TW202327403A - 用於切換式轉換器之電源供應電路 - Google Patents

用於切換式轉換器之電源供應電路 Download PDF

Info

Publication number
TW202327403A
TW202327403A TW111149949A TW111149949A TW202327403A TW 202327403 A TW202327403 A TW 202327403A TW 111149949 A TW111149949 A TW 111149949A TW 111149949 A TW111149949 A TW 111149949A TW 202327403 A TW202327403 A TW 202327403A
Authority
TW
Taiwan
Prior art keywords
switch
voltage
signal
voltage port
coupled
Prior art date
Application number
TW111149949A
Other languages
English (en)
Other versions
TWI834449B (zh
Inventor
賴韋任
廖仁豪
Original Assignee
聯詠科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 聯詠科技股份有限公司 filed Critical 聯詠科技股份有限公司
Publication of TW202327403A publication Critical patent/TW202327403A/zh
Application granted granted Critical
Publication of TWI834449B publication Critical patent/TWI834449B/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • H02M3/158Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/06Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using resistors or capacitors, e.g. potential divider
    • H02M3/07Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using resistors or capacitors, e.g. potential divider using capacitors charged and discharged alternately by semiconductor devices with control electrode, e.g. charge pumps
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0067Converter structures employing plural converter units, other than for parallel operation of the units on a single load
    • H02M1/008Plural converter units for generating at two or more independent and non-parallel outputs, e.g. systems with plural point of load switching regulators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/06Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using resistors or capacitors, e.g. potential divider
    • H02M3/07Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using resistors or capacitors, e.g. potential divider using capacitors charged and discharged alternately by semiconductor devices with control electrode, e.g. charge pumps
    • H02M3/072Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using resistors or capacitors, e.g. potential divider using capacitors charged and discharged alternately by semiconductor devices with control electrode, e.g. charge pumps adapted to generate an output voltage whose value is lower than the input voltage
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • H02M3/158Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load
    • H02M3/1582Buck-boost converters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Dc-Dc Converters (AREA)
  • Direct Current Feeding And Distribution (AREA)
  • Stand-By Power Supply Arrangements (AREA)

Abstract

一種用於切換式轉換器之電源供應電路,包含有一功率級及一訊號選擇裝置。功率級具有一第一電壓埠、一第二電壓埠、一第三電壓埠及一第四電壓埠,且具有被設定耦接於一電源儲存元件之一第一元件端點及一第二元件端點。功率級包含有耦接於第一電壓埠及第一元件端點之間的第一開關器,耦接於第二電壓埠及第二元件端點之間的第二開關器,耦接於第三電壓埠及第一元件端點之間的第三開關器,以及耦接於第四電壓埠及第二元件端點之間的第四開關器。訊號選擇裝置耦接於功率級,用來在複數個控制訊號中分別選擇一控制訊號輸出至第一至第四開關器。

Description

用於切換式轉換器之電源供應電路
本發明係指一種用於切換式轉換器(switching converter)之電源供應電路,尤指一種可應用於各種類型的切換式轉換器之電源供應電路的通用功率級。
在顯示驅動積體電路(display driver IC)之技術領域中,由於應用範圍及面板大小的差異,不同顯示面板通常具有不同負載。舉例來說,設置於穿戴式裝置、行動電話及平板電腦上的顯示面板通常具有不同尺寸,其伴隨的是不同負載大小。顯示面板一般需要穩定的電壓供應以進行操作,而不同類型的面板例如液晶顯示面板(Liquid Crystal Display,LCD)及有機發光二極體(Organic Light-Emitting Diode,OLED)面板通常具有不同的電壓範圍需求。因此,顯示驅動積體電路應配備有適合的切換式轉換器(switching converter)電路以滿足各種面板需求。常見的切換式轉換器包含有切換式電容轉換器和切換式電感轉換器。一般來說,切換式電容轉換器適用於較輕的電流負載,其在較小電壓的範圍內具有較高的電源傳輸效率;切換式電感轉換器則適用於較重的電流負載,其在較大電壓的範圍內具有較高的電源傳輸效率。
然而,切換式轉換器通常需要供應龐大電流,因而需包含大尺寸的切換電晶體,其佔據顯示驅動積體電路的大量面積。另外,電容或電感的設置需搭配額外的輸入輸出接墊(I/O pad)。在顯示驅動積體電路有限的接墊數量及晶片面積之下,難以設置單一切換式轉換器來同時滿足輕載和重載需求。有鑑於此,習知技術實有改進之必要。
因此,本發明之主要目的即在於提出一種可用於各種類型的切換式轉換器(switching converter)之通用功率級,以在顯示驅動積體電路(display driver IC)中實現切換式電容轉換器及切換式電感轉換器。
本發明之一實施例揭露一種電源供應電路,用於一切換式轉換器。該電源供應電路包含有一功率級及一訊號選擇裝置。該功率級具有一第一電壓埠、一第二電壓埠、一第三電壓埠及一第四電壓埠,且具有被設定耦接於一電源儲存元件之一第一元件端點及一第二元件端點。該功率級包含有一第一開關器、一第二開關器、一第三開關器及一第四開關器。該第一開關器耦接於該第一電壓埠及該第一元件端點之間,該第二開關器耦接於該第二電壓埠及該第二元件端點之間,該第三開關器耦接於該第三電壓埠及該第一元件端點之間,該第四開關器耦接於該第四電壓埠及該第二元件端點之間。該訊號選擇裝置耦接於該功率級,用來在複數個控制訊號中分別選擇一控制訊號輸出至該第一開關器、該第二開關器、該第三開關器及該第四開關器中的每一開關器。
本發明之另一實施例揭露一種電源供應電路,用於一切換式轉換器。該電源供應電路包含有一功率級及一訊號選擇裝置。該功率級具有一第一電壓埠、一第二電壓埠、一第三電壓埠及一第四電壓埠,且具有被設定耦接於一電容之一第一元件端點及一第二元件端點。該功率級包含有一第一開關器、一第二開關器、一第三開關器及一第四開關器。該第一開關器耦接於該第一電壓埠及該第一元件端點之間,該第二開關器耦接於該第二電壓埠及該第二元件端點之間,該第三開關器耦接於該第三電壓埠及該第一元件端點之間,該第四開關器耦接於該第四電壓埠及該第二元件端點之間。該訊號選擇裝置耦接於該功率級,用來從該切換式轉換器之一訊號控制裝置接收一第一切換控制訊號及一第二切換控制訊號,選擇利用該第一切換控制訊號來控制該第一開關器及該第二開關器,並選擇利用該第二切換控制訊號來控制該第三開關器及該第四開關器。
本發明之另一實施例揭露一種電源供應電路,用於一切換式轉換器。該電源供應電路包含有一功率級及一訊號選擇裝置。該功率級具有一第一電壓埠、一第二電壓埠、一第三電壓埠及一第四電壓埠,且具有被設定耦接於一電感之一第一元件端點及一第二元件端點。該功率級包含有一第一開關器、一第二開關器、一第三開關器及一第四開關器。該第一開關器耦接於該第一電壓埠及該第一元件端點之間,該第二開關器耦接於該第二電壓埠及該第二元件端點之間,該第三開關器耦接於該第三電壓埠及該第一元件端點之間,該第四開關器耦接於該第四電壓埠及該第二元件端點之間。該訊號選擇裝置耦接於該功率級,用來從該切換式轉換器之一訊號控制裝置接收一第一切換控制訊號及一第二切換控制訊號,選擇利用一恆開訊號來控制該第一開關器,選擇利用該第一切換控制訊號來控制該第二開關器,選擇利用一恆關訊號來控制該第三開關器,並選擇利用該第二切換控制訊號來控制該第四開關器。
請參考第1圖,第1圖為一般切換式轉換器(switching converter)10之示意圖。切換式轉換器10可作為一電子系統或設備的電源供應裝置,可藉由接收一輸入電壓VIN來輸出穩定的一輸出電壓VOUT。如第1圖所示,切換式轉換器10包含有一功率級102、一回授電路104、一誤差放大器106及一訊號控制裝置108。
詳細來說,功率級102係由一被動元件及數個切換電晶體所組成,其中,此被動元件可以是電容或電感。功率級102可根據所接收的輸入電壓VIN及一接地電壓GND來輸出輸出電壓VOUT。回授電路104用來提供一回授路徑予切換式轉換器10,其可根據輸出電壓VOUT產生一回授訊號VFB。舉例來說,回授電路104可包含一分壓電路,因而所產生的回授訊號VFB可以是輸出電壓VOUT的分壓。誤差放大器106可根據一參考電壓VREF及回授訊號VFB的差異,產生一誤差訊號VE。接著,訊號控制裝置108可對誤差訊號VE進行處理以產生切換控制訊號CLK1及CLK2,並將其輸出至功率級102,其中,切換控制訊號CLK1及CLK2可用來控制功率電晶體開啟或關閉。根據功率級102的結構,切換式轉換器10可以是電荷泵(charge pump)、降壓轉換器(buck converter)、升壓轉換器(boost converter)、或其它任意類型的電壓轉換器。
第2A圖繪示功率級102的一種實施方式,其用以實現一電荷泵。電荷泵包含有一電容C1及四個開關器SW1~SW4。切換控制訊號CLK1可用來控制開關器SW1及SW2,切換控制訊號CLK2可用來控制開關器SW3及SW4。開關器SW1及SW3耦接於電容C1之一端,開關器SW2及SW4耦接於電容C1之另一端。在電荷泵中,輸入電壓VIN係透過開關器SW1及SW4接收,開關器SW2接收接地電壓GND,開關器SW3則用來輸出輸出電壓VOUT。
電荷泵具有二個操作階段:充電階段及放電階段。在充電階段中,開關器SW1及SW2開啟且開關器SW3及SW4關閉,電容C1可透過由VIN的輸入端通向接地端之充電路徑進行充電。在放電階段中,開關器SW3及SW4開啟且開關器SW1及SW2關閉,電容C1可透過通向VOUT的輸出端之放電路徑進行放電。此時,輸出電壓VOUT被升壓至接近兩倍的輸入電壓VIN。
第2B圖繪示功率級102的另一種實施方式,其用以實現一降壓轉換器。降壓轉換器包含有一電感L1及二個開關器SW5及SW6。切換控制訊號CLK1可用來控制開關器SW5,切換控制訊號CLK2可用來控制開關器SW6。開關器SW5及SW6耦接於電感L1之一端,電感L1之另一端則耦接至降壓轉換器的輸出端,用來輸出輸出電壓VOUT。輸入電壓係透過開關器SW5接收,開關器SW6則用來接收接地電壓GND。
降壓轉換器具有二個操作階段:充電階段及放電階段。在充電階段中,開關器SW5開啟且開關器SW6關閉,電感L1可透過由VIN的輸入端通向VOUT的輸出端之充電路徑進行充電。在放電階段中,開關器SW6開啟且開關器SW5關閉,電感L1可透過由接地端通向VOUT的輸出端之放電路徑進行放電。此時,輸出電壓VOUT等於VIN×D,D等於充電階段的時間長度除以充電階段加放電階段的整體時間長度。
第2C圖繪示功率級102的又一種實施方式,其用以實現一升壓轉換器。升壓轉換器包含有一電感L2及二個開關器SW7及SW8。切換控制訊號CLK1可用來控制開關器SW7,切換控制訊號CLK2可用來控制開關器SW8。開關器SW7及SW8耦接於電感L2之一端,電感L2之另一端則耦接至升壓轉換器的輸入端,用來接收輸入電壓VIN。開關器SW7可用來接收接地電壓GND,而開關器SW8耦接於升壓轉換器的輸出端,用來輸出輸出電壓VOUT。
升壓轉換器同樣具有二個操作階段:充電階段及放電階段。在充電階段中,開關器SW7開啟且開關器SW8關閉,電感L2可透過由VIN的輸入端通向接地端之充電路徑進行充電。在放電階段中,開關器SW8開啟且開關器SW7關閉,電感L2可透過由VIN的輸入端通向VOUT的輸出端之放電路徑進行放電。此時,輸出電壓VOUT等於VIN/(1-D),D等於充電階段的時間長度除以充電階段加放電階段的整體時間長度。
如第2A~2C圖所示,電荷泵、降壓轉換器及升壓轉換器具有各自的功率級結構,因此僅能夠實現其各自的供電功能。然而,由於每一功率級皆是由數個切換電晶體搭配一個外接的被動元件(如電容或電感)所組成的,因此,本發明提出了一種通用功率級結構,可透過適當的設定來滿足切換式電容轉換器(例如電荷泵電路)及切換式電感轉換器(例如降壓轉換器及升壓轉換器)等各種應用,以應用於不同電壓準位及不同負載之需求。
請參考第3圖,第3圖為本發明實施例一切換式轉換器30之示意圖。同樣地,切換式轉換器30可藉由接收一輸入電壓VIN來輸出穩定的一輸出電壓VOUT,以作為一電子系統或設備的電源供應裝置。在一實施例中,切換式轉換器30可實現於一顯示驅動積體電路(display driver IC),用來供應輸出電壓VOUT至一源極驅動裝置,以驅動一顯示面板。
如第3圖所示,切換式轉換器30包含有一H橋接式功率級302、一回授電路304、一誤差放大器306、一訊號控制裝置308及一訊號選擇裝置310。關於回授電路304、誤差放大器306及訊號控制裝置308之運作方式均類似於回授電路104、誤差放大器106及訊號控制裝置108,故在此不贅述。切換式轉換器30與切換式轉換器10的差異之處在於,H橋接式功率級302與功率級102具有不同結構,且切換式轉換器30另包含有訊號選擇裝置310,用來選擇性輸出控制訊號SIG_Q1~SIG_Q4至H橋接式功率級302。
詳細來說,訊號控制裝置308可輸出切換控制訊號CLK1及CLK2至訊號選擇裝置310。訊號選擇裝置310則輸出控制訊號SIG_Q1~SIG_Q4至H橋接式功率級302,以分別控制H橋接式功率級302中四個相對應的開關器,其中,控制訊號SIG_Q1~SIG_Q4係選自於切換控制訊號CLK1及CLK2、一恆開訊號CLK100、及一恆關訊號CLK0。恆開訊號CLK100可用來持續開啟H橋接式功率級302中相對應的開關器,而恆關訊號CLK0可用來持續關閉H橋接式功率級302中相對應的開關器。H橋接式功率級302另可透過部分電壓埠來接收輸入電壓VIN及接地電壓GND,並對應地透過另一電壓埠來輸出輸出電壓VOUT。H橋接式功率級302是由四個開關器組成,其被設定耦接於一電源儲存元件,其可以是被動元件,如電容或電感。根據控制訊號SIG_Q1~SIG_Q4及其對應的電壓埠配置,H橋接式功率級302搭配訊號選擇裝置310可實現切換式電容轉換器或切換式電感轉換器,以因應各種電源輸出的應用。切換式轉換器可包含電荷泵、降壓轉換器及升壓轉換器,但不限於此。
請參考第4圖,第4圖為H橋接式功率級302的示例性結構之示意圖。如第4圖所示,H橋接式功率級302包含有四個開關器SW_Q1~SW_Q4,其可透過電晶體來實現,如P型金氧半電晶體(PMOS transistor)、N型金氧半電晶體(NMOS transistor)、及/或傳輸閘(transmission gate)。第4圖另繪示一電源儲存元件400以方便說明,其可包含在H橋接式功率級302中或單獨設置。在一實施例中,電源儲存元件400可以是透過二個元件端點外接於H橋接式功率級302之一被動元件,該些元件端點可透過輸入輸出接墊(I/O pad)P1及P2來實現。此被動元件可以是例如電容或電感,用來實現切換式電容轉換器或切換式電感轉換器。在另一實施例中,被動元件亦可包含在積體電路內部,因而輸入輸出接墊P1及P2可省略。
如第4圖所示,開關器SW_Q1~SW_Q4另分別耦接至電壓埠VP1~VP4。更明確來說,開關器SW_Q1耦接於電壓埠VP1及輸入輸出接墊P1之間,開關器SW_Q2耦接於電壓埠VP2及輸入輸出接墊P2之間,開關器SW_Q3耦接於電壓埠VP3及輸入輸出接墊P1之間,開關器SW_Q4耦接於電壓埠VP4及輸入輸出接墊P2之間。電源儲存元件400的上端耦接於輸入輸出接墊P1,以進一步耦接至開關器SW_Q1及SW_Q3。電源儲存元件400的下端耦接於輸入輸出接墊P2,以進一步耦接至開關器SW_Q2及SW_Q4。
在H橋接式功率級302中,開關器SW_Q1~SW_Q4分別受控於訊號選擇裝置310所輸出的控制訊號SIG_Q1~SIG_Q4。每一電壓埠VP1~VP4可以是一輸入端,用來接收選自於輸入電壓VIN或接地電壓GND之一電源供應電壓;或是一輸出端,用來輸出輸出電壓VOUT至切換式轉換器30的負載。在一實施例中,若任一電壓埠VP1~VP4未用來接收電源供應電壓或輸出輸出電壓VOUT時,此電壓埠可設定為浮空。由於H橋接式功率級302係作為切換式轉換器30的輸出級,應將至少一電壓埠VP1~VP4設定為用來輸出輸出電壓VOUT之輸出端。
請參考第5圖,第5圖為訊號選擇裝置310的示例性結構之示意圖。訊號選擇裝置310可用來選擇控制訊號SIG_Q1~SIG_Q4輸出至H橋接式功率級302。如第5圖所示,訊號選擇裝置310包含有數個多工器(multiplexer,MUX)M1~M4,其中每一多工器M1~M4耦接於H橋接式功率級302之其中一開關器SW_Q1~SW_Q4。多工器M1~M4分別用來輸出控制訊號SIG_Q1~SIG_Q4至開關器SW_Q1~SW_Q4,其中,每一控制訊號SIG_Q1~SIG_Q4選自於切換控制訊號CLK1及CLK2、恆開訊號CLK100、及恆關訊號CLK0之其中一者。多工器M1~M4可分別透過選擇訊號SEL_A~SEL_D進行控制,其可由使用者進行設定。根據訊號選擇裝置310的設定,切換控制訊號CLK1及CLK2、恆開訊號CLK100、及恆關訊號CLK0可適當地分配至控制訊號SIG_Q1~SIG_Q4,且H橋接式功率級302的每一電壓埠VP1~VP4可對應接收輸入電壓VIN或接地電壓GND或用來輸出輸出電壓VOUT,進而設定切換式轉換器30之電源供應電路以實現電荷泵、降壓轉換器、或升壓轉換器等。
因此,根據H橋接式功率級302中電壓埠VP1~VP4的連接方式以及電源儲存元件400的設置,只要透過適當的方式來配置控制訊號SIG_Q1~SIG_Q4,切換式轉換器30可應用於任何可能的情況,以因應例如高/低電壓準位及重載/輕載等各種需求。在一實施例中,通用切換式轉換器30可在其置入電路系統之前進行設定,使用者或作業員可根據電路系統的應用環境,設定選擇訊號SEL_A~SEL_D以及電壓埠VP1~VP4的連接方式。舉例來說,切換式轉換器30可用來實現電荷泵或升壓轉換器,使得源極驅動裝置可輸出較高的電壓,以透過最佳化的電源傳輸效率來驅動顯示面板。
第6A圖為控制訊號的示例性波形圖,其繪示切換控制訊號CLK1及CLK2、恆開訊號CLK100及恆關訊號CLK0。一般來說,切換式轉換器30具有二個操作階段:充電階段及放電階段。期間T1代表充電階段,其中切換控制訊號CLK1位於“高”準位而切換控制訊號CLK2位於“低”準位;期間T2代表放電階段,其中切換控制訊號CLK1位於“低”準位而切換控制訊號CLK2位於“高”準位。充電階段及放電階段可交替進行。期間T PERIOD為一充電期間T1及一放電期間T2所構成的一週期。在此例中,切換控制訊號CLK1及切換控制訊號CLK2為互補訊號,其責任週期之寬度可設定為適合的任意數值。此外,恆開訊號CLK100在期間T PERIOD內持續位於“高”準位(即責任週期等於100%),以持續開啟相對應的開關器。恆關訊號CLK0在期間T PERIOD內持續位於“低”準位(即責任週期等於0%),以持續關閉相對應的開關器。
值得注意的是,切換控制訊號CLK1及CLK2亦可不為互補訊號。第6B圖為控制訊號的另一示例性波形圖,其繪示切換控制訊號CLK1及CLK2、恆開訊號CLK100及恆關訊號CLK0。如第6B圖所示,除了充電期間T1及放電期間T2外,另配置一段期間T3其中切換控制訊號CLK1及CLK2皆為“低”準位。在此例中,由於期間T3的配置,切換控制訊號CLK1及切換控制訊號CLK2不為互補訊號,但仍可實現充電及放電操作。只要切換控制訊號CLK1及CLK2不同時開啟相對應的開關器,切換式轉換器30皆可正常運作。
在上述第6A及6B圖之實施例中,控制訊號位於“高”準位可開啟相對應的開關器而位於“低”準位可關閉相對應的開關器,但本發明之實施方式不限於此。在另一實施例中,可藉由位於“低”準位的控制訊號來開啟一開關器,端視用於實現開關器的電晶體類型而定。根據電晶體的實現方式,本領域具通常知識者可採用適合的控制訊號來開啟或關閉開關器。
由此可知,透過訊號選擇裝置310的控制,H橋接式功率級302可用來實現各種類型的切換式轉換器,如正電荷泵、負電荷泵、降壓轉換器、升壓轉換器、反相降壓-升壓轉換器(inverting buck-boost converter)、非反相降壓-升壓轉換器(non-inverting buck-boost converter)、以及單電感雙輸出(Single Inductor Dual Output,SIDO)直流對直流轉換器。針對該些切換式轉換器中控制訊號SIG_Q1~SIG_Q4的詳細實施方式以及電壓埠VP1~VP4的連接方式可歸納為表1,如下所示:
切換式轉換器 被動元件 SIG_Q1 SIG_Q2 SIG_Q3 SIG_Q4
正電荷泵 電容 CLK1 CLK1 CLK2 CLK2
負電荷泵 CLK1 CLK1 CLK2 CLK2
降壓 電感 CLK1 CLK0 CLK2 CLK100
升壓 CLK100 CLK1 CLK0 CLK2
反相降壓-升壓 CLK1 CLK100 CLK2 CLK0
非反相降壓-升壓 CLK1 CLK1 CLK2 CLK2
單電感雙輸出 CLK1 CLK1 CLK2 CLK2
切換式轉換器 VP1 VP2 VP3 VP4 輸出電壓
正電荷泵 VIN GND VOUT VIN VOUT = VIN×2
負電荷泵 VIN GND GND VOUT VOUT = -VIN
降壓 VIN NC GND VOUT VOUT = VIN×D
升壓 VIN GND NC VOUT VOUT = VIN/(1-D)
反相降壓-升壓 VIN GND VOUT NC VOUT = -VIN×D/(1-D)
非反相降壓-升壓 VIN GND GND VOUT VOUT = VIN×D/(1-D)
單電感雙輸出 VIN GND VOUT_N VOUT_P VOUT_P = VIN×D VOUT_N = -VIN×D/(1-D)
表1
關於電壓埠VP1~VP4及控制訊號SIG_Q1~SIG_Q4的設置方式繪示於第4圖及其相關段落。需注意的是,部分電壓埠VP1~VP4標示為“NC”,意即該些電壓埠可連接至任一節點或設定為浮空。這是因為對應於該些電壓埠的開關器接收恆關訊號CLK0,故電壓埠的連接方式不影響H橋接式功率級302之運作。
表1亦示出各類型切換式轉換器的輸出電壓VOUT數值。需注意的是,該些切換式轉換器皆包含有充電階段(如第6A及6B圖所示之充電期間T1)及放電階段(如第6A及6B圖所示之放電期間T2),且D代表切換控制訊號CLK1的責任週期,其等於充電期間T1的長度除以期間T PERIOD的總長度。
因此,根據電壓埠VP1~VP4的連接方式及其相關的控制訊號SIG_Q1~SIG_Q4的配置,H橋接式功率級302可用以實現各種類型的切換式轉換器,以因應不同輸出電壓及負載。當輸出電壓的需求改變時,僅需要調整電壓埠VP1~VP4的連接方式及控制訊號SIG_Q1~SIG_Q4的配置方式,其可在不修改H橋接式功率級302結構的情況下輕易實現,以下段落將說明數種類型的切換式轉換器之詳細實施方式。
請參考第7圖,第7圖為H橋接式功率級302用來實現一正電荷泵之示意圖。如第7圖所示,電源儲存元件為一電容C2。在一實施例中,電容C2是一晶片外電容,其可透過輸入輸出接墊P1及P2耦接至電源供應積體電路之H橋接式功率級302。開關器SW_Q1可透過一P型金氧半電晶體實現,開關器SW_Q2可透過一N型金氧半電晶體實現,且開關器SW_Q3及SW_Q4皆可透過由一P型金氧半電晶體及一N型金氧半電晶體所構成的一傳輸閘實現。開關器SW_Q1受控於反相切換控制訊號CLK1_INV,開關器SW_Q2受控於切換控制訊號CLK1,開關器SW_Q3受控於切換控制訊號CLK2及反相切換控制訊號CLK2_INV,且開關器SW_Q4受控於切換控制訊號CLK2及反相切換控制訊號CLK2_INV。對應地,電壓埠VP1及VP4用來接收輸入電壓VIN,電壓埠VP2用來接收接地電壓GND,且電壓埠VP3用來輸出輸出電壓VOUT。
更明確來說,根據來自於訊號控制裝置308的切換控制訊號CLK1及CLK2,以及恆開訊號CLK100及恆關訊號CLK0,訊號選擇裝置310可選擇利用切換控制訊號CLK1來產生用於開關器SW_Q1及SW_Q2之控制訊號SIG_Q1及SIG_Q2,並選擇利用切換控制訊號CLK2來產生用於開關器SW_Q3及SW_Q4之控制訊號SIG_Q3及SIG_Q4。詳細來說,由於開關器SW_Q1為P型金氧半電晶體,切換控制訊號CLK1可進行反相以產生反相切換控制訊號CLK1_INV傳送至開關器SW_Q1。切換控制訊號CLK1另傳送至開關器SW_Q2的N型金氧半電晶體。由於開關器SW_Q3及SW_Q4為傳輸閘,切換控制訊號CLK2及其反相切換控制訊號CLK2_INV可同時傳送至開關器SW_Q3及SW_Q4。
因此,在充電階段中,開關器SW_Q1及SW_Q2開啟且開關器SW_Q3及SW_Q4關閉,電容C2可透過由VIN的輸入端通向接地端之充電路徑進行充電。在放電階段中,開關器SW_Q3及SW_Q4開啟且開關器SW_Q1及SW_Q2關閉,電容C2可透過通向VOUT的輸出端之放電路徑進行放電。在此例中,輸出電壓VOUT約等於VIN×2。
請參考第8圖,第8圖為H橋接式功率級302用來實現一降壓轉換器之示意圖。如第8圖所示,電源儲存元件為一電感L3。在一實施例中,電感L3是一晶片外電感,其可透過輸入輸出接墊P1及P2耦接至電源供應積體電路之H橋接式功率級302。開關器SW_Q1可透過一P型金氧半電晶體實現,開關器SW_Q2可透過一N型金氧半電晶體實現,開關器SW_Q3及SW_Q4皆可透過由一P型金氧半電晶體及一N型金氧半電晶體所構成的一傳輸閘實現。開關器SW_Q1受控於反相切換控制訊號CLK1_INV,開關器SW_Q2受控於恆關訊號CLK0,開關器SW_Q3受控於切換控制訊號CLK2及反相切換控制訊號CLK2_INV,且開關器SW_Q4受控於恆開訊號CLK100及反相恆開訊號CLK100_INV。對應地,電壓埠VP1用來接收輸入電壓VIN,電壓埠VP2可設定為浮空或耦接於任何節點(標示為NC),因其對應的開關器SW_Q2為恆關,電壓埠VP3用來接收接地電壓GND,且電壓埠VP4用來輸出輸出電壓VOUT。
更明確來說,根據來自於訊號控制裝置308的切換控制訊號CLK1及CLK2,以及恆開訊號CLK100及恆關訊號CLK0,訊號選擇裝置310可選擇利用切換控制訊號CLK1來產生用於開關器SW_Q1之控制訊號SIG_Q1,選擇利用恆關訊號CLK0來產生用於開關器SW_Q2之控制訊號SIG_Q2,選擇利用切換控制訊號CLK2來產生用於開關器SW_Q3之控制訊號SIG_Q3,並選擇利用恆開訊號CLK100來產生用於開關器SW_Q4之控制訊號SIG_Q4。詳細來說,由於開關器SW_Q1為P型金氧半電晶體,切換控制訊號CLK1可進行反相以產生反相切換控制訊號CLK1_INV傳送至開關器SW_Q1。恆關訊號CLK0被傳送至開關器SW_Q2的N型金氧半電晶體。由於開關器SW_Q3為傳輸閘,切換控制訊號CLK2及其反相切換控制訊號CLK2_INV可同時傳送至開關器SW_Q3。由於開關器SW_Q4為傳輸閘,恆開訊號CLK100及其反相恆開訊號CLK100_INV可同時傳送至開關器SW_Q4。
因此,在充電階段中,開關器SW_Q1及SW_Q4開啟且開關器SW_Q2及SW_Q3關閉,電感L3可透過由VIN的輸入端通向VOUT的輸出端之充電路徑進行充電。在放電階段中,開關器SW_Q3及SW_Q4開啟且開關器SW_Q1及SW_Q2關閉,電感L3可透過由接地端通向VOUT的輸出端之放電路徑進行放電。在此例中,輸出電壓VOUT等於VIN×D,其中D為切換控制訊號CLK1的責任週期。
請參考第9圖,第9圖為H橋接式功率級302用來實現一升壓轉換器之示意圖。如第9圖所示,電源儲存元件為一電感L4。在一實施例中,電感L4是一晶片外電感,其可透過輸入輸出接墊P1及P2耦接至電源供應積體電路之H橋接式功率級302。開關器SW_Q1可透過一P型金氧半電晶體實現,開關器SW_Q2可透過一N型金氧半電晶體實現,開關器SW_Q3及SW_Q4皆可透過由一P型金氧半電晶體及一N型金氧半電晶體所構成的一傳輸閘實現。開關器SW_Q1受控於反相恆開訊號CLK100_INV,開關器SW_Q2受控於切換控制訊號CLK1,開關器SW_Q3受控於恆關訊號CLK0及反相恆關訊號CLK0_INV,且開關器SW_Q4受控於切換控制訊號CLK2及反相切換控制訊號CLK2_INV。對應地,電壓埠VP1用來接收輸入電壓VIN,電壓埠VP2用來接收接地電壓GND,電壓埠VP3可設定為浮空或耦接於任何節點(標示為NC),因其對應的開關器SW_Q3為恆關,且電壓埠VP4用來輸出輸出電壓VOUT。
更明確來說,根據來自於訊號控制裝置308的切換控制訊號CLK1及CLK2,以及恆開訊號CLK100及恆關訊號CLK0,訊號選擇裝置310可選擇利用恆開訊號CLK100來產生用於開關器SW_Q1之控制訊號SIG_Q1,選擇利用切換控制訊號CLK1來產生用於開關器SW_Q2之控制訊號SIG_Q2,選擇利用恆關訊號CLK0來產生用於開關器SW_Q3之控制訊號SIG_Q3,並選擇利用切換控制訊號CLK2來產生用於開關器SW_Q4之控制訊號SIG_Q4。詳細來說,由於開關器SW_Q1為P型金氧半電晶體,恆開訊號CLK100可進行反相以產生反相恆開訊號CLK100_INV傳送至開關器SW_Q1。切換控制訊號CLK1被傳送至開關器SW_Q2的N型金氧半電晶體。由於開關器SW_Q3為傳輸閘,恆關訊號CLK0及其反相恆關訊號CLK0_INV可同時傳送至開關器SW_Q3。由於開關器SW_Q4為傳輸閘,切換控制訊號CLK2及其反相切換控制訊號CLK2_INV可同時傳送至開關器SW_Q4。
因此,在充電階段中,開關器SW_Q1及SW_Q2開啟且開關器SW_Q3及SW_Q4關閉,電感L4可透過由VIN的輸入端通向接地端之充電路徑進行充電。在放電階段中,開關器SW_Q1及SW_Q4開啟且開關器SW_Q2及SW_Q3關閉,電感L4可透過由VIN的輸入端通向VOUT的輸出端之放電路徑進行放電。在此例中,輸出電壓VOUT等於VIN/(1-D),其中D為切換控制訊號CLK1的責任週期。
請參考第10圖,第10圖為H橋接式功率級302用來實現一反相降壓-升壓轉換器之示意圖。如第10圖所示,電源儲存元件為一電感L5。在一實施例中,電感L5是一晶片外電感,其可透過輸入輸出接墊P1及P2耦接至電源供應積體電路之H橋接式功率級302。開關器SW_Q1可透過一P型金氧半電晶體實現,開關器SW_Q2可透過一N型金氧半電晶體實現,開關器SW_Q3及SW_Q4皆可透過由一P型金氧半電晶體及一N型金氧半電晶體所構成的一傳輸閘實現。開關器SW_Q1受控於反相切換控制訊號CLK1_INV,開關器SW_Q2受控於恆開訊號CLK100,開關器SW_Q3受控於切換控制訊號CLK2及反相切換控制訊號CLK2_INV,且開關器SW_Q4受控於恆關訊號CLK0及反相恆關訊號CLK0_INV。對應地,電壓埠VP1用來接收輸入電壓VIN,電壓埠VP2用來接收接地電壓GND,電壓埠VP3用來輸出輸出電壓VOUT,且電壓埠VP4可設定為浮空或耦接於任何節點(標示為NC),因其對應的開關器SW_Q4為恆關。
更明確來說,根據來自於訊號控制裝置308的切換控制訊號CLK1及CLK2,以及恆開訊號CLK100及恆關訊號CLK0,訊號選擇裝置310可選擇利用切換控制訊號CLK1來產生用於開關器SW_Q1之控制訊號SIG_Q1,選擇利用恆開訊號CLK100來產生用於開關器SW_Q2之控制訊號SIG_Q2,選擇利用切換控制訊號CLK2來產生用於開關器SW_Q3之控制訊號SIG_Q3,並選擇利用恆關訊號CLK0來產生用於開關器SW_Q4之控制訊號SIG_Q4。詳細來說,由於開關器SW_Q1為P型金氧半電晶體,切換控制訊號CLK1可進行反相以產生反相切換控制訊號CLK1_INV傳送至開關器SW_Q1。恆開訊號CLK100被傳送至開關器SW_Q2的N型金氧半電晶體。由於開關器SW_Q3為傳輸閘,切換控制訊號CLK2及其反相切換控制訊號CLK2_INV可同時傳送至開關器SW_Q3。由於開關器SW_Q4為傳輸閘,恆關訊號CLK0及其反相恆關訊號CLK0_INV可同時傳送至開關器SW_Q4。
因此,在充電階段中,開關器SW_Q1及SW_Q2開啟且開關器SW_Q3及SW_Q4關閉,電感L5可透過由VIN的輸入端通向接地端之充電路徑進行充電。在放電階段中,開關器SW_Q2及SW_Q3開啟且開關器SW_Q1及SW_Q4關閉,電感L5可透過由VOUT的輸出端通向接地端之放電路徑進行放電。在此例中,輸出電壓VOUT等於-VIN×D/(1-D),其中D為切換控制訊號CLK1的責任週期。
請參考第11圖,第11圖為H橋接式功率級302用來實現一單電感雙輸出直流對直流轉換器之示意圖。如第11圖所示,電源儲存元件為一電感L6。在一實施例中,電感L6是一晶片外電感,其可透過輸入輸出接墊P1及P2耦接至電源供應積體電路之H橋接式功率級302。開關器SW_Q1可透過一P型金氧半電晶體實現,開關器SW_Q2可透過一N型金氧半電晶體實現,開關器SW_Q3及SW_Q4皆可透過由一P型金氧半電晶體及一N型金氧半電晶體所構成的一傳輸閘實現。開關器SW_Q1受控於反相切換控制訊號CLK1_INV,開關器SW_Q2受控於切換控制訊號CLK1,開關器SW_Q3受控於切換控制訊號CLK2及反相切換控制訊號CLK2_INV,且開關器SW_Q4受控於切換控制訊號CLK2及反相切換控制訊號CLK2_INV。對應地,電壓埠VP1用來接收輸入電壓VIN,電壓埠VP2用來接收接地電壓GND,電壓埠VP3用來輸出一負輸出電壓VOUT_N,且電壓埠VP4用來輸出一正輸出電壓VOUT_P。在此例中,電壓埠VP1~VP4之其中二電壓埠為輸出端。
更明確來說,根據來自於訊號控制裝置308的切換控制訊號CLK1及CLK2,以及恆開訊號CLK100及恆關訊號CLK0,訊號選擇裝置310可選擇利用切換控制訊號CLK1來產生用於開關器SW_Q1及SW_Q2之控制訊號SIG_Q1及SIG_Q2,並選擇利用切換控制訊號CLK2來產生用於開關器SW_Q3及SW_Q4之控制訊號SIG_Q3及SIG_Q4。詳細來說,由於開關器SW_Q1為P型金氧半電晶體,切換控制訊號CLK1可進行反相以產生反相切換控制訊號CLK1_INV傳送至開關器SW_Q1。切換控制訊號CLK1另傳送至開關器SW_Q2的N型金氧半電晶體。由於開關器SW_Q3及SW_Q4為傳輸閘,切換控制訊號CLK2及其反相切換控制訊號CLK2_INV可同時傳送至開關器SW_Q3及SW_Q4。
因此,在充電階段中,開關器SW_Q1及SW_Q2開啟且開關器SW_Q3及SW_Q4關閉,電感L6可透過由VIN的輸入端通向接地端之充電路徑進行充電。在放電階段中,開關器SW_Q3及SW_Q4開啟且開關器SW_Q1及SW_Q2關閉,電感L6可透過由VOUT_N的負輸出端通向VOUT_P的正輸出端之放電路徑進行放電。在此例中,正輸出電壓VOUT_P等於VIN×D,負輸出電壓VOUT_N等於-VIN×D/(1-D),其中D為切換控制訊號CLK1的責任週期。
在一實施例中,單電感雙輸出直流對直流轉換器可額外包含其它放電階段,用以單獨輸出電流至負輸出端或正輸出端,此放電階段可透過同時開啟開關器SW_Q1及SW_Q4或同時開啟開關器SW_Q2及SW_Q3來實現,相關的控制方式亦屬於本發明之範疇。
值得注意的是,本發明之目的在於提出一種H橋接式功率級,其可藉由設定電壓埠的連接方式以及切換控制方式來因應各種類型的切換式轉換器。本領域具通常知識者當可據以進行修飾或變化,而不限於此。舉例來說,本發明之H橋接式功率級可應用於具有一被動元件搭配數個切換電晶體之任何類型的切換式電容轉換器及切換式電感轉換器,相關的應用不限於表1或上述段落提出的內容。
除此之外,在包含四個開關器的H橋接式功率級中,每一開關器皆可透過單一P型金氧半電晶體、單一N型金氧半電晶體、或傳輸閘來實現,開關器的類型可根據各電壓埠的電壓準位來決定,其中,每一開關器皆可採用一或多個適合的切換電晶體,以在任何可能的電壓準位之下皆能夠正常導通或斷開充電/放電電流,關於開關器類型的實施方式亦不限於本說明書提出的內容。
更進一步地,第7~11圖中的實施例僅是用來說明H橋接式功率級的示例性設定方式,用以實現各種類型的切換式轉換器。關於電壓埠的配置方式及其對應的控制訊號可根據系統需求進行變化或調整。舉例來說,在另一實施例中,電壓埠VP1及VP2的連接可互換,且電壓埠VP3及VP4的連接可互換。對應地,用於開關器SW_Q1及SW_Q2之控制訊號SIG_Q1及SIG_Q2的配置亦可互換,且用於開關器SW_Q3及SW_Q4之控制訊號SIG_Q3及SIG_Q4的配置亦可互換。透過上述交換,H橋接式功率級之設定仍可正常運作,以實現電壓輸出功能。
綜上所述,本發明提出了一種可用於切換式轉換器之通用功率級,此通用功率級可以是一H橋接式功率級,其包含有四個開關器,可被設定耦接於一電源儲存元件,如電容或電感,用以實現切換式電容轉換器或切換式電感轉換器。根據電壓埠的連接方式及其控制訊號的配置,H橋接式功率級搭配提供控制訊號之一訊號選擇裝置可用來實現正電荷泵、負電荷泵、降壓轉換器、升壓轉換器、反相降壓-升壓轉換器、非反相降壓-升壓轉換器、及單電感雙輸出直流對直流轉換器,但不限於此。如此一來,透過H橋接式功率級實現的切換式轉換器可應用於任何可能的情況,以因應例如高/低電壓準位及重載/輕載等各種需求。 以上所述僅為本發明之較佳實施例,凡依本發明申請專利範圍所做之均等變化與修飾,皆應屬本發明之涵蓋範圍。
10,30:切換式轉換器 102:功率級 104,304:回授電路 106,306:誤差放大器 108,308:訊號控制裝置 VIN:輸入電壓 GND:接地電壓 VOUT:輸出電壓 VFB:回授訊號 VREF:參考電壓 VE:誤差訊號 CLK1,CLK2:切換控制訊號 SW1~SW8,SW_Q1~SW_Q4:開關器 C1,C2:電容 L1,L2,L3,L4,L5,L6:電感 302:H橋接式功率級 310:訊號選擇裝置 SIG_Q1~SIG_Q4:控制訊號 CLK100:恆開訊號 CLK0:恆關訊號 400:電源儲存元件 P1,P2:輸入輸出接墊 VP1~VP4:電壓埠 M1~M4:多工器 SEL_A~SEL_D:選擇訊號 T1:充電期間 T2:放電期間 T3,T PERIOD:期間 CLK1_INV,CLK2_INV:反相切換控制訊號 CLK100_INV:反相恆開訊號 CLK0_INV:反相恆關訊號 VOUT_N:負輸出電壓 VOUT_P:正輸出電壓
第1圖為一般切換式轉換器之示意圖。 第2A圖至第2C圖繪示一般切換式轉換器中功率級的實施方式。 第3圖為本發明實施例一切換式轉換器之示意圖。 第4圖為H橋接式功率級的示例性結構之示意圖。 第5圖為訊號選擇裝置的示例性結構之示意圖。 第6A圖及第6B圖為控制訊號的示例性波形之波形圖。 第7圖為H橋接式功率級用來實現一正電荷泵之示意圖。 第8圖為H橋接式功率級用來實現一降壓轉換器之示意圖。 第9圖為H橋接式功率級用來實現一升壓轉換器之示意圖。 第10圖為H橋接式功率級用來實現一反相降壓-升壓轉換器之示意圖。 第11圖為H橋接式功率級用來實現一單電感雙輸出直流對直流轉換器之示意圖。
30:切換式轉換器
302:H橋接式功率級
304:回授電路
306:誤差放大器
308:訊號控制裝置
310:訊號選擇裝置
VOUT:輸出電壓
VFB:回授訊號
VREF:參考電壓
VE:誤差訊號
CLK1,CLK2:切換控制訊號
SIG_Q1~SIG_Q4:控制訊號
CLK100:恆開訊號
CLK0:恆關訊號

Claims (20)

  1. 一種電源供應電路,用於一切換式轉換器(switching converter),該電源供應電路包含有: 一功率級,具有一第一電壓埠、一第二電壓埠、一第三電壓埠及一第四電壓埠,且具有被設定耦接於一電源儲存元件之一第一元件端點及一第二元件端點,該功率級包含有: 一第一開關器,耦接於該第一電壓埠及該第一元件端點之間; 一第二開關器,耦接於該第二電壓埠及該第二元件端點之間; 一第三開關器,耦接於該第三電壓埠及該第一元件端點之間;以及 一第四開關器,耦接於該第四電壓埠及該第二元件端點之間;以及 一訊號選擇裝置,耦接於該功率級,用來在複數個控制訊號中分別選擇一控制訊號輸出至該第一開關器、該第二開關器、該第三開關器或該第四開關器中的每一開關器。
  2. 如請求項1所述之電源供應電路,其中該電源儲存元件為一電容或一電感。
  3. 如請求項1所述之電源供應電路,其中該功率級之該第一元件端點耦接於該電源儲存元件之一第一端,且該功率級之該第二元件端點耦接於該電源儲存元件之一第二端。
  4. 如請求項1所述之電源供應電路,其中該複數個控制訊號係選自於一恆開訊號、一恆關訊號、及至少一切換控制訊號當中的至少一者。
  5. 如請求項4所述之電源供應電路,其中該恆開訊號用來持續開啟該第一開關器、該第二開關器、該第三開關器及該第四開關器中相對應的開關器,而該恆關訊號用來持續關閉該第一開關器、該第二開關器、該第三開關器及該第四開關器中相對應的開關器。
  6. 如請求項1所述之電源供應電路,其中該訊號選擇裝置包含有: 複數個多工器,其中每一多工器耦接於該第一開關器、該第二開關器、該第三開關器及該第四開關器之其中一者。
  7. 如請求項1所述之電源供應電路,其中該切換式轉換器包含有: 一回授電路,耦接於該功率級,用來從該功率級接收一輸出電壓,並根據該輸出電壓產生一回授訊號; 一誤差放大器,耦接於該回授電路,用來根據該回授訊號產生一誤差訊號,並輸出該誤差訊號;以及 一訊號控制裝置,耦接於該誤差放大器及該訊號選擇裝置之間,用來根據該誤差訊號產生一切換控制訊號,並輸出該切換控制訊號至該訊號選擇裝置。
  8. 如請求項1所述之電源供應電路,其中該第一電壓埠、該第二電壓埠、該第三電壓埠及該第四電壓埠當中至少一者被設定用來接收一電源供應電壓,該電源供應電壓選自於該切換式轉換器之一輸入電壓及一接地電壓。
  9. 如請求項8所述之電源供應電路,其中該第一電壓埠、該第二電壓埠、該第三電壓埠及該第四電壓埠當中未接收該電源供應電壓之至少一者被設定用來輸出該切換式轉換器之一輸出電壓。
  10. 如請求項8所述之電源供應電路,其中該第一電壓埠、該第二電壓埠、該第三電壓埠及該第四電壓埠當中未接收該電源供應電壓之一者被設定為浮空。
  11. 如請求項8所述之電源供應電路,其中該電源儲存元件為一電容,該第一電壓埠及該第四電壓埠用來接收該切換式轉換器之該輸入電壓,該第二電壓埠用來接收該接地電壓,且該第三電壓埠用來輸出該切換式轉換器之一輸出電壓。
  12. 如請求項11所述之電源供應電路,其中該訊號選擇裝置用來從該切換式轉換器之一訊號控制裝置接收該複數個控制訊號中的一第一切換控制訊號及一第二切換控制訊號,選擇利用該第一切換控制訊號來控制該第一開關器及該第二開關器,並選擇利用該第二切換控制訊號來控制該第三開關器及該第四開關器。
  13. 如請求項8所述之電源供應電路,其中該電源儲存元件為一電感,該第一電壓埠用來接收該切換式轉換器之該輸入電壓,該第二電壓埠用來接收該接地電壓,且該第四電壓埠用來輸出該切換式轉換器之一輸出電壓。
  14. 如請求項13所述之電源供應電路,其中該訊號選擇裝置用來從該切換式轉換器之一訊號控制裝置接收該複數個控制訊號中的一第一切換控制訊號及一第二切換控制訊號,選擇利用一恆開訊號來控制該第一開關器,選擇利用該第一切換控制訊號來控制該第二開關器,選擇利用一恆關訊號來控制該第三開關器,並選擇利用該第二切換控制訊號來控制該第四開關器。
  15. 一種電源供應電路,用於一切換式轉換器(switching converter),該電源供應電路包含有: 一功率級,具有一第一電壓埠、一第二電壓埠、一第三電壓埠及一第四電壓埠,且具有被設定耦接於一電容之一第一元件端點及一第二元件端點,該功率級包含有: 一第一開關器,耦接於該第一電壓埠及該第一元件端點之間; 一第二開關器,耦接於該第二電壓埠及該第二元件端點之間; 一第三開關器,耦接於該第三電壓埠及該第一元件端點之間;以及 一第四開關器,耦接於該第四電壓埠及該第二元件端點之間;以及 一訊號選擇裝置,耦接於該功率級,用來從該切換式轉換器之一訊號控制裝置接收一第一切換控制訊號及一第二切換控制訊號,選擇利用該第一切換控制訊號來控制該第一開關器及該第二開關器,並選擇利用該第二切換控制訊號來控制該第三開關器及該第四開關器。
  16. 如請求項15所述之電源供應電路,其中該第一電壓埠及該第四電壓埠用來接收該切換式轉換器之一輸入電壓,該第二電壓埠用來接收一接地電壓,且該第三電壓埠用來輸出該切換式轉換器之一輸出電壓。
  17. 如請求項15所述之電源供應電路,其中該第一開關器包含有一P型金氧半電晶體(PMOS transistor),該第二開關器包含有一N型金氧半電晶體(NMOS transistor),且該第三開關器及該第四開關器皆包含有一傳輸閘(transmission gate)。
  18. 一種電源供應電路,用於一切換式轉換器(switching converter),該電源供應電路包含有: 一功率級,具有一第一電壓埠、一第二電壓埠、一第三電壓埠及一第四電壓埠,且具有被設定耦接於一電感之一第一元件端點及一第二元件端點,該功率級包含有: 一第一開關器,耦接於該第一電壓埠及該第一元件端點之間; 一第二開關器,耦接於該第二電壓埠及該第二元件端點之間; 一第三開關器,耦接於該第三電壓埠及該第一元件端點之間;以及 一第四開關器,耦接於該第四電壓埠及該第二元件端點之間;以及 一訊號選擇裝置,耦接於該功率級,用來從該切換式轉換器之一訊號控制裝置接收一第一切換控制訊號及一第二切換控制訊號,選擇利用一恆開訊號來控制該第一開關器,選擇利用該第一切換控制訊號來控制該第二開關器,選擇利用一恆關訊號來控制該第三開關器,並選擇利用該第二切換控制訊號來控制該第四開關器。
  19. 如請求項18所述之電源供應電路,其中該第一電壓埠用來接收該切換式轉換器之一輸入電壓,該第二電壓埠用來接收一接地電壓,且該第四電壓埠用來輸出該切換式轉換器之一輸出電壓。
  20. 如請求項18所述之電源供應電路,其中該第一開關器包含有一P型金氧半電晶體(PMOS transistor),該第二開關器包含有一N型金氧半電晶體(NMOS transistor),且該第三開關器及該第四開關器皆包含有一傳輸閘(transmission gate)。
TW111149949A 2021-12-28 2022-12-26 用於切換式轉換器之電源供應電路 TWI834449B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US17/563,091 2021-12-28
US17/563,091 US20230208295A1 (en) 2021-12-28 2021-12-28 Power supply circuit for switching converter

Publications (2)

Publication Number Publication Date
TW202327403A true TW202327403A (zh) 2023-07-01
TWI834449B TWI834449B (zh) 2024-03-01

Family

ID=86896236

Family Applications (1)

Application Number Title Priority Date Filing Date
TW111149949A TWI834449B (zh) 2021-12-28 2022-12-26 用於切換式轉換器之電源供應電路

Country Status (3)

Country Link
US (1) US20230208295A1 (zh)
CN (1) CN116365867A (zh)
TW (1) TWI834449B (zh)

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001001553A1 (en) * 1999-06-25 2001-01-04 The Board Of Trustees Of The University Of Illinois Dynamically-switched power converter
US7443206B1 (en) * 2006-01-06 2008-10-28 Sun Microsystems, Inc. High-frequency linear phase-frequency detector with wide-pulse outputs
US8525564B2 (en) * 2010-10-20 2013-09-03 University Of Southern California Charge-based phase locked loop charge pump
CN102958233B (zh) * 2011-08-30 2015-01-07 宏齐科技股份有限公司 发光二极管光源的电源驱动电路与光源装置
CN103179736B (zh) * 2011-12-26 2015-11-25 联芯科技有限公司 发光二极管驱动电路及驱动发光二极管的方法
US9235221B2 (en) * 2012-03-23 2016-01-12 Fairchild Semiconductor Corporation Early warning strobe for mitigation of line and load transients
DE102012215257B4 (de) * 2012-08-28 2022-10-06 Vitesco Technologies GmbH Schaltungsanordnung zum induktiven Heizen zumindest eines Kraftstoffeinspritzventils sowie Kraftstoffeinspritzventilanordnung mit einer solchen Schaltungsanordnung und Verfahren zum Betreiben einer Schaltungsanordnung und einer Kraftstoffeinspritzventilanordnung
US9912233B2 (en) * 2014-09-30 2018-03-06 Skyworks Solutions, Inc. Variable switched DC-to-DC voltage converter using pulse skipping mode and frequency modulation
US9831780B2 (en) * 2015-08-07 2017-11-28 Mediatek Inc. Buck-boost converter and method for controlling buck-boost converter
EP3402060B1 (en) * 2017-05-09 2019-10-02 OSRAM GmbH Electronic converter and related method of operating an electronic converter
CN214281707U (zh) * 2020-12-25 2021-09-24 广东顺德施瑞科技有限公司 一种用于led灯带双色切换的控制电路
US11705812B2 (en) * 2021-03-29 2023-07-18 Qualcomm Incorporated Current-based transitions between buck converter and charge pump modes in an adaptive combination power supply circuit

Also Published As

Publication number Publication date
US20230208295A1 (en) 2023-06-29
CN116365867A (zh) 2023-06-30
TWI834449B (zh) 2024-03-01

Similar Documents

Publication Publication Date Title
US6920055B1 (en) Charge pumping system and method
US8044707B2 (en) VDD/5 or VDD/6 charge-pump
US20200177082A1 (en) Power Converter With Capacitive Energy Transfer And Fast Dynamic Response
JP5934759B2 (ja) チャージポンプ回路およびその動作方法
US7541859B2 (en) Charge pump circuit
KR100407100B1 (ko) 차지 펌프 회로
KR102562452B1 (ko) 재구성 가능한 스위치드 커패시터 전력 컨버터 기술들
US8044706B2 (en) Reduced capacitor charge-pump
US7622984B2 (en) Charge pump circuit and methods of operation thereof
KR100674553B1 (ko) 차지 펌프 회로
JP5744871B2 (ja) 高効率安定化チャージポンプ
KR100516084B1 (ko) Dc-dc 컨버터의 제어 방법
US9306458B2 (en) Adaptive boost driver charging circuit
US8970575B2 (en) Power source circuit and liquid crystal display apparatus having the same
CN1681191B (zh) 升压电路以及半导体集成电路
KR20180031467A (ko) 재구성 가능한 양극성 출력 차지 펌프 회로 및 이를 포함하는 집적 회로
US9906127B2 (en) Fractional output voltage multiplier
JP2013532458A (ja) 高耐圧反転型チャージポンプ
TWI834449B (zh) 用於切換式轉換器之電源供應電路
Hua et al. A 1.2-A dual-output SC DC–DC regulator with continuous gate-drive modulation achieving≤ 0.01-mV/mA cross regulation
WO2023274236A1 (zh) 电压变换电路和电子设备
JP3548161B2 (ja) チャージポンプ回路
US8076968B1 (en) Low-input-voltage charge pump
US8350840B2 (en) Switching circuit, DC-DC converter and display driver integrated circuit including the same
US20220416661A1 (en) Simbo buck-boost inverting converter and control method thereof