TW202319375A - 用於製備丙烯酸酯化合物之無鈀方法 - Google Patents

用於製備丙烯酸酯化合物之無鈀方法 Download PDF

Info

Publication number
TW202319375A
TW202319375A TW111130553A TW111130553A TW202319375A TW 202319375 A TW202319375 A TW 202319375A TW 111130553 A TW111130553 A TW 111130553A TW 111130553 A TW111130553 A TW 111130553A TW 202319375 A TW202319375 A TW 202319375A
Authority
TW
Taiwan
Prior art keywords
compound
reaction
solvent
salt
agent
Prior art date
Application number
TW111130553A
Other languages
English (en)
Inventor
阿德里安 歐提茲
宰卡 多福羅
卡瑞納 R 凡達
Original Assignee
美商安進公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 美商安進公司 filed Critical 美商安進公司
Publication of TW202319375A publication Critical patent/TW202319375A/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C319/00Preparation of thiols, sulfides, hydropolysulfides or polysulfides
    • C07C319/14Preparation of thiols, sulfides, hydropolysulfides or polysulfides of sulfides
    • C07C319/20Preparation of thiols, sulfides, hydropolysulfides or polysulfides of sulfides by reactions not involving the formation of sulfide groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C201/00Preparation of esters of nitric or nitrous acid or of compounds containing nitro or nitroso groups bound to a carbon skeleton
    • C07C201/06Preparation of nitro compounds
    • C07C201/12Preparation of nitro compounds by reactions not involving the formation of nitro groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C201/00Preparation of esters of nitric or nitrous acid or of compounds containing nitro or nitroso groups bound to a carbon skeleton
    • C07C201/06Preparation of nitro compounds
    • C07C201/14Preparation of nitro compounds by formation of nitro groups together with reactions not involving the formation of nitro groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C205/00Compounds containing nitro groups bound to a carbon skeleton
    • C07C205/49Compounds containing nitro groups bound to a carbon skeleton the carbon skeleton being further substituted by carboxyl groups
    • C07C205/57Compounds containing nitro groups bound to a carbon skeleton the carbon skeleton being further substituted by carboxyl groups having nitro groups and carboxyl groups bound to carbon atoms of six-membered aromatic rings of the carbon skeleton
    • C07C205/58Compounds containing nitro groups bound to a carbon skeleton the carbon skeleton being further substituted by carboxyl groups having nitro groups and carboxyl groups bound to carbon atoms of six-membered aromatic rings of the carbon skeleton the carbon skeleton being further substituted by halogen atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C319/00Preparation of thiols, sulfides, hydropolysulfides or polysulfides
    • C07C319/14Preparation of thiols, sulfides, hydropolysulfides or polysulfides of sulfides
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C323/00Thiols, sulfides, hydropolysulfides or polysulfides substituted by halogen, oxygen or nitrogen atoms, or by sulfur atoms not being part of thio groups
    • C07C323/50Thiols, sulfides, hydropolysulfides or polysulfides substituted by halogen, oxygen or nitrogen atoms, or by sulfur atoms not being part of thio groups containing thio groups and carboxyl groups bound to the same carbon skeleton
    • C07C323/62Thiols, sulfides, hydropolysulfides or polysulfides substituted by halogen, oxygen or nitrogen atoms, or by sulfur atoms not being part of thio groups containing thio groups and carboxyl groups bound to the same carbon skeleton having the sulfur atom of at least one of the thio groups bound to a carbon atom of a six-membered aromatic ring of the carbon skeleton
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C323/00Thiols, sulfides, hydropolysulfides or polysulfides substituted by halogen, oxygen or nitrogen atoms, or by sulfur atoms not being part of thio groups
    • C07C323/50Thiols, sulfides, hydropolysulfides or polysulfides substituted by halogen, oxygen or nitrogen atoms, or by sulfur atoms not being part of thio groups containing thio groups and carboxyl groups bound to the same carbon skeleton
    • C07C323/62Thiols, sulfides, hydropolysulfides or polysulfides substituted by halogen, oxygen or nitrogen atoms, or by sulfur atoms not being part of thio groups containing thio groups and carboxyl groups bound to the same carbon skeleton having the sulfur atom of at least one of the thio groups bound to a carbon atom of a six-membered aromatic ring of the carbon skeleton
    • C07C323/63Thiols, sulfides, hydropolysulfides or polysulfides substituted by halogen, oxygen or nitrogen atoms, or by sulfur atoms not being part of thio groups containing thio groups and carboxyl groups bound to the same carbon skeleton having the sulfur atom of at least one of the thio groups bound to a carbon atom of a six-membered aromatic ring of the carbon skeleton the carbon skeleton being further substituted by nitrogen atoms, not being part of nitro or nitroso groups
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P13/00Preparation of nitrogen-containing organic compounds
    • C12P13/001Amines; Imines

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Zoology (AREA)
  • Engineering & Computer Science (AREA)
  • Wood Science & Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Biotechnology (AREA)
  • Microbiology (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Catalysts (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • Contacts (AREA)

Abstract

本發明關於用於製備具有式 (1) 的化合物或其鹽之方法,該方法不含貴金屬(Pd/Pt/Rh/Ru)、較佳的是不含Pd:
Figure 111130553-A0101-11-0001-1
;其中:R 1、R 2和X如在說明書中所定義。較佳的是,該化合物係碘丙烯酸酯化合物。

Description

用於製備丙烯酸酯化合物之無鈀方法
本發明關於無鈀製備具有高立體異構物比率的丙烯酸酯化合物(包括碘丙烯酸酯化合物)的新型方法。
本申請關於用於製備具有式 (1) 的化合物或其鹽之方法,該方法不含貴金屬(包括Pd、Pt、Rh、或Ru)、較佳的是不含Pd:
Figure 02_image001
(1); 其中:R 1、R 2和X如下所定義。較佳的是,該化合物係碘丙烯酸酯化合物,包括(E)-3-(5-(苄硫基)-2-碘苯基)丙烯酸乙酯(化合物1a)。
在已知的路線中,化合物 (1) 係由起始材料化合物 (2) 製備的。具體地,化合物 (1a)(其係化合物 (1),其中R 1係乙基;R 2係苄基;並且X係I)係由起始材料苯胺丙烯酸酯化合物 (2a)(其係化合物2,其中R 1係乙基並且R 2係苄基)製備的:
Figure 02_image003
(2)                                                        (1) 化合物 (2a):R 1= 乙基並且             化合物 (1a):R 1= 乙基;R 2= 苄基;並且 R 2= 苄基                                            X = I
目前化合物 (2a) 的製備採用如下的背對背鈀 (Pd) 介導的交叉偶合反應:
Figure 02_image005
超過50%的商品製造成本(COGM)源自於Pd的使用。因此,儘管合成快速,但這種製備化合物 (2a) 之方法非常昂貴,約8,000美元/Kg。
此外,使用背對背Pd轉化會導致穩健性挑戰,如需要高Pd負載(6 mol%和5 mol%),以及下游去除Pd的困難。
為了降低成本並提高整體的製程穩健性,需要開發一種改進的新型合成技術來製備化合物 (2a),該化合物將用作製備化合物 (1a) 或其類似物的關鍵中間體化合物。
本發明之諸位發明人已經開發了一種新型合成路線,該合成路線消除了所有昂貴貴金屬(包括Pd)的使用,以解決該等成本和穩健性挑戰。在本發明之製備化合物 (2) 和 (2a) 的改進方法中,藉由用鐵這種廉價賤金屬還原硝基基團來製備胺基基團。本發明之諸位發明人已經進一步開發了一種可替代的新的用硝基還原酶生物催化硝基還原,其提高了化合物 (2a) 的產率。
本發明提供了一種不含貴金屬催化劑、較佳的是不含鈀金屬催化劑的、改進的、更安全的、具有成本效益並且易於在工廠規模上操作的用於合成丙烯酸酯化合物(包括鹵代丙烯酸酯化合物)之方法。
在實施方式1中,本發明提供了一種用於製備具有式 (1) 的化合物或其鹽之方法:
Figure 02_image001
(1);
其中:
X係鹵基、CN、CF 3、或OH;
R 1係(C 1-C 6)烷基;5員、6員、7員、8員、9員、或10員芳基或雜芳基;或3員、4員、5員、6員、7員、8員、9員、或10員環烷基或雜環烷基;
其中該雜芳基或雜環烷基可以具有從1至3個獨立地選自O、N或S的雜原子;
或者該環烷基或雜環烷基中的碳原子可以是C=O基團的一部分;
R 2選自(C 1-C 6)烷基或苄基;該方法包括:
(a) 使具有式 (2) 的化合物:
Figure 02_image007
(2);
其中所述R 1和R 2如以上在化合物 (1) 中所定義;與酸HA在溶劑-1中並且在亞硝酸鹽的存在下接觸;
(b) 視需要在溶劑-2的存在下引入鹵化劑(包括氟化劑、氯化劑、溴化劑或碘化劑)、氰化劑、三氟甲基化劑、或羥基化劑,以形成所述化合物 (1);其中溶劑-1和溶劑-2可以是相同或不同的;並且
其中所述化合物 (2) 係在不含鈀催化劑之方法中製備的。
在實施方式1的子實施方式中,在 (a) 中,所述酸HA係HCl、HBr、HI、p-TsOH、或H 2SO 4。較佳的是,酸HA係HCl。
在實施方式1的另外的子實施方式中,在 (a) 中,所述溶劑-1係水、THF、甲基THF、CH 3CN、或(C 1-C 6)烷基乙酸酯溶劑、或其混合物。較佳的是,所述溶劑-1係乙酸乙酯或乙酸異丙酯。
在實施方式1的另外的子實施方式中,在 (a) 中,所述亞硝酸鹽係NaNO 2
在實施方式1的另外的子實施方式中,在 (a) 中,所述低溫係 在-10°C至10°C之間;或在0°C至5°C之間。較佳的是,在0°C至5°C之間。
在實施方式1的另外的子實施方式中,在 (b) 中,所述鹵化劑係金屬鹵化物鹽;所述氰化劑係CuCN;所述三氟甲基化劑係CuCF 3;並且所述羥基化劑係Cu 2O/Cu(II)。較佳的是,在 (b) 中,使用鹵化劑,更較佳的是,所述鹵化劑係KI或CuI。
在實施方式1的另外的子實施方式中,在 (b) 中,所述溶劑-2係水、THF、甲基THF、CH 3CN、或(C 1-C 6)烷基乙酸酯溶劑、或其混合物。較佳的是,在 (b) 中,所述溶劑-2係(C 1-C 6)烷基;更較佳的是乙酸異丙酯。
在實施方式2中,本發明提供了根據實施方式1所述之方法,該方法進一步包括製備所述化合物 (2),包括:
(c1) 在極性溶劑中在酸式鹽HA 1的存在下使金屬活化;以及使具有式 (3) 的化合物:
Figure 02_image009
(3);
其中所述R 1和R 2如以上在化合物 (1) 中所定義;
與所述活化金屬在升高的溫度下在極性溶劑中接觸,以形成所述化合物 (2) 或其鹽;
或可替代地,該方法進一步包括製備所述化合物(2),包括:
(c2) 視需要在共溶劑的存在下,使所述具有式 (3) 的化合物與酶還原劑在水性緩衝液中並且在至少一種催化劑和輔因子的存在下反應,以形成所述具有式 (2) 的化合物或其鹽。
在實施方式3中,本發明提供了根據實施方式2所述之方法,該方法進一步包括製備所述化合物 (2),包括:
(c1) 在極性溶劑中在酸式鹽HA 1的存在下使金屬活化;以及使所述具有式 (3) 的化合物與所述活化金屬在升高的溫度下在極性溶劑中接觸,以形成所述化合物 (2) 或其鹽。
在實施方式4中,本發明提供了根據實施方式2所述之方法,該方法進一步包括製備化合物 (2),包括:
(c2) 在共溶劑的存在下,使所述具有式 (3) 的化合物與酶還原劑在水性緩衝液中並且在金屬催化劑、共催化劑和輔因子的存在下接觸,以形成所述具有式 (2) 的化合物或其鹽。
在實施方式2或3中任一個的子實施方式中,在 (c1) 中,所述金屬選自Fe o、Zn o、Pd o、Pt o、Ru o、或Rh o。較佳的是,所述金屬係Fe o
在實施方式2或3中任一個的另外的子實施方式中,在 (c1) 中,所述酸式鹽HA 1係氯化銨、乙酸或HCl。較佳的是,所述酸式鹽HA 1係氯化銨。
在實施方式2或3中任一個的另外的子實施方式中,在 (c1) 中,所述極性溶劑係水、(C 1-C 6)烷基醇、或其混合物。較佳的是,所述極性溶劑係水和乙醇混合物。
在實施方式2或3中任一個的另外的子實施方式中,在 (c1) 中,所述升高的溫度係在50°C至90°C之間;或75°C至80°C。較佳的是,所述溫度係75°C至80°C。
在實施方式2或4中任一個的另外的子實施方式中,在 (c2) 中,所述共溶劑選自DMSO、或水/DMSO混合物。較佳的是,共溶劑係20 vol%至30 vol% DMSO。更較佳的是,共溶劑係30 vol% DMSO。
在實施方式2或4中任一個的另外的子實施方式中,在 (c2) 中,所述緩衝液選自磷酸鹽、PIPES、TRICINE、BICINE、HEPES、TRIS、TES、CAPS、Kpi、或CHES。較佳的是,緩衝液係TRICINE。
在實施方式2或4中任一個的另外的子實施方式中,在 (c2) 中,所述酶還原劑係硝基還原酶(NR)酶。較佳的是,酶係NR-55。
在實施方式2或4中任一個的另外的子實施方式中,在 (c2) 中,所述催化劑係金屬催化劑和共催化劑;其中所述金屬催化劑係選自以下的釩催化劑:V 2O 5、NH 3VO 4、酞菁氧化釩(IV)、雙(2,4-戊二酮酸)氧化釩(IV)、硫酸氧釩水合物、氧化三乙氧基釩(V)、3% V/C、或2,4-戊二酮酸釩(III)。
在實施方式2或4中任一個的另外的子實施方式中,在 (c2) 中,所述催化劑係金屬催化劑和共催化劑;其中所述金屬催化劑係V 2O 5或NH 3VO 4,並且所述共催化劑係GDH-101和糖,並且其中所述輔因子係NADP+。較佳的是,糖係右旋糖或葡萄糖。
在實施方式2或4中任一個的另外的子實施方式中,在 (c2) 中,所述反應在pH 7或8之間進行。
在實施方式2或4中任一個的另外的子實施方式中,在 (c2) 中,將溶解在所述共溶劑中的所述具有式 (3) 的化合物在所述水性緩衝液中並且在金屬催化劑、共催化劑和輔因子的存在下緩慢地添加到酶還原劑中。較佳的是,所述金屬催化劑係釩金屬,更較佳的是V 2O 5或NH 3VO 4。較佳的是,所述共催化劑係GDH-101和糖。較佳的是,糖係右旋糖或葡萄糖。較佳的是,所述輔因子係NADP+。
在實施方式2或4中任一個的另外的子實施方式中,(c2) 中的產物係選自以下的鹽:選自HCl鹽或HBr鹽的鹵化物鹽,或選自甲磺酸鹽、甲苯磺酸鹽、或芳基磺酸鹽的磺酸鹽。較佳的是,該鹽係鹵化物鹽,更較佳的是HCl鹽。更較佳的 (c2) 的產物係
Figure 02_image011
在實施方式2或4中任一個的另外的子實施方式中,在 (c2) 中,更較佳的是,反應在升高的溫度下進行。較佳的是,溫度範圍從40°C至50°C。更較佳的是,在43°C至47°C之間。最較佳的是45°C。
在實施方式5中,本發明提供了根據實施方式2所述之方法,該方法進一步包括製備所述化合物 (3),包括:
(d) 使具有式 (4) 的化合物:
Figure 02_image013
(4);其中X 1係鹵基;並且所述R 1如以上在化合物 (3) 中所定義;
與硫醇劑在鹼的存在下、在有機溶劑中並且在升高的溫度下接觸;以形成所述化合物 (3) 或其鹽。
在實施方式5的子實施方式中,在 (d) 中,化合物 (4) 和 (5) 中每一個的所述X 1係氟或氯。較佳的是,X 1係氟。
在實施方式5的另外的子實施方式中,在 (d) 中,所述鹼係碳酸鹽或磷酸鹽。較佳的是,所述鹼係Cs 2CO 3或K 3PO 4
在實施方式5的另外的子實施方式中,在 (d) 中,所述有機溶劑選自DMF、DMAc、或NMP。
在實施方式5的另外的子實施方式中,在 (d) 中,所述升高的溫度係在50°C至85°C之間;或在65°C至80°C之間。較佳的是,所述溫度係70°C。
在實施方式5的另外的子實施方式中,在 (d) 中,所述硫醇劑係C 6H 5CH 2SH或(C 1-C 6)烷基-SH,如CH 3SH。較佳的是,所述硫醇劑係C 6H 5CH 2SH。
在實施方式5的另外的子實施方式中,在 (d) 中,所述反應在低水含量條件下進行並且不使用過量的硫醇劑,以避免在處理中產生任何硫。較佳的是,水含量濃度保持在1000 ppm以下。較佳的是,硫醇劑在0.90當量至1.1當量以內。在較佳的子實施方式中,在處理中沒有硫產生。
在實施方式6中,本發明提供了根據實施方式5所述之方法,該方法進一步包括製備所述化合物 (4) 或其鹽,包括:
(e) 使具有式 (5) 的化合物:
Figure 02_image015
(5);
其中X 1係如在化合物 (4) 中所定義的鹵基;與烯化劑在鹼的存在下、在有機溶劑中接觸,以形成所述化合物 (4) 或其鹽。
在實施方式6的子實施方式中,在 (e) 中,化合物 (4) 和 (5) 中每一個的所述X 1係F或Cl。
在實施方式6的另外的子實施方式中,在 (e) 中,所述烯化劑係維蒂希(Wittig)試劑(包括三苯基鏻葉立德或2-(二乙氧基磷醯基)乙酸乙酯)或霍納爾-沃茲沃思-埃蒙斯(Horner-Wadsworth-Emmons(HWE))試劑。較佳的是,烯化劑係維蒂希試劑。更較佳的是2-(二乙氧基磷醯基)乙酸乙酯。
在實施方式6的另外的子實施方式中,在 (e) 中,所述有機溶劑選自DIPEA、CH 3CN、TEA、N-甲基𠰌啉、或其混合物。較佳的是,溶劑係CH 3CN。
在實施方式6的另外的子實施方式中,在 (e) 中,所述鹵化物鹽選自LiCl或LiBr。較佳的是,鹵化物鹽係LiCl。
在實施方式7中,本發明提供了根據以上實施方式1、2、3、4、5或6中任一項、或其任何子實施方式所述之方法,其中化合物 (1) 中的X係碘。
在實施方式8中,本發明提供了根據以上實施方式1、2、3、4、5、6或7中任一項、或其任何子實施方式所述之方法,其中化合物 (1) 和 (2) 中每一個的X 1係氟或氯。
在實施方式9中,本發明提供了根據以上實施方式1、2、3、4、5、6、7或8中任一項、或其任何子實施方式所述之方法,其中化合物 (1)、(2)、(3) 和 (4) 中每一個的R 1係甲氧基或乙氧基。
在實施方式10中,本發明提供了根據以上實施方式1、2、3、4、5、6、7、8或9中任一項、或其任何子實施方式所述之方法,其中化合物 (1)、(2) 和 (3) 中每一個的R 2係苄基。
在實施方式11中,本發明提供了根據以上實施方式1、2、3、4、5、6、7、8或9中任一項、或其任何子實施方式所述之方法,其中所述化合物 (1) 藉由以下反應順序獲得:(e),(d),(c1),然後是 (a) 和 (b);或(e),(d),(c2),然後是 (a) 和 (b)。
可替代地,在子實施方式中,所述化合物 (1) 藉由以下反應順序獲得:(d),(e),(c1),然後是 (a) 和 (b);或(d),(e),(c2),然後是 (a) 和 (b)。
還可替代地,在另一個子實施方式中,所述化合物 (1) 過以下反應順序獲得:(d),(c1),(e),然後是 (a) 和 (b);或(d),(c2),(e),然後是 (a) 和 (b)。
在實施方式11中,本發明提供了一種化合物或其鹽,該化合物係:
Figure 02_image009
(3); 其中R 1係乙基;並且R 2係苄基;。
除非另有說明,否則說明書和申請專利範圍中使用的以下術語係出於本申請的目的而定義的,並且具有以下含義:
「烯化劑」意指將羰基基團轉化成烯烴基團的試劑。此種烯化劑的兩個實例係「霍納爾-沃茲沃思-埃蒙斯(HWE)」試劑和「維蒂希(Wittig)試劑」。例如,維蒂希反應使用正膦將α,β-不飽和酮轉化為共軛烯烴,如下所示:
Figure 02_image018
。 維蒂希反應產生了 Z烯烴。霍納爾-沃茲沃思-埃蒙斯(HWE)反應係維蒂希反應的變體,其得到的是 E烯烴。如熟悉該項技術者廣泛理解的, ZE烯烴係指烯烴基團中的兩個優先順序較高的基團的相對位置。如果優先順序較高的基團在烯烴基團的同一側,則烯烴被稱為 Z-烯烴(德語;zusammen = 一起)。如果優先順序較高的基團在烯烴基團的相反側,則烯烴被稱為 E-烯烴(德語;entgegen = 相反)。
「(C α-C β)烷基」意指具有一至六個碳原子的直鏈飽和單價烴基或具有三至六個碳原子的支鏈飽和單價烴基,例如甲基、乙基、丙基、2-丙基、丁基(包括所有異構物形式)、戊基(包括所有異構物形式)等。
「胺基」意指-NH 2
「(C α-C β)烷氧基」意指其中R係如上所定義的烷基的-OR基團,例如甲氧基、乙氧基、丙氧基、或2-丙氧基、正丁氧基、異丁氧基、或三級丁氧基等。
「(C α-C β)環烷基」意指具有三至十個碳原子、其中一個或兩個碳原子可以被側氧基替代的環狀飽和單價烴基,例如環丙基、環丁基、環戊基或環己基等。
「羧基」意指-COOH。
「GDH-101」意指葡萄糖脫氫酶(GDH)酶催化劑,其接受NAD+和NADP+輔因子兩者並且在高達50°C的溫度下具有活性。GDH催化D-葡萄糖氧化為D-葡萄糖酸內酯,同時又將NAD +或NADP +分別還原為NADH和NADPH。該反應的產物D-葡萄糖酸內酯自發地並且不可逆地在水中水解為葡萄糖酸,因此有利於形成還原的NADH和NADPH。GDH-101在Matthey.com.上可商購。
「鹵基」或「鹵素」意指氟、氯、溴或碘。
本發明還包括具有式 (1) 的化合物的受保護衍生物。例如,當具有式 (1) 的化合物含有基團如羥基、羧基、硫醇基或任何含有一個或多個氮原子的基團時,該等基團可以用合適的保護基團進行保護。合適的保護基團的全面清單可見於T.W.Greene, Protective Groups in Organic Synthesis [ 有機合成中的保護基團 ],John Wiley & Sons, Inc. [約翰威立父子公司](1999),其揭露內容藉由引用以其整體併入本文中。具有式 (1) 的化合物的受保護衍生物可以藉由本領域熟知之方法製備。
化合物的「鹽」意指藥學上可接受並且具有所希望的母體化合物的藥理活性的鹽。此類鹽包括:
用以下形成的酸加成鹽:無機酸,如鹽酸、氫溴酸、硫酸、硝酸、磷酸等;或有機酸,如甲酸、乙酸、丙酸、己酸、環戊烷丙酸、乙醇酸、丙酮酸、乳酸、丙二酸、琥珀酸、蘋果酸、馬來酸、富馬酸、酒石酸、檸檬酸、苯甲酸、3-(4-羥基苯甲醯基)苯甲酸、肉桂酸、苦杏仁酸、甲磺酸、乙磺酸、1,2-乙二磺酸、2-羥基乙磺酸、苯磺酸、4-氯苯磺酸、2-萘磺酸、4-甲苯磺酸、樟腦磺酸、葡庚糖酸、4,4'-亞甲基雙-(3-羥基-2-烯-1-羧酸)、3-苯基丙酸、三甲基乙酸、三級丁基乙酸、月桂基硫酸、葡萄糖酸、麩胺酸、羥基萘甲酸、水楊酸、硬脂酸、黏康酸等;或者當母體化合物中存在的酸性質子被金屬離子(例如,鹼金屬離子、鹼土金屬離子或鋁離子)替代時形成的鹽;或與有機鹼(如乙醇胺、二乙醇胺、三乙醇胺、胺丁三醇、N-甲基葡糖胺等)配位形成的鹽。應當理解,藥學上可接受的鹽係無毒的。有關合適的藥學上可接受的鹽的另外的資訊可見於 Remington’s Pharmaceutical Sciences [ 雷明頓藥物科學 ], 第17版, Mack Publishing Company [馬克出版公司], 伊斯頓, 賓夕法尼亞州, 1985,將其藉由援引併入本文中。
「側氧基」或「羰基」意指=(O)基團。
「視需要的」或「視需要」意指隨後描述的事件或情況可能發生但不一定發生,並且該描述包括其中該事件或情況發生的情形以及其中其不發生的情形。例如,「視需要被烷基取代的雜環基」意指烷基可以存在但不一定存在,並且該描述包括其中雜環基被烷基取代的情況和其中雜環基未被烷基取代的情況。
「貴金屬催化劑」意指因其加速化學過程的能力而在化學工業中廣泛使用的貴金屬。金(Au)、鈀(Pd)、鉑(Pt)、銠(Rh)、釕(Ru)和銀(Au)係貴金屬的一些實例。
通用實驗程序:
本發明之方法可以根據以下方法A或方法B進行:其中R 1;R 2;X;和X 1中的每一個如以上所定義:
Figure 02_image020
Figure 02_image022
Figure 02_image024
Figure 02_image026
Figure 02_image028
Figure 02_image030
  
以上方法A和B包括:步驟 (e):霍納爾-沃茲沃思-埃蒙斯(HWE);步驟 (d):芳基取代(S NAr);步驟 (c1):金屬介導的硝基還原或 (c2):酶介導的硝基還原;以及步驟 (a) + (b):鹵化。
熟悉該項技術者將理解以上本發明之方法A和方法B可以以多種順序進行並且不限於以上通用程序中所描述的步驟順序。本發明之諸位發明人設想本發明之反應步驟的順序可以變化。例如,熟悉該項技術者應理解以上方法A和B可以如下進行:步驟 (d):S NAr步驟;步驟 (e):HWE步驟;步驟 (c1) 或 (c2):金屬介導的硝基還原或酶介導的硝基還原;並且然後是步驟 (a) + (b):鹵化,以形成化合物 (1)。
可替代地,熟悉該項技術者應理解以上方法A和B可以如下進行:步驟 (d):S NAr;步驟 (c1) 或 (c2):金屬介導的硝基還原或酶介導的硝基還原;步驟 (e):HWE;並且然後是步驟 (a) + (b):鹵化,以形成化合物 (1)。
步驟 (e) HWE:HWE步驟 (e) 係快速步驟並且可以在小於1 h內完成。該步驟也是典型地產生高產率的化合物 (4) 產物的乾淨步驟。
步驟 (d) S NAr :水含量、Cs 2CO 3的電荷以及Bn-SH的電荷係S NAr步驟中非常關鍵的參數。需要高溫和長反應時間(10 h至12 h)來驅動觀察到的中間體化合物和觀察到的雙加成雜質化合物形成化合物 (3) 產物。中間體化合物和雙加成雜質化合物兩者都可以藉由結晶容易地清除。
Figure 02_image032
(4)
Figure 02_image034
觀察到的中間體化合物
Figure 02_image036
觀察到的雙加成雜質
Figure 02_image038
(3)
步驟 (c1):Fe 0係製備化合物 (2) 的金屬介導的硝基還原步驟中較佳的是使用的金屬。它係危險材料,並且活化係高度放熱的。因此,較佳的是在將化合物 (3) 添加至反應混合物之前進行鐵活化步驟。
步驟 (a) + (b):在鹵化步驟中,硫代硫酸鹽淬滅導致產生元素硫 (S8),其污染了分離的化合物 (1),如下所示:
Figure 02_image040
觀察到硫的存在在鹵化步驟的不同批次中有所不同。本發明之發明人發現,用亞硫酸氫鈉(NaHSO 3)或抗壞血酸代替硫代硫酸鈉(Na 2S 2O 3)消除了硫生成並且重新建立了C-N鍵形成的可重複性和快速動力學。
本發明之諸位發明人發現藉由控制反應溫度(不高於5°C)、控制反應惰性並使用以上定義的溶劑/AQ混合物(THF,CH 3CN,EtOAc,iPAc)來抑制關鍵的過程雜質的策略。藉由使用該等參數,以下關鍵的過程雜質被最小化並且易於在分離時清除。關鍵雜質和副產物列表於表1中。
[表1]:步驟 (c1) 中的雜質和副產物:
Figure 02_image042
Figure 02_image044
   脫胺基雜質 亞碸雜質 元素硫
起因 重氮的H+還原 硫化物的[O] 使用硫代硫酸鹽的I 2淬滅
控制策略 溫度,0°C至5°C 溫度,0°C至5°C 不使用硫代硫酸鹽
過程中 2-6 AP 0-10 AP NA
分離的固體 0-0.2 AP 0-0.2 AP 0-0.78 AP
清除% 85%-92% > 90% NA
臨界性(產率/品質) 低(產率) 低(產率) 高(品質)
步驟 (c2) :生物催化硝基還原步驟:本發明之生物催化硝基還原步驟的反應機理通常如下所描繪:
Figure 02_image046
釩金屬催化劑和反應時間
本發明之發明人發現,在不存在釩金屬催化劑的情況下,形成了更多具有如下結構的羥胺(HA)副產物( m/z= 329):
Figure 02_image048
,如藉由反應混合物的LCMS和NMR譜所證實的。表2列出了在2 mg/mL的酶負載速率下,在有和沒有金屬釩催化劑添加劑的情況下,採用各種酶催化劑以形成化合物 (2a) 所進行的19種反應條件。
條目#1-10的反應方案:將從莊信萬豐公司(Johnson Mattey)的硝基還原酶套組(kit)獲得的各種硝基還原酶(NR)酶(包括NR-55(5 mg))稱重到2 ml Eppendorf管中。製備緩衝液儲備溶液:將KPi(250 mM,pH 7)、葡萄糖(100 mM)、NADP+(1 mM))、GDH(1 mg mL-1)與50 µL底物儲備溶液(25 mM/次反應)和50 µL儲備V 2O 5(2 mM/次反應)添加到每一種酶(400 µL)中。將反應物在35°C、350 rpm下攪拌過夜。
條目#11-14的反應方案:將NR-55(10 mg)、葡萄糖(90 mg)、GDH-101(5 mg)、NADP+(3.7 mg)稱重到配備有攪拌棒(費希爾公司(Fisher),PTFE,圓柱形,10 x 6 mm)的Radleys carousel管中。將4.0 ml磷酸鹽緩衝液(pH 7,250 mM)和含有46 mg的化合物 (3a) 和500 µl儲備V 2O 5(2 mM最終濃度)的1 ml DMSO(20 vol%)添加到管中。將反應物在Radleys carousel中以1000 rpm攪拌,加熱至45°C並且在5 h後(條目#11-12)和在24 h後(條目#13-14)取樣。
條目#15-18的反應方案:將NR-55(10 mg)、葡萄糖(180 mg)、GDH-101(5 mg)、NADP+(3.7 mg)稱重到配備有攪拌棒(費希爾公司(Fisher),PTFE,圓柱形,10 x 6 mm)的Radleys carousel管中。將4.0 ml磷酸鹽緩衝液(pH 7,250 mM)和含有92 mg的化合物 (3a) 和500 µl儲備V 2O 5(2 mM最終濃度)的1 ml DMSO(20 vol%或30 vol%)添加到管中。將反應物在Radleys carousel中以1000 rpm下攪拌,加熱至45°C並且在5 h後(條目#15-18)和在24 h後(條目#15A-18A)取樣。
[表2]:測試步驟 (c2) 中釩金屬催化劑的各種反應條件:
編號 酶催化劑 金屬催化劑 DMSO Vol% [(3a)] mM (3a) % (2a) % 其他( % HA %
1 NR-4 V 2O 5 10 25 54 36 10 0
2 NR-5 V 2O 5 10 25 57 34 9 0
3 NR-14 V 2O 5 10 25 54 41 5 0
4 NR-17 V 2O 5 10 25 71 28 1 0
5 NR-55 V 2O 5 10 25 57 34 9 0
6 NR-4 10 25 30 15 2 53
7 NR-5 10 25 32 14 3 51
8 NR-14 10 25 50 12 0 38
9 NR-17 10 25 44 19 0 37
10 NR-55 10 25 30 12 3 55
11 NR-55 V 2O 5 20 25 12 39 13 37
12 NR-55 30 25 5 7 6 82
13 NR-55 V 2O 5 40 25 4 59 36 1
14 NR-55 50 25 5 35 60 0
15 NR-55 20 50 11 10 2 77
16 NR-55 30 50 3 8 8 81
17 NR-55 V 2O 5 20 50 7 27 18 48
18 NR-55 V 2O 5 30 50 3 29 17 51
15A NR-55 添加了V 2O 5 20 50 9 53 38 0
16A NR-55 添加了V 2O 5 30 50 5 50 45 0
17A NR-55 V 2O 5 20 50 16 41 42 1
18A NR-55 V 2O 5 30 50 4 49 46 1
19 NR-55 NH 4VO 3 30 100 17 66 15 1
HA = 羥胺副產物;[(3a)] = 化合物 (3a) 濃度。
開發了改進的HPLC方法,並且使用此方法分析了隨後的反應。在有和沒有V 2O 5的情況下測試NR-5,並在不同時間點對其進行分析以檢查該方法是否適用於檢測短期存在的反應中間體。在1 h、5 h和72 h時對反應物進行取樣。
1 h後,有釩的反應未顯示任何另外的峰,而在沒有釩的情況下,在3.98 min處出現新的峰(羥胺)。5 h後,在存在和不存在釩的情況下都觀察到了新的峰。觀察到少量的反應中間體化合物。有趣的是,在72 h後,兩種反應都顯示出向苯胺化合物 (2a) 的轉化率增大,在3.99 min處的峰(羥胺)降低。3.99 min處的峰係羥胺並且5.06 min處的峰係亞硝基化合物。LCMS似乎給出了328和330的m/z,對應於亞硝基和羥胺。隨後,在8.18 min處的洗脫峰給出了m/z = 661 = [M+Na]+,其對應於偶氮氧基副產物的質量。
本發明之諸位發明人在有和沒有釩催化劑的情況下以5 mL規模和2 mg/mL負載速率進一步測試了NR-55酶(參見條目# 11-14)並發現如之前所觀察到的,釩影響最初的產物分佈。最值得注意的是,在5 h後,在沒有V 2O 5的情況下,存在大量羥胺(82%)的積累並且僅有7%的苯胺,而在有釩的情況下,有37%的羥胺和39%的苯胺形成(參見條目# 11-12)。
在24 h後,在有釩和沒有釩的情況下,剩餘的羥胺的量都可忽略不計,這證實了正在發生羥胺向苯胺和硝基中間體的自發轉化(又稱歧化或DP)。
然而,發現在沒有釩的反應中形成的其他副產物(確定為偶氮氧基化合物)的量要高得多,為42%。在較低的催化劑負載量下,釩的作用更為明顯。據信,這係由歧化和亞硝基還原兩者的速率都降低引起的,並且該等中間體的積累結合在一起形成偶氮氧基化合物。
本發明之諸位發明人在有和沒有釩催化劑的情況下藉由將底物濃度加倍至50 mM(18 g/L)的規模同時保持2 mg/mL的負載速率進一步測試了NR-55酶(參見條目# 15-18)。在此較高底物濃度下,測試了20體積%和30體積%的DMSO兩者以進行比較。
5 h後,發現在沒有釩的情況下(參見條目編號15和16),分別形成了77%和81%的羥胺。含有釩的反應給出了較低量的羥胺,但仍係相當大的48%至51%的量。這與之前在25 mM的較低底物濃度下進行的反應相比高出了約10%。 在有釩的情況下,在5 h後形成的苯胺化合物 (2a) 增加了約20%(參見條目17和18)。發現釩的量太低以至於歧化不能有效。
在24 h後,再次對反應條目編號17和18進行取樣(參見條目編號17A和18A),並且將2 mM釩添加到反應條目編號15和16中,以瞭解歧化多快發生(參見條目編號15A和16A)。
本發明之諸位發明人出乎意料地發現,在24 h後,在5 h時向條目編號15A和16A添加釩後,條目編號15A、16A、17A和18A相當具有可比性,即獲得了41%至53%的苯胺 (2a)。HPLC揭示了偶氮氧基化合物以26%至35%的濃度存在。
發現較高的底物濃度在24 h後產生了向偶氮氧基化合物的約10%的更高的轉化率並且在24 h後仍有硝基起始材料化合物 (3a) 剩餘。羥胺化合物的積累越高,到反應結束時似乎獲得了更多的偶氮氧基化合物。HPLC顯示出了添加釩的顯著效果。大部分羥胺化合物被轉化為苯胺 (2a) 和亞硝基,其然後與羥胺反應形成偶氮氧基化合物。在添加釩30 min後收集第二個HPLC跡線。
藉由測試100 mM底物濃度(37 g/L)(其等於5 mL中184 mg)來加強反應。藉由注射泵以1.5 mL/h的速率添加起始材料(參見條目#19)。使用較大的攪拌棒,因為較小的攪拌棒在此濃度下不能很好地攪拌。然而,這會導致在反應結束時黏性膠在攪拌棒上的積累。4 h後,已經產生了63%的苯胺 (3a) 並且出乎意料地,沒有羥胺形成。24 h後,形成了66%的苯胺 (3a) 和7%的偶氮氧基,但剩餘了17%的硝基起始材料 (2a)。雖然反應在此較高底物濃度下進行,但需要考慮反應容器、攪拌棒的類型以及傳質以避免黏性膠在攪拌棒上的積累。
pH 對反應條件的影響:
本發明之諸位發明人已經在pH 7和8下測試了本發明之還原反應。進一步測試了pH 6以瞭解pH可能對偶氮氧基形成具有的任何影響。
反應方案:  將NR-55(10 mg)、葡萄糖(90 mg)、GDH-101(5 mg)、NADP +(3.7 mg)和V 2O 5(0.1當量)稱重到配備有攪拌棒(費希爾公司,PTFE,圓柱形,10 x 6 mm)的Radleys carousel管中。將4.0 mL磷酸鹽緩衝液(pH 6,250 mM)和含有46 mg化合物 (3a) 的1 mL(20%)DMSO添加到管中。將反應物在Radleys carousel中以1000 rpm攪拌,加熱至45°C並且在24 h後取樣。各種pH下的各種反應條件列於表3中:
[表3]:測試步驟 (c2) 中最佳pH的各種反應條件:
編號 pH 時間 (3a) % (2a) % 偶氮氧基( % 其他( % HA %
1 6 1 h 4 27 14 7 48
2 6 3 h 10 43 27 8 12
3 6 24 h 7 45 33 15 0
在pH 6下,發現在24 h的反應時間後僅形成25 mM(33%)的非常高水平的偶氮氧基。因此pH 7和8係較佳的。
注射泵添加:
避免反應中間體的積累似乎係減少偶氮氧基形成量的關鍵。避免積累的一種方式係以分批給料法添加起始材料。
將化合物 (3a) 底物溶解在DMSO中並在1 h內以1 mL/h的流速藉由注射泵添加。使用50 mM底物濃度,2 mg/mL催化劑負載量,20 vol% DMSO和NH 4VO 3(0.1當量),因為此種釩鹽展現出較好的溶解度和稍微較好的轉化率。在1 h結束時,在底物添加完成後取樣,並且本發明之諸位發明人發現沒有反應中間體的積累。另外一小時後,實現了向苯胺化合物 (2a) 的80%轉化率並且在HPLC上僅觀察到8%的偶氮氧基。分批給料法和更可溶的釩源對反應成果顯示出積極影響。
測試了藉由注射泵以0.25 mL/h的較慢流速的底物添加,並且在2 h的反應時間後,已經添加了一半的底物,並且反應物看著相當乾淨,主要是化合物 (3a)(58%)和苯胺化合物 (2) (39%)以及非常少量的反應中間體。然而,添加剩餘的底物之後,並且在24 h後,反應還沒有完全轉化。可能存在NR或GDH試劑的穩定性問題,或許酶中的一種在此時間後在45°C下在20% DMSO中失活。較高速率的添加係較佳的。
金屬催化劑:量和其他金屬測試:
用鐵和銅代替釩金屬作為催化劑進行了測試。然而,發現釩係較佳的催化劑。在以下反應方案下對釩和金進行了進一步的測試:將NR-55(10 mg)、葡萄糖(90 mg)、GDH-101(5 mg)、NADP +(3.7 mg)和V/Au(0.5當量)稱重到配備有攪拌棒(費希爾公司,PTFE,圓柱形,10 x 6 mm)的Radleys carousel管中。將4.0 mL磷酸鹽緩衝液(pH 6,250 mM)和含有46 mg化合物 (3a) 的1 mL(20%)DMSO添加到管中。將反應物在Radleys carousel中以1000 rpm攪拌,加熱至45°C並且在30 min後取樣。
[表4]:測試步驟 (c2) 中各種金屬催化劑的各種反應條件:
編號 金屬催化劑 (3a) % (2a) % 偶氮氧基( % 其他( % HA %
1 酞菁氧化釩(IV) 4 17 7 3 69
2 雙(2,4-戊二酮酸)氧化釩(IV) 17 38 15 6 23
3 硫酸氧釩水合物 14 18 4 1 63
4 氧化三乙氧基釩(V) 17 27 7 3 46
5 3% V(取消) 9 25 13 7 46
6 氯化金(III) 100 0 0 0 0
7 2,4-戊二酮酸釩(III) 7 61 17 9 6
30 min後,2,4-戊二酮酸釩(III)顯示出向苯胺 (2a)(61%)和僅6%羥胺化合物的良好轉化(參見表4,條目7)。發現氯化金(III)在以上方案下完全抑制了反應,甚至沒有顯示出任何反應中間體的痕跡(條目6)。
使反應持續進行並且在5 h和24 h後再次取樣。結果示出於下表5和6: [表5]:5 h後釩(和金)篩選的結果。
編號 金屬催化劑 (3a) % (2a) % 偶氮氧基( % 其他( % HA %
1 酞菁氧化釩(IV) 4 27 15 6 48
2 雙(2,4-戊二酮酸)氧化釩(IV) 5 53 21 19 0
3 硫酸氧釩水合物 4 42 11 7 36
4 氧化三乙氧基釩(V) 6 64 18 9 3
5 3% V(取消) 6 43 27 19 5
6 氯化金(III) 100 0 0 0 0
7 2,4-戊二酮酸釩(III) 5 64 18 13 1
5 h後,2,4-戊二酮酸釩(III)給出了向苯胺化合物 (2a) 的66%的轉化率(條目7)。5 h後,氧化三乙氧基釩的結果似乎與乙醯丙酮釩(III)係可比的。使用乙醯丙酮釩(IV)(條目2)和碳載釩(條目5)存在顯著的(19%)亞硝基中間體的積累。 [表6]:24 h後釩(和金)篩選的結果。
編號 金屬催化劑 (3a) % (2a) % 偶氮氧基( % 其他( % HA %
1 酞菁氧化釩(IV) 5 40 7 18 2
2 雙(2,4-戊二酮酸)氧化釩(IV) 6 55 15 18 0
3 硫酸氧釩水合物 4 59 4 15 1
4 氧化三乙氧基釩(V) 5 68 7 9 2
5 3% V(取消) 7 43 13 16 1
6 氯化金(III) 99 0 0 1 0
7 2,4-戊二酮酸釩(III) 2 66 17 13 1
24 h後,戊二酮酸釩(III)和氧化三乙氧基釩(V)顯示出向苯胺化合物 (2a) 的最高轉化率。
本發明之諸位發明人將釩金屬催化劑的量從0.1當量增大至1.0當量,以瞭解金屬催化劑的量是否會影響歧化速率。此外,對可替代性釩源NH 3VO 4進行了測試。發現與V 2O 5相比,NH 3VO 4具有較高的溶解度。
反應方案:  將NR-55(10 mg)、葡萄糖(90 mg)、GDH-101(5 mg)、NADP+(3.7 mg)和V 2O 5(0.1至1.0當量)或NH 3VO 4(0.1至1.0當量)稱重到配備有攪拌棒(費希爾公司,PTFE,圓柱形,10 x 6 mm)的Radleys carousel管中。將4.0 ml磷酸鹽緩衝液(pH 7,250 mM)和含有46 mg的化合物 (3a) 的1 ml DMSO(20 vol%)添加到管中。將反應物在Radleys carousel中以1000 rpm攪拌,加熱至45°C並且在24 h後取樣。
[表7]:測試步驟 (c2) 中V 2O 5和NH 3VO 4催化劑的最優量的各種反應條件:
編號 金屬 催化劑 金屬催化劑 量(當量) (3a) % (2a) % 偶氮氧基( % 其他( % HA %
1 V 2O 5 0.1 2 63 22 10 3
2 V 2O 5 0.2 2 66 21 9 2
3 V 2O 5 0.5 2 68 20 9 1
4 V 2O 5 1 3 73 20 4 0
5 NH 3VO 4 0.1 2 63 21 11 3
6 NH 3VO 4 0.2 6 66 16 9 3
7 NH 3VO 4 0.5 3 71 15 9 2
8 NH 3VO 4 1 2 75 15 5 3
酶催化劑:硝基還原酶( NR )和共溶劑
本發明之發明人發現,在先前的實驗中,將10 vol% DMSO用作共溶劑,然而,當將儲備溶液添加到水性反應條件時,溶液變渾濁,這表明起始材料不太溶於DMSO中。在該等實驗中,在作為共溶劑的10%甲苯中,測試了採用10% DMSO藉由HPLC產生 > 40%轉化率的酶。在反應的最初階段,有清楚的雙相系統並且水層係透明的。一小時後,水層變得較渾濁,並且在震盪過夜後,溶液完全渾濁。
反應方案:  將NR(5 mg)稱重到2 ml Eppendorf管中。製備緩衝液儲備溶液:  將KPi(250 mM,pH 7)、葡萄糖(100 mM)、NADP+(1 mM)、GDH(1 mg ml -1)與50 µl在甲苯中的底物儲備溶液(25 mM/次反應)和50 µl儲備V 2O 5(2 mM/次反應)添加到每一種酶(400 µl)中。將反應物在35°C下攪拌24 h。將反應物用1 ml MeCN稀釋,渦旋並且離心並將1 ml等分試樣除去並藉由HPLC分析。轉化率基於254 nm處的未校正的LCAP。用各種硝基還原酶催化劑進行17個反應條件以形成化合物 (2a)。起始材料的溶解度和傳質似乎限制了反應。
在以上反應條件下,本發明之諸位發明人發現其他硝基還原酶產生了向苯胺化合物 (2a) 的至少或高於30%的轉化率。
45°C 的較高反應溫度下的共溶劑篩選:
增大溶解度的一種方式係使反應在較高的溫度下進行。NR-55係源自嗜熱生物體的套組酶。典型地,該等酶可以忍受較高的溫度並且對較高體積的共溶劑更具抵抗力。 在DMSO和甲苯(10-30 vol%)中、pH 7下並且在45°C的較高溫度下測試NR-55。該反應使用Radley的Carousel以5 ml規模進行,使用1000 rpm的高攪拌速度以説明混合。
反應方案:  將NR-55(50 mg)、葡萄糖(90 mg)、GDH-101(5 mg)、NADP+(3.7 mg)稱重到6個配備有攪拌棒(費希爾公司,PTFE,圓柱形,10 x 6 mm)的Radleys carousel管中。對於10 vol%共溶劑,將4.5 ml磷酸鹽緩衝液(pH 7,250 mM)以及含有46 mg 的化合物 (3a) 和500 µl V 2O 5(2 mM最終濃度)的0.5 ml DMSO添加到管中。將反應混合物在Radleys carousel中以1000 rpm攪拌,並加熱至45°C持續24 h。然後將混合物用5 ml乙腈稀釋、攪拌並離心,並且藉由HPLC進行分析。對於20和30 vol%,相應地調整了體積。
表8列出了在45°C下測試甲苯和DMSO作為共溶劑以形成化合物 (2a) 而進行的6種反應條件:
[表8]:45°C反應溫度下的甲苯和DMSO共溶劑測試結果。
編號 共溶劑 體積 % (3a) % (2a) % 偶氮氧基( % 其他( %
1 甲苯 10 96 4 0 0
2 甲苯 20 93 6 1 0
3 甲苯 30 92 7 0 0
4 DMSO 10 17 68 6 9
5 DMSO 20 0 82 5 13
6 DMSO 30 0 84 6 10
發現在甲苯作為共溶劑的情況下,NR-55產生了向希望的苯胺 (2a) 的非常低的轉化率(表8,條目1-3)。在20至30 vol% DMSO的情況下,硝基化合物 (3a) 被完全消耗並且觀察到了高水平的苯胺 (2a) 形成(82%-84%,藉由254 nm的LCAP,表8,條目5和6)。當僅使用10 vol% DMSO時,仍有17%的起始材料剩餘,這表明底物溶解度在反應中發揮著重要作用。該等轉化率同樣比目前看到的那些高得多,這表明較高體積的共溶劑、更高效的攪拌和更高的溫度的組合可以有益於反應。將反應條目編號5用EtOAc(10 ml x 2)進一步萃取、經無水MgSO 4乾燥、過濾並且在真空中濃縮,並且藉由HPLC和NMR再分析以確保反應取樣代表反應混合物。
鑒於成功使用20%至30%體積的DMSO,本發明之諸位發明人在減少的催化劑負載量(1000 rpm)和在pH 7和8下並保持45°C的反應溫度平行測試了NR-55和NR-5。在5小時後對反應進行取樣,並且在24 h後再次取樣。
反應方案:將NR-5或NR-55(10-50 mg)、葡萄糖(90 mg)、GDH-101(5 mg)和NADP+(3.7 mg)稱重到12個配備有攪拌棒(費希爾公司,PTFE,圓柱形,10 x 6 mm)的Radleys carousel管中。將4 ml磷酸鹽緩衝液(pH 7或8,250 mM)以及含有46 mg的化合物 (3a) 和500 µl V 2O 5(2 mM最終濃度)的1 ml DMSO添加到管中。將反應物在Radleys carousel中以1000 rpm攪拌,加熱至45°C持續5 h和24 h。取反應樣本A 100 µl等分試樣反應樣本,添加500 µl MeCN,旋渦,離心並藉由HPLC進行分析。發現了一些硝基化合物 (3a) 剩餘,但是其係肩峰。
5 h後,與NR-5相比,NR-55似乎消耗起始化合物 (3a),較佳的是以2 mg/mL的底物負載速率。
在以下反應方案下進一步測試了35°C的更低的溫度:將NR-55(10 mg)、葡萄糖(90 mg)、GDH-101(5 mg)、NADP +(3.7 mg)和NH 4VO 3(1當量)稱重到配備有攪拌棒(費希爾公司,PTFE,圓柱形,10 x 6 mm)的Radleys carousel管中。藉由注射泵添加以1.5 mL/h的速率將3.5 mL磷酸鹽緩衝液(pH 7,250 mM)和含有46 mg化合物 (3a) 的1.5 mL(20%)DMSO添加到管中。將反應物在Radleys carousel中以1000 rpm下攪拌,加熱至45°C並且在1、2、4和24 h後取樣。
發現反應在35°C的反應溫度下進行。在24 h反應結束時發現有6%化合物 (3a) 剩餘並且發現了15%的偶氮氧基。
緩衝液測試:
該反應先前僅在磷酸鹽緩衝液中進行,磷酸鹽緩衝液係最常見的緩衝液之一並且擴大規模時其係經濟的。進行了緩衝液篩選以查明是否有任何可替代方案給出更好的反應特徵。使用25 mM的底物濃度和各種pH條件,在100 mM濃度下平行篩選10種緩衝液。
反應方案:將NR-55(10 mg)、葡萄糖(96 mg)、GDH-101(5 mg)、NADP +(3.7 mg)和NH 4VO 3(15 mg,1當量)稱重到配備有攪拌棒的Radleys carousel管中。將3.5 mL緩衝液(pH 5-10,100 mM)和含有46 mg化合物 (3a) 的1.5 mL(30%)DMSO。將反應物加熱至45°C並且在2 h和24 h後取樣。
在2 h和24 h後取反應樣本。結果示出於下表9和10中: [表9]:2 h後步驟 (c2) 中緩衝液篩選的結果。
編號 緩衝液 (3a) % (2a) % HA % 亞硝基 偶氮氧基( % 其他( %
1 乙酸鹽 pH 5 95 4 0 0 1 0
2 PIPES pH 6 55 35 0 0 8 2
3 Bicine pH 8 9 72 1 0 13 6
4 TES pH 8 7 69 0 4 14 6
5 HEPES pH 8 7 69 0 4 14 6
6 Tricine pH 8 10 78 0 0 9 3
7 Tris pH 8 16 68 0 3 8 5
8 CHES pH 8 5 73 0 4 10 8
9 CAPS pH 10 15 67 0 4 7 7
10 KPi pH 7 10 53 1 6 16 14
[表10]:24 h後步驟 (c2) 中緩衝液篩選的結果。
編號 緩衝液 (3a) % (2a) % HA % 亞硝基 偶氮氧基( % 其他( %
1 乙酸鹽 pH 5 97 1 0 0 1 1
2 PIPES pH 6 44 31 0 0 8 17
3 Bicine pH 8 6 74 2 0 10 8
4 TES pH 8 2 69 1 1 15 12
5 HEPES pH 8 3 77 1 1 10 8
6 Tricine pH 8 4 89 0 0 8 0
7 Tris pH 8 2 74 2 0 12 10
8 CHES pH 8 3 77 2 0 11 7
9 CAPS pH 10 16 67 2 0 7 8
10 KPi pH 7 10 59 2 0 19 10
本發明之諸位發明人發現,24 h後,TRICINE緩衝液產生了89%的化合物 (2a) 產物、8%的偶氮氧基和僅4%的起始材料 (3a)(表10,條目6)。乙酸鹽和PIPES緩衝液產生了向化合物 (2a) 的最低的轉化率(條目1和2)。BICINE、HEPES、TRIS和CHES也表現良好,在24 h後向化合物 (2a) 的轉化率高於70%。
以下是在本發明之反應中所使用的緩衝液的化學結構:
Figure 02_image050
Figure 02_image052
Figure 02_image054
Figure 02_image056
PIPES BICINE TES TRIS
Figure 02_image058
Figure 02_image060
Figure 02_image062
Figure 02_image064
HEPES TRICINE CHES CAPS
本發明之諸位發明人在TRICINE緩衝液(100 mM)中進行反應,並且分批給料添加起始材料化合物 (3a)。在此反應中未使用pH控制來查明pH隨著反應的進行下降了多少以及它可能具有的影響。
反應方案:將NR-55(10 mg)、葡萄糖(386 mg)、GDH-101(5 mg)、NADP +(3.7 mg)和NH 4VO 3(1當量)稱重到配備有攪拌棒的Radleys carousel管中。藉由注射泵添加以1.5 mL/h的速率將3.5 mL TRICINE緩衝液(pH 8,100 mM)和含有184 mg化合物 (3a) 的1.5 mL(30%)DMSO添加到管中。將反應物在500 rpm下攪拌、加熱至45°C並在2、4和24 h後取樣。
[表11]:測試步驟 (c2) 中V 2O 5和NH 3VO 4催化劑的最優量的各種反應條件:
編號 緩衝液 (3a) % (2a) % HA % 亞硝基 偶氮氧基( % 其他( %
1 Tricine-2 h 40 59 0 0 1 0
2 Tricine-4 h 5 91 0 3 2 0
3 Tricine-24 h 11 85 0 0 2 2
發現100 mM的TRICINE緩衝液導致低水平的偶氮氧基形成(2%)。pH係在反應結束時測量的並且已經驟降至pH 5.7。反應混合物不均勻,似乎有油狀膠從溶液中沈澱到攪拌棒上,並且管壁上有一些黃色固體。反應後,將反應混合物轉移到小瓶中並進行離心,並且分析水相和沈澱物兩者以瞭解組成。另外,將攪拌棒膠和黃色沈澱物溶解在乙腈中並藉由HPLC進行分析。發現懸浮液中的固體係90%苯胺化合物 (2a)。攪拌棒和玻璃壁上都含有較多的硝基起始材料 (3a) 並且膠還捕獲了一些亞硝基中間體。
在250 mM濃度的TRICINE緩衝液中重複該反應,並且在反應期間當pH驟降時手動添加NaOH(10 M),使得在整個反應期間pH維持在8。
反應方案:將NR-55(10 mg)、葡萄糖(386 mg)、GDH-101(5 mg)、NADP +(3.7 mg)和NH 4VO 3(1當量)稱重到配備有攪拌棒的Radleys carousel管中。藉由注射泵添加以1.5 mL/h的速率將3.5 mL TRICINE緩衝液(pH 8,250 mM)和含有184 mg化合物 (3a) 的1.5 mL(30%)DMSO添加到管中。使用10 M NaOH(約70 µL)將pH保持在8。將反應物在500 rpm下攪拌、加熱至45°C並在1、3、5和24 h後取樣。
24 h後,藉由HPLC分析,反應物組成係84%的苯胺化合物2a,3%的偶氮氧基和4%的硝基。在壁上發現了沈澱物並且油狀膠在攪拌棒上結塊。
[表12]:測試步驟 (c2) 中緩衝液和反應時間的各種反應條件:
編號 緩衝液 (3a) % (2a) % HA % 亞硝基 偶氮氧基( % 其他( %
1 Tricine-1 h 30 69 0 0 1 0
2 Tricine-3 h 35 62 0 0 1 2
3 Tricine-5 h 6 85 0 6 2 1
4 Tricine-24 h 4 84 0 3 3 6
基於以上反應條件,本發明之諸位發明人已經示出,硝基還原催化反應可以在許多不同條件下進行,從而將硝基芳香族化合物 (3a) 轉化為苯胺化合物 (2a)。可以使用的反應條件的變數包括但不限於 (1) 硝基還原酶,較佳的是NR-55;(2) 反應溫度,較佳的是45°C;(3) 溶劑和溶劑濃度,較佳的是30 vol% DMSO;(5) 2 mg/mL催化劑負載速率;和 (6) 金屬催化劑,較佳的是釩金屬,如V 2O 5或NH 3VO 4。針對底物添加的分批給料法、再加上可溶性釩金屬源的濃度增大使羥胺和亞硝基中間體的積累最小化,這導致偶氮氧基形成減少。藉由使用 (7) 緩衝液、較佳的是TRICINE緩衝液,該等副產物化合物進一步減少。該反應以1 g規模、40 g/L的底物濃度和2 g/L的催化劑負載速率進行了演示。
本發明之諸位發明人理解,藉由使用合適的反應器類型(包括攪拌器械)可以進一步加強硝基還原反應,這係因為限制因素似乎係起始材料的低溶解度,其會導致在攪拌棒上形成黏性膠。因此使用各種反應器類型來避免黏性膠在攪拌棒上的積累預期在本發明之範圍內。此外,因此使用第二共溶劑、表面活性劑或低共熔溶劑/離子液體輔助起始材料的溶解預期在本發明之範圍內。
本發明之諸位發明人進一步理解,羥胺化合物的歧化速率係在不存在酶的情況下使偶氮氧基副產物形成最小化的關鍵。因此使用各種方法來優化羥胺化合物的歧化速率預期在本發明之範圍內。
本發明之諸位發明人進一步理解TRICINE緩衝液中的歧化出現很快。因此,使用低於1當量的減少量的釩金屬催化劑預期在本發明之範圍內。
本發明之諸位發明人進一步理解,從長遠來看,一鍋法反應可能是受關注的。因此,硝基還原酶的固定預期在本發明之範圍內。
現在將參考以下具體實例描述本發明。該等實例不應被視為限制本發明之範圍,而應僅用於說明性方式。
貫穿說明書和所附請求項,使用了以下縮寫,它們具有以下含義:
「AP」意指面積百分比,其係指如藉由液相或氣相層析測量的峰下的面積。AP係樣本中化合物濃度的函數。以下是GC報告的實例,其中%面積表示命名的化合物中的每一種的AP:
Figure 02_image066
「Ar」意指芳基。
「cmp」意指一種或多種化合物。
「CH 3CN」或「MeCN」意指乙腈。
「CPME」意指環丙基甲基醚。
「DMAc」或「DMA」意指二甲基乙醯胺。
「DMF」意指二甲基甲醯胺。
「DCM」意指二氯甲烷。
「DMSO」意指二甲亞碸
「EtOAc」意指乙酸乙酯。
「h」意指一小時或數小時
「HPLC」意指高效液相層析法
「IPA」意指異丙醇。
「IPAc」意指乙酸異丙酯。
「IPC」意指程序控制,其係在製程開發期間進行的例行檢查。程序控制的功能係監測並在必要時調整製造方法以確保產品符合其規範。例如如果目標產物轉化率係98%,如果IPC失敗,則進行如更長的保持反應時間或額外的試劑裝料等手段。
「KF」意指卡爾費歇爾滴定值,其係使用容量滴定或庫侖滴定來確定每種分析物中存在的水的量的滴定方法,由卡爾費歇爾滴定儀測量。本文描述的合成路線中使用的化學品包括例如溶劑、試劑和催化劑。上述方法還可以另外包括在本文具體描述的步驟之前或之後的步驟以添加或除去合適的保護基團以最終允許合成化合物。另外地,各種合成步驟可以以交替順序或順序進行,以得到所希望的化合物。合成化學轉化和可用於合成適用的化合物的保護基團方法(保護和去保護)係本領域已知的並且包括例如以下中描述的那些:R. Larock, Comprehensive Organic Transformations [全面有機轉換], VCH Publishers [VCH出版社] (1989);T. W. Greene和P. G. M. Wuts, Protective Groups in Organic Synthesis [有機合成中的保護基], 第3版, John Wiley and Sons [約翰威立父子公司] (1999);L. Fieser和M. Fieser, Fieser and Fieser's Reagents for Organic Synthesis [費塞爾和用於有機合成的費塞爾試劑], John Wiley and Sons [約翰威立父子公司] (1994);以及L. Paquette編輯, Encyclopedia of Reagents for Organic Synthesis [用於有機合成的試劑百科全書], John Wiley and Sons [約翰威立父子公司] (1995),及其後續版本。
「LCMS」意指液相層析質譜法
「LiCl」意指氯化鋰
「MIBK」意指甲基異丁基酮
「mins」意指分鐘
「MSA」意指甲烷磺酸(MeSO 3H)。
「MTBE」意指甲基三級丁基醚。
「NMP」意指N-甲基-2-吡咯啶酮
「Ph」意指苯基。
「ppm」意指百萬分率,濃度單位。
「rt」或「RT」意指室溫
「temp」意指溫度
「THF」意指四氫呋喃
實例:實驗程序
Figure 02_image068
實例1:
步驟 (e):(E)-3-(5-氟-2-硝苯基)丙烯酸乙酯(化合物4a)的製備
Figure 02_image070
反應程序:將惰性容器A在氮氣下吹掃三次。將反應器夾套溫度設置成25°C ± 5°C。將乙腈(7.0 V,343 kg)添加到容器A中,然後添加N,N-二異丙基乙胺/胡寧鹼(Hünig’s base)(DIEA)(1.1當量,52.1 kg),並將混合物攪拌10分鐘。然後添加LiCl(2.0當量,31.1 kg)並將混合物再次攪拌10分鐘。然後將溫度冷卻至達到0°C內部溫度。然後將磷醯基試劑(PR)2-(二乙氧基膦醯基)乙酸乙酯(1.05當量,86.2 kg)添加到混合物中,同時維持內部溫度在0°C至5°C之間。觀察到溫度緩慢上升,並且反應流體係白色且渾濁的。然後將反應混合物加熱至達到25°C內部溫度並且在25°C下攪拌30分鐘。然後將反應混合物冷卻至達到0°C內部溫度。然後緩慢添加起始材料化合物5-氟-2-硝基苯甲醛(化合物5a,1.0當量,62.0 kg)同時保持內部溫度在0°C至5°C之間。觀察到溫度緩慢上升並且反應流體從白色渾濁變成棕色澄清顏色。然後將反應混合物加熱至達到25°C內部溫度並且將混合物在25°C下攪拌2小時。觀察到反應流體從棕色變成白色並且其變濃稠。HPLC顯示起始材料 (5a) 被消耗並且形成了約97.0%(220 nm)的產物(E)-3-(5-氟-2-硝苯基)丙烯酸乙酯(化合物 (4a),3.216 min)。然後將水(1.0 V,62.0 L)添加到混合物中並且反應流體從黏稠白色變成棕色澄清。將混合物攪拌10分鐘。
[表13]:採用1 kg、10 kg和62 kg規模起始材料 (5a) 的步驟 (e) 的優化條件:
條目 化合物 (5a) g 條件 重量( g
PR (當量) LiCl/DIEA (當量) T °C 時間 h 溶劑
1 1.00 kg 1.20 LiCl(2.0當量),DIEA(1.1當量) 0°C至25°C 2.5 MeCN(7.00 V) 1.10 kg產物和550 g來自母液的粗品
2 10.0 kg 1.05 LiCl(2.0當量),DIEA(1.1當量) 0°C至25°C 2.5 MeCN(7.00 V) 87.6 kg,99.3%純度,78.3%產率;QNMR: 91.8% KF = 0.3%-0.4%(5個點)
3 62.0 kg 1.05 LiCl(2.0當量),DIEA(1.1當量) 0°C至25°C 2.5 MeCN(7.00 V)
PR = 磷醯基試劑,其係2-(二乙氧基磷醯基)乙酸乙酯
後處理常式:將10 kg規模和62 kg規模合併用於後處理。 將甲基三級丁基醚(MTBE)(3.0 V,160 kg)添加到混合物中。使兩相分離並用MTBE(2.0 V,120 kg)萃取水層一次。然後將有機相合併並用飽和NH 4OAc(2.0 V,160 kg)洗滌。然後將有機層濃縮至約3.0 V。
蒸餾程序:將乙酸異丙酯(iPAC)(192 kg)添加到混合物中並藉由常壓蒸餾濃縮至約3.0 V。這樣進行兩次,以確保溶劑互換完成和水去除。
分離程序:添加正庚烷(10 V,492 kg)並且將混合物冷卻至達到-10°C內部溫度。然後將混合物在-10°C下攪拌6小時。將固體過濾並且將濾餅用正庚烷(2.0 V,98 kg)洗滌並冷卻至-10°C。然後在N 2氣體下將固體乾燥。白色固體;(87.6 kg,99.3%純度,78.3%產率;QNMR:91.8%)。Mp:59°C。 1H NMR (500 MHz, 氯仿-d) δ 8.15 - 8.10 (m, 2H), 7.32 - 7.21 (m, 2H), 6.35 (d, J= 15.8 Hz, 1H), 4.30 (q, J= 7.1 Hz, 2H), 1.36 (t, J= 7.1 Hz, 3H)。
實例2:
步驟 (d):(E)-3-(5-(苄硫基)-2-硝苯基)丙烯酸乙酯(化合物3a)的製備
Figure 02_image072
反應程序:將惰性容器A在氮氣下吹掃三次。將反應器夾套溫度設置為25°C ± 5°C。將DMF(5.0 V,337.5 L)裝入容器A,並再次將容器在氮氣下吹掃三次。然後添加起始材料化合物(E)-3-(5-氟-2-硝苯基)丙烯酸乙酯(化合物2a,1.0當量,67.5 kg),並將混合物攪拌20分鐘。緩慢添加Cs 2CO 3(1.0當量,86.5 kg)並且觀察到反應流體從黃色變成黑色。將混合物攪拌20分鐘,並且將容器再次在氮氣下吹掃三次。將硫醇試劑(TR)化合物苯基甲硫醇(1.0當量,33.6 kg)緩慢添加到混合物中,並且由於放熱反應溫度緩慢上升。將混合物攪拌10分鐘並藉由KF檢查(KF:0.12%)。然後將混合物加熱至達到75°C內部溫度並在75°C下攪拌12小時。HPLC顯示,起始材料化合物 (4a) 被消耗(3.216分鐘)並且形成了約92.6%的產物(E)-3-(5-(苄硫基)-2-硝苯基)丙烯酸酯(化合物 (3a),4.139分鐘)。然後添加水(5.0 V,337.5 L),並且觀察到反應流體從黏稠白色變成棕色澄清。然後將混合物攪拌10分鐘。
[表14]:在步驟 (d) 中採用1.1 kg、20 kg和67.5 kg規模起始材料 (4a) 的優化條件:
條目 Cmp (4a) g 條件 重量( g
TR (當量) LiCl/DIEA (當量) T °C 時間 h 溶劑
1 1.10 kg 1.00 Cs 2CO 3(1.0當量) 70-80 12+4 DMF(5.00 V) 1.32 kg產物(82.75%產率)和180 g 來自母液的粗品
2 20.0 kg 1.00 Cs 2CO 3(1.0當量) 70-80 12 DMF(5.00 V) 102 kg (97.2%純度,86.0%產率)
3 67.5 kg 1.00 Cs 2CO 3(1.0當量) 70-80 12 DMF(5.00 V)
PR = 硫醇試劑,其係苯基甲硫醇
後處理常式:將20 kg規模和67.5 kg規模合併用於後處理。 將甲基三級丁基醚(MTBE)(5.0 V,675 L)添加到混合物中。使兩相分離並用MTBE(3.0 V,405 L)萃取水層一次。然後將有機相合併並用水(5.0 V,675 L)洗滌。然後將有機層濃縮至約3.0 V。
蒸餾程序:將乙酸異丙酯(IPAC)(192 kg)添加到混合物中並藉由加熱濃縮至約3.0 V。
分離程序:添加正庚烷(9.0 V,1215 L)並將混合物在25°C下攪拌6小時。將固體過濾並且將濾餅用正庚烷(2.0 V,270 L)洗滌。然後在N 2氣體下將固體乾燥。黃色固體;(102 kg,97.2%純度,86.0%產率)。Mp:73°C。 1H NMR (500 MHz, 氯仿-d) δ 8.11 (d, J= 15.8 Hz, 1H), 7.97 (d, J= 8.6 Hz, 1H), 7.39 - 7.27 (m, 7H), 6.20 (d, J= 15.8 Hz, 1H), 4.28 (q, J= 7.1 Hz, 2H), 4.25 (s, 2 H), 1.35 (t, J= 7.1 Hz, 3H)。
實例3a:
步驟 (c1):藉由鐵和NH 4Cl還原製備(E)-3-(5-(苄硫基)-2-硝苯基)丙烯酸乙酯(化合物2a)
Figure 02_image074
三個反應平行進行。(34.0 kg x 3)
反應程序:將含有惰性容器的反應器夾套溫度設置為25°C±5°C。將EtOH(4.0 V,136 L)裝入容器中。然後將水(2.0 V,68.0 L)添加到容器中,然後添加NH 4Cl(5.0當量,26.5 kg)。然後將混合物攪拌10分鐘。然後緩慢添加Fe 0(3.0當量,16.6 kg)並將混合物攪拌10分鐘。然後將混合物加熱至達到70°C內部溫度。在3小時的時間段期間分批添加起始材料(E)-3-(5-(苄硫基)-2-硝苯基)丙烯酸乙酯(化合物3a,1.0當量,34.0 kg),同時保持內部溫度在約70°C至80°C。溫度上升緩慢。將混合物在80°C下攪拌1小時。LCMS顯示起始材料化合物 (3a) 被消耗並且形成了約93.6%的產物(E)-3-(5-(苄硫基)-2-硝苯基)丙烯酸乙酯(化合物 (2a),3.762分鐘)。然後將反應混合物冷卻至直至內部溫度達到30°C。表15顯示反應提供了高純度化合物 (2a) 的82%和82.5%產率。
[表15]:採用1.1 kg、20 kg和67.5 kg規模起始材料 (3a) 的優化條件:
編號 (3a) 條件 (2a)
Fe (當量) NH 4Cl (當量) T °C 時間( h EtOH H 2O
1 800 g 3.0 5.0 70-80 1 4 V,2 V 630 g(98.3%純度,82.0%產率)
2 2.5 kg(2X) 2 kg 3.0 5.0 70-80 1 4 V,2 V 5.50 kg(97.2%純度,82.5%產率)
後處理常式:將以上進行的三個反應合併來進行後處理。然後添加EtOAc(3.0 V,102 L)並且然後將反應混合物攪拌30分鐘。然後將懸浮液經由CELITE®墊過濾並且將濾餅用乙酸乙酯(6.0 V,204 L)洗滌。將有機相合併,用水(2.0 V X 2,190 L X 2)洗滌,並藉由KF檢查。(KF:6.60%)。還將乙酸異丙酯用作EtOAc的溶劑替代物。
分離步驟:結晶程序 用正庚烷(9.0 V,857 L)進一步洗滌從以上後處理步驟獲得的固體。然後將混合物加熱,直至內部溫度達到60°C,並在60°C下攪拌1小時。然後將混合物冷卻至25°C內部溫度並在25°C下攪拌12小時。然後將固體過濾並用正庚烷(2.0 V,190 L)洗滌濾餅。然後在N 2氣體下將固體乾燥。黃色固體(81.0 kg,98.7%純度,82.5%產率,QNMR 92.6%)。Mp:91°C。 1H NMR (500 MHz, 氯仿-d) δ 7.69 (d, J= 15.7 Hz, 1H), 7.30 - 7.11 (m, 7H), 6.58 (d, J= 8.3 Hz, 1H), 6.22 (d, J= 15.8 Hz, 1H), 4.26 (q, J= 6.9 Hz, 2H), 3.94 (s, 2H), 1.34 (t, J= 6.9 Hz, 3H)。
[表16]:在化合物 (2a) 的步驟 (c1) 之後的結晶步驟的各種條件:
粗產物 溶劑 體積 溫度 產物 純度 產率
1 10.0 g MTBE 3 v 55°C至0°C 5.20 g 97.3% 55.2%
2 2.00 g IPAC 4 v 60°C至23°C 1.00 g 98.6% 53.8%
3 0.3 g 正庚烷 : IPAC = 1 : 1 4 v 60°C至23°C 0.23 g 99.8% 83.6%
4 0.3 g 正庚烷 : IPAC = 2 : 1 6 v 60°C至23°C 0.21 g 99.0% 75.7%
5 0.3 g 正庚烷 : IPAC = 3 : 1 6 v 60°C至23°C 0.25 g 97.3% 88.6%
6 21.0 g 正庚烷 : IPAC = 3 : 1 6 v 60°C至23°C 18.0 g 98.8% 92.5%
7 160 g 正庚烷 : IPAC = 3 : 1 6 v 60°C至23°C 135 g 98.3% 92.4%
8 15.0 g 正庚烷 : IPAC = 3 : 1 6 v 60°C至23°C 12.9 g 97.4% 91.5%
9 15.0 g 正庚烷 : IPAC = 3 : 1 6 v 60°C至23°C 12.4 g 99.2% 89.6%
實例3b:
步驟 (c2):藉由酶還原製備(E)-3-(5-(苄硫基)-2-硝苯基)丙烯酸乙酯(化合物2a)
Figure 02_image076
Tricine緩衝液的製備:使用54 g Tricine和900 mL水製備330 mmol的Tricine緩衝液。用10N NaOH將pH調節至pH = 8.0。
化合物 (2a) 和 (2a-HCl鹽)的製備:
向500 ml燒瓶中添加起始材料化合物 (3a)(25.00 g,66.08 mmol,95質量%)和DMSO(7.5 mL/g,2640 mmol,100質量%)。將混合物攪拌30 min以使所有固體溶解。
向單獨的1-L反應器中添加偏釩酸銨(1.00當量,66.08 mmol,100質量%)、NR-55酶(0.10 g/g,100質量%)、右旋糖(4.5當量,297.4 mmol,100質量%),GDH-101(0.025 g/g,100質量%),β-菸醯胺腺嘌呤二核苷酸磷酸二鈉鹽(0.040 g/g,1.245 mmol,98質量%),和440 mL的以上Tricine緩衝液(17.5 vol,pH = 8.0,330 mmol)。將反應器加熱至約在40°C至45°C之間,並且然後藉由使用注射泵在1.5小時時間段內緩慢添加底物的DMSO溶液。一旦添加完成,檢查反應的pH並且發現pH = 6.5。然後藉由使用10 N NaOH將pH調節至8.0。取樣進行IPC。過夜88%轉化率。
然後將額外的β-菸醯胺腺嘌呤二核苷酸磷酸二鈉鹽(0.01 g/g,0.3112 mmol,98質量%)和GDH-101(0.01 g/g,100質量%)添加到反應混合物中,並持續攪拌額外的48小時。然後將反應混合物過濾以產生粗的黃色固體。
後處理和分離程序:將溶液過濾並用水洗滌。在45°C下用15體積的甲基THF將粗固體漿化過夜。然後將漿料經由CELITE過濾並濃縮成油狀物。然後將油狀物用20體積甲基THF稀釋並且在室溫下添加在CPME中的HCl(1.5當量,99.12 mmol,3 mol/L)。然後將混合物攪拌2 h,並且然後過濾並用甲基THF、然後用MTBE洗滌。分離出21.1 g的化合物(2a HCl鹽)。100 wt%。99.28 AP。91.5%產率。Mp:155°C。 1H NMR (500 MHz, DMSO-d) δ 9.41 (s, 2H), 7.83 (d, J= 15.7 Hz, 1H), 7.70 (s, 1H), 7.36 - 7.20 (m, 7H), 6.61 (d, J= 15.7 Hz, 1H), (m, 5H), 4.27 (s, 1H), 4.20 (q, J= 7.1 Hz, 2H), (s, 1H), 1.27 (t, J= 7.1  Hz, 3H)。
實例4:
步驟 (a) + (b):(E)-3-(5-(苄硫基)-2-碘苯基)丙烯酸乙酯(化合物1a)的製備
Figure 02_image078
反應程序:將惰性容器A在氮氣下吹掃三次。將反應器夾套溫度設置為25°C ± 5°C。將乙酸異丙酯(15.0 V,825 L)裝入容器A。然後添加起始材料(E)-3-(5-(苄硫基)-2-硝苯基)丙烯酸乙酯(化合物 (2a),1.0當量,55.0 kg),然後添加HCl(1.5 M,5.0當量,585 L)。然後將混合物攪拌20分鐘,並且觀察到反應流體從澄清黃色變成了黃色渾濁。然後將混合物冷卻至達到在0°C與5°C之間的內部溫度。在0°C與5°C之間的內部溫度下緩慢添加在H 2O(1.0 V,55.0 L)中的NaNO 2(2.0當量,24.2 kg),同時內部溫度緩慢上升(放熱)。將混合物在0°C與5°C之間攪拌2小時。HPLC顯示起始材料化合物 (2a) 被消耗。
然後將在水(1.0 V,55.0 L)中的KI(2.5當量,72.6 kg)緩慢添加到混合物中同時將溫度維持在0°C至5°C之間(輕微放熱),並且觀察到反應流體從黃色渾濁變成棕色澄清。然後將反應混合物在0°C與5°C之間的內部溫度下攪拌5小時。第二次HPLC顯示,在4.368 min處形成了約89.8%的產物化合物 (1a)。然後添加在水中的K 3PO 4(50.0%,5.0 V,275 L)溶液以在0°C與5°C之間的內部溫度下淬滅反應混合物,以實現表觀pH = 10。(溫度緩慢上升)。
在可替代性的單獨的反應中,將實例3b的化合物(2a HCl鹽)產物用作實例4的起始材料並且在和2a相同的反應條件下。 [表17]:用各種規模起始材料 (2a) 形成 (1a) 的優化條件:
條目 Cmp. (2a) g 條件 (1a) g
LiCl/DIEA (當量) T °C 時間( h IPAC
1 100 g NaNO 2(2.0當量),KI(2.5當量),1.5 M HCl(5.0當量) 0至5 7 15 V 96.0 g(100%純度)
2 630 g NaNO 2(2.0當量),KI(2.5當量),1.5 M HCl(5.0當量) 0至5 7 15 V 592 g(98.5%純度,69.4%產率)
3 25 g NaNO 2(2.0當量),KI(2.5當量),1.5 M HCl(5.0當量) 0至5 7 15 V 96.0 g(100%純度)
4 13 kg NaNO 2(2.0當量),KI(2.5當量),1.5 M HCl(5.0當量) 0至5 7 15 V 56.0 kg(99.0%純度,66.2%產率)
5 55 kg NaNO 2(2.0當量),KI(2.5當量),1.5 M HCl(5.0當量) 0至5 7 15 V
Cmp. 意指化合物。 [表18]:用於測定各種後處理步驟條件下產生的元素硫的HPLC法:
條目 Cmp.(2a) g 後處理條件 IPC HPLC
1 100 g Na 2S 2O 3溶液 HPLC未檢測到任何硫。
2 630 g Na 2S 2O 3溶液 HPLC在8.262 min處檢測到(4680 ppm)
3 100 g Na 2S 2O 3溶液 HPLC未檢測到任何硫。
4 100 g 抗壞血酸鈉溶液 HPLC未檢測到任何硫。
5 1 kg NaHSO 3溶液 HPLC未檢測到任何硫。
後處理常式:將55.0 kg和13.0 kg的 (2a) 規模製劑合併用於後處理。
將反應用亞硫酸氫鈉(2.5當量,3.0 V,165 L)淬滅。(注意:使用亞硫酸氫鈉而非硫代硫酸鈉對於防止在後處理中形成元素硫至關重要)。然後將混合物加熱至達到25°C的內部溫度並且在25°C下攪拌30分鐘。將各層分離並用水(5 V,275 L)洗滌有機相。
蒸餾程序:將有機相蒸餾至約3 V EtOAc。然後將混合物加熱,直至內部溫度達到50°C至55°C,並且添加甲醇(12 V,816 L)。然後將混合物攪拌30分鐘並且冷卻至25°C的內部溫度。然後將混合物在25°C下攪拌3小時。然後將混合物冷卻至達到0°C內部溫度並攪拌12小時。
分離程序: 將混合物過濾並且將從以上蒸餾步驟獲得的固體過濾並將濾餅用MeOH(2.0 V,136 L)進一步洗滌。然後在N 2氣體下將固體乾燥。棕色固體;(56.0 kg;99.0%純度;66.2%產率)。Mp:79°C。 1H NMR (500 MHz, 氯仿-d) δ 7.79 (d, J= 15.8 Hz, 1H), 7.73 (d, J= 8.2 Hz, 1H), 7.39 (d, J= 2.2 Hz, 1H), 7.32 - 7.23 (m, 5H), 6.96 (dd, J= 8.2, 2.3 Hz, 1H), 6.17 (d, J= 15.7 Hz, 1H), 4.28 (q, J= 7.1 Hz, 2H), 4.10 (s, 1H), 1.35 (t, J= 7.1 Hz, 3H)。
純化步驟:粗產物(89.0%純度)。藉由加熱至58°C、冷卻至0°C並在0°C下過濾固體產物,將粗產物在MeOH/EtOAc(4 : 1)(10 vol)的混合物中再漿化。
[表19]:測試步驟 (a)+(b) 之後的純化步驟中的溶劑的各種反應條件:
粗產物 溶劑 體積 溫度 產物 純度 產率
1 0.5 g MTBE 2 v 60°C至23°C 0.34 g 95.4% 72.8%
2 0.5 g 異丙醚 3 v 60°C至23°C 0.38 g 91.5% 78.1%
3 0.5 g 庚烷 : EtOAc=1 : 1 2 v 60°C至23°C 0.34 g 94.5% 72.2%
4 0.5 g 庚烷 : EtOAc=2 : 1 3 v 60°C至23°C 0.32 g 93.9% 67.5%
5 3.00 g MeOH : EtOAc=4 : 1 10 v 58°C至0°C 2.32 g 99.4% 86.3%
6 15.0 g MeOH : EtOAc=4 : 1 10 v 58°C至0°C 11.2 g 99.5% 83.9%
出於清楚和理解的目的,已經藉由說明和實例的方式詳細地描述了前述發明。熟悉該項技術者理解,可以在所附申請專利範圍之範圍內進行改變和修改。因此,應理解,以上描述旨在是說明性的而非限制性的。因此,本發明之範圍不應參考上文的描述來確定,而應參考以下所附申請專利範圍以及此申請專利範圍所賦予的等同方案的全部範圍來確定。
出於所有目的,本文引用的所有專利、專利申請和出版物在此藉由引用整體併入本文,其程度就好像每個單獨的專利、專利申請或出版物被如此單獨地表示。
Figure 111130553-A0101-11-0002-3

Claims (31)

  1. 一種用於製備具有式 (1) 的化合物或其藥學上可接受的鹽之方法:
    Figure 03_image080
    (1); 其中: X係鹵基、CN、CF 3、或OH; R 1係(C 1-C 6)烷基;5員、6員、7員、8員、9員、或10員芳基或雜芳基;或 3員、4員、5員、6員、7員、8員、9員、或10員環烷基或雜環烷基; 其中該雜芳基或雜環烷基可以具有從1至3個獨立地選自O、N或S的雜原子; 或者該環烷基或雜環烷基中的碳原子可以是C=O基團的一部分; R 2選自(C 1-C 6)烷基或苄基; 該方法包括: (a) 使具有式 (2) 的化合物:
    Figure 03_image007
    (2); 其中該R 1和R 2如以上在化合物 (1) 中所定義;與酸HA在溶劑-1中並且在亞硝酸鹽的存在下接觸; (b) 視需要在溶劑-2的存在下引入鹵化劑、氰化劑、三氟甲基化劑、或羥基化劑以形成該化合物 (1);其中該溶劑-1和溶劑-2可以是相同或不同的;並且 其中該化合物 (2) 係在不含鈀催化劑之方法中製備的。
  2. 如請求項1之方法,該方法進一步包括製備該化合物 (2),包括: (c1) 在極性溶劑中在酸式鹽HA 1的存在下使金屬活化;以及使具有式 (3) 的化合物:
    Figure 03_image009
    (3); 其中該R 1和R 2如以上在化合物 (1) 中所定義; 與該活化金屬在升高的溫度下在極性溶劑中接觸,以形成該化合物 (2) 或其鹽; 或可替代地,該方法進一步包括製備該化合物 (2),包括: (c2) 視需要在共溶劑的存在下,使該具有式 (3) 的化合物與酶還原劑在水性緩衝液中並且在至少一種催化劑和輔因子的存在下反應,以形成該具有式 (2) 的化合物或其鹽。
  3. 如請求項2之方法,該方法包括: (c1) 在極性溶劑中在酸式鹽HA 1的存在下使金屬活化;以及使該具有式 (3) 的化合物與該活化金屬在升高的溫度下在極性溶劑中接觸,以形成該化合物 (2) 或其鹽。
  4. 如請求項2之方法,該方法包括: (c2) 在共溶劑的存在下,使該具有式 (3) 的化合物與酶還原劑在水性緩衝液中並且在金屬催化劑、共催化劑和輔因子的存在下接觸,以形成該具有式 (2) 的化合物或其鹽。
  5. 如請求項2之方法,該方法進一步包括製備該化合物 (3) 或其鹽,包括: (d) 使具有式 (4) 的化合物:
    Figure 03_image013
    (4); 其中X 1係鹵基;並且該R 1如以上在化合物 (3) 中所定義; 與硫醇劑在鹼的存在下、在有機溶劑中並且在升高的溫度下接觸;以形成該化合物 (3) 或其鹽。
  6. 如請求項5之方法,該方法進一步包括製備該化合物 (4),包括: (e) 使具有式 (5) 的化合物:
    Figure 03_image015
    (5); 其中X 1係如在化合物 (4) 中所定義的鹵基;與烯化劑在鹼的存在下、在有機溶劑中接觸,以形成該化合物 (4) 或其鹽。
  7. 如請求項1至6中任一項之方法,其中,在 (a) 中,該酸HA係HCl、HBr、HI、p-TsOH、或H 2SO 4
  8. 如請求項1至7中任一項之方法,其中,在 (a) 中,該溶劑-1係水、THF、甲基THF、CH 3CN、或(C 1-C 6)烷基乙酸酯溶劑、或其混合物。
  9. 如請求項1至8中任一項之方法,其中,在 (b) 中,該鹵化劑係金屬鹵化物鹽;該氰化劑係CuCN;該三氟甲基化劑係CuCF 3;並且該羥基化劑係Cu 2O/Cu(II)。
  10. 如請求項1至9中任一項之方法,其中,在 (b) 中,該溶劑-2係水、THF、甲基THF、CH 3CN、或(C 1-C 6)烷基乙酸酯溶劑、或其混合物。
  11. 如請求項2至3或5至10中任一項之方法,其中,在 (c1) 中,該金屬選自Fe o、Zn o、Pd o、Pt o、Ru o、或Rh o
  12. 如請求項2至3或5至11中任一項之方法,其中,在 (c1) 中,該酸式鹽HA 1係氯化銨、乙酸或HCl。
  13. 如請求項2至3或5至12中任一項之方法,其中,在 (c1) 中,該極性溶劑係水、(C 1-C 6)烷基醇、或其混合物。
  14. 如請求項2或4至10中任一項之方法,其中,在 (c2) 中,該共溶劑選自DMSO、或水/DMSO混合物。
  15. 如請求項2、4至10或14中任一項之方法,其中,在 (c2) 中,該緩衝液選自磷酸鹽、PIPES、TRICINE、BICINE、HEPES、TRIS、TES、CAPS、Kpi、或CHES。
  16. 如請求項2、4至10或14至15中任一項之方法,其中,在 (c2) 中,該酶還原劑係硝基還原酶。
  17. 如請求項2、4至10或14至16中任一項之方法,其中,在 (c2) 中,該催化劑係金屬催化劑和共催化劑;其中該金屬催化劑係選自以下的釩催化劑:V 2O 5、NH 3VO 4、酞菁氧化釩(IV)、雙(2,4-戊二酮酸)氧化釩(IV)、硫酸氧釩水合物、氧化三乙氧基釩(V)、3% V/C、或2,4-戊二酮酸釩(III)。
  18. 如請求項2、4至10或14至17中任一項之方法,其中,在 (c2) 中,該反應在pH 7或pH 8之間進行。
  19. 如請求項2、4至10或14至18中任一項之方法,其中,(c2) 的產物係選自以下的鹽:選自HCl鹽或HBr鹽的鹵化物鹽,或選自甲磺酸鹽、甲苯磺酸鹽、或芳基磺酸鹽的磺酸鹽。
  20. 如請求項5至19中任一項之方法,其中,在 (d) 中,化合物 (4) 和 (5) 中每一個的該X 1係氟或氯。
  21. 如請求項5至20中任一項之方法,其中,在 (d) 中,該鹼係碳酸鹽或磷酸鹽。
  22. 如請求項5至21中任一項之方法,其中,在 (d) 中,該有機溶劑選自DMF、DMAc、或NMP。
  23. 如請求項5至22中任一項之方法,其中,在 (d) 中,該反應在低水含量條件下進行,並且不使用過量的硫醇劑。
  24. 如請求項6至23中任一項之方法,其中,在 (e) 中,化合物 (4) 和 (5) 中每一個的該X 1係F或Cl。
  25. 如請求項6至24中任一項之方法,其中,在 (e) 中,該有機溶劑選自DIPEA、CH 3CN、TEA、N-甲基𠰌啉、或其混合物。
  26. 如前述請求項中任一項之方法,其中,化合物 (1) 中的X係碘。
  27. 如前述請求項中任一項之方法,其中,化合物 (1) 和 (2) 中每一個的X 1係氟或氯。
  28. 如前述請求項中任一項之方法,其中,化合物 (1)、(2)、(3) 和 (4) 中每一個的R 1係甲氧基或乙氧基。
  29. 如前述請求項中任一項之方法,其中,化合物 (1)、(2) 和 (3) 中每一個的R 2係苄基。
  30. 如前述請求項中任一項之方法,其中,該方法按照以下順序進行,以形成該具有式 (1) 的化合物: A) 步驟 (e);步驟 (d);步驟 (c1) 或(c2);並且然後是步驟 (a) + (b); B) 步驟 (d);步驟 (e);步驟 (c1) 或(c2);並且然後是步驟 (a) + (b);或 C) 步驟 (d);步驟 (c1) 或(c2);步驟 (e);並且然後是步驟 (a) + (b)。
  31. 一種化合物或其鹽,該化合物係:
    Figure 03_image007
    ; 其中R 1係乙基;並且R 2係苄基。
TW111130553A 2021-08-19 2022-08-15 用於製備丙烯酸酯化合物之無鈀方法 TW202319375A (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US202163234927P 2021-08-19 2021-08-19
US63/234,927 2021-08-19

Publications (1)

Publication Number Publication Date
TW202319375A true TW202319375A (zh) 2023-05-16

Family

ID=83271349

Family Applications (1)

Application Number Title Priority Date Filing Date
TW111130553A TW202319375A (zh) 2021-08-19 2022-08-15 用於製備丙烯酸酯化合物之無鈀方法

Country Status (12)

Country Link
EP (1) EP4387951A1 (zh)
JP (1) JP2024531339A (zh)
KR (1) KR20240049277A (zh)
CN (1) CN117881653A (zh)
AR (1) AR126824A1 (zh)
AU (1) AU2022329987A1 (zh)
CA (1) CA3229375A1 (zh)
CL (1) CL2024000477A1 (zh)
IL (1) IL310891A (zh)
MX (1) MX2024002174A (zh)
TW (1) TW202319375A (zh)
WO (1) WO2023023201A1 (zh)

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9776995B2 (en) * 2013-06-12 2017-10-03 Amgen Inc. Bicyclic sulfonamide compounds as sodium channel inhibitors

Also Published As

Publication number Publication date
CN117881653A (zh) 2024-04-12
KR20240049277A (ko) 2024-04-16
CL2024000477A1 (es) 2024-08-09
AU2022329987A1 (en) 2024-03-07
AR126824A1 (es) 2023-11-15
IL310891A (en) 2024-04-01
WO2023023201A1 (en) 2023-02-23
JP2024531339A (ja) 2024-08-29
MX2024002174A (es) 2024-03-12
EP4387951A1 (en) 2024-06-26
CA3229375A1 (en) 2023-02-23

Similar Documents

Publication Publication Date Title
CN111393427B (zh) 一种砜吡草唑的合成方法
JP6896897B2 (ja) m−ジアミド化合物の調製方法
WO2004099149A1 (ja) 2-クロロ-5-フルオロ-3-置換ピリジンまたはその塩の製造方法
KR102396059B1 (ko) 신규 화합물 및 이의 제조방법
JP2020528440A (ja) アミノピリミジン誘導体を調製するための改善されたプロセス
US20090281176A1 (en) Process for the synthesis of ramelteon and its intermediates
WO2012093565A1 (ja) α-アミノ-γ-ブチロラクトンの製造方法
US6936720B2 (en) Method for preparing benzisoxazole methane sulfonyl chloride and its amidation to form zonisamide
CN113754647A (zh) 一种砜吡草唑及其中间体的合成方法
EP3786152A1 (en) Method for manufacturing aromatic nitrile compound
TW202319375A (zh) 用於製備丙烯酸酯化合物之無鈀方法
CN114573452B (zh) 一种9-蒽甲酸的制备方法
JPH0570437A (ja) 1−カルバモイルピラゾールの製造方法
CN117794567A (zh) 用于制备纯2-硝基-4-甲基磺酰基苯甲酸的方法
CN111018807B (zh) 一种合成1,2,4-噻二唑衍生物的方法
EP2003116A9 (en) Process for the production of organic oxides
AU2006274461A1 (en) Process for the production of bicalutamide
RU2821509C1 (ru) Способ получения толбутамида
CN103333101B (zh) 吡啶基亚磺酰亚胺化合物及其制备方法
JP6500898B2 (ja) 3−(アルキルスルホニル)ピリジン−2−カルボン酸の製造方法
CN1210856A (zh) 制备杂芳基甲酰胺和酯的方法
CN114276280A (zh) 一种手性苯丁胺醇磺酰胺类化合物的制备方法、制备其的中间体及制备方法
EP0015219A1 (fr) Procédé de préparation d'anilines métachlorées
JPS60185764A (ja) ピリジン誘導体の新規な製造法
CN115784992A (zh) 一种吡唑巯甲基化衍生物的制备方法及其应用