TW202327025A - Memory device and method of forming the same - Google Patents

Memory device and method of forming the same Download PDF

Info

Publication number
TW202327025A
TW202327025A TW110149734A TW110149734A TW202327025A TW 202327025 A TW202327025 A TW 202327025A TW 110149734 A TW110149734 A TW 110149734A TW 110149734 A TW110149734 A TW 110149734A TW 202327025 A TW202327025 A TW 202327025A
Authority
TW
Taiwan
Prior art keywords
silicon channel
line gate
memory device
oxide layer
layer
Prior art date
Application number
TW110149734A
Other languages
Chinese (zh)
Inventor
賴二琨
李岱螢
Original Assignee
旺宏電子股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旺宏電子股份有限公司 filed Critical 旺宏電子股份有限公司
Priority to TW110149734A priority Critical patent/TW202327025A/en
Publication of TW202327025A publication Critical patent/TW202327025A/en

Links

Images

Abstract

A memory device includes a source layer on a substrate, a single crystalline silicon channel vertically disposed on the source layer, a word line gate surrounding a top portion of the single crystalline silicon channel, and a plate line gate surrounding a bottom portion of the single crystalline silicon channel. The plate line gate is parallel to the word line gate. In an extending direction of the single crystalline silicon channel, a thickness of the plate line gate is about 2 to 5 times of a thickness of the word line gate.

Description

記憶體裝置與其製造方法Memory device and manufacturing method thereof

本揭露是關於一種記憶體裝置與其製造方法。The disclosure relates to a memory device and a manufacturing method thereof.

近年來,半導體裝置的結構不斷改變,且半導體裝置的儲存容量不斷增加。記憶體裝置被應用於許多產品(例如數位相機、手機及電腦等)的儲存元件中。隨著這些應用的增加,記憶體裝置的需求集中在小尺寸與大儲存容量上。為了滿足此條件,需要具有高元件密度與小尺寸的記憶體裝置及其製造方法。In recent years, the structure of semiconductor devices has been constantly changing, and the storage capacity of semiconductor devices has been increasing. Memory devices are used as storage elements in many products (such as digital cameras, mobile phones, and computers, etc.). As these applications increase, the demand for memory devices is focused on small size and large storage capacity. In order to satisfy this condition, a memory device with high device density and small size and its manufacturing method are required.

因此,期望開發出具有更多數量之多個堆疊平面的三維(three-dimensional,3D)記憶體裝置,以達到更大的儲存容量、改善品質並同時保持記憶體裝置的小尺寸。Therefore, it is desirable to develop a three-dimensional (3D) memory device with a greater number of stacked planes to achieve greater storage capacity, improve quality, and maintain a small size of the memory device.

本揭露的一實施態樣為一種記憶體裝置,包含設置於基板上的源極層、垂直地設置於源極層上的單晶矽通道、圍繞單晶矽通道的上部的字元線閘極,以及圍繞單晶矽通道的下部的板線閘極。板線閘極平行於字元線閘極,其中在沿著單晶矽通道的延伸方向上,板線閘極的厚度約為字元線閘極的厚度的兩倍至五倍。An embodiment of the present disclosure is a memory device, comprising a source layer disposed on a substrate, a monocrystalline silicon channel vertically disposed on the source layer, and a word line gate surrounding the upper part of the monocrystalline silicon channel , and the plate-line gate around the lower part of the monocrystalline silicon channel. The plate-line gate is parallel to the word-line gate, wherein the thickness of the plate-line gate is about two to five times the thickness of the word-line gate along the extending direction of the monocrystalline silicon channel.

在一些實施例中,記憶體裝置更包含源極線,垂直地設置於源極層上,其中源極線的延伸方向平行於字元線閘極的延伸方向。In some embodiments, the memory device further includes a source line vertically disposed on the source layer, wherein the extending direction of the source line is parallel to the extending direction of the word line gate.

在一些實施例中,記憶體裝置更包含位元線,位元線與單晶矽通道連接,其中位元線的延伸方向垂直於字元線閘極的延伸方向。In some embodiments, the memory device further includes a bit line connected to the monocrystalline silicon channel, wherein the extending direction of the bit line is perpendicular to the extending direction of the word line gate.

在一些實施例中,記憶體裝置更包含N型接觸區,N型接觸區連接位元線與單晶矽通道,單晶矽通道包含P型摻雜物。In some embodiments, the memory device further includes an N-type contact region, the N-type contact region connects the bit line and the monocrystalline silicon channel, and the monocrystalline silicon channel includes P-type dopant.

在一些實施例中,記憶體裝置更包含氧化物層,設置於源極層與板線閘極之間。In some embodiments, the memory device further includes an oxide layer disposed between the source layer and the line gate.

在一些實施例中,氧化物層圍繞單晶矽通道。In some embodiments, an oxide layer surrounds the monocrystalline silicon channel.

本揭露的另一實施態樣為一種記憶體裝置的製造方法,包含形成源極層於基板上;形成單晶矽通道垂直地設置於源極層上;形成字元線閘極圍繞單晶矽通道的上部;以及形成板線閘極圍繞單晶矽通道的下部。板線閘極平行於字元線閘極,其中在沿著單晶矽通道的延伸方向上,板線閘極的厚度約為字元線閘極的厚度的兩倍至五倍。Another embodiment of the present disclosure is a method of manufacturing a memory device, comprising forming a source layer on a substrate; forming a monocrystalline silicon channel vertically disposed on the source layer; forming a word line gate surrounding the monocrystalline silicon The upper part of the channel; and the lower part of the channel forming a plate line gate surrounding the single crystal silicon channel. The plate-line gate is parallel to the word-line gate, wherein the thickness of the plate-line gate is about two to five times the thickness of the word-line gate along the extending direction of the monocrystalline silicon channel.

在一些實施例中,形成字元線閘極與形成板線閘極的步驟包含形成複數個犧牲層分別圍繞單晶矽通道的上部與下部;移除犧牲層,以形成分別圍繞單晶矽通道的上部與下部的複數個空腔;以及沉積高介電常數介電層與閘極金屬於空腔中。In some embodiments, the steps of forming the word line gate and forming the plate line gate include forming a plurality of sacrificial layers respectively surrounding the upper portion and the lower portion of the single crystal silicon channel; a plurality of cavities at the upper and lower parts of the cavity; and depositing a high-k dielectric layer and a gate metal in the cavities.

在一些實施例中,在形成單晶矽通道垂直地設置於源極層上後,更包含形成氧化物層在源極層的上表面與單晶矽通道的側壁,其中氧化物層在源極層的上表面的第一部分的厚度大於氧化物層在單晶矽通道的側壁的第二部分的厚度。In some embodiments, after forming the single crystal silicon channel vertically disposed on the source layer, further comprising forming an oxide layer on the upper surface of the source layer and sidewalls of the single crystal silicon channel, wherein the oxide layer is on the source electrode The thickness of the first portion of the upper surface of the layer is greater than the thickness of the second portion of the oxide layer on the sidewall of the monocrystalline silicon channel.

在一些實施例中,記憶體裝置的製造方法更包含蝕刻氧化物層,以移除氧化物層的第一部分並薄化氧化物層的第二部分,其中板線閘極形成在經薄化的氧化物層的第二部分上。In some embodiments, the method of manufacturing the memory device further includes etching the oxide layer to remove the first portion of the oxide layer and thin the second portion of the oxide layer, wherein the line gate is formed on the thinned oxide layer. on the second part of the oxide layer.

本揭露的記憶體裝置使用單晶矽作為通道區,相較於傳統使用多晶矽的通道,本揭露的記憶體裝置具有高電流、反應速度快,且能降低製造缺陷。單晶矽通道可配合高介電常數金屬閘極使用,進而提升記憶體裝置的表現。此外,透過將閘極切分為字元線閘極與板線閘極,可以省略電容器的使用,讓記憶體裝置的製作更為簡易。The memory device of the present disclosure uses monocrystalline silicon as the channel region. Compared with the conventional channel using polysilicon, the memory device of the present disclosure has high current, fast response speed, and can reduce manufacturing defects. Monocrystalline silicon channels can be used with high-k metal gates to enhance the performance of memory devices. In addition, by dividing the gates into word line gates and plate line gates, the use of capacitors can be omitted, making the fabrication of memory devices easier.

以下將以圖式及詳細說明清楚說明本揭露之精神,任何所屬技術領域中具有通常知識者在瞭解本揭露之較佳實施例後,當可由本揭露所教示之技術,加以改變及修飾,其並不脫離本揭露之精神與範圍。The following will clearly illustrate the spirit of the disclosure with drawings and detailed descriptions. Anyone with ordinary knowledge in the technical field can make changes and modifications based on the techniques taught in the disclosure after understanding the preferred embodiments of the disclosure. It does not depart from the spirit and scope of this disclosure.

參照第1圖至第23圖,其分別為根據本揭露之一實施例的記憶體裝置的製造方法於不同步驟的剖面圖。首先,於第1圖的步驟S11中,提供基板100,其中基板100為單晶矽基板,並且基板100中摻雜有P型摻雜物,如硼或鍺,使得基板100作為P型井。Referring to FIG. 1 to FIG. 23 , they are cross-sectional views of different steps of a manufacturing method of a memory device according to an embodiment of the present disclosure. First, in step S11 of FIG. 1 , a substrate 100 is provided, wherein the substrate 100 is a single crystal silicon substrate, and the substrate 100 is doped with a P-type dopant, such as boron or germanium, so that the substrate 100 serves as a P-type well.

接著,如第2圖的步驟S12所示,執行乾式氧化製程,以在基板100上形成具有足夠厚度的氧化物層110。相較於使用如化學氣相沉積方式形成的氧化物,由乾式氧化製程所製成的氧化物層110對於溼式蝕刻液(如稀釋氫氟酸或是緩衝氧化物蝕刻液(Buffered Oxide Etch))會具有更好的抗蝕性。Next, as shown in step S12 of FIG. 2 , a dry oxidation process is performed to form an oxide layer 110 with sufficient thickness on the substrate 100 . Compared with the oxide formed by chemical vapor deposition, the oxide layer 110 formed by the dry oxidation process is more suitable for wet etching solution (such as dilute hydrofluoric acid or buffered oxide etchant (Buffered Oxide Etch) ) will have better corrosion resistance.

接著,如第3圖的步驟S13所示,進行一系列的曝光微影製程,以將氧化物層110進行圖案化,並以圖案化之後的氧化物層110做為硬遮罩來蝕刻基板100,並將基板100蝕刻至預定的深度。如此一來,便可以得到在P型井102上的半導體柱104,其中半導體柱104為P型摻雜的單晶矽柱體。Next, as shown in step S13 of FIG. 3, a series of exposure lithography processes are performed to pattern the oxide layer 110, and the substrate 100 is etched using the patterned oxide layer 110 as a hard mask. , and etch the substrate 100 to a predetermined depth. In this way, the semiconductor column 104 on the P-type well 102 can be obtained, wherein the semiconductor column 104 is a P-type doped single crystal silicon column.

接著,如第4圖的步驟S14所示,在基板100與氧化物層110的表面上沉積氮化物層,而後進行非等向性蝕刻以移除在基板100與氧化物層110的上表面上的氮化物層,而在基板100與氧化物層110的側壁上的氮化物層被保留下來而作為間隔物120。步驟S14中所使用的非等向性蝕刻舉例而言可以為反應性離子蝕刻(reactive ion etching,RIE),其結合了物理性的離子轟擊與化學反應的蝕刻,兼具非等向性與高蝕刻選擇比等優點。氧化物層110則保護半導體柱104免於受到非等向性蝕刻的傷害。Next, as shown in step S14 of FIG. 4, a nitride layer is deposited on the surfaces of the substrate 100 and the oxide layer 110, and then anisotropic etching is performed to remove the upper surfaces of the substrate 100 and the oxide layer 110. The nitride layer on the sidewalls of the substrate 100 and the oxide layer 110 is retained as the spacer 120 . The anisotropic etching used in step S14 can be, for example, reactive ion etching (reactive ion etching, RIE), which combines physical ion bombardment and chemical reaction etching, and has both anisotropy and high Etching selectivity and other advantages. The oxide layer 110 protects the semiconductor pillars 104 from anisotropic etching.

接著,如第5圖的步驟S15所示,對暴露的P型井102進行離子植入,此時所植入的離子為N型摻雜物,如磷或砷,且植入的N型離子的濃度大於P型井102的P型摻雜物的濃度。接著,再進行退火製程,驅動N型離子進入P型井102中而形成N型的源極層106。Next, as shown in step S15 of FIG. 5, ion implantation is performed on the exposed P-type well 102. At this time, the implanted ions are N-type dopants, such as phosphorus or arsenic, and the implanted N-type ions The concentration of is greater than the concentration of the P-type dopant in the P-type well 102 . Next, an annealing process is performed to drive N-type ions into the P-type well 102 to form an N-type source layer 106 .

接著,如第6圖的步驟S16所示,移除間隔物120(見第5圖),以露出氧化物層110和半導體柱104的側壁。Next, as shown in step S16 of FIG. 6 , the spacer 120 (see FIG. 5 ) is removed to expose the oxide layer 110 and the sidewalls of the semiconductor pillars 104 .

接著,如第7圖的步驟S17所示,生長氧化物層130於半導體柱104的側壁 和N型的源極層106的表面上。由於氧化物在N型重摻雜的矽材料(如N型的源極層106)的生長速度明顯大於氧化物在未摻雜的矽材料或是P型輕摻雜的矽材料(如半導體柱104)的生長速度,因此,所成長的氧化物層130在N型的源極層106上表面的第一部分132的厚度T1也會明顯大於氧化物層130在半導體柱104側壁的第二部分134的厚度T2。Next, as shown in step S17 of FIG. 7 , an oxide layer 130 is grown on the sidewall of the semiconductor pillar 104 and the surface of the N-type source layer 106 . Since the growth rate of the oxide on the N-type heavily doped silicon material (such as the N-type source layer 106) is significantly greater than that of the oxide on the undoped silicon material or the P-type lightly doped silicon material (such as the semiconductor pillar 104), therefore, the thickness T1 of the first part 132 of the grown oxide layer 130 on the upper surface of the N-type source layer 106 will also be significantly greater than the second part 134 of the oxide layer 130 on the side wall of the semiconductor pillar 104 The thickness T2.

於一些實施例中,氧化物層130在N型的源極層106上表面的第一部分132的厚度T1約為氧化物層130在半導體柱104側壁的第二部分134的厚度T2的三倍至六倍。舉例而言,第一部分132的厚度T1約為100Å,而第二部分134的厚度T2約為300Å~600Å。In some embodiments, the thickness T1 of the first portion 132 of the oxide layer 130 on the upper surface of the N-type source layer 106 is about three to three times the thickness T2 of the second portion 134 of the oxide layer 130 on the sidewall of the semiconductor pillar 104 . six times. For example, the thickness T1 of the first portion 132 is about 100 Å, and the thickness T2 of the second portion 134 is about 300 Ř600 Å.

接著,如第8圖的步驟S18所示,進行濕式蝕刻製程以完全移除氧化物層130在半導體柱104側壁的第二部分134。而氧化物層130在N型的源極層106上表面的第一部分132與作為硬遮罩的氧化物層110也會在此製程中被部分移除,因而使其厚度隨之略為減小(被薄化)。Next, as shown in step S18 of FIG. 8 , a wet etching process is performed to completely remove the second portion 134 of the oxide layer 130 on the sidewall of the semiconductor pillar 104 . The first portion 132 of the oxide layer 130 on the upper surface of the N-type source layer 106 and the oxide layer 110 as a hard mask will also be partially removed during this process, so that the thickness thereof is slightly reduced accordingly ( is thinned).

而後,如第9圖的步驟S19所示,在第8圖所示的結構上形成犧牲層140,並進一步執行平坦化製程,以移除過高的犧牲層140並露出作為硬遮罩的氧化物層110。犧牲層140舉例而言可以為氮化物層。Then, as shown in step S19 of FIG. 9, a sacrificial layer 140 is formed on the structure shown in FIG. layer 110. The sacrificial layer 140 can be, for example, a nitride layer.

接著,如第10圖的步驟S20所示,回蝕刻犧牲層140,以露出部分的半導體柱104。犧牲層140被回蝕刻所移除的深度可以被良好地控制。Next, as shown in step S20 of FIG. 10 , the sacrificial layer 140 is etched back to expose part of the semiconductor pillars 104 . The depth to which the sacrificial layer 140 is removed by the etch back can be well controlled.

接著,如第11圖的步驟S21所示,在第8圖所示的結構上形成另一氧化物層150,並進一步執行平坦化製程,以移除過高的氧化物層150並露出作為硬遮罩的氧化物層110。Next, as shown in step S21 of FIG. 11, another oxide layer 150 is formed on the structure shown in FIG. mask oxide layer 110 .

接著,如第12圖的步驟S22所示,回蝕刻氧化物層150,以再次露出部分的半導體柱104。氧化物層150被回蝕刻所移除的深度可以被良好地控制。再次重複步驟S19至步驟S22,以形成圍繞半導體柱104的犧牲層140和氧化物層150的疊層,如第13圖所示,其中位於下方的較接近N型的源極層106的犧牲層140的厚度T3大於位於上方的較遠離N型的源極層106的犧牲層140的厚度T4。於一些實施例中,下方的犧牲層140的厚度T3約為上方的犧牲層140的厚度T4的兩倍至五倍。Next, as shown in step S22 of FIG. 12 , the oxide layer 150 is etched back to expose part of the semiconductor pillars 104 again. The depth to which the oxide layer 150 is removed by the etch back can be well controlled. Repeat step S19 to step S22 again to form a stack of sacrificial layer 140 and oxide layer 150 surrounding semiconductor pillar 104, as shown in FIG. The thickness T3 of 140 is greater than the thickness T4 of the upper sacrificial layer 140 farther away from the N-type source layer 106 . In some embodiments, the thickness T3 of the lower sacrificial layer 140 is about two to five times the thickness T4 of the upper sacrificial layer 140 .

接著,如第14圖的步驟S23所示,沉積封蓋氧化物層160在如第13圖所示的結構上。封蓋氧化物層160沉積在最頂層的氧化物層150和半導體柱104的頂表面上。Next, as shown in step S23 of FIG. 14 , a capping oxide layer 160 is deposited on the structure shown in FIG. 13 . A capping oxide layer 160 is deposited on the topmost oxide layer 150 and the top surfaces of the semiconductor pillars 104 .

接著,如第15圖的步驟S24所示,在如第14圖所示的結構中形成多個溝槽170,其中溝槽170介於半導體柱104之間。溝槽170延伸穿過犧牲層140和氧化物層150的疊層以及穿過氧化物層130的第一部分132,以露出N型的源極層106。Next, as shown in step S24 of FIG. 15 , a plurality of trenches 170 are formed in the structure shown in FIG. 14 , wherein the trenches 170 are interposed between the semiconductor pillars 104 . The trench 170 extends through the stack of the sacrificial layer 140 and the oxide layer 150 and through the first portion 132 of the oxide layer 130 to expose the N-type source layer 106 .

接著,如第16圖的步驟S25所示,執行濕式蝕刻以移除犧牲層140(見第15圖),其中濕式蝕刻所選用的蝕刻液為對氮化物的蝕刻速率大於氧化物或是矽的蝕刻速率。待執行完濕式蝕刻之後,犧牲層140被移除,而半導體柱104的側壁會暴露於氧化物層150之間。換言之,空腔172會形成在氧化物層150之間,而半導體柱104的側壁從空腔172露出。相應於所移除的犧牲層140的厚度不同,兩空腔172也分別具有不同的厚度,且下方的空腔172的厚度T3大於上方的空腔172的厚度T4。Next, as shown in step S25 of FIG. 16 , wet etching is performed to remove the sacrificial layer 140 (see FIG. 15 ), wherein the etchant used for wet etching has an etch rate greater than that of oxides or nitrides. Silicon etch rate. After performing the wet etching, the sacrificial layer 140 is removed, and the sidewalls of the semiconductor pillars 104 are exposed between the oxide layers 150 . In other words, the cavity 172 is formed between the oxide layers 150 , and the sidewalls of the semiconductor pillars 104 are exposed from the cavity 172 . Corresponding to the different thicknesses of the removed sacrificial layer 140 , the two cavities 172 also have different thicknesses respectively, and the thickness T3 of the lower cavity 172 is greater than the thickness T4 of the upper cavity 172 .

接著,如第17圖的步驟S26所示,在空腔172(見第16圖)中形成閘極堆疊180A跟閘極堆疊180B。形成閘極堆疊180A跟閘極堆疊180B包含依序在空腔172中沉積緩衝層(圖中未繪示)、閘極介電層182以及填入閘極金屬184。於一些實施例中,緩衝層可以為氧化物層。閘極介電層182包含有一或多層的高介電常數介電層,如HfO x等。閘極介電層182可選擇性地進一步包含功函數調節層。閘極金屬184舉例而言可以為氮化鈦(TiN)或是鎢(W)。 Next, as shown in step S26 of FIG. 17 , a gate stack 180A and a gate stack 180B are formed in the cavity 172 (see FIG. 16 ). Forming the gate stack 180A and the gate stack 180B includes sequentially depositing a buffer layer (not shown in the figure), a gate dielectric layer 182 and filling a gate metal 184 in the cavity 172 . In some embodiments, the buffer layer may be an oxide layer. The gate dielectric layer 182 includes one or more layers of high-k dielectric layers, such as HfO x and the like. The gate dielectric layer 182 may optionally further include a work function adjusting layer. The gate metal 184 can be, for example, titanium nitride (TiN) or tungsten (W).

由於兩空腔172的厚度不同,故待閘極堆疊180A跟閘極堆疊180B形成之後,可再次執行蝕刻製程,讓閘極堆疊180A跟閘極堆疊180B的側壁與氧化物層150的側壁切齊。如此一來,便形成圍繞半導體柱104的閘極堆疊180A跟閘極堆疊180B,且位於下方的閘極堆疊180A的厚度T3為位於上方的閘極堆疊180B的厚度T4的兩倍至五倍。Since the thicknesses of the two cavities 172 are different, after the gate stack 180A and the gate stack 180B are formed, the etching process can be performed again, so that the sidewalls of the gate stack 180A and the gate stack 180B are aligned with the sidewalls of the oxide layer 150 . In this way, the gate stack 180A and the gate stack 180B surrounding the semiconductor pillar 104 are formed, and the thickness T3 of the lower gate stack 180A is two to five times the thickness T4 of the upper gate stack 180B.

更進一步地說,半導體柱104被閘極堆疊180A跟閘極堆疊180B所圍繞,而作為記憶體裝置的通道區。半導體柱104為垂直通道區,並且為單晶矽的通道區。而位於上方的閘極堆疊180B作為字元線(word line,WL)閘極,而位於下方的閘極堆疊180A作為板線(plate line,PL)閘極。閘極堆疊180A跟閘極堆疊180B的走向垂直於半導體柱104的走向。Furthermore, the semiconductor pillar 104 is surrounded by the gate stack 180A and the gate stack 180B, and serves as a channel region of the memory device. The semiconductor pillar 104 is a vertical channel region, and is a channel region of monocrystalline silicon. The upper gate stack 180B serves as a word line (WL) gate, and the lower gate stack 180A serves as a plate line (PL) gate. The direction of the gate stack 180A and the gate stack 180B is perpendicular to the direction of the semiconductor pillar 104 .

氧化物層130的第一部分132位在N型的源極層106與閘極堆疊180A之間,並且氧化物層130的第一部分132圍繞半導體柱104設置。The first portion 132 of the oxide layer 130 is located between the N-type source layer 106 and the gate stack 180A, and the first portion 132 of the oxide layer 130 is disposed around the semiconductor pillar 104 .

接著,如第18圖的步驟S27所示,在溝槽170(見第17圖)的側壁上形成隔離層190。形成隔離層190的步驟包含在溝槽170中沉積介電材料,如氧化物,而後進行非等向性蝕刻如反應性離子蝕刻,以移除部分的介電材料而再次露出N型的源極層106,殘留在溝槽170的側壁上的介電材料便作為隔離層190。Next, as shown in step S27 of FIG. 18, an isolation layer 190 is formed on the sidewall of the trench 170 (see FIG. 17). The step of forming the isolation layer 190 includes depositing a dielectric material, such as oxide, in the trench 170, and then performing anisotropic etching, such as reactive ion etching, to remove part of the dielectric material and expose the N-type source again. Layer 106 , the dielectric material remaining on the sidewalls of trench 170 serves as isolation layer 190 .

接著,將金屬填入溝槽170以形成源極線200,填入的金屬舉例而言可以為氮化鈦或是鎢。當金屬填入溝槽170之後,可執行平坦化製程,讓源極線200的頂表面與封蓋氧化物層160的頂表面齊平。半導體柱104的頂表面則低於源極線200的頂表面。Next, metal is filled into the trench 170 to form the source line 200 , and the filled metal can be, for example, titanium nitride or tungsten. After the metal is filled into the trench 170 , a planarization process can be performed to make the top surface of the source line 200 flush with the top surface of the capping oxide layer 160 . The top surface of the semiconductor pillar 104 is lower than the top surface of the source line 200 .

接著,如第19圖的步驟S28所示,在如第18圖所示的結構上沉積介電層210,以覆蓋源極線200與封蓋氧化物層160。Next, as shown in step S28 of FIG. 19 , a dielectric layer 210 is deposited on the structure shown in FIG. 18 to cover the source line 200 and the capping oxide layer 160 .

接著,如第20圖的步驟S29所示,在半導體柱104的上方形成開口220,開口220穿過介電層210與封蓋氧化物層160,以露出半導體柱104。Next, as shown in step S29 of FIG. 20 , an opening 220 is formed above the semiconductor pillar 104 , and the opening 220 passes through the dielectric layer 210 and the capping oxide layer 160 to expose the semiconductor pillar 104 .

接著,如第21圖的步驟S30所示,透過開口220對半導體柱104進行離子植入,且植入的離子為N型摻雜物,如磷或砷。所植入的N型離子的濃度大於半導體柱104中的P型摻雜物的濃度,以在半導體柱104頂端形成N型接觸區230。Next, as shown in step S30 of FIG. 21 , ion implantation is performed on the semiconductor pillar 104 through the opening 220 , and the implanted ions are N-type dopants, such as phosphorus or arsenic. The concentration of the implanted N-type ions is greater than the concentration of the P-type dopant in the semiconductor pillar 104 to form an N-type contact region 230 at the top of the semiconductor pillar 104 .

接著,如第22圖的步驟S31所示,在開口220(見第21圖)中形成接觸墊240,包含將金屬填入開口220中以形成接觸墊240,且接觸墊240實體連接於N型接觸區230。Next, as shown in step S31 of FIG. 22, a contact pad 240 is formed in the opening 220 (see FIG. 21), including filling metal into the opening 220 to form the contact pad 240, and the contact pad 240 is physically connected to the N-type contact area 230 .

填入的金屬舉例而言可以為氮化鈦或是鎢。當金屬填入開口220之後,可執行平坦化製程,讓接觸墊240的頂表面與介電層210的頂表面齊平。The filling metal can be, for example, titanium nitride or tungsten. After the metal is filled into the opening 220 , a planarization process can be performed to make the top surface of the contact pad 240 flush with the top surface of the dielectric layer 210 .

最後,如第23圖的步驟S32所示,在接觸墊240上形成位元線(bit line,BL)250,其中位元線250的走向垂直於源極線200的走向,位元線250的走向亦垂直於閘極堆疊180A跟閘極堆疊180B的走向。形成位元線250的步驟包含在介電層210的頂表面沉積金屬層,而後對金屬層圖案化,以留下位元線250在介電層210的頂表面上並與接觸墊240連接。Finally, as shown in step S32 of FIG. 23, a bit line (bit line, BL) 250 is formed on the contact pad 240, wherein the direction of the bit line 250 is perpendicular to the direction of the source line 200, and the direction of the bit line 250 The direction is also perpendicular to the direction of gate stack 180A and gate stack 180B. The step of forming the bit lines 250 includes depositing a metal layer on the top surface of the dielectric layer 210 and then patterning the metal layer to leave the bit lines 250 on the top surface of the dielectric layer 210 and connected to the contact pads 240 .

請同時參照第23圖與第24圖,其中第24圖為根據本揭露之一實施例的記憶體裝置的上視圖,而第23圖則是沿著第24圖中之線段A-A的剖面圖。記憶體裝置300包含有沿Z軸方向延伸的半導體柱104,其中半導體柱104為單晶矽的通道區。記憶體裝置300包含有沿Y軸方向延伸且平行排列的閘極堆疊180A跟閘極堆疊180B,其中閘極堆疊180B作為字元線閘極,而閘極堆疊180A作為板線閘極。閘極堆疊180A的厚度T3為閘極堆疊180B的厚度T4的兩倍至五倍,其中厚度T3、T4是指沿著半導體柱104的延伸方向(即Z軸方向)所定義。Please refer to FIG. 23 and FIG. 24 at the same time, wherein FIG. 24 is a top view of a memory device according to an embodiment of the present disclosure, and FIG. 23 is a cross-sectional view along line A-A in FIG. 24 . The memory device 300 includes a semiconductor pillar 104 extending along the Z-axis direction, wherein the semiconductor pillar 104 is a channel region of monocrystalline silicon. The memory device 300 includes a gate stack 180A and a gate stack 180B extending along the Y axis and arranged in parallel, wherein the gate stack 180B serves as a word line gate, and the gate stack 180A serves as a plate line gate. The thickness T3 of the gate stack 180A is twice to five times the thickness T4 of the gate stack 180B, wherein the thicknesses T3 and T4 are defined along the extending direction of the semiconductor pillar 104 (ie, the Z-axis direction).

記憶體裝置300包含有沿Y軸方向延伸的源極線200,且在本實施例中,源極線200與閘極堆疊180A為交替地排列,單行的半導體柱104配置在源極線200之間。記憶體裝置300包含有沿X軸方向延伸的位元線250,其中位元線250在半導體柱104的上方延伸,並且位元線250的走向垂直於源極線200、閘極堆疊180A跟閘極堆疊180B的走向。The memory device 300 includes source lines 200 extending along the Y-axis direction, and in this embodiment, the source lines 200 and the gate stacks 180A are arranged alternately, and a single row of semiconductor pillars 104 is arranged between the source lines 200 between. The memory device 300 includes a bit line 250 extending along the X-axis direction, wherein the bit line 250 extends above the semiconductor pillar 104, and the direction of the bit line 250 is perpendicular to the source line 200, the gate stack 180A and the gate direction of pole stack 180B.

參照第25圖,其為根據本揭露之另一實施例的記憶體裝置的上視圖。本實施例的記憶體裝置300’與第24圖中的記憶體裝置300的差別在於,在源極線200之間配置有多行的半導體柱104,並且這些成行的半導體柱104彼此之間略為錯位地排列。Referring to FIG. 25 , it is a top view of a memory device according to another embodiment of the present disclosure. The difference between the memory device 300' of this embodiment and the memory device 300 in FIG. 24 is that multiple rows of semiconductor pillars 104 are arranged between the source lines 200, and these rows of semiconductor pillars 104 are slightly apart from each other. misaligned.

綜上所述,本揭露的記憶體裝置使用單晶矽作為通道區,相較於傳統使用多晶矽的通道,本揭露的記憶體裝置具有高電流、反應速度快,且能降低製造缺陷。單晶矽通道可配合高介電常數金屬閘極使用,進而提升記憶體裝置的表現。此外,透過將閘極切分為字元線閘極與板線閘極,可以省略電容器的使用,讓記憶體裝置的製作更為簡易。To sum up, the memory device of the present disclosure uses monocrystalline silicon as the channel region. Compared with the conventional channel using polysilicon, the memory device of the present disclosure has high current, fast response speed, and can reduce manufacturing defects. Monocrystalline silicon channels can be used with high-k metal gates to enhance the performance of memory devices. In addition, by dividing the gates into word line gates and plate line gates, the use of capacitors can be omitted, making the fabrication of memory devices easier.

雖然本揭露已以實施例揭露如上,然其並非用以限定本揭露,任何熟習此技藝者,在不脫離本揭露之精神和範圍內,當可作各種之更動與潤飾,因此本揭露之保護範圍當視後附之申請專利範圍所界定者為準。Although this disclosure has been disclosed as above with the embodiment, it is not intended to limit this disclosure. Anyone who is familiar with this technology can make various changes and modifications without departing from the spirit and scope of this disclosure. Therefore, the protection of this disclosure The scope shall be defined by the appended patent application scope.

100:基板 102:P型井 104:半導體柱 106:源極層 110:氧化物層 120:間隔物 130:氧化物層 132:第一部分 134:第二部分 140:犧牲層 150:氧化物層 160:封蓋氧化物層 170:溝槽 172:空腔 180A,180B:閘極堆疊 182:閘極介電層 184:閘極金屬 190:隔離層 200:源極線 210:介電層 220:開口 230:N型接觸區 240:接觸墊 250:位元線 300,300’:記憶體裝置 S11,S12,S13,S14,S15,S16,S17,S18,S19,S20,S21,S22,S23,S24,S25,S26,S27,S28,S29,S30,S31,S32:步驟 T1,T2,T3,T4:厚度 X,Y,Z:軸 A-A:線段 100: Substrate 102: P-type well 104: Semiconductor pillar 106: Source layer 110: oxide layer 120: spacer 130: oxide layer 132: Part 1 134: Part Two 140: sacrificial layer 150: oxide layer 160: capping oxide layer 170: Groove 172: cavity 180A, 180B: gate stack 182: gate dielectric layer 184:Gate metal 190: isolation layer 200: source line 210: dielectric layer 220: opening 230: N-type contact area 240: contact pad 250: bit line 300,300': memory device S11, S12, S13, S14, S15, S16, S17, S18, S19, S20, S21, S22, S23, S24, S25, S26, S27, S28, S29, S30, S31, S32: steps T1, T2, T3, T4: Thickness X, Y, Z: axes A-A: line segment

為讓本揭露之目的、特徵、優點與實施例能更明顯易懂,所附圖式之詳細說明如下: 第1圖至第23圖分別為根據本揭露之一實施例的記憶體裝置的製造方法於不同步驟的剖面圖。 第24圖為根據本揭露之一實施例的記憶體裝置的上視圖。 第25圖為根據本揭露之另一實施例的記憶體裝置的上視圖。 In order to make the purpose, features, advantages and embodiments of this disclosure more obvious and easy to understand, the detailed description of the accompanying drawings is as follows: FIG. 1 to FIG. 23 are cross-sectional views of different steps of a manufacturing method of a memory device according to an embodiment of the present disclosure. FIG. 24 is a top view of a memory device according to an embodiment of the disclosure. FIG. 25 is a top view of a memory device according to another embodiment of the disclosure.

國內寄存資訊(請依寄存機構、日期、號碼順序註記) 無 國外寄存資訊(請依寄存國家、機構、日期、號碼順序註記) 無 Domestic deposit information (please note in order of depositor, date, and number) none Overseas storage information (please note in order of storage country, institution, date, and number) none

100:基板 100: Substrate

102:P型井 102: P-type well

104:半導體柱 104: Semiconductor pillar

106:源極層 106: Source layer

130:氧化物層 130: oxide layer

132:第一部分 132: Part 1

150:氧化物層 150: oxide layer

160:封蓋氧化物層 160: capping oxide layer

180A,180B:閘極堆疊 180A, 180B: gate stack

190:隔離層 190: isolation layer

200:源極線 200: source line

210:介電層 210: dielectric layer

230:N型接觸區 230: N-type contact area

240:接觸墊 240: contact pad

250:位元線 250: bit line

300:記憶體裝置 300: memory device

S32:步驟 S32: step

T3,T4:厚度 T3, T4: Thickness

Claims (10)

一種記憶體裝置,包含: 一源極層,設置於一基板上; 一單晶矽通道,垂直地設置於該源極層上; 一字元線閘極,圍繞該單晶矽通道的上部;以及 一板線閘極,圍繞該單晶矽通道的下部,平行於該字元線閘極,其中在沿著該單晶矽通道的延伸方向上,該板線閘極的厚度約為該字元線閘極的厚度的兩倍至五倍。 A memory device comprising: a source layer disposed on a substrate; a single crystal silicon channel vertically arranged on the source layer; a word line gate surrounding the upper portion of the monocrystalline silicon channel; and a plate-line gate surrounding the lower portion of the monocrystalline silicon channel parallel to the word-line gate, wherein the plate-line gate has a thickness of approximately the word-line gate in a direction extending along the monocrystalline silicon channel Two to five times the thickness of the line gate. 如請求項1所述之記憶體裝置,更包含: 一源極線,垂直地設置於該源極層上,其中該源極線的延伸方向平行於該字元線閘極的延伸方向。 The memory device as described in claim 1, further comprising: A source line is vertically arranged on the source layer, wherein the extending direction of the source line is parallel to the extending direction of the word line gate. 如請求項1所述之記憶體裝置,更包含: 一位元線,與該單晶矽通道連接,其中該位元線的延伸方向垂直於該字元線閘極的延伸方向。 The memory device as described in claim 1, further comprising: A bit line is connected with the single crystal silicon channel, wherein the extending direction of the bit line is perpendicular to the extending direction of the word line gate. 如請求項3所述之記憶體裝置,更包含: 一N型接觸區,連接該位元線與該單晶矽通道,該單晶矽通道包含P型摻雜物。 The memory device as described in claim 3, further comprising: An N-type contact region connects the bit line and the single-crystal silicon channel, and the single-crystal silicon channel contains P-type dopant. 如請求項1所述之記憶體裝置,更包含: 一氧化物層,設置於該源極層與該板線閘極之間。 The memory device as described in claim 1, further comprising: An oxide layer is disposed between the source layer and the line gate. 如請求項5所述之記憶體裝置,其中該氧化物層圍繞該單晶矽通道。The memory device according to claim 5, wherein the oxide layer surrounds the single crystal silicon channel. 一種記憶體裝置的製造方法,包含: 形成一源極層於一基板上; 形成一單晶矽通道垂直地設置於該源極層上; 形成一字元線閘極,圍繞該單晶矽通道的上部;以及 形成一板線閘極,圍繞該單晶矽通道的下部,該板線閘極平行於該字元線閘極,其中在沿著該單晶矽通道的延伸方向上,該板線閘極的厚度約為該字元線閘極的厚度的兩倍至五倍。 A method of manufacturing a memory device, comprising: forming a source layer on a substrate; forming a single crystal silicon channel vertically arranged on the source layer; forming a word line gate surrounding the upper portion of the single crystal silicon channel; and forming a plate-line gate around the lower portion of the single-crystal silicon channel, the plate-line gate parallel to the word-line gate, wherein along the extending direction of the single-crystal silicon channel, the plate-line gate The thickness is about two to five times that of the word line gate. 如請求項7所述之記憶體裝置的製造方法,其中形成該字元線閘極與形成該板線閘極的步驟包含: 形成複數個犧牲層分別圍繞該單晶矽通道的上部與下部; 移除該些犧牲層,以形成分別圍繞該單晶矽通道的上部與下部的複數個空腔;以及 沉積一高介電常數介電層與一閘極金屬於該些空腔中。 The method for manufacturing a memory device according to claim 7, wherein the steps of forming the word line gate and forming the plate line gate include: forming a plurality of sacrificial layers respectively surrounding the upper part and the lower part of the single crystal silicon channel; removing the sacrificial layers to form a plurality of cavities respectively surrounding the upper and lower portions of the monocrystalline silicon channel; and A high-k dielectric layer and a gate metal are deposited in the cavities. 如請求項7所述之記憶體裝置的製造方法,其中在形成一單晶矽通道垂直地設置於該源極層上後,更包含: 形成一氧化物層在該源極層的上表面與該單晶矽通道的側壁,其中該氧化物層在該源極層的上表面的一第一部分的厚度大於該氧化物層在該單晶矽通道的側壁的一第二部分的厚度。 The method for manufacturing a memory device according to claim 7, after forming a single crystal silicon channel vertically disposed on the source layer, further comprising: forming an oxide layer on the upper surface of the source layer and sidewalls of the single crystal silicon channel, wherein a first portion of the oxide layer on the upper surface of the source layer has a thickness greater than that of the oxide layer on the single crystal silicon channel The thickness of a second portion of the sidewall of the silicon channel. 如請求項9所述之記憶體裝置的製造方法,更包含: 蝕刻該氧化物層,以移除該氧化物層的該第一部分並薄化該氧化物層的該第二部分,其中該板線閘極形成在經薄化的該氧化物層的該第二部分上。 The manufacturing method of the memory device as described in Claim 9, further comprising: etching the oxide layer to remove the first portion of the oxide layer and thin the second portion of the oxide layer, wherein the line gate is formed on the thinned second portion of the oxide layer partly on.
TW110149734A 2021-12-30 2021-12-30 Memory device and method of forming the same TW202327025A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW110149734A TW202327025A (en) 2021-12-30 2021-12-30 Memory device and method of forming the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW110149734A TW202327025A (en) 2021-12-30 2021-12-30 Memory device and method of forming the same

Publications (1)

Publication Number Publication Date
TW202327025A true TW202327025A (en) 2023-07-01

Family

ID=88147739

Family Applications (1)

Application Number Title Priority Date Filing Date
TW110149734A TW202327025A (en) 2021-12-30 2021-12-30 Memory device and method of forming the same

Country Status (1)

Country Link
TW (1) TW202327025A (en)

Similar Documents

Publication Publication Date Title
KR102594911B1 (en) Bonded structure comprising performance-optimized support chip and stress-optimized three-dimensional memory chip and method for manufacturing same
US11910607B2 (en) Three-dimensional semiconductor devices
EP3286784B1 (en) Method of making a multilevel memory stack structure using a cavity containing a sacrificial fill material
US10224240B1 (en) Distortion reduction of memory openings in a multi-tier memory device through thermal cycle control
US11251199B2 (en) Three-dimensional NOR array including active region pillars and method of making the same
WO2015126664A1 (en) A multilevel memory stack structure and methods of manufacturing the same
US11088170B2 (en) Three-dimensional ferroelectric memory array including integrated gate selectors and methods of forming the same
TW202127663A (en) Semiconductor device
JP2007266569A (en) Semiconductor storage device, and manufacturing method thereof
US20220254798A1 (en) Three-dimensional memory array including dual work function floating gates and method of making the same
WO2023024415A1 (en) Memory device and method for forming same
TW202230634A (en) Three-dimensional dynamic random access memory (dram) and methods of forming the same
WO2023279719A1 (en) Preparation method for semiconductor structure, and semiconductor structure
US7026209B2 (en) Dynamic random access memory cell and fabrication thereof
TW202327025A (en) Memory device and method of forming the same
US20230019692A1 (en) 3d hybrid memory using horizontally oriented conductive dielectric channel regions
US7119390B2 (en) Dynamic random access memory and fabrication thereof
US11444123B2 (en) Selector transistor with metal replacement gate wordline
TW202240788A (en) Methods of manufacturing memory devices
CN115206986A (en) Semiconductor structure and manufacturing method thereof
TWI767629B (en) Semiconductor device and method for forming the same
WO2023159679A1 (en) Semiconductor structure and manufacturing method therefor
WO2024050951A1 (en) Semiconductor structure and method for forming same
TWI780950B (en) Semiconductor device and manufacturing method thereof
TWI796001B (en) Semiconductor device and manufacturing method thereof