TW202230634A - Three-dimensional dynamic random access memory (dram) and methods of forming the same - Google Patents

Three-dimensional dynamic random access memory (dram) and methods of forming the same Download PDF

Info

Publication number
TW202230634A
TW202230634A TW110140074A TW110140074A TW202230634A TW 202230634 A TW202230634 A TW 202230634A TW 110140074 A TW110140074 A TW 110140074A TW 110140074 A TW110140074 A TW 110140074A TW 202230634 A TW202230634 A TW 202230634A
Authority
TW
Taiwan
Prior art keywords
layer
lateral recess
opening
dielectric
semiconductor
Prior art date
Application number
TW110140074A
Other languages
Chinese (zh)
Inventor
姜昌錫
北島知彦
姜聲官
菲德里克 費雪伯恩
吉鏞 李
尼汀K 英格爾
Original Assignee
美商應用材料股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 美商應用材料股份有限公司 filed Critical 美商應用材料股份有限公司
Publication of TW202230634A publication Critical patent/TW202230634A/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L28/00Passive two-terminal components without a potential-jump or surface barrier for integrated circuits; Details thereof; Multistep manufacturing processes therefor
    • H01L28/40Capacitors
    • H01L28/60Electrodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B12/00Dynamic random access memory [DRAM] devices
    • H10B12/01Manufacture or treatment
    • H10B12/02Manufacture or treatment for one transistor one-capacitor [1T-1C] memory cells
    • H10B12/05Making the transistor
    • H10B12/053Making the transistor the transistor being at least partially in a trench in the substrate
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B12/00Dynamic random access memory [DRAM] devices
    • H10B12/01Manufacture or treatment
    • H10B12/02Manufacture or treatment for one transistor one-capacitor [1T-1C] memory cells
    • H10B12/03Making the capacitor or connections thereto
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B12/00Dynamic random access memory [DRAM] devices
    • H10B12/01Manufacture or treatment
    • H10B12/02Manufacture or treatment for one transistor one-capacitor [1T-1C] memory cells
    • H10B12/03Making the capacitor or connections thereto
    • H10B12/033Making the capacitor or connections thereto the capacitor extending over the transistor
    • H10B12/0335Making a connection between the transistor and the capacitor, e.g. plug

Abstract

Examples herein relate to three-dimensional (3D) dynamic random access memory (DRAM) and corresponding methods. In an example, a film stack is formed on a substrate. The film stack includes multiple unit stacks, each having, sequentially, a first dielectric layer, a semiconductor layer, and a second dielectric layer. A first opening is formed through the film stack. The second dielectric layer is pulled back from the first opening forming a first lateral recess. A gate structure is formed in the first lateral recess and disposed on a portion of the semiconductor layer. A second opening, laterally disposed from where the first opening was formed, is formed through the film stack. The portion of the semiconductor layer is pulled back from the second opening forming a second lateral recess. A capacitor is formed in a region where the second lateral recess was disposed and contacting the portion of the semiconductor layer.

Description

三維動態隨機存取記憶體及其形成方法Three-dimensional dynamic random access memory and method of forming the same

本文描述的範例大致上關於半導體處理領域,更特定而言,關於三維(3D)動態隨機存取記憶體(DRAM)以及形成3D DRAM的方法。The examples described herein relate generally to the field of semiconductor processing, and more particularly, to three-dimensional (3D) dynamic random access memory (DRAM) and methods of forming 3D DRAM.

半導體處理中的技術進步已經使得積體電路達到摩爾定律的物理極限。這些進步已為積體電路中的元件和結構帶來了新模型。例如,已針對積體電路開發各種三維(3D)元件。然而,這種3D元件可能會為處理和製造帶來一系列新的挑戰。Technological advances in semiconductor processing have pushed integrated circuits to the physical limits of Moore's Law. These advances have led to new models of components and structures in integrated circuits. For example, various three-dimensional (3D) components have been developed for integrated circuits. However, such 3D components may present a new set of challenges for handling and manufacturing.

本案揭示內容的實施例包括一種用於半導體處理的方法。在基板上形成膜堆疊。該膜堆疊包括多個單元堆疊,且每一單元堆疊具有第一介電層、設置在該第一介電層上的半導體層、以及設置在該半導體層上的第二介電層。將第一開口形成為穿過該膜堆疊。將該第二介電層從該第一開口拉回,而形成第一橫向凹部。閘極結構形成於該第一橫向凹部中並且設置在該半導體層的一部分上。將第二開口形成為穿過該膜堆疊。該第二開口從形成該第一開口之處橫向設置。該閘極結構橫向設置於該第二開口與形成該第一開口之處之間。將該半導體層的該部分從該第二開口拉回,而形成第二橫向凹部。將電容器形成於設置有該第二橫向凹部的區域中。該電容器接觸該半導體層的該部分。Embodiments of the present disclosure include a method for semiconductor processing. A film stack is formed on a substrate. The film stack includes a plurality of cell stacks, and each cell stack has a first dielectric layer, a semiconductor layer disposed on the first dielectric layer, and a second dielectric layer disposed on the semiconductor layer. A first opening is formed through the film stack. The second dielectric layer is pulled back from the first opening to form a first lateral recess. A gate structure is formed in the first lateral recess and disposed on a portion of the semiconductor layer. A second opening is formed through the film stack. The second opening is disposed laterally from where the first opening is formed. The gate structure is laterally disposed between the second opening and where the first opening is formed. The portion of the semiconductor layer is pulled back from the second opening to form a second lateral recess. A capacitor is formed in the region where the second lateral recess is provided. The capacitor contacts the portion of the semiconductor layer.

本案揭示內容的實施例包括一種用於半導體處理的方法。在基板上形成膜堆疊。該膜堆疊包括多個單元堆疊,且每一單元堆疊具有第一層和設置在該第一層上的第二層。將第一開口形成為穿過該膜堆疊。將該第一層從該第一開口拉回,而形成第一橫向凹部。將第一共形層形成在該第一橫向凹部中。將第一填充材料形成在該第一共形層上及該第一橫向凹部中。將該第一共形層從該第一開口拉回,而形成第二橫向凹部。將閘極結構形成在該第二橫向凹部中並且設置在半導體層上且位於下方。該半導體層與該第二層水平對齊。將第二開口形成為穿過該膜堆疊。該第二開口從形成該第一開口之處橫向設置。該閘極結構橫向設置於該第二開口與形成該第一開口之處之間。將該第二層從該第二開口拉回,而形成至半導體層的第三橫向凹部。將電容器形成於設置有該第三橫向凹部的區域中。該電容器接觸該半導體層。Embodiments of the present disclosure include a method for semiconductor processing. A film stack is formed on a substrate. The membrane stack includes a plurality of cell stacks, and each cell stack has a first layer and a second layer disposed on the first layer. A first opening is formed through the film stack. Pulling the first layer back from the first opening forms a first lateral recess. A first conformal layer is formed in the first lateral recess. A first filler material is formed on the first conformal layer and in the first lateral recess. The first conformal layer is pulled back from the first opening to form a second lateral recess. A gate structure is formed in the second lateral recess and disposed on and below the semiconductor layer. The semiconductor layer is horizontally aligned with the second layer. A second opening is formed through the film stack. The second opening is disposed laterally from where the first opening is formed. The gate structure is laterally disposed between the second opening and where the first opening is formed. The second layer is pulled back from the second opening to form a third lateral recess into the semiconductor layer. A capacitor is formed in the region where the third lateral recess is provided. The capacitor contacts the semiconductor layer.

本案揭示內容的實施例包括一種用於半導體處理的方法。在基板上形成膜堆疊。該膜堆疊包括至少五層。該至少五層中的每一層由一材料形成,該材料選自多種材料的群組,該多種材料包括不超過三種不同材料。使用該膜堆疊作為模具,在該基板上形成多對的垂直堆疊的鏡射(mirrored)DRAM對。該等垂直堆疊的鏡射DRAM對中的每一鏡射DRAM對包括接觸件(contact)、第一電晶體、第二電晶體、第一電容器和第二電容器。該第一電晶體包括第一閘極結構、第一源極/汲極區域和第二源極/汲極區域。該第一源極/汲極區域接觸該接觸件。該第二電晶體包括第二閘極結構、第三源極/汲極區域和第四源極/汲極區域。該第三源極/汲極區域接觸該接觸件。該第二電晶體繞著該接觸件鏡射該第一電晶體。該第一電容器具有第一外板、第一電容器介電層以及第一內板。該第一外板接觸該第二源極/汲極區域。該第二電容器具有第二外板、第二電容器介電層以及第二內板。該第二外板接觸該第四源極/汲極區域。Embodiments of the present disclosure include a method for semiconductor processing. A film stack is formed on a substrate. The film stack includes at least five layers. Each of the at least five layers is formed from a material selected from the group of materials comprising no more than three different materials. Using the film stack as a mold, pairs of vertically stacked mirrored DRAM pairs are formed on the substrate. Each of the vertically stacked mirrored DRAM pairs includes a contact, a first transistor, a second transistor, a first capacitor, and a second capacitor. The first transistor includes a first gate structure, a first source/drain region and a second source/drain region. The first source/drain region contacts the contact. The second transistor includes a second gate structure, a third source/drain region and a fourth source/drain region. The third source/drain region contacts the contact. The second transistor mirrors the first transistor around the contact. The first capacitor has a first outer plate, a first capacitor dielectric layer and a first inner plate. The first outer plate contacts the second source/drain region. The second capacitor has a second outer plate, a second capacitor dielectric layer, and a second inner plate. The second outer plate contacts the fourth source/drain region.

大致而言,本文描述的範例關於半導體處理,並且更特定而言關於三維(3D)動態隨機存取記憶體 (DRAM)和形成3D DRAM的方法。根據各種範例,在基板上形成膜堆疊。該膜堆疊包括例如五層或更多層,其中這五層或更多層中的每一層由一材料形成,該材料選自不超過三種不同的材料的群組,且進一步,在一些範例中,該材料選自不超過兩種不同的材料的群組。該膜堆疊由一個或多個單元堆疊形成,其中每一單元堆疊由不超過兩種或三種不同的材料形成。該膜堆疊用作模具,以形成 3D DRAM 元件。特定而言,該模具用於形成兩對或更多對垂直堆疊的鏡射DRAM對。在使用模具製程時,用於該模具之層的不同材料的數量的增加能導致處理成本增加,包括使用額外的沉積製程和蝕刻製程。減少用於層的不同材料的數量(例如,藉由本文所述的各種範例)能夠諸如藉由具有更少的沉積製程和蝕刻製程而降低處理成本,因此能造成更具成本效益的元件。此外,能夠不添加另外不同材料,而達成各種數量的垂直堆疊鏡射DRAM對。本文的不同範例也能夠實現用於 3D DRAM 的單或雙閘極電晶體。The examples described herein relate generally to semiconductor processing, and more particularly to three-dimensional (3D) dynamic random access memory (DRAM) and methods of forming 3D DRAM. According to various examples, a film stack is formed on a substrate. The film stack includes, for example, five or more layers, wherein each of the five or more layers is formed from a material selected from the group of no more than three different materials, and further, in some examples , the material is selected from the group of no more than two different materials. The membrane stack is formed from one or more unit stacks, wherein each unit stack is formed from no more than two or three different materials. The film stack is used as a mold to form 3D DRAM elements. In particular, the die is used to form two or more vertically stacked mirrored DRAM pairs. When using a mold process, an increase in the number of different materials used for the layers of the mold can lead to increased processing costs, including the use of additional deposition and etching processes. Reducing the number of different materials used for layers (eg, with the various examples described herein) can reduce processing costs, such as by having fewer deposition and etching processes, and thus can result in more cost-effective devices. Furthermore, various numbers of vertically stacked mirrored DRAM pairs can be achieved without adding additional different materials. The different examples in this paper can also implement single or dual gate transistors for 3D DRAM.

下文描述了各種不同的範例。雖然可以在製程流程或系統中一起描述不同範例的多個特徵,但是該多個特徵各者能夠分開地或個別地及/或在不同的製程流程或不同系統中實施。此外,將各種製程流程描述為按順序執行;其他範例能夠以不同的順序及/或更多個或更少個操作實施製程流程。此外,儘管在各種範例中描述了源極和汲極節點以及源極和汲極區域,但這樣的描述能夠更一般地是針對源極/汲極節點或源極/汲極區域。再者,在一些範例中,描述n型電晶體,並且更一般而言,能夠實施任何類型的電晶體。Various examples are described below. Although various features of different examples may be described together in process flows or systems, each of the various features can be implemented separately or individually and/or in different process flows or different systems. Furthermore, various process flows are described as being performed sequentially; other examples can implement the process flows in a different order and/or more or fewer operations. Furthermore, although source and drain nodes and source and drain regions are described in various examples, such descriptions can be more generally with respect to source/drain nodes or source/drain regions. Again, in some examples, n-type transistors are described, and more generally, any type of transistor can be implemented.

圖1是根據本案揭示內容的一些範例的動態隨機存取記憶體(DRAM)單元的電路示意圖。DRAM單元包括n型電晶體2和電容器4。n型電晶體2的汲極節點6電連接到位元線(BL)節點8。n型電晶體2的源極節點10電連接電容器4的第一端子,且電容器4的第二端子(與第一端子相對)電連接電源供應器節點(例如接地節點)。n型電晶體2的閘極節點12電連接到字元線(WL)節點。1 is a schematic circuit diagram of a dynamic random access memory (DRAM) cell according to some examples of the present disclosure. The DRAM cell includes an n-type transistor 2 and a capacitor 4 . The drain node 6 of the n-type transistor 2 is electrically connected to a bit line (BL) node 8 . The source node 10 of the n-type transistor 2 is electrically connected to the first terminal of the capacitor 4, and the second terminal (opposite the first terminal) of the capacitor 4 is electrically connected to a power supply node (eg, a ground node). The gate node 12 of the n-type transistor 2 is electrically connected to a word line (WL) node.

圖2是根據本案揭示內容的一些範例的鏡射DRAM對的透視圖。圖2描繪兩個DRMA單元,該等DRAM單元沿垂直軸鏡射,為方便起見,本文可將其稱為鏡射DRAM對。如在下文的描述中會能明瞭,多對的鏡射DRAM對(例如,兩對、三對等)可垂直地堆疊於DRAM結構中。為了避免非必要地混淆圖式的各種態樣,鏡射DRAM對的一個DRAM單元以元件符號標示,並且此領域中具有通常技術之人士會易於理解鏡射DRAM對的另一DRAM單元中的鏡射部件。2 is a perspective view of a mirrored DRAM pair according to some examples of the present disclosure. Figure 2 depicts two DRMA cells that are mirrored along a vertical axis, which for convenience may be referred to herein as a mirrored DRAM pair. As will become apparent from the description below, multiple pairs of mirrored DRAM pairs (eg, two pairs, three pairs, etc.) may be stacked vertically in a DRAM structure. In order to avoid unnecessarily obscuring the various aspects of the drawings, mirroring one DRAM cell of a DRAM pair is designated with a reference numeral, and one of ordinary skill in the art will readily understand the mirror in the other DRAM cell of a mirroring DRAM pair. shoot parts.

DRAM單元包括n型電晶體22和電容器24。n型電晶體22包括形成n型電晶體22的主動區域的半導體材料26。舉例而言,半導體材料26大致上可受到p型摻雜。汲極區域28和源極區域30設置在半導體材料26中,而通道區域在半導體材料26中位於汲極區域28和源極區域30之間。在此範例中,汲極區域28和源極區域30受到n型摻雜。閘極介電層32設置在半導體材料26上(例如,在半導體材料26的頂表面上),並且閘極電極34設置在閘極介電層32上。The DRAM cell includes an n-type transistor 22 and a capacitor 24 . The n-type transistor 22 includes a semiconductor material 26 that forms the active region of the n-type transistor 22 . For example, the semiconductor material 26 may be substantially p-type doped. Drain region 28 and source region 30 are disposed in semiconductor material 26 while a channel region is located in semiconductor material 26 between drain region 28 and source region 30 . In this example, drain region 28 and source region 30 are n-type doped. Gate dielectric layer 32 is disposed on semiconductor material 26 (eg, on a top surface of semiconductor material 26 ), and gate electrode 34 is disposed on gate dielectric layer 32 .

電容器24包括外板36、電容器介電層38和內板40。外板36是導電材料,例如金屬或含金屬材料。外板36一般具有單帽蓋(single-capped)圓柱體、單帽蓋矩形棱柱等形狀。外板36一般是從n型電晶體22橫向延伸並且具有帽蓋端,該帽蓋端接觸n型電晶體22的源極區域30,以將源極區域30電連接至電容器24。外板36的與n型電晶體22相對之端部是開路的(open)。電容器介電層38是沿著外板36的內表面共形地設置的介電材料。電容器介電層38的介電材料能夠是高k介電材料(例如,具有大於4.0的k值)。內板40是導電材料,例如金屬或含金屬材料,並且設置在電容器介電層38上且填充外板36的剩餘內部部分。Capacitor 24 includes outer plate 36 , capacitor dielectric layer 38 and inner plate 40 . The outer plate 36 is a conductive material, such as a metal or metal-containing material. The outer panel 36 generally has the shape of a single-capped cylinder, a single-capped rectangular prism, or the like. Outer plate 36 generally extends laterally from n-type transistor 22 and has a cap end that contacts source region 30 of n-type transistor 22 to electrically connect source region 30 to capacitor 24 . The end of the outer plate 36 opposite to the n-type transistor 22 is open. The capacitor dielectric layer 38 is a dielectric material that is conformally disposed along the inner surface of the outer plate 36 . The dielectric material of capacitor dielectric layer 38 can be a high-k dielectric material (eg, having a k value greater than 4.0). The inner plate 40 is a conductive material, such as a metal or metal-containing material, and is disposed on the capacitor dielectric layer 38 and fills the remaining interior portion of the outer plate 36 .

位元線接觸件42設置成橫向接觸n型電晶體22的汲極區域28。位元線接觸件42垂直延伸,並且垂直軸(鏡射DRAM對沿著該垂直軸鏡射)沿著位元線接觸件42延伸。電源供應器接觸件44(例如,接地接觸件)設置為橫向接觸電容器24的內板40。Bit line contacts 42 are provided to laterally contact drain region 28 of n-type transistor 22 . The bit line contacts 42 extend vertically and a vertical axis along which the DRAM pair is mirrored extends along the bit line contacts 42 . Power supply contacts 44 (eg, ground contacts) are provided to laterally contact the inner plate 40 of the capacitor 24 .

圖3是根據本案揭示內容的一些範例的鏡射DRAM對的透視圖。圖3的3D DRAM單元類似圖2的3D DRAM單元,為簡潔起見省略了共同的描述。DRAM單元包括n型電晶體52和電容器24。n型電晶體52包括半導體材料54,該半導體材料54形成n型電晶體52的主動區域。舉例而言,半導體材料54一般可受p型摻雜。汲極區域56和源極區域58設置在半導體材料54中,通道區域在半導體材料54中位於汲極區域56和源極區域58之間。在此範例中,汲極區域56和源極區域58受到n型摻雜。頂部閘極介電層60設置在半導體材料54上(例如,在半導體材料54的頂表面上),且底部閘極介電層62設置在半導體材料54上位在與頂部閘極介電層60相對的一側上(例如,在半導體材料54的底表面上)。頂部閘極電極64設置在頂部閘極介電層60上(例如上方),並且底部閘極電極66設置在底部閘極介電層62上(例如下方)。3 is a perspective view of a mirrored DRAM pair according to some examples of the present disclosure. The 3D DRAM cell of FIG. 3 is similar to the 3D DRAM cell of FIG. 2, and the common description is omitted for brevity. The DRAM cell includes n-type transistor 52 and capacitor 24 . The n-type transistor 52 includes a semiconductor material 54 that forms the active region of the n-type transistor 52 . For example, semiconductor material 54 may generally be p-type doped. Drain region 56 and source region 58 are disposed in semiconductor material 54 and a channel region is located in semiconductor material 54 between drain region 56 and source region 58 . In this example, drain region 56 and source region 58 are n-type doped. Top gate dielectric layer 60 is disposed on semiconductor material 54 (eg, on the top surface of semiconductor material 54 ), and bottom gate dielectric layer 62 is disposed on semiconductor material 54 opposite top gate dielectric layer 60 on one side (eg, on the bottom surface of semiconductor material 54). Top gate electrode 64 is disposed on (eg, above) top gate dielectric layer 60 , and bottom gate electrode 66 is disposed on (eg, below) bottom gate dielectric layer 62 .

外板36的帽蓋端接觸n型電晶體52的源極區域58,以將源極區域58電連接至電容器24。位元線接觸件42設置為橫向接觸n型電晶體52的汲極區域56。The cap end of outer plate 36 contacts source region 58 of n-type transistor 52 to electrically connect source region 58 to capacitor 24 . Bit line contact 42 is provided to laterally contact drain region 56 of n-type transistor 52 .

圖4至圖12是根據本案揭示內容的一些範例的在形成3D DRAM單元的第一方法期間的中間結構的剖面圖。根據圖4至圖12的第一方法形成的3D DRAM單元能類似圖2中所示。4-12 are cross-sectional views of intermediate structures during a first method of forming a 3D DRAM cell, according to some examples of the present disclosure. A 3D DRAM cell formed according to the first method of FIGS. 4-12 can be similar to that shown in FIG. 2 .

參考圖4,膜堆疊沉積在基板100上。膜堆疊包括多個單元堆疊(例如,在所示範例中有兩個單元堆疊),該等單元堆疊部分地被犧牲性地利用以形成3D DRAM單元。能明瞭,此方法形成兩層的3D DRAM 單元。在其他範例中,重複膜堆疊的單元堆疊能夠形成額外層的3D DRAM單元。同樣,在膜堆疊中使用單元堆疊的一個例子能夠形成一層的3D DRAM 單元。Referring to FIG. 4 , a film stack is deposited on a substrate 100 . The film stack includes multiple cell stacks (eg, two cell stacks in the example shown) that are partially utilized sacrificially to form 3D DRAM cells. As can be seen, this method forms a two-layer 3D DRAM cell. In other examples, cell stacks of repeated film stacks can form additional layers of 3D DRAM cells. Also, an example of using a cell stack in a film stack enables the formation of a one-layer 3D DRAM cell.

基板100包括任何合適的半導體基板,諸如塊體基板、絕緣體上半導體(SOI)基板等。在一些範例中,半導體基板是塊體矽晶圓。基板尺寸的範例特別是包括200mm直徑、350mm直徑、400mm直徑、和450mm直徑等。基板100能夠進一步包括半導體基板上的任何層(例如,任何數量的其他介電層)或結構。Substrate 100 includes any suitable semiconductor substrate, such as a bulk substrate, a semiconductor-on-insulator (SOI) substrate, and the like. In some examples, the semiconductor substrate is a bulk silicon wafer. Examples of substrate dimensions include, among others, 200 mm diameter, 350 mm diameter, 400 mm diameter, 450 mm diameter, and the like. The substrate 100 can further include any layer (eg, any number of other dielectric layers) or structures on the semiconductor substrate.

膜堆疊包括多個單元堆疊,其中單元堆疊包括第一介電層102、半導體層104和第二介電層106。膜堆疊的單元堆疊是第一介電層102、第一介電層102上的半導體層104、及半導體層104上的第二介電層106,或由上述層組成。圖4中,此單元堆疊的兩個例子堆疊在基板100上。第一介電層102能夠各​​為相同的介電材料,並且第二介電層106能夠各為相同的介電材料,該第二介電層的介電材料不同於第一介電層102的介電材料並且具有在第一介電層102的介電材料之間的蝕刻選擇性。半導體層104能夠各為相同的半導體材料。能明瞭,大致上不同層的材料允許在處理期間選擇性地蝕刻目標層。膜堆疊用作形成DRAM 單元的模具。在一些範例中,第一介電層102是氧化矽;第二介電層106是氮化矽;且半導體層104是矽(例如,非晶或多晶,其可受p型摻雜)或InGaZnO。第一介電層102、半導體層104和第二介電層106中的每一層能夠透過任何合適的沉積技術沉積,諸如化學氣相沉積(CVD)、物理氣相沉積(PVD)等。The film stack includes a plurality of cell stacks, where the cell stack includes a first dielectric layer 102 , a semiconductor layer 104 and a second dielectric layer 106 . The unit stack of film stacks is or consists of a first dielectric layer 102, a semiconductor layer 104 on the first dielectric layer 102, and a second dielectric layer 106 on the semiconductor layer 104. In FIG. 4 , two examples of this cell stack are stacked on substrate 100 . The first dielectric layers 102 can each be of the same dielectric material, and the second dielectric layers 106 can each be of the same dielectric material, the second dielectric layer having a different dielectric material than the first dielectric layer The dielectric material of the first dielectric layer 102 has an etch selectivity between the dielectric materials of the first dielectric layer 102 . The semiconductor layers 104 can each be of the same semiconductor material. As can be appreciated, the substantially different layers of material allow for selective etching of the target layer during processing. The film stack serves as a mold for forming DRAM cells. In some examples, the first dielectric layer 102 is silicon oxide; the second dielectric layer 106 is silicon nitride; and the semiconductor layer 104 is silicon (eg, amorphous or polycrystalline, which may be p-type doped) or InGaZnO. Each of the first dielectric layer 102, the semiconductor layer 104, and the second dielectric layer 106 can be deposited by any suitable deposition technique, such as chemical vapor deposition (CVD), physical vapor deposition (PVD), and the like.

在圖5中,開口108形成為穿過膜堆疊(例如,穿過第一介電層102、半導體層104和第二介電層106)。開口108能夠透過使用各向異性(anisotropic)蝕刻形成,諸如反應性離子蝕刻(RIE)等。In FIG. 5, openings 108 are formed through the film stack (eg, through first dielectric layer 102, semiconductor layer 104, and second dielectric layer 106). The openings 108 can be formed by using anisotropic etching, such as reactive ion etching (RIE) or the like.

在圖6中,從開口108拉回第二介電層106,而從開口108形成橫向凹部110。該拉回製程能夠是任何合適的均向性(isotropic)蝕刻,該均向性蝕刻選擇性蝕刻第二介電層106。例如,當第二介電層106是氮化矽時,能夠使用熱磷酸蝕刻製程以拉回第二介電層106。膜堆疊中的多個層(例如,第一介電層102和半導體層104)能夠降低在拉回第二介電層106時發生塌陷的可能性。In FIG. 6 , the second dielectric layer 106 is pulled back from the opening 108 , while the lateral recess 110 is formed from the opening 108 . The pullback process can be any suitable isotropic etch that selectively etches the second dielectric layer 106 . For example, when the second dielectric layer 106 is silicon nitride, a thermal phosphoric acid etch process can be used to pull back the second dielectric layer 106 . Multiple layers in the film stack (eg, first dielectric layer 102 and semiconductor layer 104 ) can reduce the likelihood of collapse when second dielectric layer 106 is pulled back.

圖7說明閘極介電層112、閘極阻障及/或功函數調整(「阻障/調整」)層114、閘極電極填充材料116和介電填充材料118。閘極介電層112形成於各別半導體層104之表面上,該等表面是透過開口108和橫向凹部110而暴露。閘極介電層112能夠是藉由任何合適製程形成的任何合適的介電材料。在一些範例中,閘極介電層112是藉由氧化製程(例如,透過將半導體層104的暴露表面氧化)形成的氧化物。在一些範例中,閘極介電層112能夠是藉由共形沉積製程形成的另一種材料,該共形沉積製程例如原子層沉積(ALD)。FIG. 7 illustrates gate dielectric layer 112 , gate barrier and/or work function adjustment (“barrier/adjustment”) layer 114 , gate electrode fill material 116 , and dielectric fill material 118 . Gate dielectric layers 112 are formed on surfaces of the respective semiconductor layers 104 that are exposed through openings 108 and lateral recesses 110 . The gate dielectric layer 112 can be any suitable dielectric material formed by any suitable process. In some examples, gate dielectric layer 112 is an oxide formed by an oxidation process (eg, by oxidizing exposed surfaces of semiconductor layer 104 ). In some examples, gate dielectric layer 112 can be another material formed by a conformal deposition process, such as atomic layer deposition (ALD).

然後,沿著橫向凹部110的表面共形地形成閘極阻障/調整層114,並且在閘極阻障/調整層 114 上形成閘極電極填充材料116。在一些範例中,閘極阻障/調整層114是透過使用共形沉積製程(例如ALD)形成。共形沉積製程能夠在界定開口108以及橫向凹部110的表面上(例如,包括閘極介電層112)形成共形層。然後,能夠透過任何合適的沉積製程在共形層上沉積閘極電極填充材料116的導電材料。執行節點分離製程,以移除閘極電極填充材料116的一些導電材料以及閘極阻障/調整層114的一些共形層,以形成在各別的橫向凹部110中的閘極阻障/調整層114和閘極電極填充材料116。節點分離製程能夠包括:執行各向異性蝕刻(例如RIE),然後是對閘極阻障/調整層114和閘極電極填充材料116的材料有選擇性的均向性蝕刻。該各向異性蝕刻可移除界定開口108的第二介電層106以及第一介電層102的垂直側壁之間的閘極電極填充材料116的導電材料以及閘極阻障/調整層114的共形層。該均向性蝕刻使閘極電極填充材料116和閘極阻障/調整層114橫向凹陷,以具有多個垂直側壁,該等垂直側壁偏離界定開口108的半導體層104及第一介電層102的垂直表面。在一些範例中,閘極阻障/調整層114能夠是任何合適的擴散阻障材料及/或能夠是任何功函數調整材料,以調整電晶體之閾值電壓,該材料例如TiN等。在一些範例中,閘極電極填充材料116能夠是任何導電材料,諸如金屬,像是鎢。Then, a gate barrier/adjustment layer 114 is conformally formed along the surface of the lateral recess 110, and a gate electrode filling material 116 is formed on the gate barrier/adjustment layer 114. In some examples, gate barrier/adjustment layer 114 is formed using a conformal deposition process (eg, ALD). The conformal deposition process can form a conformal layer on the surface defining the opening 108 and the lateral recess 110 (eg, including the gate dielectric layer 112 ). The conductive material of gate electrode fill material 116 can then be deposited on the conformal layer by any suitable deposition process. A node separation process is performed to remove some conductive material of gate electrode fill material 116 and some conformal layers of gate barrier/adjustment layer 114 to form gate barrier/adjustment in respective lateral recesses 110 layer 114 and gate electrode fill material 116 . The node separation process can include performing an anisotropic etch (eg, RIE) followed by a selective isotropic etch of the gate barrier/adjustment layer 114 and gate electrode fill material 116 materials. The anisotropic etch removes the conductive material of the gate electrode fill material 116 and the gate barrier/adjustment layer 114 between the second dielectric layer 106 defining the opening 108 and the vertical sidewalls of the first dielectric layer 102 Conformal layer. The isotropic etch laterally recesses the gate electrode fill material 116 and the gate barrier/adjustment layer 114 to have vertical sidewalls that are offset from the semiconductor layer 104 and the first dielectric layer 102 that define the opening 108 vertical surface. In some examples, gate barrier/adjustment layer 114 can be any suitable diffusion barrier material and/or can be any work function adjusting material, such as TiN or the like, to adjust the threshold voltage of the transistor. In some examples, gate electrode fill material 116 can be any conductive material, such as a metal, such as tungsten.

然後,在開口108和橫向凹部110的剩餘未填充部分中形成介電填充材料118。介電填充材料118能夠是透過任何合適的沉積製程沉積的任何合適的介電材料。在一些範例中,介電填充材料118是透過共形沉積(例如ALD)或可流動沉積製程(例如可流動CVD(FCVD))沉積的氧化物。Then, a dielectric fill material 118 is formed in the openings 108 and the remaining unfilled portions of the lateral recesses 110 . The dielectric fill material 118 can be any suitable dielectric material deposited by any suitable deposition process. In some examples, the dielectric fill material 118 is an oxide deposited by a conformal deposition (eg, ALD) or flowable deposition process (eg, flowable CVD (FCVD)).

在圖8中,開口120形成為穿過膜堆疊(例如,穿過第一介電層102、半導體層104和第二介電層106)。能明瞭,每一開口120用於電容器的形成中,該電容器將會電連接各別電晶體,而閘極電極填充材料116和閘極阻障/調整層114是該電晶體的一部分。每一開口120設置成距相對應的閘極電極填充材料116和閘極阻障/調整層114一定的橫向距離,且該相對應的閘極電極填充材料116和閘極阻障/調整層114橫向設置在各別的開口120和形成開口108之處(例如,其由介電填充材料118所填充)之間。能夠使用各向異性蝕刻(諸如反應離子蝕刻(RIE)等)形成開口120。In FIG. 8, openings 120 are formed through the film stack (eg, through first dielectric layer 102, semiconductor layer 104, and second dielectric layer 106). As can be appreciated, each opening 120 is used in the formation of a capacitor that will be electrically connected to a respective transistor of which gate electrode fill material 116 and gate barrier/adjustment layer 114 are part. Each opening 120 is disposed at a certain lateral distance from the corresponding gate electrode filling material 116 and gate barrier/adjustment layer 114 , and the corresponding gate electrode filling material 116 and gate barrier/adjustment layer 114 Disposed laterally between respective openings 120 and where openings 108 are formed (eg, filled with dielectric fill material 118 ). The openings 120 can be formed using anisotropic etching, such as reactive ion etching (RIE), or the like.

在圖9中,將半導體層104從各別開口120拉回,而從各別開口120形成橫向凹部122。拉回製程能夠是選擇性蝕刻半導體層104的任何合適的均向性蝕刻。舉例而言,當半導體層104是矽時,能夠使用四甲基氫氧化銨(TMAH)蝕刻製程或乾式電漿均向性蝕刻以拉回半導體層104。In FIG. 9 , the semiconductor layers 104 are pulled back from the respective openings 120 and the lateral recesses 122 are formed from the respective openings 120 . The pullback process can be any suitable isotropic etch that selectively etches the semiconductor layer 104 . For example, when the semiconductor layer 104 is silicon, a tetramethylammonium hydroxide (TMAH) etch process or a dry plasma isotropic etch can be used to pull back the semiconductor layer 104 .

在各別的橫向凹部122處,於半導體層104的垂直側壁表面處摻雜半導體層104,而形成源極區域124。源極區域124能夠以n型摻雜劑摻雜。能夠透過使用氣相摻雜劑及/或電漿輔助摻雜製程執行摻雜。At the respective lateral recesses 122 , the semiconductor layer 104 is doped at the vertical sidewall surfaces of the semiconductor layer 104 to form source regions 124 . The source region 124 can be doped with an n-type dopant. Doping can be performed by using gas-phase dopants and/or plasma-assisted doping processes.

在圖10中,將橫向凹部122擴展,而形成擴大的橫向凹部126。該擴展能夠包括選擇性蝕刻第二介電層106的均向性蝕刻以及選擇性蝕刻第一介電層102的均向性蝕刻。該均向性蝕刻可以是溼式或乾式製程。在其中第一介電層102是氧化矽且第二介電層106是氮化矽的一些範例中,能夠使用熱磷酸蝕刻製程或乾式電漿蝕刻製程蝕刻第二介電層106,並且能夠使用基於氫氟酸的製程(例如,溼式稀釋氫氟酸(dHF)或乾式HF製程)蝕刻第一介電層102。In FIG. 10 , the lateral concave portion 122 is expanded to form an enlarged lateral concave portion 126 . The extension can include an isotropic etch that selectively etches the second dielectric layer 106 and an isotropic etch that selectively etches the first dielectric layer 102 . The isotropic etching can be a wet or dry process. In some examples in which the first dielectric layer 102 is silicon oxide and the second dielectric layer 106 is silicon nitride, the second dielectric layer 106 can be etched using a hot phosphoric acid etch process or a dry plasma etch process, and can use A hydrofluoric acid based process (eg, wet diluted hydrofluoric acid (dHF) or dry HF process) etches the first dielectric layer 102 .

圖11顯示在擴大的橫向凹部126中電容器的形成。每一電容器包括外板130、電容器介電層132、和內板134。外板130沿著擴大的橫向凹部126之表面共形地形成。在一些範例中,外板130透過使用共形沉積製程(例如ALD)形成。共形沉積製程能夠將共形層形成於界定開口120及擴大的橫向凹部126的表面上(例如,包括半導體層104的各別側壁表面,在該處設置有相對應的源極區域124)。執行節點分離製程,以移除界定開口120的垂直側壁上的一些共形層,而在各別的擴大的橫向凹部126中形成外板130。節點分離製程能夠包括:以填充材料填充開口120及擴大的橫向凹部126,以及執行合適的各向異性及均向性蝕刻製程,而從界定開口120的垂直側壁(例如,第一介電層102和第二介電層106的垂直側壁)移除共形層的多個部分且移除該填充材料。FIG. 11 shows the formation of capacitors in enlarged lateral recesses 126 . Each capacitor includes an outer plate 130 , a capacitor dielectric layer 132 , and an inner plate 134 . The outer plate 130 is formed conformally along the surface of the enlarged lateral recess 126 . In some examples, the outer plate 130 is formed using a conformal deposition process such as ALD. The conformal deposition process enables conformal layers to be formed on surfaces defining openings 120 and enlarged lateral recesses 126 (eg, including respective sidewall surfaces of semiconductor layer 104 where corresponding source regions 124 are disposed). A node separation process is performed to remove some of the conformal layers on the vertical sidewalls defining the openings 120 and to form the outer plates 130 in the respective enlarged lateral recesses 126 . The node separation process can include filling the openings 120 and the enlarged lateral recesses 126 with a fill material, and performing suitable anisotropic and isotropic etching processes to remove vertical sidewalls (eg, the first dielectric layer 102 ) that define the openings 120 and vertical sidewalls of the second dielectric layer 106 ) remove portions of the conformal layer and remove the fill material.

然後,在各別的外板130的內表面上形成電容器介電層132。電容器介電層132能夠透過共形沉積(例如ALD)形成,該共形沉積將共形電容器介電層132形成於各別開口120中(例如,沿著界定開口120的第二介電層106與第一介電層102之垂直側壁)及各別外板130之內表面。Then, capacitor dielectric layers 132 are formed on the inner surfaces of the respective outer plates 130 . The capacitor dielectric layers 132 can be formed by conformal deposition (eg, ALD) that forms the conformal capacitor dielectric layers 132 in the respective openings 120 (eg, along the second dielectric layer 106 defining the openings 120 ). and the vertical sidewalls of the first dielectric layer 102 ) and the inner surfaces of the respective outer plates 130 .

然後,在外板130上形成內板134。內板134能夠透過共形沉積(例如ALD)形成,該共形沉積在電容器介電層132上形成內板134。在所示範例中,內板134填充擴大的橫向凹部126的剩餘未填充部分,然而在一些範例中,內板134可以不填充擴大的橫向凹部126的剩餘未填充部分。如圖所示,內板134能夠由沉積在各別的開口120和擴大的橫向凹部126中的連續材料形成。由於內板134形成各別的DRAM單元之端子且該等端子電連接電源供應器節點(例如,接地節點)(如針對圖1所描述),所以內板134能夠透過形成內板134的連續材料電連接在一起。在所示範例中,內板134的材料不填充開口120,且在開口120的未填充部分中形成導電填充材料136。在一些範例中,內板134的材料填充開口120的剩餘未填充部分。例如透過內板134之材料電連接在一起的內板134及/或導電填充材料136形成在多個DRAM單元之間連接的電源供應器節點(例如,接地節點)。在其中使用導電填充材料136的範例中,導電填充材料136能夠透過任何合適的沉積製程(例如CVD、PVD等)沉積。Then, the inner plate 134 is formed on the outer plate 130 . The inner plate 134 can be formed by conformal deposition (eg, ALD) that forms the inner plate 134 on the capacitor dielectric layer 132 . In the example shown, the inner panel 134 fills the remaining unfilled portion of the enlarged lateral recess 126 , however, in some examples, the inner panel 134 may not fill the remaining unfilled portion of the enlarged lateral recess 126 . As shown, the inner plate 134 can be formed from a continuous material deposited in the respective openings 120 and enlarged lateral recesses 126 . Since the inner plate 134 forms the terminals of the respective DRAM cells and the terminals are electrically connected to power supply nodes (eg, ground nodes) (as described with respect to FIG. 1 ), the inner plate 134 is able to penetrate through the continuous material from which the inner plate 134 is formed electrically connected together. In the example shown, the material of the inner plate 134 does not fill the openings 120 , and a conductive fill material 136 is formed in the unfilled portions of the openings 120 . In some examples, the material of inner panel 134 fills the remaining unfilled portion of opening 120 . The inner plates 134 and/or the conductive fill material 136 , which are electrically connected together, eg, through the material of the inner plates 134 , form a power supply node (eg, a ground node) that connects between the plurality of DRAM cells. In examples in which conductive fill material 136 is used, conductive fill material 136 can be deposited by any suitable deposition process (eg, CVD, PVD, etc.).

在一些範例中,外板130的材料和內板134的材料能夠是任何導電材料,諸如金屬或含金屬材料(諸如TiN)。在一些範例中,電容器介電層132的材料能夠是任何介電材料,並且進一步能夠是任何高k介電材料(例如,具有大於4.0的k值)。在一些範例中,導電填充材料136能夠是任何導電材料,例如矽鍺(例如,摻雜的矽鍺)。In some examples, the material of the outer plate 130 and the material of the inner plate 134 can be any conductive material, such as a metal or metal-containing material (such as TiN). In some examples, the material of capacitor dielectric layer 132 can be any dielectric material, and further can be any high-k dielectric material (eg, having a k value greater than 4.0). In some examples, the conductive fill material 136 can be any conductive material, such as silicon germanium (eg, doped silicon germanium).

在圖12中,形成汲極區域138、阻障層140、及導電填充材料142。開口形成為穿過介電填充材料118。開口暴露半導體層104的垂直側壁。能夠使用蝕刻製程形成開口並且暴露半導體層104的垂直側壁。例如,蝕刻製程能夠包括各向異性蝕刻及/或均向性蝕刻。將先前形成於半導體層104的垂直側壁上的閘極介電層112藉由蝕刻製程移除,以暴露半導體層104的垂直側壁。In FIG. 12, drain region 138, barrier layer 140, and conductive fill material 142 are formed. Openings are formed through the dielectric fill material 118 . The openings expose vertical sidewalls of the semiconductor layer 104 . The openings can be formed and exposed vertical sidewalls of the semiconductor layer 104 using an etching process. For example, the etching process can include anisotropic etching and/or isotropic etching. The gate dielectric layer 112 previously formed on the vertical sidewalls of the semiconductor layer 104 is removed by an etching process to expose the vertical sidewalls of the semiconductor layer 104 .

半導體層104在由開口暴露的各別垂直側壁處的橫向部分受到摻雜而形成汲極區域138。汲極區域138能夠以n型摻雜劑摻雜。該摻雜能夠透過使用氣相摻雜劑及/或電漿輔助摻雜製程執行。在汲極區域138形成的情況下,針對DRAM單元形成各別的電晶體。對於每一DRAM單元而言,電晶體包括半導體層104中的源極區域124、半導體層104中的汲極區域138、在源極區域124和汲極區域138之間的半導體層104中的通道區域、以及設置在半導體層104上於通道區域上方對齊的閘極結構。閘極結構包括閘極介電層112和閘極電極填充材料116。此方法能夠允許針對電晶體的通道區域實施半導體層104的非常薄的部分。Lateral portions of semiconductor layer 104 at respective vertical sidewalls exposed by the openings are doped to form drain regions 138 . The drain region 138 can be doped with an n-type dopant. The doping can be performed using gas-phase dopants and/or plasma-assisted doping processes. With the formation of the drain region 138, individual transistors are formed for the DRAM cells. For each DRAM cell, the transistor includes source region 124 in semiconductor layer 104 , drain region 138 in semiconductor layer 104 , channels in semiconductor layer 104 between source region 124 and drain region 138 region, and a gate structure disposed on the semiconductor layer 104 in alignment over the channel region. The gate structure includes a gate dielectric layer 112 and a gate electrode filling material 116 . This approach can allow very thin sections of the semiconductor layer 104 to be implemented for the channel region of the transistor.

然後,在開口中形成阻障層140。阻障層140沿著開口的表面(包括沿著設置有汲極區域138之處的半導體層104的暴露垂直側壁)共形地形成。在一些範例中,阻障層140透過使用共形沉積製程(例如ALD)形成。然後,能夠藉由任何合適的沉積製程在阻障層140上沉積導電填充材料142。在一些範例中,阻障層140能夠是任何合適的擴散阻障材料,諸如TiN等。在一些範例中,導電填充材料142能夠是任何導電材料,例如金屬,像是鎢。阻障層140和導電填充材料142大致上形成接觸件,該接觸件可以是DRAM單元的位元線節點。此接觸件沿著一垂直軸,鏡射DRAM對圍繞該垂直軸鏡射。Then, a barrier layer 140 is formed in the opening. The barrier layer 140 is conformally formed along the surface of the opening, including along the exposed vertical sidewalls of the semiconductor layer 104 where the drain region 138 is disposed. In some examples, barrier layer 140 is formed using a conformal deposition process such as ALD. Then, conductive fill material 142 can be deposited on barrier layer 140 by any suitable deposition process. In some examples, barrier layer 140 can be any suitable diffusion barrier material, such as TiN or the like. In some examples, the conductive fill material 142 can be any conductive material, such as a metal such as tungsten. Barrier layer 140 and conductive fill material 142 generally form a contact, which may be a bit line node of a DRAM cell. The contacts are along a vertical axis about which the mirrored DRAM pair is mirrored.

圖13至圖27是根據本案揭示內容的一些範例的在形成3D DRAM單元的第二方法期間的中間結構之剖面圖。根據圖13至圖27的第二方法形成的3D DRAM單元能夠類似圖3所示。13-27 are cross-sectional views of intermediate structures during a second method of forming a 3D DRAM cell according to some examples of the present disclosure. A 3D DRAM cell formed according to the second method of FIGS. 13-27 can be similar to that shown in FIG. 3 .

參考圖13,膜堆疊沉積在基板100上。膜堆疊包括多個單元堆疊(例如,在所示範例中有兩個單元堆疊),該等單元堆疊部分地被犧牲性地利用以形成3D DRAM單元。能明瞭,此方法形成兩層的3D DRAM單元。在其他範例中,重複膜堆疊的單元堆疊能夠形成額外層的3D DRAM單元。同樣,在膜堆疊中使用單元堆疊的一個例子能夠形成一層的3D DRAM單元。Referring to FIG. 13 , a film stack is deposited on the substrate 100 . The film stack includes multiple cell stacks (eg, two cell stacks in the example shown) that are partially utilized sacrificially to form 3D DRAM cells. As can be seen, this method forms a two-layer 3D DRAM cell. In other examples, cell stacks of repeated film stacks can form additional layers of 3D DRAM cells. Also, an example of using a cell stack in a film stack enables the formation of a one-layer 3D DRAM cell.

膜堆疊包括多個單元堆疊,其中單元堆疊包括犧牲層202和介電層204。膜堆疊的單元堆疊是犧牲層202以及該犧牲層202上的介電層204,或是由上述兩者組成。此單元堆疊的兩個例子堆疊在圖13中的基板100上。犧牲層202能夠各為相同的材料,且介電層 204 能夠各為相同的介電材料,該介電材料與犧牲層202的材料不同且具有犧牲層的材料之間的蝕刻選擇性。能明瞭,大致上不同層的材料允許在處理期間選擇性地蝕刻目標層。膜堆疊用作形成DRAM單元的模具。在一些範例中,犧牲層202是矽、矽鍺、摻雜氧化矽、硼磷矽酸鹽玻璃(BPSG)、磷矽酸鹽玻璃(PSG)或氮化矽,並且介電層204是氧化矽。犧牲層202和介電層204的每一層能夠藉由任何合適的沉積技術(例如CVD、PVD等)沉積。The film stack includes a plurality of cell stacks, where the cell stack includes a sacrificial layer 202 and a dielectric layer 204 . The unit stack of the film stack is the sacrificial layer 202 and the dielectric layer 204 on the sacrificial layer 202, or consists of both. Two examples of this cell stack are stacked on substrate 100 in FIG. 13 . The sacrificial layers 202 can each be of the same material, and the dielectric layers 204 can each be of the same dielectric material, which is different from the material of the sacrificial layer 202 and has an etch selectivity between the materials of the sacrificial layer. As can be appreciated, the substantially different layers of material allow for selective etching of the target layer during processing. The film stack serves as a mold for forming DRAM cells. In some examples, sacrificial layer 202 is silicon, silicon germanium, doped silicon oxide, borophosphosilicate glass (BPSG), phosphosilicate glass (PSG), or silicon nitride, and dielectric layer 204 is silicon oxide . Each of the sacrificial layer 202 and the dielectric layer 204 can be deposited by any suitable deposition technique (eg, CVD, PVD, etc.).

在圖14中,開口206形成為穿過膜堆疊(例如,穿過犧牲層202和介電層204)。開口206能夠透過使用各向異性蝕刻(例如RIE等)形成。In FIG. 14, openings 206 are formed through the film stack (eg, through sacrificial layer 202 and dielectric layer 204). The openings 206 can be formed by using anisotropic etching (eg, RIE, etc.).

在圖15中,將介電層204從開口206拉回,而從開口206形成橫向凹部208。拉回製程能夠是選擇性蝕刻介電層204的任何合適的均向性蝕刻。例如,當介電層204是氧化矽時,能夠使用基於氫氟酸的製程(例如,溼式dHF 或乾式HF製程)蝕刻介電層204。In FIG. 15 , the dielectric layer 204 is pulled back from the opening 206 and a lateral recess 208 is formed from the opening 206 . The pullback process can be any suitable isotropic etch that selectively etches the dielectric layer 204 . For example, when the dielectric layer 204 is silicon oxide, the dielectric layer 204 can be etched using a hydrofluoric acid based process (eg, a wet dHF or dry HF process).

在圖16中,半導體層210形成為填充橫向凹部208。半導體層210能夠透過使用共形沉積(例如ALD)形成,該共形沉積沿著界定開口206及橫向凹部208的表面共形沉積半導體層210的材料。能夠使用各向異性蝕刻從界定開口206的犧牲層202之側壁之間移除半導體層210的材料。半導體層210能夠是任何半導體材料。在一些範例中,半導體層210是矽(例如,可以是非晶或多晶,其可受p型摻雜)或InGaZnO。In FIG. 16 , semiconductor layer 210 is formed to fill lateral recess 208 . The semiconductor layer 210 can be formed by using a conformal deposition (eg, ALD) that conformally deposits the material of the semiconductor layer 210 along the surface defining the opening 206 and the lateral recess 208 . The material of the semiconductor layer 210 can be removed from between the sidewalls of the sacrificial layer 202 that define the openings 206 using anisotropic etching. The semiconductor layer 210 can be any semiconductor material. In some examples, the semiconductor layer 210 is silicon (eg, may be amorphous or polycrystalline, which may be p-type doped) or InGaZnO.

在圖17中,將犧牲層202從開口206拉回,而從開口206形成橫向凹部212。在一些範例中,將犧牲層202拉回或超過半導體層210的遠離開口206的相對應垂直側壁。拉回製程能夠是選擇性蝕刻犧牲層202的任何合適的均向性蝕刻。例如,當犧牲層202是氮化矽時,能夠使用熱磷酸蝕刻製程拉回犧牲層202。In FIG. 17 , the sacrificial layer 202 is pulled back from the opening 206 and a lateral recess 212 is formed from the opening 206 . In some examples, the sacrificial layer 202 is pulled back or beyond a corresponding vertical sidewall of the semiconductor layer 210 remote from the opening 206 . The pullback process can be any suitable isotropic etch that selectively etches the sacrificial layer 202 . For example, when the sacrificial layer 202 is silicon nitride, the sacrificial layer 202 can be pulled back using a thermal phosphoric acid etch process.

圖18說明共形犧牲材料214和介電填充材料216。共形犧牲材料214能夠透過使用共形沉積(例如ALD)形成,該共形沉積沿著界定開口206以及橫向凹部212的表面(例如,犧牲層202的垂直側壁以及半導體層210的暴露表面)共形沉積共形犧牲材料214之材料。介電填充材料216能夠透過任何合適的沉積(例如透過ALD、FCV等)沉積在共形犧牲材料214的共形沉積材料上,而填充開口206和橫向凹部212的剩餘未填充部分。能夠使用各向異性蝕刻,以從例如界定開口 206 的半導體層 210 的側壁之間移除共形犧牲材料 214 和介電填充材料 216 的材料。共形犧牲材料 214 能夠是任何犧牲材料,例如犧牲介電材料,並且介電填充材料216能夠是任何介電材料。在一些範例中,共形犧牲材料214是氮化矽,而介電填充材料216是氧化矽。FIG. 18 illustrates the conformal sacrificial material 214 and the dielectric fill material 216 . The conformal sacrificial material 214 can be formed by using a conformal deposition (eg, ALD) that is co-formed along the surfaces defining the openings 206 and the lateral recesses 212 (eg, vertical sidewalls of the sacrificial layer 202 and exposed surfaces of the semiconductor layer 210 ). The material of the conformal sacrificial material 214 is deposited. Dielectric fill material 216 can be deposited over the conformal deposition material of conformal sacrificial material 214 by any suitable deposition (eg, by ALD, FCV, etc.) to fill the remaining unfilled portions of openings 206 and lateral recesses 212 . Anisotropic etching can be used to remove materials such as the conformal sacrificial material 214 and the dielectric fill material 216 from between the sidewalls of the semiconductor layer 210 that define the openings 206 . The conformal sacrificial material 214 can be any sacrificial material, such as a sacrificial dielectric material, and the dielectric fill material 216 can be any dielectric material. In some examples, the conformal sacrificial material 214 is silicon nitride and the dielectric fill material 216 is silicon oxide.

在圖19中,將共形犧牲材料214的橫向部分從開口206拉回,而從開口206形成橫向凹部218。形成在各別的共形犧牲材料214上的介電填充材料216能夠維持垂直地設置在透過拉回各別的共形犧牲材料 214而形成的橫向凹部218之間。拉回製程能夠是選擇性蝕刻共形犧牲材料 214 的任何合適的均向性蝕刻。例如,當共形犧牲材料214 是氮化矽時,熱磷酸蝕刻製程能夠用於拉回共形犧牲材料214。In FIG. 19 , lateral portions of the conformal sacrificial material 214 are pulled back from the openings 206 and lateral recesses 218 are formed from the openings 206 . The dielectric fill material 216 formed on the respective conformal sacrificial material 214 can remain vertically disposed between the lateral recesses 218 formed by pulling back the respective conformal sacrificial material 214. The pullback process can be any suitable isotropic etch that selectively etches the conformal sacrificial material 214 . For example, when the conformal sacrificial material 214 is silicon nitride, a thermal phosphoric acid etch process can be used to pull back the conformal sacrificial material 214 .

圖20說明閘極介電層220、閘極阻障/調整層222、閘極電極填充材料224和介電填充材料226。閘極介電層220形成在由開口206及橫向凹部218暴露的各別半導體層210的表面上。閘極介電層220能夠是透過任何合適的製程形成的任何合適的介電材料。在一些範例中,閘極介電層220是透過氧化製程(例如,透過氧化半導體層210的暴露表面)形成的氧化物。在一些範例中,閘極介電層220能夠是透過共形沉積製程(例如ALD)形成的另一種材料。FIG. 20 illustrates gate dielectric layer 220 , gate barrier/adjustment layer 222 , gate electrode fill material 224 , and dielectric fill material 226 . Gate dielectric layers 220 are formed on the surfaces of the respective semiconductor layers 210 exposed by the openings 206 and the lateral recesses 218 . The gate dielectric layer 220 can be any suitable dielectric material formed by any suitable process. In some examples, the gate dielectric layer 220 is an oxide formed through an oxidation process (eg, by oxidizing the exposed surface of the semiconductor layer 210 ). In some examples, gate dielectric layer 220 can be another material formed through a conformal deposition process (eg, ALD).

然後,沿著橫向凹部218的表面共形地形成閘極阻障/調整層222,並且在閘極阻障/調整層222上形成閘極電極填充材料224。在一些範例中,閘極阻障/調整層222是透過使用共形沉積製程(例如ALD)形成。共形沉積製程能夠在界定開口206和橫向凹部218的表面上(例如,包括閘極介電層220)形成共形層。然後,能夠透過任何合適的沉積製程在共形層上沉積閘極電極填充材料224的導電材料。執行節點分離製程,以移除閘極電極填充材料224的一些導電材料和閘極阻障/調整層222的一些共形層,而形成在各別橫向凹部208中的閘極阻障/調整層222和閘極電極填充材料224。節點分離製程能夠包括:執行各向異性蝕刻(例如 RIE),然後是對閘極阻障/調整層222和閘極電極填充材料 224 的材料有選擇性的均向性蝕刻。該各向異性蝕刻可移除例如在界定開口206的半導體層210和介電填充材料216的垂直側壁表面之間的閘極阻障/調整層222的共形層和閘極電極填充材料 224 的導電材料。該均向性蝕刻使閘極電極填充材料224和閘極阻障/調整層222橫向凹陷,以具有多個垂直側壁,該等垂直側壁偏離界定開口206的半導體層210及介電填充材料216的垂直表面。在一些範例中,閘極阻障/調整層222能夠是任何合適的擴散阻障材料及/或能夠是任何功函數調整材料,以調整電晶體的閾值電壓,該材料例如TiN等。在一些範例中,閘極電極填充材料224能夠是任何導電材料,例如金屬,像是鎢。Then, a gate barrier/adjustment layer 222 is conformally formed along the surface of the lateral recess 218 , and a gate electrode fill material 224 is formed on the gate barrier/adjustment layer 222 . In some examples, gate barrier/adjustment layer 222 is formed using a conformal deposition process (eg, ALD). The conformal deposition process can form a conformal layer on the surface defining the opening 206 and the lateral recess 218 (eg, including the gate dielectric layer 220 ). The conductive material of gate electrode fill material 224 can then be deposited on the conformal layer by any suitable deposition process. A node separation process is performed to remove some of the conductive material of the gate electrode fill material 224 and some of the conformal layers of the gate barrier/adjustment layer 222 and the gate barrier/adjustment layer formed in the respective lateral recesses 208 222 and gate electrode fill material 224. The node separation process can include performing an anisotropic etch (eg, RIE) followed by a selective isotropic etch of the gate barrier/adjustment layer 222 and gate electrode fill material 224 materials. The anisotropic etch may remove, for example, the conformal layer of gate barrier/adjustment layer 222 and the gate electrode fill material 224 between the semiconductor layer 210 that defines the opening 206 and the vertical sidewall surfaces of the dielectric fill material 216 . conductive material. The isotropic etch laterally recesses the gate electrode fill material 224 and the gate barrier/adjustment layer 222 to have vertical sidewalls that are offset from the semiconductor layer 210 and the dielectric fill material 216 defining the opening 206 . vertical surface. In some examples, gate barrier/adjustment layer 222 can be any suitable diffusion barrier material and/or can be any work function adjusting material, such as TiN or the like, to adjust the threshold voltage of the transistor. In some examples, gate electrode fill material 224 can be any conductive material, such as a metal such as tungsten.

然後,在橫向凹部208和開口206的剩餘未填充部分中形成介電填充材料226。介電填充材料226能夠是透過任何合適的沉積製程沉積的任何合適的介電材料。在一些範例中,介電填充材料226是透過共形沉積(例如ALD)或可流動沉積製程(例如FCVD)沉積的氧化物。Then, a dielectric fill material 226 is formed in the remaining unfilled portions of the lateral recesses 208 and openings 206 . The dielectric fill material 226 can be any suitable dielectric material deposited by any suitable deposition process. In some examples, the dielectric fill material 226 is an oxide deposited by a conformal deposition (eg, ALD) or flowable deposition process (eg, FCVD).

在圖21中,開口228形成為穿過膜堆疊(例如,穿過犧牲層202和介電層204)。能明瞭,每一開口228用於電容器的形成中,該電容器將會電連接到各別電晶體,閘極電極填充材料224和閘極阻障/調整層222是該電晶體的一部分。每一開口228設置成與相對應的閘極電極填充材料224和閘極阻障/調整層222相距一定的橫向距離,而相對應的閘極電極填充材料224和閘極阻障/調整層222橫向設置在各別的開口228和形成開口206之處(例如,由介電填充材料226填充)之間。開口228能夠透過使用各向異性蝕刻(例如RIE)等形成。In FIG. 21, openings 228 are formed through the film stack (eg, through sacrificial layer 202 and dielectric layer 204). As can be appreciated, each opening 228 is used in the formation of a capacitor that will be electrically connected to a respective transistor of which gate electrode fill material 224 and gate barrier/adjustment layer 222 are part. Each opening 228 is disposed at a certain lateral distance from the corresponding gate electrode filling material 224 and gate barrier/adjustment layer 222 , and the corresponding gate electrode filling material 224 and gate barrier/adjustment layer 222 Disposed laterally between respective openings 228 and where openings 206 are formed (eg, filled with dielectric fill material 226). The openings 228 can be formed by using anisotropic etching (eg, RIE) or the like.

在圖22中,將犧牲層202從各別的開口228拉回,而從各別的開口228形成橫向凹部230。在一些範例中,透過拉回製程移除犧牲層202。在一些範例中,諸如所繪示的,拉回製程也能夠移除共形犧牲材料214,例如當犧牲層202和共形犧牲材料214是相同材料時。拉回製程能夠是選擇性蝕刻犧牲層202的任何合適的均向性蝕刻。例如,當犧牲層202是氮化矽時,能夠使用熱磷酸蝕刻製程拉回犧牲層202,並且可能也拉回共形犧牲材料214。In FIG. 22 , the sacrificial layer 202 is pulled back from the respective openings 228 and the lateral recesses 230 are formed from the respective openings 228 . In some examples, the sacrificial layer 202 is removed through a pullback process. In some examples, such as shown, the pullback process can also remove the conformal sacrificial material 214, such as when the sacrificial layer 202 and the conformal sacrificial material 214 are the same material. The pullback process can be any suitable isotropic etch that selectively etches the sacrificial layer 202 . For example, when the sacrificial layer 202 is silicon nitride, a thermal phosphoric acid etch process can be used to pull back the sacrificial layer 202, and possibly the conformal sacrificial material 214 as well.

圖23說明共形介電材料232和介電填充材料234。共形介電材料232能夠透過使用共形沉積(例如ALD)形成,該共形沉積沿著界定開口228與橫向凹部230的表面(例如,介電層204、介電填充材料216和閘極阻障/調整層222的暴露表面)共形沉積共形介電材料232的材料。介電填充材料234能夠透過任何合適的沉積(例如透過ALD、FCV等)沉積在共形介電材料232的共形沉積材料上,而填充開口228和橫向凹部230的剩餘未填充部分。能夠使用各向異性蝕刻從例如界定開口228的介電層204的側壁之間移除共形介電材料232和介電填充材料234的材料。共形介電材料232和介電填充材料234能夠是如下所述的任何介電材料:能夠相對於彼此受到選擇性蝕刻(例如,共形介電材料232的材料與介電填充材料234的材料不同)。在一些範例中,共形介電材料232是氮化矽,而介電填充材料234是氧化矽。FIG. 23 illustrates a conformal dielectric material 232 and a dielectric fill material 234 . Conformal dielectric material 232 can be formed by using conformal deposition (eg, ALD) along the surfaces (eg, dielectric layer 204 , dielectric fill material 216 , and gate resistors) that define opening 228 and lateral recess 230 exposed surface of barrier/adjustment layer 222) conformally deposit the material of conformal dielectric material 232. Dielectric fill material 234 can be deposited over the conformal deposition material of conformal dielectric material 232 by any suitable deposition (eg, by ALD, FCV, etc.) to fill openings 228 and remaining unfilled portions of lateral recesses 230 . The material of the conformal dielectric material 232 and the dielectric fill material 234 can be removed from, for example, between the sidewalls of the dielectric layer 204 defining the openings 228 using anisotropic etching. The conformal dielectric material 232 and the dielectric fill material 234 can be any dielectric material that can be selectively etched relative to each other (eg, the material of the conformal dielectric material 232 and the material of the dielectric fill material 234 ) different). In some examples, the conformal dielectric material 232 is silicon nitride and the dielectric fill material 234 is silicon oxide.

在圖24中,將介電層204從開口228拉回至各別的半導體層210,而從開口228形成橫向凹部236。拉回製程可以是選擇性蝕刻介電層的任何合適的均向性蝕刻204。例如,當介電層204是氧化矽時,可以使用基於氫氟酸的製程(例如,溼式dHF或乾式HF製程)來蝕刻介電層204。In FIG. 24 , the dielectric layers 204 are pulled back from the openings 228 to the respective semiconductor layers 210 , and lateral recesses 236 are formed from the openings 228 . The pullback process can be any suitable isotropic etch 204 that selectively etches the dielectric layer. For example, when the dielectric layer 204 is silicon oxide, the dielectric layer 204 may be etched using a hydrofluoric acid based process (eg, wet dHF or dry HF process).

在各別的橫向凹部236處,半導體層210在該半導體層210的垂直側壁表面處受到摻雜,而形成源極區域238。源極區域238能夠以n型摻雜劑摻雜。該摻雜能夠透過使用氣相摻雜劑及/或電漿輔助摻雜製程執行。At respective lateral recesses 236 , the semiconductor layer 210 is doped at the vertical sidewall surfaces of the semiconductor layer 210 to form source regions 238 . The source region 238 can be doped with an n-type dopant. The doping can be performed using gas-phase dopants and/or plasma-assisted doping processes.

在圖25中,將橫向凹部236擴展,而形成擴大的橫向凹部240。擴展能夠包括選擇性蝕刻共形介電材料232的均向性蝕刻。均向性蝕刻能夠是溼式或乾式製程。在其中共形介電材料232是氮化矽的一些範例中,能夠使用熱磷酸蝕刻製程或乾式電漿蝕刻製程蝕刻共形介電材料232。In FIG. 25 , the lateral recess 236 is expanded to form an enlarged lateral recess 240 . Extensions can include isotropic etching that selectively etches the conformal dielectric material 232 . Isotropic etching can be a wet or dry process. In some examples where the conformal dielectric material 232 is silicon nitride, the conformal dielectric material 232 can be etched using a hot phosphoric acid etch process or a dry plasma etch process.

圖26顯示在擴大的橫向凹部240中的電容​​器的形成。每一電容器包括外板130、電容器介電層132和內板134,如上文針對圖11所述。FIG. 26 shows the formation of capacitors in enlarged lateral recesses 240 . Each capacitor includes an outer plate 130 , a capacitor dielectric layer 132 , and an inner plate 134 , as described above with respect to FIG. 11 .

在圖27中,形成汲極區域242、阻障層140和導電填充材料142。開口形成為穿過介電填充材料226。開口暴露半導體層210的垂直側壁。能夠使用蝕刻製程形成開口並且暴露半導體層210的垂直側壁。例如,蝕刻製程能夠包括各向異性蝕刻及/或均向性蝕刻。先前形成在半導體層210的垂直側壁上的閘極介電層220藉由蝕刻製程移除,而暴露半導體層210的垂直側壁。In Figure 27, drain region 242, barrier layer 140 and conductive fill material 142 are formed. Openings are formed through the dielectric fill material 226 . The openings expose vertical sidewalls of the semiconductor layer 210 . The openings can be formed and exposed vertical sidewalls of the semiconductor layer 210 using an etching process. For example, the etching process can include anisotropic etching and/or isotropic etching. The gate dielectric layer 220 previously formed on the vertical sidewalls of the semiconductor layer 210 is removed by an etching process to expose the vertical sidewalls of the semiconductor layer 210 .

半導體層210在由開口暴露的各別垂直側壁處的橫向部分受到摻雜而形成汲極區域242。汲極區域242能夠以n型摻雜劑摻雜。該摻雜能夠透過使用氣相摻雜劑及/或電漿輔助摻雜製程執行。在汲極區域242形成的情況下,對DRAM單元形成各別的電晶體。對於每一DRAM單元而言,電晶體包括半導體層210中的源極區域238、半導體層210中的汲極區域242、源極區域238和汲極區域242之間的半導體層210中的通道區域、設置在半導體層210上且位於上方且在通道區域上方對齊的第一(例如,頂部)閘極結構、以及設置在半導體層210上且位於下方且在通道區域上方對齊的第二(例如,底部)閘極結構。第一閘極結構和第二閘極結構之每一者包括各別的閘極介電層220和各別的閘極電極填充材料224。Lateral portions of semiconductor layer 210 at respective vertical sidewalls exposed by the openings are doped to form drain regions 242 . The drain region 242 can be doped with an n-type dopant. The doping can be performed using gas-phase dopants and/or plasma-assisted doping processes. With the formation of the drain region 242, individual transistors are formed for the DRAM cells. For each DRAM cell, the transistor includes a source region 238 in semiconductor layer 210 , a drain region 242 in semiconductor layer 210 , a channel region in semiconductor layer 210 between source region 238 and drain region 242 , a first (eg, top) gate structure disposed on the semiconductor layer 210 and positioned above and aligned over the channel region, and a second (eg, top) gate structure positioned on the semiconductor layer 210 and positioned below and aligned above the channel region Bottom) gate structure. Each of the first gate structure and the second gate structure includes a respective gate dielectric layer 220 and a respective gate electrode fill material 224 .

然後,在開口中形成阻障層140和導電填充材料142,如針對圖 12 所述。阻障層140和導電填充材料142大致上形成接觸件,該接觸件可以是DRAM 單元之位元線節點。此接觸件沿著一垂直軸,鏡射 DRAM對圍繞該垂直軸鏡射。Then, a barrier layer 140 and conductive fill material 142 are formed in the openings, as described for FIG. 12 . Barrier layer 140 and conductive fill material 142 generally form a contact, which may be a bit line node of a DRAM cell. The contacts are along a vertical axis about which the mirrored DRAM pair is mirrored.

圖28至圖40是根據本案揭示內容的一些範例在形成3D DRAM單元的第二方法期間中間結構的剖面圖。根據圖28至40的第三方法形成的3D DRAM 單元能夠如圖3所示。28-40 are cross-sectional views of intermediate structures during a second method of forming a 3D DRAM cell according to some examples of the present disclosure. The 3D DRAM cell formed according to the third method of FIGS. 28 to 40 can be as shown in FIG. 3 .

參考圖28,膜堆疊沉積在基板100上。膜堆疊包括多個單元堆疊(例如,在所示範例中有兩個單元堆疊),該等單元堆疊部分地被犧牲性地利用以形成3D DRAM單元。能明瞭,此方法形成兩層的3D DRAM 單元。在其他範例中,重複膜堆疊的單元堆疊能夠形成額外層的3D DRAM單元。同樣,在膜堆疊中使用單元堆疊的一個例子能夠形成一層的3D DRAM 單元。Referring to FIG. 28 , the film stack is deposited on the substrate 100 . The film stack includes multiple cell stacks (eg, two cell stacks in the example shown) that are partially utilized sacrificially to form 3D DRAM cells. As can be seen, this method forms a two-layer 3D DRAM cell. In other examples, cell stacks of repeated film stacks can form additional layers of 3D DRAM cells. Also, an example of using a cell stack in a film stack enables the formation of a one-layer 3D DRAM cell.

膜堆疊包括多個單元堆疊,其中單元堆疊包括犧牲層302和半導體層304。膜堆疊的單元堆疊是犧牲層302以及該犧牲層302上的半導體層304,或是由上述兩者組成。此單元堆疊的兩個例子堆疊在圖28中的基板100上。犧牲層302能夠各為相同的材料,且半導體層304能夠各為相同材料,該材料與犧牲層302的材料不同且具有在犧牲層302的材料之間的蝕刻選擇性。大致上,能明瞭不同層的材料允許在處理期間選擇性地蝕刻目標層。膜堆疊用作形成DRAM單元的模具。在一些範例中,犧牲層302是矽鍺、摻雜氧化矽、BPSG、(BSG)、PSG、或氮化矽,並且半導體層304是矽(例如,非晶、多晶或單晶,其可受到摻雜)或InGaZnO。一些特定範例中,犧牲層302是非晶或結晶矽鍺,且半導體層304是非晶或結晶矽。犧牲層302和半導體層304的每一層能夠藉由任何合適的沉積技術(例如CVD、PVD等)沉積。The film stack includes a plurality of cell stacks, where the cell stack includes a sacrificial layer 302 and a semiconductor layer 304 . The unit stack of the film stack is the sacrificial layer 302 and the semiconductor layer 304 on the sacrificial layer 302, or consists of both. Two examples of this cell stack are stacked on substrate 100 in FIG. 28 . The sacrificial layers 302 can each be of the same material, and the semiconductor layers 304 can each be of the same material, which is different from the material of the sacrificial layer 302 and has an etch selectivity between the materials of the sacrificial layer 302 . In general, being able to understand the materials of the different layers allows the target layer to be selectively etched during processing. The film stack serves as a mold for forming DRAM cells. In some examples, sacrificial layer 302 is silicon germanium, doped silicon oxide, BPSG, (BSG), PSG, or silicon nitride, and semiconductor layer 304 is silicon (eg, amorphous, polycrystalline, or single crystal, which may be doped) or InGaZnO. In some specific examples, the sacrificial layer 302 is amorphous or crystalline silicon germanium, and the semiconductor layer 304 is amorphous or crystalline silicon. Each of sacrificial layer 302 and semiconductor layer 304 can be deposited by any suitable deposition technique (eg, CVD, PVD, etc.).

在一些範例中,犧牲層302和半導體層304是半導體材料,並且進一步而言,是磊晶或結晶(例如,單晶)半導體材料。在一些範例中,膜堆疊能夠透過下述方式形成:在基板100上磊晶生長犧牲層302,在犧牲層上磊晶生長半導體層304,以及重複磊晶生長犧牲層302和半導體層304,以實現膜堆疊中的目標的層數。使用諸如矽鍺的磊晶或結晶(例如,單晶)材料作為犧牲層302能夠允許透過磊晶生長來沉積犧牲層302和半導體層304,這允許半導體層304(並且能明瞭,包括電晶體的源極/汲極區域和通道區域的主動區域)得以為結晶的(例如,單晶)。在一些特定範例中,犧牲層302是磊晶或結晶(例如,單晶)矽鍺,並且半導體層304是磊晶或結晶(例如,單晶)矽。In some examples, sacrificial layer 302 and semiconductor layer 304 are semiconductor materials, and further, epitaxial or crystalline (eg, single crystal) semiconductor materials. In some examples, the film stack can be formed by epitaxially growing sacrificial layer 302 on substrate 100, epitaxially growing semiconductor layer 304 on the sacrificial layer, and repeating epitaxially growing sacrificial layer 302 and semiconductor layer 304 to The number of layers to achieve the target in the membrane stack. The use of epitaxial or crystalline (eg, single crystal) materials such as silicon germanium as the sacrificial layer 302 can allow deposition of the sacrificial layer 302 and the semiconductor layer 304 by epitaxial growth, which allows the semiconductor layer 304 (and clearly, including the transistor's Source/drain regions and active regions of the channel region) can be crystalline (eg, single crystal). In some specific examples, the sacrificial layer 302 is epitaxial or crystalline (eg, single crystal) silicon germanium, and the semiconductor layer 304 is epitaxial or crystalline (eg, single crystal) silicon.

在圖29中,開口306形成為穿過膜堆疊(例如,穿過犧牲層302和半導體層304)。開口306能夠透過使用各向異性蝕刻(例如RIE等)形成。In FIG. 29, openings 306 are formed through the film stack (eg, through sacrificial layer 302 and semiconductor layer 304). The openings 306 can be formed by using anisotropic etching (eg, RIE, etc.).

在圖30中,犧牲層302從開口306被拉回,而從開口306形成橫向凹部308。拉回製程能夠是選擇性蝕刻犧牲層302的任何合適的均向性蝕刻。例如,當犧牲層302為矽鍺,能夠使用氫氟酸(HF)、過氧化氫(H 2O 2)和醋酸(CH 3COOH)以1:2:3(HF:H 2O 2:CH 3COOH)的混合物蝕刻犧牲層302。 In FIG. 30 , the sacrificial layer 302 is pulled back from the opening 306 and a lateral recess 308 is formed from the opening 306 . The pullback process can be any suitable isotropic etch that selectively etches the sacrificial layer 302 . For example, when the sacrificial layer 302 is silicon germanium, hydrofluoric acid (HF), hydrogen peroxide (H 2 O 2 ), and acetic acid (CH 3 COOH) can be used in 1:2:3 (HF:H 2 O 2 :CH ) The sacrificial layer 302 is etched with a mixture of 3 COOH).

圖31說明共形犧牲材料310和介電填充材料312。共形犧牲材料310能夠透過使用共形沉積(例如ALD)形成,該共形沉積沿著界定開口306與橫向凹部308的表面(例如,犧牲層302的垂直側壁和半導體層304的暴露表面)共形沉積共形犧牲材料310的材料。介電填充材料312能夠透過任何合適的沉積(例如透過ALD、FCV等)沉積在共形犧牲材料310的共形沉積材料上,而填充開口306和橫向凹部308的剩餘未填充部分。能夠使用各向異性蝕刻從例如界定開口306的半導體層304的側壁之間移除共形犧牲材料310和介電填充材料312的材料。共形犧牲材料 310能夠是任何犧牲材料,例如犧牲介電材料,並且介電填充材料312能夠是任何介電材料。在一些範例中,共形犧牲材料310是氮化矽,而介電填充材料312是氧化矽。FIG. 31 illustrates a conformal sacrificial material 310 and a dielectric fill material 312 . The conformal sacrificial material 310 can be formed by using a conformal deposition (eg, ALD) that is in common with the surface of the lateral recess 308 (eg, the vertical sidewalls of the sacrificial layer 302 and the exposed surface of the semiconductor layer 304 ) along the defining opening 306 The material of the conformal sacrificial material 310 is formed to be deposited. Dielectric fill material 312 can be deposited over the conformal deposition material of conformal sacrificial material 310 by any suitable deposition (eg, by ALD, FCV, etc.) to fill the remaining unfilled portions of openings 306 and lateral recesses 308 . Materials such as the conformal sacrificial material 310 and the dielectric fill material 312 can be removed from, for example, between the sidewalls of the semiconductor layer 304 that define the openings 306 using anisotropic etching. The conformal sacrificial material 310 can be any sacrificial material, such as a sacrificial dielectric material, and the dielectric fill material 312 can be any dielectric material. In some examples, the conformal sacrificial material 310 is silicon nitride and the dielectric fill material 312 is silicon oxide.

在圖32中,將共形犧牲材料310的橫向部分從開口306拉回,而從開口306形成橫向凹部314。形成在各別共形犧牲材料310上的介電填充材料312能夠維持垂直地設置在透過拉回各別的共形犧牲材料310而形成的橫向凹部314之間。拉回製程能夠是選擇性蝕刻共形犧牲材料310的任何合適的均向性蝕刻。例如,當共形犧牲材料310是氮化矽時,熱磷酸蝕刻製程可用於拉回共形犧牲材料310。In FIG. 32 , lateral portions of the conformal sacrificial material 310 are pulled back from the openings 306 and lateral recesses 314 are formed from the openings 306 . The dielectric fill material 312 formed on the respective conformal sacrificial material 310 can remain vertically disposed between the lateral recesses 314 formed by pulling back the respective conformal sacrificial material 310 . The pullback process can be any suitable isotropic etch that selectively etches the conformal sacrificial material 310 . For example, when the conformal sacrificial material 310 is silicon nitride, a thermal phosphoric acid etch process can be used to pull back the conformal sacrificial material 310 .

圖33說明閘極介電層220、閘極阻障/調整層222、閘極電極填充材料224和介電填充材料226。閘極介電層220、閘極阻障/調整層222和閘極電極填充材料224形成於橫向凹部314中,如上文針對圖20所述,並且介電填充材料226形成於開口306中,如上文針對圖20所述。FIG. 33 illustrates gate dielectric layer 220 , gate barrier/adjustment layer 222 , gate electrode fill material 224 and dielectric fill material 226 . Gate dielectric layer 220, gate barrier/adjustment layer 222, and gate electrode fill material 224 are formed in lateral recess 314, as described above for FIG. 20, and dielectric fill material 226 is formed in opening 306, as above The text is described for Figure 20.

在圖34中,開口315形成為穿過膜堆疊(例如,穿過犧牲層302和半導體層304),如上文針對圖21所述。能明瞭,每一開口315用在電容器的形成中,該電容器將電連接到各別的電晶體,閘極電極填充材料224和閘極阻障/調整層222是該電晶體的一部分。每一開口315設置成與相對應的閘極電極填充材料224和閘極阻障/調整層222相距一定的橫向距離,而相對應的閘極電極填充材料 224 和閘極阻障/調整層222橫向設置在各別的開口315和形成開口206之處(例如,其由介電填充材料226填充)之間。In FIG. 34 , openings 315 are formed through the film stack (eg, through sacrificial layer 302 and semiconductor layer 304 ), as described above with respect to FIG. 21 . As can be appreciated, each opening 315 is used in the formation of a capacitor to be electrically connected to a respective transistor of which gate electrode fill material 224 and gate barrier/adjustment layer 222 are part. Each opening 315 is disposed at a certain lateral distance from the corresponding gate electrode filling material 224 and gate barrier/adjustment layer 222 , and the corresponding gate electrode filling material 224 and gate barrier/adjustment layer 222 Disposed laterally between respective openings 315 and where openings 206 are formed (eg, filled with dielectric fill material 226).

在圖35中,將犧牲層302從各別的開口315拉回,而從各別的開口315形成橫向凹部316。在一些範例中,透過拉回製程移除犧牲層302。在一些範例中,例如所繪示,拉回製程也能夠移除共形犧牲材料310,例如當犧牲層302和共形犧牲材料310是相同材料時。拉回製程能夠是選擇性蝕刻犧牲層302的任何合適的均向性蝕刻。例如,當犧牲層302為矽鍺時,能夠使用HF、H 2O 2和CH 3COOH的比例為1:2:3(HF:H 2O 2:CH 3COOH)的混合物以拉回犧牲層302。 In FIG. 35 , the sacrificial layer 302 is pulled back from the respective openings 315 and lateral recesses 316 are formed from the respective openings 315 . In some examples, the sacrificial layer 302 is removed through a pullback process. In some examples, such as shown, the pullback process can also remove the conformal sacrificial material 310, such as when the sacrificial layer 302 and the conformal sacrificial material 310 are the same material. The pullback process can be any suitable isotropic etch that selectively etches the sacrificial layer 302 . For example, when the sacrificial layer 302 is silicon germanium, a mixture of HF, H2O2, and CH3COOH in a ratio of 1 : 2 : 3 ( HF :H2O2: CH3COOH ) can be used to pull back the sacrificial layer 302.

圖36說明形成在橫向凹部316中的共形介電材料232和介電填充材料234。共形介電材料232和介電填充材料234能夠像上文針對圖23所述般形成。FIG. 36 illustrates conformal dielectric material 232 and dielectric fill material 234 formed in lateral recess 316 . Conformal dielectric material 232 and dielectric fill material 234 can be formed as described above for FIG. 23 .

在圖37中,從開口315拉回半導體層304,而從開口315形成橫向凹部318。拉回製程能夠是選擇性蝕刻半導體層304的任何合適的均向性蝕刻。例如,當半導體層304是矽時,能夠使用TMAH蝕刻製程或乾式電漿均向性蝕刻拉回半導體層304。In FIG. 37 , semiconductor layer 304 is pulled back from opening 315 while lateral recesses 318 are formed from opening 315 . The pullback process can be any suitable isotropic etch that selectively etches the semiconductor layer 304 . For example, when the semiconductor layer 304 is silicon, the semiconductor layer 304 can be pulled back using a TMAH etch process or a dry plasma isotropic etch.

在各別的橫向凹部318處,半導體層304在半導體層304的垂直側壁表面處受到摻雜,而形成源極區域238,如針對圖24所述。At respective lateral recesses 318, semiconductor layer 304 is doped at vertical sidewall surfaces of semiconductor layer 304 to form source regions 238, as described with respect to FIG.

在圖38中,將橫向凹部318擴展,而形成擴大的橫向凹部240,如針對圖25所述。圖39顯示在擴大的橫向凹部240中的電容器的形成。每一電容器包括外板130、電容器介電層132和內板134,如上文針對圖11所述。在圖40中,形成汲極區域242、阻障層140和導電填充材料142,如針對圖27所述。In FIG. 38 , lateral recess 318 is expanded to form enlarged lateral recess 240 , as described with respect to FIG. 25 . FIG. 39 shows the formation of capacitors in enlarged lateral recesses 240 . Each capacitor includes an outer plate 130 , a capacitor dielectric layer 132 , and an inner plate 134 , as described above with respect to FIG. 11 . In FIG. 40 , drain region 242 , barrier layer 140 and conductive fill material 142 are formed as described for FIG. 27 .

在汲極區域242形成的情況下,對DRAM單元形成各別的電晶體。對於每一DRAM單元而言,電晶體包括半導體層304中的源極區域238、半導體層304中的汲極區域242、源極區域238和汲極區域242之間的半導體層304中的通道區域、設置在半導體層304上且位於上方並在通道區域上方對齊的第一(例如,頂部)閘極結構、以及設置在半導體層304上且位於下方並在通道區域上方對齊的第二(例如,底部)閘極結構。第一閘極結構和第二閘極結構之每一者包括閘極介電層220和閘極電極填充材料224。阻障層140和導電填充材料142大致上形成接觸件,該接觸件可以是DRAM單元的位元線節點。此接觸件沿著一垂直軸,鏡射 DRAM對圍繞該垂直軸鏡射。With the formation of the drain region 242, individual transistors are formed for the DRAM cells. For each DRAM cell, the transistor includes source region 238 in semiconductor layer 304 , drain region 242 in semiconductor layer 304 , channel regions in semiconductor layer 304 between source region 238 and drain region 242 , a first (eg, top) gate structure disposed on the semiconductor layer 304 and positioned above and aligned over the channel region, and a second (eg, top) gate structure positioned on the semiconductor layer 304 and positioned below and aligned above the channel region Bottom) gate structure. Each of the first gate structure and the second gate structure includes a gate dielectric layer 220 and a gate electrode filling material 224 . Barrier layer 140 and conductive fill material 142 generally form a contact, which may be a bit line node of a DRAM cell. The contacts are along a vertical axis about which the mirrored DRAM pair is mirrored.

雖然上文是針對本案揭示內容的各種範例,但在不脫離本案之基本範疇的情況下可以設計其他和進一步的範例,並且其範疇由所附之申請專利範圍所決定。While the foregoing is directed to various exemplars of the present disclosure, other and further exemplars may be devised without departing from the essential scope of the present case, the scope of which is determined by the appended claims.

2:n型電晶體 4:電容器 6:汲極節點 8:位元線節點 10:源極節點 12:閘極節點 22:n型電晶體 24:電容器 26:半導體材料 28:汲極區域 30:源極區域 32:閘極介電層 34:閘極電極 36:外板 38:電容器介電層 40:內板 42:位元線接觸件 44:電源供應器接觸件 52:n型電晶體 54:半導體材料 56:汲極區域 58:源極區域 60:頂部閘極介電層 62:底部閘極介電層 64:頂部閘極電極 66:底部閘極電極 100:基板 102:第一介電層 104:半導體層 106:第二介電層 108:開口 110:橫向凹部 112:閘極介電層 114:阻障/調整層 116:閘極電極填充材料 118:介電填充材料 120:開口 122:橫向凹部 124:源極區域 126:擴大的橫向凹部 130:外板 132:電容器介電層 134:內板 136:導電填充材料 138:汲極區域 140:阻障層 142:導電填充材料 202:犧牲層 204:介電層 206:開口 208:橫向凹部 210:半導體層 212:橫向凹部 214:共形犧牲材料 216:介電填充材料 218:橫向凹部 220:閘極介電層 222:阻障/調整層 224:閘極電極填充材料 226:介電填充材料 228:開口 230:橫向凹部 232:共形介電材料 234:介電填充材料 236:橫向凹部 238:源極區域 240:擴大的橫向凹部 242:汲極區域 302:犧牲層 304:半導體層 306:開口 308:橫向凹部 310:共形犧牲材料 312:介電填充材料 314:橫向凹部 315:開口 316:橫向凹部 318:橫向凹部 2: n-type transistor 4: Capacitor 6: Drain node 8: bit line node 10: Source node 12: Gate node 22: n-type transistor 24: Capacitor 26: Semiconductor Materials 28: Drain area 30: source region 32: gate dielectric layer 34: Gate electrode 36: Outer panel 38: Capacitor Dielectric Layer 40: inner panel 42: Bit Wire Contacts 44: Power supply contacts 52: n-type transistor 54: Semiconductor Materials 56: Drain area 58: source region 60: Top gate dielectric layer 62: Bottom gate dielectric layer 64: Top gate electrode 66: Bottom gate electrode 100: Substrate 102: first dielectric layer 104: Semiconductor layer 106: Second Dielectric Layer 108: Opening 110: Transverse recess 112: gate dielectric layer 114: Barrier/Adjustment Layer 116: Gate electrode filling material 118: Dielectric Filler 120: Opening 122: Lateral recess 124: source region 126: Enlarged Lateral Recess 130: outer panel 132: capacitor dielectric layer 134: Inner board 136: Conductive filler material 138: Drain area 140: Barrier Layer 142: Conductive filler material 202: Sacrificial Layer 204: Dielectric Layer 206: Opening 208: Lateral recess 210: Semiconductor layer 212: Transverse recess 214: Conformal Sacrificial Materials 216: Dielectric Filler Materials 218: Lateral recess 220: gate dielectric layer 222: Barrier/Adjustment Layer 224: Gate electrode filling material 226: Dielectric Filler 228: Opening 230: Lateral recess 232: Conformal Dielectric Materials 234: Dielectric Filler Materials 236: Lateral recess 238: source region 240: Enlarged lateral recess 242: Drain area 302: Sacrificial Layer 304: Semiconductor layer 306: Opening 308: Lateral recess 310: Conformal Sacrificial Materials 312: Dielectric Filler Materials 314: Lateral recess 315: Opening 316: Lateral recess 318: Lateral recess

為了能夠詳細理解本案揭示內容的上述特徵的方式,可透過參考範例(其中一些在所附的圖式中說明)進行上文簡要總結的更特定的描述。然而,應注意,所附的圖式僅繪示一些範例,因此不應被視為對本案揭示內容之範疇的限制,因為本案揭示內容可以容許其他等效的範例。In order that the manner in which the above-described features of the present disclosure can be understood in detail, a more specific description briefly summarized above can be made by reference to examples, some of which are illustrated in the accompanying drawings. It should be noted, however, that the accompanying drawings illustrate only some examples and should not be construed as limiting the scope of the present disclosure, which may admit to other equivalent examples.

圖1是根據本案揭示內容的一些範例的動態隨機存取記憶體(DRAM)單元的電路示意圖。1 is a schematic circuit diagram of a dynamic random access memory (DRAM) cell according to some examples of the present disclosure.

圖2是根據本案揭示內容的一些範例的鏡射DRAM對的透視圖。2 is a perspective view of a mirrored DRAM pair according to some examples of the present disclosure.

圖3是根據本案揭示內容的一些範例的鏡射DRAM對的透視圖。3 is a perspective view of a mirrored DRAM pair according to some examples of the present disclosure.

圖4至圖12是根據本案揭示內容的一些範例的在形成3D DRAM單元的第一方法期間中間結構的剖面圖。4-12 are cross-sectional views of intermediate structures during a first method of forming a 3D DRAM cell according to some examples of the present disclosure.

圖13至圖27是根據本案揭示內容的一些範例的在形成3D DRAM單元的第二方法期間中間結構的剖面圖。13-27 are cross-sectional views of intermediate structures during a second method of forming a 3D DRAM cell according to some examples of the present disclosure.

圖28至圖40是根據本案揭示內容的一些範例的在形成3D DRAM單元的第二方法期間中間結構的剖面圖。28-40 are cross-sectional views of intermediate structures during a second method of forming a 3D DRAM cell, according to some examples of the present disclosure.

為了有助理解,如可能則使用相同的元件符號標示圖式中共通的相同元件。To aid understanding, the same reference numerals have been used, where possible, to designate the same elements that are common to the drawings.

國內寄存資訊(請依寄存機構、日期、號碼順序註記) 無 國外寄存資訊(請依寄存國家、機構、日期、號碼順序註記) 無 Domestic storage information (please note in the order of storage institution, date and number) none Foreign deposit information (please note in the order of deposit country, institution, date and number) none

100:基板 100: Substrate

102:第一介電層 102: first dielectric layer

104:半導體層 104: Semiconductor layer

106:第二介電層 106: Second Dielectric Layer

112:閘極介電層 112: gate dielectric layer

114:阻障/調整層 114: Barrier/Adjustment Layer

116:閘極電極填充材料 116: Gate electrode filling material

118:介電填充材料 118: Dielectric Filler

124:源極區域 124: source region

130:外板 130: outer panel

132:電容器介電層 132: capacitor dielectric layer

134:內板 134: Inner board

136:導電填充材料 136: Conductive filler material

138:汲極區域 138: Drain area

140:阻障層 140: Barrier Layer

142:導電填充材料 142: Conductive filler material

Claims (20)

一種用於半導體處理的方法,該方法包括: 在一基板上形成一膜堆疊,該膜堆疊包括多個單元堆疊,且每一單元堆疊具有一第一介電層、設置在該第一介電層上的一半導體層、以及設置在該半導體層上的一第二介電層; 穿過該膜堆疊形成一第一開口; 將該第二介電層從該第一開口拉回,而形成一第一橫向凹部; 將一閘極結構形成於該第一橫向凹部中並且設置在該半導體層的一部分上; 穿過該膜堆疊形成一第二開口,該第二開口從形成該第一開口之處橫向設置,該閘極結構橫向設置於該第二開口與形成該第一開口之處之間; 將該半導體層的該部分從該第二開口拉回,而形成一第二橫向凹部;及 將一電容器形成於設置有該第二橫向凹部的一區域中,該電容器接觸該半導體層的該部分。 A method for semiconductor processing, the method comprising: A film stack is formed on a substrate, the film stack includes a plurality of unit stacks, and each unit stack has a first dielectric layer, a semiconductor layer disposed on the first dielectric layer, and a semiconductor layer disposed on the semiconductor layer a second dielectric layer on the layer; forming a first opening through the film stack; pulling the second dielectric layer back from the first opening to form a first lateral recess; forming a gate structure in the first lateral recess and disposed on a portion of the semiconductor layer; A second opening is formed through the film stack, the second opening is laterally arranged from the place where the first opening is formed, and the gate structure is laterally arranged between the second opening and the place where the first opening is formed; pulling the portion of the semiconductor layer back from the second opening to form a second lateral recess; and A capacitor is formed in a region where the second lateral recess is provided, the capacitor contacts the portion of the semiconductor layer. 如請求項1所述之方法,進一步包括: 擴展該第二橫向凹部,包括:移除該第二橫向凹部下方的至少一些的該第一介電層以及該第二橫向凹部上方的至少一些的該第二介電層,該電容器形成於擴展的該第二橫向凹部中。 The method of claim 1, further comprising: Extending the second lateral recess includes removing at least some of the first dielectric layer below the second lateral recess and at least some of the second dielectric layer above the second lateral recess, the capacitor being formed in the extended in the second lateral recess. 如請求項2所述之方法,其中形成該電容器包括: 沿著擴展的該第二橫向凹部的多個表面共形(conformally)沉積一第一板; 沿著該第一板共形沉積一電容器介電層;及 在該電容器介電層上沉積一第二板。 The method of claim 2, wherein forming the capacitor comprises: conformally depositing a first plate along surfaces of the expanded second lateral recess; conformally depositing a capacitor dielectric layer along the first plate; and A second plate is deposited on the capacitor dielectric layer. 如請求項1所述之方法,進一步包括在該半導體層的該部分中形成一源極/汲極區域,包括:透過該第二橫向凹部摻雜該半導體層的該部分,其中該電容器的一板形成為接觸在該半導體層的該部分中的該源極/汲極區域。The method of claim 1, further comprising forming a source/drain region in the portion of the semiconductor layer, comprising: doping the portion of the semiconductor layer through the second lateral recess, wherein a portion of the capacitor A plate is formed to contact the source/drain regions in the portion of the semiconductor layer. 如請求項1所述之方法,進一步包括: 在該半導體層的該部分中形成一源極/汲極區域,包括:摻雜該半導體層的該部分;及 形成一接觸件(contact),該接觸件延伸穿過該膜堆疊,且該接觸件接觸該源極/汲極區域。 The method of claim 1, further comprising: forming a source/drain region in the portion of the semiconductor layer, comprising: doping the portion of the semiconductor layer; and A contact is formed that extends through the film stack and contacts the source/drain region. 一種用於半導體處理的方法,該方法包括: 在一基板上形成一膜堆疊,該膜堆疊包括多個單元堆疊,每一單元堆疊具有一第一層和設置在該第一層上的一第二層; 穿過該膜堆疊形成一第一開口; 將該第一層從該第一開口拉回,而形成一第一橫向凹部; 將一第一共形層形成在該第一橫向凹部中; 將一第一填充材料形成在該第一共形層上及該第一橫向凹部中; 將該第一共形層從該第一開口拉回,而形成一第二橫向凹部; 將一閘極結構形成在該第二橫向凹部中並且設置在半導體層上且位於下方,該半導體層與該第二層水平對齊; 穿過該膜堆疊形成一第二開口,該第二開口從形成該第一開口之處橫向設置,該閘極結構橫向設置於該第二開口與形成該第一開口之處之間; 將該第二層從該第二開口拉回,而形成至該半導體層的一第三橫向凹部;及 將一電容器形成於設置有該第三橫向凹部的一區域中,該電容器接觸該半導體層。 A method for semiconductor processing, the method comprising: forming a film stack on a substrate, the film stack including a plurality of unit stacks, each unit stack having a first layer and a second layer disposed on the first layer; forming a first opening through the film stack; pulling the first layer back from the first opening to form a first lateral recess; forming a first conformal layer in the first lateral recess; forming a first filler material on the first conformal layer and in the first lateral recess; pulling the first conformal layer back from the first opening to form a second lateral recess; forming a gate structure in the second lateral recess and disposed on and below a semiconductor layer, the semiconductor layer being horizontally aligned with the second layer; A second opening is formed through the film stack, the second opening is laterally arranged from the place where the first opening is formed, and the gate structure is laterally arranged between the second opening and the place where the first opening is formed; pulling the second layer back from the second opening to form a third lateral recess into the semiconductor layer; and A capacitor is formed in a region where the third lateral recess is provided, the capacitor being in contact with the semiconductor layer. 如請求項6所述之方法,進一步包括: 將該第二層從該第一開口拉回,而形成一第四橫向凹部;及 在該第四橫向凹部中形成該半導體層。 The method of claim 6, further comprising: pulling the second layer back from the first opening to form a fourth lateral recess; and The semiconductor layer is formed in the fourth lateral recess. 如請求項6所述之方法,其中該第二層是一半導體材料,且該半導體層是該第二層的一部分。The method of claim 6, wherein the second layer is a semiconductor material and the semiconductor layer is part of the second layer. 如請求項6所述之方法,其中該第一層是一第一介電材料,該第二層是一第二介電材料,該第一介電材料與該第二介電材料相對於彼此可選擇性地移除。The method of claim 6, wherein the first layer is a first dielectric material, the second layer is a second dielectric material, the first dielectric material and the second dielectric material relative to each other Optionally removed. 如請求項6所述之方法,其中該第一層是一第一介電材料,且該第二層是與該第一介電材料不同的一第二介電材料,該第一介電材料與該第二介電材料之各者是選自下述各項組成之群組:氮化矽、氧化矽、摻雜的氧化矽、硼磷矽酸鹽玻璃(BPSG)、及磷矽酸鹽玻璃(PSG)。The method of claim 6, wherein the first layer is a first dielectric material, and the second layer is a second dielectric material different from the first dielectric material, the first dielectric material and the second dielectric material is selected from the group consisting of silicon nitride, silicon oxide, doped silicon oxide, borophosphosilicate glass (BPSG), and phosphosilicate Glass (PSG). 如請求項6所述之方法,其中該第一層是一第一半導體材料,且該第二層是與該第一半導體材料不同的一第二半導體材料。The method of claim 6, wherein the first layer is a first semiconductor material and the second layer is a second semiconductor material different from the first semiconductor material. 如請求項11所述之方法,其中該第一半導體材料與該第二半導體材料是非晶的。The method of claim 11, wherein the first semiconductor material and the second semiconductor material are amorphous. 如請求項11所述之方法,其中該第一半導體材料與該第二半導體材料是磊晶的或是單晶的。The method of claim 11, wherein the first semiconductor material and the second semiconductor material are epitaxial or monocrystalline. 如請求項6所述之方法,其中形成該膜堆疊包括: 磊晶生長該第一層;及 在該第一層上磊晶生長該第二層。 The method of claim 6, wherein forming the film stack comprises: epitaxially growing the first layer; and The second layer is epitaxially grown on the first layer. 如請求項6所述之方法,其中該第一層是矽鍺,且該第二層是矽。The method of claim 6, wherein the first layer is silicon germanium and the second layer is silicon. 如請求項6所述之方法,其中該第一層是磊晶矽鍺,且該第二層是磊晶矽。The method of claim 6, wherein the first layer is epitaxial silicon germanium, and the second layer is epitaxial silicon. 如請求項6所述之方法,其中該第一層是非晶矽鍺,且該第二層是非晶矽。The method of claim 6, wherein the first layer is amorphous silicon germanium, and the second layer is amorphous silicon. 如請求項6所述之方法,進一步包括: 從該第二開口拉回該第一層,而形成一第四橫向凹部; 在該第四橫向凹部中形成一第二共形層;及 在該第二共形層上以及該第四橫向凹部中形成一第二填充材料。 The method of claim 6, further comprising: Pulling back the first layer from the second opening to form a fourth lateral recess; forming a second conformal layer in the fourth lateral recess; and A second filler material is formed on the second conformal layer and in the fourth lateral recess. 如請求項18所述之方法,進一步包括擴展該第三橫向凹部,包括:移除至少一些的該第二共形層,該電容器形成於擴展的該第三橫向凹部中。The method of claim 18, further comprising expanding the third lateral recess, including removing at least some of the second conformal layer, the capacitor formed in the expanded third lateral recess. 一種用於半導體處理的方法,該方法包括: 在一基板上形成一膜堆疊,該膜堆疊包括至少五層,該至少五層中的每一層由一材料形成,該材料選自多種材料之群組,該多種材料包括不超過三種不同材料;及 使用該膜堆疊作為一模具,在該基板上形成多對的垂直堆疊的鏡射(mirrored)DRAM對,該等垂直堆疊的鏡射DRAM對中的每一鏡射DRAM對包括: 一接觸件(contact); 一第一電晶體,包括一第一閘極結構、一第一源極/汲極區域和一第二源極/汲極區域,該第一源極/汲極區域接觸該接觸件; 一第二電晶體,包括一第二閘極結構、一第三源極/汲極區域和一第四源極/汲極區域,該第三源極/汲極區域接觸該接觸件,該第二電晶體繞著該接觸件鏡射該第一電晶體; 一第一電容器,具有一第一外板、一第一電容器介電層以及一第一內板,該第一外板接觸該第二源極/汲極區域;及 一第二電容器,具有一第二外板、一第二電容器介電層以及一第二內板,該第二外板接觸該第四源極/汲極區域。 A method for semiconductor processing, the method comprising: forming a film stack on a substrate, the film stack including at least five layers, each of the at least five layers being formed from a material selected from the group of materials including no more than three different materials; and Using the film stack as a mold, pairs of vertically stacked mirrored DRAM pairs are formed on the substrate, each of the vertically stacked mirrored DRAM pairs including: a contact; a first transistor including a first gate structure, a first source/drain region and a second source/drain region, the first source/drain region contacting the contact; a second transistor including a second gate structure, a third source/drain region and a fourth source/drain region, the third source/drain region contacts the contact, the first The second transistor mirrors the first transistor around the contact; a first capacitor having a first outer plate, a first capacitor dielectric layer and a first inner plate, the first outer plate contacting the second source/drain region; and A second capacitor has a second outer plate, a second capacitor dielectric layer and a second inner plate, the second outer plate contacts the fourth source/drain region.
TW110140074A 2020-11-02 2021-10-28 Three-dimensional dynamic random access memory (dram) and methods of forming the same TW202230634A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US202063108612P 2020-11-02 2020-11-02
US63/108,612 2020-11-02

Publications (1)

Publication Number Publication Date
TW202230634A true TW202230634A (en) 2022-08-01

Family

ID=81381547

Family Applications (1)

Application Number Title Priority Date Filing Date
TW110140074A TW202230634A (en) 2020-11-02 2021-10-28 Three-dimensional dynamic random access memory (dram) and methods of forming the same

Country Status (5)

Country Link
JP (1) JP2023547907A (en)
KR (1) KR20220059424A (en)
CN (1) CN116530228A (en)
TW (1) TW202230634A (en)
WO (1) WO2022093460A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI824877B (en) * 2022-03-29 2023-12-01 南韓商三星電子股份有限公司 Semiconductor device
TWI826301B (en) * 2023-01-13 2023-12-11 旺宏電子股份有限公司 Semiconductor structure and method for manufacturing the same

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117693188A (en) * 2022-08-26 2024-03-12 长鑫存储技术有限公司 Semiconductor device and method for manufacturing the same

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102378401B1 (en) * 2017-09-06 2022-03-24 마이크론 테크놀로지, 인크 A memory array comprising vertically alternating layers of insulating material and memory cells and a method of forming a memory array
KR102524614B1 (en) * 2017-11-24 2023-04-24 삼성전자주식회사 Semiconductor memory device
US11538808B2 (en) * 2018-09-07 2022-12-27 Intel Corporation Structures and methods for memory cells
US20200202900A1 (en) * 2018-12-21 2020-06-25 Applied Materials, Inc. 3-D DRAM Structure With Vertical Bit-Line
KR102634622B1 (en) * 2019-02-28 2024-02-08 에스케이하이닉스 주식회사 Vertical memory device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI824877B (en) * 2022-03-29 2023-12-01 南韓商三星電子股份有限公司 Semiconductor device
TWI826301B (en) * 2023-01-13 2023-12-11 旺宏電子股份有限公司 Semiconductor structure and method for manufacturing the same

Also Published As

Publication number Publication date
JP2023547907A (en) 2023-11-14
CN116530228A (en) 2023-08-01
KR20220059424A (en) 2022-05-10
WO2022093460A1 (en) 2022-05-05

Similar Documents

Publication Publication Date Title
US20210066347A1 (en) Multilevel memory stack structure with tapered inter-tier joint region and methods of making thereof
US9576975B2 (en) Monolithic three-dimensional NAND strings and methods of fabrication thereof
CN109328397B (en) Multi-layer memory stack structure containing two types of pillar structures
US10224240B1 (en) Distortion reduction of memory openings in a multi-tier memory device through thermal cycle control
US9812463B2 (en) Three-dimensional memory device containing vertically isolated charge storage regions and method of making thereof
EP3262684B1 (en) Three-dimensional memory device with stress compensation layer within a word line stack
US9768192B1 (en) Three-dimensional memory device containing annular etch-stop spacer and method of making thereof
US9960180B1 (en) Three-dimensional memory device with partially discrete charge storage regions and method of making thereof
TWI737160B (en) Structures and sram bit cells integrating complementary field-effect transistors
US20180151588A1 (en) Three-dimensional memory device with discrete self-aligned charge storage elements and method of making thereof
TW202230634A (en) Three-dimensional dynamic random access memory (dram) and methods of forming the same
US20160268209A1 (en) Crystalline layer stack for forming conductive layers in a three-dimensional memory structure
US10991807B2 (en) Semiconductor device having gate insulating layer
US20180019256A1 (en) Selective tungsten growth for word lines of a three-dimensional memory device
KR20190112443A (en) Semiconductor device with ultra low k spacer and method for fabricating the same
US11222681B2 (en) 3D stacked high-density memory cell arrays and methods of manufacture
TW202137518A (en) Three-dimensional memory device and fabricating method thereof
US7410864B2 (en) Trench and a trench capacitor and method for forming the same
US20210233767A1 (en) Formation of Stacked Lateral Semiconductor Devices and the Resulting Structures
US11605636B2 (en) Multi-layer random access memory and methods of manufacture
TW202249253A (en) Methods and structures for three-dimensional dynamic random-access memory
US11818877B2 (en) Three-dimensional dynamic random access memory (DRAM) and methods of forming the same
KR20230119405A (en) Semiconductor device
WO2024037164A1 (en) Semiconductor device and forming method therefor
WO2024037347A1 (en) Semiconductor structure and method for forming same