TW202328378A - Connection structure and method of forming connection structure - Google Patents

Connection structure and method of forming connection structure Download PDF

Info

Publication number
TW202328378A
TW202328378A TW111101959A TW111101959A TW202328378A TW 202328378 A TW202328378 A TW 202328378A TW 111101959 A TW111101959 A TW 111101959A TW 111101959 A TW111101959 A TW 111101959A TW 202328378 A TW202328378 A TW 202328378A
Authority
TW
Taiwan
Prior art keywords
buffer layer
conductive
electronic component
conductive element
substrate
Prior art date
Application number
TW111101959A
Other languages
Chinese (zh)
Inventor
陳忠君
姚念
Original Assignee
大陸商業成科技(成都)有限公司
大陸商業成光電(深圳)有限公司
大陸商業成光電(無錫)有限公司
英特盛科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大陸商業成科技(成都)有限公司, 大陸商業成光電(深圳)有限公司, 大陸商業成光電(無錫)有限公司, 英特盛科技股份有限公司 filed Critical 大陸商業成科技(成都)有限公司
Publication of TW202328378A publication Critical patent/TW202328378A/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R4/00Electrically-conductive connections between two or more conductive members in direct contact, i.e. touching one another; Means for effecting or maintaining such contact; Electrically-conductive connections having two or more spaced connecting locations for conductors and using contact members penetrating insulation
    • H01R4/04Electrically-conductive connections between two or more conductive members in direct contact, i.e. touching one another; Means for effecting or maintaining such contact; Electrically-conductive connections having two or more spaced connecting locations for conductors and using contact members penetrating insulation using electrically conductive adhesives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R12/00Structural associations of a plurality of mutually-insulated electrical connecting elements, specially adapted for printed circuits, e.g. printed circuit boards [PCB], flat or ribbon cables, or like generally planar structures, e.g. terminal strips, terminal blocks; Coupling devices specially adapted for printed circuits, flat or ribbon cables, or like generally planar structures; Terminals specially adapted for contact with, or insertion into, printed circuits, flat or ribbon cables, or like generally planar structures
    • H01R12/50Fixed connections
    • H01R12/51Fixed connections for rigid printed circuits or like structures
    • H01R12/52Fixed connections for rigid printed circuits or like structures connecting to other rigid printed circuits or like structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R43/00Apparatus or processes specially adapted for manufacturing, assembling, maintaining, or repairing of line connectors or current collectors or for joining electric conductors

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Wire Bonding (AREA)
  • Combinations Of Printed Boards (AREA)
  • Electric Connection Of Electric Components To Printed Circuits (AREA)

Abstract

A connection structure includes a first electronic component, a buffer layer, an anisotropic conductive film, and a second electronic component. The first electronic component includes a first substrate and a first conductive element on the first substrate. The buffer layer is disposed on the upper surface of the first conductive element. The anisotropic conductive adhesive film contains insulating adhesive layer and a first conductive particle in the insulating adhesive layer, and the insulating adhesive layer is disposed on the buffer layer. The second electronic component is disposed over the first electronic component and on the anisotropic conductive film and includes a second substrate and a second conductive element under the second substrate, and the first conductive particle electrically connects the first conductive element and the second conductive element. The thermal expansion coefficient of the buffer layer is between that of the first conductive element and that of the insulating adhesive layer. A method of forming the connection structure is also provided herein.

Description

連接結構和形成連接結構的方法Connection structure and method of forming connection structure

本揭示內容係關於具有異向性導電膠膜的連接結構及其形成方法。The present disclosure relates to a connection structure with an anisotropic conductive adhesive film and a method for forming the same.

異向性導電膠膜(Anisotropic Conductive Film,簡稱ACF)廣泛用於不適合高溫焊接的製程,例如積體電路(IC)與液晶顯示器(LCD)、軟性印刷電路板(FPC)與LCD、IC與薄膜之間的壓合接合,以實現信號的傳輸與畫面的顯示。異向性導電膠膜是同時具有黏接、導電、絕緣三大特性的透明高分子連接材料,其顯著特點是在Z方向(垂直方向)導通而在XY方向(水平方向)絕緣,可以解決一些連接器無法處理的細微導線連接問題。Anisotropic Conductive Film (ACF) is widely used in processes that are not suitable for high-temperature soldering, such as integrated circuits (IC) and liquid crystal displays (LCD), flexible printed circuit boards (FPC) and LCD, IC and thin films The press-fit joint between them is used to realize signal transmission and screen display. Anisotropic conductive adhesive film is a transparent polymer connecting material with three characteristics of adhesion, conductivity and insulation at the same time. Its remarkable feature is that it conducts in the Z direction (vertical direction) and insulates in the XY direction (horizontal direction), which can solve some problems. Subtle wire connection issues that the connector cannot handle.

異向性導電膠膜的貼合完整性和可靠性尤爲重要。然而,習知的異向性導電膠膜的連接結構在使用一段時間後、或者進行例如壓力蒸煮試驗的可靠性測試時,發現在異向性導電膠膜的介面處容易發生開裂,造成電性失效。The lamination integrity and reliability of the anisotropic conductive adhesive film are especially important. However, after the connection structure of the known anisotropic conductive adhesive film is used for a period of time, or when a reliability test such as a pressure cooking test is performed, it is found that cracks are prone to occur at the interface of the anisotropic conductive adhesive film, resulting in electrical invalidated.

本揭示內容的一些實施方式提供了一種連接結構,包含第一電子組件、緩衝層、異向性導電膠膜、以及第二電子組件。第一電子組件包含第一基板和在第一基板之上的第一導電元件。緩衝層設置在第一電子組件的第一導電視件的上表面上。異向性導電膠膜包含絕緣膠層和在絕緣膠層中的第一導電粒子,其中絕緣膠層設置在該第一電子組件的該第一基板和該第一導電元件上方並且在緩衝層上。第二電子組件設置在異向性導電膠膜上,該第二電子組件包含第二基板和在第二基板之下的一第二導電元件,第二導電元件接觸第一導電粒子。其中緩衝層的熱膨脹係數介於第一導電元件的熱膨脹係數和異向性導電膠膜的絕緣膠層的熱膨脹係數之間。Some embodiments of the present disclosure provide a connection structure including a first electronic component, a buffer layer, an anisotropic conductive adhesive film, and a second electronic component. The first electronic assembly includes a first substrate and a first conductive element on the first substrate. The buffer layer is disposed on the upper surface of the first conductive device of the first electronic component. The anisotropic conductive adhesive film includes an insulating adhesive layer and first conductive particles in the insulating adhesive layer, wherein the insulating adhesive layer is disposed above the first substrate and the first conductive element of the first electronic component and on the buffer layer . The second electronic component is disposed on the anisotropic conductive adhesive film, the second electronic component includes a second substrate and a second conductive element under the second substrate, and the second conductive element contacts the first conductive particles. The thermal expansion coefficient of the buffer layer is between the thermal expansion coefficient of the first conductive element and the thermal expansion coefficient of the insulating adhesive layer of the anisotropic conductive adhesive film.

在一些實施方式中,在連接結構中,緩衝層的熱膨脹係數為約20 ppm/K至約50 ppm/K。In some embodiments, in the joint structure, the buffer layer has a coefficient of thermal expansion of about 20 ppm/K to about 50 ppm/K.

在一些實施方式中,在連接結構中,緩衝層包含有機薄膜、金屬鍍層、或其組合。In some embodiments, in the connection structure, the buffer layer includes an organic thin film, a metal plating layer, or a combination thereof.

在一些實施方式中,在連接結構中,緩衝層包含有機薄膜,並且第一導電粒子穿過緩衝層而電性連接第一導電元件。In some embodiments, in the connection structure, the buffer layer includes an organic film, and the first conductive particles pass through the buffer layer to electrically connect the first conductive element.

在一些實施方式中,在連接結構中,緩衝層包含有機薄膜,並且有機薄膜的材料為松香類(Rosin)、活性樹脂類(Active Resin)、唑類(Azole)、聚醚醚酮、聚酰亞胺、或丙烯酸樹脂。In some embodiments, in the connection structure, the buffer layer includes an organic film, and the material of the organic film is rosin (Rosin), active resin (Active Resin), azole (Azole), polyether ether ketone, polyamide imine, or acrylic resin.

在一些實施方式中,在連接結構中,異向性導電膠膜還包含在絕緣膠層中的第二導電粒子,第二導電粒子不接觸第一導電元件和第二導電元件,並且緩衝層的厚度為第二導電粒子的高度的約1/20至約1/5。In some embodiments, in the connection structure, the anisotropic conductive adhesive film further includes second conductive particles in the insulating adhesive layer, the second conductive particles do not contact the first conductive element and the second conductive element, and the buffer layer The thickness is about 1/20 to about 1/5 of the height of the second conductive particles.

在一些實施方式中,連接結構包含金屬鍍層,金屬鍍層的材料為鋅、鋁、鎂、鉛、鎘、或其組合。In some embodiments, the connection structure includes a metal coating, and the material of the metal coating is zinc, aluminum, magnesium, lead, cadmium, or a combination thereof.

在一些實施方式中,在連接結構中,緩衝層包含金屬鍍層和設置在金屬鍍層之上的有機薄膜。In some embodiments, in the connection structure, the buffer layer includes a metal plating layer and an organic thin film disposed on the metal plating layer.

在一些實施方式中,在連接結構中,緩衝層也設置在第一導電元件的側表面上。In some embodiments, in the connection structure, the buffer layer is also disposed on the side surface of the first conductive element.

在一些實施方式中,緩衝層亦設置在第一導電視件的側表面上和第一基板之上。In some embodiments, the buffer layer is also disposed on the side surface of the first conductive device and on the first substrate.

在一些實施方式中,在連接結構中,第一基板的熱膨脹係數小於第二基板的熱膨脹係數。In some embodiments, in the connection structure, the coefficient of thermal expansion of the first substrate is smaller than the coefficient of thermal expansion of the second substrate.

在一些實施方式中,在連接結構中,第一導電元件的熱膨脹係數小於第二導電元件的熱膨脹係數。In some embodiments, in the connection structure, the coefficient of thermal expansion of the first conductive element is smaller than the coefficient of thermal expansion of the second conductive element.

在一些實施方式中,在連接結構中,第一導電粒子的水平方向的尺寸介於約5微米至約40微米之間。In some embodiments, in the connecting structure, the horizontal dimension of the first conductive particles is between about 5 microns and about 40 microns.

本揭示內容的一些實施方式提供了一種形成連接結構的方法,包含:提供第一電子組件,其中第一電子組件包含第一基板和在第一基板之上的第一導電元件。在第一電子組件的第一導電元件的上表面上設置緩衝層;在緩衝層上方設置異向性導電膠膜,其中異向性導電膠膜包含絕緣膠層和在絕緣膠層中的第一導電粒子;在異向性導電膠膜上方設置第二電子組件,其中第二電子組件包含第二基板和在第二基板之下的第二導電元件,緩衝層的熱膨脹係數介於第一導電元件的熱膨脹係數和異向性導電膠膜的絕緣膠層的熱膨脹係數之間;以及壓合第一電子組件、緩衝層、異向性導電膠膜、和第二電子組件,其中異向性導電膠膜的第一導電粒子電性連接第一導電元件和第二導電元件。Some embodiments of the present disclosure provide a method of forming a connection structure, comprising: providing a first electronic assembly, wherein the first electronic assembly includes a first substrate and a first conductive element on the first substrate. A buffer layer is arranged on the upper surface of the first conductive element of the first electronic component; an anisotropic conductive adhesive film is arranged above the buffer layer, wherein the anisotropic conductive adhesive film includes an insulating adhesive layer and a first insulating adhesive layer in the insulating adhesive layer. Conductive particles; a second electronic component is set above the anisotropic conductive adhesive film, wherein the second electronic component includes a second substrate and a second conductive element under the second substrate, and the thermal expansion coefficient of the buffer layer is between the first conductive element Between the coefficient of thermal expansion and the thermal expansion coefficient of the insulating adhesive layer of the anisotropic conductive adhesive film; and pressing the first electronic component, buffer layer, anisotropic conductive adhesive film, and the second electronic component, wherein the anisotropic conductive adhesive The first conductive particles of the film are electrically connected to the first conductive element and the second conductive element.

在一些實施方式中,在形成連接結構的方法中,設置緩衝層經由軟對硬貼合技術或有機保焊膜技術。In some embodiments, in the method of forming the connection structure, the buffer layer is provided through soft-to-hard bonding technology or organic solder protection film technology.

在一些實施方式中,在形成連接結構的方法中,緩衝層包含有機薄膜,並且在所述壓合第一電子組件、緩衝層、異向性導電膠膜、和第二電子組件時,異向性導電膠膜的第一導電粒子穿過有機薄膜而電性連接第一導電元件。In some embodiments, in the method for forming the connection structure, the buffer layer includes an organic thin film, and when the first electronic component, the buffer layer, the anisotropic conductive adhesive film, and the second electronic component are laminated, the anisotropic The first conductive particles of the conductive adhesive film pass through the organic film and are electrically connected to the first conductive element.

在一些實施方式中,在形成連接結構的方法中,緩衝層包含金屬鍍層,並在所述壓合第一電子組件、緩衝層、異向性導電膠膜、和第二電子組件時,異向性導電膠膜的第一導電粒子經由接觸金屬鍍層而電性連接第一導電元件。In some embodiments, in the method for forming the connection structure, the buffer layer includes a metal plating layer, and when the first electronic component, the buffer layer, the anisotropic conductive adhesive film, and the second electronic component are laminated, the anisotropic The first conductive particles of the conductive adhesive film are electrically connected to the first conductive element by contacting the metal plating layer.

在一些實施方式中,在形成連接結構的方法中,緩衝層為有機薄膜,並且緩衝層的厚度為約1微米至約4微米之間。In some embodiments, in the method for forming the connection structure, the buffer layer is an organic thin film, and the thickness of the buffer layer is between about 1 micron and about 4 microns.

為了使本揭示內容的敘述更加詳盡與完備,下文針對了本揭示內容的實施態樣與具體實施例提出了說明性的描述;但這並非實施或運用本揭示內容具體實施例的唯一形式。以下所揭露的各實施例,在有益的情形下可相互組合或取代,也可在一實施例中附加其他的實施例,而無須進一步的記載或說明。In order to make the description of the present disclosure more detailed and complete, the following provides an illustrative description of the implementation and specific embodiments of the present disclosure; but this is not the only way to implement or use the specific embodiments of the present disclosure. The various embodiments disclosed below can be combined or replaced with each other when beneficial, and other embodiments can also be added to one embodiment, without further description or illustration.

在以下描述中,將詳細敘述許多特定細節以使讀者能夠充分理解以下的實施例。然而,可在無此等特定細節之情況下實踐本揭示內容之實施方式。在其他情況下,為簡化圖式,熟知的結構與裝置僅示意性地繪示於圖中。In the following description, numerous specific details will be set forth in order to enable readers to fully understand the following embodiments. However, embodiments of the present disclosure may be practiced without these specific details. In other instances, well-known structures and devices are only schematically shown in order to simplify the drawings.

另外,本揭示內容在各實施例中可重複元件符號及/或字母。此重複是為了簡化及清楚之目的,且本身不指示所論述各實施方式及/或配置之間的關係。此外,在後續的本揭示內容中,一個特徵形成於另一特徵上、連接至及/或耦合至另一特徵,可包括這些特徵直接接觸的實施方式,亦可包括有另一特徵可形成並中介於這些特徵之間,使得這些特徵可不直接接觸的實施方式。In addition, the present disclosure may repeat element symbols and/or letters in various embodiments. This repetition is for the purpose of simplicity and clarity and does not in itself indicate a relationship between the various implementations and/or configurations discussed. In addition, in subsequent disclosures, a feature formed on another feature, connected to and/or coupled to another feature may include implementations in which these features are in direct contact, and may also include that another feature may be formed and/or coupled to another feature. An embodiment in which the features are interposed such that the features may not be in direct contact.

此外,本文中使用空間性相對用詞,例如「上」、「下」、「上方」、「下方」及其類似用語,係利於敘述圖式中一個元件或特徵與另一個元件或特徵的關係。這些空間性相對用詞本意上涵蓋除了圖中所繪示的位向之外,也涵蓋使用或操作中之裝置的不同位向。裝置也可被轉換成其他位向(旋轉90度或其他位向),因此本文中使用的空間性相對描述以應做類似的解釋。In addition, spatially relative terms such as "upper", "lower", "above", "below" and similar terms are used herein to facilitate describing the relationship between one element or feature and another element or feature in the drawings. . These spatially relative terms are intended to encompass different orientations of the device in use or operation in addition to the orientation depicted in the figures. The device can also be transformed into other orientations (rotated 90 degrees or other orientations), and thus the spatially relative descriptions used herein should be interpreted similarly.

習知的具有異向性導電膠膜的連接結構為將異向性導電膠膜設置於二個電子組件之間,且直接接觸二個電子組件的基板和線路。在貼合異向性導電膠膜的製程結束之後會進行可靠性測試,例如進行壓力蒸煮試驗(Pressure Cooker Test, PCT)(或稱飽和蒸氣試驗),將待測裝置放置於嚴苛之溫度、飽和濕度(飽和水蒸氣)、及高壓環境條件下測試,以評估待測裝置在高溫、高濕、和高壓條件下,對於封膠或電子組件之介面的破壞影響。之後檢查待測裝置是否會發生電性失效。In a conventional connection structure with an anisotropic conductive adhesive film, the anisotropic conductive adhesive film is placed between two electronic components and directly contacts the substrates and circuits of the two electronic components. After the process of attaching the anisotropic conductive film is completed, reliability testing will be carried out, such as pressure cooking test (Pressure Cooker Test, PCT) (or saturated steam test), where the device under test is placed under severe temperature, Saturated humidity (saturated water vapor) and high-pressure environmental conditions are tested to evaluate the impact of the device under test on the interface of sealants or electronic components under high temperature, high humidity, and high pressure conditions. Then check whether the device under test will have electrical failure.

根據本揭示內容的一些實驗例,測試習知的具有異向性導電膠膜的連接結構,此連接結構以異向性導電膠膜連接具有剛性基板和電路(亦即,導電元件,或稱導電墊)的一電子組件以及具有軟性電路板和電路的另一電子組件。將習知的具有異向性導電膠膜的連接結構的待測裝置放置於121°C的溫度、100%相對濕度、和205Kpa的壓力的環境測試4小時候,發現在異向性導電膠膜的介面處發生開裂,因此待測裝置的電性功能失效。並且以掃描式電子顯微鏡觀測可發現有剝離縫隙出現,而且剝離縫隙集中在介於異向性導電膠膜與電子組件的導電元件之間的介面處。According to some experimental examples of the present disclosure, a conventional connection structure with an anisotropic conductive adhesive film is tested. This connection structure uses an anisotropic conductive adhesive film to connect a rigid substrate and a circuit (that is, a conductive element, or a conductive pad) and another electronic assembly with a flexible circuit board and circuitry. When the known device to be tested with the connection structure of the anisotropic conductive adhesive film was placed in an environment test of a temperature of 121°C, a relative humidity of 100%, and a pressure of 205Kpa for 4 hours, it was found that the A crack occurs at the interface, so the electrical function of the device under test fails. Moreover, it can be found that there are peeling gaps by scanning electron microscope observation, and the peeling gaps are concentrated at the interface between the anisotropic conductive adhesive film and the conductive elements of the electronic assembly.

由於異向性導電膠膜的熱膨脹係數與電子組件的導電元件或基板的材料的熱膨脹係數具有較大的差異,當具有不同熱膨脹係數的多種材料形成一裝置時,由於熱膨脹程度不一致,因此溫度變化便會產生應力。因此,在熱膨脹係數相差較高的介面處,容易因溫度升高而產生的應力而引起介面剝離的問題。Since the thermal expansion coefficient of the anisotropic conductive adhesive film has a large difference from the thermal expansion coefficient of the conductive element or substrate material of the electronic component, when multiple materials with different thermal expansion coefficients form a device, the temperature changes due to the inconsistent degree of thermal expansion. Stress will be generated. Therefore, at the interface where the difference in thermal expansion coefficient is relatively high, it is easy to cause the problem of interface peeling due to the stress generated by the temperature rise.

本揭示內容係關於異向性導電膠膜貼合製程的改善方法,通過在應力集中的介面,亦即異向性導電膠膜與第一電子組件之間加入一緩衝層其熱膨脹係數介於異向性導電膠膜的熱膨脹係數和第一電子組件的導電元件的熱膨脹係數兩者之間,以緩衝不同介面之間的應變效應,將應力應變梯度分攤於介於異向性導電膠膜和緩衝層之間、以及介於緩衝層和導電元件之間。因此,降低了因溫度升高而引起的介面剝離的問題。This disclosure relates to a method for improving the bonding process of the anisotropic conductive adhesive film. By adding a buffer layer between the anisotropic conductive adhesive film and the first electronic component at the interface where the stress is concentrated, the coefficient of thermal expansion is between the different between the thermal expansion coefficient of the anisotropic conductive adhesive film and the thermal expansion coefficient of the conductive element of the first electronic component, so as to buffer the strain effect between different interfaces, and share the stress-strain gradient between the anisotropic conductive adhesive film and the buffer between layers, and between buffer layers and conductive elements. Therefore, the problem of interfacial peeling caused by temperature rise is reduced.

請參見第1圖,繪示了根據一些實施方式的連接結構的截面視圖。連接結構100包含第一電子組件110、緩衝層120、異向性導電膠膜130、以及第二電子組件140。Please refer to FIG. 1 , which illustrates a cross-sectional view of a connection structure according to some embodiments. The connection structure 100 includes a first electronic component 110 , a buffer layer 120 , an anisotropic conductive adhesive film 130 , and a second electronic component 140 .

第一電子組件110包含第一基板112和在第一基板112之上的多個第一導電元件114。在一些實施方式中,第一導電元件114覆蓋第一基板112的部分的表面。緩衝層120設置在第一電子組件110之上,覆蓋第一基板112和多個第一導電元件114。異向性導電膠膜130包含絕緣膠層132和在絕緣膠層132中的第一導電粒子134和第二導電粒子136。第一導電粒子134的高度H 1經壓合作用而降低,並且配置以電性連接第一電子組件110的第一導電元件114和第二電子組件140的導電元件。第一導電粒子134穿過緩衝層120而物理性和電性連接第一電子組件110的第一導電元件114。第二導電粒子136則位於在垂直方向(亦即Z方向)不與第一電子組件110的第一導電元件114和第二電子組件140的導電元件重疊的區域並且由絕緣膠層132所圍繞。亦即,第二導電粒子136在垂直投影於第一基板112的區域,與第一電子組件110的第一導電元件114的垂直投影於第一基板112的區域不重疊、也與第二電子組件140的第二導電元件144的垂直於第一基板112的區域不重疊。換言之,第二導電粒子136位在介於第一基板112和介於第二基板142之間並且並未由於壓合作用而變形減少高度。如在第1圖中所示,第二導電粒子136具有高度H 2,並且第一導電粒子的高度H 1小於第二導電粒子136的高度H 2。第二電子組件140設置在異向性導電膠膜130之上並且包含第二基板142和在第二基板142之下的多個第二導電元件144。在一些實施方式中,第二導電元件144覆蓋第二基板142的部分的表面。第一導電元件114和第二導電元件144在垂直方向重疊,並且第二導電元件144物理性和電性連接第一導電粒子134。亦即,第二導電元件144在垂直投影與第一基板112的區域,與第一導電粒子134和第一導電元件114重疊。在一些實施方式中,第一導電元件114的尺寸可能小於、約等於、或大於第二導電元件144的尺寸。如在第1圖中所示,經由第一導電粒子134,第一導電元件114和第二導電元件144電性連接。 The first electronic component 110 includes a first substrate 112 and a plurality of first conductive elements 114 on the first substrate 112 . In some embodiments, the first conductive element 114 covers a portion of the surface of the first substrate 112 . The buffer layer 120 is disposed on the first electronic component 110 and covers the first substrate 112 and the plurality of first conductive elements 114 . The anisotropic conductive adhesive film 130 includes an insulating adhesive layer 132 and first conductive particles 134 and second conductive particles 136 in the insulating adhesive layer 132 . The height H1 of the first conductive particles 134 is reduced by pressing, and configured to electrically connect the first conductive element 114 of the first electronic component 110 and the conductive component of the second electronic component 140 . The first conductive particles 134 pass through the buffer layer 120 to physically and electrically connect the first conductive element 114 of the first electronic component 110 . The second conductive particles 136 are located in a region that does not overlap with the first conductive element 114 of the first electronic component 110 and the conductive component of the second electronic component 140 in the vertical direction (ie, the Z direction) and is surrounded by the insulating glue layer 132 . That is to say, the second conductive particle 136 does not overlap with the vertical projection area of the first conductive element 114 of the first electronic component 110 on the first substrate 112 in the area vertically projected on the first substrate 112, nor overlaps with the area of the second electronic component 110. Areas of the second conductive element 144 of 140 perpendicular to the first substrate 112 do not overlap. In other words, the second conductive particles 136 are located between the first substrate 112 and the second substrate 142 and are not deformed and reduced in height due to the pressing effect. As shown in FIG. 1 , the second conductive particles 136 have a height H 2 , and the height H 1 of the first conductive particles is smaller than the height H 2 of the second conductive particles 136 . The second electronic component 140 is disposed on the anisotropic conductive adhesive film 130 and includes a second substrate 142 and a plurality of second conductive elements 144 under the second substrate 142 . In some embodiments, the second conductive element 144 covers a portion of the surface of the second substrate 142 . The first conductive element 114 and the second conductive element 144 overlap vertically, and the second conductive element 144 is physically and electrically connected to the first conductive particle 134 . That is to say, the second conductive element 144 overlaps with the first conductive particles 134 and the first conductive element 114 in the vertical projection area of the first substrate 112 . In some embodiments, the size of the first conductive element 114 may be smaller than, approximately equal to, or larger than the size of the second conductive element 144 . As shown in FIG. 1 , the first conductive element 114 and the second conductive element 144 are electrically connected via the first conductive particles 134 .

在一些實施方式中,第一電子組件110的第一基板112為一剛性基板,而第二電子組件140的第二基板142為一軟性基板;但本揭示內容不限於此,本揭示內容的緩衝層可應用於熱膨脹係數差異較大的介面。In some embodiments, the first substrate 112 of the first electronic component 110 is a rigid substrate, and the second substrate 142 of the second electronic component 140 is a flexible substrate; but the present disclosure is not limited thereto, the buffer of the present disclosure Layers can be applied to interfaces with large differences in thermal expansion coefficients.

在一些實施方式中,第一電子組件110的第一導電元件114和第二電子組件140的第二導電元件144的熱膨脹係數皆小於異向性導電膠膜130的絕緣膠層132的熱膨脹係數。在一些實施方式中,第一電子組件110的第一導電元件114的熱膨脹係數小於第二電子組件140的第二導電元件144的熱膨脹係數;也就是說,介於絕緣膠層132與第一導電元件114的熱膨脹係數的差異大於介於絕緣膠層132與第二導電元件144的熱膨脹係數的差異。In some embodiments, the thermal expansion coefficients of the first conductive element 114 of the first electronic component 110 and the second conductive component 144 of the second electronic component 140 are smaller than the thermal expansion coefficient of the insulating adhesive layer 132 of the anisotropic conductive adhesive film 130 . In some embodiments, the thermal expansion coefficient of the first conductive element 114 of the first electronic component 110 is smaller than the thermal expansion coefficient of the second conductive component 144 of the second electronic component 140; The difference of the coefficient of thermal expansion of the element 114 is greater than the difference of the coefficient of thermal expansion between the insulating glue layer 132 and the second conductive element 144 .

在一些實施方式中,第一電子組件110的第一基板112和第二電子組件140的第二基板142的熱膨脹係數皆小於異向性導電膠膜130的絕緣膠層132的熱膨脹係數,並且第一電子組件110的第一基板112的熱膨脹係數小於第二電子組件140的第二基板142的熱膨脹係數。也就是說,介於絕緣膠層132和第一基板112之間的熱膨脹係數的差異大於介於絕緣膠層132和第二基板142之間的熱膨脹係數的差異。In some embodiments, the thermal expansion coefficients of the first substrate 112 of the first electronic component 110 and the second substrate 142 of the second electronic component 140 are both smaller than the thermal expansion coefficient of the insulating adhesive layer 132 of the anisotropic conductive adhesive film 130, and the second The thermal expansion coefficient of the first substrate 112 of an electronic component 110 is smaller than the thermal expansion coefficient of the second substrate 142 of the second electronic component 140 . That is to say, the difference of the thermal expansion coefficient between the insulating glue layer 132 and the first substrate 112 is greater than the difference of the thermal expansion coefficient between the insulating glue layer 132 and the second substrate 142 .

緩衝層120設置在具有較大的熱膨脹係數的差異的第一導電元件114和絕緣膠層132之間,並且緩衝層120的熱膨脹係數介於第一導電元件114的熱膨脹係數和絕緣膠層132的熱膨脹係數之間,因此可將因溫度上升而引起的應力的應變梯度分攤於介於第一導電元件114和緩衝層120之間的介面、以及介於緩衝層120和絕緣膠層132之間的介面。The buffer layer 120 is disposed between the first conductive element 114 and the insulating glue layer 132 having a large difference in thermal expansion coefficient, and the thermal expansion coefficient of the buffer layer 120 is between the thermal expansion coefficient of the first conductive element 114 and that of the insulating glue layer 132 between the coefficients of thermal expansion, so the strain gradient of the stress caused by the temperature rise can be shared between the interface between the first conductive element 114 and the buffer layer 120, and the interface between the buffer layer 120 and the insulating adhesive layer 132 interface.

此外,緩衝層120也設置在具有較大的熱膨脹係數的差異的第一基板112和絕緣膠層132之間,並且緩衝層120的熱膨脹係數介於第一基板112的熱膨脹係數和絕緣膠層132的熱膨脹係數之間,因此可將因溫度上升而引起的應力的應變梯度分攤於介於第一基板112和緩衝層120之間的介面、以及介於緩衝層120和絕緣膠層132之間的介面。In addition, the buffer layer 120 is also disposed between the first substrate 112 and the insulating adhesive layer 132 having a large difference in thermal expansion coefficient, and the thermal expansion coefficient of the buffer layer 120 is between the thermal expansion coefficient of the first substrate 112 and the insulating adhesive layer 132. Between the coefficients of thermal expansion, the strain gradient of the stress caused by the temperature rise can be shared between the interface between the first substrate 112 and the buffer layer 120, and the interface between the buffer layer 120 and the insulating glue layer 132. interface.

須注意的是,儘管第1圖將緩衝層120繪示為覆蓋第一導電元件114的上表面和側表面、以及第一基板112的上表面,但在一些實施方式中,取決於製程,緩衝層120可僅覆蓋第一導電元件114的上表面、或是僅覆蓋第一導電元件114的上表面和側表面。由於一旦介於絕緣膠層和第一導電元件之間發生剝離,裝置的電性功能會失效,因此,緩衝層120優先設置在介於絕緣膠層132和第一導電元件114之間,特別是在介於絕緣膠層132和第一導電元件114的上表面之間。It should be noted that although the buffer layer 120 is shown in FIG. The layer 120 may cover only the upper surface of the first conductive element 114 , or only cover the upper surface and the side surfaces of the first conductive element 114 . Since once peeling occurs between the insulating adhesive layer and the first conductive element, the electrical function of the device will fail. Therefore, the buffer layer 120 is preferably disposed between the insulating adhesive layer 132 and the first conductive element 114, especially Between the insulating glue layer 132 and the upper surface of the first conductive element 114 .

以下描述一些示例,以說明本揭示內容的連接結構可經由緩衝層的設置而降低介於異向性導電膠膜和基板之間的剝離現象。Some examples are described below to illustrate that the connection structure of the present disclosure can reduce the peeling phenomenon between the anisotropic conductive adhesive film and the substrate through the arrangement of the buffer layer.

參看以下表一,經由剝離測試,得到三個不同的異向性導電膠膜在不同的鍵合溫度的條件下的最低剝離強度。在剝離測試中,三個不同的異向性導電膠膜分別為樣品(一)、樣品(二)、和樣品(三)。待測的各個樣品長度為1.168公分,寬度為0.716公分。在剝離測試時,沿樣品的長度方向一部皆先剝開一部分,然後測試樣品的剝離強度。下表一示出在不同的測試條件所得的最低剝離強度。Referring to Table 1 below, the minimum peel strengths of three different anisotropic conductive adhesive films at different bonding temperatures were obtained through the peel test. In the peel test, three different anisotropic conductive adhesive films were sample (1), sample (2), and sample (3). Each sample to be tested has a length of 1.168 cm and a width of 0.716 cm. During the peel test, a part of the sample is peeled off along the length direction of the sample, and then the peel strength of the sample is tested. Table 1 below shows the minimum peel strength obtained under different test conditions.

表一 測試條件 要鍵合溫度(°C) 鍵合力 異向性導電膠膜樣品 最低剝離強度的中位數(kgf/cm) 組別1 140 25 N 樣品(一) 1.23 組別2 160 25 N 樣品(一) 1.57 組別3 180 25 N 樣品(一) 1.6 組別4 140 25 N 樣品(二) 1.06 組別5 160 25 N 樣品(二) 1.19 組別6 180 25 N 樣品(二) 1.51 組別7 180 25 N 樣品(三) 1.38 Table I Test Conditions Bonding temperature (°C) Bonding force Anisotropic conductive film samples The median of the minimum peel strength (kgf/cm) Group 1 140 25N Sample (1) 1.23 Group 2 160 25N Sample (1) 1.57 Group 3 180 25N Sample (1) 1.6 Group 4 140 25N Sample (2) 1.06 Group 5 160 25N Sample (2) 1.19 Group 6 180 25N Sample (2) 1.51 Group 7 180 25N Sample (3) 1.38

根據最大正應力準則(也稱為第一強度理論或最大拉應力理論),造成材料斷裂是由最大拉應力引起,亦即最大拉應力達到某一極限值時,材料會發生斷裂。根據以上的不同條件的剝離強度測試,利用所測得的最大的最低剝離強度的中位數,亦即1.6 kgf/cm,來計算造成異向性導電膠膜的破壞(剝離)的最大正應力。亦即破壞條件 σ 1 bt = 1.6*9.81/0.716 = 21.92 N/cm。 According to the maximum normal stress criterion (also known as the first strength theory or the maximum tensile stress theory), the fracture of the material is caused by the maximum tensile stress, that is, when the maximum tensile stress reaches a certain limit value, the material will fracture. According to the above peel strength test under different conditions, use the median of the measured maximum and minimum peel strength, that is, 1.6 kgf/cm, to calculate the maximum normal stress that causes the destruction (peeling) of the anisotropic conductive adhesive film . That is, the failure condition σ 1 bt = 1.6*9.81/0.716 = 21.92 N/cm.

第2圖繪示一比較例。連接結構300包含剛性基板310、在剛性基板310之上的異向性導電膠膜320、以及在異向性導電膠膜320之上的軟性基板330。其中,剛性基板310的材料為氧化鋁陶瓷,熱膨脹係數為7.1 ppm/K。異向性導電膠膜320中的絕緣膠層的材料是壓克力(Acrylic),並且異向性導電膠膜320熱膨脹係數為169 ppm/K。軟性基板330包括杜邦Kapton ®黑色聚醯亞胺薄膜以及杜邦Pyralux ®黑色軟性電路板材料,並且其中杜邦Kapton ®黑色聚醯亞胺薄膜的熱膨脹係數為10 ppm/K,而杜邦Pyralux ®黑色軟性電路板材料的熱膨脹係數為25 ppm/K;在此比較例的測試中,杜邦Pyralux ®黑色軟性電路板材料為與異向性導電膠膜320接觸的部分。因此,介於剛性基板310和異向性導電膠膜320之間的熱膨脹係數的差異為相差22.8倍,而介於異向性導電膠膜320和軟性基板330之間的熱膨脹係數的差異為相差5.76倍。 Figure 2 shows a comparative example. The connection structure 300 includes a rigid substrate 310 , an anisotropic conductive adhesive film 320 on the rigid substrate 310 , and a flexible substrate 330 on the anisotropic conductive adhesive film 320 . Wherein, the material of the rigid substrate 310 is alumina ceramics, and the coefficient of thermal expansion is 7.1 ppm/K. The material of the insulating adhesive layer in the anisotropic conductive adhesive film 320 is acrylic, and the thermal expansion coefficient of the anisotropic conductive adhesive film 320 is 169 ppm/K. Flexible substrate 330 includes DuPont Kapton ® black polyimide film and DuPont Pyralux ® black flexible circuit board material, and the thermal expansion coefficient of DuPont Kapton ® black polyimide film is 10 ppm/K, and DuPont Pyralux ® black flexible circuit board material The thermal expansion coefficient of the board material is 25 ppm/K; in the test of this comparative example, the DuPont Pyralux ® black flexible circuit board material is the part in contact with the anisotropic conductive adhesive film 320 . Therefore, the difference in the coefficient of thermal expansion between the rigid substrate 310 and the anisotropic conductive adhesive film 320 is a difference of 22.8 times, while the difference in the coefficient of thermal expansion between the anisotropic conductive adhesive film 320 and the flexible substrate 330 is a difference of 22.8 times. 5.76 times.

之後利用多種物理量耦合分析軟體(COMOSOL Multiphysics ®),進行溫度變化的模擬,得出當裝置的溫度從25°C上升至121°C時,在介於剛性基板310和異向性導電膠膜320之間的正應力為26.59 N/cm,而在介於異向性導電膠膜320和軟性基板330之間的正應力為22.60。參看第3圖,示出了當溫度在121°C時,介於剛性基板310與異向性導電膠膜320之間的正應力為26.59 N/cm。此外,模擬試驗得出介於剛性基板310與異向性導電膠膜320之間的剪切力為-15.38 N/cm。 Afterwards, a variety of physical quantity coupling analysis software (COMOSOL Multiphysics ® ) was used to simulate the temperature change, and it was obtained that when the temperature of the device rises from 25°C to 121°C, the temperature between the rigid substrate 310 and the anisotropic conductive adhesive film 320 The normal stress between them is 26.59 N/cm, and the normal stress between the anisotropic conductive adhesive film 320 and the flexible substrate 330 is 22.60. Referring to FIG. 3 , it shows that when the temperature is 121° C., the normal stress between the rigid substrate 310 and the anisotropic conductive adhesive film 320 is 26.59 N/cm. In addition, the simulation test shows that the shear force between the rigid substrate 310 and the anisotropic conductive adhesive film 320 is -15.38 N/cm.

也就是說,在異向性導電膠膜320的靠近剛性基板310的這一側,正應力為26.59 N/cm,這顯著地高於破壞條件σ bt (亦即21.92 N/cm)。因此,當溫度上升時,溫度變化所產生的應力容易造成在異向性導電膠膜320的靠近剛性基板310這一側發生剝離。 That is to say, on the side of the anisotropic conductive adhesive film 320 close to the rigid substrate 310 , the normal stress is 26.59 N/cm, which is significantly higher than the failure condition σ bt (ie, 21.92 N/cm). Therefore, when the temperature rises, the stress generated by the temperature change easily causes peeling on the side of the anisotropic conductive adhesive film 320 close to the rigid substrate 310 .

第4圖繪示一實驗例。連接結構500包含剛性基板510、在剛性基板510之上的緩衝層520、在緩衝層520之上的異向性導電膠膜530、以及在異向性導電膠膜530之上的軟性基板540。其中,剛性基板510的材料為氧化鋁陶瓷,熱膨脹係數為7.1 ppm/K。緩衝層520的材料為丙烯酸樹脂,熱膨脹係為34.6 ppm/K。異向性導電膠膜530中的絕緣膠層的材料是壓克力(Acrylic),並且異向性導電膠膜530的熱膨脹係數為169 ppm/K。軟性基板540包括杜邦Kapton ®黑色聚醯亞胺薄膜以及杜邦Pyralux ®黑色軟性電路板材料,並且其中杜邦Kapton ®黑色聚醯亞胺薄膜的熱膨脹係數為10 ppm/K,而杜邦Pyralux ®黑色軟性電路板材料的熱膨脹係數為25 ppm/K;在此實驗例的測試中,杜邦Pyralux ®黑色軟性電路板材料為與異向性導電膠膜530接觸的部分。因此,介於剛性基板510和緩衝層520之間的熱膨脹係數的差異為相差4.87倍,介於緩衝層520和異向性導電膠膜530之間的熱膨脹係數的差異為相差4.88倍,而介於異向性導電膠膜530和軟性基板540之間的熱膨脹係數的差異為相差5.76倍。 Figure 4 shows an experimental example. The connection structure 500 includes a rigid substrate 510 , a buffer layer 520 on the rigid substrate 510 , an anisotropic conductive adhesive film 530 on the buffer layer 520 , and a flexible substrate 540 on the anisotropic conductive adhesive film 530 . Wherein, the material of the rigid substrate 510 is alumina ceramics, and the coefficient of thermal expansion is 7.1 ppm/K. The buffer layer 520 is made of acrylic resin with a thermal expansion coefficient of 34.6 ppm/K. The material of the insulating adhesive layer in the anisotropic conductive adhesive film 530 is acrylic, and the thermal expansion coefficient of the anisotropic conductive adhesive film 530 is 169 ppm/K. Flexible substrate 540 includes DuPont Kapton ® black polyimide film and DuPont Pyralux ® black flexible circuit board material, and the thermal expansion coefficient of DuPont Kapton ® black polyimide film is 10 ppm/K, and DuPont Pyralux ® black flexible circuit board material The thermal expansion coefficient of the board material is 25 ppm/K; in the test of this experimental example, the DuPont Pyralux ® black flexible circuit board material is the part in contact with the anisotropic conductive adhesive film 530 . Therefore, the difference between the thermal expansion coefficient between the rigid substrate 510 and the buffer layer 520 is 4.87 times, and the difference between the thermal expansion coefficient between the buffer layer 520 and the anisotropic conductive adhesive film 530 is 4.88 times. The difference in thermal expansion coefficient between the anisotropic conductive adhesive film 530 and the flexible substrate 540 is 5.76 times.

之後利用多種物理量耦合分析軟體(COMOSOL Multiphysics ®),進行溫度變化的模擬,得出當裝置的溫度從25°C上升至121°C時,在介於緩衝層520和異向性導電膠膜530之間的正應力為-0.65 N/cm。參看第5圖,示出了當溫度在121°C時,介於剛性基板510與緩衝層520之間的正應力為-0.65 N/cm。此外,模擬試驗得出介於介於剛性基板510與緩衝層520之間的剪切力為6.48 N/cm。也就是說,經由緩衝層520的設置,在異向性導電膠膜530的較靠近剛性基板510的這一側的正應力明顯地減小,遠小於破壞條件σ bt (亦即21.92 N/cm),且小於異向性導電膠膜530的靠近軟性基板540的這一側的正向應力。因此集中發生在異向性導電膠膜530的靠近剛性基板510的這一側的剝離破壞現象會獲得改善。 Afterwards, a variety of physical quantity coupling analysis software (COMOSOL Multiphysics ® ) was used to simulate the temperature change, and it was obtained that when the temperature of the device rises from 25°C to 121°C, the temperature between the buffer layer 520 and the anisotropic conductive adhesive film 530 The normal stress between them is -0.65 N/cm. Referring to FIG. 5, it is shown that when the temperature is 121°C, the normal stress between the rigid substrate 510 and the buffer layer 520 is -0.65 N/cm. In addition, the simulation test shows that the shear force between the rigid substrate 510 and the buffer layer 520 is 6.48 N/cm. That is to say, through the arrangement of the buffer layer 520, the normal stress on the side of the anisotropic conductive adhesive film 530 closer to the rigid substrate 510 is significantly reduced, which is much smaller than the failure condition σbt (that is, 21.92 N/cm ), and less than the normal stress of the side of the anisotropic conductive adhesive film 530 close to the flexible substrate 540 . Therefore, the phenomenon of peeling damage concentrated on the side of the anisotropic conductive adhesive film 530 close to the rigid substrate 510 can be improved.

第6A圖至第6E圖繪示根據一些實施方式的形成連接結構的多個中間階段的截面視圖。6A-6E illustrate cross-sectional views of various intermediate stages of forming a connection structure according to some embodiments.

請參看第6A圖,繪示在此步驟中提供第一電子組件。第一電子組件710包含第一基板712和在第一基板712之上的多個第一導電元件714。Please refer to FIG. 6A, which illustrates providing the first electronic component in this step. The first electronic component 710 includes a first substrate 712 and a plurality of first conductive elements 714 on the first substrate 712 .

在一些實施方式中,第一基板712可為剛性基板,例如紙基板、玻璃纖維佈基板、合成纖維布基板、無紡布基板、複合基板等。In some embodiments, the first substrate 712 can be a rigid substrate, such as a paper substrate, a glass fiber cloth substrate, a synthetic fiber cloth substrate, a non-woven fabric substrate, a composite substrate, and the like.

在一些實施方式中,第一導電元件714的材料可包含金、銀、銅、鋁、氧化銦鍚等導電材料。In some embodiments, the material of the first conductive element 714 may include conductive materials such as gold, silver, copper, aluminum, and indium tin oxide.

請參考第6B圖,繪示在第一電子組件之上設置緩衝層。緩衝層720設置在第一電子組件710的第一基板712和第一導電元件714之上。緩衝層720為一有機薄膜,其熱膨脹係數介於第一基板712熱膨脹係數和隨後形成的絕緣膠層的熱膨脹係數之間,例如約20至約50 ppm/K。在一些實施方式中,緩衝層720的材料為松香類(Rosin)、活性樹脂類(Active Resin)、唑類(Azole)、聚醚醚酮、聚酰亞胺、或丙烯酸樹脂。Please refer to FIG. 6B , which shows a buffer layer disposed on the first electronic component. The buffer layer 720 is disposed on the first substrate 712 and the first conductive element 714 of the first electronic component 710 . The buffer layer 720 is an organic thin film, and its thermal expansion coefficient is between the thermal expansion coefficient of the first substrate 712 and the thermal expansion coefficient of the insulating adhesive layer formed later, for example, about 20 to about 50 ppm/K. In some embodiments, the buffer layer 720 is made of Rosin, Active Resin, Azole, PEEK, polyimide, or acrylic resin.

在一些實施方式中,緩衝層720的厚度為約1微米至約4微米,較佳為約1.5微米至約3微米,更佳為約1.8微米至約2.2微米,例如約2微米。在一些實施方式中,緩衝層720的厚度為隨後設置的異向性導電膠膜的導電粒子(壓合前)的高度的約1/20至約1/5,較佳為約1/10,以提供合適的應力緩衝作用並使導電粒子在壓合作用時可穿破緩衝層720。在一些實施方式中,可經由塗覆的方式,將緩衝層720的材料設置於第一電子組件710的第一基板712和第一導電元件714之上。在一些實施方式中,可經由軟對硬(Soft-to-Hard, STH)技術,將有機薄膜貼合在第一電子組件710之上。In some embodiments, the thickness of the buffer layer 720 is about 1 micron to about 4 microns, preferably about 1.5 microns to about 3 microns, more preferably about 1.8 microns to about 2.2 microns, for example about 2 microns. In some embodiments, the thickness of the buffer layer 720 is about 1/20 to about 1/5, preferably about 1/10, of the height of the conductive particles (before lamination) of the subsequently disposed anisotropic conductive adhesive film, In order to provide a proper stress buffering effect and allow the conductive particles to penetrate the buffer layer 720 during pressing. In some embodiments, the material of the buffer layer 720 can be disposed on the first substrate 712 and the first conductive element 714 of the first electronic component 710 by coating. In some embodiments, the organic thin film can be pasted on the first electronic component 710 through a soft-to-hard (STH) technique.

在經由軟對硬技術貼合有機薄膜的實施方式中,可將熱膨脹係數為約20至50 ppm/K的聚醚醚酮薄膜貼合至第一電子組件710之上;或者可將熱膨脹係數為約30至40 ppm/K(例如約34.6 ppm/K)的聚酰亞胺薄膜或丙烯酸樹脂薄膜貼合至第一電子組件710之上。In an embodiment where the organic thin film is bonded via soft-to-hard technology, a polyether ether ketone film with a thermal expansion coefficient of about 20 to 50 ppm/K can be bonded to the first electronic component 710; or a thermal expansion coefficient of A polyimide film or acrylic resin film of about 30 to 40 ppm/K (eg, about 34.6 ppm/K) is pasted on the first electronic component 710 .

請參考第6C圖,繪示將異向性導電膠膜設置在緩衝層上方。異向性導電膠膜730包括絕緣膠層732和分布在絕緣膠層732中的第一導電粒子734和第二導電粒子736。絕緣膠層732具有黏接、耐熱、絕緣、固定多個導電元件的相對位置、維持導電元件與相接觸的導電粒子的相觸面積的作用。在一些實施方式中,絕緣膠層732的材料可包含熱固性樹環氧樹脂,例如壓克力、或各種雙酚A型環氧樹脂,比如E-44、E-20、E-51等,但本揭示內容不以此為限。在一些實施方式中,絕緣膠層732還包含添加劑,例如固化劑、交聯劑、稀釋劑、光引發劑、偶聯劑等。Please refer to FIG. 6C , which shows disposing the anisotropic conductive adhesive film on the buffer layer. The anisotropic conductive adhesive film 730 includes an insulating adhesive layer 732 and first conductive particles 734 and second conductive particles 736 distributed in the insulating adhesive layer 732 . The insulating adhesive layer 732 has the functions of bonding, heat resistance, insulation, fixing the relative positions of multiple conductive elements, and maintaining the contact area between the conductive elements and the conductive particles in contact. In some embodiments, the material of the insulating adhesive layer 732 may include a thermosetting epoxy resin, such as acrylic, or various bisphenol A epoxy resins, such as E-44, E-20, E-51, etc., but This disclosure is not limited thereto. In some embodiments, the insulating glue layer 732 further includes additives, such as curing agent, cross-linking agent, diluent, photoinitiator, coupling agent and the like.

在一些實施方式中,第一導電粒子734和第二導電粒子736為表面鍍有導電金屬的聚合物微球。聚合物微球的材料可例如為但不限於:聚乙烯、聚丙烯、聚酯、聚苯乙烯、聚乙烯醇、或聚甲基丙烯酸甲酯。導電金屬可例如為鎳、金、銅、銀、錫、鉛、鋁、鎢、鐵、類似者、或其組合。在一些實施方式中,第一導電粒子734和第二導電粒子736的直徑尺寸可約為5微米至40微米,例如約5微米、10微米、15微米、20微米、25微米、30微米、35微米、或40微米。In some embodiments, the first conductive particles 734 and the second conductive particles 736 are polymer microspheres coated with conductive metal. The material of the polymer microspheres can be, for example but not limited to: polyethylene, polypropylene, polyester, polystyrene, polyvinyl alcohol, or polymethylmethacrylate. The conductive metal can be, for example, nickel, gold, copper, silver, tin, lead, aluminum, tungsten, iron, the like, or combinations thereof. In some embodiments, the diameter of the first conductive particles 734 and the second conductive particles 736 may be about 5 microns to 40 microns, such as about 5 microns, 10 microns, 15 microns, 20 microns, 25 microns, 30 microns, 35 microns microns, or 40 microns.

在一些實施方式中,所使用的異向性導電膠膜730的中的絕緣膠層732的材料為壓克力,厚度為約25微米。第一導電粒子734和第二導電粒子736為表面鍍有鎳和金的聚合物微球,尺寸為約20微米,密度為300 Pcs/mm 2In some embodiments, the insulating adhesive layer 732 in the anisotropic conductive adhesive film 730 is made of acrylic with a thickness of about 25 microns. The first conductive particles 734 and the second conductive particles 736 are polymer microspheres coated with nickel and gold, with a size of about 20 microns and a density of 300 Pcs/mm 2 .

請參看第6D圖,繪示將第二電子組件設置在異向性導電膠膜上方。第二電子組件740包含第二基板742和在第二基板742之上的第二導電元件744。在垂直方向,第二導電元件744與第一電子組件710的第一導電元件714重疊。具體而言,第二導電元件744在垂直投影於第一基板712的區域,與第一導電元件714的垂直投影於第一基板712的區域至少部分地重疊。Please refer to FIG. 6D , which illustrates disposing the second electronic component on the anisotropic conductive adhesive film. The second electronic assembly 740 includes a second substrate 742 and a second conductive element 744 on the second substrate 742 . In the vertical direction, the second conductive element 744 overlaps with the first conductive element 714 of the first electronic component 710 . Specifically, the area of the second conductive element 744 vertically projected on the first substrate 712 at least partially overlaps the area of the first conductive element 714 vertically projected on the first substrate 712 .

在一些實施方式中,第二基板742可為柔性基板,其材料可包含但不限於聚對苯二甲酸乙二酯、聚萘二甲酸乙二酯、聚醚碸、聚乙烯、聚碳酸酯、聚醯亞胺、或丙烯酸系樹脂等樹脂、或類似者。在一些實施方式中,第二導電元件744的材料可包含金、銀、銅、鋁、氧化銦鍚、複合型導電高分子材料、或類似者。In some embodiments, the second substrate 742 can be a flexible substrate, and its material can include but not limited to polyethylene terephthalate, polyethylene naphthalate, polyethersulfone, polyethylene, polycarbonate, Resin such as polyimide or acrylic resin, or the like. In some embodiments, the material of the second conductive element 744 may include gold, silver, copper, aluminum, indium tin oxide, composite conductive polymer material, or the like.

請參看第6E圖,繪示將各個元件壓合形成連接結構700。將第二電子組件740、異向性導電膠膜730、緩衝層720、和第一電子組件710壓合,使得第一電子組件710的第一基板712和第二電子組件740的第二基板742經由絕緣膠層732而連接,並且位在介於第一導電元件714和第二導電元件744之間的第一導電粒子734被壓縮並且物理性接觸和電性連接第一導電元件714和第二導電元件744。在壓合時,經由加熱使絕緣膠層732中的樹脂硬化,將第二電子組件740固定在第一電子組件710上方。Please refer to FIG. 6E , which shows the connection structure 700 formed by pressing each element. Pressing the second electronic component 740, the anisotropic conductive adhesive film 730, the buffer layer 720, and the first electronic component 710, so that the first substrate 712 of the first electronic component 710 and the second substrate 742 of the second electronic component 740 Connected via the insulating adhesive layer 732, and the first conductive particles 734 between the first conductive element 714 and the second conductive element 744 are compressed and physically contact and electrically connect the first conductive element 714 and the second conductive element 714. Conductive element 744 . During pressing, the resin in the insulating adhesive layer 732 is hardened by heating, and the second electronic component 740 is fixed on the first electronic component 710 .

在外來的垂直的壓合作用力P 1下,夾置在介於第一導電元件714和第二導電元件744之間的第一導電粒子734被擠壓而變形,因而形成在受壓垂直縱方向上具有電性導通的效應。當經一段時間使絕緣膠層732固化後,第一導電粒子734便不再受外力而移動而形成電性導通的結構,因此,電性連接第一導電元件714和第二導電元件744。再者,第二導電粒子736位在垂直方向不與第一導電元件714和第二導電元件744重疊的區域,因此沒有被擠壓而變形,並且保持被絕緣膠層732包圍而絕緣。 Under the external vertical pressing force P1 , the first conductive particles 734 sandwiched between the first conductive element 714 and the second conductive element 744 are squeezed and deformed, thus forming It has the effect of electrical conduction. When the insulating adhesive layer 732 is cured for a period of time, the first conductive particles 734 are no longer moved by external force and form an electrically conductive structure, thus electrically connecting the first conductive element 714 and the second conductive element 744 . Furthermore, the second conductive particles 736 are located in a region not overlapping the first conductive element 714 and the second conductive element 744 in the vertical direction, so they are not deformed by extrusion, and are kept surrounded and insulated by the insulating glue layer 732 .

在另一些實施方式中,當將異向性導電膠膜730設置於緩衝層720上時,可執行預壓合步驟,經由壓合裝置將異向性導電膠膜730壓合至緩衝層720和第一電子組件710上,預壓合的溫度可例如約為95°C至110°C。接著,經由壓合裝置將第二電子組件740壓合至異向性導電膠膜730、緩衝層720、和第一電子組件710上,壓合的溫度可例如約為160°C至220°C。In other embodiments, when the anisotropic conductive adhesive film 730 is placed on the buffer layer 720, a pre-lamination step can be performed, and the anisotropic conductive adhesive film 730 is laminated to the buffer layer 720 and the buffer layer 720 through a laminating device. On the first electronic component 710 , the pre-lamination temperature may be, for example, about 95°C to 110°C. Next, the second electronic component 740 is pressed onto the anisotropic conductive adhesive film 730, the buffer layer 720, and the first electronic component 710 through a pressing device, and the temperature of the pressing can be, for example, about 160°C to 220°C .

請參看第7A圖和第7B圖,繪示在施加壓合作用力前後,連接結構的局部放大圖。第7A圖繪示在壓合作用之前,第一導電粒子734在介於緩衝層720和第二導電元件744之間。第7B圖繪示當進行壓合作用時,第一導電粒子734因為壓合而高度降低,並且將緩衝層720擠開而接觸第一導電元件714,而異向性導電膠膜730的其他部分的連接性則不受影響。在一實施例中,在壓合前第一導電粒子734的直徑尺寸為20微米,壓合後水平的直徑尺寸變大,變為約30微米,並且緩衝層720的厚度為約2微米。Please refer to FIG. 7A and FIG. 7B, which show partial enlarged views of the connection structure before and after applying the pressing force. FIG. 7A shows the first conductive particles 734 interposed between the buffer layer 720 and the second conductive element 744 before lamination. FIG. 7B shows that when lamination is performed, the height of the first conductive particles 734 is reduced due to lamination, and the buffer layer 720 is pushed away to contact the first conductive element 714, while other parts of the anisotropic conductive adhesive film 730 connectivity is not affected. In one embodiment, the diameter of the first conductive particles 734 is 20 microns before lamination, and the diameter of the first conductive particles 734 becomes larger after lamination to about 30 microns, and the thickness of the buffer layer 720 is about 2 microns.

第8圖為一替代性的實施方式。在此實施方式中,連接結構800的緩衝層820為以有機保焊(Organic Solderability Preservative, OSP)技術所形成的有機薄膜,又稱有機保焊膜。緩衝層820包含與第一基板712接觸的第一部分820A、以及與第一導電元件714接觸的第二部分820B。連接結構800的其他組件類似於以上參看第1圖所討論的連接結構100或以上參看第6A圖至6E圖所討論的連接結構700,因此,在此不再重覆描述。Figure 8 shows an alternative embodiment. In this embodiment, the buffer layer 820 of the connection structure 800 is an organic thin film formed by Organic Solderability Preservative (OSP) technology, also known as an organic solderability preservative film. The buffer layer 820 includes a first portion 820A in contact with the first substrate 712 and a second portion 820B in contact with the first conductive element 714 . The other components of the connection structure 800 are similar to the connection structure 100 discussed above with reference to FIG. 1 or the connection structure 700 discussed above with reference to FIGS. 6A-6E , and thus will not be described again here.

在經由有機保焊技術形成緩衝層的實施方式中,第一導電元件714的材料為銅,在銅的表面上的鍍膜可例如包含松香類、活性樹脂類、或唑類。在一些實施方式中,唑類的有機薄膜可例如為聚苯並咪唑(PBI)、苯並三唑(BTA)、烷基咪唑(IA)、苯並咪唑(Benzimidazole, BIA)、取代基苯並咪唑(Substituted Benzimidazole, SBA)、或烷基苯基咪唑(Aryl Phonylimidazole, APA)。經由有機保焊技術,可將有機銅錯化物的皮膜形成於第一導電元件714上。由於有機保焊膜易於劃傷劃破,之後在壓合過程中會因為高溫高壓而導致有機保焊膜破損,因此露出第一導電元件714的部分而使得第一導電粒子734可電性連接第一導電元件714。In the embodiment where the buffer layer is formed by organic soldering technology, the material of the first conductive element 714 is copper, and the coating film on the copper surface may include rosin, reactive resin, or azole, for example. In some embodiments, the organic film of azoles can be, for example, polybenzimidazole (PBI), benzotriazole (BTA), alkylimidazole (IA), benzimidazole (Benzimidazole, BIA), substituent benzo Imidazole (Substituted Benzimidazole, SBA), or alkyl phenyl imidazole (Aryl Phonylimidazole, APA). The organic copper compound film can be formed on the first conductive element 714 through organic soldering technology. Since the organic solder protection film is easy to be scratched and scratched, the organic solder protection film will be damaged due to high temperature and high pressure during the pressing process, so the part of the first conductive element 714 is exposed so that the first conductive particles 734 can be electrically connected to the first conductive element 734. A conductive element 714 .

請參看第9圖,繪示形成有機保焊膜的方法的流程。在方法900中,首先在步驟902中,對第一電子組件710的第一導電元件714進行除油。接著在步驟904中,進行水洗。之後在步驟906中,對第一導電元件714的銅表面進行微蝕刻。在微蝕刻之後,在步驟908中,進行二級水洗。之後在步驟910中,對第一導電元件714的銅表面再進行微蝕刻。接著在步驟912中,以超純水洗淨第一導電元件714。之後在步驟914中,將OSP藥水刷塗於第一電子組件710上或將第一電子組件710浸置於OSP藥水中,之後形成有機保焊膜並風乾。之後在步驟916中,以超純水洗淨鍍有有機保焊膜的第一電子組件710。之後在步驟918中,將洗淨的第一電子組件710乾燥。Please refer to FIG. 9 , which illustrates the flow of the method for forming the organic solder protection film. In the method 900 , first in step 902 , the first conductive element 714 of the first electronic component 710 is degreased. Next in step 904, water washing is performed. Then in step 906, the copper surface of the first conductive element 714 is micro-etched. After microetching, in step 908, a secondary water wash is performed. Then in step 910, the copper surface of the first conductive element 714 is micro-etched again. Next in step 912, the first conductive element 714 is washed with ultrapure water. Then in step 914, the OSP solution is brushed on the first electronic component 710 or the first electronic component 710 is immersed in the OSP solution, and then an organic solder protection film is formed and air-dried. Then in step 916 , the first electronic component 710 coated with the organic solder protection film is cleaned with ultrapure water. Then in step 918, the cleaned first electronic component 710 is dried.

請再參看第8圖,緩衝層820為以有機保焊技術所形成的有機薄膜,其中緩衝層820的第一部分820A接觸第一電子組件710的第一基板712的上表面。緩衝層820的第一部分820A為包含以上所述的有機材料的有機薄膜。緩衝層820的第二部分820B接觸第一導電元件714的上表面和側表面的部分,並且是包含銅錯化物的有機薄膜。在一些實施方式中,緩衝層820的第一部分820A和第二部分820B的厚度為異向性導電膠膜的導電粒子(壓合前)的高度的約1/20至約1/5,較佳為約1/10,以提供合適的應力緩衝作用並使第一導電粒子734在壓合作用時可穿破緩衝層的第二部分820B。Referring to FIG. 8 again, the buffer layer 820 is an organic thin film formed by organic soldering technology, wherein the first portion 820A of the buffer layer 820 contacts the upper surface of the first substrate 712 of the first electronic component 710 . The first portion 820A of the buffer layer 820 is an organic thin film comprising the organic materials described above. The second portion 820B of the buffer layer 820 is in contact with portions of the upper surface and the side surface of the first conductive element 714, and is an organic thin film containing copper complex. In some embodiments, the thickness of the first part 820A and the second part 820B of the buffer layer 820 is about 1/20 to about 1/5 of the height of the conductive particles (before lamination) of the anisotropic conductive adhesive film, preferably The ratio is about 1/10, so as to provide proper stress buffering effect and enable the first conductive particles 734 to penetrate through the second portion 820B of the buffer layer during pressing.

第10圖示為一替代性的實施方式。在此實施方式中,連接結構1000的緩衝層1020包含與第一基板712接觸的第一部分1020A、以及與第一導電元件714接觸的第二部分1020B。連接結構1000的其他組件類似於以上參看第1圖所討論的連接結構100或以上參看第6A圖至6E圖所討論的連接結構700,因此,在此不再重覆描述。Figure 10 shows an alternative embodiment. In this embodiment, the buffer layer 1020 of the connection structure 1000 includes a first portion 1020A in contact with the first substrate 712 and a second portion 1020B in contact with the first conductive element 714 . Other components of the connection structure 1000 are similar to the connection structure 100 discussed above with reference to FIG. 1 or the connection structure 700 discussed above with reference to FIGS. 6A-6E , and therefore, will not be described again here.

在連接結構1000中,緩衝層1020的第二部分1020B為以有機保焊技術所形成的有機薄膜。緩衝層1020的第一部分1020A為一有機薄膜,其熱膨脹係數介於第一基板712的熱膨脹係數和絕緣膠層732的熱膨脹係數之間,例如介於約20 ppm/K至約50 ppm/K之間。緩衝層1020的第一部分1020A的材料可例如為松香類、活性樹脂類、唑類、聚醚醚酮、聚酰亞胺、丙烯酸樹脂、或類似者。In the connecting structure 1000, the second portion 1020B of the buffer layer 1020 is an organic thin film formed by organic soldering technology. The first part 1020A of the buffer layer 1020 is an organic thin film, and its thermal expansion coefficient is between that of the first substrate 712 and that of the insulating adhesive layer 732, for example, between about 20 ppm/K and about 50 ppm/K. between. The material of the first portion 1020A of the buffer layer 1020 can be, for example, rosin, reactive resin, azole, polyether ether ketone, polyimide, acrylic resin, or the like.

在一些實施方式中,形成緩衝層1020的第二部分1020B的方法可類似參考第9圖所描述的有機保焊膜的製程的方法900,差異在於,在對第一導電元件714進行操作時,將第一基板712的未被第一導電元件714覆蓋的部分以一保護層覆蓋;之後,當在第一導電元件714的上表面和側表面上形成有機保焊膜(亦即緩衝層1020的第二部分1020B)之後,移除在第一基板712上的保護膜,並且將如上所述的有機材料設置於第一基板712上,例如,經由塗覆的方式,因此形成緩衝層1020的第一部分1020A。In some embodiments, the method for forming the second portion 1020B of the buffer layer 1020 may be similar to the method 900 for the organic solder protection film process described in FIG. The part of the first substrate 712 that is not covered by the first conductive element 714 is covered with a protective layer; after that, when the organic solder protection film is formed on the upper surface and the side surface of the first conductive element 714 (that is, the buffer layer 1020 After the second part 1020B), the protective film on the first substrate 712 is removed, and the above-mentioned organic material is disposed on the first substrate 712, for example, by coating, thus forming the second layer of the buffer layer 1020 Part 1020A.

第11圖為一替代性實施方式。在此實施方式中,連接結構1100的第一導電元件714的上表面設置有緩衝層1120。在一些實施方式中,第一導電元件714的材料為金、銀、銅、或其組合,並且緩衝層1120為一金屬鍍層,材料為鋅、鋁、鉛、鎘、鎂、或其組合。由於金的熱膨脹係數為14.2、銀的熱膨脹係數為19.5、銅的熱膨脹係數為16.5ppm/K,這些值顯著地低於絕緣膠層732的熱膨脹係數,因此在介於絕緣膠層732和第一導電元件714之間可能容易發生剝離。經由在第一導電元件714上設置由金屬鍍層所形成的緩衝層1120,並且此金屬鍍層的熱膨脹係數介於第一導電元件714的熱膨脹係數和絕緣膠層732的熱膨脹係數之間,可提供相當於緩衝層的功能,減少在介於絕緣膠層732和第一導電元件714之間的剝離。由於一旦介於絕緣膠層732和第一導電元件714之間發生剝離,裝置的電性功能會失效,因此,由金屬鍍層所形成的緩衝層1120優先設置在介於絕緣膠層732和第一導電元件714之間,特別是在介於絕緣膠層732和第一導電元件714的上表面之間。可選地,緩衝層也可包含其餘部分,例如設置在介於絕緣膠層732和第一導電元件714的側表面之間,或者設置在介於絕緣膠層732和第一基板712之間。Figure 11 is an alternative embodiment. In this embodiment, the upper surface of the first conductive element 714 of the connection structure 1100 is provided with a buffer layer 1120 . In some embodiments, the material of the first conductive element 714 is gold, silver, copper, or a combination thereof, and the buffer layer 1120 is a metal plating layer, and the material is zinc, aluminum, lead, cadmium, magnesium, or a combination thereof. Since the thermal expansion coefficient of gold is 14.2, the thermal expansion coefficient of silver is 19.5, and the thermal expansion coefficient of copper is 16.5ppm/K, these values are significantly lower than the thermal expansion coefficient of the insulating adhesive layer 732, so between the insulating adhesive layer 732 and the first Delamination may easily occur between conductive elements 714 . By disposing the buffer layer 1120 formed by the metal plating layer on the first conductive element 714, and the thermal expansion coefficient of the metal plating layer is between the thermal expansion coefficient of the first conductive element 714 and the thermal expansion coefficient of the insulating adhesive layer 732, it can provide a considerable The function of the buffer layer reduces peeling between the insulating adhesive layer 732 and the first conductive element 714 . Since once peeling occurs between the insulating adhesive layer 732 and the first conductive element 714, the electrical function of the device will fail. Therefore, the buffer layer 1120 formed by the metal plating layer is preferably arranged between the insulating adhesive layer 732 and the first conductive element 714. Between the conductive elements 714 , especially between the insulating glue layer 732 and the upper surface of the first conductive element 714 . Optionally, the buffer layer may also include other parts, for example, disposed between the insulating adhesive layer 732 and the side surface of the first conductive element 714 , or disposed between the insulating adhesive layer 732 and the first substrate 712 .

在一些實施方式中,金屬鍍層的熱膨脹係數為約25 ppm/K至約50 ppm/K,例如鋅的熱膨脹係數為36 ppm/K,鋁的熱膨脹係數為23.2 ppm/K,鉛的熱膨脹係數為29.3 ppm/K、鎘的熱膨脹係數為41.0 ppm/K、鎂的熱膨脹係數為26.0 ppm/K。在一些實施方式中,金屬鍍層所形成的緩衝層1120的厚度可能為5至30微米,但本揭示內容不限於此,可視所用的製程和製程參數來調整金屬鍍層的厚度。In some embodiments, the metal coating has a coefficient of thermal expansion of about 25 ppm/K to about 50 ppm/K, for example, zinc has a coefficient of thermal expansion of 36 ppm/K, aluminum has a coefficient of thermal expansion of 23.2 ppm/K, and lead has a coefficient of thermal expansion of 29.3 ppm/K, cadmium has a thermal expansion coefficient of 41.0 ppm/K, and magnesium has a thermal expansion coefficient of 26.0 ppm/K. In some embodiments, the thickness of the buffer layer 1120 formed by the metal plating may be 5 to 30 microns, but the disclosure is not limited thereto, and the thickness of the metal plating can be adjusted depending on the process and process parameters used.

如第11圖所示,由於所使用的電鍍製程為異向性的,因此,由金屬鍍層所形成的緩衝層1120在第一導電元件714的上表面上並接觸第一導電元件714的上表面。連接結構1100的其他組件類似於以上參看第1圖所討論的連接結構100或以上參看第6A圖至6E圖所討論的連接結構700,因此,在此不再重覆描述。需另提出說明的是,所述的緩衝層1120除了可以設置在第一導電元件714的上表面,在其他可行例中,亦可以設置在第二導電元件744的上表面,或者是在第一導電元件714的上表面及第二導電元件744的上表面均設置有緩衝層1120。第12圖為一替代性實施方式,類似於第11圖的連接結構,差異在於,在連接結構1200中,形成由金屬鍍層所形成的緩衝層1220時,第一導電元件714的側表面亦會鍍覆金屬鍍層,因此,在介於絕緣膠層732和第一導電元件714的側表面之間,亦利用由金屬鍍層所形成的緩衝層1220來分攤因熱膨脹係數差異所造成的應力。As shown in FIG. 11, since the electroplating process used is anisotropic, the buffer layer 1120 formed by the metal plating layer is on the upper surface of the first conductive element 714 and contacts the upper surface of the first conductive element 714. . Other components of the connecting structure 1100 are similar to the connecting structure 100 discussed above with reference to FIG. 1 or the connecting structure 700 discussed above with reference to FIGS. 6A-6E , and therefore, will not be described again here. It should be further noted that, in addition to being disposed on the upper surface of the first conductive element 714, the buffer layer 1120 may also be disposed on the upper surface of the second conductive element 744 in other feasible examples, or on the first Both the upper surface of the conductive element 714 and the upper surface of the second conductive element 744 are provided with a buffer layer 1120 . Figure 12 is an alternative implementation, similar to the connection structure in Figure 11, the difference is that in the connection structure 1200, when the buffer layer 1220 formed by metal plating is formed, the side surface of the first conductive element 714 will also be Metal plating is applied, therefore, between the insulating adhesive layer 732 and the side surface of the first conductive element 714 , the buffer layer 1220 formed by the metal plating is also used to share the stress caused by the difference in thermal expansion coefficient.

第13圖為一替代性實施方式,類似於第12圖的連接結構,在連接結構1300中,由金屬鍍層所形成的第一緩衝層1320設置在介於絕緣膠層732和第一導電元件714的上表面和側表面之間。連接結構1300與第12圖的連接結構1200的差異在於,在連接結構1300中,在介於絕緣膠層732和第一基板712之間,亦利用有機薄膜做為第二緩衝層1322來分攤因熱膨脹係數差異所造成的應力。Figure 13 is an alternative implementation, similar to the connection structure in Figure 12, in the connection structure 1300, the first buffer layer 1320 formed by metal plating is disposed between the insulating glue layer 732 and the first conductive element 714 between the top and side surfaces. The difference between the connection structure 1300 and the connection structure 1200 in FIG. 12 is that in the connection structure 1300, between the insulating adhesive layer 732 and the first substrate 712, an organic thin film is also used as the second buffer layer 1322 to share the Stresses due to differences in thermal expansion coefficients.

在一些實施方式中,在提供第一電子組件710之後,在第一導電元件714之上鍍覆一金屬鍍層(亦即緩衝層1220),例如鋅、鋁、鉛、鎘、鎂、或其組合。之後形成由有機薄膜所形成的第二緩衝層1322可經由例如塗覆的方式。第二緩衝層1322的材料的熱膨脹係數介於第一基板712的熱膨脹係數和絕緣膠層732的熱膨脹係數之間,例如約25 ppm/K至約50 ppm/K。第二緩衝層1322的材料可例如為松香類、活性樹脂類、唑類、聚醚醚酮、聚酰亞胺、或丙烯酸樹脂。In some embodiments, after the first electronic component 710 is provided, a metal plating layer (ie, the buffer layer 1220 ), such as zinc, aluminum, lead, cadmium, magnesium, or a combination thereof, is plated on the first conductive element 714 . The second buffer layer 1322 formed of an organic thin film can be formed afterwards, for example, by coating. The thermal expansion coefficient of the material of the second buffer layer 1322 is between the thermal expansion coefficient of the first substrate 712 and the thermal expansion coefficient of the insulating adhesive layer 732 , such as about 25 ppm/K to about 50 ppm/K. The material of the second buffer layer 1322 can be, for example, rosin, reactive resin, azole, polyether ether ketone, polyimide, or acrylic resin.

第14圖為一替代性實施方式。在此實施方式中,連接結構1400的第一導電元件714的上表面和側表面上設置由金屬鍍層所形成的第一緩衝層1420,和由有機薄膜所形成的第二緩衝層1422其覆蓋第一基板712和第一緩衝層1420,並且第一導電粒子734穿破第二緩衝層1422而電性連接第一緩衝層1420和第一導電元件714。也就是說,在第一導電元件714上方,緩衝層可為一複合層,包含由金屬鍍層所形成的第一緩衝層1420和在其上的由有機薄膜所形成的第二緩衝層1422。連接結構1400的其他組件類似於以上參看第1圖所討論的連接結構100或以上參看第6A圖至6E圖所討論的連接結構700,因此,在此不再重覆描述。Figure 14 shows an alternative embodiment. In this embodiment, the first buffer layer 1420 formed by metal plating is disposed on the upper surface and the side surface of the first conductive element 714 of the connection structure 1400, and the second buffer layer 1422 formed by an organic film covers the first buffer layer 1422. A substrate 712 and the first buffer layer 1420 , and the first conductive particles 734 break through the second buffer layer 1422 to electrically connect the first buffer layer 1420 and the first conductive element 714 . That is to say, on the first conductive element 714 , the buffer layer may be a composite layer, including a first buffer layer 1420 formed of a metal plating layer and a second buffer layer 1422 formed of an organic thin film thereon. Other components of the connection structure 1400 are similar to the connection structure 100 discussed above with reference to FIG. 1 or the connection structure 700 discussed above with reference to FIGS. 6A-6E , and therefore, will not be described again here.

在一些實施方式中,在提供第一電子組件710之後,在第一導電元件714之上鍍覆一金屬鍍層(亦即第一緩衝層1420),例如鋅、鋁、鉛、鎘、鎂、或其組合。之後形成由有機薄膜所形成的第二緩衝層1422可經由例如塗覆的方式、或是軟對硬的貼合技術,將第二緩衝層1422設置於第一電子組件710的第一基板712和第一緩衝層1420上。在一些實施方式中,第一緩衝層1420和第二緩衝層1422的材料和特性可例如以上參考第13圖所討論的第一緩衝層1320和第二緩衝層1322的材料和特性。In some embodiments, after the first electronic component 710 is provided, a metal plating layer (ie, the first buffer layer 1420 ), such as zinc, aluminum, lead, cadmium, magnesium, or its combination. Afterwards, the second buffer layer 1422 formed by an organic thin film can be disposed on the first substrate 712 of the first electronic component 710 and the first substrate 712 of the first electronic component 710 through, for example, coating or a soft-to-hard bonding technique. on the first buffer layer 1420 . In some embodiments, the materials and properties of the first buffer layer 1420 and the second buffer layer 1422 may be, for example, those of the first buffer layer 1320 and the second buffer layer 1322 discussed above with reference to FIG. 13 .

本揭示內容所提供的連接結構,經由在應力應變集中的介面(亦即在異向性導電膠膜與第一導電結構之間的介面)加入一層緩衝層其熱膨脹係數介於異向性導電膠膜與基板的熱膨脹係數,因此將應力應變梯度分攤於兩個介面(亦即,導電元件與緩衝層、緩衝層與異向性導電膠膜)。因此改善了由於熱膨脹係數差異所成的異向性導電膠膜的剝離問題。此外,可延伸至其他貼合製程,緩衝層的位置可靈活選擇設置在熱膨脹係數差異較大的介面之間,例如在介於異向性導電膠膜與基板之間。In the connection structure provided by the present disclosure, a buffer layer is added at the interface where the stress and strain are concentrated (that is, the interface between the anisotropic conductive adhesive film and the first conductive structure), and its thermal expansion coefficient is lower than that of the anisotropic conductive adhesive. The coefficient of thermal expansion of the film and the substrate, therefore, distributes the stress-strain gradient across the two interfaces (ie, the conductive element and the buffer layer, and the buffer layer and the anisotropic conductive adhesive film). Therefore, the peeling problem of the anisotropic conductive adhesive film caused by the difference in thermal expansion coefficient is improved. In addition, it can be extended to other bonding processes, and the position of the buffer layer can be flexibly selected between interfaces with large differences in thermal expansion coefficients, such as between the anisotropic conductive adhesive film and the substrate.

雖然本揭示內容已以實施方式揭露如上,然其並非用以限定本揭示內容,任何熟習此技藝者,在不脫離本揭示內容之精神和範圍內,當可作各種之更動與潤飾,因此本揭示內容之保護範圍當視後附之申請專利範圍所界定者為準。Although the content of this disclosure has been disclosed above in terms of implementation, it is not intended to limit the content of this disclosure. Anyone who is skilled in this art can make various changes and modifications without departing from the spirit and scope of this disclosure. Therefore, this The scope of protection of the disclosed content shall be subject to the definition of the appended patent application scope.

100:連接結構 110:第一電子組件 112:第一基板 114:第一導電元件 120:緩衝層 130:異向性導電膠膜 132:絕緣膠層 134:第一導電粒子 136:第二導電粒子 140:第二電子組件 142:第二基板 144:第二導電元件 300:連接結構 310:剛性基板 320:異向性導電膠膜 330:軟性基板 500:連接結構 510:剛性基板 520:緩衝層 530:異向性導電膠膜 540:軟性基板 700:連接結構 710:第一電子組件 712:第一基板 714:第一導電元件 720:緩衝層 730:異向性導電膠膜 732:絕緣膠層 734:第一導電粒子 736:第二導電粒子 740:第二電子組件 742:第二基板 744:第二導電元件 800:連接結構 820:緩衝層 820A:第一部分 820B:第二部分 900:方法 902、904、906、908、910、912、914、916、918:步驟 1000:連接結構 1020:緩衝層 1020A:第一部分 1020B:第二部分 1100:連接結構 1120:緩衝層 1200:連接結構 1220:緩衝層 1300:連接結構 1320:第一緩衝層 1322:第二緩衝層 1400:連接結構 1420:第一緩衝層 1422:第二緩衝層 H1:高度 H2:高度 P1:壓合作用力 100: Connection structure 110: The first electronic component 112: The first substrate 114: the first conductive element 120: buffer layer 130: Anisotropic conductive film 132: insulating adhesive layer 134: The first conductive particle 136: The second conductive particle 140: Second electronic component 142: second substrate 144: second conductive element 300: Connection structure 310: rigid substrate 320: Anisotropic conductive film 330: flexible substrate 500: connection structure 510: rigid substrate 520: buffer layer 530: Anisotropic conductive film 540: flexible substrate 700: Connection structure 710: The first electronic component 712: The first substrate 714: first conductive element 720: buffer layer 730: Anisotropic conductive film 732: insulating adhesive layer 734: The first conductive particle 736:Second Conductive Particles 740: Second electronic component 742: second substrate 744: second conductive element 800: connection structure 820: buffer layer 820A: Part I 820B: Part II 900: method 902, 904, 906, 908, 910, 912, 914, 916, 918: steps 1000: connection structure 1020: buffer layer 1020A: Part I 1020B: Part II 1100: connection structure 1120: buffer layer 1200: connection structure 1220: buffer layer 1300: connection structure 1320: The first buffer layer 1322: Second buffer layer 1400: connection structure 1420: The first buffer layer 1422: Second buffer layer H1: height H2: height P1: Compression force

為讓本揭示內容之上述和其他目的、特徵、優點與實施例能更明顯易懂,所附圖式之說明如下: 第1圖繪示根據一些實施方式的連接結構的截面視圖。 第2圖為根據一比較例的截面視圖。 第3圖為根據第2圖的比較例的由多重物理量耦合分析軟體所模擬的應力圖。 第4圖為根據一實驗例的截面視圖。 第5圖為根據第4圖的實驗例的由多重物理量耦合分析軟體所模擬的應力圖。 第6A圖至第6E圖為根據一些實施方式在形成連接結構的多個中間階段時的多個截面視圖。 第7A圖、第7B圖為根據一些實施方式在形成連接結構的多個中間階段時的放大截面視圖。 第8圖繪示根據一些替代性實施方式的連接結構的截面視圖。 第9圖繪示根據一些實施方式的形成有機保焊膜的方法的流程圖。 第10圖繪示根據一些替代性實施方式的連接結構的截面視圖。 第11圖繪示根據一些替代性實施方式的連接結構的截面視圖。 第12圖繪示根據一些替代性實施方式的連接結構的截面視圖。 第13圖繪示根據一些替代性實施方式的連接結構的截面視圖。 第14圖繪示根據一些替代性實施方式的連接結構的截面視圖。 In order to make the above and other purposes, features, advantages and embodiments of the present disclosure more comprehensible, the accompanying drawings are described as follows: Figure 1 illustrates a cross-sectional view of a connection structure according to some embodiments. Fig. 2 is a cross-sectional view according to a comparative example. FIG. 3 is a stress diagram simulated by multiple physical quantity coupling analysis software according to the comparative example in FIG. 2 . Fig. 4 is a cross-sectional view according to an experimental example. FIG. 5 is a stress diagram simulated by multiple physical quantity coupling analysis software according to the experimental example in FIG. 4 . 6A-6E are cross-sectional views at various intermediate stages of forming a connection structure according to some embodiments. 7A, 7B are enlarged cross-sectional views at various intermediate stages of forming a connection structure according to some embodiments. Figure 8 depicts a cross-sectional view of a connection structure according to some alternative embodiments. FIG. 9 is a flowchart illustrating a method of forming an organic solder repellant film according to some embodiments. Figure 10 depicts a cross-sectional view of a connection structure according to some alternative embodiments. Figure 11 depicts a cross-sectional view of a connection structure according to some alternative embodiments. Figure 12 depicts a cross-sectional view of a connection structure according to some alternative embodiments. Figure 13 depicts a cross-sectional view of a connection structure according to some alternative embodiments. Figure 14 depicts a cross-sectional view of a connection structure according to some alternative embodiments.

國內寄存資訊(請依寄存機構、日期、號碼順序註記) 無 國外寄存資訊(請依寄存國家、機構、日期、號碼順序註記) 無 Domestic deposit information (please note in order of depositor, date, and number) none Overseas storage information (please note in order of storage country, institution, date, and number) none

100:連接結構 100: Connection structure

110:第一電子組件 110: The first electronic component

112:第一基板 112: The first substrate

114:第一導電元件 114: the first conductive element

120:緩衝層 120: buffer layer

130:異向性導電膠膜 130: Anisotropic conductive film

132:絕緣膠層 132: insulating adhesive layer

134:第一導電粒子 134: The first conductive particle

136:第二導電粒子 136: The second conductive particle

140:第二電子組件 140: Second electronic component

142:第二基板 142: second substrate

144:第二導電元件 144: second conductive element

H1:高度 H 1 : height

H2:高度 H 2 : Height

Claims (10)

一種連接結構,包含: 一第一電子組件,包含一第一基板和在該第一基板之上的一第一導電元件; 一緩衝層,設置在該第一電子組件的該第一導電元件的上表面上; 一異向性導電膠膜,包含一絕緣膠層和在該絕緣膠層中的一第一導電粒子,其中該絕緣膠層設置在該第一電子組件的該第一基板和該第一導電元件上方並且在該緩衝層上;以及 一第二電子組件,設置在該異向性導電膠膜上,該第二電子組件包含一第二基板和在該第二基板之下的一第二導電元件,其中該第一導電粒子電性連接該第一導電元件和該第二導電元件; 其中該緩衝層的熱膨脹係數介於該第一導電元件的熱膨脹係數和該異向性導電膠膜的該絕緣膠層的熱膨脹係數之間。 A connection structure comprising: A first electronic component comprising a first substrate and a first conductive element on the first substrate; a buffer layer disposed on the upper surface of the first conductive element of the first electronic component; An anisotropic conductive adhesive film, comprising an insulating adhesive layer and a first conductive particle in the insulating adhesive layer, wherein the insulating adhesive layer is disposed on the first substrate of the first electronic component and the first conductive element above and on the buffer layer; and A second electronic component is arranged on the anisotropic conductive adhesive film, the second electronic component includes a second substrate and a second conductive element under the second substrate, wherein the first conductive particles are electrically conductive connecting the first conductive element and the second conductive element; The thermal expansion coefficient of the buffer layer is between the thermal expansion coefficient of the first conductive element and the thermal expansion coefficient of the insulating adhesive layer of the anisotropic conductive adhesive film. 如請求項1所述之連接結構,其中該緩衝層的熱膨脹係數為約20 ppm/K至約50 ppm/K。The connection structure according to claim 1, wherein the thermal expansion coefficient of the buffer layer is about 20 ppm/K to about 50 ppm/K. 如請求項1所述之連接結構,其中該緩衝層包含一有機薄膜、一金屬鍍層、或其組合。The connection structure according to claim 1, wherein the buffer layer comprises an organic thin film, a metal plating layer, or a combination thereof. 如請求項1所述之連接結構,其中該緩衝層包含一有機薄膜,並且該第一導電粒子穿過該緩衝層而電性連接該第一導電元件。The connection structure according to claim 1, wherein the buffer layer includes an organic thin film, and the first conductive particles pass through the buffer layer to electrically connect the first conductive element. 如請求項1所述之連接結構,其中該異向性導電膠膜還包含在該絕緣膠層中的一第二導電粒子,該第二導電粒子不接觸該第一導電元件和該第二導電元件,並且該緩衝層的厚度為該第二導電粒子的高度的約1/20至約1/5。The connection structure as claimed in item 1, wherein the anisotropic conductive adhesive film further comprises a second conductive particle in the insulating adhesive layer, the second conductive particle does not contact the first conductive element and the second conductive element, and the thickness of the buffer layer is about 1/20 to about 1/5 of the height of the second conductive particles. 如請求項1所述之連接結構,其中該緩衝層的材料為鋅、鋁、鎂、鉛、鎘、或其組合。The connection structure according to claim 1, wherein the material of the buffer layer is zinc, aluminum, magnesium, lead, cadmium, or a combination thereof. 如請求項1所述之連接結構,其中該緩衝層亦設置在該第一導電元件的側表面上和該第一基板之上。The connection structure according to claim 1, wherein the buffer layer is also disposed on the side surface of the first conductive element and on the first substrate. 一種形成連接結構的方法,包含: 提供一第一電子組件,其中該第一電子組件包含一第一基板和在該第一基板之上的一第一導電元件; 在該第一電子組件的該第一導電元件的上表面上設置一緩衝層; 在該第一電子組件和該緩衝層上方設置一異向性導電膠膜,其中該異向性導電膠膜包含一絕緣膠層和在該絕緣膠層中的一第一導電粒子; 在該異向性導電膠膜上方設置一第二電子組件,其中該第二電子組件包含一第二基板和在該第二基板之下的一第二導電元件,該緩衝層的熱膨脹係數介於該第一導電元件的熱膨脹係數和該異向性導電膠膜的該絕緣膠層的熱膨脹係數之間;以及 壓合該第一電子組件、該緩衝層、該異向性導電膠膜、和該第二電子組件,其中該異向性導電膠膜的該第一導電粒子電性連接該第一導電元件和該第二導電元件。 A method of forming a connection structure, comprising: providing a first electronic component, wherein the first electronic component includes a first substrate and a first conductive element on the first substrate; disposing a buffer layer on the upper surface of the first conductive element of the first electronic component; An anisotropic conductive adhesive film is disposed above the first electronic component and the buffer layer, wherein the anisotropic conductive adhesive film includes an insulating adhesive layer and a first conductive particle in the insulating adhesive layer; A second electronic component is arranged above the anisotropic conductive adhesive film, wherein the second electronic component includes a second substrate and a second conductive element under the second substrate, and the coefficient of thermal expansion of the buffer layer is between Between the thermal expansion coefficient of the first conductive element and the thermal expansion coefficient of the insulating adhesive layer of the anisotropic conductive adhesive film; and laminating the first electronic component, the buffer layer, the anisotropic conductive adhesive film, and the second electronic component, wherein the first conductive particles of the anisotropic conductive adhesive film are electrically connected to the first conductive element and the second conductive element. 如請求項8所述之形成連接結構的方法,其中該緩衝層包含一有機薄膜,並且在所述壓合該第一電子組件、該緩衝層、該異向性導電膠膜、和該第二電子組件時,該異向性導電膠膜的該第一導電粒子穿過該有機薄膜而連接該第一導電元件。The method for forming a connection structure as claimed in item 8, wherein the buffer layer comprises an organic thin film, and the first electronic component, the buffer layer, the anisotropic conductive adhesive film, and the second In electronic components, the first conductive particles of the anisotropic conductive adhesive film pass through the organic film and connect to the first conductive element. 如請求項8所述之形成連接結構的方法,其中該緩衝層包含一金屬鍍層,並且在所述壓合該第一電子組件、該緩衝層、該異向性導電膠膜、和該第二電子組件時,該異向性導電膠膜的該第一導電粒子經由接觸該金屬鍍層而電性連接該第一導電元件。The method for forming a connection structure as claimed in item 8, wherein the buffer layer includes a metal plating layer, and in the lamination process of the first electronic component, the buffer layer, the anisotropic conductive adhesive film, and the second In electronic components, the first conductive particles of the anisotropic conductive adhesive film are electrically connected to the first conductive element by contacting the metal plating layer.
TW111101959A 2022-01-12 2022-01-18 Connection structure and method of forming connection structure TW202328378A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210031345.8A CN114374101A (en) 2022-01-12 2022-01-12 Connection structure and method of forming a connection structure
CN202210031345.8 2022-01-12

Publications (1)

Publication Number Publication Date
TW202328378A true TW202328378A (en) 2023-07-16

Family

ID=81143424

Family Applications (1)

Application Number Title Priority Date Filing Date
TW111101959A TW202328378A (en) 2022-01-12 2022-01-18 Connection structure and method of forming connection structure

Country Status (2)

Country Link
CN (1) CN114374101A (en)
TW (1) TW202328378A (en)

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11135551A (en) * 1997-10-31 1999-05-21 Sony Corp Semiconductor device and method of mounting semiconductor element
CN1900195B (en) * 1998-08-13 2011-06-22 日立化成工业株式会社 Adhesive agent for circuit member connection, circuit board and its producing method
JP2000068400A (en) * 1998-08-24 2000-03-03 Shinko Electric Ind Co Ltd Anisotropic stress relaxing material for semiconductor device and the semiconductor device
JP4029255B2 (en) * 1999-02-18 2008-01-09 セイコーエプソン株式会社 Adhesive member
JP2008024941A (en) * 1999-02-18 2008-02-07 Seiko Epson Corp Semiconductor device
CN101232128B (en) * 2003-06-25 2010-12-08 日立化成工业株式会社 Circuit connecting material, circuit member connecting structure, and method of producing the same
KR102556357B1 (en) * 2015-11-25 2023-07-14 가부시끼가이샤 레조낙 Adhesive Compositions and Structures
CN106201097B (en) * 2016-07-19 2019-08-27 上海天马微电子有限公司 Touch sensor, flexible touch display panel and electronic equipment

Also Published As

Publication number Publication date
CN114374101A (en) 2022-04-19

Similar Documents

Publication Publication Date Title
JP3961092B2 (en) Composite wiring board, flexible substrate, semiconductor device, and method of manufacturing composite wiring board
Yim et al. The contact resistance and reliability of anisotropically conductive film (ACF)
US9084381B2 (en) Method for manufacturing flex-rigid wiring board
KR100713333B1 (en) Multi-layered anisotropic conductive film
KR101021437B1 (en) Multilayer anisotropic, conductive adhesive and joining structure using this
US20110182046A1 (en) Electronic circuit device, method for manufacturing the same, and display device
KR101154565B1 (en) Multi-layer flexible printed circuit board and manufacturing method thereof
JP2008537338A (en) Method for connecting conductive article, and electric or electronic component provided with parts connected by the connection method
JP4569399B2 (en) Circuit board
US20080128911A1 (en) Semiconductor package and method for manufacturing the same
KR100659447B1 (en) Semiconductor chip, semiconductor device, method for producing semiconductor device, and electronic equipment
KR20140024886A (en) Anisotropic conductive film, connection method, and connected structure
Yim et al. Highly reliable flip-chip-on-flex package using multilayered anisotropic conductive film
TW202328378A (en) Connection structure and method of forming connection structure
KR100735211B1 (en) Anisotropic conductive film with conductive ball of highly reliable electric connection
Nagai et al. Anisotropic conductive adhesive films for flip-chip interconnection onto organic substrates
Frisk et al. Effect of substrate material and thickness on reliability of ACA bonded flip chip joints
Palm et al. Comparison of different flex materials in high density flip chip on flex applications
JP3114162B2 (en) Electrical connection method
US6559541B2 (en) Connection structure for semiconductor electrode terminals
JP2003209141A (en) Flexible wiring board and packaging method of semiconductor element
JP2828851B2 (en) How to repair electronic components
Liu et al. Development of ontology for the anisotropic conductive adhesive interconnect technology in electronics applications
JP3783791B2 (en) Connection member and electrode connection structure and connection method using the connection member
Yin et al. Experimental and modeling analysis on moisture induced failures in flip-chip-on-flex interconnections with anisotropic conductive film