TW202334136A - PI3Kα抑制劑及其製造與使用方法 - Google Patents

PI3Kα抑制劑及其製造與使用方法 Download PDF

Info

Publication number
TW202334136A
TW202334136A TW111141786A TW111141786A TW202334136A TW 202334136 A TW202334136 A TW 202334136A TW 111141786 A TW111141786 A TW 111141786A TW 111141786 A TW111141786 A TW 111141786A TW 202334136 A TW202334136 A TW 202334136A
Authority
TW
Taiwan
Prior art keywords
compound
iii
formula
solid
crystalline
Prior art date
Application number
TW111141786A
Other languages
English (en)
Inventor
安德烈 蘭斯卡比
亞歷山卓 波席歐
蘇藍卓 P 辛
慶林 車
蔣思懿
何紅燕
周秋湘
周加加
林沅
古偉
呂敏
周雲飛
龔熙見
陳佳輝
王曉紅
殷昌波
Original Assignee
美商傳達治療有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 美商傳達治療有限公司 filed Critical 美商傳達治療有限公司
Publication of TW202334136A publication Critical patent/TW202334136A/zh

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K45/00Medicinal preparations containing active ingredients not provided for in groups A61K31/00 - A61K41/00
    • A61K45/06Mixtures of active ingredients without chemical characterisation, e.g. antiphlogistics and cardiaca
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/435Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom
    • A61K31/4353Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom ortho- or peri-condensed with heterocyclic ring systems
    • A61K31/437Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom ortho- or peri-condensed with heterocyclic ring systems the heterocyclic ring system containing a five-membered ring having nitrogen as a ring hetero atom, e.g. indolizine, beta-carboline
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C309/00Sulfonic acids; Halides, esters, or anhydrides thereof
    • C07C309/01Sulfonic acids
    • C07C309/02Sulfonic acids having sulfo groups bound to acyclic carbon atoms
    • C07C309/03Sulfonic acids having sulfo groups bound to acyclic carbon atoms of an acyclic saturated carbon skeleton
    • C07C309/04Sulfonic acids having sulfo groups bound to acyclic carbon atoms of an acyclic saturated carbon skeleton containing only one sulfo group
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C309/00Sulfonic acids; Halides, esters, or anhydrides thereof
    • C07C309/01Sulfonic acids
    • C07C309/28Sulfonic acids having sulfo groups bound to carbon atoms of six-membered aromatic rings of a carbon skeleton
    • C07C309/29Sulfonic acids having sulfo groups bound to carbon atoms of six-membered aromatic rings of a carbon skeleton of non-condensed six-membered aromatic rings
    • C07C309/30Sulfonic acids having sulfo groups bound to carbon atoms of six-membered aromatic rings of a carbon skeleton of non-condensed six-membered aromatic rings of six-membered aromatic rings substituted by alkyl groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C309/00Sulfonic acids; Halides, esters, or anhydrides thereof
    • C07C309/01Sulfonic acids
    • C07C309/28Sulfonic acids having sulfo groups bound to carbon atoms of six-membered aromatic rings of a carbon skeleton
    • C07C309/33Sulfonic acids having sulfo groups bound to carbon atoms of six-membered aromatic rings of a carbon skeleton of six-membered aromatic rings being part of condensed ring systems
    • C07C309/34Sulfonic acids having sulfo groups bound to carbon atoms of six-membered aromatic rings of a carbon skeleton of six-membered aromatic rings being part of condensed ring systems formed by two rings
    • C07C309/35Naphthalene sulfonic acids
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D471/00Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00
    • C07D471/02Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00 in which the condensed system contains two hetero rings
    • C07D471/04Ortho-condensed systems

Abstract

本發明係關於PI3Kα抑制劑、其結晶形式、鹽及共晶體,以及其組合物及製造與使用方法。

Description

PI3Kα抑制劑及其製造與使用方法
磷脂醯肌醇3-激酶(PI3K)包含脂質激酶家族,其催化磷酸酯向肌醇脂之D-3'位置轉移以產生磷酸肌醇-3-磷酸酯(PIP)、磷酸肌醇-3,4-二磷酸酯(PIP 2)及磷酸肌醇-3,4,5-三磷酸酯(PIP 3),該等產物轉而藉由將含有普列克底物蛋白-同源域(pleckstrin-homology domain)、FYVE、Phox及其他磷脂結合域之蛋白質引入通常位於質膜處之各種信號傳導複合物中而在信號級聯中充當第二信使((Vanhaesebroeck等人, Annu. Rev. Biochem 70:535 (2001);Katso等人, Annu. Rev. Cell Dev. Biol. 17:615 (2001))。在兩個1類PI3K子類中,1A類PI3K為由與調控次單位組成性相關之催化p110次單位(α、β或δ同功異型物)構成的異二聚體,該調控次單位可為p85α、p55α、p50α、p85β或p55γ。1B類亞類具有一個家族成員,亦即由與兩個調控次單位p101或p84中之一者相關之催化性p110γ次單位構成的異二聚體(Fruman等人, Annu Rev. Biochem. 67:481 (1998);Suire等人, Curr. Biol. 15:566 (2005))。p85/55/50次單位之模組域包括Src同源(SH2)域,其與活化受體及細胞質酪胺酸激酶上特定序列背景中之磷酸酪胺酸殘基結合,引起1A類PI3K之活化及定位。1B類PI3K藉由結合多樣譜系之肽及非肽配體之G蛋白偶聯受體直接活化(Stephens等人, Cell 89:105 (1997);Katso等人, Annu. Rev. Cell Dev. Biol. 17:615-675 (2001))。
因此,I類PI3K之所得磷脂產物將上游受體與下游細胞活動聯繫起來,該等活動包括增殖、存活、趨化性、細胞遷移、運動性、代謝、發炎及過敏反應、轉錄及轉譯(Cantley等人, Cell 64:281 (1991);Escobedo及Williams, Nature 335:85 (1988);Fantl等人, Cell 69:413 (1992))。在許多情況下,PIP 2及PIP 3將Aid (病毒癌基因v-Akt之人類同源物的產物)募集至質膜,Aid在質膜中充當對生長及存活重要的許多胞內信號傳導路徑之節點(Fantl等人, Cell 69:413-423 (1992);Bader等人, Nature Rev. Cancer 5:921 (2005);Vivanco及Sawyer, Nature Rev. Cancer 2:489 (2002))。
通常經由Aid活化提高存活之PI3K的異常調節為人類癌症中最普遍的現象之一且已顯示以多個層級發生。在肌醇環之3'位置處使磷酸肌醇去磷酸化且因此拮抗PI3K活性之腫瘤抑制基因PTEN在多種腫瘤中功能性缺失。在其他腫瘤中,p110α同功異型物、PIK3CA及Akt之基因經擴增,且已在若干人類癌症中展現其基因產物之蛋白質表現增加。此外,已在人類癌症中描述用以上調p85-p110複合物之p85α的突變及易位。最後,已在多種人類癌症中以顯著頻率描述活化下游信號傳導路徑之PIK3CA中的體細胞誤義突變(Kang等人, Proc. Natl. Acad. Sci. USA 102:802 (2005);Samuels等人, Science 304:554 (2004);Samuels等人, Cancer Cell 7:561-573 (2005))。此等觀測結果顯示,磷酸肌醇-3激酶及此信號傳導路徑之上游及下游組分的失調為與人類癌症及增生性疾病相關之最常見失調之一(Parsons等人, Nature 436:792 (2005);Hennessey等人, Nature Rev. Drug Disc. 4:988-1004 (2005))。
鑒於以上內容,PI3Kα抑制劑在增生性疾病及其他病症之治療中將具有特別價值。雖然已研發出多種PI3K抑制劑(例如泰尼昔布(taselisib)、艾培昔布(alpelisib)、布帕昔布(buparlisib)及其他),但此等分子抑制多種1A類PI3K同功異型物。對多種1A類PI3K同功異型物有活性之抑制劑稱為「泛PI3K (pan-PI3K)」抑制劑。現有PI3K抑制劑臨床開發之一個主要障礙為無法在腫瘤中達成所需的目標抑製程度,同時避免對癌症患者的毒性。泛PI3K抑制劑共有某些目標相關毒性,包括腹瀉、皮疹、疲乏及高血糖症。PI3K抑制劑之毒性取決於其同功異型物選擇性概況。PI3Kα之抑制與高血糖症及皮疹相關,而PI3Kδ或PI3Kγ之抑制與腹瀉、骨髓抑制及轉胺酶升高相關(Hanker等人, Cancer Discovery (2019) PMID: 30837161)。因此,PI3Kα之選擇性抑制劑可增加治療範圍,使得在腫瘤中實現足夠的目標抑制,同時避免癌症患者中之劑量限制性毒性。
本發明大體上係關於式I-III化合物及其溶劑合物以及其結晶形式。
在一些實施例中,本發明提供一種式(I)化合物: 或其溶劑合物,其中X、m及n中之各者獨立地如本文實施例中所定義及描述。在一些實施例中,式(I)化合物或其溶劑合物為如本文所描述之結晶形式。
在另一態樣中,本文提供一種式(II)化合物: 或其溶劑合物,其中X、p及q中之各者獨立地如本文實施例中所定義及描述。在一些實施例中,式(II)化合物或其溶劑合物為如本文所描述之結晶形式。
在另一態樣中,本文提供一種式(III)化合物: , 或其溶劑合物,其中X、r及s中之各者獨立地如本文實施例中所定義及描述。在一些實施例中,式(III)化合物或其溶劑合物為如本文所描述之結晶形式。
在一個態樣中,本文提供一種式(IV-1)化合物 , 或其醫藥學上可接受之鹽。
在另一態樣中,本文提供一種式(IV-2)化合物 , 或其醫藥學上可接受之鹽。
在另一態樣中,本文提供一種方法,其包含使化合物III-1氘化,接著用純化步驟分離鏡像異構物,從而形成化合物IV-1及IV-2: , 例如,如實例3-A中所描述。
在另一態樣中,本文提供一種藉由對化合物III-1進行SMB分離來製備化合物I-1及II-1的方法: , 例如,如實例1-A中所描述。
在另一態樣中,本文提供一種藉由使化合物II-1外消旋化來製備化合物III-1的方法: , 例如,如實例2-A中所描述。
在另一態樣中,本文提供一種醫藥組合物,其包含如本文所描述之化合物或其醫藥學上可接受之鹽、或其溶劑合物、或結晶形式,以及醫藥學上可接受之賦形劑。在另一態樣中,本文提供一種醫藥組合物,其包含本文所描述之化合物或其醫藥學上可接受之鹽以及醫藥學上可接受之賦形劑。
在另一態樣中,本文提供一種使用本文所描述之化合物或其溶劑合物、或結晶形式、或其醫藥組合物抑制PI3Kα活性及治療本文所描述之病症、疾病及/或病況的方法。在另一態樣中,本文提供一種使用本文所描述之化合物或其醫藥學上可接受之鹽或其醫藥組合物抑制PI3Kα活性及治療本文所描述之病症、疾病及/或病況的方法。
相關申請案之交互參考
本申請案主張2021年11月3日申請之美國臨時申請案第63/263,474號及2021年11月3日申請之國際(PCT)專利申請案第PCT/CN2021/128533號的權益;該等申請案各整體以引用之方式併入本文中。 本發明之某些實施例之一般描述
已發現,具有下式之化合物: 為PI3Kα抑制劑且適用於治療病症、疾病及/或病況,例如本文所描述之「PI3Kα介導之」病症、疾病及/或病況。將需要提供賦予諸如經改良水溶性、穩定性及調配容易性之特性的化合物固體形式(例如,呈游離鹼或鹽或溶劑合物形式)。將需要提供賦予諸如改良水溶性、穩定性及調配容易性的化合物之氘化類似物。 (I) 化合物
在一些實施例中,本文提供一種式(I)化合物 , 或其溶劑合物; 其中: m為1、2、3、4、5、6、7、8或9; n為0、0.5、1、1.5、2、2.5或3;且 X為鹽酸、對甲苯磺酸、甲烷磺酸、萘-1,5-二磺酸或2-萘磺酸。
一般熟習此項技術者應瞭解,表示為「X」之酸部分與(R)-N-(3-(2-氯-5-氟苯基)-6-(5-氰基-[1,2,4]三唑并[1,5-a]吡啶-6-基)-1-側氧基異吲哚啉-4-基)-3-氟-5-(三氟甲基)苯甲醯胺離子鍵結形成式(I)化合物。亦應瞭解,當n為0時,X不存在,表明式(I)化合物以「游離鹼」形式,亦即「游離形式」存在。
經考慮,式(I)化合物可以多種物理形式存在。舉例而言,式(I)化合物可呈溶液、懸浮液或固體形式。在某些實施例中,式(I)化合物呈固體形式。當式(I)化合物呈固體形式時,該化合物可為非晶形、結晶或其混合物。例示性固體形式更詳細地描述於下文中。
在一些實施例中,式(I)化合物為無水物。在一些實施例中,式(I)化合物可呈水合物形式。在一些實施例中,式(I)化合物可呈半水合物形式。
在一些實施例中,m為1。在一些實施例中,m為2。在一些實施例中,m為3。在一些實施例中,m為4。在一些實施例中,m為5。在一些實施例中,m為6。在一些實施例中,m為7。在一些實施例中,m為8。在一些實施例中,m為9。
在一些實施例中,n為0。在一些實施例中,n為1。在一些實施例中,n為2。在一些實施例中,n為3。在一些實施例中,n為0.5。在一些實施例中,n為1.5。在一些實施例中,n為2.5。
在一些實施例中,X為鹽酸。在一些實施例中,X為對甲苯磺酸。在一些實施例中,X為甲烷磺酸。在一些實施例中,X為萘-1,5-二磺酸。在一些實施例中,X為2-萘磺酸。
在一些實施例中,本發明提供一種基本上不含雜質之化合物I形式。如本文所用,術語「基本上不含雜質」意謂化合物不含顯著量之異物。此類異物可包括化合物 I之不同形式、殘餘溶劑或任何其他可能由化合物 I之製備及/或分離產生之雜質。
在一些實施例中,式(I)化合物或其溶劑合物或其結晶形式係以至少約95、95.5、96、96.5、97、97.5、98.0、98.5、99、99.1、99.2、99.3、99.4、99.5、99.6、99.7、99.8、99.9重量%之量存在,其中百分比係以組合物之總重量計。在一些實施例中,式(I)化合物或其溶劑合物或其結晶形式含有不超過約0.40、不超過約0.35、不超過約0.3、不超過約0.25、不超過約0.2、不超過約0.15、不超過約0.10或不超過約0.05重量%之任何單一雜質,其中百分比係以組合物之總重量計。在一些實施例中,雜質係選自本文實例中所描述之彼等雜質。
在一些實施例中,式(I)化合物或其溶劑合物或其結晶形式係以相對於HPLC層析圖之總面積的至少約95、95.5、96、96.5、97、97.5、98.0、98.5、99、99.1、99.2、99.3、99.4、99.5、99.6、99.7、99.8、99.9面積% (根據HPLC)之量存在。在一些實施例中,相對於HPLC層析圖之總面積,式(I)化合物或其溶劑合物或其結晶形式含有不超過約0.4、不超過約0.35、不超過約0.3、不超過約0.25、不超過約0.2、不超過約0.15、不超過約0.10或不超過約0.05面積百分比HPLC之任何單一雜質。在一些實施例中,雜質係選自本文實例中所描述之彼等雜質。在一些實施例中,HPLC方法係選自本文實例中所描述之HPLC方法。
針對式(I)化合物描繪之結構亦意欲包括所有互變異構形式。另外,本文中所描繪之結構亦意欲包括僅在存在一或多個經同位素增濃原子方面不同之化合物。舉例而言,除了氫經氘或氚置換或碳經 13C或 14C增濃碳置換之外具有本發明結構之化合物在本發明之範疇內。 化合物 I-1
在一些實施例中,式(I)化合物為化合物I-1,其為游離鹼(或「游離形式」), , 或其溶劑合物。
在一些實施例中,化合物I-1為非晶形固體。在一些實施例中,化合物I-1為結晶固體。在一些實施例中,化合物I-1為非晶形固體形式及結晶固體形式之混合物。
在一些實施例中,本發明提供一種基本上不含雜質之化合物I-1形式。如本文所用,術語「基本上不含雜質」意謂化合物不含顯著量之異物。此類異物可包括化合物 I-1之不同形式、殘餘溶劑或任何其他可能由化合物 I-1之製備及/或分離產生之雜質。
在一些實施例中,化合物 I-1或其溶劑合物或其結晶形式係以至少約95、95.5、96、96.5、97、97.5、98.0、98.5、99、99.1、99.2、99.3、99.4、99.5、99.6、99.7、99.8、99.9重量%之量存在,其中百分比係以組合物之總重量計。在一些實施例中,化合物 I-1或其溶劑合物或其結晶形式含有不超過約0.40、不超過約0.35、不超過約0.3、不超過約0.25、不超過約0.2、不超過約0.15、不超過約0.10或不超過約0.05重量%之任何單一雜質,其中百分比係以組合物之總重量計。在一些實施例中,雜質係選自本文實例中所描述之彼等雜質。
在一些實施例中,化合物 I-1或其溶劑合物或其結晶形式係以相對於HPLC層析圖之總面積的至少約95、95.5、96、96.5、97、97.5、98.0、98.5、99、99.1、99.2、99.3、99.4、99.5、99.6、99.7、99.8、99.9面積百分比(根據HPLC)之量存在。在一些實施例中,相對於HPLC層析圖之總面積,式 I-1化合物或其溶劑合物或其結晶形式含有不超過約0.4、不超過約0.35、不超過約0.3、不超過約0.25、不超過約0.2、不超過約0.15、不超過約0.10或不超過約0.05面積百分比HPLC之任何單一雜質。在一些實施例中,雜質係選自本文實例中所描述之彼等雜質。在一些實施例中,HPLC方法係選自本文實例中所描述之HPLC方法。
關於化合物 I-1所描繪之結構亦意欲包括化合物 I-1之所有互變異構形式。另外,本文中所描繪之結構亦意欲包括僅在存在一或多個經同位素增濃原子方面不同之化合物。舉例而言,除了氫經氘或氚置換或碳經 13C或 14C增濃碳置換之外具有本發明結構之化合物在本發明之範疇內。
在其他實施例中,化合物 I-1為基本上不含非晶形化合物 I-1之結晶固體。如本文所用,術語「基本上不含非晶形化合物 I-1」意謂該化合物不含顯著量之非晶形化合物 I-1。在某些實施例中,存在至少約95重量%之結晶化合物 I-1。在某些實施例中,存在至少約99重量%之結晶化合物 I-1
已發現,化合物 I-1可以多種固體形式存在。例示性之此類形式包括多晶型,諸如本文所描述之彼等多晶型。
在一些實施例中,化合物 I-1之固體結晶形式為形式A。在一些實施例中,化合物I-1之形式A可以具有至少兩個2θ度之特徵峰的粉末X射線繞射圖為特徵,該等特徵峰各選自由約12.0 2θ、約6.5 2θ及約19.5 2θ組成之群。在一些實施例中,化合物I-1之形式A可以具有至少兩個2θ度之特徵峰的粉末X射線繞射圖為特徵,該等特徵峰各選自由約12.0 2θ、約6.5 2θ、約19.5 2θ、約24.6 2θ、約18.4 2θ、約24.1 2θ及約22.1 2θ組成之群。在一些實施例中,化合物I-1之形式A可以具有至少三個2θ度之特徵峰的粉末X射線繞射圖為特徵,該等特徵峰各選自由約12.0 2θ、約6.5 2θ、約19.5 2θ、約24.6 2θ、約18.4 2θ、約24.1 2θ及約22.1 2θ組成之群。在一些實施例中,化合物I-1之形式A可以具有至少四個2θ度之特徵峰的粉末X射線繞射圖為特徵,該等特徵峰各選自由約12.0 2θ、約6.5 2θ、約19.5 2θ、約24.6 2θ、約18.4 2θ、約24.1 2θ及約22.1 2θ組成之群。在一些實施例中,化合物I-1之形式A可以具有至少五個2θ度之特徵峰的粉末X射線繞射圖為特徵,該等特徵峰各選自由約12.0 2θ、約6.5 2θ、約19.5 2θ、約24.6 2θ、約18.4 2θ、約24.1 2θ及約22.1 2θ組成之群。在一些實施例中,化合物I-1之形式A可以具有至少六個2θ度之特徵峰的粉末X射線繞射圖為特徵,該等特徵峰各選自由約12.0 2θ、約6.5 2θ、約19.5 2θ、約24.6 2θ、約18.4 2θ、約24.1 2θ及約22.1 2θ組成之群。在一些實施例中,化合物I-1之形式A可以包含約12.0 2θ、約6.5 2θ、約19.5 2θ、約24.6 2θ、約18.4 2θ、約24.1 2θ及約22.1 2θ之特徵峰的粉末X射線繞射圖為特徵。在一些實施例中,化合物I-1之形式A的X射線繞射圖與圖1A中所描繪的基本上類似。在一些實施例中,化合物I-1之形式A可以具有至少兩個2θ度之特徵峰的粉末X射線繞射圖為特徵,該等特徵峰各選自由表1.1中所列之峰組成之群。在一些實施例中,化合物I-1之形式A可以具有至少三個2θ度之特徵峰的粉末X射線繞射圖為特徵,該等特徵峰各選自由表1.1中所列之峰組成之群。在一些實施例中,化合物I-1之形式A可以具有至少四個2θ度之特徵峰的粉末X射線繞射圖為特徵,該等特徵峰各選自由表1.1中所列之峰組成之群。在一些實施例中,化合物I-1之形式A可以具有至少五個2θ度之特徵峰的粉末X射線繞射圖為特徵,該等特徵峰各選自由表1.1中所列之峰組成之群。在一些實施例中,化合物I-1之形式A可以具有至少六個2θ度之特徵峰的粉末X射線繞射圖為特徵,該等特徵峰各選自由表1.1中所列之峰組成之群。在一些實施例中,化合物I-1之形式A可以具有至少七個以°2θ為單位之特徵峰的粉末X射線繞射圖為特徵,該等特徵峰各選自由表1.1中所列之峰組成之群。 表1.1 I-1形式A XRPD峰清單(角度2θ在±0.2內)。
索引 角度 d值 相對強度
1 9.973 8.86192 0.50%
2 5.013 17.61308 1.20%
3 35.414 2.53266 2.40%
4 26.834 3.31978 2.60%
5 34.896 2.56902 2.60%
6 29.473 3.02827 2.70%
7 38.18 2.35527 2.90%
8 36.189 2.48017 3.20%
9 21.809 4.07203 3.30%
10 24.995 3.55959 3.80%
11 29.597 3.01577 4.20%
12 32.648 2.74063 4.50%
13 33.052 2.70807 4.60%
14 28.093 3.17375 4.90%
15 25.612 3.47529 5.00%
16 39.415 2.2843 5.00%
17 12.96 6.82564 5.00%
18 30.351 2.94256 5.10%
19 22.622 3.92733 5.10%
20 31.709 2.81956 5.20%
21 19.047 4.65567 5.40%
22 20.309 4.36912 6.00%
23 31.9 2.80311 6.00%
24 31.277 2.85757 6.10%
25 9.659 9.14935 6.60%
26 30.854 2.89575 6.70%
27 21.573 4.11603 7.10%
28 23.331 3.80957 8.10%
29 26.23 3.39475 8.50%
30 36.472 2.46158 9.30%
31 23.855 3.72715 10.50%
32 19.933 4.45064 10.70%
33 14.936 5.92659 10.80%
34 37.741 2.38165 10.80%
35 30.582 2.92088 11.70%
36 13.888 6.37134 14.50%
37 26.633 3.34438 15.30%
38 28.62 3.11653 16.40%
39 15.711 5.63611 17.40%
40 22.116 4.01604 21.10%
41 24.12 3.68674 24.90%
42 18.364 4.82721 28.70%
43 24.576 3.61941 39.30%
44 19.454 4.55925 40.70%
45 6.51 13.56587 44.90%
46 12.032 7.34974 100.00%
如本文所用,術語「約」在2θ度之峰的上下文中意謂峰可為給定2θ值±0.2,或給定2θ值±0.1,或給定值。舉例而言,「約12.0 2θ」之峰意謂峰可為11.8 2θ、11.9 2θ、12.0 2θ、12.1 2θ或12.2 2θ。
在一些實施例中,化合物I-1之形式A的差示掃描量熱(DSC)圖與圖1B中所描繪的基本上類似。在一些實施例中,化合物I-1之形式A的差示掃描量熱(DSC)圖與圖1C中所描繪的基本上類似。在一些實施例中,化合物I-1之形式A的差示掃描量熱(DSC)圖與圖1D中所描繪的基本上類似。在一些實施例中,化合物I-1之形式A的熱重分析(TGA)圖與圖1E中所描繪的基本上類似。在一些實施例中,化合物I-1之形式A可以同時與此等圖中之兩者或更多者基本上類似為特徵。
在一些實施例中,化合物I-1之固體結晶形式為形式B。在一些實施例中,化合物I-1之形式B可以具有至少兩個2θ度之特徵峰的粉末X射線繞射圖為特徵,該等特徵峰各選自由約6.6 2θ、約12.2 2θ及約15.0 2θ組成之群。在一些實施例中,化合物I-1之形式B可以具有至少兩個2θ度之特徵峰的粉末X射線繞射圖為特徵,該等特徵峰各選自由約6.6 2θ、約12.2 2θ、約15.0 2θ、約9.6 2θ、約19.0 2θ、約12.4 2θ及約24.6 2θ組成之群。在一些實施例中,化合物I-1之形式B可以具有至少三個2θ度之特徵峰的粉末X射線繞射圖為特徵,該等特徵峰各選自由約6.6 2θ、約12.2 2θ、約15.0 2θ、約9.6 2θ、約19.0 2θ、約12.4 2θ及約24.6 2θ組成之群。在一些實施例中,化合物I-1之形式B可以具有至少四個2θ度之特徵峰的粉末X射線繞射圖為特徵,該等特徵峰各選自由約6.6 2θ、約12.2 2θ、約15.0 2θ、約9.6 2θ、約19.0 2θ、約12.4 2θ及約24.6 2θ組成之群。在一些實施例中,化合物I-1之形式B可以具有至少五個2θ度之特徵峰的粉末X射線繞射圖為特徵,該等特徵峰各選自由約6.6 2θ、約12.2 2θ、約15.0 2θ、約9.6 2θ、約19.0 2θ、約12.4 2θ及約24.6 2θ組成之群。在一些實施例中,化合物I-1之形式B可以具有至少六個2θ度之特徵峰的粉末X射線繞射圖為特徵,該等特徵峰各選自由約6.6 2θ、約12.2 2θ、約15.0 2θ、約9.6 2θ、約19.0 2θ、約12.4 2θ及約24.6 2θ組成之群。在一些實施例中,化合物I-1之形式B可以包含約6.6 2θ、約12.2 2θ、約15.0 2θ、約9.6 2θ、約19.0 2θ、約12.4 2θ及約24.6 2θ之特徵峰的粉末X射線繞射圖為特徵。在一些實施例中,化合物I-1之形式B的X射線繞射圖與圖2A中所描繪的基本上類似。在一些實施例中,化合物I-1之形式B可以具有至少兩個2θ度之特徵峰的粉末X射線繞射圖為特徵,該等特徵峰各選自由表1.2中所列之峰組成之群。在一些實施例中,化合物I-1之形式B可以具有至少三個2θ度之特徵峰的粉末X射線繞射圖為特徵,該等特徵峰各選自由表1.2中所列之峰組成之群。在一些實施例中,化合物I-1之形式B可以具有至少四個2θ度之特徵峰的粉末X射線繞射圖為特徵,該等特徵峰各選自由表1.2中所列之峰組成之群。在一些實施例中,化合物I-1之形式B可以具有至少五個2θ度之特徵峰的粉末X射線繞射圖為特徵,該等特徵峰各選自由表1.2中所列之峰組成之群。在一些實施例中,化合物I-1之形式B可以具有至少六個2θ度之特徵峰的粉末X射線繞射圖為特徵,該等特徵峰各選自由表1.2中所列之峰組成之群。在一些實施例中,化合物I-1之形式B可以具有至少七個以°2θ為單位之特徵峰的粉末X射線繞射圖為特徵,該等特徵峰各選自由表1.2中所列之峰組成之群。 表1.2 I-1形式B XRPD峰清單(角度2θ在±0.2內)。
索引 角度 d值 相對強度
1 37.843 2.37548 4.70%
2 31.598 2.82926 6.00%
3 26.845 3.31846 6.20%
4 26.027 3.42085 6.30%
5 32.95 2.71619 6.60%
6 32.011 2.79372 7.00%
7 30.453 2.93298 7.20%
8 11.703 7.5558 7.30%
9 38.48 2.33763 7.70%
10 26.659 3.34118 8.30%
11 29.137 3.06233 8.50%
12 33.252 2.69222 9.10%
13 26.435 3.36888 9.20%
14 22.831 3.89194 9.50%
15 31.256 2.85946 9.70%
16 36.984 2.42864 10.20%
17 21.334 4.1616 10.70%
18 23.302 3.81427 11.10%
19 22.582 3.93431 12.90%
20 19.762 4.48879 13.70%
21 27.505 3.24021 13.70%
22 20.005 4.4349 14.40%
23 25.567 3.48134 15.40%
24 23.776 3.73932 16.00%
25 15.755 5.62023 16.50%
26 28.774 3.10022 22.00%
27 16.187 5.47123 25.40%
28 18.522 4.78656 36.40%
29 22.145 4.01085 36.60%
30 24.946 3.56654 36.60%
31 24.567 3.6207 39.10%
32 12.42 7.12084 40.10%
33 18.955 4.6781 41.90%
34 9.647 9.16076 42.30%
35 14.982 5.90848 53.60%
36 12.17 7.26695 87.10%
37 6.59 13.40144 100.00%
在一些實施例中,化合物I-1之形式B的差示掃描量熱(DSC)圖與圖2B中所描繪的基本上類似。在一些實施例中,化合物I-1之形式B的熱重分析(TGA)圖與圖2C中所描繪的基本上類似。在一些實施例中,化合物I-1之形式B可以同時與此等圖中之兩者或更多者基本上類似為特徵。
在一些實施例中,化合物I-1之固體結晶形式為形式C。在一些實施例中,化合物I-1之形式C可以具有至少兩個2θ度之特徵峰的粉末X射線繞射圖為特徵,該等特徵峰各選自由約12.1 2θ、約6.6 2θ及約18.4 2θ組成之群。在一些實施例中,化合物I-1之形式C可以具有至少兩個2θ度之特徵峰的粉末X射線繞射圖為特徵,該等特徵峰各選自由約12.1 2θ、約6.6 2θ、約18.4 2θ、約19.5 2θ、約24.7 2θ、約14.9 2θ及約24.3 2θ組成之群。在一些實施例中,化合物I-1之形式C可以具有至少三個2θ度之特徵峰的粉末X射線繞射圖為特徵,該等特徵峰各選自由約12.1 2θ、約6.6 2θ、約18.4 2θ、約19.5 2θ、約24.7 2θ、約14.9 2θ及約24.3 2θ組成之群。在一些實施例中,化合物I-1之形式C可以具有至少四個2θ度之特徵峰的粉末X射線繞射圖為特徵,該等特徵峰各選自由約12.1 2θ、約6.6 2θ、約18.4 2θ、約19.5 2θ、約24.7 2θ、約14.9 2θ及約24.3 2θ組成之群。在一些實施例中,化合物I-1之形式C可以具有至少五個2θ度之特徵峰的粉末X射線繞射圖為特徵,該等特徵峰各選自由約12.1 2θ、約6.6 2θ、約18.4 2θ、約19.5 2θ、約24.7 2θ、約14.9 2θ及約24.3 2θ組成之群。在一些實施例中,化合物I-1之形式C可以具有至少六個2θ度之特徵峰的粉末X射線繞射圖為特徵,該等特徵峰各選自由約12.1 2θ、約6.6 2θ、約18.4 2θ、約19.5 2θ、約24.7 2θ、約14.9 2θ及約24.3 2θ組成之群。在一些實施例中,化合物I-1之形式C可以包含約12.1 2θ、約6.6 2θ、約18.4 2θ、約19.5 2θ、約24.7 2θ、約14.9 2θ及約24.3 2θ之特徵峰的粉末X射線繞射圖為特徵。在一些實施例中,化合物I-1之形式C的X射線繞射圖與圖3A中所描繪的基本上類似。在一些實施例中,化合物I-1之形式C可以具有至少兩個2θ度之特徵峰的粉末X射線繞射圖為特徵,該等特徵峰各選自由表1.3中所列之峰組成之群。在一些實施例中,化合物I-1之形式C可以具有至少三個2θ度之特徵峰的粉末X射線繞射圖為特徵,該等特徵峰各選自由表1.3中所列之峰組成之群。在一些實施例中,化合物I-1之形式C可以具有至少四個2θ度之特徵峰的粉末X射線繞射圖為特徵,該等特徵峰各選自由表1.3中所列之峰組成之群。在一些實施例中,化合物I-1之形式C可以具有至少五個2θ度之特徵峰的粉末X射線繞射圖為特徵,該等特徵峰各選自由表1.3中所列之峰組成之群。在一些實施例中,化合物I-1之形式C可以具有至少六個2θ度之特徵峰的粉末X射線繞射圖為特徵,該等特徵峰各選自由表1.3中所列之峰組成之群。在一些實施例中,化合物I-1之形式C可以具有至少七個2θ度之特徵峰的粉末X射線繞射圖為特徵,該等特徵峰各選自由表1.3中所列之峰組成之群。 表1.3 I-1形式C XRPD峰清單(角度2θ在±0.2內)。
索引 角度 d值 相對強度
1 39.655 2.27101 1.90%
2 21.657 4.10012 2.40%
3 25.626 3.4734 2.40%
4 26.316 3.38384 2.90%
5 35.598 2.51994 3.20%
6 5.026 17.5687 3.70%
7 12.92 6.84629 3.90%
8 20.281 4.37506 4.00%
9 32.088 2.78718 4.10%
10 32.839 2.72511 5.30%
11 31.586 2.8303 5.50%
12 28.087 3.17443 6.00%
13 23.883 3.72289 6.20%
14 34.929 2.56671 6.20%
15 22.605 3.93032 7.00%
16 33.127 2.70204 7.00%
17 23.326 3.81049 8.20%
18 36.711 2.44609 8.70%
19 30.615 2.91781 11.10%
20 30.762 2.90417 11.10%
21 37.966 2.36805 11.20%
22 26.763 3.32844 14.20%
23 9.683 9.1272 16.80%
24 13.922 6.35612 18.00%
25 22.187 4.00345 18.40%
26 19.938 4.44972 21.10%
27 15.807 5.60214 23.30%
28 28.81 3.09636 25.70%
29 24.318 3.65721 26.90%
30 14.935 5.92706 28.30%
31 24.739 3.59598 38.10%
32 19.512 4.54571 38.60%
33 18.395 4.81919 53.30%
34 6.551 13.4819 56.80%
35 12.123 7.29477 100.00%
在一些實施例中,化合物I-1之形式C的差示掃描量熱(DSC)圖與圖3B中所描繪的基本上類似。在一些實施例中,化合物I-1之形式C的熱重分析(TGA)圖與圖3C中所描繪的基本上類似。在一些實施例中,化合物I-1之形式C可以同時與此等圖中之兩者或更多者基本上類似為特徵。 化合物 I-2
在一些實施例中,式(I)化合物為化合物I-2: , 或其溶劑合物。
在一些實施例中,化合物I-2為無水固體。
在一些實施例中,化合物I-2為非晶形固體。在其他實施例中,化合物I-2為結晶固體。在一些實施例中,化合物I-2為非晶形固體形式及結晶固體形式之混合物。
在一些實施例中,本發明提供一種基本上不含雜質之化合物I-2形式。如本文所用,術語「基本上不含雜質」意謂化合物不含顯著量之異物。此類異物可包括化合物I-2之不同形式、殘餘溶劑或任何其他可能由化合物I-2之製備及/或分離產生之雜質。
在一些實施例中,化合物I-2或其溶劑合物或其結晶形式係以至少約95、95.5、96、96.5、97、97.5、98.0、98.5、99、99.1、99.2、99.3、99.4、99.5、99.6、99.7、99.8、99.9重量%之量存在,其中百分比係以組合物之總重量計。在一些實施例中,化合物I-2或其溶劑合物或其結晶形式含有不超過約0.40、不超過約0.35、不超過約0.3、不超過約0.25、不超過約0.2、不超過約0.15、不超過約0.10或不超過約0.05重量%之任何單一雜質,其中百分比係以組合物之總重量計。在一些實施例中,雜質係選自本文實例中所描述之彼等雜質。
在一些實施例中,化合物I-2或其溶劑合物或其結晶形式係以相對於HPLC層析圖之總面積的至少約95、95.5、96、96.5、97、97.5、98.0、98.5、99、99.1、99.2、99.3、99.4、99.5、99.6、99.7、99.8、99.9面積百分比(根據HPLC)之量存在。在一些實施例中,相對於HPLC層析圖之總面積,式I-2化合物或其溶劑合物或其結晶形式含有不超過約0.4、不超過約0.35、不超過約0.3、不超過約0.25、不超過約0.2、不超過約0.15、不超過約0.10或不超過約0.05面積百分比HPLC之任何單一雜質。在一些實施例中,雜質係選自本文實例中所描述之彼等雜質。在一些實施例中,HPLC方法係選自本文實例中所描述之HPLC方法。
關於化合物 I-2所描繪之結構亦意欲包括化合物 I-2之所有互變異構形式。另外,本文中所描繪之結構亦意欲包括僅在存在一或多個經同位素增濃原子方面不同之化合物。舉例而言,除了氫經氘或氚置換或碳經 13C或 14C增濃碳置換之外具有本發明結構之化合物在本發明之範疇內。
在某些實施例中,化合物 I-2為結晶固體。在其他實施例中,化合物 I-2為基本上不含非晶形化合物 I-2之結晶固體。如本文所用,術語「基本上不含非晶形化合物 I-2」意謂該化合物不含顯著量之非晶形化合物 I-2。在某些實施例中,存在至少約95重量%之結晶化合物 I-2。在本發明之其他實施例中,存在至少約99重量%之結晶化合物 I-2
已發現,化合物 I-2可以多種固體形式存在。例示性之此類形式包括多晶型,諸如本文所描述之彼等多晶型。
在一些實施例中,化合物I-2之固體結晶形式為形式A。在一些實施例中,化合物I-2之形式A的X射線繞射圖與圖27A中所描繪的基本上類似。
在一些實施例中,化合物I-2之形式A的差示掃描量熱(DSC)圖與圖27B中所描繪的基本上類似。在一些實施例中,化合物I-2之形式A的熱重分析(TGA)圖與圖27C中所描繪的基本上類似。在一些實施例中,化合物I-2之形式A可以同時與此等圖中之兩者或更多者基本上類似為特徵。 化合物 I-3
在一些實施例中,式(I)化合物為化合物I-3: I-3, 或其溶劑合物。
在一些實施例中,化合物I-3為無水固體。
在一些實施例中,化合物I-3為非晶形固體。在其他實施例中,化合物I-3為結晶固體。在一些實施例中,化合物I-3為非晶形固體形式及結晶固體形式之混合物。
在一些實施例中,本發明提供一種基本上不含雜質之化合物I-3形式。如本文所用,術語「基本上不含雜質」意謂化合物不含顯著量之異物。此類異物可包括化合物 I-3之不同形式、殘餘溶劑或任何其他可能由化合物 I-3之製備及/或分離產生之雜質。
在一些實施例中,化合物I-3或其溶劑合物或其結晶形式係以至少約95、95.5、96、96.5、97、97.5、98.0、98.5、99、99.1、99.2、99.3、99.4、99.5、99.6、99.7、99.8、99.9重量%之量存在,其中百分比係以組合物之總重量計。在一些實施例中,化合物I-3或其溶劑合物或其結晶形式含有不超過約0.40、不超過約0.35、不超過約0.3、不超過約0.25、不超過約0.2、不超過約0.15、不超過約0.10或不超過約0.05重量%之任何單一雜質,其中百分比係以組合物之總重量計。在一些實施例中,雜質係選自本文實例中所描述之彼等雜質。
在一些實施例中,化合物I-3或其溶劑合物或其結晶形式係以相對於HPLC層析圖之總面積的至少約95、95.5、96、96.5、97、97.5、98.0、98.5、99、99.1、99.2、99.3、99.4、99.5、99.6、99.7、99.8、99.9面積百分比(根據HPLC)之量存在。在一些實施例中,相對於HPLC層析圖之總面積,化合物I-3或其溶劑合物或其結晶形式含有不超過約0.4、不超過約0.35、不超過約0.3、不超過約0.25、不超過約0.2、不超過約0.15、不超過約0.10或不超過約0.05面積百分比HPLC之任何單一雜質。在一些實施例中,雜質係選自本文實例中所描述之彼等雜質。在一些實施例中,HPLC方法係選自本文實例中所描述之HPLC方法。
關於化合物 I-3所描繪之結構亦意欲包括化合物 I-3之所有互變異構形式。另外,本文中所描繪之結構亦意欲包括僅在存在一或多個經同位素增濃原子方面不同之化合物。舉例而言,除了氫經氘或氚置換或碳經 13C或 14C增濃碳置換之外具有本發明結構之化合物在本發明之範疇內。
在某些實施例中,化合物 I-3為結晶固體。在其他實施例中,化合物 I-3為基本上不含非晶形化合物 I-3之結晶固體。如本文所用,術語「基本上不含非晶形化合物 I-3」意謂該化合物不含顯著量之非晶形化合物 I-3。在某些實施例中,存在至少約95重量%之結晶化合物 I-3。在本發明之其他實施例中,存在至少約99重量%之結晶化合物 I-3
已發現,化合物 I-3可以多種固體形式存在。例示性之此類形式包括多晶型,諸如本文所描述之彼等多晶型。
在一些實施例中,化合物I-3之固體結晶形式為形式A。在一些實施例中,化合物I-3之形式A的X射線繞射圖與圖30A中所描繪的基本上類似。
在一些實施例中,化合物I-3之形式A的差示掃描量熱(DSC)圖與圖30B中所描繪的基本上類似。在一些實施例中,化合物I-3之形式A的熱重分析(TGA)圖與圖30C中所描繪的基本上類似。在一些實施例中,化合物I-3之形式A可以同時與此等圖中之兩者或更多者基本上類似為特徵。
在一些實施例中,化合物I-3之固體結晶形式為形式B。在一些實施例中,化合物I-3之形式B的X射線繞射圖與圖35A中所描繪的基本上類似。在一些實施例中,化合物I-3之形式B的X射線繞射圖與圖35B中所描繪的基本上類似。在一些實施例中,化合物I-3之形式B的X射線繞射圖與圖35C中所描繪的基本上類似。在一些實施例中,化合物I-3之形式B的X射線繞射圖與圖35D中所描繪的基本上類似。在一些實施例中,化合物I-3之形式B可以同時與此等圖中之兩者或更多者基本上類似為特徵。 化合物 I-4
在一些實施例中,式(I)化合物為化合物I-4: I-4, 或其溶劑合物。
在一些實施例中,化合物I-4為無水固體。
在一些實施例中,化合物I-4為非晶形固體。在其他實施例中,化合物I-4為結晶固體。在一些實施例中,化合物I-4為非晶形固體形式及結晶固體形式之混合物。
在一些實施例中,本發明提供一種基本上不含雜質之化合物I-4形式。如本文所用,術語「基本上不含雜質」意謂化合物不含顯著量之異物。此類異物可包括化合物 I-4之不同形式、殘餘溶劑或任何其他可能由化合物 I-4之製備及/或分離產生之雜質。
在一些實施例中,化合物I-4或其溶劑合物或其結晶形式係以至少約95、95.5、96、96.5、97、97.5、98.0、98.5、99、99.1、99.2、99.3、99.4、99.5、99.6、99.7、99.8、99.9重量%之量存在,其中百分比係以組合物之總重量計。在一些實施例中,化合物I-4或其溶劑合物或其結晶形式含有不超過約0.40、不超過約0.35、不超過約0.3、不超過約0.25、不超過約0.2、不超過約0.15、不超過約0.10或不超過約0.05重量%之任何單一雜質,其中百分比係以組合物之總重量計。在一些實施例中,雜質係選自本文實例中所描述之彼等雜質。
在一些實施例中,化合物I-4或其溶劑合物或其結晶形式係以相對於HPLC層析圖之總面積的至少約95、95.5、96、96.5、97、97.5、98.0、98.5、99、99.1、99.2、99.3、99.4、99.5、99.6、99.7、99.8、99.9面積百分比(根據HPLC)之量存在。在一些實施例中,相對於HPLC層析圖之總面積,化合物I-4或其溶劑合物或其結晶形式含有不超過約0.4、不超過約0.35、不超過約0.3、不超過約0.25、不超過約0.2、不超過約0.15、不超過約0.10或不超過約0.05面積百分比HPLC之任何單一雜質。在一些實施例中,雜質係選自本文實例中所描述之彼等雜質。在一些實施例中,HPLC方法係選自本文實例中所描述之HPLC方法。
關於化合物 I-4所描繪之結構亦意欲包括化合物 I-4之所有互變異構形式。另外,本文中所描繪之結構亦意欲包括僅在存在一或多個經同位素增濃原子方面不同之化合物。舉例而言,除了氫經氘或氚置換或碳經 13C或 14C增濃碳置換之外具有本發明結構之化合物在本發明之範疇內。
在某些實施例中,化合物 I-4為結晶固體。在其他實施例中,化合物 I-4為基本上不含非晶形化合物 I-4之結晶固體。如本文所用,術語「基本上不含非晶形化合物 I-4」意謂該化合物不含顯著量之非晶形化合物 I-4。在某些實施例中,存在至少約95重量%之結晶化合物 I-4。在本發明之其他實施例中,存在至少約99重量%之結晶化合物 I-4
已發現,化合物 I-4可以多種固體形式存在。例示性之此類形式包括多晶型,諸如本文所描述之彼等多晶型。
在一些實施例中,化合物I-4之固體結晶形式為形式A。在一些實施例中,化合物I-4之形式A的X射線繞射圖與圖31A中所描繪的基本上類似。
在一些實施例中,化合物I-4之形式A的差示掃描量熱(DSC)圖與圖31B中所描繪的基本上類似。在一些實施例中,化合物I-4之形式A的熱重分析(TGA)圖與圖31C中所描繪的基本上類似。在一些實施例中,化合物I-4之形式A可以同時與此等圖中之兩者或更多者基本上類似為特徵。 化合物 I -5
在一些實施例中,式(I)化合物為化合物I-5: I-5, 或其溶劑合物。
在一些實施例中,化合物I-5為無水固體。
在一些實施例中,化合物I-5為非晶形固體。在其他實施例中,化合物I-5為結晶固體。在一些實施例中,化合物I-5為非晶形固體形式及結晶固體形式之混合物。
在一些實施例中,本發明提供一種基本上不含雜質之化合物I-5形式。如本文所用,術語「基本上不含雜質」意謂化合物不含顯著量之異物。此類異物可包括化合物 I-5之不同形式、殘餘溶劑或任何其他可能由化合物 I-5之製備及/或分離產生之雜質。
在一些實施例中,化合物I-5或其溶劑合物或其結晶形式係以至少約95、95.5、96、96.5、97、97.5、98.0、98.5、99、99.1、99.2、99.3、99.4、99.5、99.6、99.7、99.8、99.9重量%之量存在,其中百分比係以組合物之總重量計。在一些實施例中,化合物I-5或其溶劑合物或其結晶形式含有不超過約0.40、不超過約0.35、不超過約0.3、不超過約0.25、不超過約0.2、不超過約0.15、不超過約0.10或不超過約0.05重量%之任何單一雜質,其中百分比係以組合物之總重量計。在一些實施例中,雜質係選自本文實例中所描述之彼等雜質。
在一些實施例中,化合物I-5或其溶劑合物或其結晶形式係以相對於HPLC層析圖之總面積的至少約95、95.5、96、96.5、97、97.5、98.0、98.5、99、99.1、99.2、99.3、99.4、99.5、99.6、99.7、99.8、99.9面積百分比(根據HPLC)之量存在。在一些實施例中,相對於HPLC層析圖之總面積,化合物I-5或其溶劑合物或其結晶形式含有不超過約0.4、不超過約0.35、不超過約0.3、不超過約0.25、不超過約0.2、不超過約0.15、不超過約0.10或不超過約0.05面積百分比HPLC之任何單一雜質。在一些實施例中,雜質係選自本文實例中所描述之彼等雜質。在一些實施例中,HPLC方法係選自本文實例中所描述之HPLC方法。
關於化合物 I-5所描繪之結構亦意欲包括化合物 I-5之所有互變異構形式。另外,本文中所描繪之結構亦意欲包括僅在存在一或多個經同位素增濃原子方面不同之化合物。舉例而言,除了氫經氘或氚置換或碳經 13C或 14C增濃碳置換之外具有本發明結構之化合物在本發明之範疇內。
在某些實施例中,化合物 I-5為結晶固體。在其他實施例中,化合物 I-5為基本上不含非晶形化合物 I-5之結晶固體。如本文所用,術語「基本上不含非晶形化合物 I-5」意謂該化合物不含顯著量之非晶形化合物 I-5。在某些實施例中,存在至少約95重量%之結晶化合物 I-5。在本發明之其他實施例中,存在至少約99重量%之結晶化合物 I-5
已發現,化合物 I-5可以多種固體形式存在。例示性之此類形式包括多晶型,諸如本文所描述之彼等多晶型。
在一些實施例中,化合物 I-5之固體結晶形式為形式A。在一些實施例中,化合物I-5之形式A的X射線繞射圖與圖32A中所描繪的基本上類似。
在一些實施例中,化合物I-5之形式A的差示掃描量熱(DSC)圖與圖32B中所描繪的基本上類似。在一些實施例中,化合物I-5之形式A的差示掃描量熱(DSC)圖與圖32C中所描繪的基本上類似。在一些實施例中,化合物I-5之形式A的熱重分析(TGA)圖與圖32D中所描繪的基本上類似。在一些實施例中,化合物I-5之形式A可以同時與此等圖中之兩者或更多者基本上類似為特徵。
在一些實施例中,化合物I-5之固體結晶形式為形式B。在一些實施例中,化合物I-5之形式B的X射線繞射圖與圖33中所描繪的基本上類似。 化合物 I-6
在一些實施例中,式(I)化合物為化合物I-6: I-6, 或其溶劑合物。
在一些實施例中,化合物I-6為無水固體。
在一些實施例中,化合物I-6為非晶形固體。在其他實施例中,化合物I-6為結晶固體。在一些實施例中,化合物I-6為非晶形固體形式及結晶固體形式之混合物。
在一些實施例中,本發明提供一種基本上不含雜質之化合物I-6形式。如本文所用,術語「基本上不含雜質」意謂化合物不含顯著量之異物。此類異物可包括化合物 I-6之不同形式、殘餘溶劑或任何其他可能由化合物 I-6之製備及/或分離產生之雜質。
在一些實施例中,化合物I-6或其溶劑合物或其結晶形式係以至少約95、95.5、96、96.5、97、97.5、98.0、98.5、99、99.1、99.2、99.3、99.4、99.5、99.6、99.7、99.8、99.9重量%之量存在,其中百分比係以組合物之總重量計。在一些實施例中,化合物I-6或其溶劑合物或其結晶形式含有不超過約0.40、不超過約0.35、不超過約0.3、不超過約0.25、不超過約0.2、不超過約0.15、不超過約0.10或不超過約0.05重量%之任何單一雜質,其中百分比係以組合物之總重量計。在一些實施例中,雜質係選自本文實例中所描述之彼等雜質。
在一些實施例中,化合物I-6或其溶劑合物或其結晶形式係以相對於HPLC層析圖之總面積的至少約95、95.5、96、96.5、97、97.5、98.0、98.5、99、99.1、99.2、99.3、99.4、99.5、99.6、99.7、99.8、99.9面積百分比(根據HPLC)之量存在。在一些實施例中,相對於HPLC層析圖之總面積,化合物I-6或其溶劑合物或其結晶形式含有不超過約0.4、不超過約0.35、不超過約0.3、不超過約0.25、不超過約0.2、不超過約0.15、不超過約0.10或不超過約0.05面積百分比HPLC之任何單一雜質。在一些實施例中,雜質係選自本文實例中所描述之彼等雜質。在一些實施例中,HPLC方法係選自本文實例中所描述之HPLC方法。
關於化合物 I-6所描繪之結構亦意欲包括化合物 I-6之所有互變異構形式。另外,本文中所描繪之結構亦意欲包括僅在存在一或多個經同位素增濃原子方面不同之化合物。舉例而言,除了氫經氘或氚置換或碳經 13C或 14C增濃碳置換之外具有本發明結構之化合物在本發明之範疇內。
在某些實施例中,化合物 I-6為結晶固體。在其他實施例中,化合物 I-6為基本上不含非晶形化合物 I-6之結晶固體。如本文所用,術語「基本上不含非晶形化合物 I-6」意謂該化合物不含顯著量之非晶形化合物 I-6。在某些實施例中,存在至少約95重量%之結晶化合物 I-6。在本發明之其他實施例中,存在至少約99重量%之結晶化合物 I-6 (II) 化合物
在一些實施例中,本文提供一種式(II)化合物: , 或其溶劑合物, 其中: p為1、2、3、4、5、6、7、8或9; q為0、0.5、1、1.5、2、2.5或3;且 X為鹽酸、對甲苯磺酸、甲烷磺酸、萘-1,5-二磺酸或2-萘磺酸。
一般熟習此項技術者應瞭解,表示為「X」之酸部分與(S)-N-(3-(2-氯-5-氟苯基)-6-(5-氰基-[1,2,4]三唑并[1,5-a]吡啶-6-基)-1-側氧基異吲哚啉-4-基)-3-氟-5-(三氟甲基)苯甲醯胺離子鍵結形成式(II)化合物。亦應瞭解,當q為0時,X不存在,表明式(II)化合物以「游離鹼」形式,亦即「游離形式」存在。
經考慮,式(II)化合物可以多種物理形式存在。舉例而言,式(II)化合物可呈溶液、懸浮液或固體形式。在某些實施例中,式(II)化合物呈固體形式。當式(II)化合物呈固體形式時,該化合物可為非晶形、結晶或其混合物。例示性固體形式更詳細地描述於下文中。
在一些實施例中,式(II)化合物為無水物。在一些實施例中,式(II)化合物可呈水合物形式。在一些實施例中,式(II)化合物可呈半水合物形式。
在一些實施例中,p為1。在一些實施例中,p為2。在一些實施例中,p為3。在一些實施例中,p為4。在一些實施例中,p為5。在一些實施例中,p為6。在一些實施例中,p為7。在一些實施例中,p為8。在一些實施例中,p為9。
在一些實施例中,q為0。在一些實施例中,q為1。在一些實施例中,q為2。在一些實施例中,q為3。在一些實施例中,q為0.5。在一些實施例中,q為1.5。在一些實施例中,q為2.5。
在一些實施例中,X為鹽酸。在一些實施例中,X為對甲苯磺酸。在一些實施例中,X為甲烷磺酸。在一些實施例中,X為萘-1,5-二磺酸。在一些實施例中,X為2-萘磺酸。
在一些實施例中,本發明提供一種基本上不含雜質之化合物(II)形式。如本文所用,術語「基本上不含雜質」意謂化合物不含顯著量之異物。此類異物可包括化合物( II)之不同形式、殘餘溶劑或任何其他可能由化合物( II)之製備及/或分離產生之雜質。
在一些實施例中,式(II)化合物或其溶劑合物或其結晶形式係以至少約95、95.5、96、96.5、97、97.5、98.0、98.5、99、99.1、99.2、99.3、99.4、99.5、99.6、99.7、99.8、99.9重量%之量存在,其中百分比係以組合物之總重量計。在一些實施例中,式(II)化合物或其溶劑合物或其結晶形式含有不超過約0.40、不超過約0.35、不超過約0.3、不超過約0.25、不超過約0.2、不超過約0.15、不超過約0.10或不超過約0.05重量%之任何單一雜質,其中百分比係以組合物之總重量計。在一些實施例中,雜質係選自本文實例中所描述之彼等雜質。
在一些實施例中,式(II)化合物或其溶劑合物或其結晶形式係以相對於HPLC層析圖之總面積的至少約95、95.5、96、96.5、97、97.5、98.0、98.5、99、99.1、99.2、99.3、99.4、99.5、99.6、99.7、99.8、99.9面積百分比(根據HPLC)之量存在。在一些實施例中,相對於HPLC層析圖之總面積,式(II)化合物或其溶劑合物或其結晶形式含有不超過約0.4、不超過約0.35、不超過約0.3、不超過約0.25、不超過約0.2、不超過約0.15、不超過約0.10或不超過約0.05面積百分比HPLC之任何單一雜質。在一些實施例中,雜質係選自本文實例中所描述之彼等雜質。在一些實施例中,HPLC方法係選自本文實例中所描述之HPLC方法。
針對式(II)化合物描繪之結構亦意欲包括所有互變異構形式。另外,本文中所描繪之結構亦意欲包括僅在存在一或多個經同位素增濃原子方面不同之化合物。舉例而言,除了氫經氘或氚置換或碳經 13C或 14C增濃碳置換之外具有本發明結構之化合物在本發明之範疇內。 化合物 II-1
在一些實施例中,式(II)化合物為化合物II-1,其為游離鹼(或「游離形式」), 或其溶劑合物。
在一些實施例中,化合物(II-1)為非晶形固體。在一些實施例中,化合物(II-1)為結晶固體。在一些實施例中,化合物(II-1)為非晶形固體形式及結晶固體形式之混合物。
在一些實施例中,本發明提供一種基本上不含雜質之化合物II-1形式。如本文所用,術語「基本上不含雜質」意謂化合物不含顯著量之異物。此類異物可包括化合物 II-1之不同形式、殘餘溶劑或任何其他可能由化合物 II-1之製備及/或分離產生之雜質。
在一些實施例中,化合物 II-1或其溶劑合物或其結晶形式係以至少約95、95.5、96、96.5、97、97.5、98.0、98.5、99、99.1、99.2、99.3、99.4、99.5、99.6、99.7、99.8、99.9重量百分比之量存在,其中百分比係以組合物之總重量計。在一些實施例中,化合物 II-1或其溶劑合物或其結晶形式含有不超過約0.40、不超過約0.35、不超過約0.3、不超過約0.25、不超過約0.2、不超過約0.15、不超過約0.10或不超過約0.05重量%之任何單一雜質,其中百分比係以組合物之總重量計。在一些實施例中,雜質係選自本文實例中所描述之彼等雜質。
在一些實施例中,化合物 II-1或其溶劑合物或其結晶形式係以相對於HPLC層析圖之總面積的至少約95、95.5、96、96.5、97、97.5、98.0、98.5、99、99.1、99.2、99.3、99.4、99.5、99.6、99.7、99.8、99.9面積百分比(根據HPLC)之量存在。在一些實施例中,相對於HPLC層析圖之總面積,化合物 II-1或其溶劑合物或其結晶形式含有不超過約0.4、不超過約0.35、不超過約0.3、不超過約0.25、不超過約0.2、不超過約0.15、不超過約0.10或不超過約0.05面積百分比HPLC之任何單一雜質。在一些實施例中,雜質係選自本文實例中所描述之彼等雜質。在一些實施例中,HPLC方法係選自本文實例中所描述之HPLC方法。
關於化合物 II-1所描繪之結構亦意欲包括化合物 II-1之所有互變異構形式。另外,本文中所描繪之結構亦意欲包括僅在存在一或多個經同位素增濃原子方面不同之化合物。舉例而言,除了氫經氘或氚置換或碳經 13C或 14C增濃碳置換之外具有本發明結構之化合物在本發明之範疇內。
在其他實施例中,化合物(II-1)為實質上不含非晶形化合物(II-1)之結晶固體。如本文所用,術語「基本上不含非晶形化合物(II-1)」意謂該化合物不含顯著量之非晶形化合物(II-1)。在某些實施例中,存在至少約95重量%之結晶化合物(II-1)。在某些實施例中,存在至少約99重量%之結晶化合物(II-1)。
已發現,化合物( II-1 )可以多種固體形式存在。例示性之此類形式包括多晶型,諸如本文所描述之彼等多晶型。
在一些實施例中,化合物(II-1)之固體結晶形式為形式A。在一些實施例中,化合物(II-1)之形式A的X射線繞射圖與圖10中所描繪的基本上類似。
在一些實施例中,化合物(II-1)之固體結晶形式為形式B。在一些實施例中,化合物(II-1)之形式B之X射線繞射圖與圖11中所描繪的基本上類似。
在一些實施例中,化合物(II-1)之固體結晶形式為形式C。在一些實施例中,化合物(II-1)之形式C之X射線繞射圖與圖12中所描繪的基本上類似。 化合物 II-2
在一些實施例中,式(II)化合物為化合物II-2: 或其溶劑合物。
在一些實施例中,化合物II-2為無水固體。
在一些實施例中,化合物II-2為非晶形固體。在其他實施例中,化合物II-2為結晶固體。在一些實施例中,化合物II-2為非晶形固體形式及結晶固體形式之混合物。
在一些實施例中,本發明提供一種基本上不含雜質之化合物II-2形式。如本文所用,術語「基本上不含雜質」意謂化合物不含顯著量之異物。此類異物可包括化合物 II-2之不同形式、殘餘溶劑或任何其他可能由化合物 II-2之製備及/或分離產生之雜質。
在一些實施例中,化合物II-2或其溶劑合物或其結晶形式係以至少約95、95.5、96、96.5、97、97.5、98.0、98.5、99、99.1、99.2、99.3、99.4、99.5、99.6、99.7、99.8、99.9重量百分比之量存在,其中百分比係以組合物之總重量計。在一些實施例中,化合物II-2或其溶劑合物或其結晶形式含有不超過約0.40、不超過約0.35、不超過約0.3、不超過約0.25、不超過約0.2、不超過約0.15、不超過約0.10或不超過約0.05重量%之任何單一雜質,其中百分比係以組合物之總重量計。在一些實施例中,雜質係選自本文實例中所描述之彼等雜質。
在一些實施例中,化合物II-2或其溶劑合物或其結晶形式係以相對於HPLC層析圖之總面積的至少約95、95.5、96、96.5、97、97.5、98.0、98.5、99、99.1、99.2、99.3、99.4、99.5、99.6、99.7、99.8、99.9面積百分比(根據HPLC)之量存在。在一些實施例中,相對於HPLC層析圖之總面積,化合物II-2或其溶劑合物或其結晶形式含有不超過約0.4、不超過約0.35、不超過約0.3、不超過約0.25、不超過約0.2、不超過約0.15、不超過約0.10或不超過約0.05面積百分比HPLC之任何單一雜質。在一些實施例中,雜質係選自本文實例中所描述之彼等雜質。在一些實施例中,HPLC方法係選自本文實例中所描述之HPLC方法。
關於化合物 II-2所描繪之結構亦意欲包括化合物 II-2之所有互變異構形式。另外,本文中所描繪之結構亦意欲包括僅在存在一或多個經同位素增濃原子方面不同之化合物。舉例而言,除了氫經氘或氚置換或碳經 13C或 14C增濃碳置換之外具有本發明結構之化合物在本發明之範疇內。
在某些實施例中,化合物 II-2為結晶固體。在其他實施例中,化合物 II-2為基本上不含非晶形化合物 II-2之結晶固體。如本文所用,術語「基本上不含非晶形化合物 II-2」意謂該化合物不含顯著量之非晶形化合物 II-2。在某些實施例中,存在至少約95重量%之結晶化合物 II-2。在本發明之其他實施例中,存在至少約99重量%之結晶化合物 II-2化合物 II-3
在一些實施例中,式(II)化合物為化合物II-3: II-3 或其溶劑合物。
在一些實施例中,化合物II-3為無水固體。
在一些實施例中,化合物II-3為非晶形固體。在其他實施例中,化合物II-3為結晶固體。在一些實施例中,化合物II-3為非晶形固體形式及結晶固體形式之混合物。
在一些實施例中,本發明提供一種基本上不含雜質之化合物II-3形式。如本文所用,術語「基本上不含雜質」意謂化合物不含顯著量之異物。此類異物可包括化合物 II-3之不同形式、殘餘溶劑或任何其他可能由化合物 II-3之製備及/或分離產生之雜質。
在一些實施例中,化合物II-3或其溶劑合物或其結晶形式係以至少約95、95.5、96、96.5、97、97.5、98.0、98.5、99、99.1、99.2、99.3、99.4、99.5、99.6、99.7、99.8、99.9重量百分比之量存在,其中百分比係以組合物之總重量計。在一些實施例中,化合物II-3或其溶劑合物或其結晶形式含有不超過約0.40、不超過約0.35、不超過約0.3、不超過約0.25、不超過約0.2、不超過約0.15、不超過約0.10或不超過約0.05重量%之任何單一雜質,其中百分比係以組合物之總重量計。在一些實施例中,雜質係選自本文實例中所描述之彼等雜質。
在一些實施例中,化合物II-3或其溶劑合物或其結晶形式係以相對於HPLC層析圖之總面積的至少約95、95.5、96、96.5、97、97.5、98.0、98.5、99、99.1、99.2、99.3、99.4、99.5、99.6、99.7、99.8、99.9面積百分比(根據HPLC)之量存在。在一些實施例中,相對於HPLC層析圖之總面積,化合物II-3或其溶劑合物或其結晶形式含有不超過約0.4、不超過約0.35、不超過約0.3、不超過約0.25、不超過約0.2、不超過約0.15、不超過約0.10或不超過約0.05面積百分比HPLC之任何單一雜質。在一些實施例中,雜質係選自本文實例中所描述之彼等雜質。在一些實施例中,HPLC方法係選自本文實例中所描述之HPLC方法。
關於化合物 II-3所描繪之結構亦意欲包括化合物 II-3之所有互變異構形式。另外,本文中所描繪之結構亦意欲包括僅在存在一或多個經同位素增濃原子方面不同之化合物。舉例而言,除了氫經氘或氚置換或碳經 13C或 14C增濃碳置換之外具有本發明結構之化合物在本發明之範疇內。
在某些實施例中,化合物 II-3為結晶固體。在其他實施例中,化合物 II-3為基本上不含非晶形化合物 II-3之結晶固體。如本文所用,術語「基本上不含非晶形化合物 II-3」意謂該化合物不含顯著量之非晶形化合物 II-3。在某些實施例中,存在至少約95重量%之結晶化合物 II-3。在本發明之其他實施例中,存在至少約99重量%之結晶化合物 II-3化合物 II-4
在一些實施例中,式(II)化合物為化合物II-4: II-4 或其溶劑合物。
在一些實施例中,化合物II-4為無水固體。
在一些實施例中,化合物II-4為非晶形固體。在其他實施例中,化合物II-4為結晶固體。在一些實施例中,化合物II-4為非晶形固體形式及結晶固體形式之混合物。
在一些實施例中,本發明提供一種基本上不含雜質之化合物II-4形式。如本文所用,術語「基本上不含雜質」意謂化合物不含顯著量之異物。此類異物可包括化合物 II-4之不同形式、殘餘溶劑或任何其他可能由化合物 II-4之製備及/或分離產生之雜質。
在一些實施例中,化合物II-4或其溶劑合物或其結晶形式係以至少約95、95.5、96、96.5、97、97.5、98.0、98.5、99、99.1、99.2、99.3、99.4、99.5、99.6、99.7、99.8、99.9重量百分比之量存在,其中百分比係以組合物之總重量計。在一些實施例中,化合物II-4或其溶劑合物或其結晶形式含有不超過約0.40、不超過約0.35、不超過約0.3、不超過約0.25、不超過約0.2、不超過約0.15、不超過約0.10或不超過約0.05重量%之任何單一雜質,其中百分比係以組合物之總重量計。在一些實施例中,雜質係選自本文實例中所描述之彼等雜質。
在一些實施例中,化合物II-4或其溶劑合物或其結晶形式係以相對於HPLC層析圖之總面積的至少約95、95.5、96、96.5、97、97.5、98.0、98.5、99、99.1、99.2、99.3、99.4、99.5、99.6、99.7、99.8、99.9面積百分比(根據HPLC)之量存在。在一些實施例中,相對於HPLC層析圖之總面積,化合物II-4或其溶劑合物或其結晶形式含有不超過約0.4、不超過約0.35、不超過約0.3、不超過約0.25、不超過約0.2、不超過約0.15、不超過約0.10或不超過約0.05面積百分比HPLC之任何單一雜質。在一些實施例中,雜質係選自本文實例中所描述之彼等雜質。在一些實施例中,HPLC方法係選自本文實例中所描述之HPLC方法。
關於化合物 II-4所描繪之結構亦意欲包括化合物 II-4之所有互變異構形式。另外,本文中所描繪之結構亦意欲包括僅在存在一或多個經同位素增濃原子方面不同之化合物。舉例而言,除了氫經氘或氚置換或碳經 13C或 14C增濃碳置換之外具有本發明結構之化合物在本發明之範疇內。
在某些實施例中,化合物 II-4為結晶固體。在其他實施例中,化合物 II-4為基本上不含非晶形化合物 II-4之結晶固體。如本文所用,術語「基本上不含非晶形化合物 II-4」意謂該化合物不含顯著量之非晶形化合物 II-4。在某些實施例中,存在至少約95重量%之結晶化合物 II-4。在本發明之其他實施例中,存在至少約99重量%之結晶化合物 II-4化合物 II-5
在一些實施例中,式(II)化合物為化合物II-5: II-5, 或其溶劑合物。
在一些實施例中,化合物II-5為無水固體。
在一些實施例中,化合物II-5為非晶形固體。在其他實施例中,化合物II-5為結晶固體。在一些實施例中,化合物II-5為非晶形固體形式及結晶固體形式之混合物。
在一些實施例中,本發明提供一種基本上不含雜質之化合物II-5形式。如本文所用,術語「基本上不含雜質」意謂化合物不含顯著量之異物。此類異物可包括化合物 II-5之不同形式、殘餘溶劑或任何其他可能由化合物 II-5之製備及/或分離產生之雜質。
在一些實施例中,化合物II-5或其溶劑合物或其結晶形式係以至少約95、95.5、96、96.5、97、97.5、98.0、98.5、99、99.1、99.2、99.3、99.4、99.5、99.6、99.7、99.8、99.9重量百分比之量存在,其中百分比係以組合物之總重量計。在一些實施例中,化合物II-5或其溶劑合物或其結晶形式含有不超過約0.40、不超過約0.35、不超過約0.3、不超過約0.25、不超過約0.2、不超過約0.15、不超過約0.10或不超過約0.05重量%之任何單一雜質,其中百分比係以組合物之總重量計。在一些實施例中,雜質係選自本文實例中所描述之彼等雜質。
在一些實施例中,化合物II-5或其溶劑合物或其結晶形式係以相對於HPLC層析圖之總面積的至少約95、95.5、96、96.5、97、97.5、98.0、98.5、99、99.1、99.2、99.3、99.4、99.5、99.6、99.7、99.8、99.9面積百分比(根據HPLC)之量存在。在一些實施例中,相對於HPLC層析圖之總面積,化合物II-5或其溶劑合物或其結晶形式含有不超過約0.4、不超過約0.35、不超過約0.3、不超過約0.25、不超過約0.2、不超過約0.15、不超過約0.10或不超過約0.05面積百分比HPLC之任何單一雜質。在一些實施例中,雜質係選自本文實例中所描述之彼等雜質。在一些實施例中,HPLC方法係選自本文實例中所描述之HPLC方法。
關於化合物 II-5所描繪之結構亦意欲包括化合物 II-5之所有互變異構形式。另外,本文中所描繪之結構亦意欲包括僅在存在一或多個經同位素增濃原子方面不同之化合物。舉例而言,除了氫經氘或氚置換或碳經 13C或 14C增濃碳置換之外具有本發明結構之化合物在本發明之範疇內。
在某些實施例中,化合物 II-5為結晶固體。在其他實施例中,化合物 II-5為基本上不含非晶形化合物 II-5之結晶固體。如本文所用,術語「基本上不含非晶形化合物 II-5」意謂該化合物不含顯著量之非晶形化合物 II-5。在某些實施例中,存在至少約95重量%之結晶化合物 II-5。在本發明之其他實施例中,存在至少約99重量%之結晶化合物 II-5化合物 II-6
在一些實施例中,式(II)化合物為化合物II-6: II-6 或其溶劑合物。
在一些實施例中,化合物II-6為無水固體。
在一些實施例中,化合物II-6為非晶形固體。在其他實施例中,化合物II-6為結晶固體。在一些實施例中,化合物II-6為非晶形固體形式及結晶固體形式之混合物。
在一些實施例中,本發明提供一種基本上不含雜質之化合物II-6形式。如本文所用,術語「基本上不含雜質」意謂化合物不含顯著量之異物。此類異物可包括化合物 II-6之不同形式、殘餘溶劑或任何其他可能由化合物 II-6之製備及/或分離產生之雜質。
在一些實施例中,化合物II-6或其溶劑合物或其結晶形式係以至少約95、95.5、96、96.5、97、97.5、98.0、98.5、99、99.1、99.2、99.3、99.4、99.5、99.6、99.7、99.8、99.9重量百分比之量存在,其中百分比係以組合物之總重量計。在一些實施例中,化合物II-6或其溶劑合物或其結晶形式含有不超過約0.40、不超過約0.35、不超過約0.3、不超過約0.25、不超過約0.2、不超過約0.15、不超過約0.10或不超過約0.05重量%之任何單一雜質,其中百分比係以組合物之總重量計。在一些實施例中,雜質係選自本文實例中所描述之彼等雜質。
在一些實施例中,化合物II-6或其溶劑合物或其結晶形式係以相對於HPLC層析圖之總面積的至少約95、95.5、96、96.5、97、97.5、98.0、98.5、99、99.1、99.2、99.3、99.4、99.5、99.6、99.7、99.8、99.9面積百分比(根據HPLC)之量存在。在一些實施例中,相對於HPLC層析圖之總面積,化合物II-6或其溶劑合物或其結晶形式含有不超過約0.4、不超過約0.35、不超過約0.3、不超過約0.25、不超過約0.2、不超過約0.15、不超過約0.10或不超過約0.05面積百分比HPLC之任何單一雜質。在一些實施例中,雜質係選自本文實例中所描述之彼等雜質。在一些實施例中,HPLC方法係選自本文實例中所描述之HPLC方法。
關於化合物 II-6所描繪之結構亦意欲包括化合物 II-6之所有互變異構形式。另外,本文中所描繪之結構亦意欲包括僅在存在一或多個經同位素增濃原子方面不同之化合物。舉例而言,除了氫經氘或氚置換或碳經 13C或 14C增濃碳置換之外具有本發明結構之化合物在本發明之範疇內。
在某些實施例中,化合物 II-6為結晶固體。在其他實施例中,化合物 II-6為基本上不含非晶形化合物 II-6之結晶固體。如本文所用,術語「基本上不含非晶形化合物 II-6」意謂該化合物不含顯著量之非晶形化合物 II-6。在某些實施例中,存在至少約95重量%之結晶化合物 II-6。在本發明之其他實施例中,存在至少約99重量%之結晶化合物 II-6 (III) 化合物
在一些實施例中,本文提供一種式(III)化合物 , 或其溶劑合物, 其中: r為1、2、3、4、5、6、7、8或9; s為0、0.5、1、1.5、2、2.5或3;且 X為鹽酸、對甲苯磺酸、甲烷磺酸、萘-1,5-二磺酸或2-萘磺酸。
一般熟習此項技術者應瞭解,表示為「X」之酸部分與N-(3-(2-氯-5-氟苯基)-6-(5-氰基-[1,2,4]三唑并[1,5-a]吡啶-6-基)-1-側氧基異吲哚啉-4-基)-3-氟-5-(三氟甲基)苯甲醯胺離子鍵結形成式(III)化合物。亦應瞭解,當n為0時,X不存在,表明式(III)化合物以「游離鹼」形式,亦即「游離形式」存在。
經考慮,式(III)化合物可以多種物理形式存在。舉例而言,式(III)化合物可呈溶液、懸浮液或固體形式。在某些實施例中,式(III)化合物呈固體形式。當式(III)化合物呈固體形式時,該化合物可為非晶形、結晶或其混合物。例示性固體形式更詳細地描述於下文中。
在一些實施例中,式(III)化合物為無水物。在一些實施例中,式(III)化合物可呈水合物形式。在一些實施例中,式(III)化合物可呈半水合物形式。
在一些實施例中,r為1。在一些實施例中,r為2。在一些實施例中,r為3。在一些實施例中,r為4。在一些實施例中,r為5。在一些實施例中,r為6。在一些實施例中,r為7。在一些實施例中,r為8。在一些實施例中,r為9。
在一些實施例中,s為0。在一些實施例中,s為1。在一些實施例中,s為2。在一些實施例中,s為3。在一些實施例中,s為0.5。在一些實施例中,s為1.5。在一些實施例中,s為2.5。
在一些實施例中,X為鹽酸。在一些實施例中,X為對甲苯磺酸。在一些實施例中,X為甲烷磺酸。在一些實施例中,X為萘-1,5-二磺酸。在一些實施例中,X為2-萘磺酸。
在一些實施例中,本發明提供一種基本上不含雜質之化合物(III)形式。如本文所用,術語「基本上不含雜質」意謂化合物不含顯著量之異物。此類異物可包括化合物(III)之不同形式、殘餘溶劑或任何其他可能由化合物(III)之製備及/或分離產生之雜質。
在一些實施例中,式(III)化合物或其溶劑合物或其結晶形式係以至少約95、95.5、96、96.5、97、97.5、98.0、98.5、99、99.1、99.2、99.3、99.4、99.5、99.6、99.7、99.8、99.9重量%之量存在,其中百分比係以組合物之總重量計。在一些實施例中,式(III)化合物或其溶劑合物或其結晶形式含有不超過約0.40、不超過約0.35、不超過約0.3、不超過約0.25、不超過約0.2、不超過約0.15、不超過約0.10或不超過約0.05重量%之任何單一雜質,其中百分比係以組合物之總重量計。在一些實施例中,雜質係選自本文實例中所描述之彼等雜質。
在一些實施例中,式(III)化合物或其溶劑合物或其結晶形式係以相對於HPLC層析圖之總面積的至少約95、95.5、96、96.5、97、97.5、98.0、98.5、99、99.1、99.2、99.3、99.4、99.5、99.6、99.7、99.8、99.9面積百分比(根據HPLC)之量存在。在一些實施例中,相對於HPLC層析圖之總面積,式(III)化合物或其溶劑合物或其結晶形式含有不超過約0.4、不超過約0.35、不超過約0.3、不超過約0.25、不超過約0.2、不超過約0.15、不超過約0.10或不超過約0.05面積百分比HPLC之任何單一雜質。在一些實施例中,雜質係選自本文實例中所描述之彼等雜質。在一些實施例中,HPLC方法係選自本文實例中所描述之HPLC方法。
針對式(III)化合物描繪之結構亦意欲包括所有互變異構形式。另外,本文中所描繪之結構亦意欲包括僅在存在一或多個經同位素增濃原子方面不同之化合物。舉例而言,除了氫經氘或氚置換或碳經 13C或 14C增濃碳置換之外具有本發明結構之化合物在本發明之範疇內。 化合物 III-1
在一些實施例中,式(III)化合物為化合物III-1,其為游離鹼(或「游離形式」), , 或其溶劑合物。
在一些實施例中,化合物(III-1)為非晶形固體。在一些實施例中,化合物(III-1)為結晶固體。在一些實施例中,化合物(III-1)為非晶形固體形式及結晶固體形式之混合物。
在一些實施例中,本發明提供一種基本上不含雜質之化合物III-1形式。如本文所用,術語「基本上不含雜質」意謂化合物不含顯著量之異物。此類異物可包括化合物 III-1之不同形式、殘餘溶劑或任何其他可能由化合物 III-1之製備及/或分離產生之雜質。
在一些實施例中,化合物 III-1或其溶劑合物或其結晶形式係以至少約95、95.5、96、96.5、97、97.5、98.0、98.5、99、99.1、99.2、99.3、99.4、99.5、99.6、99.7、99.8、99.9重量百分比之量存在,其中百分比係以組合物之總重量計。在一些實施例中,化合物 III-1或其溶劑合物或其結晶形式含有不超過約0.40、不超過約0.35、不超過約0.3、不超過約0.25、不超過約0.2、不超過約0.15、不超過約0.10或不超過約0.05重量%之任何單一雜質,其中百分比係以組合物之總重量計。在一些實施例中,雜質係選自本文實例中所描述之彼等雜質。
在一些實施例中,化合物 III-1或其溶劑合物或其結晶形式係以相對於HPLC層析圖之總面積的至少約95、95.5、96、96.5、97、97.5、98.0、98.5、99、99.1、99.2、99.3、99.4、99.5、99.6、99.7、99.8、99.9面積百分比(根據HPLC)之量存在。在一些實施例中,相對於HPLC層析圖之總面積,化合物 III-1或其溶劑合物或其結晶形式含有不超過約0.4、不超過約0.35、不超過約0.3、不超過約0.25、不超過約0.2、不超過約0.15、不超過約0.10或不超過約0.05面積百分比HPLC之任何單一雜質。在一些實施例中,雜質係選自本文實例中所描述之彼等雜質。在一些實施例中,HPLC方法係選自本文實例中所描述之HPLC方法。
關於化合物 III-1所描繪之結構亦意欲包括化合物 III-1之所有互變異構形式。另外,本文中所描繪之結構亦意欲包括僅在存在一或多個經同位素增濃原子方面不同之化合物。舉例而言,除了氫經氘或氚置換或碳經 13C或 14C增濃碳置換之外具有本發明結構之化合物在本發明之範疇內。
在其他實施例中,化合物(III-1)為基本上不含非晶形化合物(III-1)之結晶固體。如本文所用,術語「基本上不含非晶形化合物(III-1)」意謂該化合物不含顯著量之非晶形化合物(III-1)。在某些實施例中,存在至少約95重量%之結晶化合物(III-1)。在某些實施例中,存在至少約99重量%之結晶化合物(III-1)。
已發現,化合物( III-1)可以多種固體形式存在。例示性之此類形式包括多晶型,諸如本文所描述之彼等多晶型。
在一些實施例中,化合物(III-1)之固體結晶形式為形式A。在一些實施例中,化合物( III-1)之形式A可以具有至少兩個2θ度之特徵峰的粉末X射線繞射圖為特徵,該等特徵峰各選自由約18.4 2θ、約12.0 2θ及約6.5 2θ組成之群。在一些實施例中,化合物( III-1)之形式A可以具有至少兩個2θ度之特徵峰的粉末X射線繞射圖為特徵,該等特徵峰各選自由約18.4 2θ、約12.0 2θ、約6.5 2θ、約22.1 2θ、約19.9 2θ、約13.9 2θ及約14.9 2θ組成之群。在一些實施例中,化合物( III-1)之形式A可以具有至少三個2θ度之特徵峰的粉末X射線繞射圖為特徵,該等特徵峰各選自由約18.4 2θ、約12.0 2θ、約6.5 2θ、約22.1 2θ、約19.9 2θ、約13.9 2θ及約14.9 2θ組成之群。在一些實施例中,化合物( III-1)之形式A可以具有至少四個2θ度之特徵峰的粉末X射線繞射圖為特徵,該等特徵峰各選自由約18.4 2θ、約12.0 2θ、約6.5 2θ、約22.1 2θ、約19.9 2θ、約13.9 2θ及約14.9 2θ組成之群。在一些實施例中,化合物( III-1)之形式A可以具有至少五個2θ度之特徵峰的粉末X射線繞射圖為特徵,該等特徵峰各選自由約18.4 2θ、約12.0 2θ、約6.5 2θ、約22.1 2θ、約19.9 2θ、約13.9 2θ及約14.9 2θ組成之群。在一些實施例中,化合物( III-1)之形式A可以具有至少六個2θ度之特徵峰的粉末X射線繞射圖為特徵,該等特徵峰各選自由約18.4 2θ、約12.0 2θ、約6.5 2θ、約22.1 2θ、約19.9 2θ、約13.9 2θ及約14.9 2θ組成之群。在一些實施例中,化合物( III-1)之形式A可以包含約18.4 2θ、約12.0 2θ、約6.5 2θ、約22.1 2θ、約19.9 2θ、約13.9 2θ及約14.9 2θ之特徵峰的粉末X射線繞射圖為特徵。在一些實施例中,化合物( III-1)之形式A的X射線繞射圖與圖4A中所描繪的基本上類似。在一些實施例中,化合物( III-1)之形式A可以具有至少兩個2θ度之特徵峰的粉末X射線繞射圖為特徵,該等特徵峰各選自由表3.1中所列之峰組成之群。在一些實施例中,化合物( III-1)之形式A可以具有至少三個2θ度之特徵峰的粉末X射線繞射圖為特徵,該等特徵峰各選自由表3.1中所列之峰組成之群。在一些實施例中,化合物( III-1)之形式A可以具有至少四個2θ度之特徵峰的粉末X射線繞射圖為特徵,該等特徵峰各選自由表3.1中所列之峰組成之群。在一些實施例中,化合物( III-1)之形式A可以具有至少五個2θ度之特徵峰的粉末X射線繞射圖為特徵,該等特徵峰各選自由表3.1中所列之峰組成之群。在一些實施例中,化合物( III-1)之形式A可以具有至少六個2θ度之特徵峰的粉末X射線繞射圖為特徵,該等特徵峰各選自由表3.1中所列之峰組成之群。在一些實施例中,化合物( III-1)之形式A可以具有至少七個2θ度之特徵峰的粉末X射線繞射圖為特徵,該等特徵峰各選自由表3.1中所列之峰組成之群。 表3.1 III-1形式A XRPD峰清單(角度2θ在±0.2內)。
索引 角度 d值 相對強度
1 35.338 2.53791 1.50%
2 37.411 2.40188 4.00%
3 17.59 5.03807 4.60%
4 38.221 2.35287 5.00%
5 34.898 2.56886 5.10%
6 15.356 5.76543 6.10%
7 5 17.6598 6.60%
8 32.58 2.74614 6.80%
9 32.972 2.7144 7.30%
10 39.428 2.28353 7.30%
11 12.963 6.82386 7.80%
12 36.482 2.46091 8.10%
13 13.628 6.49225 8.40%
14 30.114 2.96521 8.50%
15 31.278 2.85742 8.70%
16 31.934 2.80025 10.60%
17 25.009 3.55771 11.30%
18 5.551 15.9081 12.10%
19 29.575 3.01805 12.50%
20 19.026 4.66089 13.50%
21 37.767 2.38006 14.80%
22 20.79 4.26924 16.10%
23 30.871 2.89423 17.70%
24 20.318 4.36717 17.90%
25 21.577 4.11521 18.00%
26 16.664 5.31564 19.20%
27 22.622 3.92749 19.90%
28 26.23 3.3948 21.00%
29 25.581 3.47943 21.80%
30 24.108 3.68853 22.80%
31 28.078 3.17541 24.20%
32 23.843 3.72902 24.80%
33 30.573 2.92177 25.30%
34 9.645 9.16234 25.40%
35 18.473 4.79908 30.30%
36 23.325 3.81066 33.10%
37 28.6 3.11867 33.50%
38 26.628 3.34491 34.10%
39 24.582 3.61846 35.60%
40 19.462 4.55743 39.10%
41 15.707 5.6374 41.70%
42 14.926 5.93049 48.60%
43 13.879 6.37538 54.10%
44 19.943 4.44849 56.00%
45 22.141 4.01164 57.30%
46 6.501 13.5857 57.70%
47 12.026 7.35361 96.00%
48 18.369 4.82596 100.00%
在一些實施例中,化合物(III-1)之形式A的差示掃描量熱(DSC)圖與圖4B中所描繪的基本上類似。在一些實施例中,化合物(III-1)之形式A的熱重分析(TGA)圖與圖4C中所描繪的基本上類似。在一些實施例中,化合物(III-1)之形式A可以同時與此等圖中之兩者或更多者基本上類似為特徵。
在一些實施例中,化合物(III-1)之固體結晶形式為形式B。在一些實施例中,化合物( III-1)之形式B可以具有至少兩個2θ度之特徵峰的粉末X射線繞射圖為特徵,該等特徵峰各選自由約23.6 2θ、約10.2 2θ及約8.7 2θ組成之群。在一些實施例中,化合物( III-1)之形式B可以具有至少兩個2θ度之特徵峰的粉末X射線繞射圖為特徵,該等特徵峰各選自由約23.6 2θ、約10.2 2θ、約8.7 2θ、約24.4 2θ、約25.4 2θ、約10.9 2θ及約21.2 2θ組成之群。在一些實施例中,化合物( III-1)之形式B可以具有至少三個2θ度之特徵峰的粉末X射線繞射圖為特徵,該等特徵峰各選自由約23.6 2θ、約10.2 2θ、約8.7 2θ、約24.4 2θ、約25.4 2θ、約10.9 2θ及約21.2 2θ組成之群。在一些實施例中,化合物( III-1)之形式B可以具有至少四個2θ度之特徵峰的粉末X射線繞射圖為特徵,該等特徵峰各選自由約23.6 2θ、約10.2 2θ、約8.7 2θ、約24.4 2θ、約25.4 2θ、約10.9 2θ及約21.2 2θ組成之群。在一些實施例中,化合物( III-1)之形式B可以具有至少五個2θ度之特徵峰的粉末X射線繞射圖為特徵,該等特徵峰各選自由約23.6 2θ、約10.2 2θ、約8.7 2θ、約24.4 2θ、約25.4 2θ、約10.9 2θ及約21.2 2θ組成之群。在一些實施例中,化合物( III-1)之形式B可以具有至少六個2θ度之特徵峰的粉末X射線繞射圖為特徵,該等特徵峰各選自由約23.6 2θ、約10.2 2θ、約8.7 2θ、約24.4 2θ、約25.4 2θ、約10.9 2θ及約21.2 2θ組成之群。在一些實施例中,化合物( III-1)之形式B可以包含約23.6 2θ、約10.2 2θ、約8.7 2θ、約24.4 2θ、約25.4 2θ、約10.9 2θ及約21.2 2θ之特徵峰的粉末X射線繞射圖為特徵。在一些實施例中,化合物( III-1)之形式B的X射線繞射圖與圖5A中所描繪的基本上類似。在一些實施例中,化合物( III-1)之形式B可以具有至少兩個2θ度之特徵峰的粉末X射線繞射圖為特徵,該等特徵峰各選自由表3.2中所列之峰組成之群。在一些實施例中,化合物( III-1)之形式B可以具有至少三個2θ度之特徵峰的粉末X射線繞射圖為特徵,該等特徵峰各選自由表3.2中所列之峰組成之群。在一些實施例中,化合物( III-1)之形式B可以具有至少四個2θ度之特徵峰的粉末X射線繞射圖為特徵,該等特徵峰各選自由表3.2中所列之峰組成之群。在一些實施例中,化合物( III-1)之形式B可以具有至少五個2θ度之特徵峰的粉末X射線繞射圖為特徵,該等特徵峰各選自由表3.2中所列之峰組成之群。在一些實施例中,化合物( III-1)之形式B可以具有至少六個2θ度之特徵峰的粉末X射線繞射圖為特徵,該等特徵峰各選自由表3.2中所列之峰組成之群。在一些實施例中,化合物( III-1)之形式B可以具有至少七個2θ度之特徵峰的粉末X射線繞射圖為特徵,該等特徵峰各選自由表3.2中所列之峰組成之群。 表3.2 III-1形式B XRPD峰清單(角度2θ在±0.2內)。
索引 角度 d值 相對強度
1 19.626 4.51962 16.90%
2 7.393 11.9478 21.50%
3 20.413 4.34708 24.10%
4 11.141 7.93525 32.40%
5 18.837 4.70723 32.80%
6 17.494 5.06547 34.80%
7 25.858 3.44282 35.20%
8 28.159 3.16646 37.80%
9 16.528 5.35908 38.10%
10 21.227 4.1822 41.80%
11 10.895 8.11376 57.00%
12 25.383 3.50609 57.20%
13 24.423 3.64174 60.50%
14 8.743 10.1058 72.80%
15 10.207 8.65947 78.30%
16 23.604 3.76618 100.00%
在一些實施例中,化合物(III-1)之形式B的差示掃描量熱(DSC)圖與圖5B中所描繪的基本上類似。
在一些實施例中,化合物(III-1)之固體結晶形式為形式C。在一些實施例中,化合物( III-1)之形式C可以具有至少兩個2θ度之特徵峰的粉末X射線繞射圖為特徵,該等特徵峰各選自由約12.0 2θ、約18.4 2θ及約13.9 2θ組成之群。在一些實施例中,化合物( III-1)之形式C可以具有至少兩個2θ度之特徵峰的粉末X射線繞射圖為特徵,該等特徵峰各選自由約12.0 2θ、約18.4 2θ、約13.9 2θ、約6.5 2θ、約24.1 2θ、約15.7 2θ及約21.4 2θ組成之群。在一些實施例中,化合物( III-1)之形式C可以具有至少三個2θ度之特徵峰的粉末X射線繞射圖為特徵,該等特徵峰各選自由約12.0 2θ、約18.4 2θ、約13.9 2θ、約6.5 2θ、約24.1 2θ、約15.7 2θ及約21.4 2θ組成之群。在一些實施例中,化合物( III-1)之形式C可以具有至少四個2θ度之特徵峰的粉末X射線繞射圖為特徵,該等特徵峰各選自由約12.0 2θ、約18.4 2θ、約13.9 2θ、約6.5 2θ、約24.1 2θ、約15.7 2θ及約21.4 2θ組成之群。在一些實施例中,化合物( III-1)之形式C可以具有至少五個2θ度之特徵峰的粉末X射線繞射圖為特徵,該等特徵峰各選自由約12.0 2θ、約18.4 2θ、約13.9 2θ、約6.5 2θ、約24.1 2θ、約15.7 2θ及約21.4 2θ組成之群。在一些實施例中,化合物( III-1)之形式C可以具有至少六個2θ度之特徵峰的粉末X射線繞射圖為特徵,該等特徵峰各選自由約12.0 2θ、約18.4 2θ、約13.9 2θ、約6.5 2θ、約24.1 2θ、約15.7 2θ及約21.4 2θ組成之群。在一些實施例中,化合物( III-1)之形式C可以包含約12.0 2θ、約18.4 2θ、約13.9 2θ、約6.5 2θ、約24.1 2θ、約15.7 2θ及約21.4 2θ之特徵峰的粉末X射線繞射圖為特徵。在一些實施例中,化合物( III-1)之形式C的X射線繞射圖與圖6A中所描繪的基本上類似。在一些實施例中,化合物( III-1)之形式C可以具有至少兩個2θ度之特徵峰的粉末X射線繞射圖為特徵,該等特徵峰各選自由表3.3中所列之峰組成之群。在一些實施例中,化合物( III-1)之形式C可以具有至少三個2θ度之特徵峰的粉末X射線繞射圖為特徵,該等特徵峰各選自由表3.3中所列之峰組成之群。在一些實施例中,化合物( III-1)之形式C可以具有至少四個2θ度之特徵峰的粉末X射線繞射圖為特徵,該等特徵峰各選自由表3.3中所列之峰組成之群。在一些實施例中,化合物( III-1)之形式C可以具有至少五個2θ度之特徵峰的粉末X射線繞射圖為特徵,該等特徵峰各選自由表3.3中所列之峰組成之群。在一些實施例中,化合物( III-1)之形式C可以具有至少六個2θ度之特徵峰的粉末X射線繞射圖為特徵,該等特徵峰各選自由表3.3中所列之峰組成之群。在一些實施例中,化合物( III-1)之形式C可以具有至少七個2θ度之特徵峰的粉末X射線繞射圖為特徵,該等特徵峰各選自由表3.3中所列之峰組成之群。 表3.3 III-1形式C XRPD峰清單(角度2θ在±0.2內)。
索引 角度 d值 相對強度
1 17.638 5.02447 4.50%
2 4.99 17.6946 5.60%
3 32.605 2.74414 5.60%
4 35.249 2.54411 5.60%
5 25.29 3.51885 6.30%
6 31.715 2.81905 6.40%
7 3.702 23.8473 6.50%
8 13.14 6.73242 7.00%
9 23.023 3.85997 7.00%
10 36.208 2.4789 7.40%
11 19.041 4.65715 7.90%
12 36.46 2.46233 8.00%
13 12.567 7.03831 8.10%
14 3.434 25.7095 8.30%
15 30 2.97617 8.70%
16 25.596 3.47739 9.30%
17 33.052 2.70805 10.40%
18 29.63 3.01252 11.20%
19 30.853 2.89585 11.20%
20 12.955 6.82806 11.40%
21 31.268 2.85834 11.50%
22 37.739 2.38177 12.40%
23 31.885 2.80444 12.50%
24 16.941 5.2296 14.00%
25 28.099 3.17305 14.30%
26 11.035 8.01143 14.70%
27 30.586 2.92052 15.50%
28 19.306 4.59384 16.80%
29 20.472 4.33477 21.30%
30 23.331 3.80963 22.60%
31 21.561 4.11829 24.70%
32 23.827 3.73145 24.70%
33 26.62 3.34588 25.60%
34 26.212 3.39711 25.80%
35 11.376 7.77233 30.30%
36 9.653 9.15503 32.20%
37 20.308 4.36946 33.00%
38 19.918 4.45405 36.40%
39 28.6 3.11869 37.10%
40 22.106 4.01786 43.10%
41 24.562 3.62145 43.60%
42 19.446 4.56114 46.10%
43 14.92 5.93293 49.60%
44 21.384 4.15193 52.30%
45 15.696 5.64143 57.20%
46 24.075 3.69356 57.70%
47 6.494 13.5988 58.60%
48 13.878 6.37616 67.20%
49 18.369 4.82605 86.10%
50 12.02 7.35722 100.00%
在一些實施例中,化合物(III-1)之形式C的差示掃描量熱(DSC)圖與圖6B中所描繪的基本上類似。在一些實施例中,化合物(III-1)之形式C的熱重分析(TGA)圖與圖6C中所描繪的基本上類似。在一些實施例中,化合物(III-1)之形式C可以同時與此等圖中之兩者或更多者基本上類似為特徵。
在一些實施例中,化合物(III-1)之固體結晶形式為形式D。在一些實施例中,化合物( III-1)之形式D可以具有至少兩個2θ度之特徵峰的粉末X射線繞射圖為特徵,該等特徵峰各選自由約12.0 2θ、約18.3 2θ及約6.5 2θ組成之群。在一些實施例中,化合物( III-1)之形式D可以具有至少兩個2θ度之特徵峰的粉末X射線繞射圖為特徵,該等特徵峰各選自由約12.0 2θ、約18.3 2θ、約6.5 2θ、約19.4 2θ、約22.1 2θ、約15.7 2θ及約26.6 2θ組成之群。在一些實施例中,化合物( III-1)之形式D可以具有至少三個2θ度之特徵峰的粉末X射線繞射圖為特徵,該等特徵峰各選自由約12.0 2θ、約18.3 2θ、約6.5 2θ、約19.4 2θ、約22.1 2θ、約15.7 2θ及約26.6 2θ組成之群。在一些實施例中,化合物( III-1)之形式D可以具有至少四個2θ度之特徵峰的粉末X射線繞射圖為特徵,該等特徵峰各選自由約12.0 2θ、約18.3 2θ、約6.5 2θ、約19.4 2θ、約22.1 2θ、約15.7 2θ及約26.6 2θ組成之群。在一些實施例中,化合物( III-1)之形式D可以具有至少五個2θ度之特徵峰的粉末X射線繞射圖為特徵,該等特徵峰各選自由約12.0 2θ、約18.3 2θ、約6.5 2θ、約19.4 2θ、約22.1 2θ、約15.7 2θ及約26.6 2θ組成之群。在一些實施例中,化合物( III-1)之形式D可以具有至少六個2θ度之特徵峰的粉末X射線繞射圖為特徵,該等特徵峰各選自由約12.0 2θ、約18.3 2θ、約6.5 2θ、約19.4 2θ、約22.1 2θ、約15.7 2θ及約26.6 2θ組成之群。在一些實施例中,化合物( III-1)之形式D可以包含約12.0 2θ、約18.3 2θ、約6.5 2θ、約19.4 2θ、約22.1 2θ、約15.7 2θ及約26.6 2θ之特徵峰的粉末X射線繞射圖為特徵。在一些實施例中,化合物( III-1)之形式D的X射線繞射圖與圖7A中所描繪者基本上類似。在一些實施例中,化合物( III-1)之形式D可以具有至少兩個2θ度之特徵峰的粉末X射線繞射圖為特徵,該等特徵峰各選自由表3.4中所列之峰組成之群。在一些實施例中,化合物( III-1)之形式D可以具有至少三個2θ度之特徵峰的粉末X射線繞射圖為特徵,該等特徵峰各選自由表3.4中所列之峰組成之群。在一些實施例中,化合物( III-1)之形式D可以具有至少四個2θ度之特徵峰的粉末X射線繞射圖為特徵,該等特徵峰各選自由表3.4中所列之峰組成之群。在一些實施例中,化合物( III-1)之形式D可以具有至少五個2θ度之特徵峰的粉末X射線繞射圖為特徵,該等特徵峰各選自由表3.4中所列之峰組成之群。在一些實施例中,化合物( III-1)之形式D可以具有至少六個2θ度之特徵峰的粉末X射線繞射圖為特徵,該等特徵峰各選自由表3.4中所列之峰組成之群。在一些實施例中,化合物( III-1)之形式D可以具有至少七個2θ度之特徵峰的粉末X射線繞射圖為特徵,該等特徵峰各選自由表3.4中所列之峰組成之群。 表3.4 III-1形式D XRPD峰清單(角度2θ在±0.2內)。
索引 角度 d值 相對強度
1 34.902 2.56858 2.00%
2 29.513 3.02417 2.60%
3 32.695 2.73674 2.80%
4 35.469 2.52884 3.20%
5 35.469 2.52884 3.20%
6 27.974 3.18694 3.30%
7 36.106 2.48564 3.80%
8 39.455 2.28206 3.80%
9 27.679 3.22031 4.40%
10 31.342 2.8518 4.70%
11 36.547 2.45666 4.70%
12 26.177 3.4016 4.90%
13 12.953 6.82937 5.10%
14 33.021 2.71048 5.70%
15 23.113 3.84509 6.20%
16 23.09 3.8489 6.50%
17 4.885 18.0756 6.80%
18 31.871 2.80562 7.30%
19 37.757 2.38069 8.50%
20 22.606 3.93023 10.40%
21 19.828 4.47415 10.50%
22 25.528 3.48655 11.40%
23 20.202 4.39204 12.70%
24 13.548 6.5304 12.80%
25 21.535 4.12308 13.70%
26 23.788 3.73745 13.90%
27 30.589 2.92025 14.50%
28 24.169 3.67947 16.00%
29 14.845 5.96258 16.40%
30 18.995 4.66842 16.50%
31 13.838 6.3942 17.30%
32 9.604 9.20126 18.60%
33 14.568 6.07548 20.00%
34 28.656 3.11272 21.50%
35 12.394 7.13563 23.90%
36 6.699 13.185 24.30%
37 24.599 3.61603 24.90%
38 26.589 3.34973 25.50%
39 15.693 5.64229 26.00%
40 22.077 4.02306 29.70%
41 19.447 4.5609 41.30%
42 6.491 13.6064 65.10%
43 18.253 4.85635 66.00%
44 12.038 7.34586 100.00%
在一些實施例中,化合物(III-1)之形式D的差示掃描量熱(DSC)圖與圖7B中所描繪的基本上類似。在一些實施例中,化合物(III-1)之形式D的熱重分析(TGA)圖與圖7C中所描繪的基本上類似。在一些實施例中,化合物(III-1)之形式D可以同時與此等圖中之兩者或更多者基本上類似為特徵。
在一些實施例中,化合物(III-1)之固體結晶形式為形式E。在一些實施例中,化合物( III-1)之形式E可以具有至少兩個2θ度之特徵峰的粉末X射線繞射圖為特徵,該等特徵峰各選自由約20.8 2θ、約22.2 2θ及約20.0 2θ組成之群。在一些實施例中,化合物( III-1)之形式E可以具有至少兩個2θ度之特徵峰的粉末X射線繞射圖為特徵,該等特徵峰各選自由約20.8 2θ、約22.2 2θ、約20.0 2θ、約25.5 2θ、約28.0 2θ、約16.6 2θ及約25.0 2θ組成之群。在一些實施例中,化合物( III-1)之形式E可以具有至少三個2θ度之特徵峰的粉末X射線繞射圖為特徵,該等特徵峰各選自由約20.8 2θ、約22.2 2θ、約20.0 2θ、約25.5 2θ、約28.0 2θ、約16.6 2θ及約25.0 2θ組成之群。在一些實施例中,化合物( III-1)之形式E可以具有至少四個2θ度之特徵峰的粉末X射線繞射圖為特徵,該等特徵峰各選自由約20.8 2θ、約22.2 2θ、約20.0 2θ、約25.5 2θ、約28.0 2θ、約16.6 2θ及約25.0 2θ組成之群。在一些實施例中,化合物( III-1)之形式E可以具有至少五個2θ度之特徵峰的粉末X射線繞射圖為特徵,該等特徵峰各選自由約20.8 2θ、約22.2 2θ、約20.0 2θ、約25.5 2θ、約28.0 2θ、約16.6 2θ及約25.0 2θ組成之群。在一些實施例中,化合物( III-1)之形式E可以具有至少六個2θ度之特徵峰的粉末X射線繞射圖為特徵,該等特徵峰各選自由約20.8 2θ、約22.2 2θ、約20.0 2θ、約25.5 2θ、約28.0 2θ、約16.6 2θ及約25.0 2θ組成之群。在一些實施例中,化合物( III-1)之形式E可以包含約20.8 2θ、約22.2 2θ、約20.0 2θ、約25.5 2θ、約28.0 2θ、約16.6 2θ及約25.0 2θ之特徵峰的粉末X射線繞射圖為特徵。在一些實施例中,化合物( III-1)之形式E的X射線繞射圖與圖8中所描繪的基本上類似。在一些實施例中,化合物( III-1)之形式E可以具有至少兩個2θ度之特徵峰的粉末X射線繞射圖為特徵,該等特徵峰各選自由表3.5中所列之峰組成之群。在一些實施例中,化合物( III-1)之形式E可以具有至少三個2θ度之特徵峰的粉末X射線繞射圖為特徵,該等特徵峰各選自由表3.5中所列之峰組成之群。在一些實施例中,化合物( III-1)之形式E可以具有至少四個2θ度之特徵峰的粉末X射線繞射圖為特徵,該等特徵峰各選自由表3.5中所列之峰組成之群。在一些實施例中,化合物( III-1)之形式E可以具有至少五個2θ度之特徵峰的粉末X射線繞射圖為特徵,該等特徵峰各選自由表3.5中所列之峰組成之群。在一些實施例中,化合物( III-1)之形式E可以具有至少六個2θ度之特徵峰的粉末X射線繞射圖為特徵,該等特徵峰各選自由表3.5中所列之峰組成之群。在一些實施例中,化合物( III-1)之形式E可以具有至少七個2θ度之特徵峰的粉末X射線繞射圖為特徵,該等特徵峰各選自由表3.5中所列之峰組成之群。 表3.5 III-1形式E XRPD峰清單(角度2θ在±0.2內)。
索引 角度 d值 相對強度
1 30.954 2.88664 3.90%
2 11.042 8.0061 4.10%
3 31.88 2.80488 4.40%
4 35.67 2.51504 5.40%
5 21.473 4.13489 6.50%
6 36.84 2.43781 7.30%
7 33.979 2.63626 7.90%
8 37.834 2.37602 8.00%
9 34.861 2.57156 9.50%
10 39.293 2.29106 9.70%
11 29.518 3.02372 10.20%
12 9.934 8.89648 10.80%
13 19.319 4.59072 10.90%
14 33.349 2.68455 12.10%
15 29.132 3.06284 12.30%
16 20.296 4.37198 13.50%
17 13.084 6.76115 16.00%
18 28.282 3.15299 16.40%
19 8.27 10.6834 17.30%
20 32.337 2.76625 17.70%
21 30.547 2.92412 18.00%
22 14.94 5.92515 18.10%
23 26.94 3.30697 18.40%
24 26.628 3.34489 20.80%
25 22.568 3.9366 21.20%
26 24.652 3.60848 30.40%
27 30.072 2.96921 33.00%
28 27.211 3.27461 34.10%
29 17.545 5.05076 36.10%
30 23.518 3.77976 36.40%
31 26.376 3.37631 37.70%
32 11.801 7.49331 45.00%
33 15.329 5.77558 46.70%
34 5.529 15.9712 47.60%
35 18.567 4.77494 47.90%
36 13.592 6.50947 48.20%
37 24.991 3.56017 67.10%
38 16.631 5.32618 73.80%
39 27.96 3.18854 84.90%
40 25.539 3.48509 88.80%
41 19.994 4.43731 90.00%
42 22.189 4.0031 98.70%
43 20.762 4.27496 100.00%
在一些實施例中,化合物(III-1)之固體結晶形式為形式F。在一些實施例中,化合物( III-1)之形式F可以具有至少兩個2θ度之特徵峰的粉末X射線繞射圖為特徵,該等特徵峰各選自由約21.3 2θ、約11.0 2θ及約11.3 2θ組成之群。在一些實施例中,化合物( III-1)之形式F可以具有至少兩個2θ度之特徵峰的粉末X射線繞射圖為特徵,該等特徵峰各選自由約21.3 2θ、約11.0 2θ、約11.3 2θ、約18.4 2θ、約29.6 2θ、約24.5 2θ及約20.3 2θ組成之群。在一些實施例中,化合物( III-1)之形式F可以具有至少三個2θ度之特徵峰的粉末X射線繞射圖為特徵,該等特徵峰各選自由約21.3 2θ、約11.0 2θ、約11.3 2θ、約18.4 2θ、約29.6 2θ、約24.5 2θ及約20.3 2θ組成之群。在一些實施例中,化合物( III-1)之形式F可以具有至少四個2θ度之特徵峰的粉末X射線繞射圖為特徵,該等特徵峰各選自由約21.3 2θ、約11.0 2θ、約11.3 2θ、約18.4 2θ、約29.6 2θ、約24.5 2θ及約20.3 2θ組成之群。在一些實施例中,化合物( III-1)之形式F可以具有至少五個2θ度之特徵峰的粉末X射線繞射圖為特徵,該等特徵峰各選自由約21.3 2θ、約11.0 2θ、約11.3 2θ、約18.4 2θ、約29.6 2θ、約24.5 2θ及約20.3 2θ組成之群。在一些實施例中,化合物( III-1)之形式F可以具有至少六個2θ度之特徵峰的粉末X射線繞射圖為特徵,該等特徵峰各選自由約21.3 2θ、約11.0 2θ、約11.3 2θ、約18.4 2θ、約29.6 2θ、約24.5 2θ及約20.3 2θ組成之群。在一些實施例中,化合物( III-1)之形式F可以包含約21.3 2θ、約11.0 2θ、約11.3 2θ、約18.4 2θ、約29.6 2θ、約24.5 2θ及約20.3 2θ之特徵峰的粉末X射線繞射圖為特徵。在一些實施例中,化合物( III-1)之形式F的X射線繞射圖與圖9A中所描繪的基本上類似。在一些實施例中,化合物( III-1)之形式F可以具有至少兩個2θ度之特徵峰的粉末X射線繞射圖為特徵,該等特徵峰各選自由表3.6中所列之峰組成之群。在一些實施例中,化合物( III-1)之形式F可以具有至少三個2θ度之特徵峰的粉末X射線繞射圖為特徵,該等特徵峰各選自由表3.6中所列之峰組成之群。在一些實施例中,化合物( III-1)之形式F可以具有至少四個2θ度之特徵峰的粉末X射線繞射圖為特徵,該等特徵峰各選自由表3.6中所列之峰組成之群。在一些實施例中,化合物( III-1)之形式F可以具有至少五個2θ度之特徵峰的粉末X射線繞射圖為特徵,該等特徵峰各選自由表3.6中所列之峰組成之群。在一些實施例中,化合物( III-1)之形式F可以具有至少六個2θ度之特徵峰的粉末X射線繞射圖為特徵,該等特徵峰各選自由表3.6中所列之峰組成之群。在一些實施例中,化合物( III-1)之形式F可以具有至少七個2θ度之特徵峰的粉末X射線繞射圖為特徵,該等特徵峰各選自由表3.6中所列之峰組成之群。 表3.6 III-1形式F XRPD峰清單(角度2θ在±0.2內)。
索引 角度 d值 相對強度
1 17.415 5.08832 1.40%
2 29.047 3.07166 1.50%
3 35.835 2.50382 1.60%
4 13.108 6.74859 1.80%
5 26.694 3.33688 2.40%
6 12.557 7.04354 2.80%
7 17.147 5.16712 2.80%
8 24.059 3.69606 2.80%
9 25.894 3.43801 2.90%
10 25.231 3.52684 3.20%
11 28.036 3.18005 3.40%
12 30.328 2.94475 4.10%
13 21.798 4.07399 4.80%
14 33.428 2.67839 4.80%
15 28.456 3.13412 5.20%
16 37.303 2.40862 5.90%
17 33.071 2.7065 6.10%
18 35.182 2.54877 6.10%
19 22.973 3.86818 6.60%
20 7.351 12.0166 6.90%
21 22.346 3.9753 7.50%
22 20.413 4.34708 7.60%
23 22.755 3.90471 8.00%
24 18.209 4.86798 8.30%
25 38.398 2.34243 8.50%
26 26.157 3.40413 10.60%
27 23.603 3.76632 11.30%
28 22.114 4.0164 13.90%
29 3.699 23.8651 14.80%
30 14.703 6.01997 14.80%
31 20.282 4.37486 16.40%
32 24.526 3.62671 17.70%
33 29.647 3.01082 26.10%
34 18.399 4.81808 31.30%
35 11.335 7.79984 31.70%
36 11.025 8.01881 54.50%
37 21.336 4.1611 100.00%
在一些實施例中,化合物(III-1)之形式F的差示掃描量熱(DSC)圖與圖9B中所描繪的基本上類似。 化合物 III-2
在一些實施例中,式(III)化合物為化合物III-2: , 或其溶劑合物。
在一些實施例中,化合物III-2為無水固體。
在一些實施例中,化合物III-2為非晶形固體。在其他實施例中,化合物III-2為結晶固體。在一些實施例中,化合物III-2為非晶形固體形式及結晶固體形式之混合物。
在一些實施例中,本發明提供一種基本上不含雜質之化合物II-2形式。如本文所用,術語「基本上不含雜質」意謂化合物不含顯著量之異物。此類異物可包括化合物 III-2之不同形式、殘餘溶劑或任何其他可能由化合物 III-2之製備及/或分離產生之雜質。
在一些實施例中,化合物III-2或其溶劑合物或其結晶形式係以至少約95、95.5、96、96.5、97、97.5、98.0、98.5、99、99.1、99.2、99.3、99.4、99.5、99.6、99.7、99.8、99.9重量百分比質量存在,其中百分比係以組合物之總重量計。在一些實施例中,化合物III-2或其溶劑合物或其結晶形式含有不超過約0.40、不超過約0.35、不超過約0.3、不超過約0.25、不超過約0.2、不超過約0.15、不超過約0.10或不超過約0.05重量%之任何單一雜質,其中百分比係以組合物之總重量計。在一些實施例中,雜質係選自本文實例中所描述之彼等雜質。
在一些實施例中,化合物III-2或其溶劑合物或其結晶形式係以相對於HPLC層析圖之總面積的至少約95、95.5、96、96.5、97、97.5、98.0、98.5、99、99.1、99.2、99.3、99.4、99.5、99.6、99.7、99.8、99.9面積百分比(根據HPLC)之量存在。在一些實施例中,相對於HPLC層析圖之總面積,化合物III-2或其溶劑合物或其結晶形式含有不超過約0.4、不超過約0.35、不超過約0.3、不超過約0.25、不超過約0.2、不超過約0.15、不超過約0.10或不超過約0.05面積百分比HPLC之任何單一雜質。在一些實施例中,雜質係選自本文實例中所描述之彼等雜質。在一些實施例中,HPLC方法係選自本文實例中所描述之HPLC方法。
關於化合物 III-2所描繪之結構亦意欲包括化合物 III-2之所有互變異構形式。另外,本文中所描繪之結構亦意欲包括僅在存在一或多個經同位素增濃原子方面不同之化合物。舉例而言,除了氫經氘或氚置換或碳經 13C或 14C增濃碳置換之外具有本發明結構之化合物在本發明之範疇內。
在某些實施例中,化合物 III-2為結晶固體。在其他實施例中,化合物 III-2為基本上不含非晶形化合物 III-2之結晶固體。如本文所用,術語「基本上不含非晶形化合物 III-2」意謂該化合物不含顯著量之非晶形化合物 III-2。在某些實施例中,存在至少約95重量%之結晶化合物 III-2。在本發明之其他實施例中,存在至少約99重量%之結晶化合物 III-2
已發現,化合物 III-2可以多種固體形式存在。例示性之此類形式包括多晶型,諸如本文所描述之彼等多晶型。
在一些實施例中,化合物III-2之固體結晶形式為形式A。在一些實施例中,化合物III-2之形式A的X射線繞射(XRPD)圖與圖29A中所描繪的基本上類似。
在一些實施例中,化合物III-2之形式A的差示掃描量熱(DSC)圖與圖29B中所描繪的基本上類似。在一些實施例中,化合物III-2之形式A的熱重分析(TGA)圖與圖29C中所描繪的基本上類似。在一些實施例中,化合物III-2之形式A可以同時與此等圖中之兩者或更多者基本上類似為特徵。
在一些實施例中,化合物III-2之固體結晶形式為形式B。在一些實施例中,化合物III-2之形式B的X射線繞射圖與圖28中所描繪的基本上類似。 化合物 III-3
在一些實施例中,式(III)化合物為化合物III-3: III-3, 或其溶劑合物。
在一些實施例中,化合物III-3為無水固體。
在一些實施例中,化合物III-3為非晶形固體。在其他實施例中,化合物III-3為結晶固體。在一些實施例中,化合物III-3為非晶形固體形式及結晶固體形式之混合物。
在一些實施例中,本發明提供一種基本上不含雜質之化合物III-3形式。如本文所用,術語「基本上不含雜質」意謂化合物不含顯著量之異物。此類異物可包括化合物 III-3之不同形式、殘餘溶劑或任何其他可能由化合物 III-3之製備及/或分離產生之雜質。
在一些實施例中,化合物III-3或其溶劑合物或其結晶形式係以至少約95、95.5、96、96.5、97、97.5、98.0、98.5、99、99.1、99.2、99.3、99.4、99.5、99.6、99.7、99.8、99.9重量百分比之量存在,其中百分比係以組合物之總重量計。在一些實施例中,化合物III-3或其溶劑合物或其結晶形式含有不超過約0.40、不超過約0.35、不超過約0.3、不超過約0.25、不超過約0.2、不超過約0.15、不超過約0.10或不超過約0.05重量%之任何單一雜質,其中百分比係以組合物之總重量計。在一些實施例中,雜質係選自本文實例中所描述之彼等雜質。
在一些實施例中,化合物III-3或其溶劑合物或其結晶形式係以相對於HPLC層析圖之總面積的至少約95、95.5、96、96.5、97、97.5、98.0、98.5、99、99.1、99.2、99.3、99.4、99.5、99.6、99.7、99.8、99.9面積百分比(根據HPLC)之量存在。在一些實施例中,相對於HPLC層析圖之總面積,化合物III-3或其溶劑合物或其結晶形式含有不超過約0.4、不超過約0.35、不超過約0.3、不超過約0.25、不超過約0.2、不超過約0.15、不超過約0.10或不超過約0.05面積百分比HPLC之任何單一雜質。在一些實施例中,雜質係選自本文實例中所描述之彼等雜質。在一些實施例中,HPLC方法係選自本文實例中所描述之HPLC方法。
關於化合物 III-3所描繪之結構亦意欲包括化合物 III-3之所有互變異構形式。另外,本文中所描繪之結構亦意欲包括僅在存在一或多個經同位素增濃原子方面不同之化合物。舉例而言,除了氫經氘或氚置換或碳經 13C或 14C增濃碳置換之外具有本發明結構之化合物在本發明之範疇內。
在某些實施例中,化合物 III-3為結晶固體。在其他實施例中,化合物 III-3為基本上不含非晶形化合物 III-3之結晶固體。如本文所用,術語「基本上不含非晶形化合物 III-3」意謂該化合物不含顯著量之非晶形化合物 III-3。在某些實施例中,存在至少約95重量%之結晶化合物 III-3。在本發明之其他實施例中,存在至少約99重量%之結晶化合物 III-3化合物 III-4
在一些實施例中,式(I)化合物為化合物III-4: III-4, 或其溶劑合物。
在一些實施例中,化合物III-4為無水固體。
在一些實施例中,化合物III-4為非晶形固體。在其他實施例中,化合物III-4為結晶固體。在一些實施例中,化合物III-4為非晶形固體形式及結晶固體形式之混合物。
在一些實施例中,本發明提供一種基本上不含雜質之化合物III-4形式。如本文所用,術語「基本上不含雜質」意謂化合物不含顯著量之異物。此類異物可包括化合物 III-4之不同形式、殘餘溶劑或任何其他可能由化合物 III-4之製備及/或分離產生之雜質。
在一些實施例中,化合物III-4或其溶劑合物或其結晶形式係以至少約95、95.5、96、96.5、97、97.5、98.0、98.5、99、99.1、99.2、99.3、99.4、99.5、99.6、99.7、99.8、99.9重量百分比之量存在,其中百分比係以組合物之總重量計。在一些實施例中,化合物III-4或其溶劑合物或其結晶形式含有不超過約0.40、不超過約0.35、不超過約0.3、不超過約0.25、不超過約0.2、不超過約0.15、不超過約0.10或不超過約0.05重量%之任何單一雜質,其中百分比係以組合物之總重量計。在一些實施例中,雜質係選自本文實例中所描述之彼等雜質。
在一些實施例中,化合物III-4或其溶劑合物或其結晶形式係以相對於HPLC層析圖之總面積的至少約95、95.5、96、96.5、97、97.5、98.0、98.5、99、99.1、99.2、99.3、99.4、99.5、99.6、99.7、99.8、99.9面積百分比(根據HPLC)之量存在。在一些實施例中,相對於HPLC層析圖之總面積,化合物III-4或其溶劑合物或其結晶形式含有不超過約0.4、不超過約0.35、不超過約0.3、不超過約0.25、不超過約0.2、不超過約0.15、不超過約0.10或不超過約0.05面積百分比HPLC之任何單一雜質。在一些實施例中,雜質係選自本文實例中所描述之彼等雜質。在一些實施例中,HPLC方法係選自本文實例中所描述之HPLC方法。
關於化合物 III-4所描繪之結構亦意欲包括化合物 III-4之所有互變異構形式。另外,本文中所描繪之結構亦意欲包括僅在存在一或多個經同位素增濃原子方面不同之化合物。舉例而言,除了氫經氘或氚置換或碳經 13C或 14C增濃碳置換之外具有本發明結構之化合物在本發明之範疇內。
在某些實施例中,化合物 III-4為結晶固體。在其他實施例中,化合物 III-4為基本上不含非晶形化合物 III-4之結晶固體。如本文所用,術語「基本上不含非晶形化合物 III-4」意謂該化合物不含顯著量之非晶形化合物 III-4。在某些實施例中,存在至少約95重量%之結晶化合物 III-4。在本發明之其他實施例中,存在至少約99重量%之結晶化合物 III-4化合物 III-5
在一些實施例中,式(I)化合物為化合物III-5: III-5, 或其溶劑合物。
在一些實施例中,化合物III-5為無水固體。
在一些實施例中,化合物III-5為非晶形固體。在其他實施例中,化合物III-5為結晶固體。在一些實施例中,化合物III-5為非晶形固體形式及結晶固體形式之混合物。
在一些實施例中,本發明提供一種基本上不含雜質之化合物III-5。如本文所用,術語「基本上不含雜質」意謂化合物不含顯著量之異物。此類異物可包括化合物 III-5之不同形式、殘餘溶劑或任何其他可能由化合物 III-5之製備及/或分離產生之雜質。
在一些實施例中,化合物III-5或其溶劑合物或其結晶形式係以至少約95、95.5、96、96.5、97、97.5、98.0、98.5、99、99.1、99.2、99.3、99.4、99.5、99.6、99.7、99.8、99.9重量百分比之量存在,其中百分比係以組合物之總重量計。在一些實施例中,化合物III-5或其溶劑合物或其結晶形式含有不超過約0.40、不超過約0.35、不超過約0.3、不超過約0.25、不超過約0.2、不超過約0.15、不超過約0.10或不超過約0.05重量%之任何單一雜質,其中百分比係以組合物之總重量計。在一些實施例中,雜質係選自本文實例中所描述之彼等雜質。
在一些實施例中,化合物III-5或其溶劑合物或其結晶形式係以相對於HPLC層析圖之總面積的至少約95、95.5、96、96.5、97、97.5、98.0、98.5、99、99.1、99.2、99.3、99.4、99.5、99.6、99.7、99.8、99.9面積百分比(根據HPLC)之量存在。在一些實施例中,相對於HPLC層析圖之總面積,化合物III-5或其溶劑合物或其結晶形式含有不超過約0.4、不超過約0.35、不超過約0.3、不超過約0.25、不超過約0.2、不超過約0.15、不超過約0.10或不超過約0.05面積百分比HPLC之任何單一雜質。在一些實施例中,雜質係選自本文實例中所描述之彼等雜質。在一些實施例中,HPLC方法係選自本文實例中所描述之HPLC方法。
關於化合物 III-5所描繪之結構亦意欲包括化合物 III-5之所有互變異構形式。另外,本文中所描繪之結構亦意欲包括僅在存在一或多個經同位素增濃原子方面不同之化合物。舉例而言,除了氫經氘或氚置換或碳經 13C或 14C增濃碳置換之外具有本發明結構之化合物在本發明之範疇內。
在某些實施例中,化合物 III-5為結晶固體。在其他實施例中,化合物 III-5為基本上不含非晶形化合物 III-5之結晶固體。如本文所用,術語「基本上不含非晶形化合物 III-5」意謂該化合物不含顯著量之非晶形化合物 III-5。在某些實施例中,存在至少約95重量%之結晶化合物 III-5。在本發明之其他實施例中,存在至少約99重量%之結晶化合物 III-5化合物 III-6
在一些實施例中,式(III)化合物為化合物III-6: III-6, 或其溶劑合物。
在一些實施例中,化合物III-6為無水固體。
在一些實施例中,化合物III-6為非晶形固體。在其他實施例中,化合物III-6為結晶固體。在一些實施例中,化合物III-6為非晶形固體形式及結晶固體形式之混合物。
在一些實施例中,本發明提供一種基本上不含雜質之化合物III-6形式。如本文所用,術語「基本上不含雜質」意謂化合物不含顯著量之異物。此類異物可包括化合物 III-6之不同形式、殘餘溶劑或任何其他可能由化合物 III-6之製備及/或分離產生之雜質。
在一些實施例中,化合物III-6或其溶劑合物或其結晶形式係以至少約95、95.5、96、96.5、97、97.5、98.0、98.5、99、99.1、99.2、99.3、99.4、99.5、99.6、99.7、99.8、99.9重量百分比之量存在,其中百分比係以組合物之總重量計。在一些實施例中,化合物III-6或其溶劑合物或其結晶形式含有不超過約0.40、不超過約0.35、不超過約0.3、不超過約0.25、不超過約0.2、不超過約0.15、不超過約0.10或不超過約0.05重量%之任何單一雜質,其中百分比係以組合物之總重量計。在一些實施例中,雜質係選自本文實例中所描述之彼等雜質。
在一些實施例中,化合物III-6或其溶劑合物或其結晶形式係以相對於HPLC層析圖之總面積的至少約95、95.5、96、96.5、97、97.5、98.0、98.5、99、99.1、99.2、99.3、99.4、99.5、99.6、99.7、99.8、99.9面積百分比(根據HPLC)之量存在。在一些實施例中,相對於HPLC層析圖之總面積,化合物III-6或其溶劑合物或其結晶形式含有不超過約0.4、不超過約0.35、不超過約0.3、不超過約0.25、不超過約0.2、不超過約0.15、不超過約0.10或不超過約0.05面積百分比HPLC之任何單一雜質。在一些實施例中,雜質係選自本文實例中所描述之彼等雜質。在一些實施例中,HPLC方法係選自本文實例中所描述之HPLC方法。
關於化合物 III-6所描繪之結構亦意欲包括化合物 III-6之所有互變異構形式。另外,本文中所描繪之結構亦意欲包括僅在存在一或多個經同位素增濃原子方面不同之化合物。舉例而言,除了氫經氘或氚置換或碳經 13C或 14C增濃碳置換之外具有本發明結構之化合物在本發明之範疇內。
在某些實施例中,化合物 III-6為結晶固體。在其他實施例中,化合物 III-6為基本上不含非晶形化合物 III-6之結晶固體。如本文所用,術語「基本上不含非晶形化合物 III-6」意謂該化合物不含顯著量之非晶形化合物 III-6。在某些實施例中,存在至少約95重量%之結晶化合物 III-6。在本發明之其他實施例中,存在至少約99重量%之結晶化合物 III-6
已發現,化合物 III-6可以多種固體形式存在。例示性之此類形式包括多晶型,諸如本文所描述之彼等多晶型。
在一些實施例中,化合物III-6之固體結晶形式為形式A。在一些實施例中,化合物III-6之形式A的X射線繞射圖與圖34A中所描繪的基本上類似。
在一些實施例中,化合物III-6之形式A的差示掃描量熱(DSC)圖與圖34B中所描繪的基本上類似。在一些實施例中,化合物III-6之形式A的熱重分析(TGA)圖與圖34C中所描繪的基本上類似。在一些實施例中,化合物III-6之形式A可以同時與此等圖中之兩者或更多者基本上類似為特徵。 (IV-1) (IV-2) 化合物
在一些實施例中,本文提供一種式(IV-1)化合物 , 或其醫藥學上可接受之鹽。
在一些實施例中,本文提供一種式(IV-2)化合物 , 或其醫藥學上可接受之鹽。 組合物
本發明之另一態樣提供醫藥組合物,其包含與醫藥學上可接受之載劑一起調配之如本文所揭示之化合物。詳言之,本發明提供醫藥組合物,其包含與一或多種醫藥學上可接受之載劑一起調配之如本文所揭示之化合物。此等調配物包括適用於經口、局部、經頰、經眼、非經腸(例如,皮下、肌肉內、皮內或靜脈內)、經直腸、經陰道或氣溶膠投與之調配物,但在任何給定情況下,最適合的投與形式將視所治療之病況之程度及嚴重程度以及所使用之特定化合物之性質而定。舉例而言,所揭示之組合物可以單位劑量形式調配,及/或可經調配以用於經口、皮下或靜脈內投與。
本發明之例示性醫藥組合物可以醫藥製劑形式,例如以固體、半固體或液體形式使用,其含有作為活性成分之一或多種本發明之化合物與適用於外部、經腸或非經腸施用之有機或無機載劑或賦形劑之混雜物。活性成分可與例如常用無毒、醫藥學上可接受之載劑混配,該載劑用於錠劑、丸劑、膠囊、栓劑、溶液、乳液、懸浮液及任何其他適合使用之形式。活性目標化合物以足以對疾病之過程或狀況產生所需作用之量包括於醫藥組合物中。
在一些實施例中,醫藥學上可接受之組合物可含有濃度介於約0.01至約2.0 wt%,諸如0.01至約1 wt%或約0.05至約0.5 wt%範圍內的所揭示化合物及/或其醫藥學上可接受之鹽。組合物可調配為溶液、懸浮液、軟膏或膠囊及其類似者。醫藥組合物可以水溶液形式製備,且可含有另外組分,諸如防腐劑、緩衝劑、張力劑、抗氧化劑、穩定劑、黏度調節成分及其類似者。
對於製備諸如錠劑之固體組合物,可將主要活性成分與例如習知製錠成分(諸如玉米澱粉、乳糖、蔗糖、山梨糖醇、滑石、硬脂酸、硬脂酸鎂、磷酸二鈣或膠)之醫藥載劑及例如水之其他醫藥稀釋劑混合,以形成含有本發明之化合物或其無毒、醫藥學上可接受之鹽之均質混合物的固體預調配組合物。當提及此等預調配組合物為均質的時,意謂活性成分可均勻分散在整個組合物中,使得組合物可容易地再分成同等有效的單位劑型,諸如錠劑、丸劑及膠囊。
醫藥學上可接受之載劑為熟習此項技術者所熟知,且包括例如佐劑、稀釋劑、賦形劑、填充劑、潤滑劑及媒劑。醫藥學上可接受之載劑為熟習此項技術者所熟知,且包括例如佐劑、稀釋劑、賦形劑、填充劑、潤滑劑及媒劑。在一些實施例中,載劑為稀釋劑、佐劑、賦形劑或媒劑。在一些實施例中,載劑為稀釋劑、佐劑或賦形劑。在一些實施例中,載劑為稀釋劑或佐劑。在一些實施例中,載劑為賦形劑。通常,醫藥學上可接受之載劑針對活性化合物係化學惰性的,且在使用條件下係無毒的。醫藥學上可接受之載劑之實例可包括例如水或生理鹽水溶液、聚合物(諸如聚乙二醇)、碳水化合物及其衍生物、油、脂肪酸或醇。作為醫藥載劑之油的非限制性實例包括石油、動物油、植物油或合成來源之油,諸如花生油、大豆油、礦物油、芝麻油及其類似者。醫藥載劑亦可為生理鹽水、阿拉伯膠(gum acacia)、明膠、澱粉糊、滑石、角蛋白、膠態二氧化矽、脲及其類似者。另外,可使用助劑、穩定劑、增稠劑、潤滑劑及著色劑。適合的醫藥載劑之其他實例描述於例如以下各者中:Remington's: The Science and Practice of Pharmacy, 第22版(Allen, Loyd V., Jr 編, Pharmaceutical Press (2012));Modern Pharmaceutics, 第5版(Alexander T. Florence, Juergen Siepmann, CRC Press (2009));Handbook of Pharmaceutical Excipients, 第7版(Rowe, Raymond C.;Sheskey, Paul J.;Cook, Walter G.;Fenton, Marian E. 編, Pharmaceutical Press (2012)) (其各自以全文引用之方式併入本文中)。
在一些實施例中,本發明化合物調配成醫藥組合物,以供以適合於活體內投與之生物相容形式向個體投與。根據另一態樣,本發明提供一種醫藥組合物,其包含所揭示化合物與醫藥學上可接受之稀釋劑及/或載劑的混雜物。醫藥學上可接受之載劑在與組合物之其他成分相容且不對其接受者有害之意義上為「可接受的」。本文中所使用的醫藥學上可接受之載劑可選自各種有機或無機材料,該等材料用作醫藥調配物之材料且經併入作為鎮痛劑、緩衝劑、黏合劑、崩解劑、稀釋劑、乳化劑、賦形劑、增量劑、滑動劑、增溶劑、穩定劑、懸浮劑、張力劑、媒劑及黏度增加劑。亦可添加醫藥添加劑,諸如抗氧化劑、芳香劑、著色劑、風味改善劑、防腐劑及甜味劑。可接受的醫藥載劑之實例包括羧甲基纖維素、結晶纖維素、甘油、阿拉伯膠、乳糖、硬脂酸鎂、甲基纖維素、散劑、生理鹽水、褐藻酸鈉、蔗糖、澱粉、滑石及水以及其他。在一些實施例中,術語「醫藥學上可接受」意謂經聯邦政府或州政府之管制機構批准或在美國藥典或其他公認之藥典中列出適用於動物且更尤其適用於人類。
諸如洗滌劑之界面活性劑亦適用於調配物中。界面活性劑之特定實例包括聚乙烯吡咯啶酮、聚乙烯醇、乙酸乙烯酯及乙烯吡咯啶酮之共聚物、聚乙二醇、苯甲醇、甘露糖醇、甘油、山梨糖醇或脫水山梨糖醇之聚氧乙烯化酯;卵磷脂或羧甲基纖維素鈉;或丙烯酸衍生物,諸如甲基丙烯酸酯及其他;陰離子界面活性劑,諸如鹼性硬脂酸鹽,尤其硬脂酸鈉、硬脂酸鉀或硬脂酸銨;硬脂酸鈣或硬脂酸三乙醇胺;烷基硫酸鹽,尤其月桂基硫酸鈉及鯨蠟基硫酸鈉;十二烷基苯磺酸鈉或二辛基磺基丁二酸鈉;或脂肪酸,尤其衍生自椰子油之彼等脂肪酸;陽離子界面活性劑,諸如具有式N +R'R''R'''R''''Y -之水溶性四級銨鹽,其中R基團相同或不同,視情況為羥化烴基,且Y -為強酸之陰離子,諸如鹵離子、硫酸根及磺酸根陰離子;溴化鯨蠟基三甲銨為可使用的陽離子界面活性劑中之一者,其為具有式N +R'R''R'''之胺鹽,其中R基團相同或不同,視情況為羥化烴基;鹽酸十八烷基胺為可使用的陽離子界面活性劑中之一者;非離子界面活性劑,諸如脫水山梨糖醇之視情況聚氧乙烯化酯,尤其聚山梨醇酯80或聚氧乙烯化烷基醚;硬脂酸聚乙二醇、蓖麻油之聚氧乙烯化衍生物、聚甘油酯、聚氧乙烯化脂肪醇、聚氧乙烯化脂肪酸或環氧乙烷及環氧丙烷之共聚物;兩性界面活性劑,諸如甜菜鹼之經取代月桂基化合物。
當向個體投與時,所揭示之化合物及醫藥學上可接受之載劑可為無菌的。適合的醫藥載劑亦可包括賦形劑,諸如澱粉、葡萄糖、乳糖、蔗糖、明膠、麥芽、稻米、麵粉、白堊、矽膠、硬脂酸鈉、單硬脂酸甘油酯、滑石、氯化鈉、脫脂奶粉、甘油、丙烯、乙二醇、聚乙二醇300、水、乙醇、聚山梨醇酯20及其類似者。必要時,本發明之組合物亦可含有少量潤濕劑或乳化劑,或pH緩衝劑。
本發明之醫藥調配物係藉由醫藥技術中熟知之方法製備。視情況,亦添加一或多種輔助成分(例如,緩衝劑、調味劑、表面活性劑及其類似者)。載劑之選擇係藉由化合物之溶解度及化學性質、所選投與途徑及標準醫藥實踐決定。
另外,本發明之化合物及/或組合物係藉由包括經口投與、舌下或經頰投與之已知程序向人類或動物個體投與。在一些實施例中,化合物及/或組合物係經口投與。
在用於經口投與之固體劑型(膠囊、錠劑、丸劑、糖衣藥丸、散劑、顆粒劑及其類似物)中,本發明組合物與諸如檸檬酸鈉或磷酸氫鈣之一或多種醫藥學上可接受之載劑及/或以下中之任一者混合:(1)填充劑或增量劑,諸如澱粉、乳糖、蔗糖、葡萄糖、甘露糖醇及/或矽酸;(2)黏合劑,諸如羧甲基纖維素、海藻酸鹽、明膠、聚乙烯吡咯啶酮、蔗糖及/或阿拉伯膠;(3)保濕劑,諸如甘油;(4)崩解劑,諸如瓊脂-瓊脂、碳酸鈣、馬鈴薯或木薯澱粉、海藻酸、某些矽酸鹽及碳酸鈉;(5)溶液阻滯劑,諸如石蠟;(6)吸收促進劑,諸如四級銨化合物;(7)潤濕劑,諸如乙醯醇及甘油單硬脂酸酯;(8)吸附劑,諸如高嶺土及膨潤土;(9)潤滑劑,諸如滑石、硬脂酸鈣、硬脂酸鎂、固體聚乙二醇、月桂基硫酸鈉及其混合物;及(10)著色劑。在膠囊、錠劑及丸劑之情況下,組合物亦可包含緩衝劑。亦可使用諸如乳糖(lactose/milk sugar)以及高分子量聚乙二醇及其類似物之賦形劑將類似類型之固體組合物用作軟填充及硬填充明膠膠囊中之填充劑。
對於經口投與,本發明化合物之調配物可以諸如膠囊、錠劑、散劑、顆粒之劑型或以懸浮液或溶液之形式提供。膠囊調配物可為明膠、軟膠囊或固體。錠劑及膠囊調配物可進一步含有一或多種佐劑、黏合劑、稀釋劑、崩解劑、賦形劑、填充劑或潤滑劑,其各自為此項技術中已知的。此類實例包括碳水化合物(諸如乳糖或蔗糖)、無水磷酸氫鈣、玉米澱粉、甘露糖醇、木糖醇、纖維素或其衍生物、微晶纖維素、明膠、硬脂酸鹽、二氧化矽、滑石、乙醇酸澱粉鈉、阿拉伯膠、調味劑、防腐劑、緩衝劑、崩解劑及著色劑。經口投與之組合物可含有一或多種視情況存在的試劑,例如甜味劑,諸如果糖、阿斯巴甜糖(aspartame)或糖精;調味劑,諸如胡椒薄荷、冬青油或櫻桃;著色劑;及防腐劑,以提供醫藥學上適口的製劑。
錠劑可藉由視情況與一或多種輔助成分一起壓縮或模製來製造。可使用黏合劑(例如明膠或羥丙基甲基纖維素)、潤滑劑、惰性稀釋劑、防腐劑、崩解劑(例如羥基乙酸澱粉鈉或交聯羧甲基纖維素鈉)、表面活性劑或分散劑來製備壓縮錠劑。可藉由在適合機器中模製經惰性液體稀釋劑濕潤之本發明組合物之混合物來製備模製錠劑。錠劑及其他固體劑型(諸如糖衣藥丸、膠囊、丸劑及顆粒劑)可視情況刻痕或製備有包衣及殼層,諸如醫藥調配技術中熟知之腸溶包衣及其他包衣。
用於吸入或吹入之組合物包括在醫藥學上可接受之水性或有機溶劑或其混合物中之溶液及懸浮液以及散劑。用於經口投與之液體劑型包括醫藥學上可接受之乳液、微乳液、溶液、懸浮液、糖漿及酏劑。除本發明組合物以外,液體劑型可含有此項技術中常用之惰性稀釋劑,諸如水或其他溶劑;增溶劑及乳化劑,諸如乙醇、異丙醇、碳酸乙酯、乙酸乙酯、苯甲醇、苯甲酸苯甲酯、丙二醇、1,3-丁二醇、油(尤其棉籽油、花生油、玉米油、胚芽油、橄欖油、蓖麻油及芝麻油)、甘油、四氫呋喃基醇、聚乙二醇及脫水山梨糖醇之脂肪酸酯、環糊精及其混合物。
除本發明組合物之外,懸浮液亦可含有懸浮劑,諸如乙氧基化異硬脂醇、聚氧乙烯山梨糖醇及脫水山梨糖醇酯、微晶纖維素、偏氫氧化鋁、膨潤土、瓊脂-瓊脂及黃蓍膠,及其混合物。
用於經直腸或經陰道投與之調配物可以栓劑形式呈現,其可藉由將本發明組合物與一或多種適合之無刺激性賦形劑或載劑混合來製備,該等賦形劑或載劑包含例如可可脂、聚乙二醇、栓劑蠟或水楊酸鹽,且其在室溫下為固體,但在體溫下為液體,且因此,將在體腔中融化且釋放活性劑。
用於經皮投與本發明組合物之劑型包括散劑、噴霧劑、軟膏、糊劑、乳膏、乳劑、凝膠、溶液、貼片及吸入劑。活性組分可在無菌條件下與醫藥學上可接受之載劑且與可能需要之任何防腐劑、緩衝劑或推進劑混合。
除活性本發明組合物以外,軟膏、糊劑、乳膏及凝膠亦可含有賦形劑,諸如動物及植物脂肪、油、蠟、石蠟、澱粉、黃蓍膠、纖維素衍生物、聚乙二醇、聚矽氧、膨潤土、矽酸、滑石及氧化鋅或其混合物。
除本發明之組合物以外,散劑及噴霧劑亦可含有賦形劑,諸如乳糖、滑石、矽酸、氫氧化鋁、矽酸鈣及聚醯胺粉末,或此等物質之混合物。噴霧劑可另外含有習用推進劑,諸如氯氟烴及未經取代之揮發性烴,諸如丁烷及丙烷。
本發明之組合物及化合物可替代地藉由氣溶膠投與。此藉由製備含有化合物之水性氣溶膠、脂質體製劑或固體粒子來實現。可使用非水性(例如碳氟化合物推進劑)懸浮液。可使用音波噴霧器,因為其最小化藥劑對可引起本發明之組合物中所含的化合物之降解的剪力之暴露。通常,水性氣溶膠係藉由將本發明組合物之水性溶液或懸浮液與習知醫藥學上可接受之載劑及穩定劑一起調配來製得。載劑及穩定劑隨特定的本發明組合物之需求而變化,但通常包括非離子界面活性劑(Tween、Pluronic或聚乙二醇);無害蛋白質,如血清白蛋白;脫水山梨糖醇酯;油酸;卵磷脂;胺基酸,諸如甘胺酸;緩衝劑;鹽;糖或糖醇。氣溶膠一般由等張溶液製備。
適用於非經腸投與之本發明醫藥組合物包含本發明組合物以及一或多種醫藥學上可接受之無菌等張水性或非水性溶液、分散液、懸浮液或乳液,或可在即將使用之前復原成無菌可注射溶液或分散液之無菌粉末,其可含有抗氧化劑、緩衝劑、抑菌劑、使調配物與預期接受者之血液等張之溶質或懸浮劑或增稠劑。
可用於本發明之醫藥組合物之適合的水性及非水性載劑之實例包括水、乙醇、多元醇(諸如甘油、丙二醇、聚乙二醇及其類似物)及其適合的混合物、植物油(諸如橄欖油)及可注射有機酯(諸如油酸乙酯及環糊精)。適當流動性可例如藉由使用諸如卵磷脂之包衣材料、藉由在分散液之情況下維持所需粒徑及藉由使用界面活性劑來維持。舉例而言,本文所提供之結晶形式可經研磨以獲得特定粒徑,且在至少一些實施例中,此類結晶形式可在研磨後保持基本穩定。
舉例而言,本文提供一種適合於皮下投與之組合物,其包含所揭示結晶形式之懸浮液。皮下投與可優於靜脈內投與,靜脈內投與通常需要醫生問診,且可為更疼痛及侵襲性的。當向患者投與時,結晶化合物之典型劑量可為約1 mg至約8 mg化合物。在一個實施例中,本文揭示一種由所揭示結晶形式形成之醫藥學上可接受之組合物,例如藉由混合結晶形式與賦形劑及/或溶劑。
在一實施例中,本文提供一種包含所揭示結晶形式之組合物,其適合於以足以遞送每公斤個體體重約0.001 mg至約100 mg、約0.01 mg至約50 mg、約0.1 mg至約40 mg、約0.5 mg至約30 mg、約0.001 mg至約4 mg、約0.1 mg至約10 mg、約1 mg至約25 mg之劑量水準進行皮下投與,每天、一天一或多次、每隔一天、每三天或四天、每週、每兩週、每三週或每四週投與。在某些實施例中,所需劑量可使用多次投與(例如兩次、三次、四次、五次、六次、七次、八次、九次或十次投與)來遞送。在某些實施例中,投與可每週進行一次、兩次或三次。
治療可按需要持續儘可能長或儘可能短之時段。組合物可依例如每天一至四次或者更多次之方案來投與。適合之治療期可為例如至少約一週、至少約兩週、至少約一個月、至少約六個月、至少約1年或無限長。當實現所需結果(例如體重減輕目標)時,可終止治療期。治療方案可包括矯正期,在此期間投與足以提供體重降低之劑量,且隨後可為維持期,在其期間投與例如足以體重增加之較低劑量。適合之維持劑量可能見於本文中所提供之劑量範圍之較低部分中,但基於本文中之揭示內容,個別個體之矯正及維持劑量可由熟習此項技術者容易地確立,而無需進行過多之實驗。維持劑量可用以維持體重先前已藉由其他手段得到控制之個體之體重,該等其他手段包括膳食及鍛煉、肥胖治療程序(諸如繞通手術或束帶手術)或採用其他藥理學藥劑之治療。
在某些實施例中,本文提供一種醫藥組合物,其包含如本文所描述的化合物I、II或III之結晶形式或其溶劑合物。在某些實施例中,本文提供一種醫藥組合物,其包含如本文所描述的化合物I-1之結晶形式(包括例如形式A、形式B或形式C)或其溶劑合物。在某些實施例中,本文提供一種醫藥組合物,其包含如本文所描述的化合物III-1之結晶形式(包括例如形式A、形式B、形式C、形式D、形式E或形式F)或其溶劑合物。在某些實施例中,本文提供一種醫藥組合物,其包含如本文所描述的式IV-1或IV-2化合物或其醫藥學上可接受之鹽。在某些實施例中,本文所提供之醫藥組合物包含一或多種如本文所描述的醫藥學上可接受之賦形劑。 套組
在一個實施例中,提供一種用於治療或減輕所考慮病症疾病之套組。舉例而言,所揭示之套組包含安置於第一容器中之所揭示結晶化合物,例如式(I)化合物之結晶形式。在一些實施例中,套組可進一步包括安置於第二容器中之醫藥學上可接受之賦形劑。考慮之此類套組可包括描述自結晶形式製備適合於向患者投與之醫藥組合物的書面說明書。舉例而言,書面說明書可描述藉由混合賦形劑及本文所揭示之結晶化合物來製備用於患者投與之醫藥學上可接受之形式。所揭示之套組可進一步包含描述如何向患者投與所得組合物之書面說明書。
在一個實施例中,提供一種用於治療或減輕所考慮病症疾病之套組。舉例而言,所揭示套組包含如本文所描述之安置於第一容器中的化合物。在一些實施例中,套組可進一步包括安置於第二容器中之醫藥學上可接受之賦形劑。考慮之此類套組可包括描述自經揭示化合物製備適合於向患者投與之醫藥組合物的書面說明書。舉例而言,書面說明書可描述藉由混合賦形劑及本文所揭示之化合物來製備用於患者投與之醫藥學上可接受之形式。所揭示之套組可進一步包含描述如何向患者投與所得組合物之書面說明書。 製程
在一些實施例中,本文中考慮用於製備式(I)化合物之所揭示結晶形式的製程,其包含:a)製備式(I)化合物之溶液;b)調節溫度,使得式(I)化合物之固體結晶形式自溶液沈澱出來;及c)分離固體結晶形式。在一些實施例中,製備式(I)化合物之溶液之步驟包含混合化合物I-1之溶液與酸X之溶液,其中X如本文中之實施例中所定義及描述。在一些實施例中,式(I)化合物之溶液包含選自以下之溶劑:甲醇、乙醇、丙酮、甲基乙基酮、乙酸乙酯、乙酸異丙酯、乙腈、三級丁基甲基醚、二氯甲烷、四氫呋喃、1,4-二㗁烷、苯甲醇、2-MeTHF、IPAc及MtBE。在一些實施例中,式(I)化合物之溶液包含選自如本文之實例中所描述之彼等溶劑的溶劑。
在一些實施例中,本文考慮製備式(II)化合物之所揭示結晶形式的製程,其包含:a)製備式(II)化合物之溶液;b)調節溫度,使得式(II)化合物之固體結晶形式自溶液沈澱出來;及c)分離固體結晶形式。在一些實施例中,製備式(II)化合物之溶液之步驟包含混合化合物II-1之溶液與酸X之溶液,其中X如本文實施例中所定義及描述。在一些實施例中,式(II)化合物之溶液包含選自以下之溶劑:甲醇、乙醇、丙酮、甲基乙基酮、乙酸乙酯、乙酸異丙酯、乙腈、三級丁基甲基醚、二氯甲烷、四氫呋喃、1,4-二㗁烷、苯甲醇、2-MeTHF、IPAc及MtBE。在一些實施例中,式(II)化合物之溶液包含選自如本文實例中所描述之彼等溶劑的溶劑。
在一些實施例中,本文考慮製備式(III)化合物之所揭示結晶形式的製程,其包含:a)製備式(III)化合物之溶液;b)調節溫度,使得式(III)化合物之固體結晶形式自溶液沈澱出來;及c)分離固體結晶形式。在一些實施例中,製備式(III)化合物之溶液之步驟包含混合化合物III-1之溶液與酸X之溶液,其中X如本文實施例中所定義及描述。在一些實施例中,式(III)化合物之溶液包含選自以下之溶劑:甲醇、乙醇、丙酮、甲基乙基酮、乙酸乙酯、乙酸異丙酯、乙腈、三級丁基甲基醚、二氯甲烷、四氫呋喃、1,4-二㗁烷、苯甲醇、2-MeTHF、IPAc及MtBE。在一些實施例中,式(III)化合物之溶液包含選自如本文實例中所描述之彼等溶劑的溶劑。
在一些實施例中,式(I)、(II)或(III)化合物之溶液包含選自以下之溶劑:MeOH、EtOH、丙酮、IPAc、MtBE、乙腈、EtOAc、IPA、THF、庚烷、1,4二㗁烷、DMF及水。在一些實施例中,式(I)、(II)或(III)化合物之溶液包含溶劑丙酮/庚烷(1:2,v/v)。在一些實施例中,式(I)、(II)或(III)化合物之溶液包含溶劑丙酮/MTBE (1:4,v/v)。在一些實施例中,式(I)、(II)或(III)化合物之溶液包含溶劑THF/庚烷(2:3,v/v)。在一些實施例中,式(I)、(II)或(III)化合物之溶液包含溶劑乙酸乙酯/庚烷(1:1,v/v)。在一些實施例中,式(I)、(II)或(III)化合物之溶液包含溶劑THF/MTBE (1:4,v/v)。在一些實施例中,式(I)、(II)或(III)化合物之溶液包含溶劑THF/ACN (2:1,v/v)。在一些實施例中,式(I)、(II)或(III)化合物之溶液包含溶劑EtOH/水(50:50,v/v)。在一些實施例中,式(I)、(II)或(III)化合物之溶液包含溶劑ACN/水(80:20,v/v)。在一些實施例中,式(I)、(II)或(III)化合物之溶液包含溶劑THF/水(85:15,v/v)。在一些實施例中,式(I)、(II)或(III)化合物之溶液包含溶劑丙酮/水(60:40,v/v)。在一些實施例中,式(I)、(II)或(III)化合物之溶液包含溶劑THF/庚烷(2:3,v/v)。在一些實施例中,式(I)、(II)或(III)化合物之溶液包含溶劑THF/MTBE (1:4,v/v)。在一些實施例中,式(I)、(II)或(III)化合物之溶液包含溶劑MeOH/MTBE (1:4,v/v)。在一些實施例中,式(I)、(II)或(III)化合物之溶液包含溶劑DMF/丙酮水。
在一些實施例中,加熱溶液包含將溶液加熱至約50℃。在一些實施例中,調節溫度包含將溶液冷卻至約25℃。
在其他實施例中,所揭示製程進一步包含純化步驟,其分離化合物III-1之鏡像異構物,從而形成化合物I-1:
在其他實施例中,所揭示製程進一步包含純化步驟,其藉由例如如實例1-A中所描述對化合物III-1進行SMB分離來分離化合物III-1之鏡像異構物,從而形成化合物I-1及II-1:
在其他實施例中,所揭示製程進一步包含使II-1外消旋化,從而形成I-1及II-1之混合物(或III-1):
在其他實施例中,所揭示製程進一步包含化合物II-1之外消旋化,從而形成化合物III-1 (I-1及II-1之混合物): , 例如,如實例2-A中所描述。
在其他實施例中,所揭示製程進一步包含使化合物2與化合物3偶合,從而形成化合物III-1之步驟:
在其他實施例中,所揭示製程進一步包含使化合物4轉化成化合物3的步驟:
在其他實施例中,所揭示製程進一步包含使化合物5轉化成化合物4之步驟:
在其他實施例中,所揭示製程進一步包含使化合物6與化合物7偶合,從而形成化合物5之步驟:
在一些實施例中,所揭示製程包含使化合物III-1氘化,接著進行純化步驟以分離鏡像異構物,從而形成化合物IV-1及IV-2: , 例如,如實例3-A中所描述。 方法
本文所描述之化合物及組合物通常適用於抑制激酶或其突變體。在一些實施例中,由本文所描述之化合物及組合物抑制的激酶為磷脂醯肌醇3-激酶(PI3K)。在一些實施例中,由本文所描述之化合物及組合物抑制之激酶為PI3Kα、PI3Kδ及PI3Kγ中之一或多者。在一些實施例中,由本文所描述之化合物及組合物抑制之激酶為PI3Kα。在一些實施例中,由本文所描述之化合物及組合物抑制的激酶為含有以下突變中之至少一者的PI3Kα:E542X、E545X、Q546X、H1047X及G1049X,其中X為除其野生型以外的任何胺基酸。在一些實施例中,由本文所描述之化合物及組合物抑制的激酶為含有以下突變中之至少一者的PI3Kα:E542K、E542Q、E545A、E545G、E545K、E545Q、Q546E、Q546K、Q546L、Q546P、Q546R、H1047R、H1047L、H1047Y、G1049R及G1049S。在一些實施例中,由本文所描述之化合物及組合物抑制的激酶為含有以下突變中之至少一者的PI3Kα:E542K、E545K及H1047R。在一些實施例中,由本文所描述之化合物及組合物抑制的激酶為含有以下突變中之至少一者的PI3Ka:E81X、R88X、R93X、G106X、R108X、K111X、G118X、A222X、V344X、N345X、G364X、E365X、C420X、E453X、P539X、E542X、E545X、Q546X、D549X、F667X、H701X、M1004X、Y1021X、T1025X、M1040X、M1043X、N1044X、H1047X、G1049X、I1058X、A1066X及N1068X,其中X為除其野生型以外的任何胺基酸。在一些實施例中,由本文所描述之化合物及組合物抑制的激酶為含有以下突變中之至少一者的PI3Ka:E81K、R88Q、R93Q、R93W、G106R、G106V、R108H、K111N、K111E、G118D、A222V、V344A、N345K、G364R、E365K、C420R、E453A、E453K、P539R、E542K、E542Q、E545A、E545G、E545K、E545Q、Q546E、Q546K、Q546L、Q546P、Q546R、D549N、F667L、H701P、M1004I、Y1021C、T1025A、T1025N、M1040L、M1043I、M1043V、N1044K、H1047R、H1047L、H1047Y、G1049R、G1049S、I1058F、A1066V及N1068fs*4。
本發明之化合物或組合物可適用於得益於PI3K酶之抑制的應用。舉例而言,本發明之PI3K抑制劑總體上適用於治療細胞增生性疾病。本發明之化合物或組合物可適用於得益於PI3Kα酶之抑制的應用。舉例而言,本發明之PI3Kα抑制劑總體上適用於治療細胞增生性疾病。
通常經由Aid活化提高存活之PI3K的異常調節為人類癌症中最普遍的現象之一且已顯示以多個層級發生。在肌醇環之3'位置處使磷酸肌醇去磷酸化且因此拮抗PI3K活性之腫瘤抑制基因PTEN在多種腫瘤中功能性缺失。在其他腫瘤中,p110α同功異型物、PIK3CA及Akt之基因經擴增,且已在若干人類癌症中展現其基因產物之蛋白質表現增加。此外,已在人類癌症中描述用以上調p85-p110複合物之p85α的突變及易位。最後,已在多種人類癌症中以顯著頻率描述活化下游信號傳導路徑之PIK3CA中的體細胞誤義突變(Kang等人, Proc. Natl. Acad. Sci. USA 102:802 (2005);Samuels等人, Science 304:554 (2004);Samuels等人, Cancer Cell 7:561-573 (2005))。此等觀測結果顯示,磷酸肌醇-3激酶及此信號傳導路徑之上游及下游組分的失調為與人類癌症及增生性疾病相關之最常見失調之一(Parsons等人, Nature 436:792 (2005);Hennessey等人, Nature Rev. Drug Disc. 4:988-1004 (2005))。 病症之治療
所提供之化合物為PI3Kα抑制劑且因此適用於治療一或多種與PI3Kα或其突變體之活性相關的病症。因此,在某些實施例中,本發明提供一種治療個體之PI3Kα介導之病症的方法,其包含向有需要之個體投與治療有效量之本發明化合物或其醫藥學上可接受之鹽,或前述任一者的醫藥學上可接受之組合物。在某些實施例中,本發明提供一種治療個體之PI3Kα介導之病症的方法,其包含向有需要之個體投與治療有效量之本發明化合物或其醫藥學上可接受之組合物。在一些實施例中,該個體具有突變PI3Kα。在一些實施例中,該個體具有含有以下突變中之至少一者的PI3Kα:H1047R、E542K及E545K。在一些實施例中,該個體具有含有以下突變中之至少一者的PI3Kα:E542K、E542Q、E545A、E545G、E545K、E545Q、Q546E、Q546K、Q546L、Q546P、Q546R、H1047R、H1047L、H1047Y、G1049R及G1049S。在一些實施例中,該個體具有含有以下突變中之至少一者的PI3Kα:E81X、R88X、R93X、G106X、R108X、K111X、G118X、A222X、V344X、N345X、G364X、E365X、C420X、E453X、P539X、E542X、E545X、Q546X、D549X、F667X、H701X、M1004X、Y1021X、T1025X、M1040X、M1043X、N1044X、H1047X、G1049X、I1058X、A1066X及N1068X,其中X為除其野生型以外的任何胺基酸。在一些實施例中,該個體具有含有以下突變中之至少一者的PI3Kα:E81K、R88Q、R93Q、R93W、G106R、G106V、R108H、K111N、K111E、G118D、A222V、V344A、N345K、G364R、E365K、C420R、E453A、E453K、P539R、E542K、E542Q、E545A、E545G、E545K、E545Q、Q546E、Q546K、Q546L、Q546P、Q546R、D549N、F667L、H701P、M1004I、Y1021C、T1025A、T1025N、M1040L、M1043I、M1043V、N1044K、H1047R、H1047L、H1047Y、G1049R、G1049S、I1058F、A1066V及N1068fs*4。
如本文所用,術語「PI3Kα介導之」病症、疾病及/或病況意謂已知PI3Kα或其突變體在其中起作用的任何疾病或其他有害病況。因此,本發明之另一實施例係關於治療已知PI3Kα或其突變體在其中起作用之一或多種疾病或減輕其嚴重程度。此類PI3Kα介導之病症包括但不限於細胞增生性病症(例如癌症)。在一些實施例中,PI3Kα介導之病症為由突變PI3Kα介導之病症。在一些實施例中,PI3Kα介導之病症為由含有以下突變中之至少一者之PI3Kα介導之病症:H1047R、E542K及E545K。在一些實施例中,該個體具有含有以下突變中之至少一者的PI3Kα:E542K、E542Q、E545A、E545G、E545K、E545Q、Q546E、Q546K、Q546L、Q546P、Q546R、H1047R、H1047L、H1047Y、G1049R及G1049S。在一些實施例中,該個體具有含有以下突變中之至少一者的PI3Kα:E81X、R88X、R93X、G106X、R108X、K111X、G118X、A222X、V344X、N345X、G364X、E365X、C420X、E453X、P539X、E542X、E545X、Q546X、D549X、F667X、H701X、M1004X、Y1021X、T1025X、M1040X、M1043X、N1044X、H1047X、G1049X、I1058X、A1066X及N1068X,其中X為除其野生型以外的任何胺基酸。在一些實施例中,該個體具有含有以下突變中之至少一者的PI3Kα:E81K、R88Q、R93Q、R93W、G106R、G106V、R108H、K111N、K111E、G118D、A222V、V344A、N345K、G364R、E365K、C420R、E453A、E453K、P539R、E542K、E542Q、E545A、E545G、E545K、E545Q、Q546E、Q546K、Q546L、Q546P、Q546R、D549N、F667L、H701P、M1004I、Y1021C、T1025A、T1025N、M1040L、M1043I、M1043V、N1044K、H1047R、H1047L、H1047Y、G1049R、G1049S、I1058F、A1066V及N1068fs*4。
在一些實施例中,本發明提供一種用於治療細胞增生性疾病之方法,該方法包含向有需要之患者投與治療有效量之本發明化合物,或其醫藥學上可接受之鹽,或前述中之任一者的醫藥學上可接受之組合物。在一些實施例中,本發明提供一種用於治療細胞增生性疾病之方法,該方法包含向有需要之患者投與治療有效量之本發明化合物,或其醫藥學上可接受之組合物。
在一些實施例中,治療方法包含以下步驟:i)鑑別需要此類治療之個體;(ii)提供所揭示之化合物或其醫藥學上可接受之鹽;及(iii)以治療有效量投與所提供之該化合物以治療、抑制及/或預防需要此類治療之個體的疾病狀態或病況。在一些實施例中,該個體具有突變PI3Kα。在一些實施例中,該個體具有含有以下突變中之至少一者的PI3Kα:H1047R、E542K及E545K。在一些實施例中,該個體具有含有以下突變中之至少一者的PI3Kα:E542K、E542Q、E545A、E545G、E545K、E545Q、Q546E、Q546K、Q546L、Q546P、Q546R、H1047R、H1047L、H1047Y、G1049R及G1049S。在一些實施例中,該個體具有含有以下突變中之至少一者的PI3Kα:E81X、R88X、R93X、G106X、R108X、K111X、G118X、A222X、V344X、N345X、G364X、E365X、C420X、E453X、P539X、E542X、E545X、Q546X、D549X、F667X、H701X、M1004X、Y1021X、T1025X、M1040X、M1043X、N1044X、H1047X、G1049X、I1058X、A1066X及N1068X,其中X為除其野生型以外的任何胺基酸。在一些實施例中,該個體具有含有以下突變中之至少一者的PI3Kα:E81K、R88Q、R93Q、R93W、G106R、G106V、R108H、K111N、K111E、G118D、A222V、V344A、N345K、G364R、E365K、C420R、E453A、E453K、P539R、E542K、E542Q、E545A、E545G、E545K、E545Q、Q546E、Q546K、Q546L、Q546P、Q546R、D549N、F667L、H701P、M1004I、Y1021C、T1025A、T1025N、M1040L、M1043I、M1043V、N1044K、H1047R、H1047L、H1047Y、G1049R、G1049S、I1058F、A1066V及N1068fs*4。
在一些實施例中,治療方法包含以下步驟:i)鑑別需要此類治療之個體;(ii)提供包含所揭示之化合物或其醫藥學上可接受之鹽的組合物;及(iii)以治療有效量投與該組合物以治療、遏制及/或預防需要此類治療之個體的疾病狀態或病況。在一些實施例中,該個體具有突變PI3Kα。在一些實施例中,該個體具有含有以下突變中之至少一者的PI3Kα:H1047R、E542K及E545K。在一些實施例中,該個體具有含有以下突變中之至少一者的PI3Kα:E542K、E542Q、E545A、E545G、E545K、E545Q、Q546E、Q546K、Q546L、Q546P、Q546R、H1047R、H1047L、H1047Y、G1049R及G1049S。在一些實施例中,該個體具有含有以下突變中之至少一者的PI3Kα:E81X、R88X、R93X、G106X、R108X、K111X、G118X、A222X、V344X、N345X、G364X、E365X、C420X、E453X、P539X、E542X、E545X、Q546X、D549X、F667X、H701X、M1004X、Y1021X、T1025X、M1040X、M1043X、N1044X、H1047X、G1049X、I1058X、A1066X及N1068X,其中X為除其野生型以外的任何胺基酸。在一些實施例中,該個體具有含有以下突變中之至少一者的PI3Kα:E81K、R88Q、R93Q、R93W、G106R、G106V、R108H、K111N、K111E、G118D、A222V、V344A、N345K、G364R、E365K、C420R、E453A、E453K、P539R、E542K、E542Q、E545A、E545G、E545K、E545Q、Q546E、Q546K、Q546L、Q546P、Q546R、D549N、F667L、H701P、M1004I、Y1021C、T1025A、T1025N、M1040L、M1043I、M1043V、N1044K、H1047R、H1047L、H1047Y、G1049R、G1049S、I1058F、A1066V及N1068fs*4。
本發明之另一態樣提供根據本文中之定義的化合物或其醫藥學上可接受之鹽,或前述任一者之醫藥組合物,其用於治療本文所描述之病症。本發明之另一態樣提供根據本文中之定義的化合物或其醫藥學上可接受之鹽或前述任一者之醫藥組合物用於治療本文所描述之病症的用途。類似地,本發明提供根據本文中之定義的化合物或其醫藥學上可接受之鹽用於製備供治療本文所描述之病症之藥物的用途。 細胞增生性病症
在一些實施例中,病症為細胞增生性疾病。在一些實施例中,細胞增生性疾病為癌症。在一些實施例中,癌症為腫瘤。在一些實施例中,癌症為實體腫瘤。在一些實施例中,該細胞增生性疾病為腫瘤及/或癌細胞生長。在一些實施例中,該細胞增生性疾病為腫瘤。在一些實施例中,該細胞增生性疾病為實體腫瘤。在一些實施例中,該細胞增生性疾病為癌細胞生長。
在一些實施例中,實體腫瘤具有含有以下突變中之至少一者的PI3Kα:E542X、E545X、Q546X、H1047X及G1049X,其中X為除其野生型以外的任何胺基酸。在一些實施例中,實體腫瘤具有含有以下突變中之至少一者的PI3Kα:E542K、E542Q、E545A、E545G、E545K、E545Q、Q546E、Q546K、Q546L、Q546P、Q546R、H1047R、H1047L、H1047Y、G1049R及G1049S。在一些實施例中,實體腫瘤具有含有以下突變中之至少一者的PI3Kα:H1047R、E542K及E545K。在一些實施例中,實體腫瘤具有含有以下突變中之至少一者的PI3Kα:E81X、R88X、R93X、G106X、R108X、K111X、G118X、A222X、V344X、N345X、G364X、E365X、C420X、E453X、P539X、E542X、E545X、Q546X、D549X、F667X、H701X、M1004X、Y1021X、T1025X、M1040X、M1043X、N1044X、H1047X、G1049X、I1058X、A1066X及N1068X,其中X為除其野生型以外的任何胺基酸。在一些實施例中,實體腫瘤具有含有以下突變中之至少一者的PI3Kα:E81K、R88Q、R93Q、R93W、G106R、G106V、R108H、K111N、K111E、G118D、A222V、V344A、N345K、G364R、E365K、C420R、E453A、E453K、P539R、E542K、E542Q、E545A、E545G、E545K、E545Q、Q546E、Q546K、Q546L、Q546P、Q546R、D549N、F667L、H701P、M1004I、Y1021C、T1025A、T1025N、M1040L、M1043I、M1043V、N1044K、H1047R、H1047L、H1047Y、G1049R、G1049S、I1058F、A1066V及N1068fs*4。
在一些實施例中,癌症係選自肉瘤;肺癌;支氣管癌;前列腺癌;乳癌(包括散發性乳癌及患考登氏病(Cowden disease));胰臟癌;胃腸道癌;大腸癌;直腸癌;癌瘤;大腸癌瘤;腺瘤;大腸直腸腺瘤;甲狀腺癌;肝癌;肝內膽管癌;肝細胞癌;腎上腺癌;胃癌(stomach/gastric);神經膠質瘤;神經膠母細胞瘤;子宮內膜癌;黑色素瘤;腎癌;腎盂癌;膀胱癌;子宮體癌;子宮頸癌;陰道癌;卵巢癌(包括透明細胞卵巢癌);多發性骨髓瘤;食道癌;白血病;急性骨髓性白血病;慢性骨髓性白血病;淋巴細胞性白血病;骨髓白血病;腦癌;腦癌瘤;口咽癌;喉癌;小腸癌;非霍奇金氏淋巴瘤(non-Hodgkin lymphoma);絨毛狀大腸腺瘤;贅瘤形成;上皮特徵贅瘤形成;淋巴瘤;乳房癌瘤;基底細胞癌瘤;鱗狀細胞癌瘤;光化性角化症;頸癌;頭癌;真性紅血球增多症;原發性血小板增多症;骨髓纖維化伴骨髓化生;及華氏巨球蛋白血症(Waldenstrom macroglobulinemia)。
在一些實施例中,癌症選自肺癌;支氣管癌;前列腺癌;乳癌(包括散發性乳癌及考登氏病);胰臟癌;胃腸道癌;大腸癌;直腸癌;甲狀腺癌;肝癌;肝內膽管癌;肝細胞癌;腎上腺癌;胃癌;子宮內膜癌;腎癌;腎盂癌;膀胱癌;子宮體癌;子宮頸癌;陰道癌;卵巢癌(包括透明細胞卵巢癌);食道癌;白血病;急性骨髓性白血病;慢性骨髓性白血病;淋巴細胞性白血病;骨髓性白血病;腦癌;口咽癌;喉癌;小腸癌;頸癌;及頭癌。在一些實施例中,癌症選自肉瘤;癌瘤;大腸癌瘤;腺瘤;大腸直腸腺瘤;神經膠質瘤;神經膠母細胞瘤;黑色素瘤;多發性骨髓瘤;腦癌瘤;非霍奇金氏淋巴瘤;絨毛狀大腸腺瘤;贅瘤形成;上皮特徵贅瘤形成;淋巴瘤;乳癌;基底細胞癌;鱗狀細胞癌;光化性角化症;真性紅血球增多症;原發性血小板增多症;骨髓纖維化伴骨髓化生;及華氏巨球蛋白血症。
在一些實施例中,癌症選自肺癌;支氣管癌;前列腺癌;乳癌(包括散發性乳癌及考登氏病);胰臟癌;胃腸道癌;大腸癌;直腸癌;甲狀腺癌;肝癌;肝內膽管癌;肝細胞癌;腎上腺癌;胃癌;子宮內膜癌;腎癌;腎盂癌;膀胱癌;子宮體癌;子宮頸癌;陰道癌;卵巢癌(包括透明細胞卵巢癌);食道癌;腦癌;口咽癌;喉癌;小腸癌;頸癌;及頭癌。在一些實施例中,癌症選自乳癌、腦癌、子宮頸癌、子宮內膜癌、食道癌、淋巴結癌、腎臟癌、大腸癌、肝癌、肺癌、卵巢癌、胰臟癌、陰莖癌、前列腺癌、皮膚癌、小腸癌、胃癌、甲狀腺癌、頭頸癌、胸腺癌及膀胱癌。在一些實施例中,癌症為白血病。在一些實施例中,該癌症為急性骨髓性白血病;慢性骨髓性白血病;淋巴細胞性白血病;或骨髓性白血病。
在一些實施例中,癌症為乳癌(包括散發性乳癌及考登氏病)。在一些實施例中,癌症為乳癌。在一些實施例中,癌症為ER+乳癌。在一些實施例中,癌症為ER+/HER2-乳癌。在一些實施例中,癌症為ER+/HER2-乳癌,且個體對艾培昔布治療不耐受或不適於用艾培昔布治療。在一些實施例中,癌症為散發性乳癌。在一些實施例中,癌症為考登氏病。
在一些實施例中,癌症為卵巢癌。在一些實施例中,卵巢癌為透明細胞卵巢癌。
在一些實施例中,癌症為鱗狀細胞癌。在一些實施例中,癌症為頭頸部鱗狀細胞癌。
在一些實施例中,癌症為子宮頸癌。
在一些實施例中,細胞增生性疾病具有突變PI3Kα。在一些實施例中,癌症具有突變PI3Kα。在一些實施例中,乳癌具有突變PI3Kα。在一些實施例中,卵巢癌具有突變PI3Kα。在一些實施例中,透明細胞卵巢癌具有突變PI3Kα。
在一些實施例中,細胞增生性疾病具有含有以下突變中之至少一者的PI3Kα:H1047R、E542K及E545K。在一些實施例中,細胞增生性疾病具有含有以下突變中之至少一者的PI3Kα:E542K、E542Q、E545A、E545G、E545K、E545Q、Q546E、Q546K、Q546L、Q546P、Q546R、H1047R、H1047L、H1047Y、G1049R及G1049S。在一些實施例中,細胞增生性疾病具有含有以下突變中之至少一者的PI3Kα:E81X、R88X、R93X、G106X、R108X、K111X、G118X、A222X、V344X、N345X、G364X、E365X、C420X、E453X、P539X、E542X、E545X、Q546X、D549X、F667X、H701X、M1004X、Y1021X、T1025X、M1040X、M1043X、N1044X、H1047X、G1049X、I1058X、A1066X及N1068X,其中X為除其野生型以外的任何胺基酸。在一些實施例中,細胞增生性疾病具有含有以下突變中之至少一者的PI3Kα:E81K、R88Q、R93Q、R93W、G106R、G106V、R108H、K111N、K111E、G118D、A222V、V344A、N345K、G364R、E365K、C420R、E453A、E453K、P539R、E542K、E542Q、E545A、E545G、E545K、E545Q、Q546E、Q546K、Q546L、Q546P、Q546R、D549N、F667L、H701P、M1004I、Y1021C、T1025A、T1025N、M1040L、M1043I、M1043V、N1044K、H1047R、H1047L、H1047Y、G1049R、G1049S、I1058F、A1066V及N1068fs*4。
在一些實施例中,癌症具有含有以下突變中之至少一者的PI3Kα:H1047R、E542K及E545K。在一些實施例中,癌症具有含有以下突變中之至少一者的PI3Kα:E542K、E542Q、E545A E545G、E545K、E545Q、Q546E、Q546K、Q546L、Q546P、Q546R、H1047R、H1047L、H1047Y、G1049R及G1049S。在一些實施例中,癌症具有含有以下突變中之至少一者的PI3Kα:E81X、R88X、R93X、G106X、R108X、K111X、G118X、A222X、V344X、N345X、G364X、E365X、C420X、E453X、P539X、E542X、E545X、Q546X、D549X、F667X、H701X、M1004X、Y1021X、T1025X、M1040X、M1043X、N1044X、H1047X、G1049X、I1058X、A1066X及N1068X,其中X為除其野生型以外的任何胺基酸。在一些實施例中,癌症具有含有以下突變中之至少一者的PI3Kα:E81K、R88Q、R93Q、R93W、G106R、G106V、R108H、K111N、K111E、G118D、A222V、V344A、N345K、G364R、E365K、C420R、E453A、E453K、P539R、E542K、E542Q、E545A、E545G、E545K、E545Q、Q546E、Q546K、Q546L、Q546P、Q546R、D549N、F667L、H701P、M1004I、Y1021C、T1025A、T1025N、M1040L、M1043I、M1043V、N1044K、H1047R、H1047L、H1047Y、G1049R、G1049S、I1058F、A1066V及N1068fs*4。
在一些實施例中,乳癌具有含有以下突變中之至少一者的PI3Kα:H1047R、E542K及E545K。在一些實施例中,乳癌具有含有以下突變中之至少一者的PI3Kα:E542K、E542Q、E545A、E545G、E545K、E545Q、Q546E、Q546K、Q546L、Q546P、Q546R、H1047R、H1047L、H1047Y、G1049R及G1049S。在一些實施例中,乳癌具有含有以下突變中之至少一者的PI3Kα:E81X、R88X、R93X、G106X、R108X、K111X、G118X、A222X、V344X、N345X、G364X、E365X、C420X、E453X、P539X、E542X、E545X、Q546X、D549X、F667X、H701X、M1004X、Y1021X、T1025X、M1040X、M1043X、N1044X、H1047X、G1049X、I1058X、A1066X及N1068X,其中X為除其野生型以外的任何胺基酸。在一些實施例中,乳癌具有含有以下突變中之至少一者的PI3Kα:E81K、R88Q、R93Q、R93W、G106R、G106V、R108H、K111N、K111E、G118D、A222V、V344A、N345K、G364R、E365K、C420R、E453A、E453K、P539R、E542K、E542Q、E545A、E545G、E545K、E545Q、Q546E、Q546K、Q546L、Q546P、Q546R、D549N、F667L、H701P、M1004I、Y1021C、T1025A、T1025N、M1040L、M1043I、M1043V、N1044K、H1047R、H1047L、H1047Y、G1049R、G1049S、I1058F、A1066V及N1068fs*4。
在一些實施例中,卵巢癌具有含有以下突變中之至少一者的PI3Kα:H1047R、E542K及E545K。在一些實施例中,卵巢癌具有含有以下突變中之至少一者的PI3Kα:E542K、E542Q、E545A、E545G、E545K、E545Q、Q546E、Q546K、Q546L、Q546P、Q546R、H1047R、H1047L、H1047Y、G1049R及G1049S。在一些實施例中,卵巢癌具有含有以下突變中之至少一者的PI3Kα:E81X、R88X、R93X、G106X、R108X、K111X、G118X、A222X、V344X、N345X、G364X、E365X、C420X、E453X、P539X、E542X、E545X、Q546X、D549X、F667X、H701X、M1004X、Y1021X、T1025X、M1040X、M1043X、N1044X、H1047X、G1049X、I1058X、A1066X及N1068X,其中X為除其野生型以外的任何胺基酸。在一些實施例中,卵巢癌具有含有以下突變中之至少一者的PI3Kα:E81K、R88Q、R93Q、R93W、G106R、G106V、R108H、K111N、K111E、G118D、A222V、V344A、N345K、G364R、E365K、C420R、E453A、E453K、P539R、E542K、E542Q、E545A、E545G、E545K、E545Q、Q546E、Q546K、Q546L、Q546P、Q546R、D549N、F667L、H701P、M1004I、Y1021C、T1025A、T1025N、M1040L、M1043I、M1043V、N1044K、H1047R、H1047L、H1047Y、G1049R、G1049S、I1058F、A1066V及N1068fs*4。
在一些實施例中,透明細胞卵巢癌具有含有以下突變中之至少一者的PI3Kα:H1047R、E542K及E545K。在一些實施例中,透明細胞卵巢癌具有含有以下突變中之至少一者的PI3Kα:E542K、E542Q、E545A、E545G、E545K、E545Q、Q546E、Q546K、Q546L、Q546P、Q546R、H1047R、H1047L、H1047Y、G1049R及G1049S。在一些實施例中,透明細胞卵巢癌具有含有以下突變中之至少一者的PI3Kα:E81X、R88X、R93X、G106X、R108X、K111X、G118X、A222X、V344X、N345X、G364X、E365X、C420X、E453X、P539X、E542X、E545X、Q546X、D549X、F667X、H701X、M1004X、Y1021X、T1025X、M1040X、M1043X、N1044X、H1047X、G1049X、I1058X、A1066X及N1068X,其中X為除其野生型以外的任何胺基酸。在一些實施例中,透明細胞卵巢癌具有含有以下突變中之至少一者的PI3Kα:E81K、R88Q、R93Q、R93W、G106R、G106V、R108H、K111N、K111E、G118D、A222V、V344A、N345K、G364R、E365K、C420R、E453A、E453K、P539R、E542K、E542Q、E545A、E545G、E545K、E545Q、Q546E、Q546K、Q546L、Q546P、Q546R、D549N、F667L、H701P、M1004I、Y1021C、T1025A、T1025N、M1040L、M1043I、M1043V、N1044K、H1047R、H1047L、H1047Y、G1049R、G1049S、I1058F、A1066V及N1068fs*4。
在一些實施例中,癌症為腺瘤;癌瘤;肉瘤;神經膠質瘤;神經膠母細胞瘤;黑色素瘤;多發性骨髓瘤;或淋巴瘤。在一些實施例中,癌症為大腸直腸腺瘤或絨毛狀大腸腺瘤。在一些實施例中,癌症為大腸癌瘤;腦癌瘤;乳房癌瘤;基底細胞癌瘤;或鱗狀細胞癌瘤。在一些實施例中,癌症為贅瘤形成或上皮特徵贅瘤形成。在一些實施例中,癌症為非霍奇金氏淋巴瘤。在一些實施例中,癌症為光化性角化症;真性紅血球增多症;原發性血小板增多症;骨髓纖維化伴骨髓化生;或華氏巨球蛋白血症。
在一些實施例中,細胞增生性疾病呈現PI3Kα之過度表現或擴增、PIK3CA之體細胞突變、PTEN之生殖系突變或體細胞突變,或用以上調p85-p110複合物之p85α之突變及易位。在一些實施例中,細胞增生性疾病呈現PI3Kα之過度表現或擴增。在一些實施例中,細胞增生性疾病呈現PIK3CA之體細胞突變。在一些實施例中,細胞增生性疾病呈現PTEN之生殖系突變或體細胞突變。在一些實施例中,細胞增生性疾病呈現用以上調p85-p110複合物的p85α之突變及易位。 另外病症
在一些實施例中,PI3Kα介導之病症係選自由以下組成之群:真性紅血球增多症、原發性血小板增多症、骨髓纖維化伴骨髓化生、哮喘、COPD、ARDS、PRO (PI3K相關過度生長症候群)、靜脈畸形、呂氏症候群(Loffler's syndrome)、嗜酸性球性肺炎、寄生蟲(尤其後生動物)感染(包括熱帶嗜支氣管性肺部麴菌症酸性球增多症)、、結節性多動脈炎(包括查格-施特勞斯症候群(Churg-Strauss syndrome))、嗜酸性球性肉芽腫、藥物反應引起的影響呼吸道之嗜酸性球相關病症、牛皮癬、接觸性皮炎、異位性皮炎、斑禿、多形性紅斑、疱疹樣皮炎、硬皮病、白斑病、過敏性血管炎、蕁麻疹、大皰性類天疱瘡、紅斑狼瘡、天疱瘡、後天性水皰性表皮松解症、自體免疫血液病症(例如溶血性貧血、再生不良性貧血、純紅血球再生不良及特發性血小板減少症)、全身性紅斑狼瘡、多軟骨炎、韋格納氏肉芽腫(Wegener granulomatosis)、皮肌炎、慢性活動性肝炎、重症肌無力、史帝芬-強生症候群(Steven-Johnson syndrome)、特發性腹瀉、自體免疫發炎性腸病(例如潰瘍性結腸炎及克羅恩氏病)、內分泌性眼病變、葛瑞夫茲氏病(Graves' disease)、類肉瘤病、肺泡炎、慢性過敏性肺炎、多發性硬化症、原發性膽汁性肝硬化、葡萄膜炎(前部及後部)、肺間質纖維化、牛皮癬性關節炎、腎小球腎炎、心血管疾病、動脈粥樣硬化、高血壓、深部靜脈栓塞、中風、心肌梗塞、不穩定型心絞痛、血管栓塞、肺栓塞、血栓溶解疾病、急性動脈缺血、周邊血栓閉塞及冠狀動脈疾病、再灌注損傷、視網膜病變(諸如糖尿病性視網膜病變或高壓氧誘發之視網膜病變)及以眼內壓升高或眼房液分泌為特徵的病況(諸如青光眼)。
在一些實施例中,PI3Kα介導之病症為真性紅血球增多症、原發性血小板增多症或骨髓纖維化伴骨髓化生。在一些實施例中,PI3Kα介導之病症為哮喘、COPD、ARDS、PROS (PI3K相關過度生長症候群)、靜脈畸形、呂氏症候群、嗜酸性球性肺炎、寄生蟲(尤其後生動物)感染(包括熱帶嗜酸性球增多症)或支氣管性肺部麴菌症。在一些實施例中,PI3Kα介導之病症為結節性多動脈炎(包括查格-施特勞斯症候群)、嗜酸性球性肉芽腫、由藥物反應引起之影響呼吸道之嗜酸性球相關病症、牛皮癬、接觸性皮炎、異位性皮炎、斑禿、多形性紅斑、疱疹樣皮炎或硬皮病。在一些實施例中,PI3Kα介導之病症為白斑病、過敏性血管炎、蕁麻疹、大皰性類天疱瘡、紅斑狼瘡、天疱瘡、後天大皰性表皮鬆懈或自體免疫血液病症(例如溶血性貧血、再生不全性貧血、純紅血球再生不良及特發性血小板減少症)。在一些實施例中,PI3Kα介導之病症為全身性紅斑性狼瘡症、多軟骨炎、硬皮病、韋格納氏肉芽腫、皮肌炎、慢性活動性肝炎、重症肌無力、史帝芬-強生症候群、特發性腹瀉或自體免疫發炎性腸病(例如潰瘍性結腸炎及克羅恩氏病)。
在一些實施例中,PI3Kα介導之病症為內分泌眼病變、葛瑞夫茲氏病、類肉瘤病、肺泡炎、慢性過敏性肺炎、多發性硬化症、原發性膽汁性肝硬化、葡萄膜炎(前部及後部)、肺間質纖維化或牛皮癬性關節炎。在一些實施例中,PI3Kα介導之病症為腎小球腎炎、心血管疾病、動脈粥樣硬化、高血壓、深靜脈血栓形成、中風、心肌梗塞、不穩定型心絞痛、血管栓塞、肺栓塞、血栓溶解疾病、急性動脈缺血、周邊血栓閉塞及冠狀動脈疾病或再灌注損傷。在一些實施例中,PI3Kα介導之病症為視網膜病變(諸如糖尿病性視網膜病變或高壓氧誘發之視網膜病變)及以眼內壓升高或眼房液分泌為特徵的病況(諸如青光眼)。 投與途徑及劑型
根據本發明之方法,化合物及組合物可使用有效治療病症(例如增生性病症)或減輕其嚴重程度的任何量及任何投與途徑投與。所需精確量將隨各個體而變化,視個體之物種、年齡及一般狀況、感染之嚴重程度、特定藥劑、其投與模式及其類似因素而定。較佳以單位劑型調配本發明之化合物以實現投與便利性及劑量均勻性。如本文所用,表述「單位劑型」係指適於待治療患者之藥劑的物理離散單位。然而,應理解,本發明之化合物及組合物的總日用量將由主治醫師在合理醫學判斷範疇內決定。用於任何特定患者或生物體之特定有效劑量水準將視多種因素而定,該等因素包括待治療病症及病症嚴重程度;所用特定化合物之活性;所用特定組合物;患者之年齡、體重、一般健康狀況、性別及膳食;所用特定化合物之投與時間、投與途徑及排泄率;治療持續時間;與所用特定化合物組合或同時使用之藥物;及醫學技術中熟知之類似因素。
本發明之醫藥學上可接受之組合物可經口、直腸、非經腸、腦池內、陰道內、腹膜內、局部(如藉由散劑、軟膏或滴劑)、經頰、作為經口或鼻用噴霧或其類似方式向人類及其他動物投與。在某些實施例中,本發明之化合物可以每天每公斤個體體重約0.01 mg至約50 mg及較佳約1 mg至約25 mg之劑量水準經口或非經腸投與一天一或多次以獲得所需治療效果。
用於經口投與之液體劑型包括但不限於醫藥學上可接受之乳液、微乳液、溶液、懸浮液、糖漿及酏劑。除活性化合物以外,液體劑型可含有:此項技術中常用之惰性稀釋劑,諸如水或其他溶劑;增溶劑及乳化劑,諸如乙醇、異丙醇、碳酸乙酯、乙酸乙酯、苯甲醇、苯甲酸苯甲酯、丙二醇、1,3-丁二醇、二甲基甲醯胺、油(尤其棉籽油、花生油、玉米油、胚芽油、橄欖油、蓖麻油及芝麻油)、甘油、四氫糠醇、聚乙二醇及脫水山梨糖醇之脂肪酸酯;及其混合物。除惰性稀釋劑以外,經口組合物亦可包括佐劑,諸如潤濕劑、乳化劑及懸浮劑、甜味劑、調味劑及芳香劑。
可根據已知技術使用適合之分散劑或潤濕劑及懸浮劑來調配可注射製劑,例如無菌可注射水性或油性懸浮液。無菌可注射製劑亦可為無毒非經腸可接受稀釋劑或溶劑中之無菌可注射溶液、懸浮液或乳液,例如1,3-丁二醇中之溶液。可接受之媒劑及溶劑可採用水、林格氏溶液、U.S.P.及等張氯化鈉溶液。另外,無菌不揮發性油習用作溶劑或懸浮介質。出於此目的,可採用任何溫和的不揮發性油,包括合成的單甘油酯或二甘油酯。另外,在製備可注射劑時使用脂肪酸,諸如油酸。
可例如藉由經由細菌截留過濾器過濾或藉由併入在使用之前可溶解或分散於無菌水或其他無菌可注射介質中之呈無菌固體組合物形式之滅菌劑來將可注射調配物滅菌。
為延長本發明之化合物之作用,通常需要減緩來自皮下或肌肉內注射之化合物之吸收。此可藉由使用水溶性較差之結晶或非晶形材料之液體懸浮液來實現。化合物之吸收率則視其溶解率而定,溶解率又可能視晶體大小及結晶形式而定。或者,藉由將化合物溶解或懸浮於油媒劑中來實現非經腸投與之化合物之延遲吸收。可注射積存形式係藉由在可生物降解聚合物(諸如聚乳酸交酯-聚乙交酯)中形成化合物之微膠囊基質來製得。視化合物與聚合物之比率及所採用之特定聚合物的性質而定,可控制化合物釋放之速率。其他可生物降解聚合物之實例包括聚(原酸酯)及聚(酸酐)。積存可注射調配物亦藉由將化合物包覆於與身體組織相容之脂質體或微乳液中來製備。
用於經直腸或經陰道投與之組合物較佳為栓劑,其可藉由將本發明之化合物與在環境溫度下為固體,但在體溫下為液體且因此在直腸或陰道腔中融化並釋放活性化合物之適合非刺激性賦形劑或載劑(諸如可可脂、聚乙二醇或栓劑蠟)混合來製備。
用於經口投與之固體劑型包括膠囊、錠劑、丸劑、散劑及顆粒劑。在此類固體劑型中,活性化合物可與以下混合:至少一種惰性、醫藥學上可接受之賦形劑或載劑,諸如檸檬酸鈉或磷酸氫鈣;及/或a)填充劑或增量劑,諸如澱粉、乳糖、蔗糖、葡萄糖、甘露糖醇及矽酸;b)黏合劑,諸如羧甲基纖維素、海藻酸鹽、明膠、聚乙烯吡咯啶酮、蔗糖及阿拉伯膠;c)保濕劑,諸如甘油;d)崩解劑,諸如瓊脂-瓊脂、碳酸鈣、馬鈴薯或木薯澱粉、褐藻酸、某些矽酸鹽及碳酸鈉;e)溶液阻滯劑,諸如石蠟;f)吸收促進劑,諸如四級銨化合物;g)潤濕劑,諸如鯨蠟醇及單硬脂酸甘油酯;h)吸收劑,諸如高嶺土及膨潤土;及i)潤滑劑,諸如滑石、硬脂酸鈣、硬脂酸鎂、固態聚乙二醇、月桂基硫酸鈉及其混合物。就膠囊、錠劑及丸劑而言,劑型亦可包含緩衝劑。
亦可採用類似類型之固體組合物作為軟填充及硬填充的明膠膠囊中之填充劑,該等膠囊使用賦形劑,諸如乳糖以及高分子量聚乙二醇及類似物。錠劑、糖衣藥丸、膠囊、丸劑及顆粒劑之固體劑型可製備有包衣及殼層,諸如腸溶包衣及醫藥調配技術中熟知之其他包衣。其可視情況含有失透劑,且亦可具有僅在或優先在腸道某一部分中視情況以延遲方式釋放活性成分之組成。可使用之包埋組合物之實例包括聚合物質及蠟。亦可採用類似類型之固體組合物作為軟填充及硬填充明膠膠囊中之填充劑,該等膠囊使用賦形劑,諸如乳糖以及高分子量聚乙二醇及類似物。
活性化合物亦可呈具有一或多種如上文所指出之賦形劑之微膠囊化形式。錠劑、糖衣藥丸、膠囊、丸劑及顆粒劑之固體劑型可製備有包衣及殼層,諸如腸溶包衣、釋放控制包衣及醫藥調配技術中熟知之其他包衣。在此類固體劑型中,活性化合物可與至少一種惰性稀釋劑(諸如蔗糖、乳糖或澱粉)混雜。如在一般實踐中,此類劑型亦可包含除惰性稀釋劑以外之另外物質,例如製錠潤滑劑及其他製錠助劑,諸如硬脂酸鎂及微晶纖維素。就膠囊、錠劑及丸劑而言,劑型亦可包含緩衝劑。其可視情況含有失透劑,且亦可具有僅在或優先在腸道某一部分中視情況以延遲方式釋放活性成分之組成。可使用之包埋組合物之實例包括聚合物質及蠟。
用於局部或經皮投與本發明之化合物之劑型包括軟膏、糊劑、乳膏、乳劑、凝膠、散劑、溶液、噴霧劑、吸入劑或貼片。活性組分在無菌條件下與醫藥學上可接受之載劑及可能需要之任何所需防腐劑或緩衝劑混雜。眼用調配物、滴耳劑及滴眼劑亦涵蓋於本發明之範疇內。另外,本發明考慮使用經皮貼片,其具有向身體受控遞送化合物之附加優勢。此類劑型可藉由將化合物溶解或分配於適當介質中來製備。亦可使用吸收增進劑來增加化合物之透皮量。速率可藉由提供速率控制膜或藉由將化合物分散於聚合物基質或凝膠中來控制。 給藥量及方案
根據本發明之方法,向個體投與治療有效量之本發明之化合物,例如以減少或改善個體之病症之症狀。此量容易由熟習此項技術者基於已知程序確定,該等程序包括對活體內確定的滴定曲線之分析以及本文所揭示之方法及分析。
在一些實施例中,方法包含投與治療有效劑量的本發明化合物。在一些實施例中,治療有效劑量為每公斤體重至少約0.0001 mg、每公斤體重至少約0.001 mg、每公斤體重至少約0.01 mg、每公斤體重至少約0.05 mg、每公斤體重至少約0.1 mg、每公斤體重至少約0.25 mg、每公斤體重至少約0.3 mg、每公斤體重至少約0.5 mg、每公斤體重至少約0.75 mg、每公斤體重至少約1 mg、每公斤體重至少約2 mg、每公斤體重至少約3 mg、每公斤體重至少約4 mg、每公斤體重至少約5 mg、每公斤體重至少約6 mg、每公斤體重至少約7 mg、每公斤體重至少約8 mg、每公斤體重至少約9 mg、每公斤體重至少約10 mg、每公斤體重至少約15 mg、每公斤體重至少約20 mg、每公斤體重至少約25 mg、每公斤體重至少約30 mg、每公斤體重至少約40 mg、每公斤體重至少約50 mg、每公斤體重至少約75 mg、每公斤體重至少約100 mg、每公斤體重至少約200 mg、每公斤體重至少約250 mg、每公斤體重至少約300 mg、每公斤體重至少約350 mg、每公斤體重至少約400 mg、每公斤體重至少約450 mg、每公斤體重至少約500 mg、每公斤體重至少約550 mg、每公斤體重至少約600 mg、每公斤體重至少約650 mg、每公斤體重至少約700 mg、每公斤體重至少約750 mg、每公斤體重至少約800 mg、每公斤體重至少約900 mg,或每公斤體重至少約1000 mg。應認識到,本文所列劑量中之任一者可構成上限或下限劑量範圍,且可與任何其他劑量組合以構成包含上限值及下限值之劑量範圍。
在一些實施例中,治療有效劑量的範圍為每公斤體重約0.1 mg至約10 mg、每公斤體重約0.1 mg至約6 mg、每公斤體重約0.1 mg至約4 mg或每公斤體重約0.1 mg至約2 mg之範圍內。
在一些實施例中,治療有效劑量之範圍為約1至500 mg、約2至150 mg、約2至120 mg、約2至80 mg、約2至40 mg、約5至150 mg、約5至120 mg、約5至80 mg、約10至150 mg、約10至120 mg、約10至80 mg、約10至40 mg、約20至150 mg、約20至120 mg、約20至80 mg、約20至40 mg、約40至150 mg、約40至120 mg或約40至80 mg。在一些實施例中,治療有效劑量之範圍為約1至2,000 mg、約250至2,000 mg、約250至1,500 mg、約250至1,000 mg、約250至750 mg、約250至500 mg、約500至2,000 mg、約500至1,500 mg、約500至1,000 mg、約500至750 mg、約750至2,000 mg、約750至1,500 mg、約750至1,000 mg、約1,000至2,000 mg、約1,000至1,500 mg或約1,500至2,000 mg。
在一些實施例中,方法包含單次給藥或投與(例如以單次注射或沈積之形式)。或者,在一些實施例中,方法包含每日一次、每日兩次、每日三次或每日四次向有需要之個體投與,持續約2至約28天、或約7至約10天、或約7至約15天或更久之時段。在一些實施例中,方法包含長期投與。在其他實施例中,方法包含歷經數週、數月、數年或數十年之療程投與。在其他實施例中,方法包含歷經數週之療程投與。在其他實施例中,方法包含歷經數月之療程投與。在其他實施例中,該等方法包含歷經數年之療程投與。在其他實施例中,方法包含歷經數十年之療程投與。
所投與劑量可視已知因素而變化,該等因素諸如活性成分之藥效學特徵以及其投與模式及途徑;活性成分之投與時間;接受者之年齡、性別、健康狀況及體重;症狀之性質及程度;並行治療之種類、治療頻率及所需效果;以及分泌速率。所有此等因素皆容易確定,且熟習此項技術者可使用此等因素來調整或滴定劑量及/或給藥方案。 蛋白激酶之抑制
根據一個實施例,本發明係關於一種抑制生物樣本中之蛋白激酶活性之方法,其包含使該生物樣本與本發明之化合物或包含該化合物之組合物接觸的步驟。根據另一實施例,本發明係關於一種抑制生物樣本中PI3K或其突變體之活性的方法,該方法包含使該生物樣本與本發明之化合物或包含該化合物之組合物接觸的步驟。根據另一實施例,本發明係關於一種抑制生物樣本中PI3Kα或其突變體之活性的方法,其包含使該生物樣本與本發明之化合物或包含該化合物之組合物接觸的步驟。在一些實施例中,該PI3Kα為突變PI3Kα。在一些實施例中,PI3Kα含有以下突變中之至少一者:H1047R、E542K及E545K。在一些實施例中,PI3Kα含有以下突變中之至少一者:E81X、R88X、R93X、G106X、R108X、K111X、G118X、A222X、V344X、N345X、G364X、E365X、C420X、E453X、P539X、E542X、E545X、Q546X、D549X、F667X、H701X、M1004X、Y1021X、T1025X、M1040X、M1043X、N1044X、H1047X、G1049X、I1058X、A1066X及N1068X,其中X為除其野生型以外的任何胺基酸。在一些實施例中,PI3Kα含有以下突變中之至少一者:E81K、R88Q、R93Q、R93W、G106R、G106V、R108H、K111N、K111E、G118D、A222V、V344A、N345K、G364R、E365K、C420R、E453A、E453K、P539R、E542K、E542Q、E545A、E545G、E545K、E545Q、Q546E、Q546K、Q546L、Q546P、Q546R、D549N、F667L、H701P、M1004I、Y1021C、T1025A、T1025N、M1040L、M1043I、M1043V、N1044K、H1047R、H1047L、H1047Y、G1049R、G1049S、I1058F、A1066V及N1068fs*4。
在另一實施例中,本發明提供一種相對於PI3Kδ及PI3Kγ中之一或兩者選擇性抑制PI3Kα之方法。在一些實施例中,相對於PI3Kδ及PI3Kγ,本發明之化合物具有大於5倍之選擇性。在一些實施例中,相對於PI3Kδ及PI3Kγ,本發明之化合物具有大於10倍之選擇性。在一些實施例中,相對於PI3Kδ及PI3Kγ,本發明之化合物具有大於50倍之選擇性。在一些實施例中,相對於PI3Kδ及PI3Kγ,本發明之化合物具有大於100倍之選擇性。在一些實施例中,相對於PI3Kδ及PI3Kγ,本發明之化合物具有大於200倍之選擇性。在一些實施例中,該PI3Kα為突變PI3Kα。在一些實施例中,PI3Kα含有以下突變中之至少一者:H1047R、E542K及E545K。在一些實施例中,PI3Kα含有以下突變中之至少一者:E81X、R88X、R93X、G106X、R108X、K111X、G118X、A222X、V344X、N345X、G364X、E365X、C420X、E453X、P539X、E542X、E545X、Q546X、D549X、F667X、H701X、M1004X、Y1021X、T1025X、M1040X、M1043X、N1044X、H1047X、G1049X、I1058X、A1066X及N1068X,其中X為除其野生型以外的任何胺基酸。在一些實施例中,PI3Kα含有以下突變中之至少一者:E81K、R88Q、R93Q、R93W、G106R、G106V、R108H、K111N、K111E、G118D、A222V、V344A、N345K、G364R、E365K、C420R、E453A、E453K、P539R、E542K、E542Q、E545A、E545G、E545K、E545Q、Q546E、Q546K、Q546L、Q546P、Q546R、D549N、F667L、H701P、M1004I、Y1021C、T1025A、T1025N、M1040L、M1043I、M1043V、N1044K、H1047R、H1047L、H1047Y、G1049R、G1049S、I1058F、A1066V及N1068fs*4。
在另一實施例中,本發明提供一種相對於野生型PI3Kα選擇性抑制突變PI3Kα之方法。在一些實施例中,相對於野生型PI3Kα,本發明之化合物對突變PI3Kα具有大於5倍之選擇性。在一些實施例中,相對於野生型PI3Kα,本發明之化合物對突變PI3Kα具有大於10倍之選擇性。在一些實施例中,相對於野生型PI3Kα,本發明之化合物對突變PI3Kα具有大於50倍之選擇性。在一些實施例中,相對於野生型PI3Kα,本發明之化合物對突變PI3Kα具有大於100倍之選擇性。在一些實施例中,相對於野生型PI3Kα,本發明之化合物對突變PI3Kα具有大於200倍之選擇性。在一些實施例中,突變PI3Kα含有以下突變中之至少一者:H1047R、E542K及E545K。在一些實施例中,突變PI3Kα含有以下突變中之至少一者:E81X、R88X、R93X、G106X、R108X、K111X、G118X、A222X、V344X、N345X、G364X、E365X、C420X、E453X、P539X、E542X、E545X、Q546X、D549X、F667X、H701X、M1004X、Y1021X、T1025X、M1040X、M1043X、N1044X、H1047X、G1049X、I1058X、A1066X及N1068X,其中X為除其野生型以外的任何胺基酸。在一些實施例中,突變PI3Kα含有以下突變中之至少一者:E81K、R88Q、R93Q、R93W、G106R、G106V、R108H、K111N、K111E、G118D、A222V、V344A、N345K、G364R、E365K、C420R、E453A、E453K、P539R、E542K、E542Q、E545A、E545G、E545K、E545Q、Q546E、Q546K、Q546L、Q546P、Q546R、D549N、F667L、H701P、M1004I、Y1021C、T1025A、T1025N、M1040L、M1043I、M1043V、N1044K、H1047R、H1047L、H1047Y、G1049R、G1049S、I1058F、A1066V及N1068fs*4。
如本文所用,術語「生物樣本」包括但不限於細胞培養物或其提取物;自哺乳動物所獲得之活組織檢查材料或其提取物;及血液、唾液、尿液、糞便、精液、眼淚或其他體液或其提取物。
抑制生物樣本中PI3K (例如PI3Kα或其突變體)之活性適用於熟習此項技術者已知之多種目的。此類目的之實例包括但不限於輸血、器官移植、生物試樣儲存及生物分析。
本發明之另一實施例係關於一種抑制患者之蛋白激酶活性的方法,其包含向該患者投與本發明之化合物或包含該化合物之組合物的步驟。
根據另一實施例,本發明係關於一種抑制患者中PI3K或其突變體之活性的方法,該方法包含向該患者投與本發明之化合物或包含該化合物之組合物的步驟。在一些實施例中,本發明係關於一種抑制患者中PI3Kα或其突變體之活性的方法,包含向該患者投與本發明之化合物或包含該化合物之組合物的步驟。在一些實施例中,該PI3Kα為突變PI3Kα。在一些實施例中,PI3Kα含有以下突變中之至少一者:H1047R、E542K及E545K。在一些實施例中,PI3Kα含有以下突變中之至少一者:E81X、R88X、R93X、G106X、R108X、K111X、G118X、A222X、V344X、N345X、G364X、E365X、C420X、E453X、P539X、E542X、E545X、Q546X、D549X、F667X、H701X、M1004X、Y1021X、T1025X、M1040X、M1043X、N1044X、H1047X、G1049X、I1058X、A1066X及N1068X,其中X為除其野生型以外的任何胺基酸。在一些實施例中,PI3Kα含有以下突變中之至少一者:E81K、R88Q、R93Q、R93W、G106R、G106V、R108H、K111N、K111E、G118D、A222V、V344A、N345K、G364R、E365K、C420R、E453A、E453K、P539R、E542K、E542Q、E545A、E545G、E545K、E545Q、Q546E、Q546K、Q546L、Q546P、Q546R、D549N、F667L、H701P、M1004I、Y1021C、T1025A、T1025N、M1040L、M1043I、M1043V、N1044K、H1047R、H1047L、H1047Y、G1049R、G1049S、I1058F、A1066V及N1068fs*4。
根據另一實施例,本發明提供一種治療有需要之患者的由PI3K或其突變體介導之病症的方法,該方法包含向該患者投與根據本發明之化合物或其醫藥學上可接受之組合物的步驟。在一些實施例中,本發明提供一種治療有需要之患者的由PI3Kα或其突變體介導之病症的方法,其包含向該患者投與根據本發明之化合物或其醫藥學上可接受之組合物的步驟。在一些實施例中,該PI3Kα為突變PI3Kα。在一些實施例中,PI3Kα含有以下突變中之至少一者:H1047R、E542K及E545K。在一些實施例中,PI3Kα含有以下突變中之至少一者:E81X、R88X、R93X、G106X、R108X、K111X、G118X、A222X、V344X、N345X、G364X、E365X、C420X、E453X、P539X、E542X、E545X、Q546X、D549X、F667X、H701X、M1004X、Y1021X、T1025X、M1040X、M1043X、N1044X、H1047X、G1049X、I1058X、A1066X及N1068X,其中X為除其野生型以外的任何胺基酸。在一些實施例中,PI3Kα含有以下突變中之至少一者:E81K、R88Q、R93Q、R93W、G106R、G106V、R108H、K111N、K111E、G118D、A222V、V344A、N345K、G364R、E365K、C420R、E453A、E453K、P539R、E542K、E542Q、E545A、E545G、E545K、E545Q、Q546E、Q546K、Q546L、Q546P、Q546R、D549N、F667L、H701P、M1004I、Y1021C、T1025A、T1025N、M1040L、M1043I、M1043V、N1044K、H1047R、H1047L、H1047Y、G1049R、G1049S、I1058F、A1066V及N1068fs*4。
根據另一實施例,本發明提供一種抑制個體中PI3Kα或其突變體之信號傳導活性的方法,該方法包含向有需要之個體投與治療有效量之根據本發明之化合物或其醫藥學上可接受之組合物。在一些實施例中,本發明提供一種抑制個體中之PI3Kα信號傳導活性的方法,該方法包含向有需要之個體投與治療有效量的根據本發明之化合物或其醫藥學上可接受之組合物。在一些實施例中,該PI3Kα為突變PI3Kα。在一些實施例中,PI3Kα含有以下突變中之至少一者:H1047R、E542K及E545K。在一些實施例中,該個體具有突變PI3Kα。在一些實施例中,該個體具有含有以下突變中之至少一者的PI3Kα:H1047R、E542K及E545K。在一些實施例中,該個體具有含有以下突變中之至少一者的PI3Kα:E81X、R88X、R93X、G106X、R108X、K111X、G118X、A222X、V344X、N345X、G364X、E365X、C420X、E453X、P539X、E542X、E545X、Q546X、D549X、F667X、H701X、M1004X、Y1021X、T1025X、M1040X、M1043X、N1044X、H1047X、G1049X、I1058X、A1066X及N1068X,其中X為除其野生型以外的任何胺基酸。在一些實施例中,該個體具有含有以下突變中之至少一者的PI3Kα:E81K、R88Q、R93Q、R93W、G106R、G106V、R108H、K111N、K111E、G118D、A222V、V344A、N345K、G364R、E365K、C420R、E453A、E453K、P539R、E542K、E542Q、E545A、E545G、E545K、E545Q、Q546E、Q546K、Q546L、Q546P、Q546R、D549N、F667L、H701P、M1004I、Y1021C、T1025A、T1025N、M1040L、M1043I、M1043V、N1044K、H1047R、H1047L、H1047Y、G1049R、G1049S、I1058F、A1066V及N1068fs*4。
本文所描述之化合物亦可經由併入至催化PI3Kα破壞之藥劑中來抑制PI3Kα功能。舉例而言,可將化合物併入蛋白質水解靶向嵌合體(PROTAC)中。PROTAC為雙功能分子,其中一個部分能夠接合E3泛蛋白連接酶且另一部分能夠結合意欲藉由細胞蛋白品質控制機制進行降解的目標蛋白。靶蛋白募集至特定E3連接酶使得其經標記用於破壞(亦即泛蛋白化)且隨後由蛋白酶體降解。可使用任何E3連接酶。PROTAC中與E3連接酶接合的部分經由連接子連接至PROTAC中與目標蛋白接合的部分,該連接子由可變原子鏈組成。因此,PI3Kα募集至E3連接酶將導致PI3Kα蛋白質破壞。可變原子鏈可包括例如環、雜原子及/或重複聚合單元。其可為剛性或柔性的。其可使用有機合成技術中之標準技術連接至上文所描述之兩個部分。 組合療法
視待治療之特定病症、病況或疾病而定,可將通常為了治療該病況而投與的另外治療劑與本發明之化合物及組合物組合投與。如本文所用,通常投與以治療特定疾病或病況之另外治療劑稱作「適於所治療之疾病或病況」。
另外,PI3K充當整合平行信號傳導路徑之第二信使節點,且有證據表明PI3K抑制劑與其他路徑之抑制劑之組合將適用於治療癌症及細胞增生性疾病。
因此,在某些實施例中,治療方法包含將本發明之化合物或組合物與一或多種另外治療劑組合投與。在某些其他實施例中,治療方法包含將本發明之化合物或組合物作為唯一的治療劑投與。
大約20%-30%之人類乳癌過度表現Her-2/neu-ErbB2,其為藥物曲妥珠單抗(trastuzumab)之目標。儘管已證實曲妥珠單抗在一些表現Her2/neu-ErbB2之患者中的持久反應,但此等患者中僅一部分有反應。近來的研究已表明,此有限反應率可藉由曲妥珠單抗與PI3K或PI13K/AKT路徑抑制劑之組合顯著改良(Chan等人, Breast Can. Res. Treat. 91:187 (2005)、Woods Ignatoski等人, Brit. J. Cancer 82:666 (2000)、Nagata等人, Cancer Cell 6:117 (2004))。因此,在某些實施例中,治療方法包含投與本發明之化合物或組合物與曲妥珠單抗之組合。在某些實施例中,癌症為過度表現Her-2/neu-ErbB2之人類乳癌。
多種人類惡性病表現活化突變或Her1/EGFR含量增加,且已針對此受體酪胺酸激酶研發出多種抗體及小分子抑制劑,包括得舒緩(tarceva)、吉非替尼(gefitinib)及爾必得舒(erbitux)。然而,儘管EGFR抑制劑在某些人類腫瘤(例如NSCLC)中展現抗腫瘤活性,但其未能在所有患有表現EGFR之腫瘤的患者中增加總患者存活率。此可由於Her1/EGFR之許多下游目標在包括PI3K/Akt路徑之多種惡性病中以高頻率突變或失調之事實而合理化。
舉例而言,吉非替尼抑制活體外分析中腺癌細胞株之生長。然而,可選擇對吉非替尼具有抗性之此等細胞株之亞純系,其展現PI3/Akt路徑之活化增加。此路徑之下調或抑制使得抗性亞純系對吉非替尼敏感(Kokubo等人, Brit. J. Cancer 92:1711 (2005))。此外,在具有攜帶PTEN突變且過度表現PI3K/Akt路徑及EGFR兩者之EGFR抑制之細胞株的乳癌之活體外模型中產生協同效應(She等人, Cancer Cell 8:287-297 (2005))。此等結果表明吉非替尼與PI3K/Akt路徑抑制劑之組合將為癌症之有吸引力的治療策略。
因此,在某些實施例中,治療方法包含投與本發明之化合物或組合物與Her1/EGFR抑制劑之組合。在某些實施例中,治療方法包含投與本發明之化合物或組合物與得舒緩、吉非替尼及爾必得舒中之一或多者之組合。在某些實施例中,治療方法包含投與本發明之化合物或組合物與吉非替尼之組合。在某些實施例中,癌症表現活化突變或Her1/EGFR含量增加。
AEE778 (Her-2/neu/ErbB2、VEGFR及EGFR之抑制劑)及RAD001 (mTOR之抑制劑,Akt之下游目標)之組合在神經膠母細胞瘤異種移植模型中產生比任一單獨藥劑更大的組合功效(Goudar等人, Mol. Cancer. Ther. 4:101-112 (2005))。
抗雌激素(諸如他莫昔芬(tamoxifen))經由誘導需要細胞週期抑制劑p27Kip之作用的細胞週期停滯來抑制乳癌生長。最近,已顯示Ras-Raf-MAP激酶路徑之活化改變p27Kip之磷酸化狀態,使得其遏制細胞週期之抑制活性減弱,從而促成抗雌激素抗性(Donovan等人, J. Biol. Chem. 276:40888, (2001))。如由Donovan等人報導,經由用MEK抑制劑治療來抑制MAPK信號傳導,逆轉激素難治性乳癌細胞株中p27之磷酸化狀態且因此恢復激素敏感性。類似地,p27Kip經Aid之磷酸化亦消除其遏制細胞週期之作用(Viglietto等人, Nat. Med. 8:1145 (2002))。
因此,在某些實施例中,治療方法包含投與本發明之化合物或組合物與激素依賴性癌症治療之組合。在某些實施例中,治療方法包含投與本發明之化合物或組合物與他莫昔芬之組合。在某些實施例中,癌症為激素依賴性癌症,諸如乳癌及前列腺癌。藉由此用途,旨在藉由習知抗癌劑逆轉此等癌症中通常可見之激素抗性。
在血液癌,諸如慢性骨髓性白血病(CML)中,染色體易位造成組成性活化之BCR-Abl酪胺酸激酶。罹病患者由於Abl激酶活性之抑制而回應於小分子酪胺酸激酶抑制劑伊馬替尼(imatinib)。然而,許多晚期疾病患者最初對伊馬替尼有反應,但隨後由於Abl激酶域中賦予抗性之突變而後復發。活體外研究已證實BCR-Ab1採用Ras-Raf激酶路徑引發其作用。另外,抑制一種以上之相同路徑之激酶提供針對賦予抗性之突變的附加保護。
因此,在另一態樣中,本發明之化合物及組合物與至少一種選自激酶抑制劑之群的另外藥劑(諸如伊馬替尼)組合用於治療血液癌,諸如慢性骨髓性白血病(CML)。藉由此用途,旨在逆轉或防止對該至少一種另外藥劑之抗性。
由於PI3K/Akt路徑之活化驅動細胞存活,因此與驅動癌細胞凋亡之療法(包括放射線療法及化學療法)組合之路徑抑制將使得反應改良(Ghobrial等人, CA Cancer J. Clin 55:178-194 (2005))。舉例而言,PI3激酶抑制劑與卡鉑(carboplatin)之組合在活體外增殖及凋亡分析以及卵巢癌異種移植模型中之活體內腫瘤功效方面展現協同效應(Westfall及Skinner, Mol. Cancer Ther. 4:1764-1771 (2005))。
在一些實施例中,一或多種另外治療劑係選自抗體、抗體-藥物結合物、激酶抑制劑、免疫調節劑及組蛋白去乙醯酶抑制劑。與PIK3CA抑制劑及其他治療劑之協同組合描述於例如Castel等人, Mol. Cell Oncol. (2014)1(3) e963447中。
在一些實施例中,一或多種另外治療劑係選自以下藥劑或其醫藥學上可接受之鹽:BCR-ABL抑制劑(參見例如Ultimo等人Oncotarget (2017) 8 (14) 23213-23227):例如伊馬替尼、伊羅替尼(inilotinib)、尼羅替尼(nilotinib)、達沙替尼(dasatinib)、伯舒替尼(bosutinib)、普納替尼(ponatinib)、巴氟替尼(bafetinib)、達魯舍替(danusertib)、塞卡替尼(saracatinib)、PF03814735;ALK抑制劑(參見Yang等人Tumour Biol. (2014) 35 (10) 9759-67):例如克唑替尼(crizotinib)、NVP-TAE684、色瑞替尼(ceritinib)、阿來替尼(alectinib)、布加替尼(brigatinib)、恩特希尼(entrecinib)、勞拉替尼(lorlatinib);BRAF抑制劑(參見例如Silva等人Mol. Cancer Res. (2014) 12, 447-463):例如維羅非尼(vemurafenib)、達拉非尼(dabrafenib);FGFR抑制劑(參見例如Mol. Cancer Ther. (2017) 16(4) 637-648):例如英非替尼(infigratinib)、多韋替尼(dovitinib)、厄達替尼(erdafitinib)、TAS-120、培米替尼(pemigatinib)、BLU-554、AZD4547;FLT3抑制劑:例如舒尼替尼(sunitinib)、米哚妥林(midostaurin)、塔努替尼(tanutinib)、索拉非尼(sorafenib)、來他替尼(lestaurtinib)、喹紮替尼(quizartinib)及克拉尼布(crenolanib);MEK抑制劑(參見例如Jokinen等人Ther. Adv. Med. Oncol. (2015) 7(3) 170-180):例如曲美替尼(trametinib)、考比替尼(cobimetinib)、貝美替尼(binimetinib)、司美替尼(selumetinib);ERK抑制劑:例如優立替尼(ulixertinib)、MK 8353、LY 3214996;KRAS抑制劑:例如AMG-510、MRTX849、ARS-3248;酪胺酸激酶抑制劑(參見例如Makhov等人Mol. Cancer. Ther. (2012) 11(7) 1510-1517):例如埃羅替尼(erlotinib)、立尼法尼(linifanib)、舒尼替尼(sunitinib)、帕唑帕尼(pazopanib);表皮生長因子受體(EGFR)抑制劑(參見例如She等人BMC Cancer (2016) 16, 587):吉非替尼(gefitnib)、奧希替尼(osimertinib)、西妥昔單抗(cetuximab)、帕尼單抗(panitumumab);HER2受體抑制劑(參見例如Lopez等人Mol. Cancer Ther. (2015) 14(11) 2519-2526):例如曲妥珠單抗、帕妥株單抗(pertuzumab)、來那替尼(neratinib)、拉帕替尼(lapatinib)、拉帕替尼;MET抑制劑(參見例如Hervieu等人Front. Mol. Biosci. (2018) 5, 86):例如克唑替尼(crizotinib)、卡博替尼(cabozantinib);CD20抗體:例如利妥昔單抗、托西莫單抗(tositumomab)、奧伐木單抗(ofatumumab);DNA合成抑制劑:例如卡培他濱(capecitabine)、吉西他濱(gemcitabine)、奈拉濱(nelarabine)、羥基脲;抗腫瘤劑(參見例如Wang等人Cell Death & Disease (2018) 9, 739):例如奧沙利鉑(oxaliplatin)、卡鉑、順鉑(cisplatin);免疫調節劑:例如阿托珠單抗(afutuzumab)、來那度胺(lenalidomide)、沙立度胺(thalidomide)、泊利度胺(pomalidomide);CD40抑制劑:例如達西組單抗(dacetuzumab);促細胞凋亡受體促效劑(PARA):例如杜拉樂明(dulanermin);熱休克蛋白(HSP)抑制劑(參見例如Chen等人Oncotarget (2014) 5 (9). 2372-2389):例如坦螺旋黴素(tanespimycin);刺蝟(Hedgehog)拮抗劑(參見例如Chaturvedi等人Oncotarget (2018) 9 (24), 16619-16633):例如維莫德吉(vismodegib);蛋白酶體抑制劑(參見例如Lin等人Int. J. Oncol. (2014) 44 (2), 557-562):例如硼替佐米(bortezomib);PI3K抑制劑:例如皮克昔布(pictilisib)、達妥昔布(dactolisib)、艾培昔布(alpelisib)、布帕昔布(buparlisib)、泰尼昔布(taselisib)、艾德昔布(idelalisib)、杜維昔布(duvelisib)、溫布昔布(umbralisib);SHP2抑制劑(參見例如Sun等人Am. J. Cancer Res. (2019) 9 (1), 149-159:例如SHP099、RMC-4550、RMC-4630);BCL-2抑制劑(參見例如Bojarczuk等人Blood (2018) 133 (1), 70-80):例如維奈托克(venetoclax);芳香酶抑制劑(參見例如Mayer等人Clin. Cancer Res. (2019) 25 (10), 2975-2987):依西美坦(exemestane)、來曲唑(letrozole)、阿那曲唑(anastrozole)、氟維司群(fulvestrant)、他莫昔芬(tamoxifen);mTOR抑制劑(參見例如Woo等人Oncogenesis (2017) 6, e385):例如坦西莫司(temsirolimus)、地磷莫司(ridaforolimus)、依維莫司(everolimus)、西羅莫司(sirolimus);CTLA-4抑制劑(參見例如O'Donnell等人(2018) 48, 91-103):例如曲美木單抗(tremelimumab)、伊匹木單抗(ipilimumab);PD1抑制劑(參見O'Donnell,見上文):例如納武單抗(nivolumab)、帕博利珠單抗(pembrolizumab);免疫黏附素;其他免疫檢查點抑制劑(參見例如Zappasodi等人Cancer Cell (2018) 33, 581-598,其中術語「免疫檢查點」係指CD4及CD8 T細胞之細胞表面上的分子群。免疫檢查點分子包括但不限於計劃性死亡1 (PD-1)、細胞毒性T淋巴球抗原4 (CTLA-4)、B7H1、B7H4、OX-40、CD 137、CD40及LAG3。可充當適用於本發明方法之免疫檢查點抑制劑的免疫治療劑包括但不限於PD-L1、PD-L2、CTLA4、TIM3、LAG3、VISTA、BTLA、TIGIT、LAIR1、CD 160、2B4及/或TGFR β之抑制劑:例如匹地利珠單抗(pidilizumab)、AMP-224;PDL1抑制劑(參見例如O'Donnell,見上文):例如MSB0010718C;YW243.55.S70、MPDL3280A;MEDI-4736、MSB-0010718C或MDX-1105;組蛋白去乙醯酶抑制劑(HDI,參見例如Rahmani等人Clin. Cancer Res. (2014) 20(18), 4849-4860):例如伏林司他(vorinostat);雄激素受體抑制劑(參見例如Thomas等人Mol. Cancer Ther. (2013) 12(11), 2342-2355):例如恩雜魯胺(enzalutamide)、乙酸阿比特龍(abiraterone acetate)、奧特羅奈(orteronel)、加來特龍(galeterone)、塞維羅奈(seviteronel)、比卡魯胺(bicalutamide)、氟他胺(flutamide);雄激素:例如氟甲睾酮(fluoxymesterone);CDK4/6抑制劑(參見例如Gul等人Am. J. Cancer Res. (2018) 8(12), 2359-2376):例如奧爾沃昔布(alvocidib)、帕泊昔布(palbociclib)、瑞博西尼(ribociclib)、曲拉西尼(trilaciclib)、阿貝馬昔布(abemaciclib)。
在一些實施例中,一或多種另外治療劑係選自以下藥劑:抗FGFR抗體;FGFR抑制劑、細胞毒性劑;雌激素受體靶向或其他內分泌療法、免疫檢查點抑制劑、CDK抑制劑、受體酪胺酸激酶抑制劑、BRAF抑制劑、MEK抑制劑、其他PI3K抑制劑、SHP2抑制劑及SRC抑制劑。(參見Katoh, Nat. Rev. Clin. Oncol. (2019), 16:105-122;Chae等人Oncotarget (2017), 8:16052-16074;Formisano等人, Nat. Comm. (2019), 10:1373-1386;及其中所引用之參考文獻)。
在一些實施例中,雌激素受體靶向療法為選擇性雌激素受體降解劑(SERD,例如氟維司群、艾拉司群、吉雷司群)。在一些實施例中,雌激素受體靶向療法為降解雌激素受體之PROTAC (例如ARV-471)。在一些實施例中,內分泌療法為芳香酶抑制劑(例如阿那曲唑、來曲唑、依西美坦)。
在一些實施例中,一或多種另外治療劑為CDK2、CDK4及CDK6酶中之一或多者之抑制劑。在一些實施例中,CDK抑制劑為CDK2抑制劑(例如PF-07104091)。在一些實施例中,CDK抑制劑為CDK4抑制劑(例如PF-07220060、AU2-94)。在一些實施例中,CDK抑制劑為雙重CDK4/6抑制劑(例如帕泊昔布、阿貝馬昔布、瑞博西尼、曲拉西尼)。在一些實施例中,CDK抑制劑為CDK2/4/6抑制劑。
在一些實施例中,超過一種CDK抑制劑與本發明之化合物一起投與。在一些實施例中,另外治療劑包含一或多種CDK抑制劑及雌激素受體靶向療法。在一些實施例中,另外治療劑包含選擇性雌激素受體降解劑及一或多種CDK抑制劑。
在一些實施例中,另外治療劑包含CDK2抑制劑及雌激素受體靶向療法。在一些實施例中,另外治療劑包含CDK4抑制劑及雌激素受體靶向療法。在一些實施例中,另外治療劑包含CDK2抑制劑、CDK4抑制劑及雌激素受體靶向療法。在一些實施例中,另外治療劑包含CDK4/6抑制劑及雌激素受體靶向療法。在一些實施例中,另外治療劑包含CDK2抑制劑、CDK4/6抑制劑及雌激素受體靶向療法。
以編碼序號、類屬或商標名鑑別之活性化合物之結構可自正版標準概要「摩克索引(The Merck Index)」或自資料庫,例如專利國際組織(Patents International)(例如IMS世界公開案(IMS World Publications))獲得。
本發明之化合物亦可與已知治療方法(例如投與激素或輻射)組合使用。在某些實施例中,所提供之化合物用作放射增敏劑,尤其用於治療對於放射線療法展現不佳敏感性之腫瘤。
本發明之化合物可單獨或與一或多種其他治療化合物組合投與,可能的組合療法採用固定組合形式或交錯或彼此獨立地提供本發明之化合物及一或多種其他治療化合物之投與,或組合投與固定組合及一或多種其他治療化合物。可此外或另外投與本發明之化合物,尤其與化學療法、放射線療法、免疫療法、光電療法、手術干預或此等之組合進行組合以用於腫瘤治療。如上文所描述,如其他治療策略之情形下之輔助療法一般,長期療法同樣為可能的。其他可能的治療為在腫瘤消退後維持患者狀態之療法,或甚至為例如針對有風險之患者的化學預防療法。
彼等另外藥劑可作為多次給藥方案之一部分與含有本發明化合物之組合物分開投與。或者,彼等藥劑可為單一劑型之一部分,與本發明之化合物一起混合成單一組合物。若作為多次給藥方案的一部分投與,則兩種活性劑可同時、依序或彼此間隔一定時間段(通常彼此間隔在五小時以內)提供。
如本文所用,術語「組合(combination/combined)」及相關術語係指根據本發明同時或依序投與治療劑。舉例而言,本發明之化合物可與另一治療劑以分開的單位劑型同時或依次投與或一起以單一單位劑型投與。因此,本發明提供一種包含本發明之化合物、另外治療劑及醫藥學上可接受之載劑、佐劑或媒劑之單一單位劑型。
可與載劑材料組合產生單一劑型的本發明化合物及另外治療劑(在包含如上文所描述之另外治療劑之該等組合物中)的量將視所治療宿主及特定投與模式而變化。較佳地,應調配本發明之組合物以使得可投與劑量介於0.01-100毫克/公斤體重/天之間的本發明化合物。
在包含另外治療劑的該等組合物中,該另外治療劑及本發明之化合物可協同作用。因此,此等組合物中另外治療劑之量將小於僅利用該治療劑之單一療法中所需之量。在此等組合物中,可投與劑量介於0.01-1,000微克/公斤體重/天之間的另外治療劑。
存在於本發明之組合物中之另外治療劑的量將不超過通常以包含該治療劑作為唯一活性劑之組合物投與的量。目前所揭示之組合物中另外治療劑之量較佳將在通常存在於包含該藥劑作為唯一治療活性劑之組合物中之量的約50%至100%的範圍內。
本發明化合物或其醫藥組合物亦可併入用於包覆可植入醫療裝置的組合物中,該等可植入醫療裝置諸如假體、人工瓣膜、血管移植物、支架及導管。例如,血管支架已用於克服再狹窄(損傷後的血管壁再狹窄)。然而,使用支架或其他可植入裝置之患者具有血塊形成或血小板活化之風險。可藉由包含激酶抑制劑之醫藥學上可接受之組合物預包覆該裝置來預防或減輕此等非所需作用。用本發明化合物包覆之可植入裝置為本發明之另一實施例。
本發明之化合物及/或組合物中之任一者可提供於包含該等化合物及/或組合物之套組中。因此,在一些實施例中,本發明之化合物及/或組合物提供於套組中。
藉由以下非限制性實例進一步描述本發明。 實例
本文提供實例以促進對本發明之更透徹理解。以下實例用於說明製備及實施本發明之主題的例示性方式。然而,本發明之範疇不應理解為限於此等實例中所揭示之特定實施例,該等實例僅具說明性。
如在以下實例中所描繪,在某些例示性實施例中,根據以下通用程序來製備化合物。應瞭解,儘管通用方法描繪本發明之某些化合物之合成,但以下通用方法及一般熟習此項技術者已知之其他方法可應用於如本文所描述之此等化合物中之每一者的其他類別及子類及種類。本發明之其他化合物係藉由與本文在實例中所描述之方法基本上類似的方法及熟習此項技術者已知之方法製備。
在下文所描述之合成方法之描述中,除非另有說明,否則應瞭解,所有反應條件(例如反應溶劑、氛圍、溫度、持續時間及處理程序)選自標準反應條件,除非另外指明。實例之起始材料可為市售的或易於藉由標準方法自已知材料製備。 實例 1-5
本文所描述之化合物可基於本文所含之教示及此項技術中已知之合成程序以多種方式來製備。以下非限制性實例說明本文中之揭示內容。
X 射線粉末繞射 (XRPD)儀器:Bruker D8 Advance 方法1 (約10 min): 偵測器 LYNXEYE_XE_T (1D模式) 開放角 2.94° 放射Cu/K-α1 (λ=1.5406Å) X射線產生器功率 40kV, 40mA 主要射束路徑狹縫 Twin_Primary電動狹縫10.0mm×樣本長度;SollerMount軸向平行光2.5° 次要射束路徑狹縫 偵測器OpticsMount平行光狹縫2.5°;Twin_Secondary電動狹縫5.2mm 掃描模式 連續掃描 掃描類型 鎖定偶合 步長 0.02° 每步驟時間 每步驟0.3秒 掃描範圍 2°至40° 樣本旋轉速度 15rpm 樣本架 單晶矽,平坦表面 方法2 (約4 min,針對評估樣本:整體穩定性、溶解度研究、懸浮液穩定性研究): 偵測器 LYNXEYE_XE_T (1D模式) 開放角 2.94° 放射Cu/K-α1 (λ=1.5406Å) X射線產生器功率 40kV, 40mA 主要射束路徑狹縫 Twin_Primary電動狹縫10.0mm×樣本長度;SollerMount軸向平行光2.5° 次要射束路徑狹縫 偵測器OpticsMount平行光狹縫2.5°;Twin_Secondary電動狹縫5.2mm 掃描模式 連續掃描 掃描類型 鎖定偶合 步長 0.02° 每步驟時間 每步驟0.12秒 掃描範圍 3°至40° 樣本旋轉速度 15rpm 樣本架 單晶矽,平坦表面 方法3:(約2 min,針對來自鹽篩選實驗、緩慢蒸發及另外反溶劑實驗之樣本): 偵測器 LYNXEYE_XE_T (1D模式) 開放角 2.94° 放射Cu/K-α1 (λ=1.5406Å) X射線產生器功率 40kV, 40mA 主要射束路徑狹縫 Twin_Primary電動狹縫10.0mm×樣本長度;SollerMount軸向平行光2.5° 次要射束路徑狹縫 偵測器OpticsMount平行光狹縫2.5°;Twin_Secondary電動狹縫5.2mm 掃描模式 連續掃描 掃描類型 鎖定偶合 步長 0.02° 每步驟時間 每步驟0.06秒 掃描範圍 3°至40° 樣本旋轉速度 15rpm 樣本架 單晶矽,平坦表面 多濕度X射線粉末繞射儀(VH-XRPD): 儀器 Bruker D8 Advance 偵測器 LynxEye 開放角 3° 放射Cu/K-α1 (λ=1.5406Å) X射線產生器功率 40kV, 40mA 主要射束路徑狹縫 主要平行光狹縫2.5°;發散狹縫0.6 mm 次要射束路徑狹縫 次要平行光狹縫2.5°;防散射狹縫7.100 mm;偵測器狹縫10.50 mm 掃描模式 連續掃描 掃描類型 鎖定偶合 步長 0.02° 每步驟時間 每步驟0.6秒 掃描範圍 4°至40° 非周圍階段CHC Plus+冷凍及濕度箱
差示掃描量熱 (DSC)儀器 TA Discovery 2500或Q2000 樣本盤 Tzero盤,及Tzero氣密蓋,具有直徑0.7 mm之針孔 溫度範圍 30至250℃或接近分解 加熱速率 10℃/min或2℃/min 氮氣流 50 mL/min 樣本質量 約1-2 mg
熱解重量分析 (TGA)儀器 Discovery 5500或Q5000 樣本盤 鋁,開放式 起始溫度 周圍條件(低於35℃) 最終溫度 300℃或若重量< 80% (w/w),則中止下一區段 (化合物之重量損失不超過20% (w/w)) 加熱速率 10℃/min 氮氣流平衡10 mL/min;樣本腔室25 mL/min 樣本質量 約2-10 mg
動態氣相吸附 (DVS) 方法 1(針對I-1形式A及I-3形式A) 儀器 Intrinsic、Advantage或Adventure 總氣流 200 sccm 烘箱溫度 25℃ 溶劑 水 方法循環:40-0-95-0-40%RH 階段步驟:10% 平衡:0.002 dm/dt (%/min) 最小dm/dt穩定性持續時間:60 min 最大dm/dt階段時間:360 min 方法 2(針對I-4形式A) 儀器 Intrinsic、Advantage或Adventure 總氣流 200 sccm 烘箱溫度 25℃ 溶劑 水 方法循環:40-95-0-95-40%RH 階段步驟:10% 平衡:0.002 dm/dt (%/min) 最小dm/dt穩定性持續時間:60 min 最大dm/dt階段時間:360 min
卡爾 - 費雪 ( Karl Fischer )儀器 Mettler Toledo Coulometric KF Titrator C30 方法 庫侖滴定法
偏光顯微鏡 (PLM)儀器Olympus BX53LED 方法 正交偏光鏡,添加聚矽氧油
核磁共振 (NMR)儀器 Bruker Avance-AV 400M (針對1H-NMR、19F-NMR及31P-NMR) Bruker Avance-III 400M (針對13C-NMR) 頻率 400MHz 探針5 mm PABBO BB/19F-1H/D Z-GRD Z108618/0406 (針對1H-NMR、19F-NMR及31P-NMR) 5 mm PABBO BB-1H/D Z-GRD Z108618/0229 (針對13C NMR) 掃描次數 8 溫度 297.6K 鬆弛延遲 1秒
傅立葉變換紅外光譜 (FT-IR)儀器:    傅立葉變換紅外光譜學(Nicolet 6700,Thermo Scientific) 樣本掃描次數: 32 背景掃描次數: 32 解析度: 4 波長範圍:  4000至525 cm-1 基線校正:  是 光學速度:  0.4747 孔徑:    150 窗:金剛石
超臨界流體層析 ( SFC )儀器:    CAS-SH-ANA-SFC-H(Watera UPCC,具有PDA偵測器) 波長:220 nm 管柱:Chiralcel OD-3 (4.6×150 mm×3 µm) 偵測器:PDA 管柱溫度:35℃ 流動速率:2.5 mL/min 移動相A:CO 2移動相B:甲醇(0.05% DEA) 稀釋劑:ACN 注入體積:1.00 µL 樣本製備:2 mg/mL 洗針液溶劑:ACN:H2O=90:10 (v/v) 梯度:5%至40% B持續5 min且保持40%持續2.5 min、隨後5% B持續2.5 min
高效液相層析 (HPLC)儀器 Agilent 1260,SHIMADZU CBM-40, 對掌性純度波長:220 nm 管柱:Daicel OD-RH (4.6×150 mm×5 µm) 偵測器:DAD、PDA 管柱溫度:40℃ 流動速率:1 mL/min 移動相A:10 mM NH4OAc/水 移動相B:ACN 稀釋劑:ACN 注入體積:5 µL 樣本製備:2 mg/mL 洗針液溶劑:ACN:H2O=90:10 (v/v) 梯度:等度溶離 時間(min)    移動相A (%)  移動相B (%) 0             55                 45 30            55                 45
高效液相層析 (HPLC)儀器 Agilent 1260,SHIMADZU CBM-40, 化學純度及溶解度 波長:220 nm 管柱:Phenomenex Luna PFP(2),4.6×150 mm,3 μm 偵測器:DAD、PDA 管柱溫度:40℃ 流動速率:1 mL/min 移動相A:0.05% TFA/水,v/v 移動相B:0.05% TFA/(MeOH:ACN=1:9),v/v,例如精確地混合100 mL MeOH及900 mL ACN,將0.5 mL TFA轉移至其中,充分混合且藉由超音波脫氣。 稀釋劑:ACN 注入體積:5 µL 樣本製備:0.8 mg/mL 洗針液溶劑:ACN:H2O=9:1 (v/v) 梯度: 時間(min)    移動相A (%)  移動相B (%) 開始                 75                 25 8.00                 55                 45 14.00               55                 45 22.00               50                 50 26.00               50                 50 30.00               15                 85 33.00               15                 85 34.00               75                 25 40.00               75                 25
超高效液相層析 (UPLC)儀器 Agilent 1290 溶解波長:220 nm 管柱:Waters ACQuity UPLC BEH C18 2.1×150mm,1.7 μm 偵測器:DAD 管柱溫度:40℃ 流動速率:0.3 mL/min 移動相A:0.037% TFA/水,v/v 移動相B:0.018% TFA/ACN 稀釋劑:ACN/H2O (1:1,v/v) 注入體積:5 µL 洗針液溶劑:ACN:H2O=1:1 (v/v) 梯度:等度溶離 時間(min)    移動相A (%)  移動相B (%) 開始                 95                 5 5.00                 5                  95 6.00                 95                 5 8.00                 95                 5 縮寫 全名MeOH    甲醇 EtOH      乙醇 ACN      乙腈 TFA       三氟乙酸 DMSO    二甲亞碸 IPAc      乙酸異丙酯 DCM      二氯甲烷 EA         乙酸乙酯 THF       四氫呋喃 MTBE    甲基三級丁基醚 實例 1 . 合成中間物 1.1. 製備化合物 5 1.1.1     彙總
經由篩選,鑑別適度EDCI/HOAt/DIPEA介導之醯胺化程序替代採用(COCl) 2/DMF/LiHMDS之初始低溫系統;另外,展開簡化純化製程。 100 g規模反應驗證製程,其產生呈於2-MeTHF中之溶液形式的HPLC純度97.3%之醯胺產物。溶液無需分離固體即可用於下一步驟。詳情彙總如下。 1.1.2     製程熟悉
重複使用(COCl) 2/DMF/LiHMDS之初始TP條件。消耗化合物7,但剩餘7.5%化合物6,如HPLC所示。 重複 TP 條件:
起始材料 反應條件 IPC
化合物7 化合物6 試劑
25.0g 14.2g DMF: 0.05eq (COCl) 2: 1.6eq LiHMDS: 3.0eq -70~-60 oC, 2h 剩餘~7.5 %化合物7 ~72.1%化合物5
1.1.3     篩選偶合劑
進行五次反應以篩選偶合劑(HATU、PyBOP、EDCI/HOAt、EDCI/HOBt及EEDQ),DMF作為溶劑。最後,EDCI/HOAt系統產生最佳IPC結果。 篩選反應試劑之結果:
起始材料 試劑 DMF 反應 條件 IPC
化合物7 化合物6    化合物7 化合物6 化合物5
2.0g (1.0eq) 1.0g (1.1eq) HATU(2.0g, 1.2eq) DIPEA(0.65g, 1.2eq) 10V 25℃ 2h 83.4% 10.9% 4.1%
4h 66.6% 19.2% 12.2%
20h 61.9% 7.5% 25.5%
2.0g (1.0eq) 1.0g (1.1eq) PyBOP(2.7g, 1.2eq) DIPEA(0.65g, 1.2eq) 10V 25℃ 2h 85.9% 7.8% 1.0%
4h 71.3% 20.5% 3.1%
20h 75.7% 8.3% 7.1%
2.0g (1.0eq) 1.0g (1.1eq) EDCI(1.6g, 2.0eq) HOAt(0.63g, 1.1eq) 10V 25℃ 4h 56.1% 17.1% 24.9%
20h 44.0% 3.0% 47.1%
68h 21.8% 2.0% 71.2%
2.0g (1.0eq) 1.0g (1.1eq) EDCI(1.6g, 2.0eq) HOBt(0.63g, 1.1eq) 10V 25℃ 2h 85.9% 3.5% 3.2%
4h 71.7% 17.3% 7.5%
20h 68.1% 2.9% 19.5%
2.0g (1.0eq) 1.0g (1.1eq) EEDQ(2.1g, 2.0eq) 10V 25℃ 2h 41.8% 0.7% 0.4%
4h 31.1% 0.1% 0.7%
20h 32.0% N/A 0.5%
1.1.4     篩選溶劑系統
當使用DMF作為溶劑時,偵測到來源於DMF及化合物7之相關亞胺雜質(RT19.52)。因此嘗試用DMAc替代DMF。緩慢進行DMAc反應且在60℃攪拌18h,在僅剩餘16.3%化合物7之IPC中偵測到71.4%化合物5。完全防止了亞胺雜質形成。 篩選溶劑系統之結果:
起始材料 試劑 DMAc 反應 條件 IPC
化合物7 化合物6    化合物7 化合物6 化合物5
2.0g (1.0eq) 1.3g (1.5eq) EDCI(1.6g, 2.0eq) HOAt(0.86g, 1.5eq) 5V 60℃ 18h 16.3% 4.5% 71.4%
RT 19.52、 RT 8.32、 RT 10.49 1.1.5     用DIPEA/DMAC篩選溫度
在60℃、40℃及25℃評估DIPEA/DMAC條件。IPC結果顯示反應可隨著溫度增加更快地進行。同時,可防止雜質RT19.52及RT10.49。40℃下之反應產生最佳結果,IPC中含93.0%化合物5及0.1%化合物7。 DIPEA/DMAC 篩選溫度之結果
起始材料 試劑 DMAc 反應 條件 IPC
化合物7 化合物6    化合物7 化合物6 化合物5
2.0g (1.0eq) 1.3g (1.5eq) EDCI(1.6g, 2.0eq) HOAt(0.86g, 1.5eq) DIPEA(1.1g, 2.0eq) 5V 60℃ 18h 3.5% 4.7% 89.9%
2.0g (1.0eq) 1.3g (1.5eq) EDCI(1.6g, 2.0eq) HOAt(0.86g, 1.5eq) DIPEA(1.1g, 2.0eq) 5V 25℃ 26h 1.6% 3.3% 91.8%
20..0g (1.0eq) 13.1g (1.5eq) EDCI(16.2g, 2.0eq) HOAt(8.6g, 1.5eq) DIPEA(11.0g, 2.0eq) 5V 40℃ 16h 0.1% 3.8% 93.0%
1.1.6     評估新程序
進行使用80g化合物7的擴大規模反應以驗證40℃下使用DMAc之製程。IPC顯示典型結果。處理後,獲得HPLC純度97.7%的275.2 g 2-MeTHF溶液。2-MeTHF溶液直接套用於下一步驟。 評估新程序:
起始材料 試劑 DMAc 反應 條件 IPC 注意
化合物7 化合物6 重量 純度
80.0g (1.0eq) 52.4g (1.5eq) EDCI( 2.0eq) HOAt(1.5eq) DIPEA(2.0eq) 5V 40℃ 17h 0.1%化合物7、 2.8%化合物6、 93.0%化合物5 275.2g 2-MeTHF溶液 97.7% HPLC純度
1.1.7     驗證製程
進行使用100 g化合物7之驗證批次。在40℃攪拌16h後,反應IPC顯示93.0%化合物5及僅0.1%化合物7。典型處理及純化後,獲得HPLC純度97.3%的350.6g 2-MeTHF溶液。2-MeTHF溶液直接套用於下一步驟。 驗證之結果:
起始材料 試劑 DMAc 反應 條件 IPC 注意
化合物7 化合物6 重量 純度
100g (1.0eq) 65.6g (1.5eq) EDCI(2.0eq) HOAt(1.5eq) DIPEA(2.0eq) 5V 40℃ 16h 0.1%化合物7, 3.2% 化合物6, 93.0% 化合物5 350.6g 2-MeTHF溶液 97.3% HPLC純度
1.1.8     製程  1. 於N2下將化合物7 (100.0g,1.00±0.01X)裝入R1中 2. 於N2下將化合物6 (65.6g,0.66±0.01X)裝入R1中 3. 將DMAc (470.0g,4.5-5.0X)裝入R1中 4. 於N2下將HOAt (42.9g,0.43±0.01X)裝入R1中 5. 將R1調節至20~30℃ 6. 於N2下在20~30℃將DIPEA (55.0g,0.55±0.02X)裝入R1中 7. 在20~30℃攪拌R1 0.5-1h 8. 於N2下在20~30℃將EDCI (80.6g,0.81±0.01X)裝入R1中 9. 將R1調節至35~40℃ 10.      在35~40℃攪拌R1 16-20h 11.      IPC:化合物7/化合物5 =報導 12.      在35~40℃攪拌R1 4-6h 13.      IPC:化合物7/化合物5 =報導 14.      將H2O (900g,9.0±0.2X)裝入R2中 15.      將Na2CO3 (100g,1.00±0.02X)裝入R2中 16.      將R2調節至20~30℃ 17.      在20~30℃攪拌R2 0.5-1h 18.      將10% Na2CO3水溶液裝入滾筒 19.      將H2O (900g,9.0±0.2X)裝入R2中 20.      將NH4Cl (100g,1.00±0.02X)裝入R2中 21.      將R2調節至20~30℃ 22.      在20~30℃攪拌R2 0.5-1h 23.      將10% NH4Cl水溶液裝入滾筒 24.      將H2O (450g,4.5±0.1X)裝入R2中 25.      將NaCl (50g,0.50±0.01X)裝入R2中 26.      將R2調節至20~30℃ 27.      在20~30℃攪拌R2 0.5-1h 28.      將10% NaCl水溶液裝入滾筒 29.      將R1調節至20~30℃ 30.      將EA (900g,9.0-10.0X)裝入R1中 31.      於N2下在20~30℃將製程水(1500g,15.0±0.3X)裝入R1中 32.      在20~30℃攪拌R1 0.5-1h 33.      將R1在20~30℃靜置0.5-1h 34.      分離:將水層裝入T1中,將有機層裝入T2中 35.      將T1中之水層裝入R1中 36.      將EA (450g,4.5-5.0X)裝入R1中 37.      將R1調節至20~30℃ 38.      在20~30℃攪拌R1 0.5-1h 39.      將R1在20~30℃靜置0.5-1h 40.      分離:將水層裝入T1中,將有機層裝入T2中 41.      IPC:殘餘化合物5於T1之水層中:報導 42.      將T1中之水層裝入滾筒中 43.      將T2中之有機層裝入R1中 44.      將10% Na2CO3水溶液(500g,5.0±0.1X)裝入R1中 45.      將R1調節至20~30℃ 46.      在20~30℃攪拌R1 0.5-1h 47.      將R1在20~30℃靜置0.5-1h 48.      分離:將水層裝入T3中 49.      將10% Na2CO3水溶液(500g,5.0±0.1X)裝入R1中 50.      將R1調節至20~30℃ 51.      在20~30℃攪拌R1 0.5-1h 52.      將R1在20~30℃靜置0.5-1h 53.      分離:將水層裝入T3中,將T3中之水層裝入滾筒 54.      將10% NH4Cl水溶液(500g,5.0±0.1X)裝入R1中 55.      將R1調節至20~30℃ 56.      在20~30℃攪拌R1 0.5-1h 57.      將R1在20~30℃靜置0.5-1h 58.      分離:將水層裝入T4中 59.      將10% NH4Cl水溶液(500g,5.0±0.1X)裝入R1中 60.      將R1調節至20~30℃ 61.      在20~30℃攪拌R1 0.5-1h 62.      將R1在20~30℃靜置0.5-1h 63.      分離:將水層裝入T4中,將T4中之水層裝入滾筒 64.      將10% NaCl水溶液(500g,5.0±0.1X)裝入R1中 65.      將R1調節至20~30℃ 66.      在20~30℃攪拌R1 0.5-1h 67.      將R1在20~30℃靜置0.5-1h 68.      分離:將水層裝入T5中,將T5中之水層裝入滾筒。將有機層裝入T6中 69.      清潔R1 70.      將T6中之有機層裝入R1中 71.      在低於45℃將有機層於R1中濃縮至3-4V 72.      將2-MeTHF (430.0g,4.3-5.0X)裝入R1中 73.      在低於45℃將有機層於R1中濃縮至3-4V 74.      將2-MeTHF (430.0g,4.3-5.0X)裝入R1中 75.      在低於45℃將有機層於R1中濃縮至3-4V 76.      將2-MeTHF (430.0g,4.3-5.0X)裝入R1中 77.      在低於45℃將有機層於R1中濃縮至3-4V 78.      IPC:R1中化合物5之殘餘EA:報導,2-MeTHF溶液中化合物5之KF≤0.5% 79.      將2-MeTHF (430.0g,4.3-5.0X)裝入R1中 80.      在低於45℃將有機層於R1中濃縮至3-4V 81.      IPC:R1中化合物5之殘餘EA:報導,2-MeTHF溶液中化合物5之KF≤0.5% 82.      將2-MeTHF溶液裝入滾筒且用2-MeTHF (86.0g,0.9±0.4X)沖洗R1 83.      IPC:2-MeTHF溶液中化合物5之純度 1.2. 製備化合物 4 1.2.1     彙總
展開套疊製程以自化合物7產生化合物4。初始製程順利進行,但產生~3%雜質(RT11.1)。溫度篩選後,認為50℃適合於使RRT 11.1雜質形成減至最少。展開於MTBE/庚烷中之結晶製程以分離及純化產物。以100g規模反應驗證典型製程,且在典型處理、純化及分離之後,以~70%產率(兩個步驟)獲得純度99.7%之產物。詳情彙總如下。 1.2.2     製程熟悉
重複 使用70eq MsOH之初始TP條件。0.1% 剩餘化合物5且IPC中偵測到89.2%化合物4,產生~3%雜質(RT11.1),且將進一步展開處理製程。 重複TP條件:
起始材料 試劑 反應 條件 IPC
化合物5    化合物5 化合物4
2.0g (1.0eq) MSOH (7.5V) 60℃ 21h 0.1% 89.2%
1.2.3     篩選溫度
在80℃、40℃、50℃及55℃評估反應溫度。在80℃之反應產生39% RRT 11.1雜質,下文展示其結構。在40℃之反應過慢。在50℃之反應快速且徹底地進行,其中可有效防止RRT 11.1。 篩選溫度之結果:
起始材料 試劑 反應 條件 IPC
化合物5    化合物5 化合物4 RT 11.1min雜質
20g 2-MeTHF溶液 (1.0eq) MsOH (70eq) 80℃ 22h 0.1% 48.4% 39.1%
20g 2-MeTHF溶液 (1.0eq) MsOH (70eq) 40℃ 18h 58.5% 31.6% 0.2%
20g 2-MeTHF溶液 (1.0eq) MsOH (70eq) 50℃ 24h 4.4% 89.8% 0.8%
40h 0.7% 95.7% 1.2%
48h 0.3% 92.8% 1.6%
21g 2-MeTHF溶液 (1.0eq) MsOH (70eq) 55℃ 43h 0.1% 92.1% 4.0%
49h 0.1% 90.9% 4.7%
RT 11.1 1.2.4     驗證製程
實行使用350g醯胺化合物5作為於2-MeTHF中之溶液(1~2V)的擴大規模反應以驗證新製程。IPC正常。典型處理及純化之後,以~70%產率(兩個步驟)獲得HPLC純度99.7%之104g固體。 驗證之結果:
起始材料 試劑 反應 條件 IPC 注意
化合物5 化合物5 化合物4 RT 11.1min雜質 重量 純度
350g 2-MeTHF溶液 (1.0eq) MsOH (70eq) 50~55℃ 27h 0.7% 94.5% 0.8% 104g固體 99.7% HPLC純度
1. 於N2下將含化合物5之2-MeTHF溶液裝入R1中 2. 在低於45℃將有機層於R1中濃縮至1.5-2.5V 3. 將R1調節至15~30℃ 4. 在15~30℃將CH3SO3H (1414g,14±0.2X)裝入R1中 5. 將R1調節至50~55℃ 6. 在50~55℃攪拌R1 24-30h 7. IPC:化合物5/化合物4=報導 8. 在50~55℃攪拌R1 2-8h 9. IPC:化合物5/化合物4=報導 10.      將H2O (630g,6.3±0.2X)裝入R2中 11.      將NH4Cl (70g,0.7~0.8X)裝入R2中 12.      將R2調節至20~30℃ 13.      在20~30℃攪拌R2 0.5-1h 14.      將10% NH4Cl水溶液裝入滾筒 15.      將H2O (560g,5.6±0.2X)裝入R2中 16.      將NaCl (140g,1.4~1.6X)裝入R2中 17.      將R2調節至20~30℃ 18.      在20~30℃攪拌R2 0.5-1h 19.      將20% NaCl水溶液裝入滾筒 20.      將R1調節至15~30℃ 21.      在15~30℃將2-MeTHF (600g,5.0~7.0X)裝入R1中 22.      在15~30℃將H2O (420g,4.0~5.0X)裝入R1中 23.      在15~30℃藉由30% NaOH (2000g,18~22X)調節pH=10~11 24.      將R1調節至15~25℃ 25.      在15~25℃攪拌R1 0.5-1h 26.      在15~25℃靜置R1 0.5-1h 27.      分離:將水層裝入T1中,將有機層裝入T2中 28.      將T1中之水層裝入R1中 29.      將2-MeTHF (600g,5.0~7.0X)裝入R1中 30.      將R1調節至15~25℃ 31.      在15~25℃攪拌R1 0.5-1h 32.      在15~25℃靜置R1 0.5-1h 33.      分離:將水層裝入T1中 34.      IPC:水層中之殘餘化合物4:報導 35.      將水層灌輸至T1 36.      將T2中之有機層裝入R1中 37.      將10% NH4Cl水溶液(700g,7.0±0.5X)裝入R1中 38.      將R1調節至15~25℃ 39.      在15~25℃攪拌R1 0.5-1h 40.      在15~25℃靜置R1 0.5-1h 41.      分離:將水層裝入T3中 42.      將20% NaCl水溶液(700g,7.0±0.5X)裝入R1中 43.      將R1調節至15~25℃ 44.      在15~25℃攪拌R1 0.5-1h 45.      在15~25℃靜置R1 0.5-1h 46.      分離:將水層裝入T4中,將有機層裝入T5中 47.      清潔R1 48.      將T5中之有機層裝入R1中 49.      在低於45℃將有機層於R1中濃縮至5-7V 50.      將MTBE (450g,4.0~5.0X)裝入R1中 51.      在低於45℃將有機層於R1中濃縮至5-7V 52.      將MTBE (450g,4.0~5.0X)裝入R1中 53.      在低於45℃將有機層於R1中濃縮至5-7V 54.      IPC:有機層中之殘餘2-MeTHF:報導 55.      將R1調節至40~45℃ 56.      在40~45℃攪拌R1 0.5-1h 57.      將R1調節至20~25℃,保持2-4h 58.      在20~25℃攪拌R1 2-4h 59.      將MTBE (180g,1.5~2.5X)裝入R1中 60.      在20~25℃將正庚烷(550g,5.0~7.0X)裝入R1中 61.      在20~25℃攪拌R1 6-10h 62.      IPC:化合物4濕濾餅之純度:報導,母層中之殘餘化合物4:報導 63.      離心 64.      將MTBE/正庚烷(1/1,v/v,1.0~3.0X)裝入R1中以沖洗濾餅 65.      離心 66.      IPC:化合物4濕濾餅之純度:報導 67.      在70~80℃乾燥濕濾餅16-24 h 68.      IPC:化合物4之KF:≤0.5%,殘餘MTBE,化合物4之2-MeTHF及正庚烷:報導 69.      在70~80℃乾燥濕濾餅8-12 h 70.      IPC:化合物4之KF:≤0.5%,殘餘MTBE,化合物4之2-MeTHF及正庚烷:報導 71.      封裝產物 1.3.示範廠生產結果 材料分配彙總表
材料 實際量
類別 名稱 當量 質量 反應物分析 莫耳
eq. kg w/w% mol.
反應物 4-胺基-6-溴-3-(2-氯-5-氟苯基)-2-(4-甲氧基苯甲基)異吲哚啉-1-酮 化合物7 1.0 12.7 N/A 26.7
3-氟-5-(三氟甲基)苯甲酸 化合物6 1.5 8.4 N/A 40.4
1-羥基-7-氮雜苯并三唑 HOAT 1.5 5.5 N/A 40.4
1-乙基-3-(3-二甲胺基丙基)碳化二亞胺.HCl EDC.HCl 2.0 10.3 97%~103% 53.7
N, N-二異丙基乙胺 DIPEA 2.0 6.8 N/A 52.6
化學物質 N,N-二甲基乙醯胺DMAc N/A 123 N/A N/A
碳酸鈉 N/A 12.8 N/A N/A
氯化銨 N/A 12.9 N/A N/A
25% NaCl溶液 N/A 28 N/A N/A
2-甲基四氫呋喃 2-MeTHF N/A 193 N/A N/A
乙酸乙酯 EtOAc N/A 189 N/A N/A
製程水 N/A 463 N/A N/A
製程描述
操作 註釋/觀測/結果 (X= 12.6 kg)
1.         將製程水(116 kg,9.2 X)裝入X1中   
2.         將碳酸鈉(12.8 Kg,1.02 X)逐份裝入X1中   
3.         攪拌X1 0.5-1 h直至材料溶解且溶液澄清為止   
4.         將來自X1之材料裝載至用氮氣吹掃之新的鋁塑複合物滾筒中且標記材料標籤 10% Na 2CO 3水溶液之總淨重:127.8 kg
5.         沖洗R5608內壁至目視清潔,將水沖洗至廢水管中   
6.         將製程水(115 kg,9.1 X)裝入X1中   
7.         將氯化銨(12.9 kg,1.02 X)逐份裝入X1中   
8.         攪拌X1 0.5-1 h直至材料溶解且溶液澄清為止   
9.         將來自X1之材料裝載至用氮氣吹掃之新的鋁塑複合物滾筒中且標記材料標籤 10%氯化銨水溶液之總淨重:126.6 kg
10.      沖洗R5608內壁至目視清潔,將水沖洗至廢水管中   
11.      將製程水(42 kg,3.3 X)裝入 步驟 14之新鋁塑複合物滾筒中   
12.      經由蠕動泵將25% NaCl溶液(28 kg,2.2 X)裝入 步驟 14滾筒中   
13.      藉由氮氣以1-2 m 3/h鼓泡10-20 min   
14.      稱量鋁塑複合物滾筒中之材料且標記材料標籤 10% NaCl水溶液之總淨重:69.5 kg
15.      在70-80℃真空乾燥R5608 1-2 h,隨後將R5608調節至0-40℃   
16.      經由噴霧球將DMAc (62 kg,4.9 X)裝入R5608中   
17.      將R5608調節於60-70℃且在60-70℃攪拌R5608 30-60 min,隨後將R5608調節至20-30℃   
18.      將來自反應器之溶劑裝載至用氮氣吹掃之鍍鋅鋼滾筒中且標記廢料標籤   
19.      經由可撓性隔離器將化合物7 (12.7 kg,1.01 X)逐份裝入R5608中   
20.      經由可撓性隔離器將化合物6 (8.4 kg,0.67 X)逐份裝入R5608中   
21.      將R5608靜置5-10 min   
22.      經由噴霧球將DMAc (59 kg,4.7 X)裝入R5608中   
23.      經由可撓性隔離器將HOAT (5.5 kg,0.44 X)逐份裝入R5608中   
24.      將R5608調節至20-30℃   
25.      經由蠕動泵在將批料溫度控制於20-30℃之情況下將DIPEA (6.8 kg,0.54 X)緩慢添加至R5608中   
26.      用DMAc (2 kg,0.2 X)沖洗裝料管且經由蠕動泵將沖洗液轉移至R5608中   
27.      將R5608調節至20-30℃   
28.      在20-30℃攪拌R5608 0.5-1 h   
29.      經由可撓性隔離器在將批料溫度控制於20-30℃之情況下將EDC·HCl (10.3 kg,0.82 X)逐份裝入R5608中   
30.      將R5608調節至35-40℃   
31.      在35-40℃攪拌R5608 16-20 h   
32.      IPC:化合物7/化合物5 (%):報導 0.08%
33.      將R5608調節至20-30℃   
34.      將EtOAc (123 kg,9.8 X)裝入R5608中   
35.      將R5608調節至20-30℃   
36.      經由蠕動泵在20-30℃將製程水(190 kg,15.1 X)裝入R5608中   
37.      在20-30℃攪拌R5608 30-60 min   
38.      將R5608在20-30℃靜置30-60 min   
39.      將R5608水層轉移至T1中且標記材料標籤   
40.      將R5608中之有機相裝載至氮氣流動之新鋁塑複合物滾筒中且標記IPC材料標籤   
41.      將 步驟 39之T1中之化合物5 DMAc水層裝入R5608中   
42.      將EtOAc (60 kg,4.8 X)裝入R5608中   
43.      將R5608調節至20-30℃   
44.      在20-30℃攪拌R5608 30-60 min   
45.      將R5608在20-30℃靜置30-60 min   
46.      將R5608水層轉移至T1中且標記材料標籤 估計T1水層之體積:293 L
47.      IPC:殘餘化合物5 (%,w/w):報導 0.1%
48.      將 步驟 40之化合物5有機層裝入R5608中   
49.      將 步驟 4之10% Na 2CO 3水溶液(63 kg,5.0 X)裝入R5608中   
50.      將R5608調節至20-30℃   
51.      在20-30℃攪拌R5608 30-60 min   
52.      將R5608在20-30℃靜置30-60 min   
53.      將R5608水層轉移至T2中且標記材料標籤   
54.      將 步驟 4之10% Na 2CO 3水溶液(63 kg,5.0 X)裝入R5608中   
55.      將R5608調節至20-30℃   
56.      在20-30℃攪拌R5608 30-60 min   
57.      將R5608在20-30℃靜置30-60 min   
58.      將R5608水層轉移至T2中且標記材料標籤   
59.      將 步驟 9之10%氯化銨水溶液(64 kg,5.1 X)裝入R5608中   
60.      將R5608調節至20-30℃   
61.      在20-30℃攪拌R5608 30-60 min   
62.      將R5608在20-30℃靜置30-60 min   
63.      將R5608水層轉移至T3中且標記材料標籤   
64.      將 步驟 9之10%氯化銨水溶液(63 kg,5.0 X)裝入R5608中   
65.      將R5608調節至20-30℃   
66.      在20-30℃攪拌R5608 30-60 min   
67.      將R5608在20-30℃靜置30-60 min   
68.      將R5608水層轉移至T3中且標記材料標籤   
69.      將 步驟 14之10% NaCl水溶液(69 kg,5.5 X)裝入R5608中   
70.      將R5608調節至20-30℃   
71.      在20-30℃攪拌R5608 30-60 min   
72.      將R5608在20-30℃靜置30-60 min   
73.      將R5608水層轉移至T3中且標記材料標籤   
74.      將R5608中之有機相裝載至氮氣流動之新鋁塑複合物滾筒中且標記IPC材料標籤   
75.      用製程水沖洗R5608至目視清潔,隨後在70-90℃真空乾燥R5608 1-2 h,且將R5608調節至0-40℃   
76.      經由裝料裝置及隔膜泵以及Ft-1將 步驟 74之化合物5有機層裝入R5608中   
77.      用EtOAc (6 kg,0.5 X)沖洗裝料管且經由裝料裝置、隔膜泵及Ft-1將沖洗液轉移至R5608中   
78.      在≤45℃內部溫度下減壓濃縮R5608混合物至38-50 L (3.0-4.0 X) 40 L
79.      經由噴霧球將2-MeTHF (4.3-5.0 X)裝入R5608中,隨後在≤45℃內部溫度下三次減壓濃縮R5608混合物至38-50 L (3.0-4.0 X) 61+61+62 kg 總計:184 kg 濃縮最終體積:40 L
80.      將R5608調節至20-30℃   
81.      IPC:含水量(%,w/w):≤0.5%,殘餘EtOAc (%,w/w):報導 含水量:0.0% 殘餘EtOAc:0.3%
82.      將R5608之材料裝入 步驟 85之氮氣流動之新鋁塑複合物滾筒中   
83.      將2-MeTHF (9 kg,0.7 X)裝入R5608中以沖洗裝料裝置、隔膜及噴霧球   
84.      將R5608之材料裝入 步驟 85之氮氣流動之新鋁塑複合物滾筒中   
85.      將R5608中之材料裝載至氮氣流動之新鋁塑複合物滾筒中且標記IPC材料標籤 化合物5 2-MeTHF溶液之總淨重:43.1 kg
86.      IPC:化合物5之純度(%):報導 95.1%
材料分配彙總表
材料 實際量
類別 名稱 當量 質量 反應物之分析 莫耳
eq. kg w/w% mol.
反應物 化合物5 1.0 42.8 N/A 64.3
甲烷磺酸 N/A 175 ≥ 99.0% N/A
化學物質 2-甲基四氫呋喃 2-MeTHF N/A 367 N/A N/A
氯化銨 N/A 10 N/A N/A
25% NaCl溶液 N/A 75 N/A N/A
甲基三級丁基醚 MTBE N/A 153 N/A N/A
正庚烷 N/A 71 N/A N/A
製程水 N/A 245 N/A N/A
製程描述
操作 註釋/觀測/結果 (X= 12.6 kg)  
1.  將製程水(81 kg,6.4 X)裝入 步驟 4之T3中     
2.  將氯化銨(10 kg,0.8 X)逐份裝入 步驟 4之T3中     
3.  藉由氮氣於 步驟 4之T3中鼓泡20-60 min     
4.  將材料裝載於T3中及標記材料標籤 10%氯化銨水溶液  
5.  將製程水(18 kg,1.4 X)裝入 步驟 8之新鋁塑複合物滾筒中     
6.  經由蠕動泵將25% NaCl溶液(75 kg,6.0 X)裝入 步驟 8滾筒中     
7.  藉由氮氣以1-2 m 3/h鼓泡10-20 min     
8.  將材料裝載於鋁塑複合物滾筒中且標記材料標籤 20% NaCl水溶液  
9.  經由噴霧球用2-MeTHF (82 kg,6.5 X)洗滌R5201,隨後將溶劑裝載至用氮氣吹掃之鍍鋅鋼滾筒中且標記廢料標籤     
10. 將化合物5 2-MeTHF溶液(42.8 kg)逐份裝入R5201中     
11. 用2-MeTHF (6 kg,0.5 X)沖洗裝料管且將沖洗液轉移至R5201中     
12. 在≤45℃內部溫度減壓濃縮R5201混合物至19-21 L     
13. 將R5201調節至15-30℃     
14. 經由蠕動泵在將批料溫度控制於15-30℃之情況下將甲磺酸(175 kg,13.9 X)緩慢添加至R5201中     
15. 用2-MeTHF(3 kg,0.2 X)沖洗裝料管,且經由蠕動泵將沖洗液轉移至R5201中     
16. 將R5201調節至50-55℃     
17. 在50-55℃攪拌R5201 24-30 h     
18. IPC:化合物5/化合物4 (%):報導 0.7%  
19. 將R5201調節至15-30℃     
20. 經由蠕動泵在將批料溫度控制於15-30℃之情況下將2-MeTHF (78 kg,6.2 X)緩慢添加至R5201中     
21. 經由蠕動泵在15-30℃將製程水(56 kg,4.4 X)裝入R5201中     
22. 經由蠕動泵在15-30℃將液態氫氧化鈉(247 kg,19.6 X)緩慢裝入R5201中且將pH調節至10-11 pH = 11  
23. 將R5201調節至15-25℃     
24. 在15-25℃攪拌R5201 30-60 min     
25. 將R5201在15-25℃靜置30-60 min     
26. 將R5201水層轉移至T1中且標記材料標籤     
27. 將R5201中之有機相裝載至氮氣流動之新鋁塑複合物滾筒中且標記IPC材料標籤     
28. 將 步驟 26之T1中之化合物4水層裝入R5201中     
29. 將2-MeTHF (77 kg,6.1 X)裝入R5201中     
30. 將R5201調節至15-25℃     
31. 在15-25℃攪拌R5201 30-60 min     
32. 將R5201在15-25℃靜置30-60 min     
33. 將R5201水層轉移至T1中且標記材料標籤     
34. IPC:殘餘化合物4 (%,w/w):報導 0.02%  
35. 將 步驟 27之化合物4有機層裝入R5201中     
36. 將 步驟 4之10%氯化銨水溶液(90 kg,7.1 X)裝入R5201中     
37. 將R5201調節至15-25℃     
38. 在15-25℃攪拌R5201 30-60 min     
39. 將R5201在15-25℃靜置30-60 min     
40. 將R5201水層轉移至T2中且標記材料標籤     
41. 將 步驟 8之20% NaCl水溶液(92 kg,7.3 X)裝入R5201中     
42. 將R5201調節至15-25℃     
43. 在15-25℃攪拌R5201 30-60 min     
44. 將R5201在15-25℃靜置30-60 min     
45. 將R5201水層轉移至T2中且標記材料標籤     
46. 將R5201中之有機相裝載至氮氣流動之新鋁塑複合物滾筒中且標記IPC材料標籤     
47. 將製程水(90 kg)裝入R5201中以沖洗裝料裝置、隔膜泵及噴霧球,且將R5201中之洗滌水放空至排水管     
48. 用製程水沖洗R5201至目視清潔且排放洗滌水     
49. 在70-90℃乾燥R5201 1-2 h,隨後將R5201調節至0-40℃     
50. 經由裝料裝置、隔膜泵、Ft-1及噴霧球將2-MeTHF (121 kg,9.6 X)裝入R5201中     
51. 將R5201加熱至回流(75-85℃),將R5201蒸餾(75-85℃) 15-30 min且使R5201回流(75-85℃) 15-30 min,隨後將R5201調節至20-30℃,且將溶劑裝載至用氮氣吹掃之鍍鋅鋼滾筒中並標記廢料標籤     
52. 經由裝料裝置、隔膜泵及Ft-1將 步驟 46之化合物4有機層裝入R5201中     
53. 在≤45℃內部溫度減壓濃縮R5201混合物至63-88 L     
54. 經由裝料裝置、隔膜泵及Ft-1將MTBE (62 kg,4.9 X)裝入R5201中     
55. 在≤45℃內部溫度減壓濃縮R5201混合物至63-88 L     
56. 經由裝料裝置、隔膜泵及Ft-1將MTBE (61 kg,4.8 X)裝入R5201中     
57. 在≤45℃內部溫度減壓濃縮R5201混合物至63-88 L     
58. 將R5201調節至15-25℃     
59. IPC:殘餘2-MeTHF (%,w/w):報導 23.1%  
60. 將R5201調節至40-50℃     
61. 在40-50℃攪拌R5201 2-4 h     
62. 將R5201緩慢調節至20-25℃     
63. 在20-25℃攪拌R5201 2-4 h     
64. 經由蠕動泵及Ft-1將MTBE (30 kg,2.4 X)裝入R5201中     
65. 將R5201調節至20-25℃     
66. 經由蠕動泵及Ft-1在將批料溫度控制於20-25℃之情況下將正庚烷(71 kg,5.6 X)緩慢添加至R5201中     
67. 在20-25℃攪拌R5201 6-10 h     
68. IPC:上清液中之殘餘化合物4(%,w/w):報導,固體中化合物4之純度(%):報導 上清液中之殘餘化合物4:1.1% 固體中化合物4之純度:98.8%  
69. 將離心袋分散於M1中     
70. 將R5201材料逐份轉移至M1中以用於離心。在離心期間,將反應器溫度維持在20-25℃且攪動     
71. 裝入MTBE/正庚烷= 1/1 (v/v)溶液(38 kg,3.0 X)以沖洗濕濾餅(若其為最後一個離心輪次,則沖洗液首先用於沖洗反應器)     
72. 將濾液裝載至藉由氮氣吹掃之鍍鋅鋼滾筒中且標記材料標籤     
73. 將固體裝載至襯有雙重LDPE袋之塑膠滾筒中且標記IPC材料標籤 化合物4濕濾餅之總淨重:18.4 kg  
74. IPC:化合物4之純度(%):報導 99.4%  
75. 將 步驟 73之化合物4濕濾餅放入乾燥袋子中,隨後放入D1,將D1加熱至70-80℃     
76. 在70-80℃真空乾燥D1中之材料16-24 h     
77. 將D1調節至≤40℃     
78. IPC:含水量(%,w/w) ≤ 0.5%,殘餘MTBE (%,w/w):報導,殘餘2-MeTHF (%,w/w):報導,殘餘正庚烷(%,w/w):報導 含水量:0.7% 殘餘MTBE:2.9% 殘餘2-MeTHF:3.4% 殘餘正庚烷< 0.01%  
79. 在70-80℃真空乾燥D1中之材料8-12 h     
80. 將D1調節至≤40℃     
81. IPC:含水量(%,w/w) ≤ 0.5%,殘餘MTBE (%,w/w):報導,殘餘2-MeTHF (%,w/w):報導,殘餘正庚烷(%,w/w):報導 含水量:0.3% 殘餘MTBE:2.4% 殘餘2-MeTHF:1.3% 殘餘正庚烷< 0.01%  
82. 將D1調節至20-40℃     
83. 稱量且將D1之材料裝載至滾筒中且標記IPC材料標籤     
84. 在隔離器中篩分 步驟 83之材料,隨後將經篩分產物裝載至帶鐵蓋且具有雙重LDPE袋之纖維滾筒中,且標記IPC材料標籤 化合物4之總淨重:12.3 kg  
85. IPC:   
   測試物/規格限制 測試結果   
   外觀/白色至灰色固體 灰色固體   
   藉由HPLC/滯留時間鑑別對應於參考標準之鑑別 滯留時間對應於參考標準之滯留時間   
   純度,HPLC / ≥99% 99%   
   水含量,KF / ≤ 0.5% 0.3%   
   分析,HPLC (%,w/w)/報導 88.8%   
   殘餘溶劑,HSGC (%,w/w) 甲基三級丁基醚/報導 2-甲基四氫呋喃/報導 正庚烷/報導 2.2% 1.5% < 0.0100%   
實例 2. 合成化合物 I-1 II-1 III-1 主鏈 回收鏈: 製備化合物 3
起始材料 反應條件 IPC
化合物4 B2Pin2 KOAc Pd(dppf)Cl 2 NMP 溫度 時間
3g 1.0eq 1.68g 1.2eq 1.62g 3eq 0.141g 0.035eq 24mL 8V 85-90℃ 16h 化合物3:92.8% 同型偶合:1.5%
5g(分析校正) 1.0eq 2.79g 1.2eq 2.70g 3eq 0.235g 0.035eq 40mL 8V 85-90℃ 18h 化合物3:95.0% 同型偶合:0.54%
製備化合物 III-1
化合物3 化合物III-1
起始材料及反應條件 IPC1 反應 條件 IPC2
材料 試劑 條件 材料 試劑 條件
化合物4 3g (分析校正) B2Pin2 (1.2eq) KOAc(3eq) Pd(dppf)Cl2 (0.035eq) 經2 h程式化升溫至85-90℃ 攪拌11h 化合物2 (1.1eq) PdCl 2(Amphos) (0.05eq) K 2CO 3(20%, 3 eq) 經1.5h程式化升溫至60-65℃ 攪拌3h 攪拌16h
化合物3:95.0% 同型偶合:0.9% 化合物2:N.D 化合物3:0.02% III-1:79.4% 同型偶合:7.4% 化合物2:N.D 化合物3:N.D. III-1:76.0% 同型偶合:7.4%
示範批
將400g (分析校正)化合物4用於示範批。對於步驟3,發現一致IPC結果,且所得2-MeTHF溶液具有500ppm之NMP殘餘。對於步驟4,IPC為典型的,但冷卻後且照常添加水後無固體沈澱出來。萃取及溶劑切換之後,自DMF/丙酮/水=6.25V/6.25V/4.75V結晶產物。過濾且乾燥後,獲得71.3%粗產率的具有97.8%%純度之318g產物。
論述:偵測到化合物3溶液之類似NMP殘餘(約500ppm),但產物不能如前所述直接自反應溶液沈澱,此分離製程不可再現。因此,將DMF作為反應溶劑進行測試,且在反應後,添加丙酮及水以直接沈澱產物。 製備 III-1
步驟 3 步驟4
起始材料及反應條件 IPC1 反應 條件 IPC2
材料 試劑 條件 材料 試劑 條件
化合物4 400g (分析校正) B2Pin2 (1.2eq) NMP KOAc(3eq) Pd(dppf)Cl2 (0.035eq) 85-90℃ 12h 化合物3:93.4% 同型偶合:2.0% 化合物2 (1.1eq) 2-MeTHF PdCl 2(Amphos) (0.05eq) K 2CO 3(20%, 3 eq) 60-65℃ 3h 化合物2:3.6% 化合物3:0.02% III-1:76.9% 同型偶合:7.4%
III-1
重量 純度 外觀 產率 QNMR 殘餘Pd
318g 97.8% 灰色固體 71.3%粗物質 87.7% 740ppm
處理研究
處理 結果及觀測
結晶 1)        冷卻,無固體沈澱出來
分離 1)        分離 2)        用水洗滌有機層
濃縮 在低於45℃濃縮至2V
結晶 1)        添加DMF/丙酮=6.25V/6.25V 2)        經2 h逐滴添加3V水,沈澱出固體,在20-25℃攪拌3h,沈澱出更多固體 3)        添加1V水,在20-25℃攪拌1h 母液: 4)        添加0.75V水,在20-25℃攪拌1h 母液:濕濾餅:97.6% 5)        過濾
乾燥 在45℃乾燥,獲得318g灰色固體
溶劑篩選
對20g 化合物4嘗試DMF製程。對於步驟3,發現一致IPC結果。對於步驟4,使用DMF作為溶劑,但IPC純度僅67.7%,低於之前(77%)。DMF不能用於反應溶劑,將繼續使用2-MeTHF。 製備 III-1
步驟3 步驟4
起始材料及反應條件 IPC1 反應 條件 IPC2
材料 試劑 條件 材料 試劑 條件
化合物4 20g (分析校正) B2Pin2 (1.2eq) NMP KOAc(3eq) Pd(dppf)Cl2 (0.035eq) 85-90℃ 2h 化合物3:93.2% 同型偶合:2.7% 化合物2 (1.1eq) DMF PdCl 2(Amphos) (0.05eq) K 2CO 3(20%, 3 eq) 60-65℃ 3h 化合物2:2.2% 化合物3:0.2% III-1: 67.7% 同型偶合:10.0%
製程最佳化(2-MeTHF製程)
對20g 化合物4進行處理最佳化。對於步驟3,發現一致IPC結果。對於步驟4,仍使用2-MeTHF作為溶劑,IPC仍典型,在冷卻及添加水之後無固體沈澱出來。萃取及水洗滌之後,將2-MeTHF換成DMF,且自DMF/丙酮/水=6V:6V:6V結晶。結晶後,以80.5%產率獲得具有94.3%純度及89.8%分析(分析校正)的20.0g產物。 製備 III-1
步驟3 步驟4
起始材料及反應條件 IPC1 反應 條件 IPC2
材料 試劑 條件 材料 試劑 條件
化合物4 20g (分析校正) B2Pin2 (1.2eq) NMP KOAc(3eq) Pd(dppf)Cl2 (0.035eq) 85-90℃ 2h 化合物3:93.8% 同型偶合:1.5% 化合物2 (1.1eq) 2-MeTHF PdCl 2(Amphos) (0.05eq) K 2CO 3(20%, 3 eq) 60-65℃ 3h 化合物2:2.8% 化合物3:0.3% III-1:79.3% 同型偶合:7.1%
步驟 2 處理研究:
處理 結果及觀測
分離及洗滌 1)        分離有機層 2)        用2V EtOAc逆向萃取水層 3)        用3V 1N HCl溶液洗滌有機層 4)        用3V 10% NaCl溶液洗滌有機層
濃縮 1)        在低於45℃濃縮至2V
結晶 1)        添加2V DMF,濃縮至2-3V 2)        添加4V DMF及6V丙酮 3)        經2 h逐滴添加3V水,沈澱出固體,在20-25℃攪拌3h,沈澱出更多固體 4)        添加2V水,在20-25℃攪拌1h 母液:濕濾餅:98.3%純度 5)         添加1V水,在20-25℃攪拌
乾燥 1)        在50-60℃乾燥
III-1
重量 純度 外觀 產率 分析 殘餘Pd
20.0g 94.3% 灰色固體 80.5% 89.8% 4962ppm
典型程序  1. 將226g (5.09-6.22X) NMP裝入R1中 2. 將40g (1.0X)化合物4裝入R1中 3. 在20-25℃攪拌R1 0.5-1.0h以形成澄清溶液 4. 於N2保護下將22.34g B2Pin2 (0.53-0.59X)裝入R1中 5. 於N2保護下將21.58g KOAc (0.51-0.57X)裝入R1中 6. 將100 g (2.25-2.75X) NMP裝入R1中 7. 在20-30℃用N2鼓泡1h。 8. 將1.877g (0.045-0.057X) Pd(dppf)Cl2裝入R1中 9. 用N2氣體置換R1 3次 10.    將R1調節至85-90℃ 11.    在85-90℃攪拌R1 2-17h 12.    IPC:化合物4/化合物3≤1.0% 13.    將R1調節至20-25℃ 14.    將288g (6.48-7.92X) EtOAc裝入R1中 15.    將320g (7.20-8.80X)製程水裝入R1中 16.    在20-30℃攪拌R1 0.5-1h 17.    將R1靜置0.5-1h 18.    將上層分離至T1中且將底層移出至T2中 19.    將水層自T2裝入R1中 20.    將180g (4.05-4.95X) EtOAc裝入R1中 21.    在20-30℃攪拌R1 0.5-1h 22.    將R1靜置0.5-1h 23.    將上層分離至T1中且將底層移出至T2中 24.    將水層自T2裝入R1中 25.    將180g (4.05-4.95X) EtOAc裝入R1中 26.    在20-30℃攪拌R1 0.5-1h 27.    將R1靜置0.5-1h 28.    將底層移除至T2中 29.    將有機層自T1裝入R1中 30.    在20-30℃經10g (0.2-0.3X)矽藻土過濾至T2中 31.    用36g (0.9-1.0X) EtOAc洗滌濾餅 32.    將有機層自T2裝入R1中 33.    將200g (4.50-5.50X) 5% NaCl溶液裝入R1中 34.    在20-30℃攪拌R1 0.5-1h 35.    將R1靜置0.5-1h 36.    分離且將底層移出至T1中 37.    將200g (4.50-5.50X) 5% NaCl溶液裝入R1中 38.    在20-30℃攪拌R1 0.5-1h 39.    將R1靜置0.5-1h 40.    分離且將底層移出至T1中 41.    將200g (4.50-5.50X) 5% NaCl溶液裝入R1中 42.    在20-30℃攪拌R1 0.5-1h 43.    將R1靜置0.5-1h 44.    分離且將底層移出至T1中 45.    經由40g (0.9-1.1X)矽膠過濾且用450g (11-14X) EtOAc洗滌濾餅 46.    在低於40℃濃縮R2至2-3V 47.    將172g (6.18-7.56X) 2-MeTHF裝入R2中 48.    在低於40℃濃縮R2至2-3V 49.    將275g (6.18-7.56X) 2-MeTHF裝入R2中 50.    在低於40℃濃縮R2至3-4V 51.    將155g (3.00-5.50X) 2-MeTHF裝入R2中 52.    將18.0g (0.40-0.50X)化合物2裝入R2中 53.    將152g (3.4-4.2X) 20% K2CO3溶液裝入R2中 54.    在20-30℃用N2鼓泡1h 55.    將2.6g (0.062-0.078X) Pd(Amphos)Cl2裝入R2中 56.    用N2氣體置換R2 3次 57.    將R2調節至60-65℃ 58.    IPC:化合物3/化合物III-1≤1.0% 59.    將R2調節至20-30℃ 60.    在20-30℃攪拌R2 1-2h 61.    將R2靜置0.5-1h 62.    將底層分離且移出至T1中,將上層裝入T2中 63.    將溶液自T1裝入R2中 64.    將108g (2.5-4.0X) EtOAc裝入R2中 65.    在20-30℃攪拌R2 0.5-1h 66.    將R2靜置0.5-1h 67.    分離且將底層移出至T1中 68.    將溶液自T2裝入R2中 69.    將120g (2.8-3.3X) 10% NaCl溶液裝入R2中 70.    在20-30℃攪拌R2 0.5-1h 71.    將R2靜置0.5-1h 72.    分離且將底層移出至T1中 73.    分析樣本 74.    水層中之殘餘III-1:報導 75.    經由1.2g (0.25-0.35X)二氧化矽硫醇過濾且用320g (5-12X)EtOAc洗滌濾餅 76.    在低於40℃濃縮R2至2-3V 77.    將76g (1.7-2.1X) DMF裝入R2中 78.    在低於40℃濃縮R2至3-4V 79.    將162g (3.6-4.5X) DMF裝入R2中 80.    將198g (4.4-5.5X)丙酮裝入R2中 81.    在20-30℃經4h將200g (4-7X)水逐滴添加至R2中 82.    在20-30℃攪拌R2 2-3h 83.    檢查化合物I-1濕濾餅純度:報導 84.    檢查化合物I-1母液純度:報導 85.    過濾 86.    用60g (1-2X)水洗滌濕濾餅 87.    用120g (1-2X)丙酮洗滌濾餅。 88.    在50~60℃真空乾燥12~18h。 89.    裝載於滾筒中。 製備及結晶化合物 I -1 彙總
藉由SFC製備純化示範批,在漿化後得到純度98.0%且對掌性純度99.5%的102g工作標準物。對於製造批,在PreHPLC之後獲得7.65kg I-1,隨後在漿化之後產生純度99.2%且對掌性純度98.3%之7.34kg產物(GLP批)。
進行化合物I-1溶液之穩定性研究,且其在pH為4~5時穩定。 PreHPLC分離
藉由PreHPLC分離300g外消旋物。1)獲得純度98.7%且對掌性純度99.5%之141g濕濾餅(I-1)。2) 165.8g 獲得濕濾餅(II-1)。在PreHPLC製備之後獲得具有99.3%純度、98.8%對掌性純度及125ppm Pd殘餘的7.65kg I-1。 SFC 分離之結果:
重量 純度 對掌性純度 殘餘Pd
I-1 141g濕濾餅 98.7% 99.5% 587ppm
工作標準物製備
用10V EA/庚烷(1:5)於25℃使141g濕濾餅(I-1)漿化14h,且過濾及乾燥後,獲得純度98.0%且對掌性純度99.5%的102.7g灰白色固體。溶劑殘餘:MeOH、丙酮、DCM、2-Me-THF、NMP<100ppm、EA=2370ppm、正庚烷=212ppm、DMF=732ppm。 工作標準物之結果
重量 外觀 純度 對掌性純度 殘餘Pd 殘餘Cl- ROI
102.7g 灰白色固體 99.2% 99.5% 464ppm 4250ppm 0.16%
I-1之漿化製程
對SFC製備後之20g I-1評估漿化製程(EtOAc/庚烷:2V/10V)。獲得具有99.4%純度、98.5%對掌性純度及100%分析之19.0g產物。
對7.65kg I-1進行漿化。獲得純度99.2%且對掌性純度98.3%之7.34kg產物。溶劑:ACN=216ppm、EtOAc=41291ppm、正庚烷=669ppm、DMF=182ppm、NMP=134ppm、MeOH、丙酮、DCM、2-Me-THF<100ppm 漿化之結果:
HPLC 漿化溶劑 重量 外觀 純度 對掌性純度 分析 殘餘Pd
99.4% EtOAc/庚烷 2V/10V 19.0g 灰白色固體 99.4% 98.5% 100% 94ppm
99.4% EtOAc/庚烷 2V/10V 7.34kg 灰白色固體 99.2% 98.3% 96.2% 149ppm
漿化製程:1. 將I-1 (7.65kg)裝入R1中。 2. 將(EA 15.3L)裝入R1中。 3. 將(正庚烷76.5L)裝入R1中。 4. 在20-30℃攪拌R1 4 hr。 5. 過濾反應混合物。 6. 在40-50℃乾燥濕濾餅17 hr。 7. 獲得I-1 (7.35 kg)。 濃縮期間I-1之穩定性
為研究產物I-1在濃縮期間之對掌性穩定性,在不同條件下嘗試來自製備型HPLC之三批I-1:1)產物之ee%在於45-50℃及pH 6-7下攪拌18h後自98.20%變成78.95%。2) 產物之ee%在於在20-25℃及pH 6-7下攪拌18h後自98.20%變成97.64%。3) 產物之ee%在於45-50℃及pH 5-6下攪拌18h後自98.20%變成98.15%。
進行0.5g I-1之兩次反應(在SFC製備之後)以進行穩定性研究。1) 化合物在於10-20℃及pH 4下攪拌20h後穩定。2) 此化合物之ee%在於40-50℃及pH 4下攪拌20h後自98.43%變成98.16%。 I-1 之結果:
濃縮前ee% 溫度 pH 時間 ee% 純度
ee%98.20% 45-50℃ MeOH 6-7 攪拌18h 78.95% /
20-25℃ MeOH 6-7 攪拌18h 97.64% /
45-50℃ MeOH, 1N HCl 5-6 攪拌18h 98.15% /
ee% 98.43% 10-20℃ MeOH, 1N HCl 4 攪拌4h 98.33% 99.53%
攪拌20h 98.39% 99.54%
攪拌68h 98.27% 99.53%
40-50℃ MeOH, 1N HCl 4 攪拌4h 98.38% 99.51%
攪拌20h 98.16% 99.37%
攪拌68h 97.92% 99.29%
結果:1)化合物在68h內於10~20℃下穩定,2)純度及對掌性純度在於40~50℃攪拌68h下僅輕微下降。 光影響(對掌性純度)
進行四次反應以研究光在中性及鹼性條件下對對掌性純度之影響。攪拌96h後,在中性系統中,產物之ee%在避光條件下幾乎不變,而在光照條件下降低至81.68%。在鹼性系統中,ee%降低比中性系統中更顯然。避光條件中產物之ee%降低至43.30%,而在光照條件下降低至30.84%。 光影響之結果
材料ee% 條件 時間
0h 1h 6h 24h 96h
98.96% 避光 中性 98.96% /    98.94% 98.96% 98.92%
光照 中性 98.87% 97.15% 81.68%
避光 鹼性(KOAc) / 97.91% 94.79% 80.92% 43.30%
光照 鹼性(KOAc) 94.35% 76.17% 30.84%
進行兩次反應以研究中性及鹼性條件下之螢光。在UV燈下無肉眼可見螢光。 雜質製備
對7.9g 化合物4 (分析校正)進行宮浦(Miyarau)及鈴木(Suzuki)反應以進行同型偶合物製備。觀測到92.2% IPC純度,但偵測到~10% BHT。用水洗滌且藉由DMF/丙酮/水=9:6:4結晶之後,獲得純度95.7%之11.4g同型偶合物。
對90g 化合物4進行兩次反應以進行同型偶合物製備。IPC顯示良好結果。處理之後,獲得具有93.9%純度及92.2% QNMR之127g同型偶合物。 同型偶合物之反應
硼酸製備 同型偶合物製備
起始材料及反應條件 IPC1 起始材料及反應條件 IPC2
材料 試劑 條件 材料 試劑 條件
化合物4 7.9g (分析校正) B2Pin2 (1.2eq) NMP(8V) KOAc(3eq) Pd(dppf)Cl2 (0.035eq) 85-90℃ 4h 化合物3:83.8% 同型偶合:7.3% 化合物4(0.8eq) 2-MeTHF PdCl 2(Amphos) (0.05eq) K 2CO 3(20%, 3 eq) 60-65℃, 19h 同型偶合:92.2%
化合物4 20g (分析校正) B2Pin2 (1.2eq) NMP(8V) KOAc(3eq) Pd(dppf)Cl2 (0.035eq) 85-90℃ 3h 化合物3:97.9% 同型偶合:0.98% 化合物4 (0.86eq) 2-MeTHF PdCl 2(Amphos) (0.05eq) K 2CO 3(20%, 3 eq) 60-65℃, 1h 同型偶合:90.9%
化合物4 72g (分析校正) B2Pin2 (1.2eq) NMP(8V) KOAc(3eq) Pd(dppf)Cl2 (0.035eq) 85-90℃ 4h 化合物3:98.5% 同型偶合:0.45% 化合物4 (0.88eq) 2-MeTHF PdCl 2(Amphos) (0.05eq) K 2CO 3(20%, 3 eq) 60-65℃, 1h 同型偶合:91.0 %
同型偶合物之結果:
重量 外觀 純度 QNMR
11.4g 灰色固體 95.7%純度 75.6%
127g 灰色固體 93.9%純度 92.2%
14.9min處之雜質為來自THF之BHT。歸因於同型偶合雜質之不良溶解度,將THF用作共溶劑。 摻入反應
對20g產物進行摻入雜質。在摻入0.175g同型偶合物及0.173g II-1之後獲得98.5%純度及0.73%同型混合物以及97.6%對掌性純度。
對另一20g批次進行摻入雜質,在摻入0.227g同型偶合物及0.252g II-1之後獲得98.4%純度及0.90%同型偶合物以及97.1%對掌性純度。 摻入結果:
摻入之前 同型偶合 II-1 純度 對掌性純度
純度 對掌性純度
純度:99.2% 同型:0.07% 98.3% 20g 0.175g 0.88% 0.173g 0.87% 純度:98.5% 同型:0.73% 97.6%
20g 0.195g 0.98% 0.221 1.11% 純度:98.5% 同型:0.77%    97.3%
0.227g 1.14% 0.252g 1.26% 純度:98.4% 同型:0.90% 97.1%
外消旋化製程 彙總
為自化合物II-1回收化合物I-1,篩選用於外消旋化之不同鹼及溶劑。THF/ACN中之KOAc得到更佳結果。小測試及驗證成功。在千級實驗室(kilo lab)對三個II-1批次進行規模擴大。 條件最佳化
進行六次反應以進行外消旋化製程篩選。在20~30℃篩選鹼(KOAc/NaHCO3/TEA)及溶劑(THF+ACN/THF/THF+ACN+H2O)。THF/ACN中之KOAc得到更佳結果。 條件篩選之反應
溶劑 IPC
HPLC ee% HPLC ee% HPLC ee%
THF/ACN 10V/5V NaHCO3 6h 20h 32h
/ 98.8% II-1:I-1 =97:3 98.3% II-1:I-1 =94:6
THF 10V KOAc 98.6% II-1:I-1 =84:16 97.9% II-1:I-1 =70:30
THF/ACN/水  10V/5V/0.5V KOAc 98.5% II-1:I-1 =63:37 91.3% II-1:I-1 =57:43
THF/ACN 10V/5V KOAc 98.3% II-1:I-1 =71:29 98.1% II-1:I-1 =56:44 /
THF 10V TEA 98.4% II-1:I-1 =98:2
THF/ACN 10V/5V TEA 98.5% II-1:I-1 =97:3
小測試及驗證
對20g II-1進行外消旋化製程。反應良好(I-1:II-1=51.4%:48.6%)。酸洗滌之後,水洗滌且在EA/MeOH中漿化,獲得具有99.0%純度及49.6%對掌性純度之16.6g產物。
對65g II-1進行驗證。反應仍良好(I-1:II-1=51.5%:48.5%)。典型處理後,獲得具有98.5%純度及49.2%對掌性純度之55.8g產物。 外消旋化之反應
II-1 溶劑 KOAc IPC
HPLC 對掌性純度
20g THF/ACN=10V/5V 3.22g 97.1% II-1:I-1=51:49
65g THF/ACN=5V/2.5V 10.48g 96.9% II-1:I-1=51.5:48.5
外消旋化之結果
外觀 純度 對掌性純度
16.6g 灰白色固體 99.0% 49.6%
55.8g 灰白色固體 98.5% 49.2%
規模擴大
對3.12kg II-1 (分析校正)進行規模擴大,19h後之IPC顯示II-1/I-1= 52.4%/47.6%。對2.55kg粗II-1 (分析校正)進行規模擴大,IPC顯示II-1/I-1= 52.0%/48.0%。對2.24kg粗II-1 (分析校正)進行規模擴大,IPC顯示II-1/I-1= 50.6%/49.4%。合併以上三個批次之產物。處理後,獲得具有97.8%純度、97.5%分析及49.0%對掌性純度之7.114kg粗產物。 外消旋化之反應
II-1 溶劑 KOAc 溫度 時間 IPC
HPLC 對掌性純度
3.12kg THF/ACN=5V/2.5V 505g 1.0eq 25-35℃ 15h 95.4% II-1/I-1 =53.5/46.5
17h 96.4% II-1/I-1 =52.8/47.2
19h / II-1/I-1 =52.4/47.6
2.55kg THF/ACN=5V/2.5V 420g 1.0eq 25-35℃ 14h 97.0% II-1/I-1 =54.3/45.7
18h / II-1/I-1 =52.5/47.5
19h / II-1/I-1 =52.0/48.0
2.24kg THF/ACN=5V/2.5V 370g 1.0eq 25-35℃ 22h 95.6% II-1/I-1 =50.6/49.4
處理研究
處理 結果及觀測
淬滅 2)        逐滴添加10V 7% NaHCO3溶液,沈澱出部分產物 3)        過濾且收集固體
萃取 3)        用2-MeTHF (5V) + EtOAc (5V)萃取濾液 4)        分離且丟棄水層
用HCl洗滌 1)        合併固體及有機層 2)        添加5V 2-MeTHF,部分固體仍不可溶解 3)        逐滴添加5V 1N HCl溶液以調節pH=2-3 4)        過濾且收集固體 5)        分離且丟棄水層
用水洗滌 6)        用5V水洗滌有機層2次 7)        用5V鹽水洗滌有機層
濃縮 1)        在低於35-45℃真空濃縮有機層
漿化 1)        合併濃縮溶液及先前之固體,在室溫下用EA/MeOH=0.2V/2V漿化 2)        過濾
外消旋化之結果
外觀 純度 分析 KF 對掌性純度
7.114kg 灰白色固體 97.8% 97.5% 0.16% 48.8%
外消旋化製程1. 將II-1 (3.3 kg)裝入R1中。 2. 將(THF 20 L)裝入R1中。 3. 將(ACN 10 L)裝入R1中。 4. 在25-35℃攪拌R1 1 h。 5. 將(KOAc 505 g,1.004eq)裝入R1中。 6. 在25-35℃攪拌R1 19hr。 7. 逐滴添加3750mL 7% NaHCO3溶液。 8. 在20-30℃攪拌R1 0.5 h。 9. 過濾反應混合物。 10.    將(EtOAc 16.5 L)裝入R1中。 11.    將(2-MeTHF 16.5 L)裝入R1中。 12.    在20-30℃攪拌R1 0.5 h。 13.    分離上層且移除底層。 14.    將(2-MeTHF 23.1 L)裝入R1中。 15.    將16.5L 1N HCl裝入R1中以調節pH=2-3。 16.    在20-30℃攪拌R1 0.5 h。 17.    過濾反應混合物。 18.    分離上層且移除底層。 19.    將(水16.5 L)裝入R1中。 20.    在20-30℃攪拌R1 0.5 h。 21.    分離上層且移除底層。 22.    將(水16.5 L)裝入R1中。 23.    在20-30℃攪拌R1 20 min。 24.    分離上層且移除底層。 25.    將16.5L鹽水裝入R1中 26.    在20-30℃攪拌R1 0.5 h。 27.    分離上層且移除底層。 28.    在低於40-50℃真空濃縮R1。 29.    在40-50℃乾燥濕濾餅14 hr。 30.    獲得III-1 (3.1 kg)。 製備及結晶化合物 I -1 彙總
藉由製備型HPLC分離7.11kg III-1,得到3.1kg I-1,最後在用庚烷/EA漿化之後獲得2.42kg產物,殘餘~10%EA。結果在下表中: 結果:
漿化溶劑 純度 KF 對掌性純度 殘餘Pd
2.42kg EtOAc/庚烷 2V/10V 99.7% 0.32% 99.6% 9ppm
示範廠生產結果製備化合物III-1 製備 III-1 結果
起始材料 ( 基於化合物4 ,分析校正) 產物 ( 粗產物量) 純度 分析 產率
20.7 kg 18.80 kg 97.9% 88.6% 72%
材料分配彙總表
材料 實際量
類別 名稱 當量 質量 反應物之分析 莫耳
eq. kg w/w% mol.
反應物 化合物4 1.00 11.20 12.00 (20.7 a) 89.9% 88.8% 37.9
雙(頻哪醇根基)二硼 1.20 11.6 ≥97% 45.7
6-溴-[1,2,4]三唑并[1,5,a]吡啶-5-甲腈 (化合物3) 1.10 9.3 / 41.7
化學物質 乙酸鉀 / 11.2 / /
[1,1,-雙(二苯基膦基)二茂鐵]二氯化鈀(II)與二氯甲烷之錯合物 / 1.2 / /
碳酸鉀 / 17 / /
矽藻土 / 16 / /
矽膠 / 23 / /
雙(二-三級丁基(4-二甲胺基苯基)膦)二氯化鈀(II) / 1.3 / /
二氧化矽硫醇 / 8 / /
NMP / 167 / /
EtOAc / 1219 / /
2-MeTHF / 487 / /
DMF / 123 / /
丙酮 / 127 / /
製程水 / 360 / /
5% NaCl水溶液 / 304 / /
10% NaCl水溶液 / 60 / /
注意 : a 藉由分析校正製程描述
操作 註釋/觀測/結果 (X=20.5 kg)
1.  將NMP (124 kg)裝入R1中   
2.  將R1調節至60-70℃,攪拌10-60 min   
3.  將R1調節至20-40℃   
4.  將樣本用於R&D測試   
5.  使用測試:化合物4/化合物3 (%)=N.D. 使用測試通過
6.  將R1材料裝載至鍍鋅鋼滾筒中 洗滌NMP
7.  將NMP (116 kg 5.66 X)裝入R1   
8.  將R1調節至20-25℃   
9.  將化合物4 (分析校正20.7 kg 1.01 X)裝入R1中   
10. 將R1調節至20-25℃,在20-25℃攪拌R1 0.5-1.0 h直至固體溶解為止   
11. 裝入雙(頻哪醇根基)二硼(11.6 kg 0.57 X)   
12. 將醋酸鉀(11.2 kg 0.55 X)裝入R1   
13. 將NMP (51 kg 2.49 X)裝入R1   
14. 將R1調節至20-30℃,攪拌R1且在20-30℃用N 2鼓泡1 h   
15. 將[1,1,-雙(二苯基膦基)二茂鐵]二氯化鈀(II)與二氯甲烷之錯合物(1.2 kg 0.059 X)裝入R1中   
16. 將R1調節至85-90℃,在85-90℃攪拌R1 2-17 h   
17. 將R1調節至30-40℃   
18. IPC:化合物4/化合物3 (%)≤1.0% N.D.
19. 將R1調節至20-25℃   
第一分層及過濾   
20. 將EtOAc (161 kg 7.85 X)裝入R1中   
21. 將製程水(170 kg 8.29 X)裝入R1中   
22. 將R1調節至20-30℃,在20-30℃攪拌R1 0.5-1 h   
23. 使R1靜置0.5-1 h   
24. 將R1水層轉移至新的鋁塑複合物滾筒中 化合物3水層:375.8 kg
25. 將有機層裝載至 步驟 29滾筒中 化合物3 NMP/EtOAc溶液
26. 將 步驟 24化合物3水層裝入R1中   
27. 用EtOAc (100 kg 4.88 X)萃取水層   
28. 將R1水層轉移至新的鋁塑複合物滾筒中   
29. 將R1有機層裝載至新的鋁塑複合物滾筒中 化合物3 NMP/EtOAc溶液:305.0 kg
30. 將 步驟 28化合物3水層裝入R1中   
31. 用EtOAc (100 kg 4.88 X)萃取水層   
32. 將R1水層轉移至新的鋁塑複合物滾筒中 化合物3水層:300.6 kg
33. IPC:殘餘化合物3 (% w/w):報導 0.04%
34. 將 步驟 29化合物3 NMP/EtOAc溶液裝入R1中   
35. 將R1調節至20-30℃   
36. 將兩個濾布分散至F1中   
37. 將矽藻土(6 kg 0.3 X)裝入F1中   
38. 將EtOAc (40 kg)裝入F1以使矽藻土濕潤   
39. 將F1之溶劑壓出至鍍鋅鋼滾筒 洗滌EtOAc
40. 經由F1逐份加壓過濾R1材料,裝載後過濾至乾燥,將濾液轉移至 步驟 44之新鋁塑複合物滾筒   
41. 用EtOAc (50 kg 2.44 X)沖洗R1   
42. 經由F1加壓過濾R1沖洗EtOAc,裝載後過濾至乾燥,將濾液轉移至 步驟 44之新鋁塑複合物滾筒   
43. 用N 2保護可撓性隔離器。將F1濕濾餅裝載至襯有雙重LDPE袋之纖維滾筒中 化合物3矽藻土
44. 將濾液裝載至新的鍍鋅鋼滾筒或鋁塑複合物滾筒中 化合物3 NMP/EtOAc溶液:485.6 kg
2 分層及過濾   
45. 將 步驟 44化合物3 NMP/EtOAc溶液裝入R1中   
46. 用5% NaCl水溶液洗滌R1中之有機相三次(103 kg 5.02 X;100 kg,4.88 X;101 kg;4.93 X; )   
47. 將R2水層轉移至新的鋁塑複合物滾筒中 化合物3水層:407.0 kg
48. 將兩個濾布分散至F2中   
49. 將矽膠(23 kg 1.12 X)裝入F2中   
50. 將EtOAc (438 kg)裝入F2以使矽膠濕潤   
51. 將F2之溶劑壓出至鍍鋅鋼滾筒 洗滌EtOAc
52. 經由F2逐份加壓過濾R1材料,裝載後過濾至乾燥,將濾液轉移至 步驟 56之新鋁塑複合物滾筒   
53. 用EtOAc (286 kg 14 X)沖洗R1   
54. 經由F2加壓過濾R1沖洗EtOAc,裝載後過濾至乾燥,將濾液轉移至 步驟 56之新鋁塑複合物滾筒   
55. 用N 2保護可撓性隔離器。將F2濕濾餅裝載至襯有雙重LDPE袋之纖維滾筒中 化合物3矽膠
56. 將濾液裝載至新的鍍鋅鋼滾筒或鋁塑複合物滾筒中 化合物3 NMP/EtOAc溶液:656.0 kg
57. 用2-MeTHF (119 kg 5.8 X)洗滌R2   
58. 將洗滌2-MeTHF用於R&D測試   
59. 使用測試:N.D.   
60. 將R2材料裝載至鍍鋅鋼滾筒中 洗滌2-MeTHF
61. 將製程水(68 kg 3.32 X)裝入R2中   
62. 將K 2CO 3(17 kg 0.83 X)裝入R2中   
63. 將R2調節至20-30℃   
64. 在20-30℃攪拌R2不少於0.5-1.0 h直至固體溶解為止   
65. 將R2中之材料裝載至新鋁塑複合物滾筒中 20% K 2CO 3水溶液
66. 用製程水洗滌R2   
67. 將 步驟 56化合物3 NMP/EtOAc溶液逐份裝入R2中 655.2 kg
68. 在≤40℃內部溫度減壓濃縮R2混合物至2-3 X   
69. 將2-MeTHF (142 kg 6.9 X)裝入R2中   
70. 在≤40℃內部溫度減壓濃縮R2混合物至2-3 X   
71. 將2-MeTHF (134 kg 6.5 X)裝入R2中   
72. 在≤40℃內部溫度減壓濃縮R2混合物至3-4 X   
73. 將2-MeTHF (92 kg 4.5 X)裝入R2中   
74. 將R2調節至20-30℃   
75. 裝入化合物2 (9.3 kg 0.45 X)   
76. 將20% K 2CO 3水溶液(79 kg 3.85 X)裝入R1中   
77. 將R2調節至20-30℃,攪拌R2且在20-30℃用N 2鼓泡1 h   
78. 將雙(二-三級丁基(4-二甲胺基苯基)膦)二氯化鈀(II)(1.3 kg 0.063 X)裝入R2中   
79. 將R2調節至60-65℃,在60-65℃攪拌R2 3-4 h   
80. 將R2調節至30-40℃   
81. IPC:化合物3/III-1 (%)≤1.0% 0.2%
82. 將R2調節至20-30℃,使R2靜置0.5-1 h   
83. 將R2水層轉移至 步驟 90之滾筒中 III-1水層
84. 將R2有機層裝載至新的鋁塑複合物滾筒中 III-1 2-MeTHF溶液:169.4 kg
85. 將 步驟 83之III-1水層(73.2 kg)裝入R2中   
86. 用EtOAc (67 kg 3.27 X)萃取R2中之水層   
87. 將R2水層轉移至 步驟 90之滾筒中 III-1水層
88. 將 步驟 84III-1 2-MeTHF溶液(169.2 kg)裝入R2中   
89. 用10% NaCl水溶液(60 kg 2.9 X)洗滌R2中之有機層   
90. 將R2水層轉移至新的鋁塑複合物滾筒中 III-1水層:139.6 kg
91. IPC:殘餘III-1 (% w/w):報導 0.007%
92. 將二氧化矽硫醇(8 kg)裝入R2中   
93. 將R2調節至25-35℃,在25-35℃攪拌R2 5-10 h   
94. 將兩個濾布分散至F3   
95. 將矽藻土(10 kg 0.49 X)裝入F3中   
96. 將EtOAc (31 kg)裝入F3以使矽藻土濕潤   
97. 將F3之溶劑壓出至鍍鋅鋼滾筒 洗滌EtOAc
98. 經由F3逐份加壓過濾R2材料,裝載後過濾至乾燥,將濾液轉移至 步驟 102之新鋁塑複合物滾筒   
99. 用EtOAc (346 kg 17 X)沖洗R2   
100.    經由F3加壓過濾R2沖洗EtOAc,裝載後過濾至乾燥,將濾液轉移至 步驟 102之新鋁塑複合物滾筒   
101.    用N 2保護可撓性隔離器。將F3濕濾餅裝載至襯有雙重LDPE袋之纖維滾筒中 III-1二氧化矽硫醇含有Pd
102.    將濾液裝載至新的鍍鋅鋼滾筒或鋁塑複合物滾筒中 III-1 2-MeTHF/EtOAc溶液:566.8 kg
103.    將 步驟 102III-1 2-MeTHF/EtOAc溶液逐份裝入R2中 566.4 kg
104.    在≤40℃內部溫度減壓濃縮R2混合物至2-3 X   
105.    將DMF (35 kg 1.7 X)裝入R2中   
106.    在≤40℃內部溫度減壓濃縮R2混合物至3-4 X   
107.    將DMF (88 kg 4.3 X)裝入R2中   
108.    將丙酮(104 kg 5.1 X)裝入R2中   
109.    將R2調節至20-30℃   
110.    在20-30℃經4 h將製程水(82 kg 4 X)逐份裝入R2中   
111.    在20-30℃攪拌R2 0.5-1 h   
112.    IPC:     
   測試物 預期值     
   濾液中之殘餘III-1 (%, w/w) 報導     
   III-1之純度(%) 報導     
113.    將離心袋分散於M1中   
114.    藉由離心分離濕濾餅以供進行1次裝載且針對各裝載分別用製程水(40 kg 2 X)及丙酮(23 X 1.1 X)沖洗濕濾餅   
115.    將固體裝載至襯有雙重PE袋之塑膠滾筒中 III-1濕濾餅:25.20 kg
116.    IPC:殘餘Pd (ppm):報導 281 ppm
117.    將濾液裝載至新鋁塑滾筒中 III-1丙酮/水母液
118.    IPC:濾液中之殘餘III-1 (%,w/w):報導 0.6%
119.    將 步驟 115III-1濕濾餅放入D1中   
120.    將D1加熱至50-60℃   
121.    在50-60℃減壓乾燥D1 6-12 h   
122.    在50-60℃減壓乾燥D1 12-24 h   
123.    IPC:   
   測試物 預期值           
   水含量(%, w/w) 報導     
   殘餘2-MeTHF (%, w/w) 報導     
   殘餘DMF (%, w/w) 報導     
   殘餘正庚烷(%, w/w) 報導     
   殘餘EtOAc (%, w/w) 報導     
   殘餘NMP (%, w/w) 報導     
   殘餘丙酮(%, w/w) 報導     
124.    稱量襯有雙重LDPE袋之空纖維滾筒之皮重,標記IPC材料標籤,且隨後將乾燥劑之材料裝載至滾筒中 III-1: 18.80 kg
125.    IPC:   
   測試物 預期值      
   III-1之純度(%) 報導   
   III-1之分析(%, w/w) 報導   
實例 3 . 合成化合物 I-1 II-1 III-1 3.1 製備化合物 51. 於N2下將化合物7 (100.0g,1.00±0.01X)裝入R1中 2. 於N2下將化合物6 (65.6g,0.66±0.01X)裝入R1中 3. 將DMAc (470.0g,4.5-5.0X)裝入R1中 4. 於N2下將HOAt (42.9g,0.43±0.01X)裝入R1中 5. 將R1調節至20~30℃ 6. 於N2下在20~30℃將DIPEA (55.0g,0.55±0.02X)裝入R1中 7. 在20~30℃攪拌R1 0.5-1h 8. 於N2下在20~30℃將EDCI (80.6g,0.81±0.01X)裝入R1中 9. 將R1調節至35~40℃ 10.    在35~40℃攪拌R1 16-20h 11.    IPC:化合物7/化合物5=報導 12.    在35~40℃攪拌R1 4-6h 13.    IPC:化合物7/化合物5=報導 14.    將H2O (900g,9.0±0.2X)裝入R2中 15.    將Na2CO3 (100g,1.00±0.02X)裝入R2中 16.    將R2調節至20~30℃ 17.    在20~30℃攪拌R2 0.5-1h 18.    將10% Na2CO3水溶液裝入滾筒 19.    將H2O (900g,9.0±0.2X)裝入R2中 20.    將NH4Cl (100g,1.00±0.02X)裝入R2中 21.    將R2調節至20~30℃ 22.    在20~30℃攪拌R2 0.5-1h 23.    將10% NH4Cl水溶液裝入滾筒 24.    將H2O (450g,4.5±0.1X)裝入R2中 25.    將NaCl (50g,0.50±0.01X)裝入R2中 26.    將R2調節至20~30℃ 27.    在20~30℃攪拌R2 0.5-1h 28.    將10% NaCl水溶液裝入滾筒 29.    將R1調節至20~30℃ 30.    將EA (900g,9.0-10.0X)裝入R1中 31.    於N2下在20~30℃將製程水(1500g,15.0±0.3X)裝入R1中 32.    在20~30℃攪拌R1 0.5-1h 33.    將R1在20~30℃靜置0.5-1h 34.    分離:將水層裝入T1中,將有機層裝入T2中 35.    將T1中之水層裝入R1中 36.    將EA (450g,4.5-5.0X)裝入R1中 37.    將R1調節至20~30℃ 38.    在20~30℃攪拌R1 0.5-1h 39.    將R1在20~30℃靜置0.5-1h 40.    分離:將水層裝入T1中,將有機層裝入T2中 41.    IPC:殘餘化合物5於T1之水層中:報導 42.    將T1中之水層裝入滾筒中 43.    將T2中之有機層裝入R1中 44.    將10% Na2CO3水溶液(500g,5.0±0.1X)裝入R1中 45.    將R1調節至20~30℃ 46.    在20~30℃攪拌R1 0.5-1h 47.    將R1在20~30℃靜置0.5-1h 48.    分離:將水層裝入T3中 49.    將10% Na2CO3水溶液(500g,5.0±0.1X)裝入R1中 50.    將R1調節至20~30℃ 51.    在20~30℃攪拌R1 0.5-1h 52.    將R1在20~30℃靜置0.5-1h 53.    分離:將水層裝入T3中,將T3中之水層裝入滾筒 54.    將10% NH4Cl水溶液(500g,5.0±0.1X)裝入R1中 55.    將R1調節至20~30℃ 56.    在20~30℃攪拌R1 0.5-1h 57.    將R1在20~30℃靜置0.5-1h 58.    分離:將水層裝入T4中 59.    將10% NH4Cl水溶液(500g,5.0±0.1X)裝入R1中 60.    將R1調節至20~30℃ 61.    在20~30℃攪拌R1 0.5-1h 62.    將R1在20~30℃靜置0.5-1h 63.    分離:將水層裝入T4中,將T4中之水層裝入滾筒 64.    將10% NaCl水溶液(500g,5.0±0.1X)裝入R1中 65.    將R1調節至20~30℃ 66.    在20~30℃攪拌R1 0.5-1h 67.    將R1在20~30℃靜置0.5-1h 68.    分離:將水層裝入T5中,將T5中之水層裝入滾筒。將有機層裝入T6中 69.    清潔R1 70.    將T6中之有機層裝入R1中 71.    在低於45℃將有機層於R1中濃縮至3-4V 72.    將2-MeTHF (430.0g,4.3-5.0X)裝入R1中 73.    在低於45℃將有機層於R1中濃縮至3-4V 74.    將2-MeTHF (430.0g,4.3-5.0X)裝入R1中 75.    在低於45℃將有機層於R1中濃縮至3-4V 76.    將2-MeTHF (430.0g,4.3-5.0X)裝入R1中 77.    在低於45℃將有機層於R1中濃縮至3-4V 78.    IPC:R1中化合物5之殘餘EA:報導,2-MeTHF溶液中化合物5之KF≤0.5% 79.    將2-MeTHF (430.0g,4.3-5.0X)裝入R1中 80.    在低於45℃將有機層於R1中濃縮至3-4V 81.    IPC:R1中化合物5之殘餘EA:報導,2-MeTHF溶液中化合物5之KF≤0.5% 82.    將2-MeTHF溶液裝入滾筒且用2-MeTHF (86.0g,0.9±0.4X)沖洗R1 83.    IPC:2-MeTHF溶液中化合物5之純度 3.2 製備化合物 41. 於N2下將含化合物5之2-MeTHF溶液裝入R1中 2. 在低於45℃將有機層於R1中濃縮至1.5-2.5V 3. 將R1調節至15~30℃ 4. 在15~30℃將CH3SO3H (1414g,14±0.2X)裝入R1中 5. 將R1調節至50~55℃ 6. 在50~55℃攪拌R1 24-30h 7. IPC:化合物5/化合物4=報導 8. 在50~55℃攪拌R1 2-8h 9. IPC:化合物5/化合物4=報導 10.    將H2O (630g,6.3±0.2X)裝入R2中 11.    將NH4Cl (70g,0.7~0.8X)裝入R2中 12.    將R2調節至20~30℃ 13.    在20~30℃攪拌R2 0.5-1h 14.    將10% NH4Cl水溶液裝入滾筒 15.    將H2O (560g,5.6±0.2X)裝入R2中 16.    將NaCl (140g,1.4~1.6X)裝入R2中 17.    將R2調節至20~30℃ 18.    在20~30℃攪拌R2 0.5-1h 19.    將20% NaCl水溶液裝入滾筒 20.    將R1調節至15~30℃ 21.    在15~30℃將2-MeTHF (600g,5.0~7.0X)裝入R1中 22.    在15~30℃將H2O (420g,4.0~5.0X)裝入R1中 23.    在15~30℃藉由30% NaOH (2000g,18~22X)調節pH=10~11 24.    將R1調節至15~25℃ 25.    在15~25℃攪拌R1 0.5-1h 26.    在15~25℃靜置R1 0.5-1h 27.    分離:將水層裝入T1中,將有機層裝入T2中 28.    將T1中之水層裝入R1中 29.    將2-MeTHF (600g,5.0~7.0X)裝入R1中 30.    將R1調節至15~25℃ 31.    在15~25℃攪拌R1 0.5-1h 32.    在15~25℃靜置R1 0.5-1h 33.    分離:將水層裝入T1中 34.    IPC:水層中之殘餘化合物4:報導 35.    將水層灌輸至T1 36.    將T2中之有機層裝入R1中 37.    將10% NH4Cl水溶液(700g,7.0±0.5X)裝入R1中 38.    將R1調節至15~25℃ 39.    在15~25℃攪拌R1 0.5-1h 40.    在15~25℃靜置R1 0.5-1h 41.    分離:將水層裝入T3中 42.    將20% NaCl水溶液(700g,7.0±0.5X)裝入R1中 43.    將R1調節至15~25℃ 44.    在15~25℃攪拌R1 0.5-1h 45.    在15~25℃靜置R1 0.5-1h 46.    分離:將水層裝入T4中,將有機層裝入T5中 47.    清潔R1 48.    將T5中之有機層裝入R1中 49.    在低於45℃將有機層於R1中濃縮至5-7V 50.    將MTBE (450g,4.0~5.0X)裝入R1中 51.    在低於45℃將有機層於R1中濃縮至5-7V 52.    將MTBE (450g,4.0~5.0X)裝入R1中 53.    在低於45℃將有機層於R1中濃縮至5-7V 54.    IPC:有機層中之殘餘2-MeTHF:報導 55.    將R1調節至40~45℃ 56.    在40~45℃攪拌R1 0.5-1h 57.    將R1調節至20~25℃,保持2-4h 58.    在20~25℃攪拌R1 2-4h 59.    將MTBE (180g,1.5~2.5X)裝入R1中 60.    在20~25℃將正庚烷(550g,5.0~7.0X)裝入R1中 61.    在20~25℃攪拌R1 6-10h 62.    IPC:化合物4濕濾餅之純度:報導,母層中之殘餘化合物4:報導 63.    離心 64.    將MTBE/正庚烷(1/1,v/v,1.0~3.0X)裝入R1中以沖洗濾餅 65.    離心 66.    IPC:化合物4濕濾餅之純度:報導 67.    在70~80℃乾燥濕濾餅16-24 h 68.    IPC:化合物4之KF:≤0.5%,殘餘MTBE,化合物4之2-MeTHF及正庚烷:報導 69.    在70~80℃乾燥濕濾餅8-12 h 70.    IPC:化合物4之KF:≤0.5%,殘餘MTBE,化合物4之2-MeTHF及正庚烷:報導 71.    封裝產物 3 .3 製備化合物 III-13.3.1淨化殘餘Pd之研究 小測試 (DMF)
對純度95.8%之6g粗產物進行再結晶以升級純度且移除殘餘Pd。將粗產物溶解於DMF中且在室溫下與0.3X二氧化矽硫醇一起攪拌17h。過濾之後,藉由DMF/丙酮/水=6.25V/6.25V/4.75V使產物再結晶。獲得具有99.1%純度及88.3%分析之4.97g產物。殘餘Pd自2106ppm降至76ppm。 III-1 之結果
條件 重量 純度 外觀 分析 殘餘Pd 殘餘溶劑
/ 6g 95.8% 灰色 84.9% 2106ppm /
0.3X二氧化矽硫醇 DMF/丙酮/水 6.25V/6.25V/4.75V 4.97g 99.1% 灰白色 88.3% 76ppm 丙酮: 8.56% DMF:0.85% KF:0.21%
驗證 (DMF)
對40g化合物3進行驗證及使用測試。IPC顯示反應(兩個步驟)正常進行。通過B2Pin2及Pd(dppf)2Cl2之使用測試。處理且自DMF/丙酮/水首次結晶之後,獲得具有97.7%純度及1539ppm Pd殘餘物之濕濾餅。隨後在藉由DMF/丙酮/水進一步純化之後,以61.1%產率獲得具有99.2%純度及89.2%分析之30.58g產物。殘餘Pd自1539ppm降至79ppm。 III-1 之反應
步驟3 步驟4
起始材料及反應條件 IPC1 起始材料及反應條件 IPC2
材料 試劑 條件 材料 試劑 條件
化合物4 40g (分析校正) B2Pin2 (1.2eq) NMP KOAc(3eq) Pd(dppf)Cl2 (0.035eq) 85-90℃ 3h 化合物3:96.6% 化合物2 (1.0eq) 2-MeTHF PdCl 2(Amphos) (0.05eq) K 2CO 3(20%, 3 eq) 60-65℃ 3h III-1: 84.7%, 同型偶合:6.0%
III-1 之結果
批號/ 批次號# 結晶 重量 純度 外觀 分析 殘餘Pd 殘餘溶劑
首次結晶 DMF/丙酮/水 6.25V/6.25V/4.75V 濕濾餅 97.7% 灰白色 / 1539ppm /
純化 再結晶 0.3X二氧化矽硫醇 DMF/丙酮/水 6.25V/6.25V/4.75V 30.58g 99.2% 灰白色 89.2% 79ppm KF: 0.5%
雜質概況
批次 0.61 ( 化合物2) 0.74 0.86 0.94 0.98 1.00(III-1) 1.01 1.30 同型偶合 1.30
   IPC 0.70    0.09 0.92 0.57 80.99 0.84 5.13 0.43
產物          0.18 0.52 98.19    0.52 0.11
   IPC 5.66 1.08 1.24 0.66 0.10 73.78 1.27 3.67 6.04
濾餅1 0.23 0.10 0.21    0.09 95.79 0.37 0.25 2.17
濾餅2       0.03    0.10 99.11    0.02 0.54
   IPC    0.12 0.15 1.28 0.40 84.70    6.00 1.16
濾餅1       0.02 0.49 0.38 97.71    0.53 0.32
濾餅2          0.32 0.35 99.17    0.04 0.12
   IPC 1.49 0.37 0.12 1.03 0.54 78.80 0.13 5.69 0.67
濾餅1 0.03    0.04 0.55 0.05 97.89 0.09 0.68 0.18
所提出之結構: RRT0.94 積聚
對79.4g (分析校正)進行積聚以篩選不同條件。對於步驟3,IPC顯示HPLC中之100%轉化率及95.7%純度。對於步驟4,IPC顯示78.8%純度及5.69%同型偶合雜質。處理及首次結晶之後,以66.3%產率獲得具有97.9%純度及89.0%分析之66g粗產物。殘餘Pd為221ppm。 III-1 之反應
步驟3 步驟4
起始材料及反應條件 IPC1 起始材料及反應條件 IPC2
材料 試劑 條件 材料 試劑 條件
化合物4 79.4g (分析校正) B2Pin2 (1.2eq) NMP KOAc(3eq) Pd(dppf)Cl2 (0.035eq) 85-90℃ 5h 化合物3:95.7% 化合物2 (1.1eq) 2-MeTHF PdCl 2(Amphos) (0.05eq) K 2CO 3(20%, 3 eq) 60-65℃ 3h 化合物2:1.49% III-1: 78.80% 同型偶合:5.69%
III-1 之結果
結晶 重量 純度 外觀 分析 殘餘Pd 殘餘溶劑
DMF/丙酮/水 6.25V/6.25V/5V 66g 97.9% 灰白色 89.0% 221ppm 丙酮:8.64%, EtOAC:0.08%, 2MeTHF:0.01%, DMF:1.04%, NMP:0.23%
篩選吸附方式
經由管柱中之 0.6X 二氧化矽 硫醇過濾:對15g粗III-1移除殘餘Pd。將III-1溶解於4V DMF中且經由管柱中之0.6X二氧化矽硫醇過濾。藉由DMF/丙酮/水=5.45V/5.45V/4.54V再結晶之後,獲得具有99.2%純度及91.5%分析之13.95g產物。殘餘Pd為30ppm。
0.6X 二氧化矽 硫醇一起攪拌:對15g粗III-1移除殘餘Pd。將III-1溶解於4V DMF中,隨後與0.6X二氧化矽硫醇一起攪拌20h,過濾且藉由DMF/丙酮/水=5.45V/5.45V/4.54V再結晶之後,獲得具有99.3%純度及92.3%分析之13.43g產物。殘餘Pd為13ppm。
0.3X 二氧化矽 硫醇一起攪拌兩次:對15g粗III-1移除殘餘Pd。將III-1溶解於4V DMF中,隨後與0.3X二氧化矽硫醇一起攪拌20h。過濾之後,將有機層與0.3X二氧化矽硫醇一起攪拌8h。過濾且藉由DMF/丙酮/水=5.45V/5.45V/4.54V再結晶之後,獲得具有99.1%純度及90.5%分析之13.59g產物。殘餘Pd為10ppm。 III-1 之結果
材料 製程 分析 殘餘Pd 純度
HPLC 0.94 1.49 1.50
15g,純度97.9%,分析89.0%, 221ppm 經由管柱中之0.6X二氧化矽硫醇過濾 13.95g 91.5% 30ppm 99.2% 0.43 0.19 0.12
用0.6X二氧化矽硫醇漿化一次 13.43g 92.3% 13ppm 99.3% 0.47 0.07 0.07
用0.3X二氧化矽硫醇漿化兩次 13.59g 90.5% 10ppm 99.1% 0.48 0.23 0.11
III-1 之結果
批次號 殘餘溶劑
50 乾燥 20h
丙酮:4.81%,EtOAC:0.01%,2-Me-THF:<LOQ(0.01%),DMF:4.42%,NMP:0.25%
丙酮:5.44%,EtOAC:<LOQ(0.01%) ,2-Me-THF:<LOQ(0.01%),DMF:4.21%,NMP:0.22%
丙酮:4.47%,EtOAC:<LOQ(0.01%) ,2-Me-THF:<LOQ(0.01%),DMF:5.58%,NMP:0.13%
篩選吸附劑類型
將來自設備之30g粗III-1 (414ppm Pd)溶解於DMF中,用0.5X二氧化矽硫醇處理。過濾之後,將濾液分成4份: 1) 直接結晶:在藉由DMF/丙酮/水=6.25V/6.25V/4.75V結晶之後。以84.8%粗產率獲得具有99.0%純度之6.36g產物,殘餘Pd為36ppm。 2) 0.5X 二氧化矽硫醇處理且隨後結晶:藉由DMF/丙酮/水=6.25V/6.25V/4.75V結晶之後。以86.4%粗產率獲得具有98.7%純度之6.48g產物,殘餘Pd為17ppm。 3) 0.2X 活性碳處理且隨後結晶:以70.9%粗產率獲得具有98.8%純度之5.32g產物,殘餘Pd為5ppm。 4)0.5X 普通矽膠處理且隨後結晶:以80.3%粗產率獲得具有98.4%純度之6.02g產物。殘餘Pd為29ppm。 III-1 之反應
起始材料 第一處理 第二處理 結晶結果
純度 殘餘Pd 注意
30g III-1 (96.3%純度 414ppm Pd) 15g二氧化矽硫醇 120 mL DMF 30-40℃ 24h / 6.36g 99.0% 36ppm   
0.5X二氧化矽硫醇 6.48g 98.7% 17ppm   
0.2X活性碳 5.32g 98.8% 5ppm 添加另外3V DMF導致低產率及低Pd殘餘
0.5X普通矽膠 6.02g 98.4% 29ppm   
篩選粗 III-1 之溶劑
DCM+MeOH:因為在用DMF溶解粗III-1時,其難以過濾,將15g粗III-1溶解於DCM/MeOH=16.7V/4V中,用0.5X二氧化矽硫醇處理兩次。濃縮及溶劑交換之後,藉由DMF/丙酮/水=6.25V/6.25V/4.75V使粗產物結晶。12.73g 獲得純度為98.6%且粗產率為84.9%之產物。殘餘Pd為20ppm。溶劑交換之後,DMF溶液中殘餘~10% MeOH。
DCM+MeOH+DMF:將30g粗III-1溶解於DCM/MeOH/DMF =16.7V/4V/1V中,用0.5X二氧化矽硫醇處理兩次。濃縮且溶劑交換之後,藉由DMF/丙酮/水=6.25V/6.25V/4.75V使粗產物結晶。27.5g 獲得具有98.6%純度之產物。殘餘Pd為23ppm。
驗證 (DCM+MeOH+DMF):對50g粗III-1進行驗證。將產物溶解於DCM/MeOH/DMF =16.7V/4V/1V中,用0.5X二氧化矽硫醇處理兩次。典型處理之後,獲得具有98.3%純度之44.3g產物。殘餘Pd為15ppm。對來自驗證批次之20g III-1進行再結晶。藉由DMF/丙酮/水=6.25V/6.25V/4.75V再結晶之後,獲得具有99.1%純度之18.5g產物。殘餘Pd自15ppm降至12ppm。濃縮及溶劑交換之後,DMF溶液之純度稍微下降。
再結晶兩次:將30g粗III-1溶解於DCM/MeOH/DMF =16.7V/4V/1V中,用0.5X二氧化矽硫醇處理。藉由DMF/丙酮/水=6.25V/6.25V/4.75V結晶之後,獲得具有98.1%純度之27.1g產物。殘餘Pd為23ppm。對產物再結晶。獲得具有99.3%純度之24.49g產物。殘餘Pd為22ppm。 III-1 之反應
起始材料 第一處理 第二處理 結晶結果  
純度 殘餘Pd 殘餘溶劑
15g III-1 (96.3%純度 414ppm Pd) 0.5X二氧化矽硫醇 DCM/MeOH 16.7V/4V 20-30℃ 20h 0.5X二氧化矽硫醇 12.73g 99.0% 20ppm MeOH<LOQ(1000ppm); 丙酮102249 ppm; DCM<LOQ(1000ppm); EtOAC<LOQ(1000ppm); 2MeTHF<LOQ(1000ppm); DMF 8291 ppm; NMP<LOQ(2460ppm);
30g III-1 (96.3%純度 414ppm Pd) 0.5X二氧化矽硫醇 DCM/MeOH 16.7V/4V 20-30℃ 20h 0.5X二氧化矽硫醇 27.5g 98.7% 23ppm MeOH<LOQ(1000ppm); 丙酮102249 ppm; DCM<LOQ(1000ppm); EtOAC<LOQ(1000ppm); 2MeTHF<LOQ(1000ppm); DMF 8291 ppm; NMP<LOQ(2460ppm);
50g III-1 (96.3%純度 414ppm Pd) 0.5X二氧化矽硫醇 DCM/MeOH 16.7V/4V 20-30℃ 19h 0.5X二氧化矽硫醇 44.3g 98.3% 15ppm MeOH:<1000ppm; 丙酮:92419ppm; DCM:ND; EA:<1000ppm; 2-MeTHF:ND; DMF:14024ppm; NMP:<2460ppm
20g III-1 (98.3%純度 15ppm Pd) 再結晶DMF/丙酮/水 6.25V/6.25V/4.75V 18.5g 99.1% 12ppm MeOH:<1000ppm; 丙酮:90904ppm; DCM:ND; EA:<1000ppm; 2-Me-THF:ND; DMF:16057ppm; NMP:<2460ppm
30g III-1 (96.3%純度 414ppm Pd) 0.5X二氧化矽硫醇 DCM/MeOH 16.7V/4V 20-30℃ 19h 結晶 DMF/丙酮/水 6.25V/6.25V/4.75V 27.1g 98.1% 23ppm /
再結晶 DMF/丙酮/水 6.25V/6.25V/4.75V 24.49g 99.3% 22ppm MeOH:ND; 丙酮:109949ppm; DCM:7509; EA:ND; 2-Me-THF:ND; DMF:20572ppm; NMP:ND
處理研究
處理 批次1 批次2
第一處理 0.5X二氧化矽硫醇 在20-30℃攪拌20h 純度:96.2% 在20-30℃攪拌20h 純度:95.8%
第二處理 0.5X二氧化矽硫醇 在20-30℃攪拌20h 純度:96.0% 在20-30℃攪拌20h 純度:95.5%
濃縮 在低於40℃濃縮至2V且將溶劑交換成DMF,歷經3h 純度:96.2% 在低於40℃濃縮至2V且將溶劑交換成DMF,歷經5h 純度:95.3%
結晶 藉由DMF/丙酮/水=6.25V/6.25V/4.75V結晶 母液:濕濾餅:98.7% 藉由DMF/丙酮/水=6.25V/6.25V/4.75V結晶 母液:濕濾餅:98.3%
乾燥 在45℃乾燥,獲得27.53g灰白色固體 在45℃乾燥,獲得44.3g灰白色固體
純化 10g I-1 用於基因毒性研究
對20g I-1進行進一步純化,得到10g純化產物。用二氧化矽硫醇處理且結晶之後,獲得具有99.3%純度、98.47%對掌性純度之19.51g產物。殘餘Pd為67ppm。第二次純化之後,19.77g粗產物之純度為99.4%且對掌性純度為99.08%。殘餘Pd為7ppm,殘餘~10% EA。 I-1 之反應
粗物質量 條件 產物 殘餘Pd 純度 對掌性純度
20g 20V DCM: MeOH=5:1 1.0X二氧化矽硫醇 EtOAc/庚烷 2.5V:9V 19.51g 67ppm 99.3% 98.47%
19.51g 19V DCM: MeOH=8:1 1.0X二氧化矽硫醇 EtOAc/庚烷 2.5V:9V 19.77g 7ppm 99.4% 99.08%
製程穩定性
將3g產物溶解於MeOH中,在34℃攪拌18h之後,III-1之純度為96.0%,在RRT 0.74下產生0.15%雜質。在50℃攪拌60h之後,此雜質增加至3.44%,其他兩種雜質稍微增加。
將3g產物溶解於DCM/MeOH/DMF中,隨後在40℃濃縮至3V,在40℃攪拌17h,III-1之純度為94.57%,在RRT 1.26下產生0.15%雜質。
溫度/ 時間 HPLC/RRT 純度
0.41 0.74 0.94 0.96 1.00 1.26 1.37 1.38
攪拌前 0.10 N.D. 0.62 N.D. 96.23 N.D. 1.98 0.31
18h, 34 ℃ 0.10 0.15 0.59 N.D. 95.98 N.D. 2.33 0.29
34h, 50 ℃ 0.15 2.49 0.67 0.20 93.53 0.19 2.13 0.26
42h, 50 ℃ 0.17 2.98 0.67 0.25 92.67 0.38 2.15 0.20
60h, 50 ℃ 0.19 3.45 0.67 0.40 91.45 0.58 2.26 0.23
16h, 40 ℃ 0.11 0.03 0.68 N.D. 94.57 0.33 2.51 0.46
3.3.2   III-1及I-1固體之穩定性  I-1之純度(99.2%)在55天之後幾乎不變(99.2%)。 III-1之純度(99.0%)在38天之後幾乎不變(99.1%)。 示範廠生產結果 製備化合物 5 製備化合物 5 結果
起始材料 ( 基於化合物7) 產物 (2-MeTHF 溶液) 純度
47.0 kg 163.4 kg 94.5%
材料分配彙總表
材料 實際量
類別 名稱 當量 質量 反應物之分析 莫耳
eq. kg w/w% mol.
反應物 4-胺基-6-溴-3-(2-氯-5-氟苯基)-2-(4-甲氧基苯甲基)異吲哚啉-1-酮 ( 化合物7) 1.00 47.0 / 98.8
3-氟-5-(三氟甲基)苯甲酸 ( 化合物6) 1.51 31.0 / 149.0
1-羥基-7-氮雜苯并三唑 (HOAT) 1.51 20.3 / 149.1
1-乙基-3-(3-二甲胺基丙基)碳化二亞胺.HCl (EDCI) 2.03 38.4 97%-103% 200.3
N,N-二異丙基乙胺 (DIPEA) 2.08 26.6 / 205.8
化學物質 EA / 674 / /
製程水 / 1558 / /
2-Me THF / 726 / /
DMAc / 240 / /
NH 4Cl / 47.9 / /
NaCl / 24 / /
Na 2CO 3 / 47.9 / /
製程描述
操作 註釋/觀測/結果 (X = 47.0 kg)
1.         用Na 2CO 3及製程水製備10% Na 2CO 3水溶液 Na 2CO 3: 47.9 kg; 製程水:424 kg
2.         用NH 4Cl及製程水製備10% NH 4Cl水溶液 NH 4Cl: 47.9 kg 製程水:430 kg
3.         用NaCl及製程水製備10% NaCl水溶液 NaCl: 24.0 kg 製程水:212 kg
4.         將 化合物 7(0.99-1.01X)裝入R1中 47.0 kg 1.00 X
5.         將 化合物 6(0.65-0.67X)裝入R1中 31.0 kg 0.66 X
6.         將DMAc (4.5-5.0X)裝入R1中 220 kg 4.7 X
7.         啟動R1之攪動器且將攪動速度設定在75 rpm   
8.         將HOAT (0.42-0.44X)裝入R1中 20.3 kg 0.43 X
9.         將R1調節至20-30℃內部溫度   
10.      將DIPEA (0.53-0.57X)緩慢裝入R1,其中內部溫度20-30℃ 26.6 kg 0.57 X
11.      在20-30℃內部溫度攪拌R1 0.5-1.0 h   
12.      將EDCI (0.80-0.82X)裝入R1中,其中內部溫度20-30℃ 38.4 kg 0.82 X
13.      將DMAc (10-30 kg)裝入R1中 20 kg
14.      將R1調節至35-45℃內部溫度   
15.      在35-45℃內部溫度攪拌R1 16-20 h   
16.      IPC: 化合物 7/ 化合物 5(面積%):報導 0.05
17.      將R1調節至20-30℃內部溫度   
18.      將EA (9.0-10.0X)裝入R1中 442 kg 9.4 X
19.      將製程水(14.7-15.3X)裝入R1中,其中內部溫度20-30℃ 704 kg 15.0 X
20.      在20-30℃內部溫度攪拌R1 0.5-1.0 h   
21.      使R1在20-30℃內部溫度靜置0.5-1.0 h   
22.      將來自反應器之底部水層裝載至T1中 化合物 5水溶液>
23.      將反應器之有機層轉移至T2 化合物 5EA溶液>
24.      將 步驟 22化合物 5水溶液裝入R1中   
25.      用EA (4.5-5.0X)萃取水層 232 kg 4.9 X
26.      將來自反應器之底部水層裝載至T1中 化合物 5水溶液>
27.      IPC:殘餘 化合物 5(LC,% w/w):報導 0.0008
28.      將 步驟 23 化合物 5EA溶液裝入R1中 化合物 5EA溶液>
29.      將來自 步驟 1之10% Na 2CO 3水溶液(4.9-5.1X)裝入R1中 233 kg 5.0 X
30.      將R1調節至20-30℃內部溫度   
31.      在20-30℃內部溫度攪拌R1 0.5-1.0 h   
32.      使R1在20-30℃內部溫度靜置0.5-1.0 h   
33.      將來自反應器之底部水層裝載至塑膠滾筒中 化合物 5Na 2CO 3水溶液>
34.      用來自 步驟 1之10% Na 2CO 3水溶液(4.9-5.1X)洗滌R1中之有機層 237 kg 5.0 X
35.      將來自反應器之底部水層裝載至塑膠滾筒中 化合物 5Na 2CO 3水溶液>
36.      用來自 步驟 2之10% NH 4Cl水溶液(4.9-5.1X)洗滌R1中之有機層 236 kg 5.0 X
37.      將來自反應器之底部水層裝載至塑膠滾筒中 化合物 5NH 4Cl水溶液>
38.      用來自 步驟 2之10% NH 4Cl水溶液(4.9-5.1X)洗滌R1中之有機層 239 kg 5.1 X
39.      將來自反應器之底部水層裝載至塑膠滾筒中 化合物 5NH 4Cl水溶液>
40.      用來自 步驟 3之10% NaCl水溶液(4.9-5.1X)洗滌R1中之有機層 236 kg 5.0 X
41.      將來自反應器之底部水層裝載至塑膠滾筒中 化合物 5NaCl水溶液>
42.      將反應器之有機層轉移至T2 化合物 5EA溶液>
43.      用製程水清潔R1直至pH為7-8   
44.      將來自 步驟4 2 化合物5EA溶液裝入R1中   
45.      啟動R1之攪動器且將攪動速度設定在75 rpm   
46.      在<45℃內部溫度下減壓濃縮R1混合物至3-4X之體積   
47.      經由Ft1將2-MeTHF (4.3-5.0X)裝入R1中 234 kg 5.0 X
48.      在<45℃內部溫度下減壓濃縮R1混合物至3-4X之體積   
49.      經由Ft1將2-MeTHF (4.3-5.0X)裝入R1中 234 kg 5.0 X
50.      在<45℃內部溫度下減壓濃縮R1混合物至3-4X之體積   
51.      經由Ft1將2-MeTHF (4.3-5.0X)裝入R1中 234 kg 5.0 X
52.      在<45℃內部溫度下減壓濃縮R1混合物至3-4X之體積   
53.      IPC:殘餘EtOAc (GC,% w/w):報導 含水量(% w/w) ≤ 0.5 化合物 5之純度(LG,面積%):報導 0.41 0.0 94.5
54.      將R1調節至20-30℃內部溫度   
55.      將來自 步驟 57之R1材料裝載至滾筒中   
56.      經由Ft1將2-MeTHF (0.5-1.3X)裝入R1中 24 kg 0.5 X
57.      將R1材料裝載至新鋁塑複合物滾筒中 化合物 52-MeTHF溶液> 163.4 kg
製備化合物 4 結果:
起始材料 ( 基於化合物 7) 產物 純度 分析 產率
47.0 kg 48.05 kg 98.9% 89.2% 80%
材料分配彙總表
材料 實際量
類別 名稱 質量 反應物之分析 莫耳
kg w/w% mol.
反應物 化合物52-MeTHF溶液 163.0 / /
甲烷磺酸 660 ≥ 99.0% 6867.4
化學物質 MTBE 621 / /
正庚烷 328 / /
製程水 814 / /
2-MeTHF 700 / /
NH4Cl 34.9 / /
NaCl 70.4 / /
液態氫氧化鈉 898 / /
製程描述
操作 註釋/觀測/結果 (X = 47.0 kg)
1.  用MTBE (0.52-1.56 X)及正庚烷(0.48 -1.44 X)製備MTBE/正庚烷溶液 MTBE: 71 kg; 正庚烷:68 kg
2.  用NH 4Cl及製程水製備10% NH 4Cl水溶液 NH 4Cl: 34.9 kg 製程水:309 L
3.  用NaCl及製程水製備20% NaCl水溶液 NaCl: 70.4 kg 製程水:275 L
4.  將所有 化合物 52-MeTHF溶液裝入R1中 163.0 kg
5.  將2-MeTHF (10-50 kg)裝入R1中 30 kg
6.  啟動R1之攪動器且將攪動速度設定在75 rpm   
7.  在<45℃內部溫度下減壓濃縮R1混合物至1.5-2.5 X之體積   
8.  將R1調節至15-30℃內部溫度   
9.  將甲烷磺酸(13.8-14.2 X)緩慢裝入R1中,其中內部溫度15-30℃ 660 kg 14.0 X
10. 將2-MeTHF (10-50 kg)裝入R1中 30 kg
11. 將R1調節至45-55℃內部溫度   
12. 在45-55℃內部溫度攪拌R1 24-30 h   
13. IPC: 化合物 5 / 化合物 4(LC,面積%):報導 2.2
14. 在45-55℃內部溫度攪拌R1 2-8 h   
15. IPC: 化合物 5 / 化合物 4(LC,面積%):報導 1.0
16. 將R1調節至15-30℃內部溫度   
17. 將2-MeTHF (5.0-7.0 X)裝入R1中,其中內部溫度15-30℃ 320 kg 6.8 X
18. 將製程水(4.0-5.0 X)緩慢裝入R1中,其中內部溫度15-30℃ 230 kg 4.9 X
19. 將液態氫氧化鈉(18-22 X)緩慢進料至R1中,其中內部溫度15-30℃,直至pH =10-11 898 kg 19 X; pH = 11
20. 將R1調節至15-25℃內部溫度   
21. 在15-25℃內部溫度攪拌R1 30-60 min   
22. 使R1在15-25℃內部溫度靜置30-60 min   
23. 將來自反應器之底部水層裝載至T1/T2中 化合物 4水溶液>
24. 將反應器之有機層轉移至T3 化合物 42-MeTHF溶液>
25. 將來自 步驟 23化合物 4水溶液裝入R1中   
26. 用2-MeTHF (5.0-7.0 X)萃取水層 320 kg 6.8 X
27. 將來自反應器之底部水層裝載至T1/T2中 化合物 4 水溶液
28. IPC:殘餘 化合物 4(LC,% w/w): N.D.
29. 將來自 步驟 24化合物 42-MeTHF溶液裝入R1中   
30. 用來自 步驟 2之10% NH 4Cl水溶液(6.7-7.5 X)洗滌R1中之有機層 345 kg 7.3 X
31. 將來自R1之底部水層裝載至T4中 化合物 4NH 4Cl水溶液>
32. 用來自 步驟 3之20% NaCl水溶液(6.5-7.5 X)洗滌R1中之有機層 344 kg 7.3 X
33. 將來自反應器之底部水層裝載至塑膠滾筒中 化合物 4NaCl水溶液>
34. 將反應器之有機層轉移至T3 化合物 42-MeTHF溶液>
35. 用製程水洗滌R1以清潔   
36. 將來自步驟 34化合物 42-MeTHF溶液裝入R1中   
37. 啟動R1之攪動器且將攪動速度設定在75 rpm   
38. 在<45℃內部溫度下減壓濃縮R1混合物至5-7 X之體積   
39. 經由Ft1將MTBE (4.0-5.0 X)裝入R1中 220 kg 4.7 X
40. 在<45℃內部溫度下減壓濃縮R1混合物至5-7 X之體積   
41. 經由Ft1將MTBE (4.0-5.0 X)裝入R1中 220 kg 4.7 X
42. 在<45℃內部溫度下減壓濃縮R1混合物至5-7 X之體積   
43. IPC:殘餘2-MeTHF (GC,% w/w):報導 25
44. 將R1調節至35-45℃內部溫度   
45. 在35-45℃內部溫度攪拌R1 2-4 h   
46. 用2-4 h將R1調節至15-25℃內部溫度   
47. 在15-25℃內部溫度攪拌R1 2-4 h   
48. 經由Ft1將MTBE (1.5-2.5 X)裝入R1中 110 kg 2.3 X
49. 經由Ft1將正庚烷(5.0-7.0 X)裝入R1中,其中內部溫度15-25℃ 260 kg 5.5 X
50. 在15-25℃內部溫度攪拌R1 6-10 h   
51. IPC:母液中之 化合物 4(GC,% w/w):報導; 濕濾餅中 化合物 4之純度(LC,面積%) 1.1 98.0
52. 將離心袋分散於離心機上   
53. 藉由離心機分離濕濾餅以用於2次裝載,且針對各裝載用 步驟 1MTBE/正庚烷溶液(0.5-1.5 X)沖洗濕濾餅 第一次裝載:69 kg 1.5 X; 第二次裝載:64 kg 1.4 X
54. 將固體裝載至襯有雙重抗靜電PE袋之纖維滾筒中 化合物 4濕濾餅> 64.90 kg
55. IPC:濕濾餅中 化合物 4之純度(LC,面積%) 98.4
56. 將母液裝載至鋁塑複合物滾筒中 化合物 4MTBE/正庚烷母液>
57. 將 步驟 54 化合物 4濕濾餅放入抗靜電乾燥袋中,隨後將袋子放入D1   
58. 將D1之壓力調節至≤ -0.085 MPa   
59. 將乾燥器之夾套溫度設定為70-80℃   
60. 在70-80℃減壓乾燥D1 16-24 h   
61. IPC:     
   測試物 預期值           
   水含量(%, w/w) 報導     
   殘餘MTBE (GC, %, w/w) 報導     
   殘餘2-MeTHF (GC, %, w/w) 報導     
   殘餘正庚烷(GC, %, w/w) 報導     
62. 在70-80℃減壓乾燥D1 8-12 h   
63. IPC:     
   測試物 預期值           
   水含量(%, w/w) 報導     
   殘餘MTBE (GC, %, w/w) 報導     
   殘餘2-MeTHF (GC, %, w/w) 報導     
   殘餘正庚烷(GC, %, w/w) 報導     
64. 將乾燥劑裝載至襯有雙重LDPE袋之空纖維滾筒中 化合物 448.05 kg
65. IPC:     
   測試物 預期值        
   化合物 4之純度(LC,面積%) 報導     
   化合物4之分析(%,% w/w) 報導     
製備化合物III-1 結果:
起始材料 ( 基於化合物4) 產物 ( 粗物質量) 純度 分析 產率
43.50 kg 34.40 kg 95.4% 85.2% 68%
材料分配彙總表
材料 實際量
類別 名稱 當量 質量 反應物之分析 莫耳
eq. kg w/w% mol.
反應物 化合物4 1.00 43.5 (38.8) 89.2% 71.1
雙(頻哪醇根基)二硼 B 2Pin2 1.22 22.0 ≥ 97% 86.6
6-溴-[1,2,4]三唑并[1,5,a]吡啶-5-甲腈 (化合物2) 1.10 17.5 / 78.5
乙酸鉀 (KOAc) 3.01 21.0 ≥ 99.0% 214.0
[1,1,-雙(二苯基膦基)二茂鐵]二氯化鈀(II)與二氯甲烷之錯合物 (Pd(dppf)Cl 2) 0.036 1.85 Pd ≥ 14.0% 2.53
雙(二-三級丁基(4-二甲胺基丙基)膦)二氯化鈀(II) (Pd(aMPHOS)Cl 2) 0.05 2.55 / 3.60
化學物質 碳酸鉀 (K 2CO 3) / 34.9 / /
矽藻土 / 11 / /
矽膠 / 44.5 / /
NMP / 520 / /
EtOAc / 1925 / /
2-MeTHF / 998 / /
DMF / 234 / /
丙酮 / 350 / /
製程水 / 1370 / /
NaCl / 50.5 / /
製程描述
操作 註釋/觀測/結果 (X = 39.0 kg)  
1.  用NaCl及製程水製備10% NaCl水溶液 NaCl: 15.6 kg 製程水:120 kg  
2.  用NaCl及製程水製備5% NaCl水溶液 NaCl: 34.9 kg 製程水:620 kg  
3.  用K 2CO 3及製程水製備20% K 2CO 3水溶液 K 2CO 3: 34.9 kg 製程水:132 kg  
4.  用NMP清潔R1 199 kg  
5.  將NMP (5.09-6.22 X)裝入R1中 220 kg 5.64 X  
6.  啟動R1之攪動器且將攪動速度設定在75 rpm     
7.  將化合物4 (分析校正0.99-1.01 X)裝入R1中 38.8 kg 0.99 X  
8.  攪拌R1 0.5-1.0 h直至固體溶解為止     
9.  將雙(頻哪醇根基)二硼(0.53-0.59 X)裝入R1中 22.0 kg 0.56 X  
10. 將醋酸鉀(0.51-0.57 X)裝入R1中 21.0 kg 0.54 X  
11. 將NMP (2.25-2.75 X)裝入R1中 101 kg 2.59 X  
12. 用N 2鼓泡1 h     
13. 將[1,1,-雙(二苯基膦基)二茂鐵]二氯化鈀(II)與二氯甲烷之錯合物(0.045-0.060 X)裝入R1中 1.85 kg 0.047 X  
14. 將R1調節至85-95℃內部溫度     
15. 在85-95℃內部溫度攪拌R1 3-17 h     
16. 將R1調節至40-60℃內部溫度     
17. IPC:化合物4/化合物3 (LC,面積%) ≤ 1.0 N.D.  
18. 將R1調節至20-30℃內部溫度     
19. 將EtOAc (7.20-8.80 X)裝入R1中 317 L 8.13 X  
20. 將製程水(7.20-8.80 X)裝入R1中 314 kg 8.05 X  
21. 將R1調節至20-30℃內部溫度     
22. 在20-30℃內部溫度攪拌R1 0.5-1.0 h     
23. 使R1靜置0.5-1.0 h     
24. 將R1水層轉移至T1中 <化合物3水層,含有Pd>  
25. 將有機層裝載至V1中     
26. 將 步驟 24化合物3水層裝入R1中     
27. 用EtOAc (4.50-5.50 X)萃取水層兩次 198 L 5.08 X; 197 L 5.05 X  
28. 將R1水層轉移至T1中 <化合物3水層,含有Pd>  
29. IPC:殘餘化合物3 (LC,% w/w):報導 0.03  
30. 將R1有機層負載至V1中 化合物3 NMP/EtOAc溶液  
31. 將兩個濾布分散至F1     
32. 將矽藻土(0.2-0.3 X)裝入F1中 11.0 kg 0.3 X  
33. 經由F1及Ft1逐份壓濾V1材料,將濾液在20-30℃內部溫度轉移至R1     
34. 用EtOAc (0.9-4.0 X)沖洗V1 80 kg 2.1 X  
35. 經由F1及Ft1逐份壓濾V1沖洗EtOAc,將濾液在20-30℃內部溫度轉移至R1     
36. 將濕濾餅裝載至襯有LDPE袋之纖維滾筒中 <化合物3矽藻土,含有Pd>  
37. 用來自 步驟 2之5% NaCl水溶液(4.50-5.50 X)洗滌R1中之有機相三次 199 kg 5.10 X; 201 kg 5.15 X; 200 kg 5.13 X  
38. 將R1水層轉移至T2中 <化合物3水層,含有Pd>  
39. 將兩個濾布分散至F2     
40. 將矽膠(0.9-1.1 X)裝入F2中 39.5 kg 1.01 X  
41. 將EtOAc (50-100 kg)裝入F2以使矽膠濕潤 50 kg  
42. 將F2之溶劑壓出至所用鐵滾筒 <洗滌EtOAc>  
43. 經由F2逐份壓濾R1材料,裝載後不過濾至乾燥,將濾液轉移至V1     
44. 用EtOAc (11-14 X)沖洗R1 540 kg 14 X  
45. 經由F2壓濾R1沖洗EtOAc,裝載後不過濾至乾燥,將濾液轉移至V1     
46. 將F2濕濾餅裝載至襯有雙重LDPE袋之纖維滾筒中 <化合物3矽膠>  
47. 將兩個濾布分散至F2     
48. 將 步驟 46之矽膠裝入F2中     
49. 將矽膠(2-20 kg)裝入F2中 5 kg  
50. 經由F2壓濾V1材料,裝載後不過濾至乾燥,將濾液轉移至R1     
51. 用EtOAc (429-546 kg)沖洗V1 488 kg 12.5 X  
52. 經由F2壓濾V1沖洗EtOAc,裝載後不過濾至乾燥,將濾液轉移至R1     
53. 在<40℃內部溫度減壓濃縮R1混合物至2-3 X     
54. 將2-MeTHF (7.2-8.8 X)裝入R1中 309 L 7.9 X  
55. 在<40℃內部溫度減壓濃縮R1混合物至2-3 X     
56. 將2-MeTHF (195-273 kg)裝入R1中 234 kg 6.0 X  
57. 在<40℃內部溫度減壓濃縮R1混合物至3-4 X     
58. 將2-MeTHF (3.00-5.50 X)裝入R1中 198 kg 5.08 X  
59. 將R1調節至20-30℃內部溫度     
60. 將R1材料裝載至新鋁塑複合物滾筒中,在 步驟 62中記錄重量 <化合物3 2-MeTHF溶液>  
61. 將2-MeTHF (10-30 kg)裝入R1中 26 kg  
62. 將R1材料裝載至新鋁塑複合物滾筒中 <化合物3 2-MeTHF溶液> 378.2 kg  
63. 用2-Me THF清潔R1 194 kg  
64. 將來自 步驟 62之所有化合物3 2-MeTHF溶液裝入R1中     
65. 將化合物2 (0.40-0.50 X)裝入R1中 17.5 kg 0.45 X  
66. 將2-MeTHF (50-120 kg)裝入R1中 80 kg  
67. 將來自 步驟 3之20% K 2CO 3水溶液(3.4-4.2 X)裝入R1中 147 kg 3.8 X  
68. 在20-30℃內部溫度用N 2鼓泡1 h     
69. 將雙(二-三級丁基(4-二甲胺基丙基)膦)二氯化鈀(II) (0.062-0.078 X)裝入R1中 2.55 kg 0.065 X  
70. 將R1調節至60-70℃內部溫度     
71. 在60-70℃內部溫度攪拌R1 3-4 h     
72. 將R1調節至40-50℃內部溫度     
73. IPC:化合物3/III-1 (LC,面積%) ≤ 1.0 0.0  
74. 將R1調節至20-30℃內部溫度     
75. 使R1靜置0.5-1 h     
76. 將R1水層轉移至鋁塑複合物滾筒中 <III-1水層>  
77. 將R1有機層裝載至T3中 <III-1 2-MeTHF溶液>  
78. 將 步驟 83之III-1水層裝入R1中     
79. 用EtOAc (2.5-4.0 X)萃取R1中之水層 126 kg 3.2 X  
80. 將R1水層轉移至鋁塑複合物滾筒中 <III-1水層,含有Pd>  
81. 將 步驟 84III-1 2-MeTHF溶液裝入R1中     
82. 用來自 步驟 1之10% NaCl水溶液(2.8-3.3 X)洗滌R1中之有機層 128 kg 3.3 X  
83. 將R1水層轉移至新的鋁塑複合物滾筒中 <III-1水層,包含Pd>  
84. IPC:殘餘III-1 (% w/w):報導 0.001  
85. 在<40℃內部溫度減壓濃縮R1混合物至2-3 X     
86. 將DMF (1.7-2.1 X)裝入R1中 72 kg 1.8 X  
87. 在<40℃內部溫度減壓濃縮R1混合物至3-4 X     
88. 將DMF (3.6-4.5 X)裝入R1中 162 kg 4.2 X  
89. 將丙酮(4.4-5.5 X)裝入R1中 194 kg 5.0 X  
90. 在20-30℃內部溫度經4 h將製程水(4-8 X)逐份裝入R1 184 kg 5 X  
91. 在20-30℃內部溫度攪拌R1 2-3 h     
92. IPC:濾液中之殘餘III-1 (LC,%,w/w):報導 0.7  
93. 將離心袋分散於M1中     
94. 藉由離心機分離濕濾餅且用丙酮(1-4 X)沖洗濕濾餅 156 kg 4 X  
95. 將固體裝載至襯有雙PE袋之纖維滾筒中 <III-1濕濾餅> 46.25 kg  
96. IPC:濕濾餅中III-1之純度(面積%):報導 96.3  
97. 將濾液裝載至新鋁塑滾筒中 <III-1丙酮/水母液>  
98. IPC:濾液中之殘餘III-1 (LC,%,w/w):報導 0.5  
99. 將 步驟 115III-1濕濾餅放入乾燥袋中,隨後將袋子放入D1中     
100.    將D1之壓力調節至≤ -0.085 MPa     
101.    將乾燥器之夾套溫度設定為50-60℃     
102.    在50-60℃減壓乾燥D1 12-18 h     
103.    IPC:   
   測試物 預期值         
   水含量(%, w/w) 報導   
   殘餘2-MeTHF (GC, ppm) 報導   
   殘餘DMF (GC, ppm) 報導   
   殘餘丙酮(GC, ppm) 報導   
   殘餘NMP (GC, ppm) 報導   
   殘餘EtOAc (GC, ppm) 報導   
104.    將乾燥劑裝載至襯有雙重LDPE袋之空纖維滾筒中 <III-1> 34.40 kg  
105.    IPC:     
   測試物 預期值           
   III-1之純度(LC,面積%) 報導     
   III-1之分析(LC,%,w/w) 報導     
   痕量金屬Pd (ICP-OES, ppm) 報導     
純化化合物III-1 結果:
起始材料 產物 ( 粗物質量) 純度 分析 產率
34.1 kg 27.80 kg 99.2% 89.6% 86%
材料分配彙總表
材料 實際量
類別 名稱 當量 質量 反應物之分析 莫耳
eq. kg w/w% mol.
反應物 III-1 1.00 34.1 85.2% 55.0
化學物質 DMF / 210 / /
DCM / 1636 / /
MeOH / 236 / /
二氧化矽硫醇 / 34.3 / /
矽藻土 / 9.1 / /
丙酮 / 564 / /
製程水 / 296 / /
製程描述
操作 註釋/觀測/結果 (X = 34.0 kg)  
1.  將DCM (8.5-12.8 X)裝入R1中 364 kg 10.7 X  
2.  將III-1裝入R1中(0.99-1.01 X) 34.1 kg 1.00 X  
3.  將DCM (9.2-13.7 X)裝入R1中 410 kg 12.1 X  
4.  將MeOH (2.5-3.8 X)裝入R1中 110 kg 3.2 X  
5.  將DMF (0.76-1.14 X)裝入R1中 36 kg 1.06 X  
6.  將R1調節至20-30℃內部溫度     
7.  在20-30℃內部溫度攪拌R1 0.3-1.0 h     
8.  在<35℃內部溫度減壓濃縮R1混合物至68-170 L     
9.  將DMF (1-6 X)裝入R1中 68 kg 2 X  
10. 在<40℃內部溫度減壓濃縮R1混合物至3-6 X     
11. 將DMF (1-6 X)裝入R1中 80 kg 2 X  
12. 將MeOH (2.5-3.8 X)裝入R1中 110 kg 3.2 X  
13. 將DCM (18-26 X)裝入R1中 754 kg 22.2 X  
14. 將R1調節至20-30℃內部溫度     
15. 在20-30℃內部溫度攪拌R1 0.1-1.0 h直至澄清     
16. 將二氧化矽硫醇(0.3-0.9 X)裝入R1中 17.1 kg 0.5 X  
17. 在20-30℃內部溫度攪拌R1 15-20 h     
18. 將矽藻土(0.05-0.30 X)裝入F1中 2.0 kg 0.06 X  
19. 經由過濾器F1及筒式過濾器將混合物自R1轉移至T1中 <III-1有機層> 76 kg  
20. 將筒式過濾器濕濾餅裝載至襯有雙重LDPE袋之纖維滾筒中 <III-1矽藻土/二氧化矽硫醇>  
21. 經由過濾器F1及筒式過濾器及袋式過濾器將混合物自R1轉移至T1中 <III-1有機層>  
22. 將F1及袋式濾器濕濾餅裝載至 步驟 20袋子中 <III-1矽藻土/二氧化矽硫醇>  
23. 將兩個濾布分散至F1中     
24. 將矽藻土(0.05-0.30 X)裝入F1中 2.1 kg 0.06 X  
25. 將 步驟 22III-1矽藻土/矽膠硫醇裝入F1中 7.55 kg  
26. 經由過濾器F1及筒式過濾器將混合物自R1轉移至T1中 <III-1有機層> 1010 kg  
27. 將來自 步驟 26之所有III-1有機層裝入R1中     
28. 將二氧化矽硫醇(0.3-0.9 X)裝入R1中 17.5 kg 0.5 X  
29. 將R1調節至20-30℃內部溫度     
30. 在20-30℃內部溫度攪拌R1 15-20 h     
31. 將F1濕濾餅裝載至襯有雙重LDPE袋之纖維滾筒中 <III-1矽藻土/二氧化矽硫醇,含有Pd>  
32. 將兩個濾布分散至F2中     
33. 將矽藻土(1.7-10.2 kg)裝入F2中 5.0 kg  
34. 經由過濾器F2及筒式過濾器將混合物自R1轉移至T2中 <III-1有機層> 1056 kg  
35. 將MeOH (0.4-0.8 X)裝入R1中 16 kg 0.5 X  
36. 將DCM (1.6-3.2 X)裝入R1中 108 kg 3.2 X  
37. 經由過濾器F2及筒式過濾器將混合物自R1轉移至T2/T1中 <III-1有機層> 124 kg  
38. 用丙酮清潔R2 156 kg  
39. 將一半III-1有機層裝入R2中     
40. 啟動R2之攪動器且將攪動速度設定在85 rpm     
41. 在<35℃內部溫度減壓濃縮R2混合物至200-300 L     
42. 將殘餘III-1有機層裝入R2中     
43. 在<35℃內部溫度減壓濃縮R2混合物至68-290 L     
44. 經由筒式過濾器將DMF (12-25 kg)裝入R2中 12 kg  
45. 在<40℃內部溫度減壓濃縮R2混合物至3-6 X     
46. 經由筒式過濾器將DMF (12-25 kg)裝入R2中 14 kg  
47. 經由筒式過濾器將丙酮(4-6 X)裝入R2中 168 kg 5 X  
48. 將R2調節至20-30℃內部溫度     
49. 經由筒式過濾器在內部溫度20-30℃將製程水(0.5-1.7 X)裝入R2中,持續不少於2 h 40 kg 1.2 X  
50. 在20-30℃內部溫度攪拌R2 1-3 h     
51. 經由筒式過濾器在內部溫度20-30℃將製程水(2.8-4.3 X)裝入R2中,持續不少於2 h 106 kg 3.1 X  
52. 在20-30℃內部溫度攪拌R2 1-5 h     
53. 將離心袋分散於M1上     
54. 藉由離心機分離濕濾餅且分別用丙酮(1-5 X)、製程水(2-6 X)、丙酮(1-5 X)沖洗濕濾餅 120 kg 3.5 X; 150 kg 4.4 X; 120 kg 3.5 X  
55. 將濕濾餅裝載至襯有雙重PE袋之纖維滾筒中 <III-1濕濾餅> 35.25 kg  
56. IPC:濕濾餅中III-1之純度(LC,面積%):報導 99.1  
57. 將母液裝載至鋁塑複合物滾筒中 <III-1 DMF/丙酮母液>  
58. 將 步驟 55III-1濕濾餅放入乾燥袋中,隨後將袋子放入D1中     
59. 將D1之壓力調節至≤ -0.085 MPa     
60. 將乾燥器之夾套溫度設定為50-60℃     
61. 在50-60℃減壓乾燥D1 12-18 h     
62. IPC:   
   測試物 預期值         
   水含量(%, w/w) 報導   
   殘餘2-MeTHF (GC, ppm) 報導   
   殘餘DMF (GC, ppm) 報導   
   殘餘丙酮(GC, ppm) 報導   
   殘餘NMP (GC, ppm) 報導   
   殘餘MeOH (GC, ppm) 報導   
   殘餘EtOAc (GC, ppm) 報導   
   殘餘DCM (GC, ppm) 報導   
63. 將乾燥劑裝載至襯有雙重LDPE袋之空纖維滾筒中     
64. 篩分產物(10目)     
65. 將經篩分產物裝載至襯有雙重LDPE袋之空纖維滾筒中 <III-1> 27.85 kg  
66. 釋放測試及樣本留存     
67. 自 步驟 65滾筒獲取材料,將材料平均分至2個襯有雙重LDPE袋之纖維滾筒中 <III-1> 27.80 kg  
實例 4. 製備游離鹼晶體形式 4.1 I-1 III-1 之多晶型
用兩個批次之純鏡像異構體進行化合物I -1游離形式之此多晶型篩選方案。兩個批次為結晶且指定為形式A。藉由在25℃及50℃平衡,在溫度循環下平衡,藉由緩慢冷卻、緩慢蒸發、添加反溶劑而沈澱及DSC加熱-冷卻循環實驗自熱飽和溶液結晶來研究鏡像異構物之多晶型特性。藉由競爭性漿化實驗研究經鑑別多晶型之相對穩定性。
此研究期間,鑑別出總計8種結晶型態,包括3種鏡像異構純多晶型,命名為I-1形式A、形式B及形式C;2種外消旋物形式,命名為III-1形式E及形式F;3種部分外消旋化混合物,亦即III-1形式A、形式C及形式D;以及1種具有未知屬性之型態,命名為III-1形式B。(表4.1)。3種鏡像異構純多晶型均為非溶劑化/無水形式。不存在足夠之材料以確認形式B之屬性。另外,藉由在50℃於THF中平衡及於丙酮、ACN、THF及1,4-二㗁烷中緩慢蒸發來獲得非晶形式。
I-1形式A為鏡像異構純P2多晶型。其為無水物。藉由SFC,ee%為100%,且具有高結晶度。DSC在264.8℃之T onset顯示熔融峰,焓為約94J/g。TGA在約260℃顯示約0.4%重量損失。藉由 1H-NMR未偵測到殘餘溶劑。KF顯示此樣本含有約0.6重量%水。I-1形式A可獲自多種溶劑系統。
I-1形式B亦為鏡像異構純P2多晶型。其為無水物。藉由在50℃於1,4-二㗁烷中平衡10天獲得I-1形式B。藉由SFC,I-1形式B之ee%為100%,且具有中等結晶度。DSC顯示多個熱事件。TGA在約245℃顯示約1.0%重量損失。 1H-NMR顯示約0.3重量% 1,4-二㗁烷(莫耳比計,0.02當量)。
I-1形式C為鏡像異構純P2多晶型。其為無水物。藉由添加反溶劑實驗自THF/庚烷(2:3,v/v)及THF/MTBE (1:4,v/v)獲得I-1形式C。藉由SFC,I-1形式C之ee%為100%,且具有高結晶度。DSC顯示多個熱事件。TGA在約250℃顯示約0.9%重量損失。
III-1形式A為歸因於平衡期間之外消旋化而部分外消旋化之混合物。其藉由在50℃於MeOH、EtOH/水(50:50,v/v)及ACN/水(80:20,v/v)平衡10天而獲得。III-1形式A之ee%為76.9%,且具有中等結晶度。DSC在285.7℃之T onset顯示吸熱峰,其中焓為約109J/g。TGA在約267℃顯示約1.1%重量損失。藉由 1H-NMR未偵測到殘餘溶劑。
僅藉由在25℃於THF/水(85:15,v/v)中平衡2週而獲得III-1形式B。III-1形式B具有低結晶度。DSC顯示多個熱事件。沒有充足之用於SFC測試之材料以確認III-1形式B係為外消旋混合物抑或I-1之鏡像異構純多晶型。III-1形式B不再生。
III-1形式C為部分外消旋化混合物。其藉由在50℃於丙酮/水(60:40,v/v)中平衡10天獲得。III-1形式C之ee%為56.9%,且具有中等結晶度。DSC顯示多個熱事件。TGA在約187℃下顯示約6.7%重量損失。 1H-NMR顯示約3.8重量%丙酮(以莫耳比計,0.4當量)。KF顯示此批次含有約1.0重量%水。
III-1形式D為部分外消旋化混合物。其藉由緩慢蒸發而自MeOH獲得。III-1形式D之ee%為68.6%,且具有中等結晶度。DSC在279.4℃之T onset顯示吸熱峰,其中焓為約106J/g。TGA在約251℃顯示約3.4%重量損失。藉由 1H-NMR未偵測到殘餘溶劑。KF顯示此樣本含有約2.0重量%水。
III-1形式E為外消旋混合物。其藉由添加反溶劑自MeOH/MTBE (1:4,v/v)獲得。III-1形式E之ee%為2.7%,且具有中等結晶度。
III-1形式F為外消旋混合物。III-1形式F之ee%為-0.3%,且具有高結晶度。DSC顯示多個熱事件。 4.2 II-1 之多晶型
藉由SFC,II-1之ee%為-100%。此批次為非晶形式。將其用於平衡實驗以嘗試使II-1鏡像異構物多晶型結晶且提供I-1鏡像異構物多晶型測定之參考。鑑別出鏡像異構物II-1之三種多晶型,包括II-1形式A、形式B及形式C。
藉由在50℃於甲醇、EtOH/水(50:50,v/v)、ACN/水(80:20,v/v)中平衡6天而獲得II-1形式A。藉由SFC,II-1形式A之ee%為-99.66%,且具有中等結晶度。
II-1形式B藉由在50℃於1,4-二㗁烷中平衡6天而獲得。藉由SFC,II-1形式B之ee%為-99.48%,且具有中等結晶度。
II-1形式C藉由在25℃於THF/水(85:15,v/v)中平衡6天而獲得。藉由SFC,II-1形式C之ee%為-99.34%,且具有中等結晶度。 4.3 影響外消旋化之因素之研究
發現I-1容易在不同溶劑中發生外消旋化,導致難以理解多晶型特性。因此,研究影響外消旋化之因素,包括pH、溫度、分子篩及實驗持續時間。發現鹼性pH、高溫及較長時間以及曝光可加速外消旋化。值得注意的是,當藉由分子篩預處理溶劑時,可加速外消旋化,因為在預處理後pH值轉變至鹼性。
在I-1形式A之DSC測試期間,不同加熱速率引起不同熱事件。為研究加熱期間是否發生外消旋化,將I-1形式A加熱至不同溫度,隨後藉由SFC測試獲得之固體。基於結果,外消旋化實際上發生於某些高溫下之加熱期間。結果表明DSC中之熔融起始可能無法用於區分不同鏡像異構純P2多晶型。 4.4 I-1 多晶型之關係
藉由在25℃之競爭性平衡實驗研究I-1無水物(形式A及形式C)之相對穩定性。形式A為在25℃不同溶劑中之唯一產物,表明形式A為更穩定無水物。然而,歸因於外消旋化,無法探索更多關係或多晶型前景。 4.5 評估 I-1 形式 A
藉由壓縮實驗、研磨及粒化模擬實驗評估 I-1 形式 A的調配製程可行性。 I-1 形式 A顯示對此等製程之良好耐受,無形式變化。壓縮後, I-1 形式 A之峰變得稍微更寬。乾式研磨之後,形式A之峰強度略微降低。
所需I-1容易外消旋化,導致難以進行多晶型篩選研究。建議進行程序控制以將下游製造、調配製程及儲存中之外消旋化減至最少。此外,建議進行鹽篩選以鑑別可解決外消旋化問題且適合於下游開展的適合鹽形式。 表4.1  經鑑別型態之彙總
化合物 多晶型 製備 註釋
I-1 形式A (無水物) 1)        在25℃於大部分溶劑中進行平衡實驗 2)        在50℃於大部分溶劑中進行平衡實驗 3)        含反溶劑之丙酮/庚烷(1:2,v/v)、丙酮/MTBE (1:4,v/v); 4)        在大部分溶劑中進行溫度循環實驗 5)        自THF/庚烷(2:3,v/v)、乙酸乙酯/庚烷(1:1,v/v)、1,4-二㗁烷、THF/MTBE (1:4,v/v)、THF/ACN (2:1,v/v)進行競爭性平衡實驗。 批次#1: XRPD:高結晶度 DSC: RT-300℃: 10℃/min: 熔融起始264.8℃ (94J/g) DSC: RT-300℃: 2℃/min: 吸熱:261.4℃ (68J/g), 274.7℃ (48J/g);放熱:265.8℃ (10J/g) TGA: 260 0.4% 1H-NMR(DMSO- d 6 ):無溶劑殘餘。 KF: 0.6重量%水 PLM:柱狀晶體(16-25μm) 按原樣: ee% (SFC): 100.0%* ee% (SFC): 97.7%#; 在藉由DSC以2℃/min加熱至260℃之後: XRPD:低結晶度 ee% (SFC):88.1%* 在藉由DSC以2℃/min加熱至270℃之後: ee% (SFC):10.9%* 在藉由DSC以2℃/min加熱至300℃之後: DSC:吸熱:261.4℃ (68J/g), 274.7℃ (48J/g);放熱:265.8℃ (10J/g) XRPD:非晶形式 ee% (SFC):2.2% * 批次#2: XRPD:高結晶度 DSC:2ºC/min:吸熱:251.0℃ (82J/g), 267.1℃ (24J/g)
III-1 形式A 在50℃於MeOH、EtOH/水(50:50,v/v)、ACN/水(80:20,v/v)中平衡10天 於EtOH/水中平衡: XRPD:中等結晶度 DSC:熔融起始285.7℃ (109J/g) TGA: 在267℃為1.1% 1H-NMR (DMSO- d 6 ):無溶劑殘餘。 ee% (SFC): 76.9%*, ee% (SFC): 75.0% #; 於MeOH中平衡: DSC: 熱事件:熔融起始285.6℃ (117J/g) TGA :重量損失:在 260 1.2% 1H-NMR (DMSO- d 6 ):0.1重量% MeOH (0.02當量) ee% (SFC):48.4% * 於ACN/水中平衡: DSC:吸熱:264.7℃ (2J/g), 284.5℃ (113J/g);放熱:268.4℃ (2J/g) ee% (SFC):50.7% *。
I-1 形式B (無水物) 在50℃於1,4-二㗁烷中平衡10天 XRPD:中等結晶度 DSC:吸熱:250.3℃ (52J/g), 262.6℃ (26J/g), 277.9℃ (26J/g);放熱:257.2℃ (3J/g) TGA: 245 1.0% 1H-NMR (DMSO- d 6 ):0.3重量% 1,4-二㗁烷(0.02當量) ee% (SFC): 100.0%*
N/A 形式B 在25℃於THF/水(85:15,v/v)中平衡2週 XRPD:低結晶度 DSC:吸熱:70.4℃ (2J/g), 97.9℃ (10J/g), 185.2℃ (19J/g), 231.2℃ (2J/g), 275.3℃ (62J/g), 284.7℃ (6J/g) 無充足材料用於進一步表徵。
III-1 形式C 在50℃於丙酮/水(60:40,v/v)中平衡10天 XRPD:中等結晶度 DSC:吸熱:157.4℃ (41J/g), 264.6℃ (10J/g), 280.8℃ (92J/g);放熱:181.7℃ (32J/g), 268.7℃ (8J/g) TGA:在83℃為1.4%,在188℃為5.3% 1H-NMR (DMSO- d 6 ):3.7重量%丙酮(0.4當量) KF: 1.0重量%水(0.3當量) ee% (SFC): 56.9%*
III-1 形式D 自MeOH緩慢蒸發 XRPD:中等結晶度 DSC:熔融起始279.4℃ (106J/g) TGA:在251℃為3.4% 1H-NMR(DMSO- d 6 ):無溶劑殘餘 KF: 2.0重量%水(0.6當量) ee% (SFC): 68.6%*
I-1 形式C (無水物) 含反溶劑之THF/庚烷(2:3,v/v)、THF/MTBE (1:4,v/v) THF/MTBE: XRPD:高結晶度 DSC:吸熱:257.9℃ (54J/g), 276.2℃ (44J/g);放熱:267.3℃ (3J/g) TGA:在250℃為0.9% 1H-NMR (DMSO- d 6 ):0.08重量% MTBE PLM: ee% (SFC): 100.0%*
III-1 形式E 含反溶劑之MeOH/MTBE (1:4,v/v) XRPD:中等結晶度 ee% (SFC): 2.7%*
III-1 形式F 自DMF/丙酮水結晶 XRPD:高結晶度 DSC:吸熱:147.5℃ (127J/g), 266.9℃ (3J/g), 280.9℃ (78J/g);放熱:218.8℃ (70J/g) ee% (SFC): -0.3%*
「*」 緊接在製備之後進行SFC測試。 「#」 在製備之後進行SFC測試,持續12h。 4. 6 用於多晶型篩選之起始材料
屬性 I-1 I-1 II-1 III-1
多晶型 形式A 形式A+2θ 23.4°、14.4°、20.7°及27.3°之小型峰(II-1之特徵峰) 非晶形式 形式F (丙酮溶劑合物形式)
起始材料之特性
參數 方法 結果 結果 結果 結果
      I-1批次#1 I-1批次#2 II-1 III-1
對掌性純度 SFC 100% 95.5%^ -100%^ -0.3%^
化學純度 HPLC (220nm) 99.2% // // //
X射線繞射 3-40° (2θ) 形式A,高結晶度 形式A +2θ 13.3°、14.4°、20.6°及27.3°之小型峰(II-1之特徵峰) 非晶形式 形式F
DSC熔融起始及焓 DSC RT-300℃: 10℃/min: 熔融起始264.8℃ (94J/g) RT-300℃: 2℃/min: 吸熱:261.4℃ (68J/g), 274.7℃ (48J/g);放熱:265.8℃ (10J/g) 2℃/min:吸熱:251.0℃ (82J/g), 267.1℃ (24J/g) 2℃/min:無明顯熔融 2℃/min:吸熱:147.5℃ (127J/g), 266.9℃ (3J/g), 280.9℃ (78J/g);放熱:218.8℃ (70J/g)
熱重分析 TGA, 10ºC/min 在260℃為0.4% // // //
殘餘溶劑 1H-NMR (DMSO- d 6) 無殘餘溶劑 // // //
型態 PLM 柱狀結晶(16-25μm) // // //
FT-IR ATR    // // //
KF 庫侖法(電量) 0.6重量%水(0.16當量) // // //
解釋:    「//」  未進行。 「^」  緊接在製備之後進行SFC測試。 4.7 測試條件在25℃之大致溶解度
稱量約5mg I-1形式A至2mL玻璃小瓶中,且添加20µL各溶劑之等分試樣(經分子篩預處理)以測定在25℃之溶解度。所添加之各溶劑的最大體積為1 mL。藉由目視觀測測定大致溶解度。
溶劑 溶解度 (mg/mL)
<5
甲醇 15-17
乙醇 6-7
異丙醇 <5
丙酮 43-52
甲基乙基酮 26-28
乙酸乙酯 6-7
乙酸異丙酯 <5
乙腈 10-11
二氯甲烷 <5
庚烷 <5
三級丁基甲基醚 <5
四氫呋喃 52-65
1,4-二㗁烷 29-33
甲苯 <5
苯甲醇 16-18
2-MeTHF 5-6
苯甲醚 <5
氯仿 <5
硝基甲烷(NM) 7-8
在25℃用溶劑平衡2週
溶劑 XRPD 註釋
I-1+I-2混合物 //
甲醇 I-1+I-2混合物 吸熱:264.6℃ (5J/g), 282.1℃ (102J/g); 放熱:177.8℃ (3J/g), 268.1℃ (4J/g) 重量損失:在230℃為2.0% 1H-NMR(DMSO- d 6):0.28重量% MeOH (0.053當量)
乙醇 I-1形式A //
丙酮 I-1+I-2混合物 //
甲基乙基酮 I-1形式A //
乙酸乙酯 I-1形式A //
乙酸異丙酯 I-1形式A //
乙腈 I-1形式A //
三級丁基甲基醚 I-1形式A //
二氯甲烷 I-1形式A //
四氫呋喃 I-1形式A //
1,4-二㗁烷 I-1形式A //
苯甲醇 I-1形式A //
2-MeTHF I-1形式A //
MeOH/水(55:45, v/v) a.w. 0.7 I-1形式A //
EtOH/水(50:50, v/v) a.w. 0.9 I-1形式A+2θ 3.4°之一個小峰 //
丙酮/水(60:40, v/v) a.w. 0.8 I-1+I-2混合物 //
ACN/水(90:10, v/v) a.w. 0.9 I-1+I-2混合物 吸熱:265.1℃ (24J/g), 281.0℃ (88J/g); 放熱:180.4℃ (3J/g), 269.9℃ (9J/g) 重量損失:在240℃為1.2% 1H-NMR(DMSO- d 6):0.38重量% ACN (0.057當量) ee% (SFC): 89.6%*
THF/水(85:15, v/v) a.w. 0.9 III-1形式B 目標濃度:510mg/mL 吸熱:70.4℃ (2J/g), 97.9℃ (10J/g), 185.2℃ (19J/g), 231.2℃ (2J/g), 275.3℃ (62J/g), 284.7℃ (6J/g) 無充足材料用於表徵
「*」緊接在製備之後進行SFC測試。 二元溶劑系統之水活性係基於UNIFAC方法(UNIQUAC官能基活性係數)計算。
將約50mg I-1形式A稱量至2mL玻璃小瓶中且使用攪拌盤且避光,在25℃於適合量之溶劑(經分子篩預處理)中平衡2週。用0.45µm耐綸膜過濾獲得之懸浮液且藉由XRPD研究固體部分(濕濾餅)。當觀測到差異時,進行另外之研究(例如DSC、TGA、 1H-NMR、SFC)。 在50℃用溶劑平衡10天
溶劑 XRPD 註釋
I-1形式A //
甲醇 III-1形式A 熱事件:熔融起始285.6℃ (117J/g) 重量損失:在 260 1.2% 1H-NMR (DMSO- d 6 ): 0.1重量% MeOH (0.02當量) ee% (SFC):48.4% *
乙醇 I-1形式A //
丙酮 I-1形式A //
甲基乙基酮 I-1形式A //
乙酸乙酯 I-1形式A //
乙酸異丙酯 I-1形式A //
乙腈 I-1形式A //
三級丁基甲基醚 I-1形式A //
苯甲醚 I-1形式A //
四氫呋喃 實際無晶形式 //
1,4-二㗁烷 I-1形式B 吸熱:250.3℃ (52J/g), 262.6℃ (26J/g), 277.9℃ (26J/g); 放熱:257.2℃ (3J/g) 重量損失:在 245 1.0% 1H-NMR (DMSO- d 6 ): 0.3重量% 1,4-二㗁烷 (0.02當量) ee% (SFC): 100.0%*
苯甲醇 I-1形式A+2θ 3.5°之一個小峰 //
2-MeTHF I-1形式A+ I-1形式B 熱事件:熔融起始264.4℃(85J/g) 重量損失:在255℃為2.1% 1H-NMR (DMSO- d 6 ):無殘餘溶劑
MeOH/水(55:45, v/v) a.w. 0.7 I-1形式A //
EtOH/水(50:50, v/v) a.w. 0.9 III-1形式A 熱事件:熔融起始285.9℃ (118J/g) 重量損失:在267℃為1.1% 1H-NMR (DMSO- d 6 ):無殘餘溶劑 ee% (SFC): 76.9%*, ee% (SFC): 75.0%#;
丙酮/水(60:40, v/v) a.w. 0.8 III-1形式C 吸熱:157.4℃ (41J/g), 264.6℃ (10J/g), 280.8℃ (92J/g); 放熱:181.7℃ (32J/g), 268.7℃ (8J/g) 重量損失:在83℃為1.4%,在187℃為5.3% 1H-NMR (DMSO- d 6 ): 3.8重量%丙酮(0.4當量) KF: 1.0重量%水(0.3當量) ee% (SFC): 56.9%*
ACN/水(80:20, v/v) a.w. 0.9 III-1形式A 吸熱:264.7℃ (2J/g), 284.5℃ (113J/g); 放熱:268.4℃ (2J/g) ee% (SFC):50.7%*
THF/水(85:15, v/v) a.w. 0.9 I-1形式A //
「*」 緊接在製備之後進行SFC測試。 「#」 在製備之後進行SFC測試,持續約12h。 二元溶劑系統之水活性係基於UNIFAC方法(UNIQUAC官能基活性係數)計算。
將約50mg I-1形式A稱量至2mL玻璃小瓶中且使用攪拌板且避光,在50℃於適合量之溶劑(經分子篩預處理)中平衡10天。用0.45µm耐綸膜過濾獲得之懸浮液且藉由XRPD研究固體部分(濕濾餅)。當觀測到差異時,進行另外研究(例如DSC、TGA、 1H-NMR、SFC)。 藉由添加反溶劑沈澱
溶劑 反溶劑 XRPD 註釋
MeOH MTBE(4V) I-1形式E 在25℃攪拌23天 ee% (SFC): 2.7%*
MeOH 甲苯(4V) // 澄清溶液
丙酮 庚烷(2V) I-1形式A 無註釋
丙酮 MTBE(4V) I-1形式A 無註釋
THF 庚烷(1.5V) I-1形式C 無註釋
THF MTBE(4V) I-1形式C 吸熱:257.9℃ (54J/g), 276.2℃ (44J/g);放熱:267.3℃ (3J/g) 重量損失:在250℃為0.9% 1H-NMR (DMSO- d 6 ): 0.08重量% MTBE ee% (SFC): 100.0%*
「//」:    未進行。 「V」    反溶劑與良好溶劑之體積比 「*」 緊接在製備之後進行SFC測試。
將I-1形式A溶解於良好溶劑中。藉由0.45µm耐綸過濾器過濾獲得之溶液,得到澄清溶液。隨後避光於攪拌盤上在25℃將反溶劑緩慢添加至澄清溶液中。藉由分子篩預處理所用溶劑。藉由過濾收集沈澱物。藉由XRPD研究固體部分(濕濾餅)。在攪拌下將澄清溶液置於25℃一週,當觀測到固體時,收集且藉由XRPD研究固體部分(濕濾餅)。當觀測到差異時,進行另外之研究(例如DSC、TGA、 1H-NMR、SFC)。 藉由緩慢蒸發在室溫下結晶
溶劑 XRPD   註釋
MeOH III-1D 熱事件:熔融起始279.4℃ (106J/g) 重量損失: 251 3.4% 1 H-NMR(DMSO- d 6 ) 無殘餘溶劑 KF: 2.0重量%水(0.6當量) ee% (SFC): 68.6%*
丙酮 非晶形式 //
ACN 非晶形式 //
THF 非晶形式 //
1,4-二㗁烷 非晶形式 //
解釋  「//」: 無註釋。 「*」  緊接在製備之後進行SFC測試。
基於大致溶解度結果,將I-1形式A溶解於適合量之溶劑(經分子篩預處理)中。藉由0.45µm耐綸過濾器過濾獲得之溶液。在避光後緩慢蒸發獲得之澄清溶液。檢查固體殘餘物之多晶型形式。當觀測到差異時,進行另外之研究(例如DSC、TGA、 1H-NMR、SFC)。 藉由緩慢冷卻自熱飽和溶液中結晶
溶劑 XRPD 註釋
MeOH // 澄清溶液
丙酮 // 澄清溶液
MEK // 澄清溶液
ACN // 澄清溶液
THF // 澄清溶液
1,4-二㗁烷 低結晶度,外消旋混合物 ee%(SFC): -0.2%*
苯甲醇 // 澄清溶液
「//」:    未進行。 「*」 緊接在製備之後進行SFC測試。
在50℃將大約50mg之批料I-1形式A溶解於最少量之所選溶劑(未經分子篩預處理)中。藉由0.45µm耐綸過濾器過濾獲得之溶液。在避光情況下將獲得之澄清溶液以0.1℃/min冷卻至5℃。藉由過濾收集沈澱物。藉由XRPD研究固體部分(濕濾餅)。當觀測到差異時,進行另外之研究(例如DSC、TGA、 1H-NMR、SFC)。當未獲得沈澱或僅獲得少量固體時,將溶液置放於5℃以結晶。 溫度循環實驗
溶劑 XRPD 註釋
甲醇 I-1 + I-2混合物 吸熱:107.4℃ (3J/g), 155.7℃ (1J/g), 263.9℃ (5J/g), 282.5℃ (106J/g);放熱:268.3℃ (5J/g) 重量損失:在150℃為1.1% 1H-NMR (DMSO- d 6 ):無殘餘溶劑 ee%(SFC): 89.4%*
乙醇 I-1形式A 吸熱:263.6℃ (9J/g), 282.0℃ (108J/g);放熱:268.6℃ (6J/g)
丙酮 I-1形式A 吸熱:264.5℃ (55J/g), 279.1℃ (55J/g);放熱:269.4℃ (9J/g)
甲基乙基酮 I-1形式A 無註釋
乙酸乙酯 I-1形式A 無註釋
乙腈 I-1形式A 無註釋
四氫呋喃 // 澄清溶液,目標濃度:250 mg/mL
1,4-二㗁烷 // 澄清溶液,目標濃度:250 mg/mL
苯甲醇 I-1形式A 無註釋
2-MeTHF I-1形式A 無註釋
MeOH/水(55:45, v/v) a.w. 0.7 I-1形式A 熱事件:熔融起始281℃ (96J/g) 重量損失:在247℃為0.4% 1H-NMR (DMSO- d 6 ):無殘餘溶劑 ee%(SFC): 100.0%*
EtOH/水(50:50, v/v) a.w. 0.9 I-1形式A 無註釋
丙酮/水(60:40, v/v) a.w. 0.8 I-1形式A 吸熱:263.7℃ (1J/g), 281.6℃ (90J/g);放熱:267.9℃ (0.4J/g)
ACN/水(80:20, v/v) a.w. 0.9 I-1形式A 吸熱:263.9℃ (9J/g), 281.9℃ (106J/g);放熱:267.8℃ (9J/g)
THF/水(85:15, v/v) a.w. 0.9 // 澄清溶液,目標濃度:250 mg/mL
在5℃至50℃之間的溫度循環下以0.2℃/min之加熱/冷卻速率於不同溶劑(經分子篩預處理)中平衡約50mg之I-1形式A,持續10個循環且避光。10個循環之後,在5℃藉由過濾收集沈澱物。藉由XRPD研究固體部分(濕濾餅)。當觀測到差異時,進行另外之研究(例如DSC、TGA、 1H-NMR、SFC)。 加熱及冷卻下之特性
加熱速率 熱事件
循環1:30℃至280℃,10℃/min;280℃至-20℃,20℃/min;以10℃/min再加熱至300℃。 步驟1:熔融峰:265.0℃ (100J/g); 步驟3:玻璃轉移:中點:147.8℃,δ Cp:0.4J/(g.℃)
循環2:30℃至280℃,10℃/min;280℃至-20℃,2℃/min;以10℃/min再加熱至300℃。 步驟1:熔融峰:263.9℃ (99J/g); 步驟3:玻璃轉移:中點:157.5℃,δ Cp:0.3J/(g.℃)
藉由DSC之兩個不同加熱-冷卻循環研究I-1形式A之多晶型特性。循環1:30℃至280℃,10℃/min;280℃至-20℃,20℃/min;以10℃/min再加熱300℃。循環2:30℃至280℃,10℃/min;280℃至-20℃,2℃/min;以10℃/min再加熱至300℃。 4.8 製備多晶型 4.8.1 製備 III-1 形式 A 平衡實驗
將I-1稱量至2mL玻璃小瓶中且在不同溫度於攪拌盤上在避光之情況下於適合量之溶劑(未經分子篩預處理)中平衡。用0.45µm耐綸膜過濾獲得之懸浮液,且藉由XRPD及SFC研究固體部分(濕濾餅)以測定形式及對掌性純度。
溶劑 溫度 pH XRPD (3 ) 註釋
甲醇 50℃ 6.21 I-1+II-1混合物 ee%(SFC): 87.9%*
EtOH/水(50:50, v/v) a.w. 0.9 50℃ 6.82 I-1+II-1混合物 ee%(SFC): 91.6%*
ACN/水(80:20, v/v) a.w. 0.9 50℃ 6.79 I-1+II-1混合物 ee%(SFC): 67.4%*
ACN/水(80:20, v/v) a.w. 0.9 50℃ 4.48 3天:I-1+II-1混合物 5天:I-1+II-1混合物 3天: ee%(SFC): 89.6%* 5天: ee%(SFC): 88.9%*
ACN/水(80:20, v/v) a.w. 0.9 25℃ 7.27 3天:I-1+II-1混合物 8天:I-1+II-1混合物 添加III-1形式A晶種 3天: ee%(SFC): 90.9%* 8天: ee%(SFC): 89.3%*
「*」 緊接在製備之後進行SFC測試。 二元溶劑系統之水活性係基於UNIFAC方法(UNIQUAC官能基活性係數)計算。 藉由添加反溶劑沈澱
將I-1溶解於良好溶劑中。藉由0.45µm耐綸過濾器過濾獲得之溶液。將反溶劑緩慢添加至獲得之溶液中。所用溶劑未經分子篩預處理。用攪拌盤在避光之情況下將III-1形式A晶種適當地添加至溶液中。藉由過濾收集沈澱物。藉由XRPD及SFC研究固體部分(濕濾餅)以測定形式及對掌性純度。
溶劑 反溶劑 XRPD 註釋
MeOH MTBE(4V) // 在25℃攪拌1週,且無充足材料用於測試
MeOH 甲苯(4V) // 在25℃攪拌1週,且無充足材料用於測試
MeOH 水(0.1V) 攪拌2h: 低結晶度I-1形式A 攪拌2天: I-1形式 A 攪拌2h ee%(SFC): 98.8%* 攪拌2天 ee%(SFC): 99.2%*
「V」    反溶劑與良好溶劑之體積比。 「*」 緊接在製備之後進行SFC測試。 緩慢冷卻
在50℃將大約50mg之I-1溶解於最少量之所選溶劑(未經分子篩預處理)中。藉由0.45µm耐綸過濾器過濾獲得之溶液。以0.1℃/min將獲得之澄清溶液冷卻至5℃。將III-1形式A晶種適當地添加至溶液中。藉由過濾收集沈澱物。藉由XRPD及SFC研究固體部分(濕濾餅)以測定形式及對掌性純度。
溶劑 註釋 ( 添加 III-1 形式 A 晶種 )
MeOH 在5℃保持1週,且無充足材料用於測試
ACN 在5℃保持1週,且無充足材料用於測試
丙酮 在5℃保持1週,且無充足材料用於測試
1,4-二㗁烷 在5℃保持1週,且無充足材料用於測試
4.8.2 製備 I-1 形式 B 平衡實驗
將I-1稱量至2mL玻璃小瓶中且在50℃於攪拌盤上在避光之情況下於適合量之溶劑(未經分子篩預處理)中平衡,且適當地添加 I-1 形式 B晶種。用0.45µm耐綸膜過濾獲得之懸浮液,且藉由XRPD及SFC研究固體部分(濕濾餅)以測定形式及對掌性純度。
溶劑 XRPD 註釋
THF I-1+II-1混合物 添加I-1形式B晶種且攪拌4天 ee%(SFC): 82.5%*
1,4-二㗁烷 I-1+II-1混合物 添加I-1形式B晶種且攪拌4天 ee%(SFC): 80.1%*
1,4-二㗁烷 I-1+II-1混合物 使用分子篩且攪拌6天 ee%(SFC): 88.26%*
1,4-二㗁烷 I-1+II-1混合物 不使用分子篩且攪拌6天 ee%(SFC): 81.26%*
「*」 緊接在製備之後進行SFC測試。 4.8.3 製備 III-1 形式 B 平衡實驗
將I-1稱量至2mL玻璃小瓶中且在25℃於攪拌盤上於適合量之THF/水(85:15,v/v)(未經分子篩預處理)中平衡,且適當地添加III-1形式B晶種。用0.45µm耐綸膜過濾獲得之懸浮液,且藉由XRPD及SFC研究固體部分(濕濾餅)以測定形式及對掌性純度。
溶劑 XRPD (4 ) 註釋 ( 添加 III-1 形式 B 晶種 )
THF/水(85:15, v/v) a.w. 0.9 I-1+II-1混合物 ee%(SFC): 93.8%*
「*」 緊接在製備之後進行SFC測試。 二元溶劑系統之水活性係基於UNIFAC方法(UNIQUAC官能基活性係數)計算。 4.8.4 製備 III-1 形式 D 緩慢蒸發
基於大致溶解度結果,將約50mg I-1溶解於適合量之溶劑(未經分子篩預處理)中。藉由0.45µm耐綸過濾器過濾獲得之溶液。在避光後緩慢蒸發獲得之澄清溶液。藉由XRPD及SFC檢查固體殘餘物之多晶型形式以測定對掌性純度。
溶劑 XRPD 註釋
MeOH I-1+II-1混合物 在25℃保持12天 ee%(SFC): 98.0%*
MeOH/DCM(1:1, v/v) I-1+II-1混合物 添加I-1形式D晶種 ee%(SFC): 88.9%*
MeOH/DCM(1:1, v/v) // 單晶靶向單晶SEF2晶種添加:細粒
「*」 緊接在製備之後進行SFC測試。 「//」:    未進行。 藉由添加反溶劑沈澱
將批料I-1溶解於良好溶劑中。藉由0.45µm耐綸過濾器過濾獲得之溶液。將反溶劑緩慢添加至獲得之溶液中。所用溶劑未經分子篩預處理。在攪拌盤上在避光之情況下,將III-1形式D晶種適當地添加至溶液中。藉由過濾收集沈澱物。藉由XRPD及SFC研究固體部分(濕濾餅)以測定形式及對掌性純度。
溶劑 反溶劑 XRPD 註釋 ( 添加 III-1 形式 D 晶種 )
丙酮 庚烷(2V) I-1形式A 攪拌 1h ee%(SFC): 94.9%*
「V」    反溶劑與良好溶劑之體積比 「*」 緊接在製備之後進行SFC測試。 4.8.5 製備 I-1 形式 C 藉由添加反溶劑沈澱
將I-1形式A溶解於良好溶劑中。藉由0.45µm耐綸過濾器過濾獲得之溶液。將反溶劑緩慢添加至獲得之溶液中。所用溶劑未經分子篩預處理。於攪拌盤上在避光之情況下將I-1形式C晶種適當地添加至溶液中。藉由過濾收集沈澱物。藉由XRPD及SFC研究固體部分(濕濾餅)以測定形式及對掌性純度。
溶劑 反溶劑 XRPD 註釋 ( 添加 I-1 形式 C 晶種 )
THF MTBE(1.5V) I-1形式C 攪拌2h ee%(SFC): 99.5%*
「*」 緊接在製備之後進行SFC測試 「V」    反溶劑與良好溶劑之體積比 4.9 II-1 之結晶 平衡實驗
將I-1稱量至2mL玻璃小瓶中且在不同溫度(例如25℃、50℃)於攪拌盤上在遮光之情況下於適合量之溶劑(未經分子篩預處理)中平衡。用0.45µm耐綸膜過濾獲得之懸浮液,且藉由XRPD及SFC研究固體部分(濕濾餅)以測定形式及對掌性純度。
溶劑 溫度 XRPD (6 ) 註釋
甲醇 50℃ II-1形式A (包括2θ 16.7°、20.7°之特徵峰) ee%(SFC): -99.66%*
EtOH/水(50:50, v/v) a.w. 0.9 50℃ II-1形式A (包括2θ 16.7°、20.7°之特徵峰) ee%(SFC): -99.78%*
ACN/水(80:20, v/v) a.w. 0.9 50℃ II-1形式A (包括2θ 16.7°、20.7°之特徵峰) ee%(SFC): -99.24%*
1,4-二㗁烷 50℃ II-1形式B ee%(SFC): -99.48%*
THF/水(85:15, v/v) a.w. 0.9 25℃ II-1形式C (包括2θ 10.9°、17.5°、20.9°、25.4°之特徵峰) ee%(SFC): -99.34%*
「*」 緊接在製備之後進行SFC測試。 二元溶劑系統之水活性係基於UNIFAC方法(UNIQUAC官能基活性係數)計算。 競爭性平衡實驗
進行競爭性漿化以測定兩種無水物I-1形式A及形式C之熱力學關係。在25℃使用形式A於THF/庚烷(2:3,v/v)、THF/MTBE(1:4,v/v)、MeOH/DCM(1:2,v/v)、乙酸乙酯/庚烷(1:1,v/v)、1,4-二㗁烷及THF/CAN (2:1,v/v)中製備飽和溶液。所有所用溶劑未經分子篩預處理。隨後將5mg形式A及5mg形式C分別添加至飽和溶液。在25℃攪拌獲得之懸浮液3-5天。藉由離心過濾分離濕固體且藉由XRPD及SFC研究。
溶劑 25
XRPD 註釋
初始 I-1 形式 A+ 形式 C
THF/庚烷(2:3,v/v) 形式A 攪拌3-4天: ee%(SFC): 96.9%*
THF/MTBE(1:4, v/v) 類似於A,低結晶度 攪拌3-4天: ee%(SFC): 96.8%*
MeOH/DCM(1:2, v/v) 低結晶度,I-1 + II-1混合物 攪拌3-4天: ee%(SFC): 57.4%*
乙酸乙酯 /庚烷(1:1, v/v) 形式A 攪拌3-4天: ee%(SFC): 96.4%*
初始形式 A
MeOH/DCM(1:2, v/v) 低結晶度,I-1 + II-1混合物 攪拌5天 固體: ee%(SFC): -23.12%* 上清液: ee%(SFC): 97.78%*
初始 I-1 形式 A + 形式 C
1,4-二㗁烷 形式A //
THF/MTBE(1:4, v/v) 形式A,低結晶度 //
THF/ACN(2:1, v/v) 形式A,低結晶度 //
「*」 緊接在製備之後進行SFC測試。 「//」:    無註釋 壓縮下之特性
用液壓機以2MPa、5MPa及10MPa壓縮約20mg I-1形式A 5分鐘。進行XRPD表徵以研究壓縮下之多晶型特性。
壓力 XRPD
2Mpa 無形式變化,但峰稍微變寬
5Mpa 無形式變化,但峰稍微變寬
10Mpa 無形式變化,但峰稍微變寬
研磨模擬實驗
用研缽及研杵手動研磨約50mg I-1形式A 1、3及5 min。藉由XRPD評估形式轉化及結晶度。
XRPD
乾式研磨1 min 無形式及結晶度變化,
乾式研磨3 min 無形式變化,但結晶度略微降低
乾式研磨5 min 無形式變化,但結晶度略微降低
粒化模擬實驗
將乙醇(未經分子篩預處理)及純水分開逐滴添加至約20 mg I-1形式A直至固體足夠濕潤為止。用研缽及研杵手動研磨樣本約5 min。在周圍條件下乾燥樣本10 min。藉由XRPD評估形式轉化及結晶度。
溶劑 XRPD
乙醇 無形式及結晶度變化
無形式及結晶度變化
將II-1稱量至2mL玻璃小瓶中且在不同溫度(例如25℃、50℃)於攪拌盤上在遮光之情況下於適合量之溶劑(未經分子篩預處理)中平衡。用0.45µm耐綸膜過濾獲得之懸浮液,且藉由XRPD及SFC研究固體部分(濕濾餅)以測定形式及對掌性純度。
溶劑 溫度 XRPD (6 ) 註釋
甲醇 50℃ II-1形式A (包括2θ 16.7°、20.7°之特徵峰) ee%(SFC): -99.66%*
EtOH/水(50:50, v/v) a.w. 0.9 50℃ II-1形式A (包括2θ 16.7°、20.7°之特徵峰) ee%(SFC): -99.78%*
ACN/水(80:20, v/v) a.w. 0.9 50℃ II-1形式A (包括2θ 16.7°、20.7°之特徵峰) ee%(SFC): -99.24%*
1,4-二㗁烷 50℃ II-1形式B ee%(SFC): -99.48%*
THF/水(85:15, v/v) a.w. 0.9 25℃ II-1形式C (包括2θ 10.9°、17.5°、20.9°、25.4°之特徵峰) ee%(SFC): -99.34%*
「*」 緊接在製備之後進行SFC測試。 二元溶劑系統之水活性係基於UNIFAC方法(UNIQUAC官能基活性係數)計算。 4.10 競爭性平衡實驗
進行競爭性漿化以測定兩種無水物I-1形式A及形式C之熱力學關係。在25℃使用形式A於THF/庚烷(2:3,v/v)、THF/MTBE(1:4,v/v)、MeOH/DCM(1:2,v/v)、乙酸乙酯/庚烷(1:1,v/v)、1,4-二㗁烷及THF/CAN (2:1,v/v)中製備飽和溶液。所有所用溶劑未經分子篩預處理。隨後將5mg形式A及5mg形式C分別添加至飽和溶液。在25℃攪拌獲得之懸浮液3-5天。藉由離心過濾分離濕固體且藉由XRPD及SFC研究。
溶劑 25
XRPD 註釋
初始形式 A + 形式 C
THF/庚烷(2:3, v/v) 形式 A 攪拌3-4天: ee%(SFC): 96.9%*
THF/MTBE(1:4, v/v) 類似於 形式 A,低結晶度 攪拌3-4天: ee%(SFC): 96.8%*
MeOH/DCM(1:2, v/v) 低結晶度,I-1 +II-1混合物 攪拌3-4天: ee%(SFC): 57.4%*
乙酸乙酯 /庚烷(1:1, v/v) 形式 A 攪拌3-4天: ee%(SFC): 96.4%*
初始形式 A
MeOH/DCM(1:2, v/v) 低結晶度,I-1 +II-1混合物 攪拌5天 固體: ee%(SFC): -23.12%* 上清液: ee%(SFC): 97.78%*
初始形式 A + 形式 C
1,4-二㗁烷 形式 A //
THF/MTBE(1:4, v/v) 形式 A,低結晶度 //
THF/ACN(2:1, v/v) 形式 A,低結晶度 //
「*」 緊接在製備之後進行SFC測試。 「//」:    無註釋 4.11 壓縮下之特性
用液壓機以2MPa、5MPa及10MPa壓縮約20mg形式A 5分鐘。進行XRPD表徵以研究壓縮下之多晶型特性。 4.12 研磨模擬實驗
用研缽及研杵手動研磨約50mg形式A 1、3及5 min。藉由XRPD評估形式轉化及結晶度。 4.13 粒化模擬實驗
將乙醇(未經分子篩預處理)及純水分開逐滴添加至約20 mg形式A直至固體足夠濕潤為止。用研缽及研杵手動研磨樣本約5 min。在周圍條件下乾燥樣本10 min。藉由XRPD評估形式轉化及結晶度。 實例 5. 製備式 I II III 化合物之鹽及其晶體形式 5.1 彙總 鹽篩選
根據藉由Marvin Sketch之計算,I-1係pKa為2.69及9.64之小分子。將I-1形式A用於此鹽篩選研究。考慮所需I-1游離形式於不同溶劑系統及可操作條件下之外消旋化特性,鹽篩選研究之主要目標在於鑑別提供更佳對掌性穩定性之潛在鹽。
基於I-1游離形式之pKa,選擇23個相對離子作為鹽/共晶體形成劑。將甲醇、丙酮及乙酸異丙酯用作篩選溶劑。將1.0當量之所選相對離子/共晶形成物用於鹽篩選。將漿液平衡、緩慢蒸發及反溶劑添加用作結晶方法。總計進行約70次篩選實驗。
自篩選鑑別出8種鹽及其多晶型,包括III-2形式A、I-2形式A、III-2形式B、I-3形式A、I-4形式A、III-6形式A、I-5形式A及I-5形式B (表5.2及表5.3)。此等鹽當中,I-3形式A、I-4形式A及I-5形式A顯示高對掌性純度,表明其為I-1鏡像異構物鹽。然而,I-5形式A為甲醇溶劑合物,因此自進一步評估排除。因此,選擇I-3形式A及I-4形式A作為鹽候選物且擴大規模以用於整體評估。 鹽候選物評估
I-3形式A及I-4形式A成功地擴大規模。規模擴大之批料為與篩選樣本之彼等相同的多晶型。就化學及物理化學特性、穩定性、溶解度、懸浮穩定性、溶液穩定性及吸濕性相較於I-1形式A評估兩種鹽候選物。
結晶度及熱特性:I-1形式A為無水物。其具有高結晶度。DSC顯示多個熱事件。TGA在約250℃顯示約1.6%重量損失。藉由 1H-NMR未偵測到殘餘溶劑。I-3形式A為無水物。其具有高結晶度。根據 1H-NMR,游離形式與對甲苯磺酸之化學計量比為1:1。DSC在251.2℃之T onset顯示熔融峰。在熔融後發生分解。TGA在約214℃顯示約0.8%重量損失。 1H-NMR顯示約0.2重量%丙酮(以莫耳比計,0.03當量)。I-4形式A為水合物。其具有中等結晶度。KF顯示約2.5重量%水(以莫耳比計,0.86當量)。基於 1H-NMR,游離形式與甲烷磺酸之化學計量比為1:1.1。DSC顯示多個熱事件。TGA在約100℃顯示約1.5%重量損失。未偵測到殘餘溶劑。
初始化學純度及對掌性純度:I-1形式A、I-3形式A及I-4形式A分別具有99.0%、99.5%及99.6%之化學純度且分別具有99.0%、98.6%及99.5%之對掌性純度。
整體穩定性:在25℃/92%RH於敞開容器中、在40℃/75%RH於敞開容器中且在60℃於密閉容器中經1週研究I-1形式A及2種鹽候選物的整體穩定性。I-3形式A在此等條件下化學及物理穩定。I-3形式A為化學穩定的且在整體穩定性研究期間未顯示XRPD變化。然而,發現I-3形式A在吸濕性研究中轉化成水合物,表明其物理穩定性對環境濕度敏感。I-4形式A為化學穩定的,但在25℃/92%RH及40℃/75%RH物理不穩定。基於對掌性純度結果,所有3種鹽未顯示明顯外消旋化。
溶解度:在37℃於pH 2.0 HCl緩衝溶液、水及3中生物相關培養基(SGF、FaSSIF-V1及FeSSIF-V1)以及MeOH/DCM (1:2,v/v)之當前凍乾溶劑混合物中量測I-1形式A及2種鹽候選物之溶解度,持續2h及24h。I-1形式A及兩種鹽在pH 2 HCl緩衝溶液及純水中顯示極低溶解度(<LOQ,LOQ = 0.5μg/mL)。在SGF中,所有游離形式及2種鹽顯示相當之溶解度。在FeSSIF-V1及FaSSIF-V1中,2種鹽在2h時顯示動力學溶解度高於I-1形式A,但當殘餘固體完全解離成游離形式時,2種鹽在24h時歸因於鹽之解離而降低至類似溶解度。另外,藉由對掌性HPLC檢查殘餘固體以確認是否發生外消旋化。對於自除FeSSIF-V1以外之介質分離之殘餘固體,未觀測到明顯外消旋化,其中可能歸因於FeSSIF-V1之組分發生顯著外消旋化(諸如已知促進外消旋化之高含量鈉及乙酸根離子)。在MeOH/DCM (1:2,v/v)中,I-1形式A、I-3形式A及I-4形式A之溶解度分別>145 mg/mL、>75 mg/mL及>111 mg/mL。
懸浮穩定性:在25℃於純水、0.5%(w/w)吐溫80水溶液及0.5%(w/w) MC(400cP)+ 2%(w/w)維生素E TPGS水溶液中研究I-1形式A及2種鹽候選物之懸浮穩定性,持續2h及24h。目標濃度為2mg/mL。I-1形式A及2種鹽在3種媒劑中化學穩定。I-1形式A為物理穩定的,但兩種鹽轉化成I-1形式A或非晶形式,表明發生解離。對於I-1形式A,此等媒劑中不存在外消旋化。對於2種鹽,在水中未觀測到外消旋化,但在0.5%(w/w) Tween 80中發現對掌性純度略微降低。歸因於鹽在0.5%(w/w) MC(400cP) + 2%(w/w)維生素E TPGS媒劑(>2mg/mL)中之極高溶解度,未收集充足的2種鹽之殘餘固體用於對掌性純度測試。
為確認2種鹽在0.5%(w/w) MC(400cP) + 2%(w/w)維生素E TPGS水溶液中是否發生外消旋化,以10mg/mL之目標濃度重複此媒劑中之懸浮穩定性。兩種鹽化學穩定且顯示相當之溶解度。殘餘固體未顯示外消旋化。測試後,發現甲磺酸鹽已轉化為非晶形式。對於甲苯磺酸鹽,根據XRPD結果,殘餘固體之2h樣本顯示形式變化,但24h樣本保持不變。基於可變濕度XRPD,在2h時收集之I-3形式A樣本實際上已歸因於環境濕度增加而轉化為水合物(I-3形式B)。進一步研究此等鹽之吸濕性。
溶液穩定性:在25℃於甲醇及THF/ACN (2:1,v/v)中研究I-1形式A及I-3形式A之溶液穩定性。目標濃度為4 mg/mL。所有物理形式在25℃化學穩定至少24h且於所有溶液中未觀測到外消旋化。
吸濕性:I-1形式A為吸濕性的。其吸附40%RH至95%RH的約5.5重量%水。DVS測試之後,不存在形式及結晶度變化。I-4形式A為極具吸濕性的。其吸附40%RH至95%RH之約40重量%水。形式在DVS測試之後變化。當相對濕度低於40%,I-3形式A穩定。其在RH>40%時開始吸收水,且基於DVS資料,在高濕度下產生可能之水合物形式。吸附及解吸附可逆。DVS循環之後,根據XRPD,獲得之樣本仍為I-3形式A。 在不同濕度下研究 I-3 形式 A
可變濕度 XRPD:根據I-3形式A之DVS結果,當相對濕度高於50%RH,可存在兩種水合物形式(單水合物及雙水合物)。研究可變濕度XRPD (VH-XRPD),嘗試捕獲潛在水合物。VH-XRPD結果顯示,在70%RH下,I-3形式A完全轉化為新形式I-3形式B,其型態在50%RH下開始顯現於XRPD中,表明水合物形成之起始點可能甚至更低,但動力學過慢而無法捕獲可變濕度XRPD。
濕度腔:為進一步評估I-3形式A之形式轉化,將此鹽置於不同濕度(30%RH、40%RH及50%RH)腔中1週。基於XRPD結果,I-3形式A在40%RH及50%RH下轉化為I-3形式B。甚至在30%RH下觀測到形式轉化,因為XRPD顯示另外峰屬於形式B。結果表明I-3形式A對濕度敏感且需要在製造及儲存期間很好地防止濕氣。 結論
尤其,I-3形式A具有高結晶度、高熔點、合理化學計量、良好化學及物理整體穩定性及良好溶液穩定性。根據游離形式多晶型研究,發現I-1形式A在包括甲醇及IPAc之某些有機溶劑中容易外消旋化,該等有機溶劑用於鹽製備。I-3形式A在鹽篩選溶劑(MeOH、丙酮及IPAc)及規模擴大溶劑(丙酮)中顯示良好對掌性穩定性,顯示對掌性穩定性之優勢。因此,甲苯磺酸鹽為有前景的候選物且建議用於進一步研發。然而,I-3形式A對濕氣敏感且發現水合物形式形成容易發生於相對較低濕度條件(30-50%RH)。保證甲苯磺酸鹽之多晶型篩選工作以鑑別最適合之物理形式。 5.2. 一般資訊 化合物 pKa(s):藉由Marvin Sketch計算,2.69及9.64。 5.3 用於鹽篩選之起始材料 化合物 I-1 形式 A
參數 方法 結果
化學純度 HPLC 99.0%
對掌性純度 HPLC 99.2%
X射線繞射 3-40° (2θ) 形式A,高結晶度
DSC熔融起始及焓 DSC, 10 ℃/min 放熱:255.9℃ (7J/g), 267.7℃ (3J/g); 吸熱:279.4℃ (89J/g)
熱重分析 TGA, 10 ℃/min 在250℃為1.6%
殘餘溶劑 1H-NMR (DMSO- d 6) 無殘餘溶劑
5.4 鹽篩選
稱量約5mg I-1形式A至2mL玻璃小瓶中,且添加20µL各溶劑之等分試樣(經分子篩預處理)以測定在25℃之溶解度。所添加之各溶劑的最大體積為1 mL。藉由目視觀測測定大致溶解度。 I-1形式A之大致溶解度
溶劑 溶解度 (mg/mL, 25ºC)
<5
甲醇 12-17
乙醇 <5
異丙醇 <5
丙酮 12-17
甲基乙基酮 12-17
乙酸異丙酯 <5
乙腈 10-17
四氫呋喃 33-64
三氟乙醇 12-17
二氯甲烷 <5
篩選實驗
基於計算之pKa 2.69及9.64,選擇10種I類酸、6種II類酸、1種III類酸、1種I類鹼及5種共晶形成物得到潛在鹽及共晶體機會。將約50mg之I-1形式A添加至適合量之溶劑,且在50℃於攪拌下添加1.0當量相對離子,持續2小時,隨後在25℃攪拌至少12小時。MeOH、丙酮及IPAc用作篩選溶劑。
對於所獲得之彼等澄清溶液,在通風櫥中蒸發一半體積;其餘部分藉由添加反溶劑處理。
取出所獲得之懸浮液且離心。藉由XRPD分析所獲得之固體且鹽篩選結果彙總於表5.1、表5.2及表5.3中。根據表5.4進一步表徵具有高或中等結晶度之命中物。 用於鹽篩選之相對離子
相對離子 pKa(s) M.W. 類別
HCl -6.1 36.46 I
硫酸 -3, 1.92 98.08 I
磷酸 1.96, 7.12, 12.32 98 I
L-蘋果酸 3.4, 5.09 134.09 I
L-酒石酸 3.02, 4.36 150.09 I
檸檬酸 3.12, 4.76, 6.39 192.13 I
反丁烯二酸 3.03, 4.38 116.08 I
L-天冬胺酸 1.88, 3.65, 9.60(B) 133.11 I
L-麩胺酸 2.19, 4.25, 9.67(B) 147.13 I
順丁烯二酸 1.92, 6.23 116.08 I
龍膽酸 2.93 154.12 II
丙二酸 2.82 104.06 II
甲烷磺酸 -1.2 96.10 II
對甲苯磺酸 -1.34 172.21 II
萘-2-磺酸 0.17 208.24 II
萘-1,5-二磺酸 -3.37, -2.64 332.26 II
氫溴酸 <-6 80.92 III
氫氧化鈉 14 40 I
茶鹼 N/A 180.16 N/A
可可豆鹼 N/A 180.16 N/A
菸鹼酸 4.85 123.11 II
菸鹼醯胺 N/A 122.12 N/A
異菸鹼醯胺 N/A 122.12 N/A
表5.1鹽篩選結果(漿液結晶)
   A B C
相對離子 MeOH 丙酮 乙酸異丙酯
游離形式 - (I-1形式A) - (I-1形式A) - (I-1形式A)
1.0當量 HCl - (I-1形式A) + (III-2形式A) 對掌性純度:30.8% + (I-2形式A,低結晶度) 對掌性純度:89.7%
1.0當量磺酸 - (I-1形式A) 薄層懸浮 薄層懸浮
1.0當量磷酸 - (I-1形式A) 薄層懸浮 - (I-1形式A)
1.0當量L-蘋果酸 - (I-1形式A) 薄層懸浮 - (I-1形式A)
1.0當量L-酒石酸 - (I-1形式A) 薄層懸浮 - (I-1形式A)
1.0當量檸檬酸 - (I-1形式A) 薄層懸浮 - (I-1形式A)
1.0當量反丁烯二酸 - (I-1形式A) - (I-1形式A及反丁烯二酸之物理混合物) - (I-1形式A及反丁烯二酸之物理混合物)
1.0當量L-天冬胺酸 - (I-1形式A及L-天冬胺酸之物理混合物) - (I-1形式A及L-天冬胺酸之物理混合物) - (I-1形式A及L-天冬胺酸之物理混合物)
1.0當量L-麩胺酸 - (I-1形式A及L-麩胺酸之物理混合物) - (I-1形式A及L-麩胺酸之物理混合物) - (I-1形式A及L-麩胺酸之物理混合物)
1.0當量順丁烯二酸 - (I-1形式A) 薄層懸浮 - (I-1形式A)
1.0當量龍膽酸 - (I-1形式A) 薄層懸浮 - (I-1形式A)
1.0當量丙二酸 - (I-1形式A) 薄層懸浮 - (I-1形式A)
1.0當量甲烷磺酸 I-1形式A +另外之一個峰2θ 9.2° 薄層懸浮 薄層懸浮
1.0當量對甲苯磺酸 + (I-3形式A) + (I-3形式A) 對掌性純度:99.8% + (I-3形式A)
1.0當量萘-2-磺酸 I-1形式A +一個峰9.3° + (III-6形式A,低結晶度) 對掌性純度:43.2% 薄層懸浮
1.0當量萘-1,5-二磺酸 + (I-1形式A ) 對掌性純度:100% 在50℃乾燥21h:低結晶度 對掌性純度:100% 薄層懸浮 3天:AF;另3天:AF
1.0當量氫溴酸 - (I-1形式A) 薄層懸浮 澄清溶液
1.0當量氫氧化鈉 澄清溶液 薄層懸浮 3天:實際上非晶形; 另3天:AF
1.0當量茶鹼 - (I-1形式A及茶鹼之物理混合物) -(I-1形式A及茶鹼之物理混合物) -(I-1形式A及茶鹼之物理混合物)
1.0當量可可豆鹼 -(I-1形式A及可可豆鹼之物理混合物) -(I-1形式A及可可豆鹼之物理混合物) -(I-1形式A及可可豆鹼之物理混合物)
1.0當量菸鹼酸 -(I-1形式A及菸鹼酸之物理混合物) -(I-1形式A及菸鹼酸之物理混合物) -(I-1形式A及菸鹼酸之物理混合物)
1.0當量菸鹼醯 - (I-1形式A 另外2θ 17.1°, 17.5°) 薄層懸浮 -(I-1形式A及菸鹼醯胺之物理混合物)
1.0當量異菸鹼醯 - (I-1形式A) 薄層懸浮 -(I-1形式A及異菸鹼醯胺之物理混合物)
相對離子 ACN 丙酮 乙酸異丙酯
1.0當量 HCl + (III-2形式B) 對掌性純度:20.2% + (III-2形式A) 對掌性純度:45.4% 澄清溶液
相對離子 MeOH/ (9:1,v/v)      
1.0當量萘-1,5-二磺酸 - (I-1形式A、I-5形式B及萘-1,5-二磺酸之物理混合物) 對掌性純度:99.3% // //
「+」:    鹽命中物 「-」:     游離形式、相對離子或物理混合物 「AF」:  非晶形式 「//」:    未進行 表5.2鹽篩選結果(緩慢蒸發)
   A B C
相對離子 MeOH 丙酮 IPAc
1.0當量硫酸 // AF AF
1.0當量磷酸 // AF //
1.0當量L-蘋果酸 // AF //
1.0當量L-酒石酸 // AF //
1.0當量檸檬酸 // AF //
1.0當量順丁烯二酸 // AF //
1.0當量龍膽酸 // AF //
1.0當量丙二酸 // AF //
1.0當量甲烷磺酸 // AF AF
1.0當量萘-2-磺酸 // // AF
1.0當量萘-1,5-二磺酸 // AF //
1.0當量氫溴酸 // AF AF
1.0當量氫氧化鈉 AF AF //
1.0當量菸鹼醯 // AF //
1.0當量異菸鹼醯 // 實際上非晶形 //
「//」:    未進行 「AF」:  非晶形式 5.3 鹽篩選結果(反溶劑)
   A B C
相對離子 MeOH/MTBE 丙酮 /MTBE IPAc/MTBE
1.0當量硫酸 // 薄層懸浮 AF
1.0當量磷酸 // -(I-1形式B) //
1.0當量L-蘋果酸 // -(I-1形式B) //
1.0當量L-酒石酸 // -(I-1形式B) //
1.0當量檸檬酸 // -(I-1形式B) //
1.0當量順丁烯二酸 // -(I-1形式B) //
1.0當量龍膽酸 // -(I-1形式B) //
1.0當量丙二酸 // -(I-1形式B) //
1.0當量甲烷磺酸 // + (I-4形式A) 對掌性純度:98.3% 薄層懸浮
1.0當量萘-2-磺酸 // // AF
1.0當量萘-1,5-二磺酸 // + (I-5形式B) 對掌性純度:88.3% //
1.0當量氫溴酸 // 薄層懸浮 薄層懸浮
1.0當量氫氧化鈉 實際上非晶形 AF //
1.0當量菸鹼醯 // -(I-1形式B) //
1.0當量異菸鹼醯 // -(I-1形式B) //
1.0當量 HCl // // AF
「+」:    鹽命中物 「-」:     游離形式、相對離子或物理混合物 「AF」:  非晶形式 「//」:    未進行 表5.4結晶命中物之表徵
   I-1形式A III-2形式A I-2形式A I-3形式A (無水物) III-6形式A
相對離子類別 // I I II II
溶劑 MeOH、丙酮、IPAc 丙酮 IPAc MeOH、丙酮、IPAc 丙酮
對掌性純度(藉由HPLC) 99.2% 30.8% 89.7% 99.8% 43.2%
結晶度(藉由XRPD) 高結晶度 中等結晶度 低結晶度 高結晶度 低結晶度
熔融起始(DSC, ℃) 放熱:255.9℃, 267.7℃; 吸熱:279.4℃ 吸熱:151.8℃, 275.5℃; 放熱:225.2℃; 吸熱:121.3℃, 276.5℃, 284.3℃; 放熱:237.1℃ 251.1℃ 吸熱:47.0℃ 145.8℃
焓(DSC, J/g) 放熱:7, 3; 吸熱:89 吸熱:75, 81; 放熱:67 吸熱:97, 45, 14; 放熱:50 97 吸熱:3, 52
重量損失(TGA, %) 在250℃為1.6% 在194℃為8.0% 在168℃為12.6% 在214℃為1.2% 在190℃為6.8%
化學計量比 (藉由 1H-NMR) // // // 游離形式:相對離子=1:1 游離形式:相對離子=1:0.36
殘餘溶劑 (藉由 1H-NMR) 無殘餘溶劑 6.3重量%丙酮(0.7當量) 3.7重量% 2-丙醇(0.4當量);1.4重量% IPAc (0.09當量) 0.3重量%丙酮(0.04當量) 4.8重量%丙酮(0.6當量)
   I-5形式A (甲醇溶劑合物) I-4形式A I-5形式B III-2形式B
相對離子類別 II II II I
溶劑 MeOH 丙酮/MTBE(1:4,v/v) 丙酮/MTBE (1:4,v/v) ACN
對掌性純度(藉由HPLC) 100% 在50℃乾燥21h:100% 98.3% 88.3% 20.3%
結晶度(藉由XRPD) 中等結晶度 在50℃乾燥21h: 低結晶度 低結晶度 中等結晶度 低結晶度
熔融起始(DSC, ℃) 吸熱:32.7℃, 128.0℃, 213.1℃ 在50℃乾燥21h: 吸熱:32.5℃, 112.2℃ 217.8℃ 吸熱:39.0℃, 192.1℃, 224.6℃ // //
焓(DSC, J/g) 吸熱:63, 10, 26 在50℃乾燥21h: 吸熱:33, 7, 7 吸熱:55, 72, 41 // //
重量損失(TGA, %) 在85.5℃為2.4%,在180℃為1.4% 在100℃為1.4% // //
化學計量比 (藉由 1H-NMR) 游離形式:相對離子=1:0.6 在50℃乾燥21h: 游離形式:相對離子=1:0.6 游離形式:相對離子=1:1.2 游離形式:相對離子=1:0.94 //
殘餘溶劑 (藉由 1H-NMR) 3.2重量% MeOH (0.8當量) 在50℃乾燥21h: 無溶劑殘餘 0.7重量% MTBE (0.06當量) 3.0重量%丙酮(0.5當量) 2.1重量% ACN (0.32當量)
5.5 製備鹽候選物
將I-3形式A及I-4形式A擴大規模用於進一步評估。
程序及觀測
I-3 形式 A 1.         將1000mg I-1形式A稱重至40mL玻璃瓶中且藉由覆蓋鋁箔避光在50℃在攪拌下將3mL丙酮添加至小瓶中,持續約5 min。(懸浮液); 2.         將約10mg晶種添加至溶液且藉由覆蓋鋁箔避光而保持在50℃攪拌約2min。(懸浮液); 3.         首先將約1.0當量對甲苯磺酸(約334mg)溶解於丙酮中,隨後藉由覆蓋鋁箔避光而將相對離子緩慢添加於懸浮溶液中。(懸浮液)。 4.         藉由覆蓋鋁箔避光而保持在50℃攪拌混合物約2小時。(懸浮液); 5.         隨後自然冷卻至25℃且藉由覆蓋鋁箔避光而保持攪拌約5天。(懸浮液); 6.         藉由離心過濾收集固體且在周圍條件乾燥約12h; 7.         以76%之產率獲得1014.53mg呈灰白色固體之I-3形式A。
I-4 形式 A 1.         將300mg I-1形式A稱重至20mL玻璃瓶中且藉由覆蓋鋁箔避光而在50℃在攪拌下將1.4604mL丙酮添加至小瓶中,持續約5 min。(懸浮液); 2.         藉由覆蓋鋁箔避光而將約0.3396mL甲烷磺酸(以莫耳比計,1.0當量,其首先經丙酮稀釋)緩慢添加至懸浮溶液。(懸浮液); 3.         藉由覆蓋鋁箔避光而保持在50℃攪拌混合物約2小時(懸浮液); 4.         隨後自然冷卻至25℃且藉由覆蓋鋁箔避光而保持攪拌約0.5小時(懸浮液); 5.         隨後藉由0.45µm耐綸過濾器過濾溶液,獲得澄清溶液; 6.         將約5mg晶種添加至溶液; 7.         將反溶劑MTBE (反溶劑:良好溶劑=4:1,v/v)添加至溶液中且藉由覆蓋鋁箔避光而保持在25℃攪拌約6天(懸浮液),藉由XRPD及對掌性純度監測樣本; 8.         藉由離心過濾收集固體且在周圍條件乾燥約12h,隨後在50℃於真空乾燥器中乾燥約12h; 9.         獲得呈灰白色固體之I-4形式A。
I-4 形式 A ( 成功 ) 1.         將700mg I-1形式A稱重至40mL玻璃瓶中且藉由覆蓋鋁箔避光在50℃在攪拌下將2.409mL丙酮添加至小瓶中,持續約5 min。(懸浮液); 2.         藉由覆蓋鋁箔避光而將約0.79117mL甲烷磺酸(以莫耳比計,1.0當量,其首先經丙酮稀釋)緩慢添加至懸浮溶液。(懸浮液); 3.         藉由覆蓋鋁箔避光而保持在50℃攪拌混合物約2小時(懸浮液); 4.         隨後自然冷卻至25℃且藉由覆蓋鋁箔避光而保持攪拌約0.5小時(懸浮液); 5.         隨後藉由0.45µm耐綸過濾器過濾溶液,獲得澄清溶液; 6.         將約10mg晶種添加至澄清溶液; 7.         將反溶劑MTBE (反溶劑:良好溶劑=4:1,v/v)添加至溶液中且藉由覆蓋鋁箔避光而保持在25℃攪拌約3天(懸浮液),藉由XRPD及對掌性純度監測樣本; 8.         藉由離心過濾收集固體且在周圍條件乾燥約12h,隨後在50℃於真空乾燥器中乾燥約3h; 9.         以66%之產率獲得541.34mg呈灰白色固體之I-4形式A。
I-3 形式 A 1.         將1000mg I-1形式A稱重至40mL玻璃瓶中且藉由覆蓋鋁箔避光在50℃在攪拌下將3mL丙酮添加至小瓶中,持續約5 min。(懸浮液); 2.         將約10mg晶種添加至溶液且藉由覆蓋鋁箔避光而保持在50℃攪拌約2min。(懸浮液); 3.         首先將約1.0當量對甲苯磺酸(約334mg)溶解於丙酮中,隨後藉由覆蓋鋁箔避光而將相對離子緩慢添加於懸浮溶液中。(懸浮液)。 4.         藉由覆蓋鋁箔避光而保持在50℃攪拌混合物(9mL)約2小時。(懸浮液); 5.         隨後自然冷卻至25℃且藉由覆蓋鋁箔避光而保持攪拌約20h。(懸浮液); 6.         藉由離心過濾收集固體且在50℃藉由真空乾燥約2h; 7.         以 83.6%之產率獲得1097.92mg呈灰白色固體之甲苯磺酸鹽。
I-3 形式 A 1.         將12g I-1形式A稱重至EasyMax之100mL玻璃瓶中且藉由覆蓋鋁箔避光在50℃在攪拌下將70mL丙酮添加至小瓶中,持續約5 min。(懸浮液); 2.         將約100mg晶種添加至溶液且藉由覆蓋鋁箔避光而保持在50℃攪拌約5min。(懸浮液); 3.         首先將約1.0當量對甲苯磺酸單水合物(約3996.07mg)溶解於30mL丙酮中,隨後藉由覆蓋鋁箔避光而將相對離子緩慢添加於懸浮溶液中。(懸浮液)。 4.         隨後將25mL丙酮添加至混合物中。在50℃攪拌混合物約1.5h。將獲得之I-3形式A添加至懸浮液中。添加另外25mL丙酮以維持懸浮。 5.         藉由覆蓋鋁箔避光而保持在50℃攪拌混合物(150mL)約2小時。(懸浮液); 6.         隨後以0.1℃/min冷卻至25℃且藉由覆蓋鋁箔避光而保持攪拌約18h。(懸浮液); 7.         藉由離心過濾收集固體且在50℃藉由真空乾燥至少36h; 8.         以87.0 %之產率獲得14.7g呈灰白色固體之I-3形式A。
5.6 鹽候選物評估化學及物理化學特性
參數 物理形式
I-1 形式 A I-3 形式 A ( 無水物 ) I-4 形式 A I-4 形式 A ( 水合物 )
藉由 HPLC 獲得之初始對掌性純度
對掌性純度 [ 面積 %] 99% 98.6% 攪拌1.5h:99.7% 攪拌24h:99.5% 攪拌約3d、4d、5d:99.5% 100%
藉由 1 H-NMR 獲得之化學計量
// 游離形式:相對離子=1:1 5d: 游離形式:相對離子=1:1.3 6d: 游離形式:相對離子=1:1.1 游離形式:相對離子=1:1.1
藉由 1 H-NMR 獲得之殘餘溶劑
重量 (%) 無殘餘溶劑 0.2重量%丙酮(0.03equiv) 5d:無殘餘溶劑 6d:無殘餘溶劑 無殘餘溶劑
藉由卡爾費雪 (Karl Fisher) 獲得之含水量
重量 (%) // // // 2.5重量%水(0.86 equiv)
藉由 XRPD 獲得之結晶度
/ / 高結晶度 高結晶度 5d:低結晶度 6d:中等結晶度 中等結晶度
DSC ,加熱速率 [10ºC/min]
熔融起始 ( ) 放熱:255.9℃, 267.7℃; 吸熱:279.4℃ 251.2℃ 6d:吸熱:107.3℃, 193.8℃ 吸熱:108.0℃, 197.8℃
熔融焓 (J/g) 放熱:7, 3; 吸熱:89 在熔融後發生分解 6d:吸熱:36, 51 吸熱:2, 30
熱重分析,加熱速率 [10ºC/min]
重量損失 (%)( ) 在250℃為1.6% 在214℃為0.8% 6d:在172℃為1.2% 在100℃為1.5%
型態
PLM 棒狀晶體 聚集之細粒 // 聚集之細粒
整體穩定性
將I-1形式A及2種鹽置於在25℃/92%RH之敞開容器中、在40℃/75%RH之敞開容器中及在60℃之密閉容器中1週。1週之後樣本藉由XRPD及HPLC表徵且檢測顏色變化。
參數 物理形式
I-1形式A I-3形式A I-4形式A
藉由HPLC獲得之初始溫度 99.0% 99.5% 99.6%
對掌性純度 99.0% 98.6% 99.5%
   純度/對掌性純度 CL 純度/對掌性純度 CL 純度/對掌性純度 CL
固態,25℃/92%RH,敞開容器,1週  
整體(HPLC) 99.0% / 98.9% A 99.4% / 98.3% A 99.3% / 99.3% A
整體(XRPD) 無形式變化 無形式變化* 形式變化
固態,40℃/75%RH,敞開容器,1週  
整體(HPLC) 99.0% / 98.9% A 99.3% / 98.5% A 99.0% / 99.1% A
整體(XRPD) 無形式變化 無形式變化* 形式變化
固態,60℃,密閉容器,1週  
整體(HPLC) 99.0% / 98.9% A 99.5% / 98.3% A 99.5% / 99.2% A
整體(XRPD) 無形式變化 無形式變化 無形式變化
-  未進行測試     A   無色彩變化 B 輕微變色   C   中等變色 D 強變色 DC 完全分解 「*」:相對濕度在XRPD測試期間為約40%RH 溶解度研究
分別稱量準確之4mg I-1形式A、5.13 mg I-3形式A、4.63mg I-4形式A至8mL玻璃小瓶中。添加2mL溶解介質。使用之鹽量等效於4mg無水游離形式。在37℃以400 rpm攪拌獲得之懸浮液/溶液2小時及24小時,隨後在37℃以14,000 rpm離心5min。分別藉由UPLC及pH測定計分析上清液之溶解度及pH值。殘餘固體(濕濾餅)藉由XRPD表徵以測定物理形式,隨後藉由HPLC分析對掌性純度。
在37℃進行溶解度研究,目標濃度2mg/mL,平衡2小時及24小時,LOQ:0.5μg/mL
Exp. ID 培養基 I-1形式A I-3形式A I-4形式A
   溶解度(pH) XRPD 溶解度(pH) XRPD 溶解度(pH) XRPD
ES1 MeOH/DCM (1:2, v/v)
2小時 >145mg/mL 澄清溶液 >75mg/mL 澄清溶液 >111mg/mL 澄清溶液
24小時 >145mg/mL 澄清溶液 >75mg/mL 澄清溶液 >111mg/mL 澄清溶液
ES2 pH 2, HCl  
2小時 < LOQ // < LOQ // < LOQ //
24小時 < LOQ (pH: 2.03) I-1形式A (固體-對掌性純度:98.9%) < LOQ (pH: 1.86) I-1形式A (固體-對掌性純度:98.3%) < LOQ (pH: 1.89) I-1形式A+ NaCl (固體-對掌性純度:99.3%)
ES3
2小時 < LOQ // < LOQ // < LOQ //
24小時 < LOQ (pH: 7.50) I-1形式A (固體-對掌性純度:98.9%) < LOQ (pH: 2.54) I-1形式A (固體-對掌性純度:98.3%) < LOQ (pH: 2.52) I-1形式A (固體-對掌性純度:99.2%)
ES4 SGF, pH 2.0
2小時 11.2μg/mL // 4.2μg/mL // 3.2μg/mL //
24小時 6.4μg/mL (pH: 2.04) I-1形式A (固體-對掌性純度:98.9%) 1.3μg/mL (pH: 1.92) I-1形式A (固體-對掌性純度:98.3%) 2.6μg/mL (pH: 1.89) I-1形式A (固體-對掌性純度:99.2%)
ES5 FeSSIF-V1, pH 5.0  
2小時 20.5μg/mL // 176.1μg/mL(對掌性純度:97.1%) // 239.1μg/mL(對掌性純度:97.7%) //
24小時 40.6μg/mL (pH: 4.87) I-1形式A + 2θ 8.9°+ NaCl (固體-對掌性純度:85.7%) 19.0μg/mL (pH: 4.86) I-1形式A+ NaCl (固體-對掌性純度:66.4%) 16.2μg/mL (pH: 4.84) I-1形式A+ NaCl (固體-對掌性純度:85.2%)
ES6 FaSSIF-V1, pH 6.5
2小時 4.5μg/mL(對掌性純度:97.7%) // 52.2μg/mL (對掌性純度:96.1%) // 44.1μg/mL(對掌性純度:98.3%) //
24小時 11.9μg/mL (pH: 6.45) (對掌性純度:97.7%) I-1形式A+ NaCl (固體-對掌性純度:98.9%) 0.7μg/mL (pH: 6.17) I-1形式A+ NaCl (固體-對掌性純度:98.4%) 0.4μg/mL (pH: 6.15) I-1形式A+ NaCl (固體-對掌性純度:99.3%)
懸浮液穩定性
分別稱量準確之10mg I-1形式A、12.83 mg I-3形式A、11.58mg I-4形式A至8mL玻璃小瓶中。分別添加5mL懸浮液媒劑。使用之鹽量等效於10mg無水游離形式。在25℃以400rpm攪拌此等懸浮液。在2小時及24小時取出此等懸浮液,隨後以14,000 rpm離心5min。藉由HPLC及pH測定計分析上清液。獲得之固體(濕濾餅)藉由XRPD及HPLC表徵以測定對掌性純度。同時,抽取一部分懸浮液且藉由稀釋劑(ACN:H 2O=1:1,v/v)溶解,得到澄清溶液。藉由HPLC分析獲得之澄清溶液以測定化學純度。
分別稱量精確的49.2 mg I-3形式A、46.3mg I-4形式A至8mL玻璃小瓶中。分別添加4mL溶解介質。使用之鹽量等效於40mg無水游離形式。分別添加4mL含水媒劑(0.5%(w/w)MC(400cP)及2%(w/w)維生素E TPGS水溶液)。在25℃以400rpm攪拌此等懸浮液。在2小時及24小時取出此等懸浮液,隨後以14,000 rpm離心5min。藉由HPLC分析上清液之溶解度及對掌性純度,且藉由pH測定計分析。獲得之固體(濕濾餅)藉由XRPD及HPLC表徵對掌性純度。同時,抽取一部分懸浮液且藉由稀釋劑(ACN:H 2O=1:1,v/v)溶解,得到澄清溶液。藉由HPLC分析獲得之澄清溶液以測定化學純度。
   I-1形式A I-3形式A I-4形式A  
   初始對掌性純度:98.9% 初始對掌性純度:98.6% 初始對掌性純度:99.5%  
在25℃之懸浮液穩定性,目標濃度2mg/mL,平衡2小時及24小時,LOQ:0.25μg/mL
Exp. ID 純度 pH值 溶解度(μg/mL) 對掌性純度(固體) XRPD 純度 pH值 溶解度(μg/mL) 對掌性純度(固體) XRPD    純度 pH值 溶解度(μg/mL) 對掌性純度(固體) XRPD     
SUS1 純水  
2h 99.1% 6.79 <LOQ 98.8% 無形式變化 99.6% 5.59 <LOQ 98.3% 無形式變化 99.5% 2.81 <LOQ 99.7% 非晶形式  
24h 99.2% 8.27 <LOQ 96.7% 無形式變化 99.5% 2.85 <LOQ 98.3% I-1形式A 99.4% 2.61 <LOQ 99.7% I-1形式A  
SUS2 0.5%(w/w) Tween 80水溶液  
2h 99.1% 對掌性純度:83.2% 6.52 25.5 98.8% 無形式變化 99.4% chiral 純度:95.8% 3.11 244.6 98.0% I-3形式A+2個峰 99.5% 2.78 342.6 99.7% 非晶形式  
24h 99.2% 對掌性純度:93.0% 7.40 17.6 97.6% 無形式變化 99.4% 對掌性純度:98.5% 2.63 17.9 94.2% I-1形式A 99.6% 2.63 16.3 95.8% I-1形式A  
SUS3 0.5%(w/w) MC(400cP)及2%(w/w)維他命E TPGS水溶液  
2h 99.5% 對掌性純度:64.8% 5.02 47.9 98.7% 無形式變化 99.3% 對掌性純度:86.4% 2.76 1220.9 // 非晶形式 99.2% 2.72 1210.7 // 非晶形式  
24h 99.1% 對掌性純度:97.7% 4.30 34.5 96.6%    無形式變化 99.3% 對掌性純度:98.3% 2.62 1990.7 // 非晶形式 99.6% 2.61 2018.8 // 非晶形式  
在25℃之懸浮液穩定性,目標濃度10mg/mL,平衡2小時及24小時,LOQ:1μg/mL
SUS4 0.5%(w/w) MC(400cP)及2%(w/w)維他命E TPGS水溶液  
2h // // // // // 99.7% 2.30 3433.2 液體:99.4%; 固體:97.9% 形式變化 99.7% 1.89 3947.2 液體:100% ; 固體:99.8% 非晶形式  
24h // // // // // 99.7% 2.17 3083.9 液體:99.4%; 固體:98.3% 無形式變化 99.6% 1.86 3813.0 液體:99.8%; 固體:99.7% 非晶形式  
「//」:    未進行 溶液穩定性
分別稱量精確的4mg I-1形式A、5.13 mg I-3形式A至8mL玻璃小瓶中。使用之鹽量等效於4mg無水游離形式。分別添加1mL不同溶劑且獲得澄清溶液。在25℃以400rpm攪拌澄清溶液。在0h、6h及24h取出澄清溶液,隨後藉由ACN:H 2O=1:1,v/v稀釋且藉由HPLC分析以測定化學純度及對掌性純度。
   I-1形式A I-3形式A
   初始對掌性純度:99.0% 初始對掌性純度:98.6%
Exp. ID 化學純度 對掌性純度 化學純度 對掌性純度
SOS1 MeOH
0h 98.9% 98.9% 99.3% 98.3%
6h 99.0% 98.9% 99.3% 98.3%
24h 99.1% 98.9% 99.4% 98.3%
SOS2 THF/ACN(2:1, v/v)
0h 98.6% 98.9% 99.2% 98.3%
6h 98.7% 98.9% 99.3% 98.3%
24h 99.0% 98.9% 99.4% 98.3%
吸濕性
藉由DVS在25℃下以循環40-0-95-0-40%RH、dm/dt 0.002、最短平衡時間60 min及最長平衡時間360 min研究I-1形式A、I-3形式A及I-4形式A之水吸附及解吸附特性。在DVS測試之後量測XRPD以測定形式變化。
   I-1形式A (無水物) I-3形式A (無水物) I-4形式A (hydrate)
   1 stSorp. (%) 1 stDesorp. (%) 2 ndSorp. (%) 2 ndDesorp. (%) 1 stSorp. (%) 1 stDesorp. (%) 2 ndSorp. (%) 2 ndDesorp. (%) 1 stSorp. (%) 1 stDesorp. (%) 2 ndSorp. (%) 2 ndDesorp. (%)
0% 0.17 0.17 0.001 0.001 0.05 0.05 0.00 0.00 // 0.01 0.01 //
10% 0.23 0.25 0.08 0.11 0.15 0.16 0.10 0.11 // 1.52 0.98 //
20% 0.29 0.33 0.15 0.21 0.26 0.27 0.21 0.22 // 2.78 1.76 //
30% 0.35 0.42 0.22 0.33 0.38 0.40 0.35 0.37 // 3.61 2.64 //
40% 0.42 0.52 0.32 0.51 0.67 0.69 0.81 2.11 1.62 4.52 3.57 4.51
50% 0.54 // // 0.92 2.34 // // 2.44 3.50 5.78 4.63 5.71
60% 0.71 // // 1.30 2.53 // // 2.64 4.75 7.60 6.22 7.44
70% 1.02 // // 1.62 2.84 // // 4.17 6.87 11.14 9.34 10.54
80% 1.84 // // 2.15 4.29 // // 4.45 12.16 16.84 15.03 17.11
90% 3.24 // // 3.56 4.64 // // 4.76 25.12 31.04 27.39 32.94
95% 5.90 // // 5.90 5.36 // // 5.36 42.35 42.35 44.74 44.74
DVS測試後之XRPD 無形式及結晶度變化 獲得之樣本仍為形式A 形式改變
「//」:    未進行 在不同濕度下研究 I-3 形式 A
使用I-3形式A作為起始材料。在25℃施加一個RH循環。在各特定相對濕度下進行XRPD分析。循環:39%RH (初始)-10%RH (2h)-40%RH (2h)-50%RH (2h)-70%RH (2h)。同時,使I-3形式A暴露於30%RH、40%RH及50%RH腔室1週。藉由XRPD使用氣密容器分析樣本。
25 相對濕度 ( 平衡時間 ) XRPD 註釋
VH-XRPD 39% ( 初始 ) I-3形式A 無註釋
10% (2h) I-3形式A 無註釋
40% (2h) I-3形式A 無註釋
50% (2h) I-3形式A + 2θ 17.3° 無註釋
70% (2h) I-3形式B 無註釋
腔室 30% (1 ) I-3形式A + 2θ 17.5° 將氣密容器用於XRPD測試。
40% (1 ) I-3形式B 將氣密容器用於XRPD測試。
50% (1 ) I-3形式B 將氣密容器用於XRPD測試。
鹽候選物風險矩陣
   相對離子 化學穩定性 物理穩定性 吸濕性 溶解度 多晶型
I-1形式A // 穩定 穩定 吸濕性;DVS測試之後無形式及結晶度改變 pH依賴性溶解度概況 至少3種多晶型,且容易發生外消旋化。
I-3形式A 第II類 穩定 穩定 對濕氣敏感且轉化成高濕度之潛在水合物 pH依賴性溶解度概況 至少兩種多晶型。
I-3形式A 第II類 穩定 穩定 極具吸濕性;DVS測試後,形式變化。 pH依賴性溶解度概況 至今鑑別出一種多晶型。
實例 1-A 2-A 3-A 4-A
本文所描述之化合物可基於本文所含之教示及此項技術中已知之合成程序以多種方式來製備。以下非限制性實例說明本文中之揭示內容。 縮寫 全名MeOH    甲醇 EtOH     乙醇 ACN      乙腈 TFA       三氟乙酸 DMSO    二甲亞碸 IPAc      乙酸異丙酯 DCM      二氯甲烷 EA         乙酸乙酯 THF       四氫呋喃 MTBE    甲基三級丁基醚 實例 1-A. 製備化合物 I-1 II-1 分離 III-1 小型模擬移動床 (SMB) 論證引言
篩選III-1之鏡像異構物之分離且最佳分離條件將用DCM/MeOH 90/10 v/v之Chiralpak IH鑑別為移動相。所估計之生產率為3.7 kg/天/kg CSP。於小型SMB上分離外消旋進料之200 g樣本以論證分離及確認所估計之生產率病獲得用於另外R&D工作之兩種鏡像異構物。 製備製程 製程描述
使用Chiralpak IH,20 µm作為固定相及正庚烷/DCM 90/10 v/v作為移動相論證獲得各鏡像異構物之外消旋III-1之分離。SMB單元配備有8個長10 cm且直徑1 cm之管柱。將鏡像異構物分成兩個製程流:萃餘液(II-1)及萃取物(I-1)。
將10 mm單元設定為每區域組態使用2-2-2-2管柱以8管柱模式操作,以模擬較大單元。在環境溫度(~22℃)操作SMB。 溶離次序
製備參考標準物之稀釋溶液(1.75 g/L)且與進料之稀釋溶液比較以確認溶離次序。最後因此於萃取物流中回收I-1溶離物。 管柱填充及測試
用1.07 g/L進料樣本以1.9 ml/min測試現有Chiralpak IH管柱組。在完成輪次時再次測試管柱。 操作之前或之後進行管柱測試
Col tR0 tR1 tR2 N1 N2 A1 A2 a
之前 2.320 2.750 5.080 426 158 1.71 1.06 6.42
之後 2.440 2.745 5.229 411 155 1.65 1.04 9.14
其中 t0:指示失效體積之溶劑之滯留時間 tRi:鏡像異構物「i」之滯留時間 Ni:用於峰「i」之盤之數目(效率) Ai:峰「i」之不對稱性因子 選擇性:將分離選擇性定義為a = (tR2 - t0)/(tR1 - t0)
測試顯示操作前後管柱之間的極少差異。效率平均值保持良好以及峰不對稱性。第二峰之滯留時間之差異(tR2)意謂選擇性顯著增加。此可為兩個實驗集合之間移動相或分離溫度之小組成變化的結果。考慮到分離在論證輪次期間為穩定的且峰形狀相對不變,保留差異並非主要關注點。 規格
所需鏡像異構物之目標對掌性純度大於99.0%e.p。
不存在非所需鏡像異構物之規格,然而,應以最高可能純度回收非所需鏡像異構物以最大化回收率。 分析方法製程內對掌性方法
使用以下方法來量測自SMB收集之級分之對掌性純度。自收集自萃取物及萃餘物流之SMB級分中純淨地注入樣本。 用於判定對掌性純度之HPLC方法(製程內方法) 管柱            Chiralpak IH 0.46×15.0 cm,5 µm 移動相         90/10 DCM/MeOH 注入            10 µL 偵測            350 nm 溫度            25 ℃ 總運行時間  5 min 進料製備
使用提供之外消旋進料製備進料溶液。 溶解度註釋
用於裝載研究之進料溶液在以25至26 g/l在室溫下靜置時略微沈澱。因此,為消除產物之沈澱,將目標濃度降至20 g/l,隨後在觀測到更多固體沈澱物時再次降至18 g/l。
18 g/l之溶解度對實驗室之溫度極其敏感,因此應控制進料溶液溫度。 用於分離之進料批
在此輪次期間處理總計~196.8 g之外消旋進料。
製備及處理之進料溶液
進料 淨重 濃度(g/l)
1 20.0 20.1
2 18.0 17.9
3 18.0 17.7
4 18.2 18.3
5 18.0 17.6
6 18.1 17.7
7 18.0 17.2
8 18.0 17.6
9 18.0 17.6
10 18.2 17.9
11 14.3 18
總計 196.8   
回收呈溶液之約3.8公克以作為未處理進料。 SMB分離 溶離劑輪次
首先用溶離劑代替進料開始SMB以沖洗設備且調節管柱。此允許在設備限於18-20巴操作壓力時驗證操作壓力在預期範圍內。一旦流動速率穩定,停止系統且增加進料。隨後重設循環計數器,且以字尾形式添加「B」標識。 分離最佳化
使用自項目之篩選階段進行的裝載研究估計的參數的修改版本開始分離。通常,進料速率會自模型計算的最佳值降低,以保守地開始且確保純度及回收率。 SMB參數
分離純度自開始即極佳,且壓力穩定保持於15巴。此等參數對應於2.3 kg進料/天/kg CSP之生產率,其低於模型預測之最佳值。 SMB參數。以ml/min為單位的流動速率及以min為單位之時間。
輪次(循環#) 區域1 Ex F Raf El 時段 對掌性純度(%)
Ex Raf
開始(6B) 7.0 3.4 1.5 2.1 4.0 1.56 99.9 100.0
循環46B 7.0 3.4 1.5 2.5 4.4 1.56 99.8 100.0
結束(169C) 9.0 5.4 2.40 3.40 6.4 1.46 99.6 99.7
逐漸增加進料速率,且調節其他參數以維持純度及回收率直至分離達到最大值(不進一步增加進料速率而無純度損失或顯著收率損失)。最終參數集合報導於上標中。
應注意,歸因於溶解度問題,針對進料之更稀溶液調整進料流速(17.9 g/l與20.1 g/l)。此解釋了進料速率之較大初始增加。 產物回收及運送 產物分離
使用下表中之條件將產物流蒸發至乾燥。將產物收集在4公升HPLC溶劑瓶中。一旦將內含物裝入燒瓶且幾乎完全蒸發溶劑,則真空降至100毫巴以完成乾燥。 旋轉蒸發器操作條件
蒸發器 真空(毫巴) 浴溫(℃)
萃取物 395-100 35
萃餘物 395-100 35
製程質量平衡
基於所處理進料及所回收材料對整個製程進行質量平衡。此質量平衡包括用於操作之進料(196.8 g)。總計179.3 g材料以萃取物、萃餘物或未經處理之進料形式回收,對應於~91%之總回收率。此異常低,因為總體回收率97%-100%更典型。此不一致可歸因於未考慮的起始外消旋進料中存在之殘餘溶劑。不進行接收之外消旋進料之分析,因此不可能進行製程產率之公平評估。
回收規範I-1內之總計57.5公克。亦回收另外25公克之不符合標準之材料。若兩批組合,則以~99.4%對掌性純度回收總產量82.1g (亦即,85%)。
以平均值96.8% e.p.回收總計93 g萃餘物,對應於93.3%之萃餘物產率。
萃余物含有對應於~3%之產率損失的2.94 g產物(萃取物)。
產率計算假設產物分析為100%,因此50%之質量為所需鏡像異構物。然而,外消旋進料中殘餘溶劑之量未知。另外,藉由對掌性層析可見外消旋進料中之兩種雜質。此等雜質之反應因數未知,因此此等雜質對總外消旋進料重量之貢獻未知。 結論
使用封裝有Chiralpak IH及DCM/甲醇90/10 v/v作為移動相之管柱在8×10 mm SMB上成功地進行III-1之鏡像異構物之對掌性分離。以大於99.5%之製程內對掌性純度展現3.5 kg/天/kg CSP之生產率,其與基於分離模型化之估計匹配。分離為穩定的,但觀測到在較大規模下可能成問題的進料之緩慢沈澱。
在規範內產生淨總額57.5 g所需鏡像異構物。且產生98.8% e.p.之另外25 g。 製程開展:外消旋化及分離
遵循SMB製程開展,亦評估II-1之外消旋化及用於分離呈乾燥固體形式之鏡像異構物的製程。最後,提供在千級實驗室處理的外消旋進料之樣本以進行使用測試。 篩分法 分離條件篩選
進行若干實驗以研發獲得呈乾燥固體之所需鏡像異構物的分離製程。下表彙總研發工作。 結晶篩選之實驗彙總(實例XXX)
Exp# (XXX) 材料 條件 對掌性純度,面積% 純度,面積%
005 I-1 DCM/MeOH + MTBE 100 99.2
007 I-1 DCM/MeOH + 正庚烷 100 99.2
011 II-1 DCM/MeOH + 正庚烷 35 → 15 ℃ 98.7 98.5
014 II-1 MeOH/EtOAc = 10:1中之滴定 52.8 98.6
016 II-1 MeCN 52.2 98.4
多晶型分析 (XRPD)
使用XRPD分析所得晶體以評定其特性。不同結晶方法產生不同多晶型。 殘餘溶劑評估
藉由1H-NMR評估結晶乾燥材料中之殘餘溶劑。實驗#-014之材料似乎為MeOH溶劑合物。 結晶產物中之殘餘溶劑
材料 實驗 # 中之 Wt%
005 007 011 014 016
I-1或II-1 99.95% 99.94% 99.71% 95.61% 99.56%
MeOH 0.00% 0.00% 0.00% 4.18% 0.06%
MeCN 0.00% 0.00% 0.00% 0.00% 0.29%
EtOAc 0.00% 0.00% 0.00% 0.21% 0.09%
DCM 0.02% 0.06% 0.24% 0.00% 0.00%
MTBE 0.03% 0.00% 0.00% 0.00% 0.00%
正庚烷 0.00% 0.00% 0.04% 0.00% 0.00%
較大規模分離論證
使用將正庚烷用作反溶劑之較大規模結晶程序自SMB分離溶液獲得I-1。 進料材料
將化合物I-1粗物質於DCM/MeOH中之樣本用作供論證之起始材料,樣本之組成如下。 藉由1H-NMR及HPLC獲得之I-1組成:
濃度 藉由HPLC獲得之I-1 NMR之結果
I-1 MeOH DCM
Wt% 14.1 14.2 14.1 71.7
實驗程序
下文概述較大規模I-1結晶之程序
步驟編號 重量(g) I-1, wt% 程序註釋
1 99.2 14.1 將含化合物I-1粗物質之DCM/MeOH溶液裝入0.5 L反應器中 M(I-1) = 13.99 g
2       蒸餾 Tjacket = 50.0 ℃ Tcondenser = -10.0 ℃ Ti = 39.5 - 43.8 ℃ 攪拌= 255 RPM
3 42.4 33 停止蒸餾。 m(餾出物) = 56.8 g Tjacket = 40.0 ℃ 獲得極濃稠白色漿液
4 97.4 14.4 添加正庚烷 添加速率 = 2 mL/min m(正庚烷e) = 55.0 g
5       經2小時自40.0℃逐漸冷卻至20.0℃ 攪拌= 300 RPM
6       老化16小時
7 97.4 0.25 樣本#2。量化溶液中之I-1。 m(溶液中之I-1) ~ (97.4-14)*0.0025 = 0.21 g
8       經由20 μm過濾器過濾 濾床厚度:~1 cm 過濾時間:2分鐘 m(母液) = 49.7 g
9       漿液洗滌 m(正庚烷) = 76.7 g 洗滌時間 - 2分鐘 過濾時間- 1分鐘
10       置換洗滌液 m(正庚烷) = 65.0 g 過濾時間- 2分鐘 m(組合洗滌液) = 142.2 g 未洗滌液中偵測到I-1。
11       在40℃真空乾燥
         純度:99.09% RRT = 0.42 - 0.08% RRT = 0.80 - 0.15% RRT = 0.94 - 0.51% RRT = 1.54 - 0.13%
結果
藉由RP層析分析產生之物質。出RRT 0.94下之1種單一雜質外,產生之物質極其潔淨。稍後將此雜質鑑別為來自外消旋進料之雜質。
對SMB單元上分離之物質之樣本進行以上開展程序之測試。 I-1 分離線程序1. 將反應器1夾套溫度設定成25℃及氮氣惰性的。 2. 將I-1溶液裝入反應器體積之~1/3。 3. 將反應器1夾套溫度設定為50℃且開始施加真空。 o在蒸餾期間保持批料溫度≤45 ℃。 o 在蒸餾同時繼續進料添加I-1溶液。 4. 當批料濃縮至3.7 S時,視為蒸餾完成。 5. 使反應器1夾套溫度設定成40℃且停止蒸餾。 6. 經不少於1小時裝入正庚烷(RM-2049)。 7. 經不少於2小時將批料冷卻至20℃。 8. 在20℃老化批料不少於2小時。 9. 將批料轉移至Aurora過濾器上。 o晶體極細,且在施加真空時應注意。 10. 將3.5S正庚烷(RM-2049)作為沖洗液裝入反應器中。 11. 將沖洗液自反應器轉移至Aurora過濾器以用於漿液洗滌。 12. 在過濾器上混合漿液不少於5 min。 13. 將溫和真空施加至Aurora底部以使濾餅脫水。 14. 將3.5S正庚烷(RM-2049)作為沖洗液裝入反應器中。 15. 將沖洗液自反應器轉移至Aurora過濾器以置換洗滌液。 16. 將溫和真空施加至Aurora底部以使濾餅脫水。 17. 將Aurora夾套加熱至30℃。 o藉由使氮氣穿過濾餅不少於12小時來乾燥濾餅。 o乾燥2小時後,開始有規律攪拌濾餅。 18. IPC #1 (乾燥完成)。 19. 獲得IPC #1通過結果時之封裝。 實例 2-A. 外消旋化製程開展2.1 製程描述
使II-1於DCM/甲醇中之濃縮溶液外消旋化以獲得III-1。 外消旋化篩選 使用鹼性樹脂外消旋化
使用多種鹼性樹脂研究外消旋化以促進對掌性中心之轉化。一些樹脂未能使II-1外消旋化至明顯程度,而其他樹脂產生大量之副產物。可用於外消旋化之樹脂為: • Dowex 1x2-400 (exp #4) • Dowex marathon MSA於乙酸酯中(exp #6) • Amberlite FPC3500(K) (exp #14) • Diaion WK100(K) (exp #15)。 鹼誘導外消旋化
進行用KOAc使II-1外消旋化之另外實驗,以消除引起產生雜質之樹脂的使用。 穩定性概況
將化合物溶液保持在~40℃23小時以評估穩定性。 溫度對外消旋化之影響
在22℃及30℃進行外消旋化以評估溫度對外消旋化動力學及雜質概況之影響。相較於22℃,外消旋化反應在30℃顯著更快。然而,亦產生較高含量之雜質,但當相較於具有類似反應轉化度之時間點時,此差異不顯著。 光及玻璃器皿對外消旋化之影響
評估玻璃器皿表面pH及光對II-1外消旋化之影響。在不存在及存在光時,於中性及酸性玻璃器皿中,長達13天之時段內未觀測到顯著外消旋化。觀測到明顯外消旋化,然而,在鹼性玻璃器皿中,光促進此外消旋化。 溶解性評估 DCM/甲醇混合物中之溶解度
評估各種比率之DCM及甲醇混合物的溶解度。以70/30 DCM/MeOH之比率實現最大溶解度。外消旋物質在DCM/MeOH=90:10混合物中具有有限溶解度(略小於SMB分離所需)。 乙腈中之溶解度
先前,發現自乙腈之結晶為用於分離外消旋物質之引人注目之方式。為選擇用於分離之最佳條件,進行對結晶條件之小型篩選。在20、10及0℃用0、10及20 wt%水評估結晶產物純度及母液中之殘餘。
水在外消旋化物質之結晶期間隨著溫度升高改良雜質概況,且對回收之影響有限(損耗至母液)。 丙酮 / 水溶液中之溶解度
先前評估用丙酮/水/丙酮對II-1濕濾餅之依序洗滌。然而,濕濾餅上剩餘大量殘餘DMF,且保留於最終乾燥產物中。另外,於水中漿化之濕濾餅極其黏稠且難以脫水。為了降低濕濾餅洗滌液之黏度、最大化DMF溶劑移除且最小化II-1產物損失,研究II-1於丙酮/水混合物中之溶解度。基於溶解度資料,選擇丙酮/水(60/40 wt/wt)作為用於濕濾餅之洗滌組合物。 外消旋化後之分離
為評估外消旋化後之分離方法,將反應混合物分成兩部分。
以類似對掌性及RP-HPLC純度自兩個分離程序獲得II-1晶體。 所提出之外消旋化及分離製程
由於證實用KOAc外消旋化,藉由利用溶劑交換/外消旋化/過濾/結晶方法來相對較大規模產生外消旋化物質。下文描述程序。
步驟編號 批料重量 II-1 wt% 程序註釋
1 219.6 20.8 將II-1溶液裝入0.5 L反應器中。 m(II-1) = 45.90 g
2 99.4    蒸餾 Tjacket = 50.0 ℃ Tcondenser = -10.0 ℃ Ti = 40.0 - 40.2 ℃ 攪拌 = 300 RPM m(餾出物) = 120.2 g
3 116.3    溶劑交換。以40-50 g份添加MeCN。 P = 200毫巴 Ti = 37.4 ℃ m(添加之MeCN) = 280.6 g m(餾出物) = 263.7 g
4 116.3    樣本#2 [MeOH]藉由1H-NMR) < 100 ppm
5 408.4 11.2 添加THF及MeCN。批次中之總溶劑: THF - 250 g (6.2 V) MeCN - 112.5 g (3.1 V)
6 408.4 11.2 樣本#3 (NMR): [MeCN] = 29.5 wt% [THF] = 70.5 wt%
7 408.4    樣本#4 (HPLC分析): [II-1] = 11.2 wt%
8 415.8    添加AcOK - 7.4 g
9 415.8    經4天攪拌反應物。添加50 g THF
10 465.8    經由精細過濾器且隨後經由SiliaFlash (5g)過濾反應混合物。 流動速率:60 mL/min 背壓:5-10 psi
11 595.8    用130 g THF正向沖洗反應器
12 55.8    蒸餾 夾套T = 50.0 ℃ P = 300 - 400毫巴 Ti = 35.7 - 41.7 ℃ m(餾出物) = 540 g
13 157.8    添加102.0 g MeCN。溶液變為乳白色且開始結晶。
14 145.8    移除12.0 g漿液
15 169.9    添加24.1 g水以得到20 wt%水 流動速率=1 mL/min
16       斜降:歷經1小時20 → 0 ℃ 老化過夜
17       過濾時間= 7 min 濾餅深度= 2.5 cm m(母液) = 98.8 g
18       用50 g MeCN/水 = 80:20混合物洗滌。 洗滌時間= 5 min
19       產率:27.34 g; 65% (考慮移除之樣本後) 純度:95.7%
雜質移除評估
先前用KOAc使II-1外消旋化。觀測到外消旋化反應期間形成新雜質(RRT = 1.05)。在自MeCN/水=80:20結晶期間並未淨化此雜質。
評估在自DMF/丙酮/水(6.25V:6.25V:4.75V)結晶期間對雜質之淨化。
由於觀測到非所需雜質之顯著更佳淨化,自DMF/丙酮/水混合物結晶較佳。 空氣對RRT 1.05雜質產生之影響
由於雜質RRT 1.05經鑑別為來自反應之氧化性產物,評估在外消旋化反應期間空氣之存在。
在空氣存在下進行反應具有較高含量之氧化雜質(RRT= 1.05)。因此,建議在外消旋化之前用N2吹掃反應器。 外消旋化規模放大
先前以相對較大規模用KOAc使II-1外消旋化。然而,自MeCN/水結晶II-1。制定決策以使II-1自DMF/丙酮/水(6.25V:6.25V:4.75V)結晶。大規模論證用KOAc之II-1外消旋化,之後將溶劑自MeCN/THF交換成DMF以進行最終結晶。 程序描述
步驟# 批料重量 II-1 wt% 程序註釋
1 89.25 20.7 將II-1溶液裝入0.5 L反應器中。m(II-1) = 18.4 g
2 50.75    蒸餾 Tjacket = 50.0 ℃ Tcondenser = -10.0 ℃ Ti = 45.2 ℃ 攪拌= 300 RPM m(餾出物) = 38.5 g
3 92.85    溶劑交換。以40-50 g份添加MeCN。 P = 200-400毫巴 Ti = 37.7 -45.2 ℃ m(添加之MeCN) = 196.2 g m(餾出物) = 154.1 g
4 92.85    樣本#2 [MeOH]藉由1H-NMR < 1000 ppm 夾套T = 20 ℃
5 222.85    添加m(THF) = 130 g 樣本#3 (NMR): THF/MeCN = 2:1 ~ 8V:4V
6 222.85    樣本#3 (NMR): THF/MeCN = 2:1 ~ 8V:4V 樣本#4 (HPLC): [II-1] = 8.6 wt%
7 222.85 8.6 樣本#4 (HPLC): [II-1] = 8.6 wt%
8 222.85    添加AcOK - 2.7 g
9 222.85    樣本#5-7 (對掌性HPLC) 將反應物攪拌46小時
10 222.85    經由精細過濾器且隨後經由SiliaFlash (5g)過濾反應混合物。 流動速率:60 mL/min 背壓:0-5 psi
11 272.85    用50 g THF沖洗
12 29.55    蒸餾 夾套T = 50.0 ℃ P = 300 - 380毫巴 Ti = 34.9 - 40.3 ℃ m(餾出物) = 243.3 g
13 112.75    分兩份添加m(DMF) = 109.2 g P = 60毫巴 Ti = 40.8 ℃ m(餾出物) = 26.0 g
14 112.75    樣本#8 (NMR): W(MeCN) = 5.4 wt% W(THF) = 2.4 wt%
15 202.95    添加m(乙酮) = 90.2 g
16 290.35    添加m(水) = 87.4 g 流動速率= 0.5 mL/min
17       經由20 µm過濾器過濾產物。 M(母液) = 223.5 g [II-1] = 0.5 wt% 過濾時間= 3 min 濾餅深度= 3 cm
18       用23.5 g丙酮沖洗。漿液洗滌。M(洗滌液) = 57.1 g. [II-1] = 0.4 wt%
19       在40℃真空乾燥產物。
20       m(II-1) = 16.46 g 產率:86%. 純度:98.05 %
溶劑合物觀測
藉由1H-NMR分析最終物質揭露產物並非預期丙酮溶劑合物,而是DMF溶劑合物。此很可能歸因於真空烘箱乾燥製程。由於丙酮之揮發性比DMF大得多,其很可能首先蒸發。隨後使烘箱頂部空間充滿DMF蒸氣,其置換形成溶劑合物之丙酮。
此結果表明應在最終沖洗中使用較大量之丙酮。
如下測試此假設。 • 於5 g丙酮中漿化總計1.17 g之乾燥物質(DMF溶劑合物),且使其保持在室溫1.5小時。 • 過濾漿液。 • 真空乾燥所得產物,得到1.1 g物質(94%)。 • II-1於丙酮洗滌液中之濃度(損耗):[II-1] = 0.2 wt%。 • 1H-NMR分析顯示產生混合溶劑合物:II-1/丙酮/DMF (1/0.6/0.3)。
此實驗支援如下假設:由於其類似分子大小,DMF及丙酮均可套入II-1晶體腔中。因此,其可容易地替代彼此。
建議在過濾之後進行2或3次丙酮濾餅洗滌以顯著地減少濕濾餅中之殘餘DMF且促進乾燥步驟期間之丙酮溶劑合物形成。 最終產物分析
藉由層析測試獲得之最終晶體的總純度。
總純度為98.05%,其中主要雜質為RRT 0.94及RRT 1.05。
在下文描述以千級規模實施之製程。 1. 將反應器1夾套溫度設定成25℃且與氮氣一起為惰性的。 2. 將II-1溶液裝入反應器體積之~1/3。 3. 將反應器1夾套溫度設定為50℃且開始施加真空。 o在蒸餾時連續添加進料(II-1溶液)。 4. 裝入乙腈(RM-2004;11S),同時保持批料體積恆定。 5. 當批料濃縮至~5 V時(4 S),認為蒸餾完成。 6. 使批料冷卻至25℃。 7. IPC #1 (規格NMT 1,000 ppm MeOH)。 o 樣本#2 ([II-1] = NLT 20 wt%。) 8. 計算批料乙腈含量。 o計算乙腈裝料以使總乙腈含量為5 V (3.93 S)。 9. 裝入在步驟8計算之乙腈(RM-2004)。 10. 將8.73 S (10 V) THF (RM-2126)裝入至批料。 11. 將0.16 S KOAc (RM-2014)裝入至批料。 o此為反應之開始。 12. 攪拌反應混合物不少於20小時。 13. IPC #3. 反應完成 o 規格:NMT 53 % RTX1274075 14. 經由SiliaFlash二氧化矽濾筒將反應混合物轉移至滾筒。 15. 用1S THF (RM-2126)追蹤。 16. 用水及乙腈清潔反應器。 17. 將批料自滾筒轉移至反應器。 o填充總反應器體積之~1/3。 18. 將反應器1夾套溫度設定為50℃且開始施加真空。 o蒸餾時自滾筒連續添加進料分批溶液。 19. 當滾筒內含物轉移至反應器中且濃縮批料至~3.5 S時,添加DMF (2.9 S)且繼續蒸餾。 20. 當蒸餾在≤50毫巴下停止時,認為蒸餾完成。 R&D FIO用於殘餘MeCN及THF 21. 添加3S DMF (RM-2148)。 22. 冷卻批料至20 ± 5 ºC。 23. 添加4.9S丙酮(RM-4001)。 24. 攪拌不少於15 min。 25. 經不少於4小時添加4.75 S水(RM-3000)。 26. 在20±5℃老化批料不少於2小時。 27. 將批料轉移至Aurora過濾器上。 o晶體極細,且在施加真空時應注意。 28. 將丙酮(RM-4001)/水=60:40作為沖洗液裝入反應器。 29. 將沖洗液自反應器轉移至Aurora過濾器以用於漿液洗滌。 30. 在過濾器上混合漿液不少於5 min。 31. 將溫和真空施加至Aurora底部以使濾餅脫水。 32. 將丙酮(RM-4001)/水=60:40作為沖洗液裝入反應器。 33. 將沖洗液自反應器轉移至Aurora過濾器以用於漿液洗滌。 34. 將溫和真空施加至Aurora底部以使濾餅脫水。 35. 將丙酮(RM-4001)/水=60:40作為沖洗液裝入反應器。 36. 將沖洗液自反應器轉移至Aurora過濾器以用於漿液洗滌。 37. 在過濾器上混合漿液不少於5 min。 38. 將溫和真空施加至Aurora底部以使濾餅脫水。 39. 將3S丙酮(RM-4001)作為沖洗液裝入反應器。 40. 將沖洗液自反應器轉移至Aurora過濾器以用於漿液洗滌。 41. 在過濾器上混合漿液不少於5 min。 42. 將溫和真空施加至Aurora底部以使濾餅脫水。 43. 將Aurora夾套加熱至30℃。藉由使氮氣穿過濾餅不少於12小時來乾燥濾餅。 o乾燥2小時後,開始有規律攪拌濾餅。 44. IPC #4 (乾燥完成)。 45. 獲得IPC #4通過結果時之封裝。 GMP 粗進料使用測試
在小型SMB上測試用於千級GMP操作之粗進料物質以在操作之前評估所有問題。 穩定性測試
在SMB分離之前,進行穩定性測試以鑑別關於外消旋化進料之所有潛在問題。
管柱填充有virgin Chiralpak IH,與當前小型SMB管柱為相同批次。
穩定性注入 • 以5 µl注入溶液1 1.9 g/l • 以250 µl×7注入溶液2 28 g/l • 對管柱上之總計70次過載注入重複注入順序10次。
分析性注入之滯留時間可再現於實驗過程中。 SMB 分離溶解度
測試粗進料物質之溶解度,因為所提供之前述樣本含有不可溶物質。在SMB移動相中製備20、25及30 g/l進料樣本。使樣本在室溫下過夜且未觀測到沈澱。
然而,在論證輪次(參見下文)期間,固體在於範圍為18至22℃之環境溫度下靜置後沈澱於進料溶液中。此亦為具有18-19 g/l進料之情況。使用進料之前濾出固體。進料器將必須具有夾套且保持於25℃以將進料保留於溶液中。 SMB論證
基於觀測到之溶解度,製備~28 g/l之進料溶液,且在處理期間進一步過濾以消除固體沈澱。
使用來自先前論證輪次之參數重新開始分離。
純度保持穩定,且唯一所需之調節為提高切換時間以將I-1純度維持於99.5%以上。在當前條件下,生產率為3.2 kg/天/kg CSP。 分離輸出
測試收集瓶中之Bot產物之對掌性純度。 • I-1萃取物99.8% • II-1萃餘物95.5% 產物回收
在處理外消旋化進料之後,停止分離,且在旋轉蒸發器中分離產物。 質量平衡
處理總計120.2 g粗外消旋進料。 I-1 物質 分離:
已研發藉由濃縮來自SMB之萃取物流,接著添加正庚烷作為反溶劑來分離所需鏡像異構物I-1之程序(參見先前之文獻)。對在小型SMB上分離之粗進料物質之樣本進行該程序。
在此實驗中,對萃取物進行使用測試以評估所研發程序之效能。
回收呈針形式的產物,其具有高對掌性純度(99.65%)及高總純度(99.4%)且為RRT 0.94下之唯一主要雜質。用於分離之總產率為>97%。 II-1 外消旋化
已研發用於使非所需鏡像異構物II-1外消旋化,接著溶劑交換為DMF/丙酮且添加水作為反溶劑之程序(參見先前之參考文獻)。基於初始觀測,如上文所描述進行另外改良。
在此實驗中,對獲自GMP物質樣本之SMB分離的萃餘物(II-1)進行使用測試以評估經修改及改良之外消旋化程序之效能。
回收呈針形式之產物,其具有高總純度(99.3%)且為RRT 0.94下之唯一主要雜質。外消旋化+分離之總產率恰好低於80%。 外消旋化進料之 SMB 分離SMB參數
製備外消旋化II-1之25.5 g/l進料溶液。使用來自先前輪次之參數重新開始分離。
在5個循環之後對切換時間進行調節以使I-1純度維持於99.5%以上。純度在試驗之持續時間保持穩定。 產物分析
將產物收集於瓶子中且測試對掌性純度。 • I-1萃取物99.8% • II-1萃餘物100.0% 質量平衡
使用旋轉蒸發器自萃取物及萃餘物蒸發溶劑,且獲得各者之乾燥質量。 • 萃取物10.52 g • 萃餘物9.68 g
萃取物及萃餘物隨後用甲醇稀釋至10% w/w且由化學師加工以便最終分離。 第二遍次產物分析
使用本文件中所描述之程序分離所產生之物質,且得到具有99.30%非對掌性及99.86%對掌性純度之最終產物。 使用測試結論
外消旋進料之使用測試成功。在SMB製程開展期間證實如先前起作用之SMB分離。需要緊密監測進料物質中之不可溶,因為此可潛在地引起千級規模之處理問題(過濾器堵塞)。呈固體之所需I-1之回收程序以良好純度及產率良好地起作用。用於II-1之外消旋化之程序及所得III-1之分離亦以高純度及良好回收率良好地起作用。 結論
評估使SMB分離外消旋I-1之後獲得的I-1化合物結晶之製程,且提供千級規模實驗室製程之管線程序。亦將使用此程序分離非所需鏡像異構物。
亦評估非所需鏡像異構物之外消旋化製程且提供管線程序。製程典型地進行,且產生產率及純度良好之結晶III-1。
評估在千級實驗室操作中使用之GMP外消旋進料,且成功地進行包括SMB分離、分離及外消旋化之使用測試。然而,必須緊密監測丙酮溶劑合物之溶解度,因為已觀測到固體沈澱且可引起處理問題。
此報導中開展之管線程序轉化為用於千級操作之批料記錄程序。 實例 3-A. 合成化合物 IV-1 IV-2
在25℃向 III-1(1.00 g,1.64 mmol,1.00當量)於MeOD (100 mL)中之溶液中添加KOAc (322 mg,3.28 mmol,2.00當量)。隨後將混合物加熱至50℃且在50℃下攪拌12 hr。LCMS (EW31392-3-P1A)顯示 III-1消耗且偵測到所需MS (Rt = 0.750 min)。濃縮混合物且用乙酸乙酯(10.0 mL)稀釋。將殘餘物倒入飽和NaHCO 3溶液(30.0 mL)中且分離。用乙酸乙酯(10.0 mL×3)萃取水層。用乙酸-D將合併之有機層之pH調節至6。隨後合併之有機層經Na 2SO 4乾燥且濃縮,得到粗產物(0.80 g)。藉由SFC (管柱:DAICEL CHIRALCEL OD (250 mm×30 mm,10 μm);移動相:[Neu-MeOH];B%:40%-40%,3.3 min)分離粗產物(0.80 g)且濃縮。用乙腈-d 3(5.00 mL)及H 2O (10.0 mL)稀釋兩種殘餘物,隨後凍乾,得到呈灰白色固體之 異構物 1(120 mg,193 μmol,11.8%產率,98.2%純度)及呈黃色固體之 異構物 2(120 mg,188 μmol,11.4%產率,95.4%純度)。 異構體1: LCMS:產物:Rt = 0.750 min, m/z = 610.1 (M+H) + MS:產物:m/z = 610.1 (M+H) + HPLC:產物:Rt = 2.985 mins, 98.2%純度,在220 nm SFC:產物:Rt = 1.893 mins, 100% ee,在220 nm 1 H NMR: 400 MHz, DMSO- d 6 δ10.7 (s, 1H), 9.35 (s, 1H), 8.81 (s, 1H), 8.34 (d, J= 9.6 Hz, 1H), 8.07 (s, 1H), 8.00 - 7.96 (m, 2H), 7.84 (s, 1H), 7.77 - 7.75 (m, 1H), 7.68 (s, 1H), 7.38 - 7.34 (m, 1H), 7.16 - 7.11 (m, 1H)。 19 F NMR: 400 MHz, DMSO- d 6 δ-61.34, -109.56 特殊 LCMS: (M+H+1D)純度:96.8% 異構物2: MS:產物:m/z = 610.0 (M+H) + HPLC:產物:Rt = 2.986 mins, 95.4%純度,在220 nm SFC 產物 Rt = 2.088 mins, 100% ee,在220 nm 1 H NMR: 400 MHz, DMSO- d 6 δ10.7 (s, 1H), 9.35 (s, 1H), 8.81 (s, 1H), 8.34 (d, J= 9.2 Hz, 1H), 8.07 (s, 1H), 8.00 - 7.95 (m, 2H), 7.84 (s, 1H), 7.77 - 7.75 (m, 1H), 7.68 (s, 1H), 7.38 - 7.34 (m, 1H), 7.16 - 7.11 (m, 1H)。 19 F NMR: 400 MHz, DMSO- d 6 δ-61.33, -109.59 特殊 LCMS: (M+H+1D)純度:97.9% 實例 4-A . 生物分析
在ADP-Glo生物化學PIK3CA激酶分析中測試本發明之所選化合物。將待分析之化合物以1:2連續稀釋之16個劑量(各孔20 nL體積)接種於1536孔培養盤上,且使培養盤升溫至室溫。添加PIK3CA酶(例如H1047R、E542K、E545K或野生型)(1 μL於酶分析緩衝液中之2 nM溶液(包含50 mM HEPES pH 7.4、50mM NaCl、6mM MgCl 2、5mM DTT及0.03% CHAPS)),且振盪10秒且預培育30分鐘。向孔中添加1 μL含200 μM ATP及20 μM diC8-PIP2之受質分析緩衝液(50 mM HEPES pH7.4、50 mM NaCl、5 mM DTT及0.03% CHAPS)以起始反應,且將培養盤振盪10秒,隨後以1500 rpm短暫旋轉,且隨後在室溫下培育60分鐘。藉由添加2 μL ADP-Glo試劑(Promega)停止反應,且以1500 rpm短暫旋轉,且接著培育40分鐘。添加ADP-Glo偵測試劑(Promega)且將培養盤以1500 rpm短暫旋轉,接著培育30分鐘。在Envision 2105 (Perkin Elmer)上讀取培養盤,且使用Genedata軟體計算IC 50值。
使用H1047R PIK3CA酶之ADP-Glo生物化學PIK3CA激酶分析之結果呈現於表1中。具有小於或等於100 nM之IC 50的化合物表示為「A」;具有大於100 nM但小於或等於500 nM之IC 50的化合物表示為「B」;具有大於500 nM但小於或等於1 μM之IC 50的化合物表示為「C」;具有大於1 μM但小於或等於10 μM之IC 50的化合物表示為「D」;且具有大於10 μM但小於或等於100 μM之IC 50的化合物表示為「E」。
在基於MCF10A細胞之PIK3CA激酶分析,亦即CisBio Phospho-AKT (Ser473) HTRF分析中測試本發明之所選化合物,以量測PIK3CA介導之AKT磷酸化程度。使用過度表現熱點PIK3CA突變(包括H1047R、E542K及E545K突變)之MCF10A細胞(永生化非轉化乳房細胞株)。細胞以5,000個細胞/孔接種於補充有0.5 mg/mL氫化可體松、100 ng/mL霍亂毒素、10 μg/mL胰島素及0.5%馬血清之DMEM/F12 (Thermo Fisher Scientific)中。一旦平板接種,便將細胞置於5% CO 2、37℃培育箱中以黏附過夜。
第二天,以1:3連續稀釋之12個劑量將化合物添加至細胞培養盤中。劑量反應曲線一式兩份地運行。利用Echo 55 Liquid Handler聲學分配器(Labcyte)進行化合物添加。在5% CO 2、37℃培育箱中培育細胞培養盤2小時。在化合物培育之後,將細胞在室溫下溶解60 min。最後,在室溫下進行與HTRF抗體一起培育4小時。所有試劑(溶解緩衝液及抗體)均根據製造商方案自CisBio pAKT S473 HTRF分析套組使用。在Envision 2105 (Perkin Elmer)上讀取培養盤,且使用Genedata軟體計算IC 50值。
基於MCF10A細胞之PIK3CA激酶分析的結果呈現於表1中。具有小於或等於1 μM之IC 50的化合物表示為「A」;具有大於1 μM但小於或等於5 μM之IC 50的化合物表示為「B」;具有大於5 μM但小於或等於10 μM之IC 50的化合物表示為「C」;具有大於10 μM但小於或等於36 μM之IC 50的化合物表示為「D」;且具有大於36 μM但小於或等於100 μM之IC 50的化合物表示為「E」。
化合物 生物化學-PI3Ka His-p110 H1047R FL 100uM ATP 10uM diC8 PIP2 ADP-Glo,120 min預培育-2181 (IC50,uM) Cell - PD - MCF10A H1047R/- -2483 (IC50, uM)
IV-1 D   
IV-2 A A
參考文獻併入
本文提及的所有出版物及專利以全文引用的方式併入本文中用於所有目的,如同各個別出版物或專利特定地且個別地以引用的方式併入一般。在有衝突的情況下,以本申請案(包括本文中之任何定義)為準。 同等物
儘管已論述本發明之特定實施例,但以上說明為說明性而非限制性。熟習此項技術者在審閱本說明書後將顯而易知本發明之許多變化形式。本發明之完整範疇以及其等效物之完整範疇,及說明書,以及此類變化形式,應參照申請專利範圍判定。
除非另有指示,否則本說明書或申請專利範圍中所用之表述成分量、反應條件等之所有數字應理解為在所有情況下皆經術語「約」修飾。因此,除非有相反指示,否則本說明書及所附申請專利範圍中所闡述之數值參數為近似值,其可取決於本發明設法獲得之所需特性而變化。
圖1A描繪I-1形式A之XRPD圖。
圖1B描繪I-1形式A之DSC熱譜圖(加熱速率:10℃/min)。
圖1C描繪I-1形式A之DSC熱譜圖(加熱速率:2℃/min)。
圖1D描繪I-1形式A之DSC熱譜圖(加熱速率:2℃/min)。
圖1E描繪I-1形式A之TGA熱譜圖。
圖2A描繪I-1形式B之XRPD圖。
圖2B描繪I-1形式B之DSC熱譜圖。
圖2C描繪I-1形式B之TGA熱譜圖。
圖3A描繪I-1形式C之XRPD圖。
圖3B描繪I-1形式C之DSC熱譜圖。
圖3C描繪I-1形式C之TGA熱譜圖。
圖4A描繪III-1形式A之XRPD圖。
圖4B描繪III-1形式A之DSC熱譜圖。
圖4C描繪III-1形式A之TGA熱譜圖。
圖5A描繪III-1形式B之XRPD圖。
圖5B描繪III-1形式B之DSC熱譜圖。
圖6A描繪III-1形式C之XRPD圖。
圖6B描繪III-1形式C之DSC熱譜圖。
圖6C描繪III-1形式C之TGA熱譜圖。
圖7A描繪III-1形式D之XRPD圖。
圖7B描繪III-1形式D之DSC熱譜圖。
圖7C描繪III-1形式D之TGA熱譜圖。
圖8描繪III-1形式E之XRPD圖。
圖9A描繪III-1形式F之XRPD圖。
圖9B描繪III-1形式F之DSC熱譜圖。
圖10描繪II-1形式A之XRPD圖。
圖11描繪II-1形式B之XRPD圖。
圖12描繪II-1形式C之XRPD圖。
圖13描繪在25℃下利用I-1形式A及形式C自競爭性平衡實驗獲得之固體之XRPD重疊圖。該等圖自上而下為:EA/庚烷中之化合物I-1形式A;MeOH/DCM中之化合物I-1形式A;THF/MTBE中之化合物I-1形式A;THF/庚烷中之化合物I-1形式A;化合物I-1形式C;及化合物I-1形式A。
圖14描繪在25℃下利用I-1形式A及形式C自CE1-THF/庚烷(2:3,v/v)獲得之固體之XRPD重疊圖。該等圖自上而下為:THF/庚烷中之化合物I-1形式A;化合物I-1形式C;及化合物I-1形式A。
圖15描繪在25℃下利用形式A及形式C自CE2-THF/MTBE (1:4,v/v)獲得之固體之XRPD重疊圖。該等圖自上而下為:THF/MTBE中之化合物I-1形式A;化合物I-1形式C;及化合物I-1形式A。
圖16描繪在25℃下利用形式A及形式C自CE3-MeOH/DCM (1:2,v/v)獲得之固體之XRPD重疊圖。該等圖自上而下為:MeOH/DCM中之化合物I-1形式A;化合物I-1形式C;及化合物I-1形式A。
圖17描繪在25℃下利用形式A及形式C自CE4-EA/庚烷(1:1,v/v)獲得之固體之XRPD重疊圖。該等圖自上而下為:EA/庚烷中之化合物I-1形式A;化合物I-1形式C;及化合物I-1形式A。
圖18描繪在25℃下自CE5-MeOH/DCM (1:2,v/v)及在25℃下自CE3-MeOH/DCM (1:2,v/v)獲得之固體之XRPD重疊圖。
圖19描繪在25℃下自CE6、CE7及CE8之競爭性實驗獲得的固體之XRPD重疊圖。該等圖自上而下為:THF/ACN中之化合物I-1形式A;THF/MTBE中之化合物I-1形式A;1,4-二㗁烷中之化合物I-1形式A;化合物I-1形式C;及化合物I-1形式A。
圖20描繪自壓縮實驗下之特性獲得的固體之XRPD重疊圖。該等圖自上而下為:在10MPa、5MPa及2MPa下壓縮5分鐘之I-1形式A,及I-1形式A。
圖21描繪自研磨模擬實驗獲得的固體之XRPD重疊圖。該等圖自上而下為:用研缽及研杵手動研磨5、3及1 min之I-1形式A,及I-1形式A。
圖22描繪自粒化模擬實驗獲得的固體之XRPD重疊圖。
圖23藉由DSC描繪以2℃/min加熱至不同溫度後的形式A之XRPD重疊圖。該等圖自上而下為:在300℃、270℃及260℃下加熱之形式A,及I-1形式A。
圖24藉由DSC描繪以2℃/min加熱至不同溫度後的形式A之DSC重疊圖。該等圖自上而下為:在260℃、270℃及300℃下加熱之形式A。
圖25藉由DSC描繪以2℃/min加熱至260℃的形式A之XRPD重疊圖。該等圖自上而下為:加熱後之形式A,及I-1形式A。
圖26藉由DSC描繪以2℃/min加熱至260℃及270℃的形式A之XRPD重疊圖。該等圖自上而下為:加熱至270℃及260℃之形式A,及I-1形式A。
圖27A描繪I-2形式A之XRPD圖。
圖27B描繪I-2形式A之DSC熱譜圖。
圖27C描繪I-2形式A之TGA熱譜圖。
圖28描繪II-2形式A之XRPD圖。
圖29A描繪III-2形式A之XRPD圖。
圖29B描繪III-2形式A之DSC熱譜圖。
圖29C描繪III-2形式A之TGA熱譜圖。
圖30A描繪I-3形式A之XRPD圖。
圖30B描繪I-3形式A之DSC熱譜圖。
圖30C描繪I-3形式A之TGA熱譜圖。
圖31A描繪I-4形式A之XRPD圖。
圖31B描繪I-4形式A之DSC熱譜圖。
圖31C描繪I-4形式A之TGA熱譜圖。
圖32A描繪I-5形式A之XRPD圖。
圖32B描繪I-5形式A之DSC熱譜圖。
圖32C描繪I-5形式A之DSC熱譜圖。
圖32D描繪I-5形式A之TGA熱譜圖。
圖33描繪I-5形式B之XRPD圖。
圖34A描繪III-6形式A之XRPD圖。
圖34B描繪III-6形式A之DSC熱譜圖。
圖34C描繪III-6形式A之DSC熱譜圖。
圖35A描繪來自I-3形式A之VH-XRPD實驗的樣本之XRPD重疊圖。
圖35B描繪I-3形式B及來自I-3形式A之VH-XRPD實驗之樣本的XRPD重疊圖。
圖35C描繪1週之後不同濕度箱中之I-3形式A之XRPD重疊圖。
圖35D描繪來自I-3形式A之VH-XRPD實驗及不同濕度箱的固體之XRPD重疊圖。

Claims (53)

  1. 一種呈固體形式之化合物,其中該化合物為化合物I-1: , 或其溶劑合物。
  2. 如請求項1之化合物,其中該化合物為非晶形。
  3. 如請求項1之化合物,其中該化合物為結晶。
  4. 如請求項1之化合物,其中該固體形式為形式A。
  5. 如請求項1之化合物,其中該固體形式為形式B。
  6. 如請求項1之化合物,其中該固體形式為形式C。
  7. 一種呈固體形式之化合物,其中該化合物為式(I)化合物: , 或其溶劑合物; 其中: m為1、2、3、4、5、6、7、8或9; n為0、0.5、1、1.5、2、2.5或3;且 X為鹽酸、對甲苯磺酸、甲烷磺酸、萘-1,5-二磺酸,或2-萘磺酸。
  8. 如請求項1之化合物,其中該化合物為化合物I-2: , 或其溶劑合物。
  9. 如請求項8之化合物,其中該固體形式為形式A。
  10. 如請求項1之化合物,其中該化合物為化合物I-3: I-3, 或其溶劑合物。
  11. 如請求項10之化合物,其中該固體形式為形式A或形式B。
  12. 如請求項1之化合物,其中該化合物為化合物I-4: I-4, 或其溶劑合物。
  13. 如請求項12之化合物,其中該固體形式為形式A。
  14. 如請求項1之化合物,其中該化合物為化合物I-5: I-5, 或其溶劑合物。
  15. 如請求項14之化合物,其中該固體形式為形式A或形式B。
  16. 一種呈固體形式之化合物,其中該化合物具有式(II) , 或其溶劑合物, 其中: p為1、2、3、4、5、6、7、8或9; q為0、0.5、1、1.5、2、2.5或3;且 X為鹽酸、對甲苯磺酸、甲烷磺酸、萘-1,5-二磺酸,或2-萘磺酸。
  17. 如請求項16之化合物,其中該化合物為非晶形。
  18. 如請求項16之化合物,其中該化合物為結晶。
  19. 如請求項16之化合物,其中該化合物為化合物II-1: , 或其溶劑合物。
  20. 如請求項19之化合物,其中該固體形式為形式A、形式B或形式C。
  21. 一種呈固體形式之化合物,其中該化合物具有式III: , 或其溶劑合物, 其中: r為1、2、3、4、5、6、7、8或9; s為0、0.5、1、1.5、2、2.5或3;且 X為鹽酸、對甲苯磺酸、甲烷磺酸、萘-1,5-二磺酸,或2-萘磺酸。
  22. 如請求項21之化合物,其中該化合物為非晶形。
  23. 如請求項21之化合物,其中該化合物為結晶。
  24. 如請求項21之化合物,其中該化合物為化合物III-1 , 或其溶劑合物。
  25. 如請求項24之化合物,其中該固體形式為形式A、形式B、形式C、形式D、形式E或形式F。
  26. 如請求項21之化合物,其中該化合物為化合物III-2: , 或其溶劑合物。
  27. 如請求項26之化合物,其中該固體形式為形式A或形式B。
  28. 如請求項21之化合物,其中該化合物為化合物III-6 III-6, 或其溶劑合物。
  29. 如請求項28之化合物,其中該固體形式為形式A。
  30. 一種醫藥組合物,其包含如請求項1至29中任一項之化合物及醫藥學上可接受之載劑。
  31. 一種抑制有需要之個體之PI3Kα活性的方法,其包含向該個體投與治療有效量的如請求項1至29中任一項之化合物或如請求項30之醫藥組合物。
  32. 一種治療有需要之個體之癌症的方法,其包含向該個體投與治療有效量的如請求項1至29中任一項之化合物或如請求項30之醫藥組合物。
  33. 如請求項31或32之方法,其進一步包含投與治療有效量之抗體、抗體-藥物結合物、激酶抑制劑、免疫調節劑,或組蛋白去乙醯酶抑制劑。
  34. 一種套組,其包含如請求項1至29中任一項之化合物。
  35. 如請求項34之套組,其進一步包含描述由該固體形式或化合物製備適合向患者投與之醫藥組合物的書面說明書。
  36. 如請求項34或35之套組,其進一步包含描述如何向該患者投與該所得組合物之書面說明書。
  37. 如請求項34至36中任一項之套組,其進一步包含醫藥學上可接受之賦形劑。
  38. 一種用於製備式(I)化合物之結晶形式的製程,其包含:a)製備式(I)化合物之溶液;b)調節溫度以使得式(I)化合物之固體結晶形式自該溶液沈澱出來;及c)分離該固體結晶形式。
  39. 一種用於製備式(II)化合物之結晶形式的製程,其包含:a)製備式(II)化合物之溶液;b)調節溫度以使得式(II)化合物之固體結晶形式自該溶液沈澱出來;及c)分離該固體結晶形式。
  40. 一種用於製備式(III)化合物之結晶形式的製程,其包含:a)製備式(III)化合物之溶液;b)調節溫度以使得式(III)化合物之固體結晶形式自該溶液沈澱出來;及c)分離該固體結晶形式。
  41. 一種式(IV-1)化合物 , 或其醫藥學上可接受之鹽。
  42. 一種式(IV-2)化合物 , 或其醫藥學上可接受之鹽。
  43. 一種醫藥組合物,其包含如請求項41或42之化合物及醫藥學上可接受之載劑。
  44. 一種抑制有需要之個體之PI3Kα活性的方法,其包含向該個體投與治療有效量的如請求項41或42之化合物或如請求項43之醫藥組合物。
  45. 一種治療有需要之個體之癌症的方法,其包含向該個體投與治療有效量的如請求項41或42之化合物或如請求項43之醫藥組合物。
  46. 如請求項44或45之方法,其進一步包含投與治療有效量之抗體、抗體-藥物結合物、激酶抑制劑、免疫調節劑,或組蛋白去乙醯酶抑制劑。
  47. 一種套組,其包含如請求項41或42之化合物。
  48. 如請求項47之套組,其進一步包含描述由該固體形式或化合物製備適合向患者投與之醫藥組合物的書面說明書。
  49. 如請求項47或48之套組,其進一步包含描述如何向該患者投與該所得組合物之書面說明書。
  50. 如請求項47至49中任一項之套組,其進一步包含醫藥學上可接受之賦形劑。
  51. 一種用於製備式IV-1化合物及式IV-2化合物的製程,其包含使化合物III-1氘化,接著純化步驟以分離鏡像異構物,從而形成化合物IV-1及IV-2:
  52. 一種用於製備式I-1化合物及式I-2化合物的製程,其包含化合物III-1進行SMB分離,如實例1-A中所述,從而形成化合物I-1及II-1:
  53. 一種製備式III-1化合物的製程,其包含使化合物II-1外消旋化:
TW111141786A 2021-11-03 2022-11-02 PI3Kα抑制劑及其製造與使用方法 TW202334136A (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US202163263474P 2021-11-03 2021-11-03
US63/263,474 2021-11-03
CN2021128533 2021-11-03
WOPCT/CN2021/128533 2021-11-03

Publications (1)

Publication Number Publication Date
TW202334136A true TW202334136A (zh) 2023-09-01

Family

ID=86242193

Family Applications (1)

Application Number Title Priority Date Filing Date
TW111141786A TW202334136A (zh) 2021-11-03 2022-11-02 PI3Kα抑制劑及其製造與使用方法

Country Status (3)

Country Link
CA (1) CA3236861A1 (zh)
TW (1) TW202334136A (zh)
WO (1) WO2023081757A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024055992A1 (zh) * 2022-09-14 2024-03-21 南京再明医药有限公司 三环化合物及其应用

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105745209B (zh) * 2013-09-05 2018-10-23 豪夫迈·罗氏有限公司 三唑并吡啶化合物、组合物及其使用方法
WO2017000277A1 (en) * 2015-07-01 2017-01-05 Merck Sharp & Dohme Corp. Substituted triazolo bicycliccompounds as pde2 inhibitors
WO2020173935A1 (en) * 2019-02-26 2020-09-03 Boehringer Ingelheim International Gmbh New isoindolinone substituted indoles and derivatives as ras inhibitors
AU2021263914A1 (en) * 2020-04-29 2022-11-03 D.E. Shaw Research, Llc PI3K-α inhibitors and methods of use thereof

Also Published As

Publication number Publication date
WO2023081757A1 (en) 2023-05-11
CA3236861A1 (en) 2023-05-11

Similar Documents

Publication Publication Date Title
AU2020341681B2 (en) RIP1 inhibitory compounds and methods for making and using the same
JP6980649B2 (ja) イソキノリノン誘導体の固体形態、それを製造する方法、それを含む組成物、及びそれを使用する方法
WO2023060262A1 (en) Pi3k-alpha inhibitors and methods of use thereof
AU2013296627B2 (en) Deuterated ibrutinib
TW200806664A (en) Azaindoles useful as inhibitors of janus kinases
EA037112B1 (ru) Ингибиторы tgf-
WO2019189732A1 (ja) 光学活性な架橋型環状2級アミン誘導体
JP2023116503A (ja) (s)-5-アミノ-3-(4-((5-フルオロ-2-メトキシベンズアミド)メチル)フェニル)-1-(1,1,1-トリフルオロプロパン-2-イル)-1h-ピラゾール-4-カルボキサミドの噴霧乾燥分散体および製剤
JP2021500366A (ja) 置換されているイミダゾピリジンアミド類及びそれらの使用
CN109456331B (zh) 一种取代的吡唑并[1,5-a]嘧啶化合物及其药物组合物及用途
JP2024051160A (ja) ピリミジン誘導体の医薬塩及び障害の処置方法
TW202233625A (zh) Fgfr抑制劑及其製造及使用方法
WO2021060453A1 (ja) 架橋型光学活性2級アミン誘導体
TW202334136A (zh) PI3Kα抑制劑及其製造與使用方法
JP2022521491A (ja) タンパク質アルギニンメチルトランスフェラーゼ5(prmt5)の選択的阻害剤
CN117642416A (zh) 分拣蛋白活性调节剂
CN117677627A (zh) 分拣蛋白活性调节剂
EP3101020B1 (en) Deuterated quinazolinone compound and pharmaceutical composition comprising same
WO2023220131A2 (en) PI3Kα INHIBITORS AND METHODS OF USE THEREOF
CA3231246A1 (en) Pi3k-alpha inhibitors and methods of use thereof
WO2021057867A1 (zh) 一类基于有机胂的cdk抑制剂及其制备方法和用途
WO2023081759A1 (en) Bifunctional pi3k-alpha inhibitors and uses thereof
WO2014081816A1 (en) Fluoro-derivatives of pyrazole-substituted amino-heteroaryl compounds
JP2022506289A (ja) インダゾールキナーゼ阻害剤及びその使用
NZ743251A (en) Salt forms and polymorphs of (r)-1-(4-(6-(2-(4-(3,3-difluorocyclobutoxy)-6-methylpyridin-2-yl) acetamido) pyridazin-3-yl)-2-fluorobutyl)-n-methyl-1h-1,2,3-triazole-4-carboxamide