至光學投影系統的加熱狀態 HS illumination ,及(2)由將熱能提供至光學投影之特定區段(例如,光學元件之區段)的熱器件誘發的加熱狀態 HS SH 。來自熱器件之加熱狀態之淨效應可有效地減少EUV應用中的波前漂移,使得EPE成本函數最小化。
在一些實施例中,光學投影系統之組態可包括光學投影系統之一或多個光學元件中之一些或所有的材料組成。舉例而言,光學元件之不同材料屬性可導致更多或更少缺陷及/或減小之缺陷大小。舉例而言,光學元件之不同材料組合可基於零交叉溫度(ZCT)而產生不同效能。舉例而言,隨著ZCT增加,缺陷計數及最大缺陷大小皆可減小。
圖8繪示根據實施例之光學元件800及將熱能804提供至光學元件800的熱器件802集合。如上文所提及,光學元件800可為包括於半導體處理裝置之光學投影系統內的光學元件集合中之一者。為簡單起見,描繪單一光學元件。
諸如EUV光或其他輻射之光可入射光學元件800之一或多個區段。光學元件800之其中應用光之區段可基於光學投影系統之組態、光或其他光學組件而預定。舉例而言,基於光瞳、倍縮光罩或半導體處理裝置之其他組件,EUV光可應用於位於光學元件800之第一表面上之光點808。替代地或另外,EUV光可應用於光學元件之另一表面。在一些實施例中,入射EUV光之量值(例如,強度)可取決於特定處理設計而不同。EUV光可增加(或降低)光學元件800中之一些或所有的溫度。跨光學元件之溫度分佈表示光學元件之「加熱狀態」。加熱狀態可為一或多個特定光學元件之「總」或「整體」加熱狀態,且可具有來自照明源的輸出光及自加熱器件802提供至光學元件之任何額外熱能的貢獻。如先前所提及,熱器件802可提供在光學元件800之一或多個區段處引導的熱能以便修改光學元件800之溫度分佈,藉此減少由波前感測器偵測到之暫態波前(例如,表示由光學投影系統提供之波前)與目標波前之間的不同。舉例而言,藉由將特定量之熱能添加至光學元件之一或多個特定位置可藉由修改跨光學元件之溫度分佈以便使溫度分佈更接近於將產生目標波前之溫度分佈來減少波前漂移。
在一些實施例中,光學元件800可包括一或多個熱器件802。熱器件802 (其亦可稱為「區段加熱器」)可經組態以輸出在光學元件800之一或多個特定位置處引導的熱能804。在一些實施例中,輸出熱能可呈輻照形式。熱能804可施加至某些位置806。位置806可基於校準資料而判定。校準資料可藉由模擬由光學元件之各種溫度分佈誘發之加熱狀態產生的波前而產生。將特定量之熱能添加至光學元件上之特定位置可使得溫度分佈以特定方式修改。可隨後判定熱能及熱器件802藉以輸出輻照之位置,以便使光學元件之溫度分佈更接近於誘發產生目標波前之加熱狀態的溫度分佈。因此,可作出對由給定熱器件輸出之熱能之量及光學元件上將施加熱能之位置(例如,區段)的動態調整以補償波前漂移,藉此減少由光學投影系統提供之波前與目標波前之間的差。減少波前漂移可藉由最小化成本函數(諸如,等式2之成本函數)而模型化,該成本函數計算波前漂移且藉由一或多個半導體處理量度(例如,微影量度)對波前漂移加權。在另一實例中,成本函數計算波前漂移之成本而無需計算處理度量。
儘管熱器件802之多個個例繪示於圖8中,但光學投影系統之各光學元件可包括熱器件802之一或多個個例。各熱器件802可經組態以將相同或不同量之熱能輸出至光學元件之一或多個不同區段。舉例而言,光學元件800之第一區段可自熱器件802之個例接收第一量的熱能,而光學元件800之第二區段可自熱器件802之另一個例接收第二量的熱能。在一些實施例中,單一熱器件可用於將熱能施加至一或多個光學元件。
除了由熱器件(例如,熱器件802)提供之熱能以外,一或多個控制器件(諸如,控制器件810)亦可經組態以調整光學投影系統之組態。舉例而言,控制器件810可調整光學元件800沿著一或多個自由度之定向,以使得藉由光學元件800之組態產生特定波前。
圖9繪示根據實施例之實例光學投影系統,其包括光學元件、用於將熱能提供至該等光學元件中之一些或所有的熱器件及用於控制該等光學元件中之一些或所有之定向的控制器件。在一些實施例中,光學投影系統900可類似於圖5之光學投影系統,其中添加用於輻照各種光學元件之區段的熱器件及用於調整光學元件中之一或多者之定向的控制器件。作為實例,光學投影系統900可包括控制器件810,其可包括及/或通信地耦接至控制光學元件M1-M6中之一些或所有之定向的一或多個致動器。在一些實施例中,光學投影系統900可包括經組態以控制光學元件M1-M6中之一或多者的多個控制器件810。
光學投影系統900亦可包括熱器件H1-H4。熱器件H1-H4可經組態以將熱能輸出(例如,輻射)至光學元件M1-M6中之一或多者的一或多個區段。在圖9之實例中,光學元件M1及M4可能無法自熱器件H1-H4接收熱能,然而,光學投影系統900可使一或多個額外熱器件或熱器件H1-H4中之一或多者動態地調整其藉以輸出熱能之方向性,以便使得光學元件M1及M4能夠接收熱能。然而,一般熟習此項技術者將認識到,可包括額外或更少熱器件。
圖10A繪示根據實施例的用於使用離線熱器件最佳化程序來執行像差校正之實例方法。離線模型化可用於判定用於給定曝光或一序列曝光之熱器件的程序參數(例如,操作設定)。在一些實施例中,離線模型化可使用穩態波前。在一些實施例中,模型化可使用先前在曝光操作期間偵測到的當前暫態波前。在一些實施例中,穩態波前可表示自已知曝光資訊導出或模擬之預期波前。舉例而言,穩態波前可表示基於特定輸出光、倍縮光罩或半導體處理裝置之其他特徵而預測的波前。此外,穩態波前處理為在特定時間段期間(例如,在個別晶圓或揮動集合的處理期間)不變化,且因此熱器件及光學元件之所得校正可保持相同。在一些實施例中,圖10A之方法1000可包括光學繞射圖案之模擬。在一些實施例中,方法1000可包括可基於所產生之光學繞射圖案的模擬或經驗判定事件。事件可指在半導體處理步驟期間發生的事件。舉例而言,微影曝光、在圖案化程序期間之延遲及殘差可為可發生的事件之形式。在一些實施例中,穩定stet波前可為經驗資料(例如,自對設備上之一序列晶圓之先前處理所量測)。在一些實施例中,方法1000可包括執行離線熱模型。離線熱模型可與一或多個微影量度組合以判定待用於補償任何波前漂移之程序參數。模型可產生處理配方或與熱器件相關之一序列配方。舉例而言,模型可產生可在微影程序之操作期間使用的熱器件之處理參數之一序列值,以便根據晶圓處理之給定事件控制像差影響,該給定事件例如包括一序列晶圓裝載、曝光、延遲、暫停、按時間次序等。在一些實施例中,方法1000可用於在將基板曝光至輻射之前計算熱器件之程序參數及光學投影系統之組態。
方法1000可在操作1010處開始。在操作1010中,可使用波前產生模型產生波前。所產生波前可為經模擬或經量測結果。在一些實施例中,對於特定組態,波前產生模型可將由光學投影系統提供之穩態波前誘發的加熱狀態1002用作輸入。由穩態波前誘發之加熱狀態可由穩態波前資料表示。在一些實施例中,波前產生模型可另外或替代地將由將熱能輸出至光學投影系統之一或多個光學元件之一或多個區段的一或多個熱器件誘發之加熱狀態1004用作輸入。波前產生模型可基於由穩態波前誘發之加熱狀態及由熱器件輸出至光學元件之熱能誘發的加熱狀態而產生經模擬波前1012。
在操作1020中,執行最佳化程序以用於動態原位像差校正。最佳化程序可接收經模擬波前1012,其亦可稱為「穩態」波前,且亦可接收半導體處理度量1014。操作1020之最佳化程序可經組態以判定可用於執行半導體處理裝置(例如,掃描器及/或其他圖案化系統)之動態原位像差控制之像差控制資料1022。在一些實施例中,掃描器或其他組件之動態原位控制包括產生用於給定掃描器像差之經校正掃描器控制參數配方以最佳化微影效能度量集合。在一些實施例中,像差控制資料1022可用於產生掃描器控制參數配方。舉例而言,掃描器控制參數配方可包括與一或多個熱器件相關聯之經判定程序參數及/或用於光學投影系統之經判定組態。舉例而言,掃描器控制參數配方可包括指示對與熱器件相關聯之程序參數之調整的第一指令,及指示對光學投影系統之組態之調整的第二指令。對程序參數之調整可包括對由熱器件輸出之熱能之功率位準的調整、對熱能待施加至光學投影系統之光學元件之位置的調整,或可調整之其他操作設定,或其組合。對光學投影系統之組態的調整可包括對光學投影系統之光學元件之定向的調整(例如,平移調整、旋轉調整)。
在一些實施例中,可藉由最小化成本函數(例如,EPE成本)來執行最佳化。舉例而言,可針對某些程序參數及組態最小化等式2之成本函數。像差控制資料1022可指示最小化由成本函數產生之成本的程序參數及組態。
在一些實施例中,可針對各曝光重複方法1000。在一些實施例中,舉例而言,對於給定曝光,可更新由熱器件提供至光學投影系統之光學元件之熱能誘發的加熱狀態1004。加熱狀態1004之經更新版本可基於待對由熱器件提供之熱能作出的調整(例如,量及/或位置)而判定,該熱能由像差控制資料1022指示。
圖10B繪示根據本發明之實施例的用於使用在線熱器件最佳化程序來執行像差校正之實例方法。在線模型化可用於判定用於給定曝光(例如,逐晶圓)之熱器件的程序參數(例如,操作設定)。在線模型化可使用在給定曝光之後偵測到之當前波前(其可為暫態或穩態波前)或自其導出之波前。在一些實施例中,圖10B之方法1050可包括光學繞射圖案之模擬。在一些實施例中,方法1050可包括可基於所產生之光學繞射圖案的事件之模擬。事件可指在半導體處理步驟期間發生的事件。舉例而言,在圖案化程序期間之延遲及殘差可為可發生之事件之形式。在一些實施例中,方法1050可包括執行離線熱模型。離線熱模型可與一或多個微影量度組合以判定待用於補償任何波前漂移之程序參數。在一些實施例中,方法1050可用於在將基板曝光至輻射之前計算熱器件之程序參數及光學投影系統之組態。
方法1050可在操作1010處開始。方法1050之操作1010可實質上類似於方法1000之操作,除了當前波前之加熱狀態1052及由當前曝光(例如,晶圓1、晶圓2、……晶圓n)之當前程序參數誘發的加熱狀態1054而非穩態波前的加熱狀態可輸入至波前產生模型。波前產生模型可經組態以基於加熱狀態1052及1054產生經模擬波前1056。
在操作1020中,經模擬波前1056及半導體處理度量1014可用於執行最佳化程序以用於動態原位像差校正。最佳化程序可接收經模擬波前1056 (其亦可稱為「暫態」波前或「熱」波前),且亦可接收半導體處理度量1014。操作1020之最佳化程序可經組態以判定可用於執行半導體處理裝置(例如,掃描器及/或其他圖案化系統)之動態原位像差控制之像差控制資料1022。在一些實施例中,掃描器或其他組件之動態原位控制包括產生用於給定掃描器像差之經校正掃描器控制參數配方以最佳化微影效能度量集合。在一些實施例中,像差控制資料1022可用於產生掃描器控制參數配方。舉例而言,掃描器控制參數配方可包括與一或多個熱器件相關聯之經判定程序參數及/或用於光學投影系統之經判定組態。舉例而言,掃描器控制參數配方可包括指示對與熱器件相關聯之程序參數之調整的第一指令,及指示對光學投影系統之組態之調整的第二指令。對程序參數之調整可包括對由熱器件輸出之熱能之功率位準的調整、對熱能待施加至光學投影系統之光學元件之位置的調整,或可調整之其他操作設定,或其組合。對光學投影系統之組態的調整可包括對光學投影系統之光學元件之定向的調整(例如,平移調整、旋轉調整)。
在一些實施例中,可藉由最小化成本函數(例如,EPE成本)來執行最佳化。舉例而言,可針對某些程序參數及組態最小化等式2之成本函數。像差控制資料1022可指示最小化由成本函數產生之成本的程序參數及組態。
在一些實施例中,可針對各曝光重複方法1050。舉例而言,在操作1060中,可作出關於當前批次是否具有任何更多曝光之判定。若否,則方法1050可在1070處結束。然而,若將執行額外曝光(例如,晶圓2、3等),則方法1050可包括產生經更新暫態波前的加熱狀態1082及經更新程序參數的加熱狀態1084,其在操作1010中可輸入至波前產生模型。經更新暫態波前可表示在給定曝光終止之後由光學投影系統提供之波前,其包括關於歸因於入射光(例如,EUV光)而發生的光學投影系統之光學元件之變形程度及來自熱器件之入射輻照以執行用於先前曝光之原位像差控制的資訊。經更新程序參數的加熱狀態1084可表示待由熱器件誘發至光學元件以補償當前波前漂移之加熱狀態。
在一些實施例中,動態原位控制包括高量製造期間控制像差。舉例而言,在一些實施例中,可執行圖10B之方法1000及/或方法1050使得新圖案化程序影響資料(例如,由像差影響模型輸出之成本函數)經組態以在製造期間即時或接近即時促進對圖案化系統之一或多個鏡面、透鏡及/或其他元件之(例如,EUV)加熱的強化補償及/或控制(例如,以減少及/或消除掃描器像差)。EUV鏡面加熱控制係有用的,此係因為掃描器通常需要使用有限數目個旋鈕來動態校正由鏡面加熱誘發之像差。作為另一實例,可執行圖10B之方法1000及/或方法1050使得新圖案化程序影響資料(例如,由像差影響模型輸出之成本函數)經組態以在製造期間即時或接近即時促進與圖案化系統(例如,掃描器)相關聯的焦點、劑量及/或階段變化(MSD)之強化控制。涵蓋其他實例。
應注意,可將一個像差影響模型提供至不同投影光學件盒以用於控制CD、EPE及/或其他參數。因為像差影響模型可經組態以使得自模擬結果建構成本(優質化)函數,故吾人可界定(例如,用於校準)任何所要度量,諸如CD、圖案置放誤差(PPE)、EPE、CD不對稱性、最佳焦點移位、缺陷計數等。以此方式,本發明之像差影響模型可經組態以自動反映所要度量。
在一些實施例中,像差影響模型可判定成本函數 s(Z)。投影光學件校正模型定義(掃描器)透鏡(元件-例如透鏡、鏡面等)相依性矩陣 D使得掃描器效能指紋= D * δ,其中δ表示可變掃描器控制旋鈕設定。在一些實施例中,可經由等式3將來自像差影響模型之成本函數定義為: s(Z(δ)) = s(ΔZ +Dδ)                             等式3, 其中 Δ Z表示來自掃描器之像差漂移, D為相依性矩陣,δ表示可變掃描器控制旋鈕設定,且 D δ表示效能指紋(或換言之,所需校正之指示)。非線性最佳化器可用於最小化s(δ)使得δ* = argmin s(δ),其中δ*表示所需之動態掃描器旋鈕校正。成本函數s(Z( δ))處於其最小值,s = 0。投影光學件校正模型可調整旋鈕( δ)以致力於最小化成本s(δ)。
如上文所描述,在一些實施例中,來自像差影響模型之新圖案化程序影響資料(例如,成本函數)可經組態以(例如,由投影光學件校正模型)使用以判定圖案化程序控制度量之集合。在一些實施例中,圖案化程序控制度量包含微影效能度量(或「微影度量」)及/或其他資訊。在一些實施例中,圖案化程序控制度量之集合經組態以由線性求解程序及/或由其他操作判定。在一些實施例中,成本函數 s可表示為=Δ𝑍 T𝐻Δ𝑍,其中 H為成本函數漢森。舉例而言,假定(對於此實例)像差影響模型(及/或由像差影響模型輸出之成本函數)之形式為正定二次式,諸如: 等式4, 其中總像差 Z = ΔZ + D 𝛿Δ Z為像差漂移(例如,由鏡面加熱誘發之像差),且 𝛿表示掃描器旋鈕且 D 𝛿表示校正。隨後,等式4可重寫為等式5: 等式5。
以上成本函數可轉換成微影度量之集合。在一些實施例中,來自模型之新圖案化程序影響資料包含成本函數漢森(例如,以上等式中之 H)。判定圖案化程序控制度量之集合包含對漢森執行奇異值分解(SVD)。漢森( H)為正定矩陣。對漢森執行SVD會將成本函數轉換成「微影度量」之形式。
在一些實施例中,可根據等式6對漢森執行奇異值分解(SVD): 等式6, (其中特徵值被吸收至特徵向量中)使得: 等式7, 其中SVD經由高維旋轉基本上消除交叉項。
在一些實施例中,可基於上文相對於由熱器件輸出之熱能所描述的額外特徵(此可產生等式2)修改以上等式7。舉例而言,波前產生模型可將與由光學投影系統之光學元件上之熱器件誘發的加熱狀態相關的項用作輸入。
在一些實施例中,像差影響模型可為預測模型。校準可包括模型產生、訓練、調諧及/或其他操作。模型可運用圖案化系統像差校準資料及對應圖案化程序影響校準資料予以校準。圖案化系統可為及/或包括掃描器(諸如,在圖1中及在稍後圖中所展示之微影投影裝置)。在掃描器中,像差可在半導體處理裝置(例如,掃描器)之光學投影系統之光學元件(例如,透鏡、鏡面及/或其他元件)的表面並不處於預期位置時出現。透鏡元件之表面可能由於例如透鏡元件加熱而不處於預期位置中,但可具有許多不同的原因。圖案化系統像差資料包括描述特定像差之特性、像差之原因及/或其他資料的資料。圖案化系統像差資料可包括經量測及/或經模擬像差、與像差相關聯之系統及/或程序參數,及/或其他波前資訊。波前像差(或如本文中所使用之「像差」)可指理想波前與實際波前之間的偏差(不一致程度)。如本文中所描述,波前像差在本文中可互換地稱為「波前漂移」。
舉例而言,當透鏡元件變熱時,形狀變化(其造成像差)可由雷射功率位準、光瞳形狀、目標設計、曝光劑量及/或其他因素造成。此等及其他因素中之任一者及/或所有可包括於圖案化系統像差資料集中。圖案化程序影響資料包括描述像差對對應圖案化程序之影響的資料。舉例而言,圖案化程序影響資料可指示藉由對應圖案化系統像差對基板上之成像效能之影響,基板上之成像效能例如與圖案化程序相關聯的臨界尺寸、圖案置放誤差、邊緣置放誤差、臨界尺寸不對稱性、最佳焦點移位、缺陷計數,及/或其他參數。圖案化程序影響資料可包括各種參數、成本及/或優質化函數(例如,如下文所描述)之值及/或其他資訊。
圖案化系統像差校準資料及對應圖案化程序影響校準資料包含已知及/或另外先前經判定之資料。可以其他方式量測、模擬及/或判定圖案化系統像差及/或程序影響校準資料。在一些實施例中,藉由基於相關聯光瞳形狀、圖案化器件設計及各種像差輸入執行全模擬模型而獲得校準資料(例如,其中全模擬模型可包括照明模型31、投影光學件模型32、設計佈局模型35、抗蝕劑模型37及/或其他模型中之一或多者)。
在一些實施例中,藉由以下操作校準像差影響模型:將圖案化系統像差校準資料提供至基礎(預測)模型以獲得圖案化程序影響校準資料之預測;及將圖案化程序影響校準資料用作回饋以更新基礎模型之一或多個組態。舉例而言,像差影響之一或多個組態基於圖案化程序影響校準資料與圖案化程序影響校準資料之預測之間的比較而更新。用於校準像差影響模型之校準資料可包括輸入(例如,已知圖案化系統像差資料)及對應已知輸出(例如,已知圖案化程序影響校準資料)之若干對或集合。在一些實施例中,像差影響模型可使用所提供之訓練資訊對而自學習。經校準像差影響模型可隨後用於基於諸如如上文所描述之不同圖案化系統像差資料之各種輸入資訊而進行預測(例如,對圖案化程序影響進行預測)。
在一些實施例中,像差影響模型包含經組態以使所接收之圖案化系統像差資料與圖案化程序影響資料相關之超維函數。在一些實施例中,校準模型包含藉由調諧及/或以其他方式調整該函數之一或多個參數來更新基礎模型之一或多個組態。在一些實施例中,調諧包含調整一或多個模型參數使得經預測圖案化程序影響資料較佳地匹配於或較佳地對應於已知圖案化程序影響校準資料。在一些實施例中,調諧包含使用包含新及/或額外輸入/輸出校準資料對之額外校準資訊來訓練或重新訓練模型。
在一些實施例中,像差影響模型(例如,超維函數)包含非線性演算法、線性演算法、二次演算法或其組合中之一或多者,但可及/或包括任何合適之任意數學函數。舉例而言,超維函數可具有任何任意的冪多項式形式、分段多項式形式、指數形式、高斯形式、S型形式、決策樹類型之形式、迴旋神經網路類型之形式等。此等演算法可包括以任何組合之任何數目個參數、權重及/或其他特徵,使得超維函數經組態以以簡化形式代替全模擬使圖案化系統像差與圖案化程序影響在數學上相關。在不將本發明之範疇限於以下實例的情況下,實例線性演算法可包括任尼克項之線性形式,其中經由CD、PPE、EPE、不對稱性、缺陷及/或其他參數對個別任尼克項之相依性的線性回歸來計算線性係數。實例二次演算法可包括任尼克項之線性及二次形式,其中線性及二次係數經由CD、EPE、PPE及/或其他參數對個別任尼克項之相依性之非線性回歸來計算。
在一些實施例中,函數之形式(例如,非線性、線性、二次等)、函數之參數、演算法中之權重及/或函數之其他特性可基於以上所描述之校準、基於由使用者提供之準確度及運行時間效能規格、基於由使用者經由本發明系統中所包括之使用者介面而人工輸入及/或選擇資訊及/或藉由其他方法予以自動判定。在一些實施例中,函數之形式(例如,非線性、線性、二次等)、函數之參數及/或函數之其他特性可隨著基板之個別層而改變(例如,作為可能造成及/或影響像差變化之處理參數及/或其他條件),及/或基於其他資訊而改變。舉例而言,可針對在半導體器件製造圖案化操作期間生產之基板的不同層來校準不同模型。
動態原位像差控制包含當在製造階段中時調整半導體器件製造程序。可基於來自投影光學件校正模型之輸出及/或其他資訊來作出調整。舉例而言,可判定製造程序參數調整(例如,應改變給定參數之量),且可將製造程序參數自先前參數設定點調整為新的參數設定點。在一些實施例中,經判定及/或經調整半導體器件製造程序參數包含光瞳形狀、劑量、焦點、功率設定及/或其他半導體器件製造程序參數中之一或多者。作為實例,若程序參數為(例如,新)光瞳形狀或新劑量,則可將掃描器自舊的或先前光瞳形狀或劑量調整為經判定(例如,新的)光瞳形狀或劑量。涵蓋若干其他類似實例。
如上文所描述,本文中所描述之模型可具有廣泛範圍之應用。另一實例應用(例如,除以上所描述之鏡面加熱及其他實例以外)為使用像差影響模型化進行之多個圖案化系統之共同最佳化。圖案化系統可包括掃描器及/或其他圖案化系統。舉例而言,經校準像差影響模型可用於波前調諧(例如,代替先前技術系統中之全成像模擬)以確保相同設計佈局在不同掃描器上或在不同隙縫位置處印刷。
作為提醒,如本文中所描述之像差影響模型包含相對簡單之超維函數,該超維函數經組態以使所接收之圖案化系統像差資料與新圖案化程序影響資料相關。該超維函數經組態以以近似形式代替全模擬(在不計算空中影像的情況下)使所接收之圖案化系統像差資料與新圖案化程序影響資料相關。多個模型可用於描述多個掃描器之成像效能。
本發明(像差影響)模型為相對於先前模型具有縮減之範疇及改良之運行時間效能的緊湊模型。本發明模型至少適用於共同最佳化應用,此係因為經預測影響(僅)基於像差資料,且經預測影響可特定應用於預先選擇之度量(諸如,臨界尺寸、缺陷計數等),此使得模型準確、快速及/或具有其他有利特徵。本發明模型可專用於調諧僅基於相關像差資料之使用案例。由於本發明模型之輕量性質及/或其之其他有利特徵,多個圖案化系統之共同最佳化係可能的。
舉例而言,在一些實施例中,一或多個處理器(例如,一或多個電腦)可執行一或多個電子模型(例如,像差影響模型)以用於在不計算圖案化程序空中影像表示的情況下判定圖案化程序影響資料。圖案化程序影響資料可經組態以促進在圖案化程序中所使用之多個圖案化系統之共同最佳化。自模型輸出之新圖案化程序影響資料可經組態以促進圖案化程序中所使用之多個掃描器之共同最佳化。共同最佳化可包含使用透鏡致動器作為變數,以及使用基於梯度之非線性最佳化器以共同判定用於多個掃描器之致動器位置。在一些實施例中,來自模型之新圖案化程序影響資料經組態以用於判定圖案化程序控制度量之集合,其中圖案化程序控制度量之集合經組態以藉由線性求解程序(例如,如下文所描述)予以判定。
可將圖案化系統像差資料提供至一模型(或多個模型)使得模型(例如,超維度函數)使所接收之圖案化系統像差資料與圖案化程序影響資料相關。不同(像差影響)模型可對應於不同圖案化系統(掃描器)。可針對所接收之圖案化系統像差資料判定新圖案化程序影響資料。作為非限制性實例,所接收之圖案化系統像差資料可包含所接收之波前資料,且新圖案化程序影響資料可包含一或多個圖案化程序度量。波前資料可包含呈例如任尼克清單或經像素化位元映像之形式的經量測或經模擬波前資料及/或其他波前資料。在此實例中,一或多個圖案化程序度量可包括與圖案化程序相關聯的臨界尺寸、圖案置放誤差、邊緣置放誤差、臨界尺寸不對稱性、最佳焦點移位、缺陷計數及/或其他度量。在一些實施例中,新圖案化程序影響資料指示藉由對應圖案化系統像差對與圖案化程序相關聯的臨界尺寸、圖案置放誤差、邊緣置放誤差、臨界尺寸不對稱性、最佳焦點移位、缺陷計數及/或其他度量中的一或多者之影響。
在一些實施例中,給定模型包含:一或多個關鍵特徵分量(例如,超維函數之一或多個尺寸),其經組態以針對圖案化程序之關鍵特徵模型化掃描器間變化;一或多個調節分量(例如,超維函數之一或多個其他尺寸),其經組態以針對圖案化程序之非關鍵特徵模型化跨掃描器之通用效能;及/或其他分量。針對經共同最佳化的圖案化系統群組中之(所有)圖案化系統(例如,掃描器)來定義給定模型之關鍵特徵分量。關鍵特徵分量經組態以表示針對圖案中之關鍵特徵(例如,作為一個實例之臨界尺寸)之圖案化系統(例如,掃描器)間變化。模型之調節分量可經組態以表示圖案之非關鍵特徵。模型之調節分量可表示給定掃描器(或其他圖案化系統)相對於圖案之非關鍵特徵之通用效能。此單獨的關鍵特徵分量/調節分量配置可允許使用者基於例如給定製造位置處之圖案化系統效能或影響圖案化程序之關鍵特徵之其他獨特因素而自訂模型之關鍵特徵分量,同時保持非變化或非關鍵因素相同(或類似)。舉例而言,使用者可針對圖案之關鍵特徵提供可由模型之一或多個關鍵特徵分量表示的特定CD敏感度,但隨後允許模型之調節分量為圖案之非關鍵特徵產生輸出,其中在模型化及/或最佳化上耗費大量資源係沒有意義的。
換言之,關鍵特徵可由使用者根據任何合適準則指定,例如可為使用者特別關心之特徵及/或具有需要解決之一或多個問題的特徵。其他特徵可被視為調節特徵。給定模型之關鍵特徵分量及調節分量可為與此等不同類型之特徵相關聯的兩個不同函數。在一些實施例中,使用者可定義調節特徵/函數(例如,除了關鍵特徵分量/函數以外及/或代替關鍵特徵分量/函數),但若使用者定義調節特徵/函數,則本發明系統可經組態以使得使用者定義之特徵/函數(根據定義)變成關鍵性的。有利地,使用者未指定之任何特徵/函數係由模型以稱為調節特徵/函數之聯合方式處置。
在一些實施例中,來自模型之新圖案化程序影響資料經組態以提供至成本函數,以促進對與個別圖案化程序度量相關聯之成本及/或與個別圖案化程序變數相關聯之成本的判定。與個別圖案化程序度量相關聯之成本及/或與個別圖案化程序變數相關聯之成本經組態以用於促進多個掃描器之共同最佳化及/或用於其他目的。
圖11為根據實施例之微影投影裝置的示意圖。微影投影裝置可包括照明系統IL、第一物件台MT、第二物件台WT及投影系統PS。照明系統IL可調節輻射光束B。在此實例中,照明系統亦包含輻射源SO。第一物件台(例如,圖案化器件台) MT可具備用以固持圖案化器件MA (例如,倍縮光罩)之圖案化器件固持器,且連接至用以相對於物品PS來準確地定位圖案化器件之第一定位器。第二物件台(例如,基板台) WT可具備用以固持基板W (例如,抗蝕劑塗佈矽晶圓)之基板固持器,且連接至用以相對於物品PS準確地定位基板之第二定位器。投影系統(例如,其包括透鏡) PS (例如,折射、反射或反射折射光學系統)可將圖案化器件MA之經輻照部分成像至基板W之目標部分C (例如,包含一或多個晶粒)上。可例如使用圖案化器件對準標記M1、M2及基板對準標記P1、P2來對準圖案化器件MA及基板W。
如所描繪,裝置可屬於透射類型(亦即,具有透射圖案化器件)。然而,一般而言,其亦可屬於例如反射類型(具有反射圖案化器件)。裝置可採用與經典遮罩不同種類之圖案化器件;實例包括可程式化鏡面陣列或LCD矩陣。
源SO (例如,水銀燈或準分子雷射、雷射產生電漿(laser produced plasma; LPP) EUV源)產生輻射光束。此光束係直接地或在已橫穿諸如光束擴展器或光束遞送系統BD (包含導向鏡、光束擴展器等)之調節構件之後饋入至照明系統(照明器) IL中。舉例而言,照明器IL可包含調整構件AD以用於設定光束中之強度分佈的外部徑向範圍及/或內部徑向範圍(通常分別稱為σ外部及σ內部)。此外,照明器IL通常將包含各種其他組件,諸如積光器IN及聚光器CO。以此方式,照射於圖案化器件MA上之光束B在其橫截面中具有所要均勻性及強度分佈。
在一些實施例中,源SO可在微影投影裝置之外殼內(此常常為在源SO為例如水銀燈時之情況),但其亦可遠離微影投影裝置。舉例而言,源產生之輻射光束可(例如,藉助於合適之導向鏡面)導引至裝置中。此後一情形可為例如在源SO為準分子雷射器(例如,基於KrF、ArF或F2雷射作用)時之情況。
光束B可隨後截取固持於圖案化器件台MT上之圖案化器件MA。橫穿圖案化器件MA後,光束B傳遞通過透鏡PL,透鏡PL將光束B聚焦至基板W之目標部分C上。藉助於第二定位構件(及干涉量測構件IF),可準確地移動基板台WT (例如)以便使不同目標部分C定位於光束B之路徑中。類似地,第一定位構件可用於例如在自圖案化器件庫機械地擷取圖案化器件MA之後或在掃描期間相對於光束B之路徑準確地定位圖案化器件MA。一般而言,可藉助於長衝程模組(粗略定位)及短衝程模組(精細定位)來實現物件台MT、WT之移動。然而,在步進器(相對於步進掃描工具)之情況下,圖案化器件台MT可連接至短衝程致動器,或可固定。
可在兩種不同模式-步進模式及掃描模式中使用所描繪工具。在步進模式中,圖案化器件台MT保持基本上靜止,且在一個操作(亦即,單次「閃光」)中將整個圖案化器件影像投影至目標部分C上。可使基板台WT在x及/或y方向上移位,使得不同目標部分C可由光束B輻照。在掃描模式中,除了單次「閃光」中不曝光給定目標部分C之外,基本上相同之情形適用。替代地,圖案化器件台MT可以速度v在給定方向(例如「掃描方向」,或「y」方向)上移動,使得使投影光束B遍及圖案化器件影像進行掃描。同時,基板台WT以速度V = Mv在相同方向或相對方向上同時移動,其中M為透鏡之放大率(通常M = 1/4或1/5)。以此方式,可在不必損害解析度之情況下曝光相對較大的目標部分C。
圖12為可用於及/或促進本文中所描述之操作中之一或多者的另一微影投影裝置(LPA)之示意圖。LPA可包括源收集器模組SO、經組態以調節輻射光束B (例如,EUV輻射)之照明系統(照明器) IL、支撐結構MT、基板台WT及投影系統PS。支撐結構(例如,圖案化器件台) MT可經建構以支撐圖案化器件(例如,遮罩或倍縮光罩) MA且連接至經組態以準確地定位圖案化器件之第一定位器PM。基板台(例如,晶圓台) WT可經建構以固持基板(例如,抗蝕劑塗佈晶圓) W並連接至經組態以準確地定位基板之第二定位器PW。投影系統(例如,反射投影系統) PS可經組態以將藉由圖案化器件MA賦予至輻射光束B之圖案投影至基板W的目標部分C (例如,包含一或多個晶粒)上。
如此實例所展示,LPA可屬於反射類型(例如,採用反射圖案化器件)。應注意,由於大多數材料在EUV波長範圍內具吸收性,因此圖案化器件可具有包含例如鉬與矽之多堆疊的多層反射器。在一個實例中,多堆疊反射器具有鉬與矽之40個層對,其中各層之厚度為四分之一波長。可利用X射線微影來產生甚至更小之波長。由於大多數材料在EUV及x射線波長下具吸收性,因此圖案化器件構形上的經圖案化的吸收材料之薄件(例如,在多層反射器的頂部上之TaN吸收體)界定特徵將印刷(正性抗蝕劑)或不印刷(負性抗蝕劑)在何處。
照明器IL可自源收集器模組SO接收極紫外輻射光束。用以產生EUV輻射之方法包括但未必限於藉由在EUV範圍內之一或多種發射譜線將具有至少一個元素(例如,氙、鋰或錫)之材料轉換成電漿狀態。在一種此類方法(通常稱為雷射產生電漿(「LPP」))中,可藉由運用雷射光束來輻照燃料(諸如,具有譜線發射元素之材料液滴、串流或群集)而產生電漿。源收集器模組SO可為包括雷射(圖12中未展示)的EUV輻射系統之部分,該雷射用於提供激發燃料之雷射光束。所得電漿發射輸出輻射(例如,EUV輻射),該輸出輻射係使用安置於源收集器模組中之輻射收集器予以收集。舉例而言當,CO2雷射用於為燃料激發提供雷射光束時,雷射及源收集器模組可為分離實體。在此實例中,可不認為雷射形成微影裝置之部分,且輻射光束可藉助於包含例如合適之引導鏡面及/或光束擴展器之光束遞送系統而自雷射器傳遞至源收集器模組。在其他實例中,舉例而言,當源為放電產生電漿EUV產生器(通常稱為DPP源)時,源可為源收集器模組之整體部分。
照明器IL可包含用於調整輻射光束之角強度分佈的調整器。一般而言,可調整照明器之光瞳平面中之強度分佈之至少外部徑向範圍及/或內部徑向範圍(通常分別稱為σ外部及σ內部)。另外,照明器IL可包含各種其他組件,諸如琢面化場鏡面器件及琢面化光瞳鏡面器件。照明器可用於調節輻射光束,以在其橫截面中具有所要均勻性及強度分佈。
輻射光束B入射於固持於支撐結構(例如,圖案化器件台) MT上之圖案化器件(例如,遮罩) MA上,且藉由該圖案化器件而圖案化。在自圖案化器件(例如,遮罩) MA反射後,輻射光束B穿過投影系統PS,該投影系統將光束聚焦至基板W之目標部分C上。藉助於第二定位器PW及位置感測器PS2 (例如,干涉量測器件、線性編碼器或電容式感測器),基板台WT可準確地移動(例如,以在輻射光束B之路徑中定位不同的目標部分C)。類似地,第一定位器PM及另一位置感測器PS1可用於相對於輻射光束B之路徑來準確定位圖案化器件(例如,遮罩) MA。可使用圖案化器件對準標記M1、M2及基板對準標記P1、P2來對準圖案化器件(例如,遮罩) MA及基板W。
所描繪之裝置LPA可用於以下模式中之至少一者:步進模式、掃描模式及靜止模式。在步進模式中,在將被賦予至輻射光束之整個圖案一次性投影至目標部分C上時,使支撐結構(例如,圖案化器件台) MT及基板台WT保持基本上靜止(亦即,單次靜態曝光)。隨後,使基板台WT在X及/或Y方向上移位,從而使得可曝光不同目標部分C。在掃描模式中,在將賦予至輻射光束之圖案投影至目標部分C上時,同步地掃描支撐結構(例如,圖案化器件台) MT及基板台WT (亦即,單次動態曝光)。基板台WT相對於支撐結構(例如,圖案化器件台) MT之速度及方向可藉由投影系統PS之放大率(縮小率)及影像反轉特性予以判定。在靜止模式中,在將被賦予至輻射光束之圖案投影至目標部分C上時,使支撐結構(例如,圖案化器件台) MT保持基本上靜止,從而固持可程式化圖案化器件,且移動或掃描基板台WT。在此模式中,通常採用脈衝式輻射源,且在基板台WT的各次移動之後或在掃描期間的逐次輻射脈衝之間視需要更新可程式化圖案化器件。此操作模式可易於應用於利用可程式化圖案化器件(諸如,上文所提及之類型的可程式化鏡面陣列)之無遮罩微影。
圖13為圖12中所展示之微影投影裝置之詳細視圖。如圖13中所展示,LPA可包括源收集器模組SO、照明系統IL及投影系統PS。源收集器模組SO經組態以使得可將真空環境維持於源收集器模組SO之圍封結構220中。可藉由放電產生電漿源而形成EUV輻射發射電漿210。可藉由氣體或蒸汽(例如,Xe氣體、Li蒸汽或Sn蒸汽)產生EUV輻射,其中產生熱電漿210以發射在電磁光譜之EUV範圍內之輻射。舉例而言,藉由引起至少部分離子化電漿之放電而產生熱電漿210。為了輻射之高效產生,可需要為例如10 Pa之分壓之Xe、Li、Sn蒸汽或任何其他合適的氣體或蒸汽。在一些實施例中,提供經激發的錫(Sn)之電漿以產生EUV輻射。
由熱電漿210發射之輻射經由視情況選用之氣體障壁或污染物截留器230而自源腔室211傳遞至收集器腔室212中。在一些實施例中,亦稱為污染物障壁或箔片截留器),其定位於源腔室211中之開口中或後方。污染物截留器230可包括通道結構。污染物截留器230亦可包括氣體障壁或氣體障壁與通道結構之組合。污染物截留器或污染物障壁截留器230 (下文所描述)亦包括通道結構。收集器腔室211可包括可為掠入射收集器之輻射收集器CO。輻射收集器CO具有上游輻射收集器側251及下游輻射收集器側252。橫穿收集器CO之輻射可自光柵濾光片240反射以沿著由線「O」指示之光軸聚焦於虛擬源點IF中。虛擬源點IF通常稱為中間焦點,且源收集器模組經配置以使得中間焦點IF位於圍封結構220中之開口221處或附近。虛擬源點IF係輻射發射電漿210之影像。
隨後,輻射橫穿照明系統IL,該照明系統可包括琢面化場鏡面器件22及琢面化光瞳鏡面器件24,該等器件經配置以提供在圖案化器件MA處的輻射光束21之所要角分佈,以及在圖案化器件MA處的輻射強度之所要均勻性。在由支撐結構MT固持之圖案化器件MA處反射輻射光束21後,隨即形成經圖案化光束26,且由投影系統PS將經圖案化光束26經由反射元件28、30而成像至由基板台WT固持之基板W上。比所展示之元件更多的元件通常可存在於照明光學件單元IL及投影系統PS中。取決於例如微影裝置之類型,可視情況存在光柵濾光片240。另外,可存在比諸圖所展示之鏡面多的鏡面,例如在投影系統PS中可存在比圖15所展示之反射元件多1至6個的額外反射元件。
如圖13中所繪示之收集器光學件CO描繪為具有掠入射反射器253、254及255之巢套式收集器,僅僅作為收集器(或收集器鏡面)之實例。掠入射反射器253、254及255安置為圍繞光軸O軸向對稱,且此類型之收集器光學器件CO可與通常稱為DPP源之放電產生電漿源組合使用。
圖14為(先前圖式中所繪示之)微影投影裝置LPA之源收集器模組SO之詳細視圖。源收集器模組SO可為LPA輻射系統之部分。雷射器LA經配置以將雷射能量沈積至諸如氙(Xe)、錫(Sn)或鋰(Li)之燃料中,從而產生具有數十eV的電子溫度之高度離子化電漿210。在此等離子之去激發及再結合期間所產生之高能輻射自電漿發射,由近正入射收集器光學件CO收集,且聚焦至圍封結構220中的開口221上。
參考圖15,展示電腦系統1500。電腦系統1500包括匯流排1502或用於傳達資訊之其他通信機構,及與匯流排1502耦接以用於處理資訊的處理器1504 (或多個處理器,諸如處理器1504及另一處理器1505)。電腦系統1500亦包括耦接至匯流排1502以用於儲存待由處理器1504執行之資訊及指令的主記憶體1506,諸如隨機存取記憶體(RAM)或其他動態儲存器件。主記憶體1506亦可用於在待由處理器1504執行之指令之執行期間儲存暫時性變數或其他中間資訊。電腦系統1500進一步包括耦接至匯流排1502以用於儲存用於處理器1504之靜態資訊及指令的唯讀記憶體(ROM) 1508或其他靜態儲存器件。提供諸如磁碟或光碟之儲存器件1510,且將該儲存器件耦接至匯流排1502以用於儲存資訊及指令。
電腦系統1500可經由匯流排1502耦接至用於向電腦使用者顯示資訊之顯示器1512,諸如陰極射線管(CRT)或平板顯示器或觸控面板顯示器。包括文數字按鍵及其他按鍵之輸入器件1514耦接至匯流排1502以用於將資訊及命令選擇傳達至處理器1504。另一類型之使用者輸入器件為用於將方向資訊及命令選擇傳達至處理器1504且用於控制顯示器1512上之游標移動的游標控制件1516,諸如,滑鼠、軌跡球或游標方向按鍵。此輸入器件通常具有在兩個軸線(第一軸(例如,x)及第二軸(例如,y))上之兩個自由度,從而允許該器件指定平面中之位置。觸控面板(螢幕)顯示器亦可用作輸入器件。
電腦系統1500可適合於回應於處理器1504執行主記憶體1506中含有之一或多個指令之一或多個序列而充當本文中之處理單元。可將此等指令自另一電腦可讀媒體(諸如,儲存器件1510)讀取至主記憶體1506中。主記憶體1506中含有之指令序列的執行使得處理器1504執行本文中所描述之程序。呈多處理配置之一或多個處理器亦可用以執行主記憶體1506中含有之指令序列。在替代實施例中,可代替或結合軟體指令而使用硬連線電路。因此,實施例不限於硬體電路與軟體之任何特定組合。
如本文中所使用之術語「電腦可讀媒體」指代參與將指令提供至處理器1504以供執行之任何媒體。此媒體可呈許多形式,包括但不限於非揮發性媒體、揮發性媒體及傳輸媒體。非揮發性媒體包括例如光碟或磁碟,諸如儲存器件1510。揮發性媒體包括動態記憶體,諸如主記憶體1506。傳輸媒體包括同軸纜線、銅線及光纖,包括包含匯流排1502之電線。傳輸媒體亦可採取聲波或光波之形式,諸如在射頻(RF)及紅外線(IR)資料通信期間產生之聲波或光波。電腦可讀媒體之常見形式包括例如軟碟、軟性磁碟、硬碟、磁帶、任何其他磁性媒體、CD-ROM、DVD、任何其他光學媒體、打孔卡、紙帶、具有孔圖案之任何其他實體媒體、RAM、PROM及EPROM、FLASH-EPROM、任何其他記憶體晶片或卡匣、如下文中所描述之載波,或可供電腦讀取之任何其他媒體。
可在將一或多個指令之一或多個序列攜載至處理器1504以供執行時涉及各種形式之電腦可讀媒體。舉例而言,可初始地將指令承載於遠端電腦之磁碟上。遠端電腦可將指令載入至其動態記憶體內,且使用數據機經由電話線來發送指令。在電腦系統1500本端之數據機可接收電話線上之資料,且使用紅外線傳輸器將資料轉換成紅外線信號。耦接至匯流排1502之紅外線偵測器可接收紅外線信號中所攜載之資料且將資料置放於匯流排1502上。匯流排1502將資料攜載至主記憶體1506,處理器1504自該主記憶體擷取並執行指令。由主記憶體1506接收之指令可視情況在供處理器1504執行之前或之後儲存於儲存器件1510上。
電腦系統1500亦可包括耦接至匯流排1502之通信介面1518。通信介面1518提供對網路鏈路1520之雙向資料通信耦合,該網路鏈路連接至區域網路1522。舉例而言,通信介面1518可為整合式服務數位網路(ISDN)卡或數據機以提供對對應類型之電話線之資料通信連接。作為另一實例,通信介面1518可為區域網路(LAN)卡以提供對相容LAN之資料通信連接。亦可實施無線鏈路。在任何此實施中,通信介面1518發送且接收攜載表示各種類型之資訊之數位資料串流的電信號、電磁信號或光信號。
網路鏈路1520通常經由一或多個網路而向其他資料器件提供資料通信。舉例而言,網路鏈路1520可經由區域網路1522向主機電腦1524或向由網際網路服務業者(ISP) 1526操作之資料設備提供連接。ISP 1526又經由全球封包資料通信網路(現在通常稱為「網際網路」1528)而提供資料通信服務。區域網路1522及網際網路1528兩者皆使用攜載數位資料串流之電信號、電磁信號或光信號。經由各種網路之信號及在網路鏈路1520上且經由通信介面1518之信號(該等信號將數位資料攜載至電腦系統1500及自電腦系統1500攜載數位資料)為輸送資訊的載波之例示性形式。
電腦系統1500可經由網路、網路鏈路1520及通信介面1518而發送訊息及接收資料,包括程式碼。在網際網路實例中,伺服器1530可經由網際網路1528、ISP 1526、區域網路1522及通信介面1518傳輸用於應用程式之所請求程式碼。根據一或多個實施例,一個此類經下載應用程式提供如(例如)本文中所揭示之方法。所接收程式碼可在其被接收時由處理器1504執行,及/或儲存於儲存器件1510或其他非揮發性儲存器中以供稍後執行。以此方式,電腦系統1500可獲得呈載波之形式之應用程式碼。
本發明之實施例可採取以下形式:電腦程式,其含有描述如本文中所揭示之方法的機器可讀指令之一或多個序列;或資料儲存媒體(例如,半導體記憶體、磁碟或光碟),其中儲存有此電腦程式。另外,可以兩個或多於兩個電腦程式來體現機器可讀指令。兩個或多於兩個電腦程式可儲存於一或多個不同記憶體及/或資料儲存媒體上。
本文中所描述的任何控制器可在一或多個電腦程式由位於微影裝置之至少一個組件內之一或多個電腦處理器讀取時各自或組合地可操作。控制器可各自或組合地具有用於接收、處理及發送信號之任何合適組態。一或多個處理器經組態以與控制器中之至少一者通信。舉例而言,各控制器可包括用於執行包括用於上文所描述之方法之機器可讀指令的電腦程式之一或多個處理器。控制器可包括用於儲存此類電腦程式之資料儲存媒體,及/或用以收納此媒體之硬體。因此,控制器可根據一或多個電腦程式之機器可讀指令而操作。
儘管在本文中可特定地參考度量衡裝置在IC製造中之使用,但應理解,本文中所描述之度量衡裝置及製程可具有其他應用,諸如製造整合式光學系統、用於磁疇記憶體之導引及偵測圖案、平板顯示器、液晶顯示器(LCD)、薄膜磁頭等。熟習此項技術者應瞭解,在此類替代應用之上下文中,可認為本文中對術語「晶圓」或「晶粒」之任何使用分別與更一般術語「基板」或「目標部分」同義。可在曝光之前或之後在(例如)塗佈顯影系統(通常將抗蝕劑層施加至基板且顯影經曝光抗蝕劑之工具)、度量衡工具及/或一或多個各種其他工具中處理本文中所提及之基板。在適用情況下,可將本文中之揭示內容應用於此類及其他基板處理工具。另外,可將基板處理多於一次,(例如)以便產生多層IC,以使得本文中所使用之術語基板亦可指已含有多個經處理層之基板。
儘管上文可特定地參考在光學微影之上下文中對本發明之實施例之使用,但將瞭解,本發明可用於其他應用(例如,奈米壓印微影)中,且在上下文允許之情況下不限於光學微影。在奈米壓印微影之情況下,圖案化器件為壓印模板或模具。
本文中所揭示之概念可模擬或數學上模型化用於使子波長特徵成像之任何通用成像系統,且可尤其用於能夠產生愈來愈短波長之新興成像技術。已經在使用中之新興技術包括能夠藉由使用ArF雷射來產生193nm波長且甚至能夠藉由使用氟雷射來產生157nm波長之極紫外線(EUV)、DUV微影。此外,EUV微影能夠藉由使用同步加速器或藉由用高能電子撞擊材料(固體或電漿中任一者)來產生在20 nm至5 nm範圍內的波長,以便產生在此範圍內之光子。
雖然本文中所揭示之概念可用於在諸如矽晶圓之基板上的成像,但應理解,所揭示之概念可與任何類型之微影成像系統一起使用,例如用於在除矽晶圓之外的基板上之成像的微影成像系統。此外,所揭示元件之組合及子組合可包含單獨實施例。舉例而言,判定增強MRC準則可包含其自身的單獨實施例,或其可包括亦包括執行實際檢查之一或多個其他實施例,如本文中所描述。
本文中所揭示之概念可模擬或數學上模型化用於使子波長特徵成像之任何通用成像系統,且可供能夠產生愈來愈短波長之新興成像技術使用。新興技術包括能夠藉由使用ArF雷射來產生193 nm波長且甚至能夠藉由使用氟雷射來產生157 nm波長之極紫外線(EUV)、DUV微影。 此外,EUV微影能夠藉由使用同步加速器或藉由用高能電子撞擊材料(固體或電漿中任一者)來產生在20nm至50nm範圍內的波長,以便產生在此範圍內之光子。
此外,所揭示元件之組合及子組合可包含單獨實施例。舉例而言,像差影響模型及投影光學件模型可包括於單獨實施例中,或其可一起包括於同一實施例中。
以上描述意欲為說明性,而非限制性的。因此,對於熟習此項技術者將顯而易見,可在不脫離下文所闡明之申請專利範圍之範疇的情況下如所描述進行修改。
在以下列舉條項中描述根據本申請案之其他實施例: 1.一種方法,其包含:接收表示由半導體處理裝置之光學投影系統提供之波前的波前資料;基於波前資料與目標波前資料之比較而判定波前漂移;及基於波前漂移而判定一或多個程序參數,其中一或多個程序參數包含與熱器件相關聯之參數,其中熱器件經組態以在操作期間將熱能提供至光學投影系統。 2.如條項1之方法,其中波前資料基於以下而判定:(i)由照明源輸出之入射於光學投影系統之光學元件上的輻射,及(ii)光學投影系統之組態。 3.如條項2之方法,其中光學投影系統包含包括光學元件之一或多個光學元件,且光學投影系統之組態包含一或多個光學元件之定向。 4.如條項3之方法,其中一或多個光學元件中之各者具有一或多個自由度,且一或多個控制器件經組態以沿著一或多個光學元件中之至少一者的一或多個自由度中的至少一者來調整一或多個光學元件之定向。 5.如條項4之方法,其中一或多個自由度包含六個自由度。 6.如條項3至5中任一項之方法,其中一或多個光學元件包含六個光學元件。 7.如條項6之方法,其中六個光學元件中之各者為反射光學元件。 8.如條項3至7中任一項之方法,其中一或多個光學元件中之各者為透射光學元件。 9.如條項3至8中任一項之方法,其中光學投影系統之組態包含一或多個光學元件中之各者之材料組成物。 10.如條項1至9中任一項之方法,其中一或多個程序參數包含熱器件之操作設定集合。 11.如條項10之方法,其中熱器件之操作設定集合包含自熱器件輸出的輻照量。 12.如條項10至11中任一項之方法,其中熱器件之操作設定集合包含光學投影系統之一或多個區段,由熱器件輸出之輻照應用於該一或多個區段。 13.如條項12之方法,其中光學投影系統包含光學元件,一或多個程序參數包含光學元件上的將應用自熱器件輸出之輻照的位置。 14.如條項10至13中任一項之方法,其中判定一或多個程序參數包含:基於波前資料、目標波前資料及一或多個半導體處理度量而判定對熱器件之操作設定集合的一或多個操作設定的調整。 15.如條項14之方法,其中操作進一步包含:基於波前漂移,判定對光學投影系統之組態的調整。 16.如條項15之方法,其中一或多個半導體處理度量基於自照明源輸出之輻射及光學投影系統之組態而計算。 17.如條項15至16中任一項之方法,其中操作進一步包含:獲得指示待對熱器件之一或多個操作設定作出之調整的第一指令及指示待對光學投影系統之組態作出之調整的第二指令。 18.如條項17之方法,其中操作進一步包含:將第一指令提供至熱器件;及將第二指令提供至一或多個控制器件,一或多個控制器件經組態以調整光學投影系統之組態。 19.如條項18之方法,其中同時提供第一指令及第二指令。 20.如條項1至19中任一項之方法,其中判定一或多個程序參數以補償波前漂移之影響。 21.如條項20之方法,其中補償波前漂移之影響包含:判定對與熱器件相關聯之一或多個程序參數的調整;及判定對光學投影系統之組態的調整,其中:對與熱器件相關聯之一或多個程序參數的調整及對光學投影系統之組態的調整藉由最小化波前漂移之量值來判定。 22.如條項21之方法,其中最小化波前漂移之量值包含:修改對與熱器件相關聯之一或多個程序參數的調整及對光學投影系統之組態的調整,直至波前漂移滿足條件為止。 23.如條項22之方法,其中回應於基於波前資料及目標波前資料判定波前與目標波前之間的差小於臨限波前漂移值而滿足條件,其中目標波前資料包含目標波前。 24.如條項20至23中任一項之方法,其中補償波前漂移之影響包含最小化邊緣置放誤差(EPE)成本或最佳化波前RMS。 25.如條項24之方法,其中最小化EPE成本包含:判定對與熱器件相關聯之一或多個程序參數的調整及對光學投影系統之組態的調整從而得到最小EPE成本。 26.如條項25之方法,其中操作進一步包含:判定最小EPE成本,其中判定最小EPE成本包含修改對與熱器件相關聯之一或多個程序參數的調整及對光學投影系統之組態的調整直至EPE成本滿足條件為止。 27.如條項26之方法,其中回應於判定EPE成本小於臨限EPE成本而滿足條件。 28.如條項24至27中任一項之方法,其中最小化EPE成本包含:判定變數集合的成本函數之EPE成本,其中變數集合包含與熱器件相關聯之複數個程序參數及光學投影系統的複數個組態;自EPE成本選擇最小EPE成本;及基於最小EPE成本提取來自與熱器件相關聯之複數個程序參數的一或多個程序參數及光學投影系統之一或多個組態,從而產生最小EPE成本。 29.如條項28之方法,其中成本函數計算邊緣置放誤差(EPE)成本。 30.如條款1至29中任一項之方法,其中波前資料基於由半導體處理裝置之照明源輸出之光誘發至光學投影系統之一或多個光學元件的加熱狀態及由熱器件誘發之加熱狀態而判定。 31.如條項30之方法,其中由熱器件誘發之加熱狀態基於與熱器件相關聯之一或多個程序參數而判定,一或多個程序參數包含熱器件之操作設定。 32.如條項31之方法,其中熱器件之操作設定包含:提供至熱器件之功率位準,以使得熱器件將由熱器件提供的規定輻照量輸出至光學投影系統之一或多個光學元件;及藉以應用輻照之一或多個光學元件中之至少一者的一或多個區段。 33.如條項32之方法,其中在已執行由半導體處理裝置執行之半導體製造程序之一部分之後,基於經由波前感測器偵測到的波前而判定由半導體處理裝置之照明源輸出之光誘發至一或多個光學元件的加熱狀態。 34.如條項1至33中任一項之方法,其中光學投影系統包含一或多個光學元件,熱器件經組態以基於經判定之一或多個程序參數而輸出輻照,且由熱器件輸出之輻照應用於至一或多個光學元件中之至少一者。 35.如條項34之方法,其中操作進一步包含:判定與額外熱器件相關聯之一或多個額外程序參數,其中額外熱器件經組態以基於經判定之一或多個額外程序參數而輸出輻照,由額外熱器件輸出的輻照應用於以下中之至少一者:一或多個光學元件中之至少一者或一或多個光學元件中之至少另一者。 36.如條項1至35中任一項之方法,其中熱器件經組態以改良半導體處理裝置或光學投影系統之校正能力。 37.如條項1至36中任一項之方法,其中一或多個程序參數為應用層特定的。 38.如條項1至37中任一項之方法,其中提供熱能之熱器件包含將加熱或冷卻提供至光學投影系統之熱器件。 39.如條項1至38中任一項之方法,其中熱器件為加熱器件或冷卻器件。 40.如條項1至39中任一項之方法,其中熱能包含輻照。 41.一種方法,其包含:獲得由半導體處理裝置之光學投影系統提供之波前的波前漂移,其中波前漂移基於表示波前的波前資料與目標波前資料之比較而判定;及基於波前漂移而判定一或多個程序參數,其中一或多個程序參數包含與熱器件相關聯之參數,其中熱器件經組態以在操作期間將熱能提供至光學投影系統。 41.如條項40之方法,其中熱能包含輻照。 42.如條項40之方法,其中波前為包含穩態波前。 43.如條項42之方法,其中穩態波前基於以下而判定:(i)由半導體處理裝置之照明源輸出的光誘發至光學投影系統之一或多個光學元件的加熱狀態;及(ii)用於使熱器件將熱能提供至光學投影系統之一或多個光學元件的一或多個操作設定。 44.如條項43之方法,其中一或多個操作設定包含:用於熱器件之功率設定,其指示經由熱器件將輻照提供至光學投影系統之一或多個光學元件的輻照量;及藉以施加輻照的一或多個光學元件中之至少一者的一或多個區段。 45.如條項43至44中任一項之方法,其中穩態波前藉由以下來判定:計算歸因於波前的經模擬波前漂移,其中波前漂移基於波前與目標波前之間的差,目標波前資料包含目標波前;調整以下中之至少一者:熱器件之一或多個操作設定或光學投影系統的一或多個光學元件之組態以最小化成本函數,成本函數估計用於熱器件之給定操作設定集合及光學投影系統之一或多個光學元件的給定組態的邊緣置放誤差(EPE)成本。 46.如條項45之方法,其中最小化成本函數包含判定熱器件之第一操作設定集合及光學投影系統之一或多個光學元件的第一組態以基於該成本函數產生最小EPE成本。 47.如條項46之方法,其中操作進一步包含調整熱器件之一或多個操作設定以獲得用於熱器件之第一操作設定集合,及調整光學投影系統之一或多個光學元件的組態以獲得光學投影系統之一或多個光學元件的第一組態。 48.如條項41至47中任一項之方法,其中波前基於波前產生模型而產生,該波前產生模型將由半導體處理裝置之照明源誘發的加熱狀態及由熱器件輸出至光學投影系統之熱能誘發的加熱狀態用作輸入,其中波前產生模型基於由照明源誘發之輸入加熱狀態及由熱器件輸出之熱能誘發的加熱狀態而輸出經模擬波前。 49.如條項48之方法,其中基於組態之波前基於由光學投影系統之一或多個光學元件之組態誘發的加熱狀態而產生,其中由對經模擬波前與基於組態之波前進行求和而計算之總波前使用一或多個半導體處理度量予以加權以獲得加權波前。 50.如條項49之方法,其中用於對總波前加權之一或多個半導體處理量度為微影量度。 51.如條項50之方法,其中波前漂移基於加權波前與目標波前之間的差而判定,目標波前資料包含目標波前。 52.如條項51之方法,其中判定一或多個程序參數包含:判定熱器件之第一操作設定及光學投影系統之一或多個光學元件的第一組態以減小波前漂移之量值。 53.如條項52之方法,其中減小波前漂移之量值包含減少由波前漂移誘發之誤差。 54.如條項41至53中任一項之方法,其中光學投影系統包含一或多個光學元件,波前資料基於一或多個光學元件之組態而進一步判定。 55.如條項54之方法,其中光學投影系統之一或多個光學元件的組態包含光學投影系統之一或多個光學元件的定向。 56.如條項54至55中任一項之方法,其中光學投影系統之組態包含一或多個光學元件中之各者之材料組成物。 57.如條項41至56中任一項之方法,其中光學投影系統包含一或多個光學元件,一或多個光學元件中之各者具有一或多個自由度。 58.如條項57之方法,其中一或多個光學元件之定向經由一或多個控制器件沿著一或多個自由度中之至少一者調整。 59.如條項57至58中任一項之方法,其中一或多個自由度包含六個自由度。 60.如條項54至59中任一項之方法,其中一或多個光學元件包含六個光學元件。 61.如條項60之方法,其中六個光學元件中之各者為反射光學元件。 62.如條項54至61中任一項之方法,其中一或多個光學元件中之各者為透射光學元件。 63.如條項41至62中任一項之方法,其中一或多個程序參數包含熱器件之操作設定集合。 64.如條項63之方法,其中操作設定集合包含自熱器件輸出的輻照量。 65.如條項63至64中任一項之方法,其中熱器件之操作設定集合包含光學投影系統之一或多個區段,由熱器件輸出之輻照應用於該一或多個區段。 66.如條項63至65中任一項之方法,其中判定一或多個程序參數包含:基於波前資料、目標波前資料及一或多個半導體處理度量而判定對熱器件之操作設定集合的一或多個操作設定的調整。 67.如條項66之方法,其中操作進一步包含:基於波前漂移,判定對光學投影系統之組態的調整。 68.如條項67之方法,其中一或多個半導體處理度量基於自照明源輸出之輻射及光學投影系統之組態而計算。 69.如條項67至68中任一項之方法,其中操作進一步包含:獲得指示待對熱器件之一或多個操作設定作出之調整的第一指令及指示待對光學投影系統之組態作出之調整的第二指令。 70.如條項69之方法,其中操作進一步包含:將第一指令提供至熱器件;及將第二指令提供至一或多個控制器件,一或多個控制器件經組態以調整光學投影系統之組態。 71.如條項70之方法,其中同時提供第一指令及第二指令。 72.如條項41至71中任一項之方法,其中判定一或多個程序參數以補償波前漂移。 73.如條項72之方法,其中補償波前漂移包含:判定對與熱器件相關聯之一或多個程序參數的調整;及判定對光學投影系統之組態的調整,其中:對與熱器件相關聯之一或多個程序參數的調整及對光學投影系統之組態的調整藉由最小化波前漂移之量值來判定。 74.如條項73之方法,其中最小化波前漂移之量值包含:修改對與熱器件相關聯之一或多個程序參數的調整及對光學投影系統之組態的調整,直至波前漂移滿足條件為止。 75.如條項74之方法,其中回應於基於波前資料及目標波前資料判定波前與目標波前之間的差小於臨限波前漂移值而滿足條件,其中目標波前資料包含目標波前。 76.如條項72至75中任一項之方法,其中補償波前漂移包含最小化邊緣置放誤差(EPE)成本。 77.如條項76之方法,其中最小化EPE成本包含:判定對與熱器件相關聯之一或多個程序參數的調整及對光學投影系統之組態的調整從而得到最小EPE成本。 78.如條項70之方法,其中操作進一步包含:判定最小EPE成本,其中判定最小EPE成本包含修改對與熱器件相關聯之一或多個程序參數的調整及對光學投影系統之組態的調整直至EPE成本滿足條件為止。 79.如條項78之方法,其中回應於判定EPE成本小於臨限EPE成本而滿足條件。 80.如條項76至79中任一項之方法,其中最小化EPE成本包含:判定變數集合的成本函數之EPE成本,其中變數集合包含與熱器件相關聯之複數個程序參數及光學投影系統的複數個組態;自EPE成本選擇最小EPE成本;及基於最小EPE成本提取來自與熱器件相關聯之複數個程序參數的一或多個程序參數及光學投影系統之一或多個組態,從而產生最小EPE成本。 81.如條項80之方法,其中成本函數計算邊緣置放誤差(EPE)成本。 82.如條項41至81中任一項之方法,其中光學投影系統包含一或多個光學元件,熱器件經組態以基於經判定之一或多個程序參數而輸出輻照,且由熱器件輸出之輻照應用於一或多個光學元件中之至少一者。 83.如條項41至82中任一項之方法,其中操作進一步包含:判定與額外熱器件相關聯之一或多個額外程序參數,其中額外熱器件經組態以基於經判定之一或多個額外程序參數而輸出輻照,由額外熱器件輸出的輻照應用於光學投影系統之一或多個光學元件。 84.如條項41至83中任一項之方法,其中熱器件經組態以改良半導體處理裝置或光學投影系統之校正能力。 85.如條項41至84中任一項之方法,其中一或多個程序參數為應用層特定的。 86.如條項41至85中任一項之方法,其中提供熱能之熱器件包含將加熱或冷卻提供至光學投影系統之熱器件。 87.如條項41至86中任一項之方法,其中熱器件為加熱器件或冷卻器件。 88.如條項41至87中任一項之方法,其中熱能包含輻照。 89.一種半導體處理裝置,其包含:光學投影系統,其經組態以提供由波前資料表示之波前;及一或多個熱器件,其經組態以在操作期間將熱能提供至光學投影系統,其中熱能基於一或多個程序參數而判定,該一或多個程序參數包含與一或多個熱器件相關聯之參數,其中一或多個程序參數基於波前漂移而判定,波前漂移基於波前資料與目標波前資料之比較而判定,其中半導體處理裝置經組態以執行如條項1至88中任一項之方法。 90.一種系統,其包含:記憶體,其儲存電腦程式指令;及一或多個電腦處理器,其經組態以執行電腦程式指令以執行如條項1至88中任一項之方法。 91.一種非暫時性電腦可讀媒體,其儲存在經執行時實行包含如條項1至88中任一項之方法之操作的電腦可讀指令。
10A:微影投影裝置 12A:輻射源 14A:光學件 16Aa:光學件 16Ab:光學件 16Ac:透射光學件 18A:圖案化器件 20A:孔徑 21:輻射光束 22:琢面化場鏡面器件 22A:基板平面 24:琢面化光瞳鏡面器件 26:經圖案化光束 28:反射元件 30:反射元件 31:照明模型 32:投影光學件模型 35:設計佈局模型 36:空中影像 37:抗蝕劑模型 38:抗蝕劑影像 210:電漿 211:源腔室 212:收集器腔室 220:圍封結構 221:開口 230:污染物截留器 240:光柵濾光片 251:上游輻射收集器側 252:下游輻射收集器側 253:掠入射反射器 254:掠入射反射器 255:掠入射反射器 300:圖表 302:原始像差漂移 304:投影光學件校正模型殘差 306:最末場 308:鏡面加熱殘差 310:校正 400:方法 402:操作 404:操作 406:操作 450:方法 452:操作 454:操作 500:光學投影系統 600:熱圖 602:區 604:區 650:變形圖 652:區 654:區 710:控制器件 720:控制器件 730:控制器件 800:光學元件 802:熱器件 804:熱能 806:位置 808:光點 810:控制器件 900:光學投影系統 1000:方法 1002:加熱狀態 1004:加熱狀態 1010:操作 1012:經模擬波前 1014:半導體處理度量 1020:操作 1022:像差控制資料 1050:方法 1052:加熱狀態 1054:加熱狀態 1056:經模擬波前 1060:操作 1070:操作 1082:加熱狀態 1084:加熱狀態 1500:電腦系統 1502:匯流排 1504:處理器 1505:另一處理器 1506:主記憶體 1508:唯讀記憶體 1510:儲存器件 1512:顯示器 1514:輸入器件 1516:游標控制件 1518:通信介面 1520:網路鏈路 1522:區域網路 1524:主機電腦 1526:網際網路服務業者 1528:網際網路 1530:伺服器 AD:調整構件 B:光束 B*:光束 C:目標部分 CO:聚光器/輻射收集器 H1:熱器件 H4:熱器件 IF:干涉量測構件/虛擬源點/中間焦點 IL:照明系統/照明光學件單元 IN:積光器 LA:雷射器 LPA:另一微影投影裝置 M:光學元件 M1:光學元件 M6:光學元件 M1:圖案化器件對準標記 M2:圖案化器件對準標記 MA:圖案化器件 MT:第一物件台 MT:支撐結構 O:軸 P1:基板對準標記 P2:基板對準標記 PL:透鏡 PM:第一定位器 PS:投影系統/物品 PS1:位置感測器 PS2:位置感測器 PW:第二定位器 SO:輻射源/源收集器模組 W:基板 w1:晶圓 w2:晶圓 w8:晶圓 WT:基板台 WT:第二物件台 x:軸 y:軸 z:軸
併入於本說明書中且構成本說明書之一部分的隨附圖式說明一或多個實施例且連同本說明書解釋此等實施例。現在將參考隨附示意性圖式而僅藉助於實例來描述本發明之實施例,在該等圖式中,對應參考符號指示對應部分,且在該等圖式中:
圖1繪示根據本發明之實施例之微影投影裝置的各種子系統的方塊圖。
圖2繪示根據本發明之實施例之用於完全模擬微影投影裝置中之微影的例示性流程圖。
圖3繪示根據本發明之實施例之每基板(例如,每晶圓或甚至每層)基於半導體處理度量的動態像差校正。
圖4A繪示根據本發明之實施例之用於判定與熱器件相關聯的程序參數的例示性流程圖。
圖4B繪示根據本發明之實施例之用於判定與熱器件相關聯的程序參數的另一例示性流程圖。
圖5繪示根據本發明之實施例之包括光學元件的實例光學投影系統。
圖6A及圖6B分別繪示根據本發明之實施例之光學投影系統的實例光學元件的實例加熱狀態及光學元件變形圖。
圖7繪示根據本發明之實施例之實例光學元件及能夠對光學元件的組態進行的調整。
圖8繪示根據本發明之實施例之光學元件及將熱能提供至該光學元件的熱器件集合。
圖9繪示根據本發明之實施例之實例光學投影系統,其包括光學元件、用於將熱能提供至該等光學元件中之一些或所有的熱器件及用於控制該等光學元件中之一些或所有之定向的控制器件。
圖10A及圖10B繪示根據本發明之實施例之用於針對光學投影系統的一或多個光學元件執行離線及線上熱校正之實例方法。
圖11為根據本發明之實施例之微影投影裝置的示意圖。
圖12為根據本發明之實施例之另一微影投影裝置的示意圖。
圖13為根據本發明之實施例之微影投影裝置的詳細視圖。
圖14為根據本發明之實施例之微影投影裝置的源收集器模組的詳細視圖。
圖15為根據本發明之實施例之實例電腦系統的方塊圖。
1000:方法
1002:加熱狀態
1004:加熱狀態
1010:操作
1012:經模擬波前
1014:半導體處理度量
1020:操作
1022:像差控制資料

Claims (17)

  1. 一種非暫時性電腦可讀媒體,其儲存電腦程式指令,該等電腦程式指令在由一或多個處理器執行時實行包含以下之操作: 接收表示由一半導體處理裝置之一光學投影系統提供之一波前的波前資料; 基於該波前資料與目標波前資料之一比較而判定波前漂移;及 基於該波前漂移,判定一或多個程序參數,其中該一或多個程序參數包含與一熱器件相關聯之參數,其中該熱器件經組態以在操作期間將熱能提供至該光學投影系統。
  2. 如請求項1之非暫時性電腦可讀媒體,其中該光學投影系統包含包括光學元件之一或多個光學元件,且該光學投影系統之組態包含該一或多個光學元件的一定向,其中該一或多個光學元件中之各者具有一或多個自由度,且一或多個控制器件經組態以沿著該一或多個光學元件中之至少一者的該一或多個自由度中之至少一者來調整該一或多個光學元件之該定向,且其中該等光學元件中之各者為一反射或透射光學元件。
  3. 如請求項1之非暫時性電腦可讀媒體,其中該一或多個程序參數包含該熱器件之一操作設定集合,其中該熱器件之該操作設定集合包含自該熱器件輸出的一輻照量,及/或該光學元件上的將應用自該熱器件輸出之輻照之一位置。
  4. 如請求項3之非暫時性電腦可讀媒體,其中判定該一或多個程序參數包含: 基於該波前資料、該目標波前資料及一或多個半導體處理度量而判定對該熱器件之該操作設定集合中之一或多個操作設定的一調整。
  5. 如請求項1之非暫時性電腦可讀媒體,其中該等操作進一步包含: 基於該波前漂移,判定對該光學投影系統之一組態的一調整。
  6. 如請求項5之非暫時性電腦可讀媒體,其中基於自一照明源輸出之輻射及該光學投影系統之該組態而計算該一或多個半導體處理度量。
  7. 如請求項6之非暫時性電腦可讀媒體,其中該等操作進一步包含: 獲得指示待對該熱器件之該一或多個操作設定作出之該調整的第一指令及指示待對該光學投影系統之該組態作出之該調整的第二指令。
  8. 如請求項7之非暫時性電腦可讀媒體,其中該等操作進一步包含: 將該等第一指令提供至該熱器件;及 將該等第二指令提供至一或多個控制器件,該一或多個控制器件經組態以調整該光學投影系統之該組態。
  9. 如請求項1之非暫時性電腦可讀媒體,其中判定該一或多個程序參數以補償該波前漂移。
  10. 如請求項9之非暫時性電腦可讀媒體,其中補償該波前漂移包含: 判定對與該熱器件相關聯之該一或多個程序參數的一調整;及 判定對該光學投影系統之一組態的一調整,其中: 對與該熱器件相關聯之該一或多個程序參數的該調整及對該光學投影系統之該組態的該調整基於該波前漂移之一量值而判定。
  11. 如請求項9之非暫時性電腦可讀媒體,其中補償該波前漂移基於一邊緣置放誤差(EPE)或一波前漂移成本函數。
  12. 如請求項1之非暫時性電腦可讀媒體,其中該波前資料基於由該半導體處理裝置之一照明源輸出之光誘發至該光學投影系統的一或多個光學元件之一加熱狀態及由該熱器件誘發之一加熱狀態而判定。
  13. 如請求項12之非暫時性電腦可讀媒體,其中由該熱器件誘發之該加熱狀態基於與該熱器件相關聯之該一或多個程序參數而判定,該一或多個程序參數包含該熱器件的操作設定。
  14. 如請求項13之非暫時性電腦可讀媒體,其中該熱器件之該等操作設定包含:提供至該熱器件的一功率位準,以使得該熱器件將由該熱器件提供的一規定輻照量輸出至該光學投影系統之該一或多個光學元件;及藉以施加該輻照之該一或多個光學元件中之至少一者的一或多個區段。
  15. 如請求項14之非暫時性電腦可讀媒體,其中在已執行由該半導體處理裝置執行之一半導體製造程序之一部分之後,基於經由一波前感測器偵測到的一波前而判定由該半導體處理裝置之該照明源輸出之該光誘發至該一或多個光學元件的該加熱狀態。
  16. 如請求項14之非暫時性電腦可讀媒體,其中該等操作進一步包含: 判定與一額外熱器件相關聯之一或多個額外程序參數,其中該額外熱器件經組態以基於經判定之該一或多個額外程序參數輸出輻照,由該額外熱器件輸出之該輻照應用於以下中之至少一者: 該一或多個光學元件中之該至少一者,或 該一或多個光學元件中之至少另一者。
  17. 如請求項1之非暫時性電腦可讀媒體,其中該一或多個程序參數為應用層特定的。
TW111147695A 2021-12-14 2022-12-13 熱控制系統、模型、及微影中之製造程序 TW202338515A (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US202163289591P 2021-12-14 2021-12-14
US63/289,591 2021-12-14

Publications (1)

Publication Number Publication Date
TW202338515A true TW202338515A (zh) 2023-10-01

Family

ID=84488406

Family Applications (1)

Application Number Title Priority Date Filing Date
TW111147695A TW202338515A (zh) 2021-12-14 2022-12-13 熱控制系統、模型、及微影中之製造程序

Country Status (2)

Country Link
TW (1) TW202338515A (zh)
WO (1) WO2023110401A1 (zh)

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5229872A (en) 1992-01-21 1993-07-20 Hughes Aircraft Company Exposure device including an electrically aligned electronic mask for micropatterning
EP0824722B1 (en) 1996-03-06 2001-07-25 Asm Lithography B.V. Differential interferometer system and lithographic step-and-scan apparatus provided with such a system
EP1920369A2 (en) 2005-08-08 2008-05-14 Brion Technologies, Inc. System and method for creating a focus-exposure model of a lithography process
US7695876B2 (en) 2005-08-31 2010-04-13 Brion Technologies, Inc. Method for identifying and using process window signature patterns for lithography process control
US7587704B2 (en) 2005-09-09 2009-09-08 Brion Technologies, Inc. System and method for mask verification using an individual mask error model
US7694267B1 (en) 2006-02-03 2010-04-06 Brion Technologies, Inc. Method for process window optimized optical proximity correction
US7882480B2 (en) 2007-06-04 2011-02-01 Asml Netherlands B.V. System and method for model-based sub-resolution assist feature generation
US7707538B2 (en) 2007-06-15 2010-04-27 Brion Technologies, Inc. Multivariable solver for optical proximity correction
US20090157630A1 (en) 2007-10-26 2009-06-18 Max Yuan Method of extracting data and recommending and generating visual displays
NL1036189A1 (nl) 2007-12-05 2009-06-08 Brion Tech Inc Methods and System for Lithography Process Window Simulation.
NL2003699A (en) 2008-12-18 2010-06-21 Brion Tech Inc Method and system for lithography process-window-maximixing optical proximity correction.
KR102529085B1 (ko) * 2018-06-25 2023-05-08 에이에스엠엘 네델란즈 비.브이. 성능 매칭에 기초하는 튜닝 스캐너에 대한 파면 최적화
EP3702839B1 (en) * 2019-02-27 2021-11-10 ASML Netherlands B.V. Method of reducing effects of lens heating and/or cooling in a lithographic process
US11287751B2 (en) * 2020-07-29 2022-03-29 Taiwan Semiconductor Manufacturing Co., Ltd. System and method for lens heating control

Also Published As

Publication number Publication date
WO2023110401A1 (en) 2023-06-22

Similar Documents

Publication Publication Date Title
TWI655553B (zh) 用於微影程序的電腦實施方法及電腦程式產品
KR101279462B1 (ko) 소스, 마스크 및 투영 광학기의 최적화 플로우
US20220179321A1 (en) Method for determining pattern in a patterning process
TW201837759A (zh) 藉由機器學習來判定製程模型之方法
CN107430347B (zh) 图像对数斜率(ils)优化
CN112384860A (zh) 基于机器学习的逆光学邻近效应校正和过程模型校准
TWI630468B (zh) 用以改良微影程序之電腦實施方式及電腦程式產品
TWI752539B (zh) 用於模型校準以減少模型預測不確定性的預測資料選擇
TW201539226A (zh) 用於微影程序之最佳化流程
TW201633006A (zh) 熱點感知劑量校正
TWI806002B (zh) 用於判定遮罩圖案及訓練機器學習模型之非暫時性電腦可讀媒體
KR20220124829A (ko) 패터닝 공정을 위한 최적화의 흐름
TWI620034B (zh) 用於微影模擬的電腦實施方法及電腦程式產品
KR20200085883A (ko) 광학 수차를 포함하는 패터닝 공정 개선
CN109313391B (zh) 基于位移的重叠或对准
TWI702467B (zh) 用於改進抗蝕劑模型預測的系統、方法及電腦程式產品
WO2022268434A1 (en) Etch simulation model including a correlation between etch biases and curvatures of contours
TW202338515A (zh) 熱控制系統、模型、及微影中之製造程序
TWI786658B (zh) 像差影響系統、模型、及製造程序
TWI838957B (zh) 用於判定基於蝕刻偏差方向之蝕刻功效之非暫時性電腦可讀媒體
TWI839015B (zh) 用於判定恆定寬度次解析度輔助特徵的方法、軟體、及系統
TW202340847A (zh) 用於判定基於蝕刻偏差方向之蝕刻功效之系統及方法
WO2023088641A1 (en) Simulation model stability determination method
WO2023046385A1 (en) Pattern selection systems and methods
TW202333079A (zh) 產生擴增資料以訓練機器學習模型以保持物理趨勢