TW202323973A - 波前度量衡感測器及其光罩、用於最佳化光罩之方法及相關裝置 - Google Patents

波前度量衡感測器及其光罩、用於最佳化光罩之方法及相關裝置 Download PDF

Info

Publication number
TW202323973A
TW202323973A TW112103770A TW112103770A TW202323973A TW 202323973 A TW202323973 A TW 202323973A TW 112103770 A TW112103770 A TW 112103770A TW 112103770 A TW112103770 A TW 112103770A TW 202323973 A TW202323973 A TW 202323973A
Authority
TW
Taiwan
Prior art keywords
radiation
reticle
wavefront
mask
pattern
Prior art date
Application number
TW112103770A
Other languages
English (en)
Inventor
拉爾斯 勞特林
史堤芬 密卻爾 懷特
克里斯蒂娜 林恩 波特
彼得魯斯 威廉姆斯 斯莫倫堡
Original Assignee
荷蘭Vu基金會
荷蘭商Asml荷蘭公司
荷蘭基金會科研院所
荷蘭阿姆斯特丹大學
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 荷蘭Vu基金會, 荷蘭商Asml荷蘭公司, 荷蘭基金會科研院所, 荷蘭阿姆斯特丹大學 filed Critical 荷蘭Vu基金會
Publication of TW202323973A publication Critical patent/TW202323973A/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J9/00Measuring optical phase difference; Determining degree of coherence; Measuring optical wavelength
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/47Scattering, i.e. diffuse reflection
    • G01N21/4788Diffraction
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J1/00Photometry, e.g. photographic exposure meter
    • G01J1/02Details
    • G01J1/04Optical or mechanical part supplementary adjustable parts
    • G01J1/0407Optical elements not provided otherwise, e.g. manifolds, windows, holograms, gratings
    • G01J1/0437Optical elements not provided otherwise, e.g. manifolds, windows, holograms, gratings using masks, aperture plates, spatial light modulators, spatial filters, e.g. reflective filters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J1/00Photometry, e.g. photographic exposure meter
    • G01J1/42Photometry, e.g. photographic exposure meter using electric radiation detectors
    • G01J1/4257Photometry, e.g. photographic exposure meter using electric radiation detectors applied to monitoring the characteristics of a beam, e.g. laser beam, headlamp beam
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/20Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by using diffraction of the radiation by the materials, e.g. for investigating crystal structure; by using scattering of the radiation by the materials, e.g. for investigating non-crystalline materials; by using reflection of the radiation by the materials
    • G01N23/20008Constructional details of analysers, e.g. characterised by X-ray source, detector or optical system; Accessories therefor; Preparing specimens therefor
    • G01N23/20025Sample holders or supports therefor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/20Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by using diffraction of the radiation by the materials, e.g. for investigating crystal structure; by using scattering of the radiation by the materials, e.g. for investigating non-crystalline materials; by using reflection of the radiation by the materials
    • G01N23/2055Analysing diffraction patterns
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70483Information management; Active and passive control; Testing; Wafer monitoring, e.g. pattern monitoring
    • G03F7/70605Workpiece metrology
    • G03F7/70616Monitoring the printed patterns
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70483Information management; Active and passive control; Testing; Wafer monitoring, e.g. pattern monitoring
    • G03F7/70605Workpiece metrology
    • G03F7/70616Monitoring the printed patterns
    • G03F7/70625Dimensions, e.g. line width, critical dimension [CD], profile, sidewall angle or edge roughness
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70483Information management; Active and passive control; Testing; Wafer monitoring, e.g. pattern monitoring
    • G03F7/70605Workpiece metrology
    • G03F7/70616Monitoring the printed patterns
    • G03F7/70633Overlay, i.e. relative alignment between patterns printed by separate exposures in different layers, or in the same layer in multiple exposures or stitching
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70483Information management; Active and passive control; Testing; Wafer monitoring, e.g. pattern monitoring
    • G03F7/70605Workpiece metrology
    • G03F7/70681Metrology strategies
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2201/00Features of devices classified in G01N21/00
    • G01N2201/02Mechanical
    • G01N2201/021Special mounting in general

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Biochemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Analytical Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Optics & Photonics (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
  • Measuring Pulse, Heart Rate, Blood Pressure Or Blood Flow (AREA)

Abstract

本發明揭示一種用於量測一輻射之一波前之波前感測器。該波前感測器包含一光罩,該光罩包含位於該輻射之路徑中以與該輻射相互作用之一圖案。照射於該光罩上之該輻射在該光罩之後在一輻射偵測器上形成一輻射偵測圖案,且該光罩之該圖案係至少部分地基於該輻射偵測圖案之一要求而設計。

Description

波前度量衡感測器及其光罩、用於最佳化光罩之方法及相關裝置
本發明係關於諸如結合疊層成像而使用以監測輻射源之波前度量衡。
微影裝置為經建構以將所要圖案施加至基板上之機器。微影裝置可用於例如積體電路(IC)之製造中。微影裝置可例如將圖案化器件(例如光罩)處之圖案(亦經常被稱作「設計佈局」或「設計」)投影至提供於基板(例如晶圓)上之輻射敏感材料(抗蝕劑)層上。
為了將圖案投影於基板上,微影裝置可使用電磁輻射。此輻射之波長判定可形成於基板上之特徵之最小大小。當前在使用中之典型波長為365 nm (i線)、248 nm、193 nm及13.5 nm。與使用例如具有約193 nm之波長之輻射的微影裝置相比,使用具有在4 nm至20 nm之範圍內(例如6.7 nm或13.5 nm)之波長之極紫外線(EUV)輻射的微影裝置可用以在基板上形成較小特徵。
低k 1微影可用以處理尺寸小於微影裝置之經典解析度極限的特徵。在此製程中,可將解析度公式表達為CD = k 1×λ/NA,其中λ為所使用輻射之波長、NA為微影裝置中之投影光學件之數值孔徑、CD為「臨界尺寸」(通常為經印刷之最小特徵大小,但在此狀況下為半節距)且k 1為經驗解析度因數。一般而言,k 1愈小,則在基板上再生類似於由電路設計者規劃之形狀及尺寸以便達成特定電功能性及效能的圖案變得愈困難。為了克服此等困難,可將複雜微調步驟應用至微影投影裝置及/或設計佈局。此等步驟包括例如但不限於:NA之最佳化、自訂照明方案、相移圖案化器件之使用、設計佈局之各種最佳化,諸如設計佈局中之光學近接校正(OPC,有時亦被稱作「光學及製程校正」),或通常被定義為「解析度增強技術」(RET)之其他方法。替代地,用於控制微影裝置之穩定性之嚴格控制迴路可用以改良在低k 1下之圖案之再生。
在微影製程中,需要頻繁地對所產生之結構進行量測,例如,以用於製程控制及驗證。用於進行此類量測之各種工具為吾人所知,包括常常用以量測臨界尺寸(CD)之掃描電子顯微鏡,及用以量測疊對(器件中兩個層之對準準確度)之特殊化工具。近來,已開發供微影領域中使用的各種形式之散射計。
已知散射計之實例常常依賴於專用度量衡目標之佈建。舉例而言,方法可需要呈簡單光柵之形式之目標,該光柵足夠大以使得量測光束產生小於該光柵之光點(亦即,該光柵填充不足)。在所謂的重建構方法中,可藉由模擬散射輻射與目標結構之數學模型的相互作用來計算光柵之屬性。調整模型之參數直至經模擬相互作用產生相似於自真實目標所觀測之繞射圖案的繞射圖案為止。
除了藉由重建構進行特徵形狀之量測以外,亦可使用此裝置來量測以繞射為基礎之疊對,如公開專利申請案US2006066855A1中所描述。使用繞射階之暗場成像的以繞射為基礎之疊對度量衡實現對較小目標之疊對量測。此等目標可小於照明光點且可由晶圓上之產品結構環繞。諸如例如US2011102753A1及US20120044470A之眾多公開專利申請案中找到暗場成像度量衡之實例。可使用複合光柵目標而在一個影像中量測多個光柵。已知散射計趨向於使用在可見或近紅外線(IR)波範圍內之光,此要求光柵之節距比屬性實際上受到關注之實際產品結構粗略得多。可使用具有短得多之波長之深紫外線(DUV)、極紫外線(EUV)或X射線輻射來界定此類產品特徵。令人遺憾的是,此等波長通常不可用於或不能用於度量衡。
另一方面,現代產品結構之尺寸如此小使得其無法藉由光學度量衡技術而成像。小特徵包括例如藉由多重圖案化製程及/或節距倍增而形成之特徵。因此,用於大容量度量衡之目標常常使用比疊對誤差或臨界尺寸為所關注屬性的產品大得多的特徵。量測結果僅與真實產品結構之尺寸間接地相關,且可能不準確,此係因為度量衡目標在微影裝置中之光學投影及/或製造製程之其他步驟中之不同處理下不遭受相同的失真。雖然掃描電子顯微法(SEM)能夠直接地解析此等現代產品結構,但SEM之耗時要比光學量測之耗時多得多。此外,電子不能夠穿透厚製程層,此使得電子較不適合於度量衡應用。諸如使用接觸墊來量測電屬性之其他技術亦為吾人所知,但其僅提供真實產品結構之間接證據。
藉由減低在度量衡期間所使用之輻射之波長,有可能解析較小結構,以增加對結構之結構變化之敏感度及/或進一步穿透至產品結構中。產生適當高頻率輻射(例如硬X射線、軟X射線及/或EUV輻射)之一種此類方法可使用泵浦輻射(例如紅外線輻射)以激發一產生介質,藉此產生發射輻射,視情況包含高頻率輻射之高階諧波產生。
波前度量衡感測器(或被稱為波前感測器)係用於量測輻射之波前,且可使用包含位於輻射之路徑中的圖案之光罩,諸如哈特曼(Hartmann)光罩。此類光罩對於波前感測、特別是在波前及光譜敏感度方面並非最佳的,尤其當結合疊層成像而使用時。將需要改良此類光罩。
在本發明之一第一態樣中,提供一種用於量測一輻射之一波前之波前感測器。該波前感測器包含:一光罩,其包含位於該輻射之路徑中以與該輻射相互作用之一圖案。照射於該光罩上之該輻射在該光罩之後在一輻射偵測器上形成一輻射偵測圖案,且該光罩之該圖案係至少部分地基於該輻射偵測圖案之一要求而設計。
在本發明之一第二態樣中,提供一種設計供用於一輻射之一波前感測器中使用的一光罩之一圖案之方法,其中該光罩之該圖案係至少部分地基於該輻射之一輻射偵測圖案之一要求而設計,其中該輻射偵測圖案係在該光罩之後在一偵測平面上產生。
在本發明之一第三態樣中,提供一種用於一波前感測器之總成,其包含一偵測平面及一光罩,該光罩具有位於一輻射之路徑中以與該輻射相互作用之一圖案。照射於該光罩上之該輻射在該光罩之後在該偵測平面上形成一輻射偵測圖案,且該光罩之該圖案係至少部分地基於該輻射偵測圖案之一要求而設計。
在本發明文件中,術語「輻射」及「光束」用以涵蓋所有類型之電磁輻射及粒子輻射,包括紫外線輻射(例如,具有為365、248、193、157或126 nm之波長)、極紫外線輻射(EUV,例如具有在約5至100 nm之範圍內之波長)、X射線輻射、電子束輻射及其他粒子輻射。
如本文中所使用之術語「倍縮光罩」、「光罩」或「圖案化器件」可被廣泛地解譯為係指可用以向入射輻射光束賦予經圖案化橫截面之通用圖案化器件,該經圖案化橫截面對應於待在基板之目標部分中產生之圖案。在此內容背景中,亦可使用術語「光閥」。除經典光罩(透射或反射;二元、相移、混合式等)以外,其他此類圖案化器件之實例包括可程式化鏡面陣列及可程式化LCD陣列。
圖1示意性地描繪微影裝置LA。該微影裝置LA包括:照明系統(亦被稱作照明器) IL,其經組態以調節輻射光束B (例如UV輻射、DUV輻射、EUV輻射或X射線輻射);光罩支撐件(例如光罩台) T,其經建構以支撐圖案化器件(例如光罩) MA且連接至經組態以根據某些參數來準確地定位該圖案化器件MA之第一定位器PM;基板支撐件(例如晶圓台) WT,其經建構以固持基板(例如抗蝕劑塗佈晶圓) W且連接至經組態以根據某些參數來準確地定位該基板支撐件之第二定位器PW;及投影系統(例如折射投影透鏡系統) PS,其經組態以將由圖案化器件MA賦予至輻射光束B之圖案投影至基板W之目標部分C (例如包含一或多個晶粒)上。
在操作中,照明系統IL例如經由光束遞送系統BD自輻射源SO接收輻射光束。照明系統IL可包括用於引導、塑形及/或控制輻射的各種類型之光學組件,諸如折射、反射、繞射、磁性、電磁、靜電及/或其他類型之光學組件,或其任何組合。照明器IL可用以調節輻射光束B,以在圖案化器件MA之平面處在其橫截面中具有所要空間及角強度分佈。
本文所使用之術語「投影系統」PS應被廣泛地解譯為涵蓋適於所使用之曝光輻射及/或適於諸如浸潤液體之使用或真空之使用之其他因素的各種類型之投影系統,包括折射、反射、繞射、反射折射、合成、磁性、電磁及/或靜電光學系統,或其任何組合。可認為本文中對術語「投影透鏡」之任何使用皆與更一般之術語「投影系統」PS同義。
微影裝置LA可屬於如下類型:其中基板之至少一部分可由具有相對較高折射率之液體(例如水)覆蓋,以便填充投影系統PS與基板W之間的空間-此亦被稱作浸潤微影。全文係以引用方式併入本文中之US6952253中給出關於浸潤技術之更多資訊。
微影裝置LA亦可屬於具有兩個或多於兩個基板支撐件WT (又名「雙載物台」)之類型。在此「多載物台」機器中,可並行地使用基板支撐件WT,及/或可在位於基板支撐件WT中之一者上的基板W上進行準備基板W之後續曝光的步驟,同時將另一基板支撐件WT上之另一基板W用於在該另一基板W上曝光圖案。
除了基板支撐件WT以外,微影裝置LA亦可包含量測載物台。量測載物台經配置以固持感測器及/或清潔器件。感測器可經配置以量測投影系統PS之屬性或輻射光束B之屬性。量測載物台可固持多個感測器。清潔器件可經配置以清潔微影裝置之部分,例如投影系統PS之部分或提供浸潤液體之系統之部分。量測載物台可在基板支撐件WT遠離投影系統PS時在投影系統PS下方移動。
在操作中,輻射光束B入射於被固持於光罩支撐件T上之圖案化器件(例如光罩) MA上,且係由存在於圖案化器件MA上之圖案(設計佈局)而圖案化。在已橫穿光罩MA的情況下,輻射光束B穿過投影系統PS,投影系統PS將該光束聚焦至基板W之目標部分C上。憑藉第二定位器PW及位置量測系統IF,可準確地移動基板支撐件WT,例如以便使不同目標部分C在輻射光束B之路徑中定位於經聚焦且對準之位置處。相似地,第一定位器PM及可能另一位置感測器(其未在圖1中明確地描繪)可用以相對於輻射光束B之路徑來準確地定位圖案化器件MA。可使用光罩對準標記M1、M2及基板對準標記P1、P2來對準圖案化器件MA及基板W。儘管如所說明之基板對準標記P1、P2佔據專用目標部分,但該等標記可位於目標部分之間的空間中。當基板對準標記P1、P2位於目標部分C之間時,此等基板對準標記P1、P2被稱為切割道對準標記。
如圖2中所展示,微影裝置LA可形成微影單元LC (有時亦被稱作微影單元(lithocell)或(微影)叢集)之部分,微影單元LC常常亦包括用以對基板W執行曝光前製程及曝光後製程之裝置。通常,此等裝置包括用以沈積抗蝕劑層之旋塗器SC、用以顯影經曝光抗蝕劑之顯影器DE、例如用於調節基板W之溫度例如以用於調節抗蝕劑層中之溶劑之冷卻板CH及烘烤板BK。基板處置器或機器人RO自輸入/輸出埠I/O1、I/O2拾取基板W、在不同製程裝置之間移動基板W且將基板W遞送至微影裝置LA之裝載匣LB。微影單元中常常亦被集體地稱作塗佈顯影系統之器件可在塗佈顯影系統控制單元TCU之控制下,塗佈顯影系統控制單元TCU自身可受到監督控制系統SCS控制,監督控制系統SCS亦可例如經由微影控制單元LACU而控制微影裝置LA。
在微影製程中,需要頻繁地對所產生之結構進行量測,例如,以用於製程控制及驗證。用以進行此類量測之工具可被稱為度量衡工具MT。用於進行此類量測之不同類型的度量衡工具MT為吾人所知,包括掃描電子顯微鏡或各種形式之散射計度量衡工具MT。散射計為多功能器具,其允許藉由在光瞳或與散射計之接物鏡之光瞳共軛的平面中具有感測器來量測微影製程之參數(量測通常被稱作以光瞳為基礎之量測),或藉由在影像平面或與影像平面共軛之平面中具有感測器來量測微影製程之參數,在此狀況下量測通常被稱作以影像或場為基礎之量測。全文係以引用方式併入本文中之專利申請案US20100328655、US2011102753A1、US20120044470A、US20110249244、US20110026032或EP1,628,164A中進一步描述此類散射計及相關聯量測技術。前述散射計可使用來自硬X射線、軟X射線、極紫外線及可見光至近IR波長範圍之光來量測光柵。在輻射為硬X射線或軟X射線之狀況下,視情況在波長在0.01至10 nm範圍內之情況下,前述散射計可視情況為小角度X射線散射度量衡工具。
為了恰當且一致地曝光由微影裝置LA曝光之基板W,需要檢測基板以量測經圖案化結構之屬性,諸如後續層之間的疊對誤差、線厚度、臨界尺寸(CD)、結構之形狀等。出於此目的,可在微影單元LC中包括檢測工具及/或度量衡工具(圖中未繪示)。若偵測到誤差,則可對後續基板之曝光或對待對基板W執行之其他處理步驟進行例如調整,尤其是在同一批量或批次之其他基板W仍待曝光或處理之前進行檢測的情況下。
亦可被稱作度量衡裝置之檢測裝置用以判定基板W之屬性,且尤其判定不同基板W之屬性如何變化或與同一基板W之不同層相關聯之屬性在不同層間如何變化。檢測裝置可替代地經建構以識別基板W上之缺陷,且可例如為微影單元LC之部分,或可整合至微影裝置LA中,或可甚至為單機器件。檢測裝置可量測潛影(在曝光之後在抗蝕劑層中之影像)上之屬性,或半潛影(在曝光後烘烤步驟PEB之後在抗蝕劑層中之影像)上之屬性,或經顯影抗蝕劑影像(其中抗蝕劑之曝光部分或未曝光部分已被移除)上之屬性,或甚至經蝕刻影像(在諸如蝕刻之圖案轉印步驟之後)上之屬性。
在第一實施例中,散射計MT為角度解析散射計。在此散射計中,重建構方法可應用於經量測信號以重建構或計算光柵之屬性。此重建構可例如由模擬散射輻射與目標結構之數學模型之相互作用且比較模擬結果與量測之結果引起。調整數學模型之參數直至經模擬相互作用產生相似於自真實目標觀測到之繞射圖案的繞射圖案為止。
在第二實施例中,散射計MT為光譜散射計MT。在此光譜散射計MT中,由輻射源發射之輻射經引導至目標上且來自目標之反射、透射或散射輻射經引導至光譜儀偵測器,該光譜儀偵測器量測鏡面反射輻射之光譜(亦即依據波長而變化的強度之量測)。根據此資料,可例如藉由嚴密耦合波分析及非線性回歸或藉由與經模擬光譜庫比較來重建構產生經偵測到之光譜的目標之結構或剖面。
在第三實施例中,散射計MT為橢圓量測散射計。橢圓量測散射計允許藉由量測針對每一偏振狀態之散射或透射輻射來判定微影製程之參數。此度量衡裝置藉由在度量衡裝置之照明區段中使用例如適當偏振濾光器來發射偏振光(諸如線性、圓形或橢圓形)。適合於度量衡裝置之源亦可提供偏振輻射。全文係以引用方式併入本文中之美國專利申請案11/451,599、11/708,678、12/256,780、12/486,449、12/920,968、12/922,587、13/000,229、13/033,135、13/533,110及13/891,410中描述現有橢圓量測散射計之各種實施例。
在散射計MT之一項實施例中,散射計MT適用於藉由量測反射光譜及/或偵測組態中之不對稱性(該不對稱性係與疊對之範圍有關)來量測兩個未對準光柵或週期性結構之疊對。可將兩個(可重疊)光柵結構施加於兩個不同層(未必為連續層)中,且該兩個光柵結構可形成為處於晶圓上實質上相同的位置。散射計可具有如例如共同擁有之專利申請案EP1,628,164A中所描述之對稱偵測組態,使得任何不對稱性係可明確區分的。此提供用以量測光柵中之未對準之簡單明瞭的方式。可在全文係以引用方式併入本文中之PCT專利申請公開案第WO 2011/012624號或美國專利申請案第US 20160161863號中找到經由作為目標之週期性結構之不對稱性來量測含有該等週期性結構之兩個層之間的疊對誤差的另外實例。
其他所關注參數可為焦點及劑量。可藉由如全文係以引用方式併入本文中之美國專利申請案US2011-0249244中所描述之散射量測(或替代地藉由掃描電子顯微法)同時判定焦點及劑量。可使用具有針對焦點能量矩陣(FEM-亦被稱作焦點曝光矩陣)中之每一點之臨界尺寸及側壁角量測之獨特組合的單一結構。若可得到臨界尺寸及側壁角之此等獨特組合,則可根據此等量測獨特地判定焦點及劑量值。
度量衡目標可為藉由微影製程主要在抗蝕劑中形成且亦在例如蝕刻製程之後形成的複合光柵之總體。光柵中之結構之節距及線寬可在很大程度上取決於量測光學件(尤其光學件之NA)以能夠捕捉來自度量衡目標之繞射階。如較早所指示,繞射信號可用以判定兩個層之間的移位(亦被稱作「疊對」)或可用以重建構如藉由微影製程所產生的原始光柵之至少一部分。此重建構可用以提供微影製程之品質指導,且可用以控制微影製程之至少一部分。目標可具有較小子分段,該等子分段經組態以模仿目標中之設計佈局之功能性部分之尺寸。歸因於此子分段,目標將表現得更相似於設計佈局之功能性部分,使得總體製程參數量測較佳類似於設計佈局之功能性部分。可在填充不足模式中或在填充過度模式中量測目標。在填充不足模式中,量測光束產生小於總體目標之光點。在填充過度模式中,量測光束產生大於總體目標之光點。在此填充過度模式中,亦有可能同時量測不同目標,因此同時判定不同處理參數。
使用特定目標進行之微影參數之總體量測品質至少部分藉由用以量測此微影參數之量測配方予以判定。術語「基板量測配方」可包括量測自身之一或多個參數、經量測之一或多個圖案之一或多個參數,或此兩者。舉例而言,若用於基板量測配方中之量測為以繞射為基礎之光學量測,則量測之參數中之一或多者可包括輻射之波長、輻射之偏振、輻射相對於基板之入射角、輻射相對於基板上之圖案之定向等。用以選擇量測配方之準則中之一者可為例如量測參數中之一者對於處理變化之敏感度。全文係以引用方式併入本文中之美國專利申請案US2016-0161863及已公佈美國專利申請案US 2016/0370717A1中描述更多實例。
微影裝置LA中之圖案化製程可為在處理中之最具決定性步驟中的一者,其需要基板W上之結構之尺寸標定及置放之高準確度。為了確保此高準確度,可將三個系統組合於所謂的「整體」控制環境中,如圖3中示意性地所描繪。此等系統中之一者為微影裝置LA,其(實際上)連接至度量衡工具MT (第二系統)且連接至電腦系統CL (第三系統)。此「整體」環境之關鍵在於最佳化此等三個系統之間的合作以增強總體製程窗且提供嚴格控制迴路,從而確保由微影裝置LA執行之圖案化保持在製程窗內。製程窗界定製程參數(例如劑量、焦點、疊對)之範圍,在該製程參數範圍內特定製造製程產生所界定結果(例如功能半導體器件)-可能在該製程參數範圍內,微影製程或圖案化製程中之製程參數被允許變化。
電腦系統CL可使用待圖案化之設計佈局(之部分)以預測使用哪種解析度增強技術且執行運算微影模擬及計算以判定哪種光罩佈局及微影裝置設定達成圖案化製程之最大總體製程窗(在圖3中由第一標度SC1中之雙箭頭描繪)。解析度增強技術可經配置以匹配微影裝置LA之圖案化可能性。電腦系統CL亦可用以偵測在製程窗內何處微影裝置LA當前正操作(例如使用來自度量衡工具MT之輸入)以預測歸因於例如次佳處理是否可存在缺陷(在圖3中由第二標度SC2中之指向「0」之箭頭描繪)。
度量衡工具MT可將輸入提供至電腦系統CL以實現準確模擬及預測,且可將回饋提供至微影裝置LA以識別例如微影裝置LA之校準狀態中的可能漂移(在圖3中由第三標度SC3中之多個箭頭描繪)。
在微影製程中,需要頻繁地對所產生之結構進行量測,例如,以用於製程控制及驗證。用於進行此類量測之各種工具為吾人所知,包括掃描電子顯微鏡或各種形式之度量衡裝置,諸如散射計。已知散射計之實例常常依賴於專用度量衡目標之佈建,諸如,填充不足之目標(呈簡單光柵或不同層中之重疊光柵之形式的目標,其足夠大使得量測光束產生小於光柵之光點)或填充過度之目標(藉以照明光點部分或完全含有該目標)。另外,使用度量衡工具(例如,照明諸如光柵之填充不足之目標的角度解析散射計)會允許使用所謂的重建構方法,其中可藉由模擬散射輻射與目標結構之數學模型的相互作用且比較模擬結果與量測之結果來計算光柵之屬性。調整模型之參數直至經模擬相互作用產生相似於自真實目標所觀測之繞射圖案的繞射圖案為止。
散射計為多功能器具,其允許藉由在光瞳平面或與散射計之接物鏡之光瞳共軛的平面中或附近具有感測器來量測微影製程之參數(量測通常被稱作以光瞳為基礎之量測),或藉由在影像平面或與影像平面共軛之平面中或附近具有感測器來量測微影製程之參數,在此狀況下量測通常被稱作以影像或場為基礎之量測。全文係以引用方式併入本文中之專利申請案US20100328655、US2011102753A1、US20120044470A、US20110249244、US20110026032或EP1,628,164A中進一步描述此類散射計及相關聯量測技術。前述散射計可在一個影像中使用來自硬X射線、軟X射線、極紫外線、可見光至近IR及IR波範圍之光來量測來自多個光柵之多個目標。
圖4中描繪度量衡裝置之一個實例,諸如散射計。該散射計可包含將輻射5投影至基板W上之寬頻帶(例如白光)輻射或窄頻帶輻射投影儀2。反射或散射輻射10傳遞至光譜儀偵測器4,該光譜儀偵測器量測鏡面反射輻射之光譜6 (亦即依據波長λ而變化的強度I之量測)。根據此資料,可由處理單元PU重建構引起偵測到之光譜之結構或剖面8,例如,藉由嚴密耦合波分析及非線性回歸,或藉由與圖4之底部處所展示之經模擬光譜庫的比較。一般而言,對於重建構,結構之一般形式係已知的,且根據用來製造結構之製程之知識來假定一些參數,從而僅留下結構之幾個參數以待根據散射量測資料予以判定。此散射計可組態為正入射散射計或斜入射散射計。
作為光學度量衡方法之替代方案,亦考慮使用硬X射線、軟X射線或EUV輻射,例如介於0.01 nm與100 nm之間,或視情況介於1 nm與50 nm之間或視情況介於8 nm與20 nm之間或10 nm與20 nm之間的波長範圍中之輻射。在掠入射下使用X射線(GI-XRS)及極紫外線(EUV)輻射之反射量測術可用於量測基板上之膜及層堆疊之屬性。在一般反射量測術領域內,可應用測角及/或光譜技術。在測角術中,可量測在不同入射角下之反射光束之變化。另一方面,光譜反射量測術量測在給定角度下反射之波長之光譜(使用寬頻帶輻射或窄頻帶輻射)。舉例而言,EUV反射量測術已在製造用於EUV微影中之倍縮光罩(圖案化器件)之前用於光罩基底之檢測。
圖5中描繪度量衡裝置之實例之透射版本,諸如圖4中所展示之散射計。透射輻射11傳遞至光譜儀偵測器4,該光譜儀偵測器量測如針對圖4所論述之光譜6。此散射計可組態為正入射散射計或斜入射散射計。
適用範圍有可能使例如軟X射線或EUV域中之波長之使用係不足夠的。度量衡工具在上文所呈現之波長範圍中之一者中運行的一個實例為透射小角度X射線散射(如內容之全文係以引用方式併入本文中的US 2007224518A中之T-SAXS)。Lemaillet等人在「Intercomparison between optical and X-ray scatterometry measurements of FinFET structures」(Proc. of SPIE,2013年,8681)中論述了使用T-SAXS之剖面(CD)量測。已公開專利申請案US 20130304424A1及US2014019097A1 (Bakeman等人/KLA)描述混合度量衡技術,其中將使用x射線進行之量測及運用在120 nm與2000 nm之範圍內之波長的光學量測組合在一起以獲得諸如CD之參數之量測。CD量測係藉由經由一或多個共同部分將x射線數學模型及光學數學模型耦合來獲得。所引用之美國專利申請案之內容之全文係以引用方式併入本文中。
圖6描繪度量衡裝置302之示意性表示,其中在0.01 nm至100 nm之波長範圍內之輻射可用以量測基板上之結構之參數。圖6中所呈現之度量衡裝置302可適用於硬X射線、軟X射線或EUV域。
圖6說明包含視情況在掠入射中使用硬X射線(HXR)及/或軟X射線(SXR)及/或EUV輻射之光譜散射計的度量衡裝置302之示意性實體配置,其純粹作為實例。檢測裝置之替代形式可能以角度解析散射計之形式提供,該角度解析散射計相似於在較長波長下操作之習知散射計使用正入射或近正入射中之輻射。檢測裝置之替代形式可能以透射散射計之形式提供,圖5中之組態應用至該透射散射計。
檢測裝置302包含輻射源或所謂照明源310、照明系統312、基板支撐件316、偵測系統318、398及度量衡處理單元(MPU) 320。
此實例中之照明源310係用於產生EUV、硬X射線或軟X射線輻射。照明源310可基於如圖6中所展示之高階諧波產生(HHG)技術,且其亦可為其他類型之照明源,例如液體金屬射流源、逆康普頓散射(ICS)源、電漿通道源、磁波盪器源或自由電子雷射(FEL)源。
對於HHG源之實例,如圖6中所展示,輻射源之主要組件為可操作以發射泵浦輻射之泵浦輻射源330以及氣體遞送系統332。視情況,泵浦輻射源330為雷射,視情況,泵浦輻射源330為脈衝式高功率紅外線或光學雷射。泵浦輻射源330可為例如具有光學放大器之以光纖為基礎之雷射,從而產生每脈衝可持續例如小於1奈秒(1 ns)的紅外線輻射之脈衝,其中脈衝重複率根據需要高達幾兆赫茲。紅外線輻射之波長可為例如大約1微米 (1 μm)。視情況,雷射脈衝作為第一泵浦輻射340經遞送至氣體遞送系統332,其中在氣體中,輻射之一部分轉換為比第一輻射高的頻率而成為發射輻射342。氣體供應件334將合適氣體供應至氣體遞送系統332,在該氣體遞送系統中,該合適氣體視情況由電源336離子化。氣體遞送系統332可為切斷管。由氣體遞送系統332提供之氣體界定氣體目標,其可為氣流或靜態體積。舉例而言,氣體可為惰性氣體,諸如氖氣(Ne)、氦氣(He)或氬氣(Ar)。氮氣(N 2)、氧氣(O 2)、氬氣(Ar)、氪氣(Kr)、氙氣(Xe)氣體皆可被考慮。此等氣體可為同一裝置內可選擇的選項。
發射輻射可含有多個波長。若發射輻射為單色的,則可簡化量測計算(例如重建構),但更容易產生具有若干波長之輻射。發射輻射之發射發散角可為波長相依的。不同波長將例如在對不同材料之結構成像時提供不同等級之對比度。舉例而言,為了檢測金屬結構或矽結構,可將不同波長選擇為用於對(碳基)抗蝕劑之特徵成像或用於偵測此類不同材料之污染的波長。可提供一或多個濾光器件344。舉例而言,諸如鋁(Al)或鋯(Zr)薄膜之濾光器可用以切斷基諧IR輻射以免進一步傳遞至檢測裝置中。可提供光柵(圖中未繪示)以自產生之波長當中選擇一或多個特定波長。視情況,在真空環境內可含有發射輻射之光束路徑中之一些或全部,應記住,SXR及/或EUV輻射在空氣中行進時會被吸收。輻射源310及照明光學件312之各種組件可為可調整的以在同一裝置內實施不同度量衡「配方」。舉例而言,可使不同波長及/或偏振為可選擇的。
取決於在檢測中之結構之材料,不同波長可提供至下部層中之所要程度之穿透。為了解析最小器件特徵及最小器件特徵當中之缺陷,則短波長很可能為較佳的。舉例而言,可選擇介於0.01至20 nm之範圍內或視情況介於1至10 nm之範圍內或視情況介於10至20 nm之範圍內的一或多個波長。短於5 nm之波長可在自半導體製造中所關注之材料反射時遭受極低臨界角。因此,選擇大於5 nm之波長可在較高入射角下提供較強信號。另一方面,若檢測任務係偵測某一材料之存在例如以偵測污染,則高達50 nm之波長可為有用的。
經濾光光束342自輻射源310進入檢測腔室350,在該檢測腔室中,包括所關注結構之基板W由基板支撐件316固持以用於在量測位置處檢測。所關注結構經標註為T。視情況,檢測腔室350內之氛圍可由真空泵352維持為接近真空,使得SXR及/或EUV輻射可在無不當衰減的情況下穿過該氛圍。照明系統312具有將輻射聚焦成經聚焦光束356之功能,且可包含例如二維曲面鏡或一系列一維曲面鏡,如上文所提及的已公開美國專利申請案US2017/0184981A1 (其內容之全文係以引用方式併入本文中)中所描述。執行聚焦以在投影至所關注結構上時達成直徑低於10 μm之圓形或橢圓形光點S。基板支撐件316包含例如X-Y平移載物台及旋轉載物台,藉由X-Y平移載物台及旋轉載物台,可使基板W之任何部分在所要定向上到達光束之焦點。因此,輻射光點S形成於所關注結構上。替代地或另外,基板支撐件316包含例如可按某一角度使基板W傾斜以控制所關注結構T上之經聚焦光束之入射角的傾斜載物台。
視情況,照明系統312將參考輻射光束提供至參考偵測器314,該參考偵測器可經組態以量測經濾光光束342中之不同波長的光譜及/或強度。參考偵測器314可經組態以產生信號315,該信號被提供至處理器310,且濾光器可包含關於經濾光光束342之光譜及/或經濾光光束中之不同波長之強度的資訊。
反射輻射360係由偵測器318捕捉且光譜被提供至處理器320以用於計算目標結構T之屬性。照明系統312及偵測系統318因此形成檢測裝置。此檢測裝置可包含屬於內容之全文係以引用方式併入本文中之US2016282282A1中所描述之種類的硬X射線、軟X射線及/或EUV光譜反射計。
若目標Ta具有某一週期性,則經聚焦光束356之輻射亦可經部分地繞射。繞射輻射397相對於入射角接著相對於反射輻射360以明確界定之角度遵循另一路徑。在圖6中,經吸取繞射輻射397以示意性方式被吸取,且繞射輻射397可遵循除經吸取路徑之外的許多其他路徑。檢測裝置302亦可包含偵測繞射輻射397之至少一部分及/或對繞射輻射397之至少一部分進行成像的另外偵測系統398。在圖6中,繪製了單個另外偵測系統398,但檢測裝置302之實施例亦可包含多於一個另外偵測系統398,該等多於一個偵測系統經配置於不同位置處以在複數個繞射方向上偵測繞射輻射397及/或對繞射輻射397進行成像。換言之,照射於目標Ta上之經聚焦輻射光束的(較高)繞射階由一或多個另外偵測系統398偵測及/或成像。該一或多個偵測系統398產生信號399,該信號經提供至度量衡處理器320。信號399可包括繞射光397之資訊及/或可包括自繞射光397獲得之影像。
為了輔助光點S與所要產品結構之對準及聚焦,檢測裝置302亦可提供在度量衡處理器320之控制下使用輔助輻射之輔助光學件。度量衡處理器320亦可與位置控制器372通信,該位置控制器操作平移載物台、旋轉載物台及/或傾斜載物台。處理器320經由感測器接收關於基板之位置及定向的高度準確之回饋。感測器374可包括例如干涉計,其可給出大約數皮米之準確度。在檢測裝置302之操作中,由偵測系統318捕捉之光譜資料382經遞送至度量衡處理單元320。
如所提及,檢測裝置之替代形式使用視情況處於正入射或近正入射之硬X射線、軟X射線及/或EUV輻射,例如以執行以繞射為基礎之不對稱性量測。兩種類型之檢測裝置皆可經提供於混合度量衡系統中。待量測之效能參數可包括疊對(OVL)、臨界尺寸(CD)、當微影裝置印刷目標結構時微影裝置之焦點、相干繞射成像(CDI)及依解析度疊對(ARO)度量衡。硬X射線、軟X射線及/或EUV輻射可例如具有小於100 nm之波長,例如使用介於5至30 nm之範圍內,視情況介於10 nm至20 nm之範圍內的輻射。該輻射在特性上可為窄頻帶或寬頻帶。該輻射可在特定波長帶中具有離散峰值或可具有更連續的特性。
類似於用於當今生產設施中之光學散射計,檢測裝置302可用以量測在微影單元內處理之抗蝕劑材料內之結構(顯影後檢測或ADI),及/或用以在結構已以較硬材料形成之後量測該等結構(蝕刻後檢測或AEI)。舉例而言,可在基板已由顯影裝置、蝕刻裝置、退火裝置及/或其他裝置處理之後使用檢測裝置302來檢測該等基板。
構形量測系統、位階感測器或高度感測器(且其可整合於微影裝置中)經配置以量測基板(或晶圓)之頂部表面的構形。基板之構形的映圖(亦被稱作高度圖)可自指示依據在基板上之位置而變化的基板之高度的此等量測產生。此高度圖可隨後用以在將圖案轉印於基板上期間校正基板之位置,以便在基板上之適當聚焦位置中提供圖案化器件之空中影像。應理解,「高度」在此內容背景中係指相對於基板大致在平面之外的尺寸(亦被稱作Z軸)。通常,位階或高度感測器在固定位置(相對於其自身光學系統)處執行量測,且基板與位階或高度感測器之光學系統之間的相對移動導致在橫越基板之位置處進行高度量測。
圖8中示意性地展示如此項技術中已知之位階或高度感測器LS之實例,其僅說明操作原理。在此實例中,位階感測器包含光學系統,該光學系統包括投影單元LSP及偵測單元LSD。投影單元LSP包含提供輻射光束LSB之輻射源LSO,該輻射光束由投影單元LSP之投影光柵PGR賦予。輻射源LSO可為例如窄頻帶或寬頻帶輻射源,諸如超連續譜光源,偏振或非偏振、脈衝或連續,諸如偏振或非偏振雷射光束。輻射源LSO可包括具有不同顏色或波長範圍之複數個輻射源,諸如複數個LED。位階感測器LS之輻射源LSO不限於可見光輻射,但另外地或替代地,可涵蓋UV及/或IR輻射及適合於自基板之表面反射的任何波長範圍。
投影光柵PGR為包含產生具有週期性變化強度之輻射光束BE1的週期性結構之週期性光柵。具有週期性變化強度之輻射光束BE1經引導朝向基板W上之量測位置MLO,該輻射光束相對於垂直於入射基板表面之軸線(Z軸)具有介於0度與90度之間,通常介於70度與80度之間的入射角ANG。在量測位置MLO處,經圖案化輻射光束BE1由基板W反射(由箭頭BE2指示)且經引導朝向偵測單元LSD。
為了判定量測位置MLO處之高度位階,位階感測器進一步包含偵測系統,該偵測系統包含偵測光柵DGR、偵測器DET,及用於處理偵測器DET之輸出信號之處理單元(圖中未繪示)。偵測光柵DGR可與投影光柵PGR相同。偵測器DET產生偵測器輸出信號,該偵測器輸出信號指示所接收之光,例如指示所接收之光之強度,諸如光偵測器,或表示所接收之強度之空間分佈,諸如攝影機。偵測器DET可包含一或多種偵測器類型之任何組合。
藉助於三角量測技術,可判定量測位置MLO處之高度位階。所偵測到的高度位階通常與如藉由偵測器DET所量測之信號強度有關,該信號強度具有尤其取決於投影光柵PGR之設計及(傾斜)入射角ANG的週期性。
投影單元LSP及/或偵測單元LSD可沿著投影光柵PGR與偵測光柵DGR之間的經圖案化輻射光束之路徑包括其他光學元件,諸如透鏡及/或鏡面(圖中未繪示)。
在一實施例中,可省略偵測光柵DGR,且可將偵測器DET置放於偵測光柵DGR所位於之位置處。此組態提供對投影光柵PGR之影像的更直接偵測。
為了有效地覆蓋基板W之表面,位階感測器LS可經組態以將量測光束BE1之陣列投影至基板W之表面上,藉此產生覆蓋較大量測範圍的量測區域MLO或光點之陣列。
例如在皆以引用之方式併入的US7265364及US7646471中揭示一般類型之各種高度感測器。在以引用方式併入的US2010233600A1中揭示使用UV輻射而非可見光或紅外線輻射的高度感測器。在以引用方式併入的WO2016102127A1中,描述使用多元件偵測器來偵測及辨識光柵影像之位置而無需偵測光柵的緊湊型高度感測器。
在複雜器件之製造中,通常執行許多微影圖案化步驟,藉此在基板上之順次層中形成功能性特徵。因此,微影裝置之效能之決定性態樣能夠相對於置於先前層中(藉由相同裝置或不同微影裝置)之特徵恰當且準確地置放經施加圖案。出於此目的,基板具備一或多組標記。每一標記為稍後可使用位置感測器(通常為光學位置感測器)量測其位置的結構。位置感測器可被稱作「對準感測器」且標記可被稱作「對準標記」。
微影裝置可包括一或多個(例如複數個)對準感測器,藉由該一或多個對準感測器,可準確地量測提供於基板上之對準標記之位置。對準(或位置)感測器可使用光學現象,諸如繞射及干涉,以自形成於基板上之對準標記獲得位置資訊。用於當前微影裝置中之對準感測器之實例係基於如US6961116中所描述之自參考干涉計。已開發出位置感測器之各種增強及修改,例如US2015261097A1中所揭示。所有此等公開案之內容係以引用方式併入本文中。
圖7為諸如例如US6961116中所描述且以引用方式併入之已知對準感測器AS之實施例的示意性方塊圖。輻射源RSO提供具有一或多個波長之輻射光束RB,該輻射光束係由轉向光學件轉向至標記(諸如位於基板W上之標記AM)上,而作為照明光點SP。在此實例中,轉向光學件包含光點鏡面SM及物鏡OL。藉以照明標記AM之照明光點SP之直徑可稍微小於標記自身之寬度。
由標記AM繞射之輻射經準直(在此實例中經由物鏡OL)成資訊攜載光束IB。術語「繞射」意欲包括來自標記之零階繞射(其可被稱作反射)。例如屬於上文所提及之US6961116中所揭示之類型的自參考干涉計SRI以自身干涉光束IB,之後光束係由光偵測器PD接收。可包括額外光學件(圖中未繪示)以在由輻射源RSO產生多於一個波長之狀況下提供單獨光束。光偵測器可為單一元件,或其視需要可包含多個像素。光偵測器可包含感測器陣列。
在此實例中包含光點鏡面SM之轉向光學件亦可用以阻擋自標記反射之零階輻射,使得資訊攜載光束IB僅包含來自標記AM之高階繞射輻射(此對於量測並非必需的,但改良了信號對雜訊比)。將強度信號SI供應至處理單元PU。藉由區塊SRI中之光學處理與單元PU中之運算處理之組合,輸出基板上相對於參考座標系之X位置及Y位置之值。
所說明類型之單一量測僅將標記之位置固定於對應於該標記之一個節距的某一範圍內。結合此量測來使用較粗略量測技術,以識別正弦波之哪一週期為含有經標記位置之週期。可在不同波長下重複較粗略及/或較精細層級下之同一製程,以用於提高準確度及/或用於穩固地偵測標記,而無關於製成標記之材料及供標記提供於上方及/或下方之材料。可光學地多工及解多工波長以便同時處理該等波長,及/或可藉由分時或分頻來多工該等波長。
在此實例中,對準感測器及光點SP保持靜止,而基板W移動。對準感測器因此可剛性且準確地安裝至參考框架,同時在與基板W之移動方向相反之方向上有效地掃描標記AM。在此移動中藉由基板W安裝於基板支撐件上且基板定位系統控制基板支撐件之移動來控制基板W。基板支撐件位置感測器(例如干涉計)量測基板支撐件(圖中未繪示)之位置。在一實施例中,一或多個(對準)標記提供於基板支撐件上。對提供於基板支撐件上之標記之位置的量測允許校準如由位置感測器判定之基板支撐件之位置(例如相對於對準系統連接至之框架)。對提供於基板上之對準標記之位置的量測允許判定基板相對於基板支撐件之位置。
包括但不限於上文所提及之散射計之度量衡工具MT可使用來自輻射源之輻射以執行量測。由度量衡工具MT使用之輻射可為電磁輻射。輻射可為光輻射,例如電磁光譜之紅外線部分、可見光部分及/或紫外線部分中的輻射。度量衡工具MT可使用輻射以量測或檢測基板之屬性及態樣,例如半導體基板上的微影曝光圖案。量測之類型及品質可取決於由度量衡工具MT使用之輻射之若干屬性。舉例而言,電磁量測之解析度可取決於輻射之波長,其中例如歸因於繞射限制,較小波長能夠量測較小特徵。為了量測具有小尺寸之特徵,可較佳使用具有短波長之輻射,例如EUV、硬X射線(HXR)及/或軟X射線(SXR)輻射,以執行量測。為了在特定波長或波長範圍下執行度量衡,度量衡工具MT需要存取提供在彼/彼等波長下之輻射的源。存在用於提供不同波長之輻射的不同類型之源。取決於由源提供之波長,可使用不同類型之輻射產生方法。對於極紫外線(EUV)輻射(例如1 nm至100 nm),及/或軟X射線(SXR)輻射(例如0.1 nm至10 nm),源可使用高階諧波產生(HHG)或逆康普頓散射(ICS)以獲得在所要波長下之輻射。
圖9展示照明源310之實施例600的簡化示意圖,該照明源可為用於高階諧波產生(HHG)之照明源。關於圖6所描述之度量衡工具中之照明源之特徵中的一或多者亦可在適當時存在於照明源600中。然而,此照明源可用以在圖4至圖8之度量衡器件中之任一者中提供量測照明。
照明源600包含腔室601且經組態以接收具有由箭頭指示之傳播方向的泵浦輻射611。此處所展示之泵浦輻射611為來自泵浦輻射源330之泵浦輻射340的實例,如圖6中所展示。泵浦輻射611可經由輻射輸入605而引導至腔室601中,該輻射輸入605可為視情況由熔融矽石或可相當材料製成之檢視區。泵浦輻射611可具有高斯或中空(例如環形)橫向橫截面剖面且可入射(視情況聚焦)於腔室601內之氣流615上,該氣流具有由第二箭頭指示之流動方向。氣流615包含其中氣體壓力高於某一值的小體積(例如,幾立方毫米)之特定氣體(例如惰性氣體,視情況氦氣、氬氣、氙氣或氖氣、氮氣、氧氣或二氧化碳)。氣流615可為穩定流。亦可使用其他介質,諸如金屬電漿(例如鋁電漿)。
照明源600之氣體遞送系統經組態以提供氣流615。照明源600經組態以將泵浦輻射611提供於氣流615中以驅動發射輻射613之產生。其中產生發射輻射613之至少一大部分的區被稱為相互作用區。該相互作用區可自幾十微米(用於緊密聚焦泵浦輻射)變化至幾毫米或公分(用於適度聚焦泵浦輻射)或甚至高達幾公尺(用於極其鬆散聚焦泵浦輻射)。視情況,氣流615係藉由氣體遞送系統提供至抽空或幾乎抽空之空間中。氣體遞送系統可包含氣體噴嘴609,如圖6中所展示,該氣體噴嘴包含在該氣體噴嘴609之出口平面中之開口617。氣流615係自開口617提供。在幾乎所有先前技術中,氣體噴嘴具有切斷管幾何結構形狀,其為均勻的圓柱內部幾何結構形狀,且出口平面中之開口之形狀為圓形。如專利申請案CN101515105B中所描述,亦已使用細長開口。
氣體噴嘴609之尺寸可想像地亦可用於範圍介於微米大小噴嘴至公尺大小噴嘴的按比例增加或按比例縮小之版本中。此廣泛範圍之尺寸標定來自如下事實:應按比例調整設置使得氣流處之泵浦輻射之強度最終處於可對發射輻射有益之特定範圍內,此需要針對可為脈衝雷射之不同泵浦輻射能量之不同尺寸標定,且脈衝能量可在數十微焦耳至數焦耳之間變化。視情況,氣體噴嘴609具有較厚壁以減少由可由例如攝影機偵測到之熱膨脹效應引起的噴嘴變形。具有較厚壁之氣體噴嘴可產生變化減少的穩定氣體體積。視情況,照明源包含接近於氣體噴嘴以維持腔室601之壓力的氣體捕獲器。
歸因於泵浦輻射611與氣流615之氣體原子的相互作用,氣流615將使泵浦輻射611之部分轉換成發射輻射613,該發射輻射可為圖6中所展示之發射輻射342的實例。發射輻射613之中心軸線可與入射泵浦輻射611之中心軸線共線。發射輻射613可具有在X射線或EUV範圍內之波長,其中波長係在0.01 nm至100 nm、視情況0.1 nm至100 nm、視情況1 nm至100 nm、視情況1 nm至50 nm或視情況10 nm至20 nm的範圍內。
在操作中,發射輻射613光束可穿過輻射輸出607,且可隨後藉由照明系統603操控及引導至待檢測以用於度量衡量測之基板,照明系統603可為圖6中之照明系統312的實例。發射輻射613可經導引(視情況聚焦)至基板上之目標。
因為空氣(及實際上任何氣體)很大程度上吸收SXR或EUV輻射,所以氣流615與待檢測之晶圓之間的體積可經抽空或幾乎抽空。由於發射輻射613之中心軸線可與入射泵浦輻射611之中心軸線共線,因此泵浦輻射611可需要被阻擋以防止其穿過輻射輸出607及進入照明系統603。此可藉由將圖6中所展示之濾光器件344併入至輻射輸出607中來進行,該輻射輸出置放於發射輻射之光束路徑中且對於泵浦輻射不透明或幾乎不透明(例如對紅外線或可見光不透明或幾乎不透明)但對發射輻射光束至少部分透明。可使用在多個層中組合之鋯或多種材料來製造濾光器。當泵浦輻射611具有中空(視情況環形)橫向橫截面剖面時,濾光器可為中空(視情況環形)塊體。視情況,濾光器不垂直且不平行於發射輻射光束之傳播方向,以具有高效泵浦輻射濾光。視情況,濾光器件344包含中空塊體及諸如鋁(Al)或鋯(Zr)膜濾光器之薄膜濾光器。
本文中描述用以獲得視情況在泵浦輻射之高階諧波頻率下之發射輻射的方法、裝置及總成。經由製程(視情況使用非線性效應以產生在所提供泵浦輻射之諧波頻率下之輻射的HHG)產生的輻射可作為輻射提供於度量衡工具MT中以用於基板之檢測及/或量測。基板可為經微影圖案化之基板。經由製程獲得之輻射亦可經提供於微影裝置LA及/或微影單元LC中。泵浦輻射可為脈衝式輻射,其可在短時間叢發內提供高峰值強度。
泵浦輻射611可包含具有高於發射輻射之一或多個波長的一或多個波長之輻射。泵浦輻射可包含紅外線輻射。泵浦輻射可包含具有在800 nm至1500 nm之範圍內之波長的輻射。泵浦輻射可包含具有在900 nm至1300 nm之範圍內之波長的輻射。泵浦輻射可包含具有在100 nm至1300 nm之範圍內之波長的輻射。泵浦輻射可為脈衝式輻射。脈衝式泵浦輻射可包含具有在飛秒範圍內之持續時間的脈衝。
對於一些實施例,發射輻射(視情況高階諧波輻射)可包含具有泵浦輻射波長之一或多個諧波。發射輻射可包含在電磁光譜之極紫外線(EUV)、軟X射線(SXR)及/或硬X射線(HXR)部分中之波長。發射輻射613可包含在0.01 nm至100 nm之範圍內之波長。發射輻射613可包含在0.1 nm至100 nm之範圍內之波長。發射輻射613可包含在0.1 nm至50 nm之範圍內之波長。發射輻射613可包含在1 nm至50 nm之範圍內之波長。發射輻射613可包含在10 nm至20 nm之範圍內之波長。
諸如以上所描述之高階諧波輻射之輻射可經提供為度量衡工具MT中之源輻射。度量衡工具MT可使用源輻射以對由微影裝置曝光之基板執行量測。該等量測可用於判定基板上之結構之一或多個參數。相比於使用較長波長(例如可見光輻射、紅外線輻射),使用在較短波長下(例如在如上文所描述之波長範圍內所包含的EUV、SXR及/或HXR波長下)之輻射可允許藉由度量衡工具解析結構之較小特徵。具有較短波長之輻射,諸如EUV、SXR及/或HXR輻射,亦可更深地穿透至諸如經圖案化基板之材料中,此意謂基板上之較深層之度量衡係可能的。此等較深層可能不可藉由具有較長波長之輻射存取。
在度量衡工具MT中,可自輻射源發射源輻射且將源輻射引導至基板上之目標結構(或其他結構)上。源輻射可包含EUV、SXR及/或HXR輻射。目標結構可反射、透射及/或繞射入射於目標結構上之源輻射。度量衡工具MT可包含用於偵測繞射輻射之一或多個感測器。舉例而言,度量衡工具MT可包含用於偵測正一(+1)及負一(-1)繞射階的偵測器。度量衡工具MT亦可量測鏡面反射或透射輻射(0階繞射輻射)。用於度量衡之其他感測器可存在於度量衡工具MT中,例如以量測其他繞射階(例如較高繞射階)。
HHG源可包含緊湊型、高亮度、類雷射源,其自然地產生例如可在8至20 nm波長範圍內之短波長光的梳狀光譜。此類波長適度地穿透(幾百奈米)至工業上相關堆疊中,同時仍充分反射以允許開發高產出量、高度敏感度量衡及/或檢測器具。由HHG源產生之寬光譜為用於量測應用之尤其有用的屬性,此係歸因於由此波長範圍內之許多相關材料展現的高度波長相依對比度。所有此等特性使得HHG源適合於例如對依解析度特徵(具有與實際產品相似尺寸的特徵,其包括對實際產品之度量衡)之顯影後(例如,疊對)度量衡(亦即,在蝕刻之前對經曝光抗蝕劑圖案之度量衡);及直接邊緣置放誤差(EPE)量測。
圖10展示習知的哈特曼類型波前感測器(不具有光譜解析度)之操作原理。孔徑陣列1002定位於輻射光束之路徑中,且視情況影像感測器1004定位於偵測平面中。偵測器可置放於偵測平面中,例如CCD或CMOS影像感測器,以用於偵測在光罩之後的輻射。孔徑陣列1002包含例如具有在由維度X及Y界定之平面中以規則陣列形式隔開之孔徑1006的金屬板。在Z方向上標稱地接近波前感測器之輻射穿過該孔徑陣列且因此在偵測平面上形成光點1008之陣列,視情況在亦在X-Y平面中定向之影像感測器1004上形成光點1008之陣列。若輻射光束具有理想的平坦波前使得其僅包含完全同相且與Z軸完全對準之平行射線,則每一光點將確切地形成於對應孔徑1006後方。另一方面,真實光束將具有某種形式之傾斜及/或曲率,諸如圖式中所說明之凸形波前1010。在彼狀況下,波前在孔徑陣列中之每一位置處以特定方式傾斜,且對應光點1008將形成於偵測平面上,視情況形成於影像感測器1004上,具有取決於彼傾斜之位置偏差。即使在光點之絕對「零偏差」位置係未知的時,亦可觀測及量測相對位置偏差。
在1004a處展示影像感測器1004之放大部分,其展示一個光點1008 (空心圓)且亦展示該光點之參考位置1008r (實心圓)。影像感測器1004包含光偵測器元件(像素)陣列,其具有足夠空間解析度(足夠像素密度)使得對於孔徑陣列中之每一孔徑1006,可偵測且在兩個維度上量化實際光點1008與參考位置1008r之偏差1012。波前處理器1020自影像感測器1004接收影像資料且輸出波前資訊1022。波前處理器1020將通常藉由程式化合適的可程式化處理器來實施,且可例如在多個階段中操作。第一處理階段1024分析來自影像感測器1004之影像以偵測光點1008之位置。第二階段1026比較光點1008之位置與光點1008之參考位置1008r以判定孔徑陣列中之每一位置處之波前1010的局部傾斜。第三階段1028對局部傾斜陣列進行積分及內插以獲得整個波前之模型。此波前模型可作為波前資訊之實例而輸出。波前模型可例如使用任尼克(Zernike)或其他多項式表示來表示為局部傾斜向量之陣列,及/或表示為參數化模型。
此類以HHG為基礎之度量衡工具可能夠執行經聚焦寬頻帶SXR光束至所關注小目標(例如,5至20 µm)上之精細對準,其中僅容許<1%的能量在目標能量範圍外。彎曲鏡面可用以聚焦此類光束,通常以相對較低縮小率對SXR源重新成像。因此,目標上之焦斑品質可對此等彎曲鏡面之精細對準以及SXR源品質自身兩者極敏感。
用以特性化HHG源或目標平面處之焦點之任何波前感測器應量測用於每一諧波波長之波前。不同顏色可具有不同波前。由於同時量測所有波長係重要的,因此使源頻寬變窄(例如,運用光譜濾光器或多層鏡面)且使用窄頻帶波前感測技術係不足夠的。此係因為HHG製程在源中自然地產生顯著的波長相依變化。舉例而言,由於不同顏色之產生點可能不同,因此虛擬源位置可視情況在光束傳播方向上變化幾毫米。為了能夠最佳化目標上之聚焦,可量測所有此等波前。另外,估計具有次微米敏感度之源的焦斑特性規定高空間解析度。
本文中將描述波前感測器之設計,例如用於在遠場中、在任何聚焦光學件之前或在聚焦光學件之後在近場中量測源波前。波前感測器之另一應用為量測由基板散射之輻射的波前。運用此工具,可量測及控制SXR儀器(或輸出任何其他波長帶之SXR儀器)之源品質及精細對準(例如,經由可變形鏡面)。具有能夠快速提供此波前資訊之波前感測器意謂可在回饋迴路中修改諸如以下各者中之一或多者的源參數:氣體射流壓力、相對於泵浦輻射焦點之位置及泵浦輻射焦點形狀(在使用可變形鏡面或空間光調變器SLM的情況下),以用於輸出光束之自適應控制。波前感測器可能夠量測寬頻帶及/或窄頻帶輻射。
量測例如EUV及/或SXR光譜區中之波前係具有挑戰性的,此係由於大多數材料對此等波長的吸收率高及難以製造合適的聚焦光學件。EUV/SXR體系中之已知途徑為使用哈特曼感測器(其為孔徑陣列)來量測局部相位梯度。例如在Mercère等人之Opt. Lett. 28,1534 (2003年)、Künzel等人之Appl. Opt. 54,4745 (2015年)及專利申請案EP1415133A1 (此等文件中之每一者係以引用方式併入本文中)中描述此感測器。EUV體系中之另一已知途徑為稱為相移點繞射干涉法之干涉技術(例如Naulleau等人之Appl. Opt. 38,7252 (1999年)中所描述,其以引用方式併入本文中)。兩種最新的非標準技術包括基於藉由掃描隙縫橫越光束剖面所量測之單個隙縫繞射的技術(Frumker等人之Opt. Lett. 34,3026 (2009年)中所描述,其以引用之方式併入本文中),及使用兩個相同光束之間的干涉圖案且藉由側向剪切演算法重建構波前的技術(Austin等人之Opt. Lett. 36,1746 (2011年),其以引用方式併入本文中)。此外,在以引用方式併入本文中之專利申請案EP 3410211A1中揭示了使用被稱作光譜哈特曼光罩(SHM)之光罩且允許在單一攝影機曝光中量測多個EUV波長的另一波前感測器。
對於具有高空間解析度及光譜敏感度兩者之光束特性化,上述方法中無一者係足夠的。哈特曼光罩及干涉方法不具有光譜敏感度。此外,空間解析度在哈特曼光罩之狀況下藉由孔徑之間的距離限制為數十微米,且對於干涉方法藉由參考孔徑之大小限制(亦通常為幾微米以維持足夠產出量)。
隙縫掃描光譜儀緩慢且低效,此係因為其在一系列量測點中之每一者中僅對光束之一部分進行取樣,排除在回饋迴路中之在線使用。重要的是,其一次亦僅量測1D波前,藉此排除特性化諸如散光之波前不對稱性的可能性(除非整個偵測系統旋轉超過90度)。歸因於泵浦雷射中之散光,散光可易於寫入至HHG光束上,或其可易於藉由離軸彎曲聚焦光學件(例如,Kirkpatrick-Baez鏡面或環形鏡面)之小的未對準而強加,且因此其量測可為有用的。
SHM感測器快速且具有高光譜靈敏度,但歸因於孔徑之間的距離而遭受低空間解析度,該距離大於習知哈特曼(CM)光罩之距離。另外,CM及SHM兩者展現為明確地追蹤自單獨孔徑之繞射所需之相對較低填充因數,但引起低通量效率。
概言之,所有方法共同具有的主要問題為:1)其並未經最佳化以用於聯合空間及光譜敏感度(且總是存在取捨);2)其並未經最佳化以用於量測產出量(有效地使用可用通量及偵測器頻寬);及3)其空間解析度直接受光罩中之結構之大小或其之間的距離而非偵測NA限制。
提議可結合疊層成像或任何其他合適相位擷取技術而使用的一類最佳化光罩設計,其特性化HHG光束中之所有諧波之波前(例如,在波長範圍λ=9至30 nm內,但不限於此範圍)且可遍及毫米尺度視場具有次微米側向解析度。本文中所揭示之概念可在結合疊層成像而使用時體現於針對就波前及光譜敏感度而言之最佳化效能的光罩設計最佳化中。
光罩包含與輻射相互作用之圖案。波前感測誤差度量可用於最佳化光罩以用於波前感測。波前感測誤差度量可為用於波前感測誤差之實際量度之統計代理。舉例而言,統計代理可為熵相關參數,視情況為作為光罩之圖案之熵與輻射偵測器/偵測平面上之輻射偵測圖案之熵的組合、視情況真實空間熵與倒易空間熵之組合(下文中為組合空間熵度量)的參數。可在正規化尺度上評估部分不透明光罩,其中具有高於某一臨限值的波前感測誤差度量之值的光罩被視為將在本發明之範疇內經最佳化。 圖11為包含根據本發明之一實施例之波前感測器配置的用於波前量測之設置。作為一項實例,圖11展示EUV/SXR疊層成像波前感測器之主要元件,該感測器可使用可移動光罩及偵測平面中之偵測件(視情況為2D偵測器)來特性化源(視情況為HHG源)之波前。波前感測器之總成(或被稱為子系統)可包含光罩及偵測平面。照射於光罩上之輻射形成輻射偵測圖案。輻射之輻射偵測圖案產生於偵測平面上或輻射偵測器上。在一項實例中,HHG輻射產生於發射由泵浦雷射(圖中未繪示)激發之HHG介質的射流J區中。針孔PH、光譜濾光器SF、摺疊鏡面FM、光罩MA (在2D掃描階段)及攝影機或偵測器DET位於發射輻射之光束路徑BP中。應注意,摺疊鏡面FM、針孔PH及光譜濾光器SF係可選的,且本文所揭示之概念可在無此等元件中之一些或全部的情況下執行。基本實施例可僅使用入射於光罩MA (視情況可移動光罩、視情況可移動2D光罩)上之寬頻帶或HHG光束,及偵測平面,視情況透射或反射中之攝影機/偵測器DET。光罩MA可為透射或反射元件。透射光罩意謂光罩之圖案包含具有輻射之不同透射率的兩個區域,而反射光罩意謂光罩包含具有輻射之不同反射率的兩個區域。儘管在本文中可特定地參考透射(或反射)元件之使用,但應理解,本文中所描述之實施例亦可用於反射(或透射)元件。在反射實施例中,光罩MA可以離軸反射模式幾何形狀使用。光罩MA可(亦即,在透射實施例中)包含具有經置放成滿足光譜解析波前感測(下文更詳細地解釋)之條件的孔徑之部分不透明光罩。可以受控方式通過光束來掃描此光罩MA,其中繞射圖案經記錄於偵測平面中,視情況經記錄於用於每一光罩位置之偵測器DET上。疊層成像或其他相位擷取方法/演算法可處理經量測繞射資料以擷取波前資訊。
原則上,掃描習知哈特曼光罩將導致改良之空間解析度,然而,習知哈特曼光罩歸因於其空間週期性而具有較差空間及光譜解析度。為了理解所提議之波前光罩設計途徑,將以數學方式描述及公式化最佳化目標。
定性地,需要光罩具有以下屬性: ● 具有顯著透射/反射面積以最大化透射/反射通量, ●  有效利用所有可用偵測器像素及其全動態範圍, ●  具有對空間波前變化之高敏感度, ●  具有分離多個波長分量之能力,且 ●  滿足一組超取樣條件(下文所描述)以實現在充分解析度下之波前重建構;例如經由實現來自波前感測器之入射光束之盲解迴旋的無透鏡成像或資料驅動重建構演算法,諸如疊層成像。 本發明人已發現,可針對具有圖案之光罩最佳地滿足所有此等屬性,該光罩包含其使(例如,經正規化之)真實空間熵及倒易空間空間熵之組合(例如,總和或乘積)最大化之數學屬性。此組合貫穿本說明書被稱為組合空間熵度量。現有光罩僅包含有限範圍之組合空間熵度量值。本文中揭示光罩、用於此類光罩之波前感測器配置及最佳化方法,其包含/最佳化光罩圖案使得光罩具有高於某一臨限值的組合之空間熵度量值。應注意,因為組合之空間熵度量值係藉由光罩設計及偵測器平面上之圖案兩者予以判定,所以當提及「用於光罩之組合空間熵度量」時,亦涉及偵測平面。因此,光罩之圖案係至少部分地基於輻射偵測圖案之要求而設計。該要求可包含熵相關參數,視情況為作為光罩之圖案之熵與輻射偵測器/偵測平面上之輻射偵測圖案之熵的組合、視情況真實空間熵與倒易空間熵之組合、視情況組合空間熵度量的參數高於某一值。
現在將描述真實空間熵及倒易空間空間熵之概念及其如何影響波前感測器設計。在物理學中,物質在空間中均勻散開之範圍常常藉由其差分真實空間熵來量化。最小空間熵指示單個點處之濃度,而當物質遍及所考慮域中之所有點均勻地分佈時達成最大熵。為了實現具有顯著開放區域的屬性,光罩可具有最大真實空間熵以實現透射通過光罩的最大通量。同時,需要分配自光罩散射之信號使得其遍及所有攝影機像素均勻地分佈,以最大化在單一繞射圖案中量測之總記錄光子通量。因此,除了最大化光罩之真實空間熵以外,亦旨在最大化攝影機上之圖案之空間熵。偵測位置上之圖案,視情況攝影機上之圖案,為光罩處之圖案之傅立葉變換,且其熵被稱為倒易空間空間熵。為了有效地利用所有可用偵測器像素/動態範圍,亦可最大化倒易空間熵。然而,最大化真實空間熵會影響倒易空間熵,且反之亦然。作為一實例,遍及圓形域之最大真實空間空間熵係藉由最大直徑內接至所允許域中的開放圓形孔徑來達成。然而,此情形導致不良的散射屬性,其中大部分繞射信號集中於繞射圖案之中心,其係藉由極低倒易空間熵而量化。將觀測到的係飽和中心繞射峰值,而離軸攝影機像素記錄很少光子,從而導致用於高空間頻率信號估計之不良信號雜訊比。相似地,在類點源光罩之限制下,產生球面波,從而導致最大倒易空間熵,同時具有最小空間熵。
現在將提供上文所論述之真實空間熵及倒易空間熵之數學定義。在一項實施例中,光罩函數,視情況二元光罩函數或幾乎二元光罩函數,為非連續結構。舉例而言,高斯光罩為連續光罩且具有值1,其並非用於波前量測之良好光罩。在本文中,二元光罩函數 m ( x )用作一實例,對於該實例,其在光罩為透射的地方等於恆定值A且在光罩為不透明的地方等於0,其中常數A經選擇使得m(x)經正規化使得
Figure 02_image001
。接著,真實空間差分熵
Figure 02_image003
可被定義為:
Figure 02_image005
其中ln為自然對數,
Figure 02_image007
為針對 m ( x )為非零的所有二維位置座標的速記記法,
Figure 02_image009
為真實空間像素大小。此假定在電腦表示中,含有二元光罩之所有非零元素的視場具有大小 L且藉由 N個像素而離散化。
Figure 02_image011
包括於差分熵之定義中以便正規化熵值,因此使得能夠在統一尺度上且獨立於特定離散化來比較不同的波前感測器設計。
相似地,倒易空間差分 S reciprocal 可經定義為:
Figure 02_image013
其中
Figure 02_image015
Figure 02_image017
Figure 02_image019
之二維空間傅立葉變換。此處,求和係遍及倒易空間中傅立葉變換為非零的區
Figure 02_image021
,且
Figure 02_image023
經正規化使得
Figure 02_image025
可在統一尺度上將熵正規化以便比較具有不同形狀及大小之光罩的空間熵。為此目的,可使用熵-方差不等式(例如,如描述於Shannon之C . E .(1948)、通信之數學理論、貝爾系統技術期刊27(3),379至423;以引用方式併入本文中);該熵-方差不等式由下式表達:
Figure 02_image027
其中
Figure 02_image029
為空間隨機變數,
Figure 02_image031
表示如上文所定義之熵( S real S reciprocal ),且
Figure 02_image033
表示隨機變數X之第二(空間)力矩。此可經重寫為:
Figure 02_image035
提議使用此上限來將熵正規化至統一尺度:
Figure 02_image037
光罩及其傅立葉變換可各自分別被視為真實空間及倒易空間中之二變量隨機變數
Figure 02_image039
Figure 02_image041
。因而,可執行由方程式(5)描述之正規化處理以獲得用於對應於真實及倒易空間差分熵之空間隨機變數中之每一者的正規化熵,亦即:
Figure 02_image043
Figure 02_image045
進一步提議在每一隨機變數中使用此等正規化熵之組合作為組合空間熵度量(或波前感測誤差度量),以在統一尺度上評估光罩之總熵。舉例而言,可使用此等正規化熵之乘積。因此,本文中所揭示之方法包含最佳化二元光罩(亦即,最佳化包含二元圖案之光罩之二元圖案)使得其具有最大化之組合空間熵度量或至少高於一臨限值的組合空間熵度量。本文中所揭示之裝置包含此類光罩及包含此類光罩之波前感測器器件。
在特定實例中,組合之空間熵度量可為每一隨機變數中之正規化熵之乘積
Figure 02_image047
,且臨限值可為0.8;亦即,以數學方式表達:
Figure 02_image049
習知哈特曼光罩及其他先前技術光罩具有低於此臨限值的等效組合空間熵度量。在其他實施例中,此臨限值可為0.83、0.85、0.88或0.9。
用於波前感測之最佳光罩包含高真實空間熵與高倒易空間熵之組合的原理源自此組合最佳化光罩透射及偵測效率兩者之觀測結果。
圖12為針對作為波前感測器之若干二元光罩的作為直接波前感測誤差度量之均方根波前感測誤差k(第一y軸-實線)及組合空間熵度量CSE或所提議(代理)波前感測誤差度量(第二y軸-點線)的標繪圖。該標繪圖描述此等光罩中之每一者的(經模擬)效能。光罩包含:具有已知二元圖案之五個已知光罩的第一群組:單一孔徑或針孔PH、習知哈特曼光罩HM、交叉光柵光罩CG、光譜哈特曼光罩SHM、螺旋分區板光罩ZP;及具有根據本文中所揭示之概念最佳化之二元圖案的光罩之第二群組:隨機化孔徑光罩RA、準結晶孔徑陣列光罩QC及包含使用貪婪搜尋演算法而最佳化之孔徑陣列的光罩GD。
所說明資料係關於圖11之實驗設置之模擬,其假定EUV光譜具有在10至20 nm之範圍內之9個諧波(具有15 nm半高全寬之高斯光譜包覆)。兩個標繪圖展示組合空間熵度量CSE (點線)與均方根波前感測誤差(實線)之間的相關性。均方根波前感測誤差描述藉由疊層成像量測獲得之波前重建構的準確度,如藉由以下所定義之 k之值所量化。標繪圖說明組合之空間熵度量之值愈高,經重建構之波前就愈準確。特定言之,具有高組合空間熵度量(高於臨限值CSE th)之三個新光罩設計RA、QC、GD實現習知光罩設計不可能的準確度。
光譜均方根波前感測誤差
Figure 02_image051
(rmsWFSE)可被定義為:
Figure 02_image053
.   (7)
可使用以下關係將具有弧度單位的
Figure 02_image055
轉換成波長單位(
Figure 02_image057
):
Figure 02_image059
. (8)
因此,圖12中之左側y軸上之 k的高值指示高波前感測準確度,或等效地指示大約
Figure 02_image061
的低平均光譜波前估計誤差。(實)線上之每一點展示遍及針對每一各別波前感測器模擬之所有資料集及波長而平均化的rms WFSE。臨限值CSE th對應於為0.8之組合空間熵度量(如方程式(6)中所描述);亦即,此線上方或上之任何者對應於
Figure 02_image063
。基於rms WFSE與組合空間熵度量之所觀測相關性,提議使用組合空間熵度量作為統計代理來估計rms WFSE。
由圖12所概述之模擬支援如下觀測結果:具有最大組合空間熵之光罩會引起最佳化之波前重建構品質。然而,如已經提及,待在波前感測器設計中考量之另一考慮因素為取樣考慮因素。二元光罩中之每一組兩個針孔在攝影機平面中產生正弦信號,且所有此等正弦信號之相干疊加在偵測器平面中合成電場。光罩平面(真實空間)中之每組兩個針孔之間的分離度愈遠,偵測器平面中之空間條紋週期就愈小,從而承受對繞射強度取樣不足之風險。
圖13說明對由具有側向大小FOV之光罩 M ( x , y )產生之繞射強度進行取樣所需的所得取樣條件。可在無混疊的情況下在偵測器平面 DET ( q x , q y )處偵測到的最大波前曲率為每光罩解析度元素
Figure 02_image065
之為
Figure 02_image067
之相移。距源點SP之距離
Figure 02_image069
結合光罩平面處之空間解析度及視場(FOV)接著判定在HHG源位置SP處之可達成的空間解析度。更具體言之,在離散化之後的取樣要求為:
Figure 02_image071
Figure 02_image073
Figure 02_image075
其中
Figure 02_image077
為最短波長(其判定可允許FOV;亦即,允許其透射率或反射率為非零的最大範圍)且z為樣本至攝影機距離。此展示波前感測器之FOV受到限定;波前感測器可小於最小波長與波長感測器至偵測器距離除以偵測器像素大小的乘積(以符合在香農-奈奎斯特(Shannon-Nyquist)定理之後的取樣限制)。
自圖12可看到,引起最高rmsWFSE之疊層成像重建構演算法為基於貪婪熵最大化演算法而使用光罩的演算法。此演算法可包含以下步驟: a)以在隨機位置處包含孔徑之光罩開始。 b)選擇該光罩之第n個孔徑。 c)藉由判定此第n個孔徑在其目前位置中之值並移動至其他鄰近位置(例如一個像素北/東/南/西中的每一者)來評估光罩之組合空間熵度量。 d)選擇新孔徑位置作為產生由步驟c)產生之五個可能光罩之最高總熵的孔徑位置。 e)將n增加1並返回至步驟b)。
除了上文所描述之貪婪光罩以外,亦在圖14中說明在本發明之範疇內的兩個其他實例光罩。圖14之(a)說明準結晶光罩圖案,其係有序的但在平移下係非週期性的。此特定實例具有位於具有增加直徑之同心圓上的所有孔徑,但僅為許多可能的QC中之一個實例。圖14之(b)說明可在設計規則將光罩設計選項限定為僅包含包括水平矩形及豎直矩形之矩形的彼等光罩設計的情況下使用的光罩圖案。熵最大化設計途徑可用以識別具有合適散射屬性之光罩。
相比於其他波前感測方法,在疊層成像或相關度量衡方法中包含用於組合空間熵度量之高值(高於如所描述之臨限值)的光罩提供優於現有目前先進技術(諸如哈特曼光罩)之效能。組合之空間熵度量為任何二元波前感測器之固有屬性,此係因為其僅取決於光罩自身之數學描述(及其傅立葉變換)。據信,根據此原理設計之任何光罩就敏感度及量測效率(每偵測到之光子數目之準確度)中之一者或兩者而言將比現有光罩更好地執行。
波前感測器可支援對輻射源配置之改良式監測及控制。當度量衡裝置取決於由配置產生之輻射光束之品質時,波前感測器可支援對量測之較準確計算。舉例而言,在大容量製造中,足夠快速地量測以提供關於疊對量測之時間標度的完整EUV光束資訊。
本發明之原理可應用於任何波長範圍,但其特別適用於其中源穩定性需要發展且其中諸如干涉法之光學波前感測方法成問題的EUV/軟X射線區中。
在不偏離原理的情況下,可使光罩或孔徑陣列透射或反射,且因此例如離軸反射模式幾何形狀係可能的。在反射中起作用的變體可包含例如掠入射錐形繞射組態。就可製造性及穩固性而言,此具有優點,且為繞射幾何形狀及對比度提供完全不同的參數空間。在C. L. Porter等人之論文「General-purpose, wide field-of-view reflection imaging with a tabletop 13 nm light source」(Optica 4,第12號,1552至1557 (2017年))中提供了如何以反射模式實現超取樣條件。C. Braig、L. Fritzsch、T.Käsebier、E.-B. Kley、C. Laubis、Y.Liu、F. Scholze及A. Tünnermann之論文「An EUV beamsplitter based on conical grazing incidence diffraction」(Opt. Express 20,1825至1838 (2012年))中提供了對掠入射中之EUV輻射之錐形繞射的分析。應注意,判定反射模式中之波前感測器之所允許視場的超取樣條件不如上文所描述之超取樣條件(不等式(9))一樣簡單,且將取決於入射角。可在參考案(以引用方式併入本文中):C. L. Porter等人之「General-purpose, wide field-of-view reflection imaging with a tabletop 13 nm light source」(Optica 4,第12號,1552至1557 (2017年))中發現更多細節。
波前處理之實施可簡單明瞭。藉由所選擇數值方法使對應於單一波長之繞射光點局部化,在此之後,每一光譜分量之波前重建構可經由用於哈特曼/夏克哈特曼(Shack-Hartmann)波前感測器之所建立的習知重建構常式繼續進行。用於波前感測之概念可包含關於圖10所描述之概念。
使用本文中所揭示之概念獲得的改良之波前資訊可用以例如基於經量測波前而改良輻射源屬性(例如在回饋方法中),或用以調整下游光學件以補償經量測波前缺陷(例如在前饋方法中)。
視情況,例如若所要光譜範圍及光譜解析度要求個別孔/光柵之間的大間距,則可相對於光束掃描感測器以增加波前之空間解析度。與其他掃描組態相比,波前感測器之固有空間解析度意謂所需掃描範圍較小(約為孔徑之間的距離)。
藉由孔徑陣列對預期繞射之模型化將擴展特性化複雜波前及複雜光譜之能力。舉例而言,理解每一光點之形狀(其與孔徑之形狀相關),從而允許更精確地判定中心位置。
上文所提及之實施例可用於圖11中。在適當時,關於圖11所描述之實施例之特徵中之一或多者亦可存在於上文所提及之實施例中。
本發明之原理可應用於EUV、SXR及/或HXR源,諸如高階諧波產生源、液體金屬射流源、逆康普頓散射(ICS)源、電漿通道源、磁波盪器源及自由電子雷射(FEL)源,且亦可應用於較不相干源,諸如(經空間濾光)電漿放電。
在應用於度量衡時,所量測之目標結構可為出於量測之目的而特別設計及形成的度量衡目標,在其他實施例中,可對作為形成於基板上之器件之功能性部分的目標量測屬性。許多器件具有類似於光柵的規則週期性結構。如本文中所使用之術語「目標」、「光柵」或目標之「週期性結構」無需使已針對正被執行之量測特定提供適用結構。另外,度量衡目標之節距 P接近於量測工具之光學系統之解析度極限,但可比目標部分C中藉由圖案化製程製得的典型產品特徵之尺寸大得多。實務上,光柵之特徵及/或空間可經製造成包括在尺寸方面相似於產品特徵的較小結構。
照明源可經提供於例如度量衡裝置MT、檢測裝置、微影裝置LA及/或微影單元LC中。
用以執行量測之發射輻射之屬性可影響所獲得量測之品質。舉例而言,輻射光束之橫向光束剖面(橫截面)的形狀及大小、輻射之強度、輻射之功率頻譜密度等可影響藉由輻射執行之量測。因此,具有提供具有引起高品質量測之屬性之輻射的源係有益的。
儘管可在本文中特定地參考在二元光罩之內容背景中之實施例,但實施例可用於包括可為反射或透射光罩之幾乎二元光罩的其他光罩中。透射幾乎二元光罩經界定使得透射區域具有除1之外的透射率,視情況自0.1至1、視情況自0.5至1或視情況自0.75至1的透射率。舉例而言,透射幾乎二元光罩之不透明部分包含金屬,且透射部分包含對EUV顯著透明之氮化矽隔膜。反射幾乎二元光罩經界定使得其中基板具有低反射率(例如,AR塗層,或具有低反射率之材料),而反射光罩特徵具有高反射率。幾乎二元光罩可為反射光罩,其中輻射由光罩反射。因為無基板具有零反射率,所以反射光罩為接近二元光罩。
上文所提及之實施例亦可用於微影裝置中,視情況具有EUV源之極紫外線(EUV)微影裝置中,其中使用波長小於20 nm(例如13.5 nm)之輻射來執行印刷。在一項實施例中,波前感測器可用於量測由EUV源產生之EUV輻射或用於EUV微影裝置中之任何其他輻射的波前。
根據本發明之一態樣,提供一種電腦程式產品,其包含在經執行於至少一個處理器上時致使該至少一個處理器控制一裝置以進行根據本文中所描述之任何內容之一方法的指令。根據本發明之一態樣,提供一種非暫時性電腦程式產品,其包含其中之機器可讀指令,該等指令在藉由一電腦系統執行時經組態以致使該電腦系統至少致使執行根據本文中所描述之任何內容之一方法。
在後續編號條項中揭示另外實施例: 1.   一種用於量測輻射之一波前之波前感測器;其包含: 一光罩,其包含位於該輻射之路徑中之一圖案;及 一輻射偵測器,其用於在該光罩之後偵測該輻射; 其中用於該光罩之一正規化之組合空間熵度量的一值等於或大於0.8。 2.   如條項1之波前感測器,其中該組合空間熵度量包含與由該光罩透射或反射之該輻射之分佈相關的一真實空間熵度量及與該輻射偵測器上之該輻射之分佈相關的一倒易空間熵度量之一組合。 3.   如條項2之波前感測器,其中該真實空間熵度量及該倒易空間熵度量各自包含一差分熵。 4.   如條項3之波前感測器,其中該組合空間熵度量包含真實空間中之一對二變量隨機變數中之每一變數的正規化真實差分熵與倒易空間中之一對二變量隨機變數中之每一變數的正規化倒易差分熵之一乘積,其中視情況一真實空間差分熵
Figure 02_image079
被定義為:
Figure 02_image081
其中ln為自然對數,
Figure 02_image083
為針對m(x)為非零的所有二維位置座標的速記記法,
Figure 02_image085
為真實空間像素大小,且其中視情況,一倒易空間差分
Figure 02_image087
可被定義為:
Figure 02_image089
其中
Figure 02_image091
Figure 02_image093
Figure 02_image095
之二維空間傅立葉變換,求和係遍及倒易空間中該傅立葉變換為非零的區
Figure 02_image097
,且
Figure 02_image099
經正規化使得
Figure 02_image101
。 5. 如任一前述條項之波前感測器,其中組合空間熵度量僅取決於該圖案之一數學描述。 6.   如任一前述條項之波前感測器,其中該光罩經安裝為可相對於該輻射之一源移動。 7.   如條項6之波前感測器,其進一步包含一處理器,該處理器可操作以執行一相位擷取方法以處理來自該輻射偵測器之經量測繞射資料從而擷取波前資訊,其中視情況該相位擷取方法為疊層成像。 8.   如任一前述條項之波前感測器,其中用於該光罩之一正規化之組合空間熵度量的該值等於或大於0.85。 9.   如任一前述條項之波前感測器,其中用於該光罩之一正規化之組合空間熵度量的該值等於或大於0.88。 10.  如任一前述條項之波前感測器,其中該圖案係根據一貪婪組合之空間熵度量最大化演算法來界定。 11.  如條項1至9中任一項之波前感測器,其中該圖案係根據一準結晶圖案而界定。 12.  如條項1至9中任一項之波前感測器,其中該圖案係根據一隨機化圖案而界定。 13.  如任一前述條項之波前感測器,其中該圖案僅包含矩形。 14.  一種用於量測一輻射之一波前之波前感測器;其包含: 一光罩,其包含位於該輻射之路徑中以與該輻射相互作用之一圖案;且 其中照射於該光罩上之該輻射在該光罩之後在一輻射偵測器上形成一輻射偵測圖案, 其中該光罩之該圖案係至少部分地基於該輻射偵測圖案之一要求而設計。 15.  如條項14之波前感測器,其中該光罩經安裝為可相對於該輻射之一源移動。 16.  如條項15之波前感測器,其進一步包含一處理器,該處理器可操作以執行一相位擷取方法以處理來自該輻射偵測器之經量測繞射資料從而擷取波前資訊。 17.  如條項16之波前感測器,其中該相位擷取方法為疊層成像。 18.  如條項14至17中任一項之波前感測器,其中該圖案係根據一準結晶圖案而界定。 19.  如條項14至17中任一項之波前感測器,其中該圖案係根據一隨機化圖案而界定。 20.  如任一前述條項之波前感測器,其中該圖案僅包含矩形。 21.  一種可操作以產生一輻射光束之輻射源配置,該輻射源配置進一步包含: 一如前述條項中任一項之波前感測器;及 一處理器,其用於至少部分地基於該經量測波前而判定該輻射源配置的及/或該輻射源配置下游之至少一個光學元件的至少一個操作條件。 22.  如條項21之輻射源配置,其中該所產生輻射光束包括短於100 nm,視情況在5至30 nm之範圍內,且視情況在10 nm至20 nm之範圍內的波長。 23.  如條項21或22之輻射源配置,其經配置以引起泵浦輻射與一介質之間的一相互作用,且藉此藉由高階諧波產生而產生作為寬頻帶輻射之該輻射光束。 24.  如條項23之輻射源配置,其進一步包含一控制器,該控制器用於至少部分地回應於藉由該處理器判定之該操作條件而自動地調整該輻射源配置之至少一個操作參數。 25.  如條項24之輻射源配置,其中該經調整操作參數為該泵浦輻射之一泵浦源及/或泵浦光束遞送系統的一泵浦操作參數。 26.  如條項25之輻射源配置,其中該泵浦操作參數為脈衝強度或持續時間光束寬度、一軸向聚焦位置、一橫向聚焦位置或一波前中之一或多者。 27.  如條項24或25之輻射源配置,其中該介質係一氣體射流且該經調整操作參數係對於該氣體射流之一氣體遞送系統的一操作參數。 28.  一種檢測裝置,其包含用於將檢測輻射遞送至一目標結構之一照明系統及用於偵測在與該目標結構相互作用之後的該檢測輻射之一偵測系統,且其中該照明系統包括如條項21至27中任一項之一輻射源配置,該所產生之輻射光束係用作該檢測輻射。 29.  如條項21之檢測裝置,其中該檢測輻射包括短於100 nm,視情況在5至30 nm之範圍內,且視情況在10 nm至20 nm之範圍內的波長。 30.  如條項28或29之檢測裝置,其進一步包含用於基於偵測到之檢測輻射判定該目標結構之一屬性的一處理配置。 31. 如條項30之檢測裝置,其中該處理配置經進一步配置以至少部分地基於該目標結構之該經判定屬性來計算一微影製程之一第一效能參數。 32.  如條項31之檢測裝置,其中該處理配置經配置以進一步基於該波前感測器之一輸出而判定該目標結構之該屬性及/或該第一效能參數。 33.  如條項28至32中任一項之檢測裝置,其包含一散射計、一對準感測器或一位階量測感測器中之一者。 34.  一種最佳化用於一波前感測器中之一光罩之一圖案的方法;該方法包含: 根據複數個組態判定由該圖案界定之該光罩之一組合空間熵度量;及 基於該組合空間熵度量選擇一光罩。 35.  如條項34之方法,其包含選擇具有等於或大於一臨限值之一組合空間熵度量的一光罩。 36.  如條項34或35之方法,其中對於一正規化之組合空間熵度量,該臨限值為0.8。 37.  如條項34或35之方法,其中對於一正規化之組合空間熵度量,該臨限值為0.85。 38.  如條項34或35之方法,其中對於一正規化之組合空間熵度量,該臨限值為0.88。 39.  如條項34至38中任一項之方法,其包含選擇具有一最大化之組合空間熵度量的光罩。 40.  如條項34至39中任一項之方法,其包含界定該圖案以便最大化該組合空間熵度量。 41.  如條項40之方法,其中該界定該圖案係根據一貪婪組合之空間熵度量最大化演算法來執行。 42.  如條項34至40中任一項之方法,其中該圖案係根據一準結晶圖案而界定。 43.  如條項34至40中任一項之方法,其中該圖案係根據一隨機化圖案而界定。 44.  如條項34至43中任一項之方法,其中該圖案僅包含矩形。 45.  如條項34至44中任一項之方法,其中該組合空間熵度量包含一真實空間熵度量與一倒易空間熵度量之一組合。 46.  如條項34至45中任一項之方法,其中該組合空間熵度量包含一正規化之組合空間熵度量。 47.  如條項46之方法,其中該真實空間熵度量及該倒易空間熵度量各自包含一差分熵。 48.  如條項46或47之方法,其中該組合空間熵度量包含真實空間中之一對二變量隨機變數中之每一變數的正規化真實差分熵與倒易空間中之一對二變量隨機變數中之每一變數的正規化倒易差分熵之一乘積。 49.  如條項34至48中任一項之方法,其中該組合空間熵度量僅取決於該圖案之一數學描述。 50.  一種設計用於一輻射之一波前感測器中之一光罩之一圖案的方法,其中該光罩之該圖案係至少部分地基於對該輻射之一輻射偵測圖案的一要求而設計,且其中該輻射偵測圖案係產生於該光罩之後的一偵測平面上。 51.  一種非暫時性電腦程式產品,其包含其中之機器可讀指令,該等指令在由一電腦系統執行時經組態以致使該電腦系統至少致使執行如條項34至50中任一項之方法。 52.  一種結合一相位擷取方法的具有根據條項34至50中任一項設計之一圖案的光罩之用途。 53.  一種具有根據條項52設計之一圖案的光罩之用途,其中該相位擷取方法為疊層成像。 54.  一種電腦程式產品,其包含用於致使一處理器執行如條項34至50中任一項之方法的機器可讀指令。 55.  一種用於一波前感測器之總成,其包含一偵測平面及具有一圖案之一光罩,且其中用於該光罩之一正規化之組合空間熵度量具有等於或大於0.8之一值。 56.  如條項55之總成,其中該組合空間熵度量包含與由該光罩透射之該寬頻帶輻射之分佈相關的一真實空間熵度量及與該偵測器上之該寬頻帶輻射之分佈相關的一倒易空間熵度量之一組合。 57.  如條項56之總成,其中該真實空間熵度量及該倒易空間熵度量各自包含一差分熵。 58.  如條項57之總成,其中該組合空間熵度量包含真實空間中之一對二變量隨機變數中之每一變數的正規化真實差分熵與倒易空間中之一對二變量隨機變數中之每一變數的正規化倒易差分熵之一乘積。 59.  一種用於一波前感測器之總成,其包含一偵測平面及一光罩,該光罩具有位於一輻射之路徑中以與該輻射相互作用之一圖案, 其中照射於該光罩上之該輻射在該光罩之後在該偵測平面上形成一輻射偵測圖案,且 其中該光罩之該圖案係至少部分地基於該輻射偵測圖案之一要求而設計。 60.  如以上波前感測器條項中任一項之波前感測器,其中該圖案係一非連續圖案。 61.  如以上波前感測器條項中任一項之波前感測器,其中該圖案係一二元圖案。 62.  如以上波前感測器條項中任一項之波前感測器,其中該圖案係一幾乎二元圖案。 63.  如以上波前感測器條項中任一項之波前感測器,其中該光罩之該圖案包含具有該輻射之不同透射率的兩個區域。 64.  如以上波前感測器條項中任一項之波前感測器,其中該光罩包含具有該輻射之不同反射率的兩個區域。 65.  如條項14至20中任一項之波前感測器,其中該要求包含一熵相關參數,視情況為作為該光罩之該圖案之熵與該輻射偵測圖案之熵之一組合、視情況真實空間熵與倒易空間熵之一組合、視情況一組合空間熵度量的一參數高於一值。 66.  如條項65之波前感測器,其中該值為0.8,視情況為0.85且視情況為0.88。
儘管可在本文中特定地參考在IC製造中微影裝置之使用,但應理解,本文中所描述之微影裝置可具有其他應用。可能之其他應用包括製造整合式光學系統、用於磁疇記憶體之導引及偵測圖案、平板顯示器、液晶顯示器(LCD)、薄膜磁頭等。
儘管可在本文中特定地參考在微影裝置之內容背景中之實施例,但實施例可用於其他裝置中。實施例可形成光罩檢測裝置、度量衡裝置或量測或處理諸如晶圓(或其他基板)或光罩(或其他圖案化器件)之物件之任何裝置之部分。此等裝置通常可被稱作微影工具。此微影工具可使用真空條件或周圍(非真空)條件。
儘管可在本文中特定地參考在檢測或度量衡裝置之內容背景中之實施例,但實施例可用於其他裝置中。實施例可形成光罩檢測裝置、微影裝置或量測或處理諸如晶圓(或其他基板)或光罩(或其他圖案化器件)之物件的任何裝置之部分。術語「度量衡裝置」(或「檢測裝置」)亦可指檢測裝置或檢測系統(或度量衡裝置或度量衡系統)。例如包含一實施例的檢測裝置可用以偵測基板之缺陷或基板上之結構之缺陷。在此實施例中,基板上之結構之所關注特性可能係關於結構中之缺陷、結構之特定部分之不存在或基板上之非想要結構之存在。
儘管上文可特定地參考在光學微影之內容背景中對實施例之使用,但應瞭解,本發明在內容背景允許之情況下不限於光學微影可用於其他應用(例如壓印微影)中。
雖然上文所描述之目標或目標結構(更一般而言,基板上之結構)為出於量測之目的而特定設計及形成的度量衡目標結構,但在其他實施例中,可對作為在基板上形成之器件之功能性部分的一或多個結構量測所關注屬性。許多器件具有規則的類光柵結構。如本文中所使用之術語結構、目標光柵及目標結構並不要求已特定地針對正被執行之量測來提供該結構。另外,度量衡目標之節距可接近於散射計之光學系統的解析度極限或可能更小,但可能比目標部分C中之藉由微影製程製得的典型非目標結構(視情況產品結構)之尺寸大得多。實務上,可使目標結構內之疊對光柵之線及/或空間包括在尺寸上相似於非目標結構之較小結構。
雖然上文已描述特定實施例,但應瞭解,可以與所描述之方式不同的其他方式來實踐本發明。以上描述意欲為說明性,而非限制性的。因此,對於熟習此項技術者將顯而易見,可在不脫離下文所闡明之申請專利範圍之範疇的情況下對所描述之本發明進行修改。
儘管特定參考「度量衡裝置/工具/系統」或「檢測裝置/工具/系統」,但此等術語可指相同或相似類型之工具、裝置或系統。例如包含本發明之一實施例之檢測或度量衡裝置可用以判定基板上或晶圓上之結構之特性。例如包含本發明之一實施例之檢測裝置或度量衡裝置可用以偵測基板之缺陷或基板上或晶圓上之結構之缺陷。在此實施例中,基板上之結構之所關注特性可能係關於結構中之缺陷、結構之特定部分之不存在或基板上或晶圓上之非想要結構之存在。
儘管特定地參考HXR、SXR及EUV電磁輻射,但應瞭解,本發明在內容背景允許之情況下可藉由所有電磁輻射來實踐,該等電磁輻射包括無線電波、微波、紅外線、(可見)光、紫外線、X射線及γ射線。
2:寬頻帶輻射或窄頻帶輻射投影儀 4:光譜儀偵測器 5:輻射 6:光譜 8:結構或剖面 11:透射輻射 302:度量衡裝置/檢測裝置 310:照明源/輻射源 312:照明系統 314:參考偵測器 315:信號 316:基板支撐件 318:偵測系統/偵測器 320:度量衡處理單元(MPU)/度量衡處理器 330:泵浦輻射源 332:氣體遞送系統 334:氣體供應件 336:電源 340:第一泵浦輻射 342:發射輻射/經濾光光束 344:濾光器件 350:檢測腔室 352:真空泵 356:經聚焦光束 360:反射輻射 372:位置控制器 374:感測器 382:光譜資料 397:繞射輻射/繞射光 398:另外偵測系統 399:信號 600:照明源之實施例 601:腔室 603:照明系統 605:輻射輸入 607:輻射輸出 609:氣體噴嘴 611:入射泵浦輻射 613:發射輻射 615:氣流 617:開口 1002:孔徑陣列 1004:影像感測器 1004a:影像感測器之放大部分 1006:孔徑 1008:光點 1008r:參考位置 1010:凸形波前 1012:偏差 1020:波前處理器 1022:波前資訊 1024:第一處理階段 1026:第二階段 1028:第三階段 AM:標記 ANG:入射角 AS:對準感測器 B:輻射光束 BD:光束遞送系統 BE1:輻射光束/量測光束 BE2:反射 BK:烘烤板 BP:光束路徑 C:目標部分 CG:交叉光柵光罩 CH:冷卻板 CL:電腦系統 CSE:組合空間熵度量 CSE th:臨限值 DE:顯影器 DET:偵測器 DET(q x,q y):偵測器平面 DGR:偵測光柵 FM:摺疊鏡面 FOV:側向大小/視場 GD:包含使用貪婪搜尋演算法而最佳化之孔徑陣列的光罩 HM:習知哈特曼光罩 I:強度 IB:資訊攜載光束 IF:位置量測系統 IL:照明系統/照明器 I/O1:輸入/輸出埠 I/O2:輸入/輸出埠 J:射流 k:均方根波前感測誤差 LA:微影裝置 LACU:微影控制單元 LB:裝載匣 LC:微影單元 LS:位階或高度感測器 LSB:輻射光束 LSD:偵測單元 LSO:輻射源 LSP:投影單元 M 1:光罩對準標記 M 2:光罩對準標記 MA:圖案化器件/光罩 MLO:量測位置/量測區域 MT:度量衡工具/散射計 M(x, y):光罩 OL:物鏡 P 1:基板對準標記 P 2:基板對準標記 PD:光偵測器 PGR:投影光柵 PH:針孔 PM:第一定位器 PS:投影系統 PU:處理單元 PW:第二定位器 QC:準結晶孔徑陣列光罩 RA:隨機化孔徑光罩 RB:輻射光束 RO:基板處置器或機器人 RSO:輻射源 S:圓形或橢圓形光點/輻射光點 SC:旋塗器 SCS:監督控制系統 SC1:第一標度 SC2:第二標度 SC3:第三標度 SF:光譜濾光器 SHM:光譜哈特曼光罩 SI:強度信號 SM:光點鏡面 SO:輻射源 SP:照明光點/源點/HHG源位置 SRI:自參考干涉計 T:光罩支撐件/所關注結構/目標結構 Ta:目標 TCU:塗佈顯影系統控制單元 W:基板 WT:基板支撐件 ZP:螺旋分區板光罩 Z 1:距離 λ:波長 Δx:光罩解析度元素
現在將參考隨附示意性圖式而僅作為實例來描述實施例,在該等圖式中: -  圖1描繪微影裝置之示意性綜述; -  圖2描繪微影單元之示意性綜述; -  圖3描繪整體微影之示意性表示,其表示用以最佳化半導體製造之三種關鍵技術之間的合作; -  圖4示意性地說明散射量測裝置; -  圖5示意性說明透射散射量測裝置; -  圖6描繪其中使用EUV及/或SXR輻射的度量衡裝置之示意性表示; -  圖7描繪對準感測器之示意性方塊圖; -  圖8描繪位階感測器之示意性方塊圖; -  圖9描繪用於高階諧波產生之照明源的示意性表示; -  圖10說明不具有光譜解析度之波前感測器的操作原理; -  圖11描繪用於波前量測之設置; -  圖12為針對作為波前感測器之若干二元光罩的均方根波前感測誤差k及組合空間熵度量的標繪圖; -  圖13描繪依據關鍵取樣參數之波前感測器配置;及 -  圖14 (包括圖14之(a)及圖14之(b))說明根據本發明之實施例的光罩之兩種類型。
CG:交叉光柵光罩
CSE:組合空間熵度量
CSEth:臨限值
GD:包含使用貪婪搜尋演算法而最佳化之孔徑陣列的光罩
HM:習知哈特曼光罩
k:均方根波前感測誤差
PH:針孔
QC:準結晶孔徑陣列光罩
RA:隨機化孔徑光罩
SHM:光譜哈特曼光罩
ZP:螺旋分區板光罩

Claims (15)

  1. 一種方法,其包含: 經過一輻射(through a radiation)掃描一可移動之光罩(mask), 偵測由該光罩在不同光罩位置上散射(scattered)之該輻射之圖案以獲得一測量資料, 使用一相位擷取方法來處理該測量資料,及 擷取該輻射之波前資訊。
  2. 如請求項1之方法,其中該光罩被安裝在一二維掃描台上。
  3. 如請求項1-2中任一項之方法,其中該等經偵測之圖案係由該光罩在不同光罩位置繞射之該輻射之繞射圖案。
  4. 如請求項1-2中任一項之方法,其中該相位擷取方法為一疊層成像(ptychography)。
  5. 如請求項1-2中任一項之方法,其中該輻射為一寬頻輻射。
  6. 如請求項1-2中任一項之方法,其中該等經偵測之圖案具有光譜解析度(spectral resolution)。
  7. 如請求項1-2中任一項之方法,其中擷取該輻射之波前資訊之該步驟包含對該輻射之每一光譜分量(spectral component)擷取波前資訊。
  8. 如請求項1-2中任一項之方法,其中該方法進一步包含為了針對波前及光譜敏感性而言之最佳化(optimized)效能而最佳化該光罩之設計。
  9. 如請求項1-2中任一項之方法,其中該輻射包含極紫外線(EUV)、軟X射線(SXR)及/或硬X射線(HXR)中的波長。
  10. 如請求項1-2中任一項之方法,其中該輻射係通過一高階諧波產生過程(HHG process)而被產生。
  11. 如請求項1-2中任一項之方法,其中該波前資訊具有次微米側向解析度(sub-µm lateral resolution)之空間解析度。
  12. 一種用於擷取一輻射之波前資訊之總成,其使用一相位擷取方法及一測量資料,該總成包含一偵測器及一可移動之光罩, 其中該總成經組態以接收該輻射, 其中該可移動光罩經組態以移動經過(move through)該輻射, 其中該偵測器經定位以偵測由該光罩在不同光罩位置上散射之該輻射之圖案以獲得該測量資料。
  13. 一種非暫時性電腦程式產品,其包含其中之機器可讀指令,在由一電腦系統執行時該等指令經組態以致使該電腦系統至少致使執行如請求項1-11中任一項之方法。
  14. 一處理器及相關之儲存媒體,該儲存媒體包含請求項13之非暫時性電腦程式產品,以使該處理器可操作以執行請求項1至11中任一項之方法。
  15. 一種度量衡裝置,其包含請求項12之總成,或請求項14之處理器及相關儲存媒體,以便可操作以執行請求項1至11中任一項之方法。
TW112103770A 2020-09-02 2021-09-01 波前度量衡感測器及其光罩、用於最佳化光罩之方法及相關裝置 TW202323973A (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP20194153.1A EP3964809A1 (en) 2020-09-02 2020-09-02 Wavefront metrology sensor and mask therefor, method for optimizing a mask and associated apparatuses
EP20194153.1 2020-09-02

Publications (1)

Publication Number Publication Date
TW202323973A true TW202323973A (zh) 2023-06-16

Family

ID=72355769

Family Applications (2)

Application Number Title Priority Date Filing Date
TW110132420A TWI794950B (zh) 2020-09-02 2021-09-01 波前度量衡感測器及其光罩、用於最佳化光罩之方法及相關裝置
TW112103770A TW202323973A (zh) 2020-09-02 2021-09-01 波前度量衡感測器及其光罩、用於最佳化光罩之方法及相關裝置

Family Applications Before (1)

Application Number Title Priority Date Filing Date
TW110132420A TWI794950B (zh) 2020-09-02 2021-09-01 波前度量衡感測器及其光罩、用於最佳化光罩之方法及相關裝置

Country Status (6)

Country Link
US (1) US20230341325A1 (zh)
EP (1) EP3964809A1 (zh)
CN (1) CN116171374A (zh)
IL (1) IL300808A (zh)
TW (2) TWI794950B (zh)
WO (1) WO2022048899A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4321933A1 (en) * 2022-08-09 2024-02-14 ASML Netherlands B.V. A radiation source

Family Cites Families (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB9820664D0 (en) * 1998-09-23 1998-11-18 Isis Innovation Wavefront sensing device
TW550377B (en) * 2000-02-23 2003-09-01 Zeiss Stiftung Apparatus for wave-front detection
FR2827380B1 (fr) 2001-07-12 2003-11-07 Imagine Optic Dispositif d'analyse d'un front d'onde a resolution amelioree
US6924899B2 (en) * 2002-05-31 2005-08-02 Optical Physics Company System for measuring wavefront tilt in optical systems and method of calibrating wavefront sensors
DE60319462T2 (de) 2002-06-11 2009-03-12 Asml Netherlands B.V. Lithographischer Apparat und Verfahren zur Herstellung eines Artikels
SG121818A1 (en) 2002-11-12 2006-05-26 Asml Netherlands Bv Lithographic apparatus and device manufacturing method
DE10258142A1 (de) * 2002-12-04 2004-06-24 Carl Zeiss Smt Ag Vorrichtung zur optischen Vermessung eines Abbildungssystems
SG125101A1 (en) 2003-01-14 2006-09-29 Asml Netherlands Bv Level sensor for lithographic apparatus
US7265364B2 (en) 2004-06-10 2007-09-04 Asml Netherlands B.V. Level sensor for lithographic apparatus
US7791727B2 (en) 2004-08-16 2010-09-07 Asml Netherlands B.V. Method and apparatus for angular-resolved spectroscopic lithography characterization
US7481579B2 (en) 2006-03-27 2009-01-27 Jordan Valley Applied Radiation Ltd. Overlay metrology using X-rays
CN101126836B (zh) * 2007-08-20 2010-06-30 中国科学院光电技术研究所 一种100%匹配圆形、环形光束孔径的微阵列光栅
NL1036245A1 (nl) 2007-12-17 2009-06-18 Asml Netherlands Bv Diffraction based overlay metrology tool and method of diffraction based overlay metrology.
NL1036734A1 (nl) 2008-04-09 2009-10-12 Asml Netherlands Bv A method of assessing a model, an inspection apparatus and a lithographic apparatus.
NL1036857A1 (nl) 2008-04-21 2009-10-22 Asml Netherlands Bv Inspection method and apparatus, lithographic apparatus, lithographic processing cell and device manufacturing method.
JP5584689B2 (ja) 2008-10-06 2014-09-03 エーエスエムエル ネザーランズ ビー.ブイ. 2次元ターゲットを用いたリソグラフィの焦点及びドーズ測定
EP2228685B1 (en) 2009-03-13 2018-06-27 ASML Netherlands B.V. Level sensor arrangement for lithographic apparatus and device manufacturing method
CN101515105B (zh) 2009-03-26 2010-07-21 上海交通大学 基于超声波调制的准相位匹配高次谐波装置
CN102498441B (zh) 2009-07-31 2015-09-16 Asml荷兰有限公司 量测方法和设备、光刻系统以及光刻处理单元
WO2012022584A1 (en) 2010-08-18 2012-02-23 Asml Netherlands B.V. Substrate for use in metrology, metrology method and device manufacturing method
DE102010041558A1 (de) * 2010-09-28 2012-03-29 Carl Zeiss Smt Gmbh Projektionsbelichtungsanlage für die Mikrolithographie sowie Verfahren zur mikrolithographischen Belichtung
CN102419213A (zh) * 2011-12-20 2012-04-18 四川大学 基于衍射光栅阵列的哈特曼波前传感器
US10801975B2 (en) 2012-05-08 2020-10-13 Kla-Tencor Corporation Metrology tool with combined X-ray and optical scatterometers
US10013518B2 (en) 2012-07-10 2018-07-03 Kla-Tencor Corporation Model building and analysis engine for combined X-ray and optical metrology
US9606442B2 (en) 2012-07-30 2017-03-28 Asml Netherlands B.V. Position measuring apparatus, position measuring method, lithographic apparatus and device manufacturing method
KR102355347B1 (ko) 2014-11-26 2022-01-24 에이에스엠엘 네델란즈 비.브이. 계측 방법, 컴퓨터 제품 및 시스템
WO2016096365A1 (en) * 2014-12-17 2016-06-23 Asml Netherlands B.V. Method and apparatus for using patterning device topography induced phase
NL2015812A (en) 2014-12-22 2016-09-22 Asml Netherlands Bv Level sensor, lithographic apparatus and device manufacturing method.
KR102010941B1 (ko) 2015-03-25 2019-08-14 에이에스엠엘 네델란즈 비.브이. 계측 방법, 계측 장치 및 디바이스 제조 방법
DE102015209051B4 (de) * 2015-05-18 2018-08-30 Carl Zeiss Smt Gmbh Projektionsobjektiv mit Wellenfrontmanipulator sowie Projektionsbelichtungsverfahren und Projektionsbelichtungsanlage
DE102015209490A1 (de) * 2015-05-22 2016-11-24 Carl Zeiss Smt Gmbh Interferometrische Messanordnung
JP6630369B2 (ja) 2015-06-17 2020-01-15 エーエスエムエル ネザーランズ ビー.ブイ. 相互レシピ整合性に基づくレシピ選択
WO2017055072A1 (en) * 2015-10-02 2017-04-06 Asml Netherlands B.V. Metrology method and apparatus, computer program and lithographic system
DE102015226571B4 (de) * 2015-12-22 2019-10-24 Carl Zeiss Smt Gmbh Vorrichtung und Verfahren zur Wellenfrontanalyse
CN113376975A (zh) 2015-12-23 2021-09-10 Asml荷兰有限公司 量测方法、量测设备、器件制造方法和计算机程序产品
CN105424325B (zh) * 2015-12-24 2018-03-20 中国科学院上海光学精密机械研究所 点衍射干涉波像差测量仪及光学系统波像差的检测方法
CN111263918B (zh) * 2017-05-31 2022-11-08 Asml荷兰有限公司 辐射源布置、检查设备、波前传感器、相关的方法以及非暂时性存储介质
EP3410211A1 (en) 2017-05-31 2018-12-05 Stichting VU Methods and apparatus for predicting performance of a measurement method, measurement method and apparatus
CN108955905B (zh) * 2018-03-23 2020-10-16 中国科学院上海光学精密机械研究所 基于改进型哈特曼掩模的波前传感器及检测方法

Also Published As

Publication number Publication date
EP3964809A1 (en) 2022-03-09
IL300808A (en) 2023-04-01
TW202217435A (zh) 2022-05-01
TWI794950B (zh) 2023-03-01
WO2022048899A1 (en) 2022-03-10
US20230341325A1 (en) 2023-10-26
CN116171374A (zh) 2023-05-26

Similar Documents

Publication Publication Date Title
US10670974B2 (en) Metrology apparatus for and a method of determining a characteristic of interest of a structure on a substrate
US10634490B2 (en) Determining edge roughness parameters
KR102507137B1 (ko) 검사 장치용 조명 소스, 검사 장치 및 검사 방법
US11353796B2 (en) Method and apparatus for determining a radiation beam intensity profile
US11129266B2 (en) Optical system, metrology apparatus and associated method
TWI840628B (zh) 用於量測基板之參數的設備和方法及包含所述設備之度量衡設備
US20240264081A1 (en) Metrology method for measuring an exposed pattern and associated metrology apparatus
EP3851915A1 (en) Method for correcting measurements in the manufacture of integrated circuits and associated apparatuses
TWI794950B (zh) 波前度量衡感測器及其光罩、用於最佳化光罩之方法及相關裝置
TW202401138A (zh) 用於過濾量測輻射之設備及方法
NL2024462A (en) An illumination source and associated metrology apparatus
TWI776421B (zh) 度量衡量測方法及裝置
TWI795975B (zh) 基於從繞射結構產生高階諧波之度量衡設備及度量衡方法
EP4242744A1 (en) Method for correcting measurements in the manufacture of integrated circuits and associated apparatuses
EP3869270A1 (en) Assemblies and methods for guiding radiation
TW202414074A (zh) 用於對準度量衡裝置之照明偵測系統之方法及相關聯度量衡裝置
TW202431024A (zh) 用於操作度量衡裝置之偵測系統的方法及相關度量衡裝置
KR20220057590A (ko) 조명 소스 및 관련 계측 장치
CN116134972A (zh) 照射源和相关联的量测设备
NL2021670A (en) Optical system, metrology apparatus and associated method