TW202318493A - 用於沉積和蝕刻腔室的上游過程監視 - Google Patents

用於沉積和蝕刻腔室的上游過程監視 Download PDF

Info

Publication number
TW202318493A
TW202318493A TW111125340A TW111125340A TW202318493A TW 202318493 A TW202318493 A TW 202318493A TW 111125340 A TW111125340 A TW 111125340A TW 111125340 A TW111125340 A TW 111125340A TW 202318493 A TW202318493 A TW 202318493A
Authority
TW
Taiwan
Prior art keywords
process chamber
mixing bowl
sensors
sensor
substrate
Prior art date
Application number
TW111125340A
Other languages
English (en)
Inventor
馬坦 拉皮多特
夏 亞雷
Original Assignee
美商英福康公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 美商英福康公司 filed Critical 美商英福康公司
Publication of TW202318493A publication Critical patent/TW202318493A/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45512Premixing before introduction in the reaction chamber
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/52Controlling or regulating the coating process
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67155Apparatus for manufacturing or treating in a plurality of work-stations
    • H01L21/6719Apparatus for manufacturing or treating in a plurality of work-stations characterized by the construction of the processing chambers, e.g. modular processing chambers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67242Apparatus for monitoring, sorting or marking
    • H01L21/67253Process monitoring, e.g. flow or thickness monitoring

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Drying Of Semiconductors (AREA)

Abstract

一種半導體製造系統包括:混合碗、從混合碗接收氣體混合物的分配系統、以及與分配系統流體連通的過程腔室,以用於在襯底上執行多種半導體過程,例如沉積和蝕刻過程。多個混合碗傳感器被設置在混合碗的腔體內,並且發出指示檢測到的氣體的類型和流速率的氣體信號。此外,至少一個過程腔室傳感器被提供在過程腔室內並且被設置在襯底近側。過程腔室傳感器具有在對半導體過程的暴露(即,所沉積材料在該傳感器的表面上的積聚)時改變的諧振性質,並且發出指示襯底的表面上的預期材料的材料過程信號。

Description

用於沉積和蝕刻腔室的上游過程監視
本公開涉及半導體製造領域,尤其是涉及半導體製造系統及用於監視半導體過程的方法。 相關申請的交叉引用 本申請是根據35 U.S.C. 111和37 CFR 1.53的相關部分提交的臨時專利申請。
半導體製造工廠處的沉積和蝕刻過程在半導體集成電路(IC)行業中的器件製造期間被廣泛且普遍地使用。半導體行業為了減小尺寸的努力--這在傳統上被二維結構的光刻分辨率所限制--正在轉變到三維結構(例如,3D柵極和3D NAND)的沉積和蝕刻過程控制。常常,包含多於一種氣體類型的氣體混合物通過沉積和蝕刻過程的序列、以及在主要序列的在先和在後步驟中被使用。此外,器件的關鍵尺寸越來越受到控制沉積和蝕刻過程的能力所影響。 等離子體蝕刻過程常常用於通過等離子體狀態下的點火氣體(其驅動化學反應的活化能)來去除電介質、半導體或金屬層。還可以通過使反應性氣體流動(在非等離子體狀態下)或通過濕蝕刻(在液體狀態下)站來執行材料去除。可以通過各種方法應用腔室部件和經處理的襯底上的薄膜沉積,該各種方法比如等離子體增強(PE)化學氣相沉積(CVD)、低於大氣壓CVD、熱CVD、原子層沉積(ALD)、等離子體增強原子層沉積等。取決於過程步驟,蝕刻和沉積過程可以是各向同性的或各向異性的(比如反應性離子蝕刻-RIE)。 在襯底沉積過程(諸如IC製造過程)中,可以通過不同的反應和不同的過程物質狀態來實現晶圓(其是襯底)上的許多不同的層的沉積。示例技術包括等離子體(PECVD和高密度等離子體-HDP)、氣體-低於大氣壓CVD(SACVD)和液體(電鍍)。用以控制沉積層和器件製造特性的關鍵參數的示例中的一些是:厚度、應力、質量、電阻、顆粒和折射率。不僅針對平均值(在晶圓或一批晶圓上)來測量和控制那些參數,而且還針對晶圓可變性和間隙晶圓可變性來測量和控制那些參數。降低過程可變性促成改進下線(EOL)過程處的製造良率(manufacturing yield)。 例如,在襯底蝕刻中使用以下步驟:晶圓蝕刻步驟,以將圖案(結合光刻步驟)施加到所製造的器件;對晶圓進行清潔以免受污染;在晶體管之間創建溝槽;實現觸點與絕緣體之間的分離;在沉積之前並且為了去除光刻膠而使晶圓表面反應。用以控制晶圓上蝕刻過程的關鍵參數是:所定義特徵的關鍵尺寸,諸如蝕刻速率、厚度、應力、顆粒和缺陷控制、以及其他電氣和光學參數。 襯底蝕刻和沉積可以是或者可以不是同一過程腔室中的同時的過程(例如,在HDP過程中的一些中,蝕刻和沉積可以連續發生或者同時發生),在該腔室中連續地進行,在該腔室中或在不同的腔室中非順序地進行。 用於使用集成傳感器的過程監視的已知方法中的一些包括:質譜儀、光學光譜儀、RF傳感器和真空計。然而,此類方法不是局部化的(localized),並且未能給出關於不同腔室位置處累積或去除的薄膜的詳細信息。非局部化過程控制的一個示例包括等離子體清潔方法,比如光學發射光譜學、殘留氣體分析儀和腔室阻抗測量。然而,所有這些方法測量來自整個腔室的回旋信號,並且不標識不同腔室位置處的過程材料的均勻性或均質性。其他已知的傳感器(比如溫度傳感器)可以定位和讀取沿著各種腔室部件表面的測量結果,但是將不會提供關於與塗覆這些表面相關聯的薄膜狀況的詳細信息。 用以監視氣體混合物或流計時的問題的當前解決方案位於過程腔室和排出管線中。一旦過程故障(“錯誤的”氣體混合物)到達過程腔室或腔室排出,就已經太晚了,並且已經發生了對材料的損壞。 美國專利申請公開號2012/0201954(Wajid)公開了一種QCM,其提供了關於薄膜塗覆或蝕刻的信息,但是採用單個位置,該單個位置未能提供關於不同腔室位置處的過程的均勻性或均質性的信息。其中,過程數據的準確度和值隨著腔室大小的增加而降低。 美國專利申請公開號2014/0053779(Martinson等人)描述了一種在不同腔室位置之間移動的QCM探針。然而,這個解決方案被限制到研究實驗室,並且僅與其中需要真空以用於生產的生產環境兼容。此外,這個解決方案不便於不同腔室位置處的QCM傳感器的同時監視。 因此,存在對以下各項的需要:(i)標識不正確或不成比例的氣體混合物和(ii)控制沉積和蝕刻工具的計時,以准許在沉積和蝕刻過程期間更嚴格的過程控制。
一種半導體製造系統,包括:混合碗(mixing bowl)、從混合碗接收氣體混合物的分配系統、以及與分配系統流體連通的過程腔室,以用於在襯底上執行多種半導體過程,例如沉積和蝕刻過程。多個混合碗傳感器被設置在混合碗的腔體內,並且發出指示檢測的氣體的類型和流速率的氣體信號。此外,至少一個過程腔室傳感器被提供在過程腔室內並且被設置在襯底近側。過程腔室傳感器具有在對半導體過程的暴露(即,所沉積材料在該傳感器的表面上的積聚)時改變的諧振性質,並且發出指示襯底的表面上的預期材料的材料過程信號。控制器響應於氣體和材料過程信號,以控制混合碗中的氣體和襯底的表面上的預期材料的混合。 在又一實施例中,提供了一種用於監視半導體過程的方法。該方法包括以下步驟:(i)將多個混合碗傳感器放置在混合碗的腔體內以檢測氣態材料的至少一種氣體,並且發出指示檢測的氣體的氣體信號;(ii)由分配系統將氣態材料流分配到半導體過程腔室中;(iii)支撐在半導體過程腔室內的襯底以及在襯底近側的過程腔室傳感器,過程腔室傳感器檢測其檢測表面上的沉積和蝕刻過程,以便將襯底的表面上的沉積和蝕刻過程進行關聯;以及(iv)控制進入混合碗的氣體流以及在過程腔室中執行的半導體過程,以優化半導體電路的製造。 上面的實施例僅僅是示例性的。本文中描述的其他實施例在所公開的主題的範圍內。
本公開涉及半導體製造領域,包括半導體製造控制。更特別地,在一個示例中,該半導體製造系統採用位於策略上的上游和下游位置中(即,在上游的混合碗和下游的過程腔室中)的傳感器來監視半導體製造過程,以增強沉積和蝕刻過程的準確度和均質性。例如,本文中公開的是一種獨特的方法,用於在通過噴灑器頭部進行分配之前並且在過程腔室的上游監視在混合碗內的上游位置處的氣體混合物。有利地,由於上游混合碗和下游過程腔室內的過程的非均質性,在上游和下游位置兩者處部署傳感器便於測量不同的材料性質(質量密度和應力)。 在圖1、2和3中,製造系統10的示意性透視圖和截面視圖包括混合碗12、與混合碗12流體連通的分配系統16、以及與分配系統16流體連通的過程腔室20。混合碗16接收來自若干外部氣體供應源18的氣體混合物,並且包括多個氣體傳感器22,該氣體傳感器22被設置在由混合碗16定義的腔體24內部。在下面更全面地描述氣體傳感器22,但是在這個特定時刻只需說,氣體傳感器22檢測氣態混合物的至少一種氣體,並且沿著線26發出氣體信號。氣體傳感器22可以均勻地分佈在混合碗腔體24內,然而,它們優選地位於混合碗腔體的每個開口近側,即,通過橫向或圓柱腔體壁28(在圖3中最佳地看到)。開口與分配系統16的多個徑向管或導管30流體連通,該分配系統16繼而將氣態混合物分配到位於過程腔室20上方的若干噴灑器頭部34。分配系統16可以包括多個導管30,該多個導管30在一端處與混合碗12流體連通,並且在另一端處與一個或多個噴灑器頭部34流體連通。替代地,分配系統16可以包括一個或多個導管30,每個直接通向專用過程腔室20。本公開的圖4中示出了這個實施例。 在本公開中可以採用許多不同類型的傳感器。例如,可以部署石英晶體微量天平(QCM)傳感器或微機電(MEM)傳感器。混合碗16中的石英晶體微量天平(QCM)傳感器22增強了在過程腔室20中執行的沉積和蝕刻過程。被放置在待監視的區域或區附近的QCM傳感器22提供了關於半導體過程的信息,因為可以假設對QCM表面的改變可以與在襯底36的表面上執行的相同過程相關。在一個實施例中,QCM傳感器22具有在對半導體過程的暴露時改變的諧振性質。質量中的改變更改了QCM晶體的諧振響應,這指示在襯底36上發生的預期改變。如將在關於過程腔室20和過程腔室傳感器42的隨後段落中所論述的那樣,可以關於過程腔室20內的半導體製造過程假定相同或類似的指示。在本公開的一個實施例中,QCM傳感器22和42以厚度和應力的已知累積來監視比如溫度、流量、壓力等的過程條件,以監視局部過程條件。代替QCM傳感器,MEM傳感器可以以相同的方式被使用。 用於在本公開中使用的MEM傳感器的一個示例是表面聲波傳感器。本領域普通技術人員將容易理解QCM和MEM傳感器是如何被製造和使用的。本公開利用定位在混合碗16中的不同位置處的多種此類傳感器來標識檢測的氣體的類型、溫度、流速率、濃度等。 在一個或多個實施例中,以下傳感器類型中的任何類型的組合可以用作傳感器:電容器傳感器、光電陰極、光電檢測器傳感器、微加工的超聲換能器、被配置成測量能量或質量改變的振盪器設備、諧振電/光設備、電阻測量傳感器、具有與適合於生成電漿子(Plasmonic)反應的金屬層或金屬圖案接觸的電介質波導的傳感器、發光器件、電子束源、超聲源、光學諧振器、微環諧振器、光子晶體結構諧振器、溫度傳感器。 通過既在混合碗16內的上游又在過程腔室20內的下游的位置處使用QCM傳感器,可以獲得反映了腔室內的實時過程均質性並且在襯底36上發生的重要信息。 過程均質性的測量結果可以通過測量在沉積序列的開始處起始並且以等離子體清潔序列結束的QCM頻率值(針對給定的生產配方)來獲得。此外,不同運行之間的結束-開始型(end to start)的頻率中的差異或增量提供了關於特定位置處的過程穩定性的關鍵信息。 過程均質性測量的另一示例涉及不同晶圓之間的晶圓沉積的開始與結束之間的頻率差異(針對相同的配方)。然後可以計算特定的相關性參數或等式(基於QCM位置)來預測晶圓厚度和厚度可變性。這可以幫助避免使用測試晶圓進行厚度測量,或者可以被用作前饋或反饋信息,以在襯底沉積之前或之後控制不同的過程操作。代替QCM傳感器,MEM傳感器可以以相同的方式被使用。 也可以通過從不同的QCM位置取得等離子體清潔期間的最大頻率來測量過程均質性,這允許用戶知道在特定位置處薄膜是蝕刻不足來累積的還是過度蝕刻來累積的。用於確定過程終點的算法可以使用來自分散在不同位置中的多個QCM傳感器的頻率信息,並且可以用於優化清潔的過程終點(EP)。例如,可以監視頻率導數的移動平均值,直到達到閾值,即,當達到清潔的終點時,頻率的導數變得更低得多。例如,可以有意地達到或實現針對不同部分的這個過度蝕刻或蝕刻不足。相同或相似的方法可以應用於使用材料添加或去除的其他基於時間的過程,比如底塗、預塗等。 使用等離子體或加熱(預處理或烘烤)的基於晶圓的過程(諸如,沉積、蝕刻、緻密化和污染物去除)的終點檢測也可以使用來自分散在不同位置處的多個QCM傳感器22、42的信號輸入來實現。在混合碗16和過程腔室20內部的不同位置處的QCM傳感器22、42可以測量不同的沉積和蝕刻速率,以給出關於過程均勻性的信息。 此外,通過實現每個位置處(即混合碗16和過程腔室20中)的每個具有不同角度取向(相對於襯底36的平面)的至少兩個QCM傳感器22、42,可以測量和/或計算襯底36上以不同角度的處理速率,以給出關於襯底平面中的過程和過程速率的三維信息。 氣態混合物分散在過程腔室20內的多種位置處,並且在圖1、2和3中所示的實施例中,氣態混合物在四(4)個位置處或在過程腔室20內的四個象限中的每一個中進入過程腔室。如上面所提到的,過程腔室傳感器42位於過程腔室20內的若干位置處,並且發出指示在這個位置處發生的半導體過程的材料過程信號。 在圖4和5中所描繪的其他實施例中,混合碗12可以供應多個過程腔室20。不是單個混合碗12專用於過程腔室20,而是混合碗16可以直接饋送若干過程腔室20。在圖5中,混合碗16包括QCM傳感器22和光學光譜儀/質譜儀52的組合,以提供過程腔室20上游的位置處的又一附加信息。QCM傳感器關於混合碗16的內部周邊被設置,而光學光譜儀/質譜儀沿著其上表面或表面被設置。 控制器50響應於:(i)由混合碗16內的氣體傳感器22發出的氣體信號26,和(ii)由過程腔室20內的過程腔室傳感器42發出的材料過程信號46,以控制混合碗16和過程腔室20兩者中的氣態材料的混合物。閉環反饋回路可以用於控制進入過程腔室20的氣態混合物的混合、流量和濃度,從而為了預期沉積在襯底36的表面上或從襯底36的表面去除的材料。 總的來說,本公開的半導體製造系統10提供關於早在過程腔室20之前或在排出線路(未示出)中的氣體混合物的信息,其中可能已經太晚以致於無法校正缺陷。此外,本公開提供一種半導體製造系統以及其方法,該系統和方法便於檢測半導體製造設備的過程腔室中的不正確氣體混合物和/或與其相關聯的計時問題(例如,由於氣體閥的故障)。混合碗傳感器(即,QCM或質譜儀傳感器)可以位於混合碗12的入口處、在混合碗12內部、或在從混合碗12通向噴灑器頭部34或直接通向過程腔室20的排出導管30中。 因此,本公開的半導體製造系統10提供關於早在過程腔室20之前或在排出線路(未示出)中的氣體混合物的信息,其中可能已經太晚以致於無法校正缺陷。除了氣體混合物之外,該半導體製造系統和方法還便於標識氣體供應線路中的大氣或內部洩漏。例如,O2和SiH4可產生放熱反應,這可能導致微粒污染。本公開的半導體製造系統10可以檢測混合碗12中上游的這個反應,以避免對該系統的損壞。以相同的方式,QCM傳感器22能夠檢測生產晶圓的固態或微粒污染。 另外的實施例包括上面描述的實施例中的任一個,其中其部件、功能或結構中的一個或多個與上面描述的不同實施例的部件、功能或結構中的一個或多個互換、由其替換、或由其擴充。 應當理解的是,對本文中描述的實施例的各種改變和修改對於本領域技術人員來說將是顯而易見的。在不脫離本公開的精神和範圍的情況下並且在不減少其預期優點的情況下,可以作出此類改變和修改。因此,所意圖的是,此類改變和修改由所附申請專利範圍來覆蓋。 雖然已經在前述說明書中公開了本公開的若干實施例,但是本領域技術人員要理解,受益於前述描述和相關聯附圖中呈現的教導,本公開所屬的本公開的許多修改和其他實施例將會想到。因此,要理解的是,本公開不限於上面在本文中公開的特定實施例,並且許多修改和其他實施例意圖被包括在所附申請專利範圍的範圍內。此外,雖然在本文中以及在隨後的申請專利範圍中採用了特定術語,但是它們僅在通用和描述性的意義上被使用,並且不是出於限制本公開以及隨後的申請專利範圍的目的。
10:製造系統 12:混合碗 16:分配系統 18:氣體供應源 20:過程腔室 22:QCM傳感器 24:腔體 26:氣體信號 28:腔體壁 30:導管 34:噴灑器頭部 36:襯底 42:過程腔室傳感器 46:材料過程信號 50:控制器 52:光學光譜儀/質譜儀
為了其中本公開的特徵可以被理解的方式,可以參考某些實施例來進行詳細描述,其中的一些在附圖中被圖示。然而,要注意的是,附圖僅圖示了某些實施例,並且因此不要被認為是對其範圍的限制,因為所公開的主題的範圍也涵蓋其他實施例。附圖不一定按比例,重點通常被放置在說明某些實施例的特徵上。在附圖中,相似的數字用來遍及各種視圖指示相似的部分,其中: [圖1]是包括混合碗、分配系統和過程腔室的半導體製造系統的透視圖; [圖2]是基本上沿著圖1的線2-2取得的截面視圖;以及 [圖3]是沿著與混合碗和過程腔室所定義的豎直軸線正交的平面基本上沿著圖2的線3-3取得的截面視圖。 [圖4]是半導體製造系統的另一實施例的透視圖,其中分配系統包括多個導管,其中導管中的至少一個將氣體直接分配到過程腔室。 [圖5]是半導體製造系統的另一實施例的透視圖,其中混合碗傳感器包括多個石英晶體微量天平(QCM)傳感器和多個光學光譜儀/質譜儀,並且其中分配系統將氣體混合物引導到多個過程腔室。 對應的參考字符遍及若干視圖指示對應的部分。本文中闡述的示例說明了若干實施例,但是不應當被解釋為以任何方式在範圍方面進行限制。
10:製造系統
12:混合碗
16:分配系統
18:氣體供應源
20:過程腔室
22:QCM傳感器
26:氣體信號
30:導管
34:噴灑器頭部
36:襯底
42:過程腔室傳感器
46:材料過程信號
50:控制器

Claims (14)

  1. 一種半導體製造系統,包括: 混合碗,其定義了用於接收用於在襯底上執行半導體過程的材料的氣態混合物的腔體; 多個混合碗傳感器,其被設置在所述混合碗的所述腔體內以檢測所述材料的氣態混合物的至少一種氣體,所述傳感器發出指示檢測的氣體的氣體信號; 材料分配系統,用於從所述混合碗接收氣態材料並且在過程腔室內分配所述氣態材料; 過程腔室,用於容納襯底以及在所述襯底的表面近側的至少一個過程腔室傳感器,所述過程腔室與所述材料分配系統流體連通以從所述混合碗接收材料的氣態混合物,並且在所述至少一個過程腔室傳感器存在的同時在所述襯底的表面上執行半導體過程, 所述過程腔室傳感器具有在對所述半導體過程的暴露時改變的諧振特性,所述過程腔室傳感器發出指示所述襯底的表面上的預期材料的材料過程信號;以及 控制器,其響應於所述氣體和材料過程信號來控制所述混合碗中的氣態材料和所述襯底上的預期材料的混合物。
  2. 如請求項1所述的半導體製造系統,其中所述分配系統包括用於將所述氣態混合物的流分配到過程腔室的多個噴灑器頭部。
  3. 如請求項1所述的半導體製造系統,其中所述分配系統包括用於將所述氣態混合物的流直接遞送到所述過程腔室的至少一個導管。
  4. 如請求項1所述的半導體製造系統,其中所述分配系統包括多個所述導管,所述導管中的每一個將所述氣態混合物的流分配到所述過程腔室。
  5. 如請求項1所述的半導體製造系統,其中所述混合碗傳感器包括來自以下各項的組的傳感器:石英晶體微量天平(QCM)、光學和質譜儀傳感器。
  6. 如請求項1所述的半導體製造系統,其中所述材料過程腔室傳感器包括來自以下各項的組的傳感器:石英晶體微量天平(QCM)和微機電(MEM)傳感器。
  7. 如請求項2所述的半導體製造系統,其中所述混合碗定義了具有若干腔體壁開口的圓形平面形狀,並且其中混合碗傳感器被設置在每個腔體壁開口近側,以檢測從所述混合碗流出並且朝向所述噴灑器頭部中的所選一個的氣態材料。
  8. 如請求項5所述的半導體製造系統,其中所述混合碗定義了腔體壁中的開口,以便於氣態材料到每個導管中的流動,並且其中所述多個混合碗傳感器中的至少一個被設置在所述腔體壁開口近側,以檢測從所述混合碗流出並且朝向所述噴灑器頭部中的所選一個的氣態材料。
  9. 如請求項5所述的半導體製造系統,其中所述混合碗定義了用於包容所述氣態混合物的腔體,並且其中所述多個混合碗傳感器中的至少一個沿著所述腔體的上表面被設置以檢測從所述混合碗流出的氣態材料。
  10. 如請求項1所述的半導體製造系統,其中所述混合碗定義了用於包容所述氣態混合物的腔體,其中所述多個混合碗傳感器中的至少一個是沿著所述腔體的內部周邊表面被設置的石英晶體微量天平(QCM),並且其中所述多個混合碗傳感器中的至少另一個是沿著所述腔體的上表面被設置的質譜儀傳感器,以檢測從所述混合碗流出的氣態材料。
  11. 如請求項1所述的半導體製造系統,進一步包括多個過程腔室傳感器,每個過程腔室傳感器在所述襯底的表面近側,並且其中所述材料過程信號根據所述過程腔室傳感器相對於所述襯底的距離和取向被關聯,以增強所述襯底與所述過程腔室傳感器之間的相關性數據。
  12. 一種用於監視從氣體分配系統接收氣體的混合物的半導體過程腔室中的半導體製造過程的方法,所述氣體分配系統具有在下游端處與所述半導體過程腔室流體連通的多個噴灑器頭部和在上游端處與混合碗流體連通的多個導管,所述方法包括以下步驟: 將多個混合碗傳感器放置在所述混合碗的腔體內以檢測氣態材料的至少一種氣體,並且發出指示檢測到的氣體的氣體信號; 通過所述分配系統的噴灑器頭部將氣態材料流分配到所述半導體過程腔室中; 支撐在所述半導體過程腔室內的襯底以及在所述襯底近側的過程腔室傳感器,所述過程腔室傳感器檢測其檢測表面上的沉積和蝕刻過程,以便將所述襯底的表面上的沉積和蝕刻過程進行關聯。
  13. 如請求項12所述的方法,其中所述過程腔室傳感器的諧振性質在對所述半導體過程的暴露和所沉積材料在所述傳感器的檢測表面上的積聚時被更改,並且進一步包括以下步驟: 發出指示所述襯底的表面上的預期材料的材料過程信號。
  14. 如請求項12所述的方法,進一步包括以下步驟: 將多個傳感器放置在過程腔室內,以測量在所述多個傳感器的每一個近側發生的材料過程數據,第一傳感器定義了所述過程腔室內的第一空間位置,並且第二傳感器定義了過程腔室內的第二空間位置,第一空間位置具有與第二空間位置不同的角度取向。
TW111125340A 2021-07-07 2022-07-06 用於沉積和蝕刻腔室的上游過程監視 TW202318493A (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US202163219032P 2021-07-07 2021-07-07
US63/219,032 2021-07-07

Publications (1)

Publication Number Publication Date
TW202318493A true TW202318493A (zh) 2023-05-01

Family

ID=84802012

Family Applications (1)

Application Number Title Priority Date Filing Date
TW111125340A TW202318493A (zh) 2021-07-07 2022-07-06 用於沉積和蝕刻腔室的上游過程監視

Country Status (5)

Country Link
EP (1) EP4367713A1 (zh)
KR (1) KR20240033001A (zh)
IL (1) IL309944A (zh)
TW (1) TW202318493A (zh)
WO (1) WO2023283282A1 (zh)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110265951A1 (en) * 2010-04-30 2011-11-03 Applied Materials, Inc. Twin chamber processing system
US20120058630A1 (en) * 2010-09-08 2012-03-08 Veeco Instruments Inc. Linear Cluster Deposition System
US9182378B2 (en) * 2013-03-15 2015-11-10 Inficon, Inc. High capacity monitor crystal exchanger utilizing an organized 3-D storage structure

Also Published As

Publication number Publication date
EP4367713A1 (en) 2024-05-15
KR20240033001A (ko) 2024-03-12
IL309944A (en) 2024-03-01
WO2023283282A1 (en) 2023-01-12

Similar Documents

Publication Publication Date Title
TWI795358B (zh) 以基團來清潔電漿處理裝置之一腔室的方法及電漿處理裝置
KR101339561B1 (ko) 가스 공급 시스템으로부터 플라즈마 처리 챔버로의 가스플로우 레이트의 확인 방법
KR20120004158U (ko) 플라즈마 처리 장치의 교체가능한 상부 체임버 부품
JP7391859B2 (ja) プラズマチャンバ壁の状態のリアルタイム監視のための方法および装置
US7537671B2 (en) Self-calibrating optical emission spectroscopy for plasma monitoring
US11393663B2 (en) Methods and systems for focus ring thickness determinations and feedback control
US11662237B2 (en) MEMS coriolis gas flow controller
KR20160041802A (ko) 비말 동반된 증기를 측정하기 위한 시스템들 및 방법들
KR101456110B1 (ko) 챔버세정의 식각종점 검출방법
US10760944B2 (en) Hybrid flow metrology for improved chamber matching
US20210280399A1 (en) Capacitive sensors and capacitive sensing locations for plasma chamber condition monitoring
TW202318493A (zh) 用於沉積和蝕刻腔室的上游過程監視
US8148268B2 (en) Plasma treatment apparatus and plasma treatment method
JP7382339B2 (ja) Memsに基づくコリオリ質量流コントローラ
US20230135167A1 (en) System and method for monitoring semiconductor processes
TW202036711A (zh) 用於將對基板體電阻率變動響應之沉積或蝕刻速率變化降低的射頻功率補償
CN115152009A (zh) 用于腔室条件监测的电容传感器
US20140261703A1 (en) Method to detect valve deviation
US20080047581A1 (en) Vapor phase growth and apparatus and its cleaning method
TWI837137B (zh) 具備擁有經冷卻面板之噴淋頭的基板處理腔室
TW202129793A (zh) 在基板處理系統中用於負載鎖室的自動清潔
JP2006253204A (ja) プラズマ処理装置の試料載置電極
JP2008288420A (ja) 半導体製造装置およびそのクリーニング方法
CN107644811A (zh) 博世工艺的刻蚀终点监测方法以及博世刻蚀方法
KR19990056586A (ko) 플라즈마 식각 설비의 반응가스 분사판 교체 시기예측방법 및 장치