TW202317205A - 用於癌症治療之經放射性標記之parp抑制劑結合物 - Google Patents

用於癌症治療之經放射性標記之parp抑制劑結合物 Download PDF

Info

Publication number
TW202317205A
TW202317205A TW111124364A TW111124364A TW202317205A TW 202317205 A TW202317205 A TW 202317205A TW 111124364 A TW111124364 A TW 111124364A TW 111124364 A TW111124364 A TW 111124364A TW 202317205 A TW202317205 A TW 202317205A
Authority
TW
Taiwan
Prior art keywords
parpi
parp
aryl
tta
composition according
Prior art date
Application number
TW111124364A
Other languages
English (en)
Inventor
邁克爾 羅德 扎魯茨基
甘尼桑 瓦迪亞納坦
Original Assignee
美國公爵大學
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 美國公爵大學 filed Critical 美國公爵大學
Publication of TW202317205A publication Critical patent/TW202317205A/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K51/00Preparations containing radioactive substances for use in therapy or testing in vivo
    • A61K51/02Preparations containing radioactive substances for use in therapy or testing in vivo characterised by the carrier, i.e. characterised by the agent or material covalently linked or complexing the radioactive nucleus
    • A61K51/04Organic compounds
    • A61K51/0402Organic compounds carboxylic acid carriers, fatty acids
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K51/00Preparations containing radioactive substances for use in therapy or testing in vivo
    • A61K51/02Preparations containing radioactive substances for use in therapy or testing in vivo characterised by the carrier, i.e. characterised by the agent or material covalently linked or complexing the radioactive nucleus
    • A61K51/04Organic compounds
    • A61K51/041Heterocyclic compounds
    • A61K51/044Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine, rifamycins
    • A61K51/0459Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine, rifamycins having six-membered rings with two nitrogen atoms as the only ring hetero atoms, e.g. piperazine
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K51/00Preparations containing radioactive substances for use in therapy or testing in vivo
    • A61K51/02Preparations containing radioactive substances for use in therapy or testing in vivo characterised by the carrier, i.e. characterised by the agent or material covalently linked or complexing the radioactive nucleus
    • A61K51/04Organic compounds
    • A61K51/08Peptides, e.g. proteins, carriers being peptides, polyamino acids, proteins
    • A61K51/10Antibodies or immunoglobulins; Fragments thereof, the carrier being an antibody, an immunoglobulin or a fragment thereof, e.g. a camelised human single domain antibody or the Fc fragment of an antibody
    • A61K51/1045Antibodies or immunoglobulins; Fragments thereof, the carrier being an antibody, an immunoglobulin or a fragment thereof, e.g. a camelised human single domain antibody or the Fc fragment of an antibody against animal or human tumor cells or tumor cell determinants

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Veterinary Medicine (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Animal Behavior & Ethology (AREA)
  • Epidemiology (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Oncology (AREA)
  • Immunology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Organic Chemistry (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)

Abstract

本發明係關於一種PARP抑制劑結合物,包括經放射性標記之PARP抑制劑結合物;以及使用其治療癌症之方法。

Description

用於癌症治療之經放射性標記之PARP抑制劑結合物
本發明大體上係關於用於治療之聚(ADP-核糖)聚合酶抑制劑(PARPi)結合物,且更特定言之,係關於包括腫瘤靶向劑之PARPi結合物,諸如包括腫瘤靶向劑之經放射性標記之PARPi結合物。
聚(ADP-核糖)聚合酶(Poly(ADP-ribose) polymerase;PARP)為參與DNA修復、複製及基因轉錄之酶家族。詳言之,PARP-1充當第一反應子,其偵測DNA損傷且牽涉於若干修復路徑中。基於此分子功能,及相較於在正常組織中,PARP-1過度表現於多種腫瘤中之觀測結果,已廣泛研究PARP-1抑制劑(PARPi)以治療各種癌症。亦已探索將PARP-1抑制劑與放射活性組合之想法,因為PARP-1結合於DNA可能提高在癌細胞細胞核中釋放衰變能之後細胞殺傷之效率。
儘管對PARP-1抑制劑具有濃厚興趣,但近期研究僅展示較少效果。因此,此項技術中需要對PARPi療法之進一步改良。
本申請案提供結合物,其包含:(i)腫瘤特異性靶向劑,(ii)經放射性標記之PARP抑制劑,諸如經放射性標記之PARP-1抑制劑,及(iii)靶向劑與PARP抑制劑之間的連接子。在本文考慮之特定實施例中,連接子允許經放射性標記之PARP抑制劑在受體介導之內化之後自溶酶體/胞內體逃逸,因此其可移動至細胞質且到達細胞核,其可在細胞核中結合於PARP。所揭示之PARP抑制劑結合物可選擇性地靶向PARP過度表現細胞,潛在地降低實現所需治療益處及同時減輕或避免與全身性投與小分子PARP抑制劑相關之副作用所需的血清含量。在本發明之一較佳態樣中,結合物包括適合於目標癌細胞之放射線療法的放射性核種。
在一實施例中,組合物包含經放射性標記之聚(ADP-核糖)聚合酶-1抑制劑(PARPi(Rd))結合物,其中該結合物包含偶合至腫瘤靶向劑(TTA)之PARPi(Rd)。
在一實施例中,該PARPi結合物包含式I: PARPi(Rd) - L - TTA;(I) 其中Rd為放射性標記且PARPi(Rd)為經放射性標記之PARPi, 其中L為連接子且TTA為腫瘤靶向劑,且 其中L使PARPi(Rd)偶合至TTA。
在一特定實施例中,該PARP抑制劑為PARP-1抑制劑。PARP抑制劑之實例包括但不限於:奧拉帕尼(olaparib)、維利帕尼(veliparib)、盧卡帕尼(rucaparib)、尼拉帕尼(niraparib)、帕米帕尼(pamiparib)、EB-47及他拉唑帕尼(talazoparib)。可選擇PARP抑制劑以使PARP-1對DNA之結合親和力相較於不受抑制之PARP-1對DNA之結合親和力有所提高。可選擇PARP抑制劑以使PARP-1自DNA之釋放相較於不受抑制之PARP-1自DNA之釋放有所減緩。在一特定實施例中,該PARP抑制劑包含奧拉帕尼。在另一特定實施例中,該PARP抑制劑包含他拉唑帕尼。
在一特定實施例中,該TTA為單域抗體片段(sdAb)。在另一特定實施例中,該TTA為前列腺特異性膜抗原(prostate specific membrane antigen;PSMA)抑制劑/配體。
在一特定實施例中,Rd包含發出短程輻射之放射性核種。在另一特定實施例中,Rd因發射歐傑電子(Auger electron)及/或α粒子而衰變。
在一特定實施例中,Rd具有以下結構: Cg 1- ArQ - Cg 2; 其中Cg 1為使ArQ偶合至PARPi之偶合基團,且Cg 2為使ArQ偶合至L之偶合基團; 其中Cg 1及Cg 2各自獨立地為丁二醯亞胺基氧基羰基;順丁烯二醯亞胺;-OC(O)-;-C(O)O-;-OC(O)O-;-OC(O)N(R 1)-;-N(R 1)C(O)-;-C(O)N(R 1)-;-N(R 1)C(O)O-;-N(R 1)C(O)N(R 2)-;-C(O)-;-OC(R 1)(R 2)-;-C(R 1)(R 2)O-;-OC(R 1)(R 2)O-;-C(R 1)(R 2)-;-S-;-S-S-;C-;=C-;-N=;=N-;-C=N-;-N=C-;-O-N=;=N-O-;-C=N-O-;-O-N=C-;-N(R 1)-N=;=N-N(R 1)-;-N(R 1)-N=C-;或-C=N-N(R 1)-;或 Cg 1及Cg 2各自獨立地為具有兩個選自由以下組成之群的官能基之苯基:-OC(O)-;-C(O)O-;-OC(O)O-;-OC(O)N(R 1)-;-N(R 1)C(O)-;-C(O)N(R 1)-;-N(R 1)C(O)O-;-N(R 1)C(O)N(R 2)-;-C(O)-;-OC(R 1)(R 2)-;-C(R 1)(R 2)O-;-OC(R 1)(R 2)O-;-C(R 1)(R 2)-;-S-;-S-S-;C-;=C-;-N=;=N-;-C=N-;-N=C-;-O-N=;=N-O-;-C=N-O-;-O-N=C-;-N(R 1)-N=;=N-N(R 1)-;-N(R 1)-N=C-;及-C=N-N(R 1)-; 其中R 1及R 2係獨立地選自H、分支鏈或非分支鏈C 1-10烷基或芳基; 其中Ar為芳基、雜芳基或放射性核種螯合劑;且 其中Q為放射性核種。
在一特定實施例中,L具有以下結構: ES 1- SS - ES 2其中ES 1具有以下結構:Cg 3-SP-; 其中SS為二硫鍵; 其中ES 2具有以下結構:-SP-Cg 4-; 其中Cg 3及Cg 4各自獨立地為丁二醯亞胺基氧基羰基、順丁烯二醯亞胺、-OC(O)-;-C(O)O-;-OC(O)O-;-OC(O)N(R 1)-;-N(R 1)C(O)-;-C(O)N(R 1)-;-N(R 1)C(O)O-;-N(R 1)C(O)N(R 2)-;-C(O)-;-OC(R 1)(R 2)-;-C(R 1)(R 2)O-;-OC(R 1)(R 2)O-;-C(R 1)(R 2)-;-S-;-S-S-;C-;=C-;-N=;=N-;-C=N-;-N=C-;-O-N=;=N-O-;-C=N-O-;-O-N=C-;-N(R 1)-N=;=N-N(R 1)-;-N(R 1)-N=C-;或-C=N-N(R 1)-;或Cg 1及Cg 2各自獨立地為具有兩個選自由以下組成之群的官能基之苯基:-OC(O)-;-C(O)O-;-OC(O)O-;-OC(O)N(R 1)-;-N(R 1)C(O)-;-C(O)N(R 1)-;-N(R 1)C(O)O-;-N(R 1)C(O)N(R 2)-;-C(O)-;-OC(R 1)(R 2)-;-C(R 1)(R 2)O-;-OC(R 1)(R 2)O-;-C(R 1)(R 2)-;-S-;-S-S-;C-;=C-;-N=;=N-;-C=N-;-N=C-;-O-N=;=N-O-;-C=N-O-;-O-N=C-;-N(R 1)-N=;=N-N(R 1)-;-N(R 1)-N=C-;及-C=N-N(R 1)-; 其中R 1及R 2係獨立地選自H、分支鏈或非分支鏈C 1-10烷基或芳基; 其中SP (間隔子)為-C 1-C 10伸烷基-;-C 1-C 10伸烯基-;-C 1-C 10伸炔基-;碳環-;-O-(C 1-C 8伸烷基)-;O-(C 1-C 8伸烯基)-;-O-(C 1-C 8伸炔基)-;-伸芳基-;-C 1-C 10伸烷基-伸芳基-;-C 2-C 10伸烯基-伸芳基;-C 2-C 10伸炔基-伸芳基;伸芳基-C 1-C 10伸烷基-;-伸芳基-C 2-C 10伸烯基-;-伸芳基-C 2-C 10伸炔基-;-C 1-C 10伸烷基-(碳環)-;-C 2-C 10伸烯基-(碳環)-;C 2-C 10伸炔基-(碳環)-;-(碳環)-C 1-C 10伸烷基-;-(碳環)-C 2-C 10伸烯基-;-(碳環)-C 2-C 10伸炔基;-雜環-;-C 1-C 10伸烷基-(雜環)-;-C 2-C 10伸烯基-(雜環)-;-C 2-C 10伸炔基-(雜環)-;-(雜環)-C 1-C 10伸烷基-;-(雜環)-C 2-C 10伸烯基-;-(雜環)-C 1-C 10伸炔基-;-(CH 2CH 2O) r-;或-(CH 2CH 2O) r-CH 2-, 其中 r為1至10範圍內之整數; 其中Cg 3為與Rd形成共價鍵之偶合基團;且其中Cg 4為與TTA形成共價鍵之偶合基團。
在一特定實施例中,L具有以下結構: ES - ECL - SIG 其中ES具有以下結構:Cg 3-SP-Cg 4; Cg 3及Cg 4各自獨立地為丁二醯亞胺基氧基羰基、順丁烯二醯亞胺、-OC(O)-;-C(O)O-;-OC(O)O-;-OC(O)N(R 1)-;-N(R 1)C(O)-;-C(O)N(R 1)-;-N(R 1)C(O)O-;-N(R 1)C(O)N(R 2)-;-C(O)-;-OC(R 1)(R 2)-;-C(R 1)(R 2)O-;-OC(R 1)(R 2)O-;-C(R 1)(R 2)-;-S-;-S-S-;C-;=C-;-N=;=N-;-C=N-;-N=C-;-O-N=;=N-O-;-C=N-O-;-O-N=C-;-N(R 1)-N=;=N-N(R 1)-;-N(R 1)-N=C-;或-C=N-N(R 1)-;或Cg 1及Cg 2各自獨立地為具有兩個選自由以下組成之群的官能基之苯基:-OC(O)-;-C(O)O-;-OC(O)O-;-OC(O)N(R 1)-;-N(R 1)C(O)-;-C(O)N(R 1)-;-N(R 1)C(O)O-;-N(R 1)C(O)N(R 2)-;-C(O)-;-OC(R 1)(R 2)-;-C(R 1)(R 2)O-;-OC(R 1)(R 2)O-;-C(R 1)(R 2)-;-S-;-S-S-;C-;=C-;-N=;=N-;-C=N-;-N=C-;-O-N=;=N-O-;-C=N-O-;-O-N=C-;-N(R 1)-N=;=N-N(R 1)-;-N(R 1)-N=C-;及-C=N-N(R 1)-; 其中R 1及R 2係獨立地選自H、分支鏈或非分支鏈C 1-10烷基或芳基; 其中Cg 3為與Rd組分形成共價鍵之偶合基團,且Cg 4為與ECL形成共價鍵之偶合基團; 其中SP為-C 1-C 10伸烷基-;-C 1-C 10伸烯基-;-C 1-C 10伸炔基-;碳環-;-O-(C 1-C 8伸烷基)-;O-(C 1-C 8伸烯基)-;-O-(C 1-C 8伸炔基)-;-伸芳基-;-C 1-C 10伸烷基-伸芳基-;-C 2-C 10伸烯基-伸芳基;-C 2-C 10伸炔基-伸芳基;伸芳基-C 1-C 10伸烷基-;-伸芳基-C 2-C 10伸烯基-;-伸芳基-C 2-C 10伸炔基-;-C 1-C 10伸烷基-(碳環)-;-C 2-C 10伸烯基-(碳環)-;C 2-C 10伸炔基-(碳環)-;-(碳環)-C 1-C 10伸烷基-;-(碳環)-C 2-C 10伸烯基-;-(碳環)-C 2-C 10伸炔基;-雜環-;-C 1-C 10伸烷基-(雜環)-;-C 2-C 10伸烯基-(雜環)-;-C 2-C 10伸炔基-(雜環)-;-(雜環)-C 1-C 10伸烷基-;-(雜環)-C 2-C 10伸烯基-;-(雜環)-C 1-C 10伸炔基-;-(CH 2CH 2O) r-;或-(CH 2CH 2O) r-CH 2-,其中 r為1至10範圍內之整數; 其中ECL為酶可裂解連接子;且 其中SIG為在ECL與TTA之間形成共價鍵之自行分解基團,其中在ECL裂解後,該SIG分解以自ECL釋放TTA。
在一特定實施例中,該ECL可由溶酶體酶裂解。在一特定實施例中,該溶酶體酶可為溶酶體蛋白酶。在一特定實施例中,該ECL為由兩個至四個胺基酸構成之肽。在另一特定實施例中,該溶酶體酶為溶酶體醣苷酶。
在一實施例中,該PARPi(Rd)-L具有結構( VI):
Figure 02_image001
其中X為放射性核種。
在一實施例中,該PARPi(Rd)-L具有結構( IX):
Figure 02_image003
其中X為放射性核種。
在一實施例中,該PARPi(Rd)-L具有結構( 13):
Figure 02_image005
其中X為放射性核種。
在一實施例中,該PARPi(Rd)-L具有以下結構:
Figure 02_image007
其中X為放射性核種。
在一實施例中,一種組合物包含聚(ADP-核糖)聚合酶-1抑制劑(PARPi)結合物,其中該結合物包含偶合至腫瘤靶向劑(TTA)之PARPi。在一特定實施例中,該PARPi結合物包含式I: PARPi - L - TTA;(I) 其中L為連接子且TTA為腫瘤靶向劑,且 其中L使PARPi偶合至TTA。
在一實施例中,該醫藥組合物包含本文所描述之結合物或醫藥學上可接受之載劑。在一特定實施例中,該醫藥組合物進一步包含光敏劑。在一實施例中,該醫藥組合物可用於癌症治療。
在一實施例中,一種放射敏化癌症個體中之腫瘤的方法包含向該個體投與包含式I中所描述之結合物及醫藥學上可接受之載劑的醫藥組合物。
在一實施例中,一種治療個體之癌症之方法包含以下步驟:(i)向該個體投與包含本文所描述之結合物及醫藥學上可接受之載劑的醫藥組合物,及(ii)投與游離輻射。該治療癌症之方法可應用於卵巢癌、乳癌、前列腺癌或腦癌。在一實施例中,該個體患有參與同源重組修復(HRR)路徑之至少一種基因之缺乏症。
在一實施例中,一種治療個體之癌症之方法包含向該個體投與包含本文所描述之結合物的醫藥組合物。在一特定實施例中,該醫藥組合物與化學療法組合投與。在另一特定實施例中,該醫藥組合物與放射線療法組合投與。此治療癌症之方法可應用於卵巢癌、乳癌、前列腺癌或腦癌。在一實施例中,該個體患有參與同源重組修復(HRR)路徑之至少一種基因之缺乏症。
相關申請案
本申請案主張2021年6月29日申請之美國臨時專利申請案第63/216,301號及2022年6月24日申請之美國臨時專利申請案第63/355,336號之優先權,其均以引用之方式併入本文中。
本發明提供新穎目標PARP抑制劑結合物、用於製備結合物之製程及結合物之用途。雖然眾所周知PARP抑制劑,包括經放射性標記之PARP抑制劑,可用於針對癌症之治療性及治療診斷學策略中,但當前之經放射性標記之PARP抑制劑為親脂性的且被動地擴散至癌性及非癌性細胞中,從而使其治療指數降低。本申請案提供利用PARP之優勢(存在於多種腫瘤中,能夠促進作用治療劑至細胞核之短程遞送)而無當前方法缺乏腫瘤特異性之缺點的組合物及方法。
更特定言之,本文揭示具有此類特性之結合物,其中代表性結合物包含:(i)腫瘤特異性靶向劑,(ii)PARP抑制劑,諸如PARP-1抑制劑,及(iii)靶向劑與PARP抑制劑之間的連接子。在本文考慮之特定實施例中,連接子允許經放射性標記之分子在受體介導之內化之後自溶酶體/胞內體逃逸,因此其可移動至細胞質且到達細胞核,其可在細胞核中結合於PARP。所揭示之PARP抑制劑結合物可選擇性地靶向PARP過度表現細胞,潛在地降低實現所需治療益處及同時減輕或避免與全身性投與小分子PARP抑制劑相關之副作用所需的血清含量。
除非本文另有指示,否則結合本發明使用之科學與技術術語將具有一般熟習此項技術者通常理解之含義。此外,除非上下文另有需要,否則單數術語應包括複數且複數術語應包括單數。一般而言,本文所描述之與細胞及組織培養、分子生物學、免疫學、微生物學、放射化學、遺傳學以及蛋白質與核酸化學及雜合結合使用之命名法以及其技術為此項技術中所熟知及常用的命名法及技術。
I. PARP聚(ADP-核糖)聚合酶(PARP)蛋白亦稱為ADP-核糖基轉移酶白喉毒素樣酶(ADP-ribosyl transferase diphtheria toxin-like enzyme;ARTD),構成各種細胞功能所牽涉之酶之超家族,該等細胞功能包括對應激(尤其腫瘤微環境中之生理條件)之細胞反應,諸如低氧、自噬及癌症相關免疫反應。PARP蛋白共用識別為經由稱為聚(ADP -核糖基)化或PARylation之過程負責ADP-核糖之合成及其至各種受質之轉移的「PARP標籤(PARP signature)」的50胺基酸序列。
該PARP超家族有17個成員:PARP-1 (ARTD1)、PARP-2 (ARTD2)、PARP-3 (ARTD3)、PARP-4 (ARTD 4)、端錨聚合酶-1 (Tankyrase-1) (TANK1;PARP-5A、ARTD5)、端錨聚合酶-2 (TANK2;PARP-5B、ARTD6)、PARP-6 (ARTD17)、PARP-7 (ARTD7、TIPARP)、PARP-8 (ARTD16)、PARP-9 (ARTD9、BAL1)、PARP-10 (ARTD10)、PARP-11 (ARTD11)、PARP-12 (ARTD12)、PARP-13 (ARTD13)、PARP-14 (ARTD8、BAL2)、PARP-15 (ARTD7、BAL3)及PARP-16 (ARTD15)。該超家族根據酶功能進一步細分: DNA依賴性PARP,含有鋅指DNA結合域,且在DNA損傷期間具有活性(PARP-1、PARP-2及PARP-3); 端錨聚合酶,其含有錨蛋白域重複區及負責蛋白質間相互作用之無菌α模體(SAM)(PARP-5A及PARP-5B); CCCH PARP,含有參與RNA結合之CCCH模體(PARP-7、PARP-12、PARP-13); 大PRP (Macro-PRP),含有大型域摺疊且介導蛋白質至ADP核糖基化位點之遷移(PARP-9、PARP-14及PARP-15);及 其他PARP,其不符合前述子群中之任一者(PARP-4、PARP-6、PARP-8、PARP-10、PARP-11及PARP-16)。
PARP-1為首次鑑別之PARP且已經最廣泛研究。PARP-1由區域1q41-q42編碼且經組成性表現。在過去十年中,PARP-1抑制劑已備受關注,尤其是用於治療乳癌基因1或2 (BRAC1/2)缺乏型卵巢癌及乳癌。參見例如Jannetti等人, Frontiers in Pharmacology, 2020, 11: 170;Martí等人, Cancers, 2020, 12:739;及Demény and Virág, Cancers, 2021, 13: 2042。
本發明之PARPi結合物可包括任何PARP之抑制劑。在本發明之一些態樣中,PARPi結合物包含DNA依賴性PARP (例如PARP-1、PARP-2及PARP-3)之抑制劑。在本發明之較佳態樣中,PARPi結合物包含PARP-1抑制劑。在其他態樣中,PARPi結合物包含PARP-2抑制劑、PAPR-3抑制劑、PARP-5a抑制劑或PARP-5b抑制劑。
II. PARP 抑制劑如本文所用之「PARP抑制劑」為任何減弱或降低PARP功能之藥劑。PARP酶功能之大量分析為此項技術中已知且通常可商購。代表性分析包括但不限於PARP1酶活性分析(Sigma-Aldrich 17-10149)、PARP/細胞凋亡通用比色分析套組(R&D Systems 4677-096-K)、HT PARP活體內藥效動力學分析II (R&D Systems 4520-096-K)、PARP1比色活性分析套組(BPS Bioscience 80580)、PARP1化學發光活性分析套組(Amsbio 80551)、Wigle等人 Cell Chem Biol., 2020, 27:7, P877-887.E14及Belhadj等人 Plos One, 2021, 16(1) e0245369。
在本發明之某些態樣中,相較於在無PARP抑制劑存在下進行之對照分析,PARP抑制劑將使PARP功能減弱或降低至少10%、至少20%、至少30%、至少40%、至少50%、至少60%、至少70%、至少80%、至少90%、至少95%或至少99%。在本發明之其他態樣中,相較於在無PARP抑制劑存在下進行之對照分析,PARP抑制劑將使PARP功能減弱或降低至少2倍、至少5倍、至少10倍、至少50倍、至少100倍或更多。
代表性PARP-1抑制劑包括但不限於奧拉帕尼、盧卡帕尼、尼拉帕尼、帕米帕尼及他拉唑帕尼。另外的代表性PARP-1抑制劑包括但不限於維利帕尼(AbbVie)、NMS-P293 (Nerviano Medical Sciences)、斯坦帕尼(stenoparib)(Allarity Therapeutics)、JPI-289 (Jeli Pharmaceuticals)、NOV-140101 (Ildong Pharmaceutical)、SC-10914 (Jiangxi Qingfeng Pharmaceutical)、森納帕尼(senaparib) (Impact Therapeutics)、弗左帕尼(fluzoparib) (Jiangsu Hengrui Medicine)、帕米帕尼(BeiGene)及1-哌𠯤乙醯胺-4-[1-(6-胺基-9H-嘌呤-9-基)-1-去氧-d-呋喃核糖]-N-(2,3-二氫-1H-異吲哚-4-基)-1-酮(EB-47)(Qiu等人 Acta Cryst.2014;D70 2740-2753,其以引用的方式併入本文中)。參見例如美國專利第7151102號、第10130636號、第8071579號、第8012976號、第9580410號、第8993594號、第8236802號、第8815891號、第9844550號、第9926304號、第9273052號、第9617273號及美國公開申請案第2020/0030339號,其各自全部併入本文中。
另外考慮之適用於本發明之PARP-1抑制劑亦包括前文提及抑制劑中之任一者的衍生物,其相較於指定抑制劑具有實質上類似之活性,例如至少50%抑制、或至少60%抑制、或至少70%抑制、或至少80%抑制、或至少90%抑制、或至少95%抑制、或至少99%抑制。以上鑑別之PARP-1抑制劑亦可用作其他PARP之抑制劑。
對於經放射性標記之PARPi,需要使放射性核種接近DNA且維持經放射性標記之PARPi在DNA附近之定位。此可藉由選擇促進PARP-1與DNA之顯著及延長之結合的PARPi抑制劑來達成。PARP抑制劑可基於PARPi與PARP-1之結合如何影響結合親和力及自DNA釋放PARP-1之速率來分類。(參見Zandarashvili等人「Structural basis for allosteric PARP-1 retention on DNA breaks」 Science 368:46, 2020,其以引用之方式併入本文中)。相較於不受抑制之PARP-1,I類抑制劑使PARP-1 DNA結合親和力有相對較大增加且PARP-1自DNA緩慢釋放。I類抑制劑展現小於約25 nM之表觀平衡結合親和力(K D)及/或小於約1.52×10 -3s -1之解離速率常數(k d)。I類PARP抑制劑之實例包括1-哌𠯤乙醯胺-4-[1-(6-胺基-9H-嘌呤-9-基)-1-去氧-d-呋喃核糖]-N-(2,3-二氫-1H-異吲哚-4-基)-1-酮(EB-47)及苯甲醯胺腺嘌呤二核苷酸(BAD)。相較於不受抑制之PARP-1,II類抑制劑使PARP-1 DNA結合親和力有相對較大增加且PARP-1自DNA緩慢釋放。II類抑制劑展現約25 nM至100 nM之表觀平衡結合親和力(K D)及/或約1.5×10 -3s -1至3.0×10 -3s -1之解離速率常數(k d)。II類PARP抑制劑之實例包括奧拉帕尼及他拉唑帕尼。最後,相較於不受抑制之PARP-1,III類PARP抑制劑之特徵在於使PARP-1 DNA結合親和力減小且PARP-1自DNA較快釋放。III類抑制劑展現大於約100 nM之表觀平衡結合親和力(K D)及/或大於3.5×10 -3s -1之解離速率常數(k d)。III類PARP抑制劑之實例包括維利帕尼、盧卡帕尼及尼拉帕尼。
在本發明之一態樣中用於PARPi結合物中之PARPi為I類或II類PARP抑制劑。在一些態樣中,用於結合物中之PARPi具有小於100 nM、小於75 nM、小於50 nM、小於25 nM、小於20 nM、小於15 nM、小於10 nM或小於5 nM之表觀平衡結合親和力(K D)。在一些態樣中,用於PARPi結合物中之PARPi具有小於3.0×10 -3s -1、小於2.5×10 -3s -1、小於2.0×10 -3s -1、小於1.5×10 -3s -1或小於1.0×10 -3s -1之解離速率常數(k d)。
在本發明之一些態樣中,PARPi可為III類PARPi,其經修飾以降低平衡結合親和力(K D)及/或解離速率常數(k d)。舉例而言,維利帕尼具有4.08×10 -3s -1之解離速率常數(k d)。舉例而言,Zandarashvili等人展示修飾維利帕尼之側基,同時保留核心苯并咪唑,形成具有大大降低之為1.85×10 -3s -1之解離速率常數(k d)的PARPi (UKTT15)。此類經修飾PARPi可用於形成PARPi結合物。
III. PARP 抑制劑 結合物如本文所描述,PARPi可連接或結合至腫瘤靶向劑(TTA),該TTA結合於腫瘤相關抗原或受體或腫瘤特異性抗原或受體以實現PARPi至腫瘤之目標局部遞送。所揭示之結合物可包括間接的或直接的PARPi與TTA之偶合或經放射性標記之PARPi與TTA之偶合。如本文所用,「PARPi結合物」係指目標PARPi,亦即連接或結合至腫瘤靶向劑(TTA)之PARPi。
舉例而言,在本發明之某些態樣中,連接或結合至TTA之PARPi包含式I: PARPi(Rd) - L - TTA;(I) 其中Rd為放射性標記且PARPi(Rd)為經放射性標記之PARPi, 其中L為連接子且TTA為腫瘤靶向劑,且 其中L使PARPi(Rd)偶合至腫瘤靶向劑。
在本發明之其他態樣中,連接或結合至TTA之PARPi包含式II: PARPi - L - TTA;(II) 其中L為連接子且TTA為腫瘤靶向劑,且 其中L使PARPi偶合至腫瘤靶向劑。
IV. 腫瘤靶向劑本發明之PARPi結合物包括腫瘤靶向劑(TTA),其在提高當前及未來PARP抑制劑之治療指數方面提供尚未實現之優勢。
如本文所用之「腫瘤靶向劑」為任何結合於腫瘤細胞上之目標分子的藥劑,該目標分子包括過度表現於腫瘤細胞中之目標分子(例如相較於在非腫瘤細胞中,在腫瘤細胞中表現至可量測地增大之量)及/或特異性表現於腫瘤細胞中之目標分子(例如實質上不表現於正常細胞中)。因此,腫瘤靶向劑可結合於腫瘤相關抗原或受體及/或結合於腫瘤特異性抗原或受體。「腫瘤相關抗原或受體」為在腫瘤細胞中以較高量發現,但亦可以較低量表現於非腫瘤細胞中的抗原或受體。「腫瘤特異性抗原或受體」為僅發現於或主要地發現於癌細胞中之抗原或受體。許多腫瘤靶向劑、腫瘤相關抗原及受體以及腫瘤特異性抗原及受體為此項技術中已知及常規使用的。
「特異性結合」或「優先結合」於腫瘤或癌細胞之腫瘤靶向劑為此項技術中充分瞭解之術語,且判定此特異性或優先結合之方法亦為此項技術中所熟知。若分子與特定細胞或物質之反應或結合比其與替代性細胞或物質更頻繁、更快速、持續時間更長及/或親和力更大,則稱其展現「特異性結合」或「優先結合」。若TTA與目標或抗原之結合比與其他生物分子之結合的親和力更大、親合力更大、更容易及/或持續時間更長,則TTA「特異性結合」或「優先結合」於目標或抗原。亦應理解,特異性或優先結合於第一目標之TTA可或可不特異性或優先結合於第二目標。因而,「特異性結合」或「優先結合」不一定要求(儘管其可包括)排他性結合。
較佳地,用於本發明中之TTA具有高結合親和力,例如具有約10 -9M或更小之解離常數K D(k off/k on)。
代表性腫瘤靶向劑包括抗體、蛋白質、肽、適體、腫瘤特異性抗原或受體之小分子抑制劑、腫瘤相關抗原或受體之小分子抑制劑(例如PMSA抑制劑)及奈米粒子,亦即任何顯示與癌細胞之結合或特異性結合的結合子。
「抗體」為經由位於免疫球蛋白分子之可變區中之至少一個抗原識別位點識別且結合於特異性目標或抗原的免疫球蛋白分子,諸如碳水化合物、聚核苷酸、脂質、多肽等。如本文所用,術語「抗體」涵蓋任何類型之抗體,包括但不限於單株抗體、多株抗體、保留特異性結合於給定抗原之能力的完整抗體之抗原結合片段(例如Fab、Fab'、F(ab') 2、Fd、Fv、Fc等)、雙特異性及多特異性抗體、異結合抗體、具有抗體或其抗原結合片段(例如域抗體)之融合蛋白、單鏈抗體(scFv)、單域抗體片段(sdAbs,亦稱為奈米抗體及VHH抗體)、最大抗體(maxibody)、微型抗體(minibody)、內抗體(intrabody)、雙功能抗體、三功能抗體、四功能抗體、v-NAR、人類化抗體、嵌合抗體及包括具有所需特異性之抗原識別位點的免疫球蛋白分子之任何其他經修飾組態,包括抗體之醣基化變體、抗體之胺基酸序列變體及經修飾之經共價修飾之抗體。
在某些態樣中,適用於本發明之抗體為完全人類抗體、人類化抗體或嵌合抗體。
在其他態樣中,適用於本發明之抗體係獲自駱駝科物種,諸如單峰駱駝、雙峰駱駝、野生雙峰駱駝、美洲駝、羊駝、瘦駝及原駝。詳言之,相較於衍生自習知IgG之抗體型式,產生於駱駝科物種之抗體僅具有三個高變區(CDR),且因而,此等結合子較佳地識別及結合構形抗原決定位,諸如由調控域之酶囊形成的彼等抗原決定位。
如本文所用,術語「抗體」涵蓋抗體模擬物,亦即展示與抗體類似之高親和力特異性結合的合成蛋白,例如DARPin、親和抗體、打結素(knottin)、阿非林(affilin)、親和體(affimer)、阿非汀(affitin)、阿爾法體(alphabody)、抗運載蛋白(anticalin)、高親和性多聚體(avimer)、非諾莫(fynomer)、庫尼茨域肽(kunitx domain peptide)、單功能抗體、奈米CLAMP (nanoCLAMP)等。
適用於本發明之TTA所結合之代表性腫瘤抗原/受體包括例如A33、αvβ3、AFP、AKAP-4、ALK、AR、B7-DC (PD-L2)、B7H3、B7-H3、BCMA、BCR-ABL、BRCA突變、BORIS、C1orf186、CA9、CA-125、CA19-9、CA6、CAMPATH-1、CEA、CD19、CD20、CD25、CD30、CD33、CD37、CD45、CD5、CLDN16、CLDN6、CLDN18.2、CMET、CS-1、CCNB1、CYP1B1、DLL3、EGF、EGFR、EGFRvIII、(de2-7 EGFR)、EMR2、ENG、EPCAM、EPHA2、ERG、ETV6-AML、EWSR1、FAP、FBP、葉酸受體、FOSL1、FRA、FucGM1、G250、GAGE、GD2、GD3、GloboH、GLP-3、GM2、gp100、GRP94 (內質網素;Endoplasmin)、HER2、Her-2/neu、HER3、HLA-DR、HMWMAA、HPV E6、HPV E7、hTERT、IL-2受體、LCK、LGMN、LewisY、LIV1、LMP2、LRRC15、LY6E、MAD-CT-1、MAD-CT-2、MAGE A1、MAGE A4、MAGE C2、MAGE-A3、MelanA/MART1、MSLN、ML-IAP、MMPs、MUC1、MUC15、MUC16、MYCN、NA17、NAPI2B、NY-BR-1、NY-ESO-1、OY-TES1、p53突變體、p53為突變體、PAGE4、PAP、PARPs (例如PARP-1)、PAX3、PAX5、PDGFR-B、PD-L、PD-L1、PLAV1、polySia、PR1、PSA、PSCA、PSMA、PTK7、RAS突變、RGS5、RhoC、RON、ROR1、ROR2、SART3、sLe(動物)、體抑素受體(somatostatin receptor)、SP17、SSX2、STn、STRA6、肌腱蛋白、TEM1、Tie 3、TIM-3、TMEM238、TMPRSS3、TMPRSS4、RAIL1、TROP2、TRP-2、UPK1B、VEGFR1、VEGFR2、VISTA、VTCN1 (B7-H4)、WT1、XAGE 1及TAG-72。在某些態樣中,TTA結合於亦為抑制目標之PARP,例如PARP-1。
在本發明之一較佳態樣中,腫瘤靶向劑為亦稱為VHH分子或奈米抗體之單域抗體片段(sdAb)。
在本發明之一些態樣中,腫瘤靶向劑為「內化性的」,亦即其與結合於TTA之PARPi一起在結合於目標抗原或受體後由細胞吸收。如此項技術中所瞭解,抗體可經工程改造為內化性的,或以其他方式針對此特性經選擇。參見例如Zhou等人, Arch Biochem Biophys, 2012, 15;526(2):107-13。
若TTA不為天然內化性的,則一或多種細胞穿透劑可偶合至PARPi結合物且特定言之偶合至TTA,以促進PARPi結合物之胞內遞送。細胞穿透劑可保護PARPi結合物免於胞內體截留及/或溶酶體降解。
代表性細胞穿透劑包括細胞穿透肽(CPP),其長度典型地為10至30個胺基酸(aa)肽,且其富精胺酸且為兩親媒性的,或富離胺酸且為疏水性的。CPP可為例如陽離子肽、兩親媒性肽或疏水性肽(例如主要由Tyr、Trp及Phe組成)、樹枝狀聚合物肽、拘束肽(constrained peptide)或交聯肽。參見例如Herce等人, Nat Chem, 2017, 9:762-771。
在進入細胞後,本發明之PARPi結合物進一步易位至細胞核且結合至DNA。在經放射性標記之PARPi結合物之情形下,本文在別處所描述,結合物之PARPi部分足以用於與其結合之放射性核種的核定位。
在本發明之一些態樣中,核定位肽(NLP)可另外用於促進PARPi結合物之核定位。舉例而言,在側接脯胺酸及甘胺酸螺旋破壞子(helix-breaker)之六肽內的由至少四個精胺酸(R)及離胺酸(K)構成的親核性肽可用作諸如PARPi結合物之結合物的NLP。參見例如Chen等人, J Nucl Med, 2006, 47: 827-836。
V. 連接子「連接子(L)」描述使PARPi直接地或間接地連接至TTA的分子。PARPi與TTA之直接連接可例如經由PARPi之官能基與TTA之官能基之間的直接鍵實現。或者,連接基團可插入於PARPi與TTA之間以形成間接連接。連接子與TTA之間接連接可依多種方式實現,諸如藉由抗體、經由表面離胺酸、與經氧化碳水化合物還原性偶合、及經由藉由還原鏈間二硫化物連接所釋放或以重組方式添加至蛋白質序列的半胱胺酸殘基。各種連接系統為此項技術中已知,包括腙連接、二硫化物連接及基於肽之連接。
在本發明之某些態樣中,連接分子可為穩定的(不可裂解的)或可裂解的,藉此在進入細胞之後釋放。在本發明之較佳態樣中,連接子為可裂解的,使得PARPi自TTA釋放且輸送至細胞核。
自TTA裂解PARPi之代表性機制包括在溶酶體(腙、縮醛及順式烏頭酸酯樣醯胺)之酸性pH下水解、由溶酶體酶(組織蛋白酶及其他溶酶體酶)肽裂解、及二硫化物還原。由於此等裂解機制不同,故PARPi連接至TTA之機制亦廣泛變化,且可使用任何適合連接子。
適合結合程序之實例依賴於醯肼及其他親核劑與藉由抗體上天然存在之碳水化合物氧化所產生之醛的結合。含有腙之結合物可藉由引入之提供所需藥物釋放特性的羰基製得。結合物亦可用在一端具有二硫化物、在中間具有烷基鏈且在另一末端具有肼衍生物的連接子製得。
含有除腙以外之官能基的連接子有可能在溶酶體之酸性環境下裂解。舉例而言,結合物可自含有除腙以外之位點的硫醇反應性連接子製得,該位點可胞內裂解,諸如酯、醯胺及縮醛/縮酮。亦可使用由5員至7員環酮製成之縮酮,其有一個氧連接至細胞毒性劑並且有另一個氧連接至連接子以用於TTA連接。
一類pH敏感連接子之另一實例為順烏頭酸酯,其使羧酸與醯胺鍵相鄰。羧酸加速醯胺在酸性溶酶體中水解。亦可使用藉由若干其他類型之結構達成類似之水解速率加速類型之連接子。
用於自結合物釋放PARPi之另一潛在釋放方法為溶酶體酶對肽之酶水解。在一個實例中,經由醯胺鍵將肽連接至對胺基苯甲醇且隨後在苯甲醇與細胞毒性劑之間形成胺基甲酸酯或碳酸酯。肽之裂解引起胺基甲酸胺基苯甲酯或碳酸酯之瓦解或自行分解。在一個實例中,苯酚亦可藉由連接子而非胺基甲酸酯之瓦解來釋放。在另一變化形式中,使用二硫化物還原來引發胺基甲酸或碳酸對巰基苯甲酯之瓦解。
例示性可裂解連接子教示於以下參考文獻中,其中之各者以引用之方式併入本文中:Bargh等人 Chem Soc Rev,2019, 48:4361-43 74、Leriche等人, Bioorg Med Chem,2012, 20:571-582、Bohme等人 J Pept Sci,2015, 21:186-200及Kern等人 Bioconjug Chem,2016, 27:2081-2088。
先前已描述(PCT國際公開案第WO 2012059882號,其以引用的方式併入本文中)由轉麩醯胺酸酶介導之抗體及蛋白質之位點特異性結合。據描述,經醯基供體標籤(例如含Gln之肽標籤)工程改造的含Fc多肽在轉麩醯胺酸酶存在下可與胺供體藥劑(例如包含或連接至胺供體單元之小分子)共價交聯,以形成經工程改造含Fc多肽結合物之同質群體,其中胺供體藥劑經由醯基供體標籤位點特異性地結合至含Fc多肽。經醯基供體標籤工程改造之含Fc多肽與胺供體藥劑之結合效率為至少約51%,且含Fc多肽與胺供體藥劑之間的結合效率在無醯基供體標籤存在下小於約5%。此外,在空間鄰近於含Gln肽標籤的自Lys (離胺酸)至含Fc多肽中之另一胺基酸的最後一個胺基酸之缺失或突變使含Fc多肽與小分子之結合效率顯著提高。此外,所描述之醯基供體標籤、含Fc多肽及/或胺供體藥劑之選擇允許位點特異性結合。此策略可應用於藉由使PARPi與TTA偶合來形成PARPi結合物。
一些PARPi結合物可具有有限水溶性,可造成結合物聚集。一種克服此情況之方法為向連接子添加親水性基團。用於連接子中之親水性基團之實例為聚乙二醇(PEG)。在一個態樣中,親水性基團可連接至可裂解連接子以形成親水性/可裂解連接子。在一個特定實例中,親水性基團為PEG且可裂解連接子為由溶酶體酶裂解之二肽。
在親水性連接子之一個態樣中,親水性基團(例如PEG)將在各端具有偶合基團,其用於與PARPi組分及二肽可裂解連接子形成鍵。在此態樣中,可裂解連接子偶合至TTA。例示性端基包括但不限於羧基、羥基、硫醇及胺。端基可相同或可不同。此類基團可在一端與PARPi上之互補基團形成鍵且在另一端與可裂解連接子形成鍵。
在另一態樣中,親水性基團(例如PEG)可位於可裂解連接子與TTA之間。在親水性基團一端之端基經選擇用於偶合至可裂解連接子(例如二肽)且可包括諸如羧基、羥基、硫醇及胺之基團。親水性基團之另一端可具有用於偶合至TTA之基團。當TTA為多肽(例如抗體)時,親水性基團之一個端基可為順丁烯二醯亞胺基。順丁烯二醯亞胺基通常經由硫醇基(例如在半胱胺酸胺基酸上)與多肽形成鍵。其他硫醇反應性基團包括鹵乙醯基、吖
Figure 111124364-001
、丙烯醯基、芳化劑、乙烯碸及吡啶基二硫化物。
在本發明之一些態樣中,本發明之PARPi結合物之連接子組分具有下式: ES 1- SS - ES 2其中ES 1具有以下結構:Cg 1-SP-; 其中SS為二硫鍵; 其中ES 2具有以下結構:-SP-Cg 2-; 其中Cg 1及Cg 2各自獨立地為丁二醯亞胺基氧基羰基、順丁烯二醯亞胺、-OC(O)-;-C(O)O-;-OC(O)O-;-OC(O)N(R 1)-;-N(R 1)C(O)-;-C(O)N(R 1)-;-N(R 1)C(O)O-;-N(R 1)C(O)N(R 2)-;-C(O)-;-OC(R 1)(R 2)-;-C(R 1)(R 2)O-;-OC(R 1)(R 2)O-;-C(R 1)(R 2)-;-S-;-S-S-;C-;=C-;-N=;=N-;-C=N-;-N=C-;-O-N=;=N-O-;-C=N-O-;-O-N=C-;-N(R 1)-N=;=N-N(R 1)-;-N(R 1)-N=C-;或-C=N-N(R 1)-;或Cg 1及Cg 2各自獨立地為具有兩個選自由以下組成之群的官能基之苯基:-OC(O)-;-C(O)O-;-OC(O)O-;-OC(O)N(R 1)-;-N(R 1)C(O)-;-C(O)N(R 1)-;-N(R 1)C(O)O-;-N(R 1)C(O)N(R 2)-;-C(O)-;-OC(R 1)(R 2)-;-C(R 1)(R 2)O-;-OC(R 1)(R 2)O-;-C(R 1)(R 2)-;-S-;-S-S-;C-;=C-;-N=;=N-;-C=N-;-N=C-;-O-N=;=N-O-;-C=N-O-;-O-N=C-;-N(R 1)-N=;=N-N(R 1)-;-N(R 1)-N=C-;及-C=N-N(R 1)-; 其中R 1及R 2係獨立地選自H、分支鏈或非分支鏈C 1-10烷基或芳基; 其中SP為-C 1-C 10伸烷基-;-C 1-C 10伸烯基-;-C 1-C 10伸炔基-;碳環-、-O-(C 1-C 8伸烷基)-;O-(C 1-C 8伸烯基)-;-O-(C 1-C 8伸炔基)-;-伸芳基-;-C 1-C 10伸烷基-伸芳基-;-C 2-C 10伸烯基-伸芳基;-C 2-C 10伸炔基-伸芳基;伸芳基-C 1-C 10伸烷基-;-伸芳基-C 2-C 10伸烯基-;-伸芳基-C 2-C 10伸炔基-;-C 1-C 10伸烷基-(碳環)-;-C 2-C 10伸烯基-(碳環)-;C 2-C 10伸炔基-(碳環)-;-(碳環)-C 1-C 10伸烷基-;-(碳環)-C 2-C 10伸烯基-;-(碳環)-C 2-C 10伸炔基-;-雜環-;-C 1-C 10伸烷基-(雜環)-;-C 2-C 10伸烯基-(雜環)-;-C 2-C 10伸炔基-(雜環)-;-(雜環)-C 1-C 10伸烷基-;-(雜環)-C 2-C 10伸烯基-;-(雜環)-C 1-C 10伸炔基-;-(CH 2CH 2O) r-;或-(CH 2CH 2O) r-CH 2-, 其中r為1至10範圍內之整數; 其中Cg 3為與Rd形成共價鍵之偶合基團;且其中Cg 4為與TTA形成共價鍵之偶合基團。
包含二硫化物連接子之連接子在還原條件下可裂解。各種二硫化物連接子為此項技術中已知的,包括例如可使用SATA (N-丁二醯亞胺基-5-乙醯基硫基乙酸酯)、SPDP (N-丁二醯亞胺基-3-(2-吡啶基二硫基)丙酸酯)、SPDB (N-丁二醯亞胺基-3-(2-吡啶基二硫基)丁酸酯)及SMPT (N-丁二醯亞胺基氧基羰基-α-甲基-α-(2-吡啶基-二硫基)甲苯)形成之二硫化物連接子。二硫化物連接子描述於Thorpe等人, Cancer Res., 1987, 47:5924-5931;Wawrzynczak等人, Immunoconjugates: Antibody Conjugates in Radioimaging and Therapy of Cancer(C. W. Vogel編, Oxford U. Press), 1987及美國專利第4,880,935號中,該等參考文獻各自以全文引用之方式併入本文中。
在本發明之一些態樣中,所揭示之PARPi結合物之連接子組分具有下式: ES - ECL - SIG 其中ES具有以下結構:Cg 3-SP-Cg 4; Cg 3及Cg 4各自獨立地為丁二醯亞胺基氧基羰基;順丁烯二醯亞胺;-OC(O);-C(O)O;-OC(O)O;-OC(O)N(R 1);-N(R 1)C(O);-C(O)N(R 1);-N(R 1)C(O)O;-N(R 1)C(O)N(R 2);-C(O);-OC(R 1)(R 2);-C(R 1)(R 2)O;-OC(R 1)(R 2)O;-C(R 1)(R 2);-S;-S-S;C;=C;-N=;=N;-C=N;-N=C;-O-N=;=N-O;-C=N-O;-O-N=C;-N(R 1)-N=;=N-N(R 1);-N(R 1)-N=C;或-C=N-N(R 1);或Cg 3及Cg 4各自獨立地為具有兩個選自由以下組成之群的官能基之苯基:-OC(O);-C(O)O;-OC(O)O;-OC(O)N(R 1);-N(R 1)C(O);-C(O)N(R 1);-N(R 1)C(O)O;-N(R 1)C(O)N(R 2);-C(O);-OC(R 1)(R 2);-C(R 1)(R 2)O;-OC(R 1)(R 2)O;-C(R 1)(R 2);-S;-S-S;C;=C;-N=;=N;-C=N;-N=C;-O-N=;=N-O;-C=N-O;-O-N=C;-N(R 1)-N=;=N-N(R 1);-N(R 1)-N=C;及-C=N-N(R 1)-; 其中R 1及R 2係獨立地選自H、分支鏈或非分支鏈C 1-10烷基或芳基;且其中Cg 3為與Rd組分形成共價鍵之偶合基團且Cg 4為與ECL形成共價鍵之偶合基團; SP為-C 1-C 10烷基;-C 1-C 10伸烷基;-(CH 2CH 2O) r-;-CH 2-(CH 2CH 2O) r-;-(CH 2CH 2O) r-CH 2-;或-CH 2-(CH 2CH 2O) r-CH 2-; ECL為酶可裂解連接子;且 SIG為在ECL與TTA之間形成共價鍵之自行分解基團,其中在ECL裂解後,SIG分解以自ECL組分釋放TTA組分。
酶可裂解連接子(ECL)為由酶特異性裂解之連接子。在一個實施例中,ECL由溶酶體酶裂解。尤其適用之溶酶體酶包括溶酶體醣苷酶及溶酶體蛋白酶。溶酶體酶之特定實例包括但不限於組織蛋白酶(例如組織蛋白酶B)及醣苷酶(例如β-葡萄糖醛酸苷酶及β-半乳糖苷酶)。
在一個實施例中,ECL連接子為具有兩個至四個胺基酸的可裂解肽連接子。可由溶酶體酶裂解之例示性二肽連接子包括但不限於Val-Cit;Cit-Val;Ala-Ala;Ala-Cit;Cit-Ala;Asn-Cit;Cit-Asn;Cit-Cit;Val-Glu;Glu-Val;Ser-Cit;Cit-Ser;Lys-Cit;Cit-Lys;Asp-Cit;Cit-Asp;Ala-Val;Val-Ala;Phe-Lys;Lys-Phe;Val-Lys;Lys-Val;Ala-Lys;Lys-Ala;Phe-Cit;Cit-Phe;Leu-Cit;Cit-Leu;Ile-Cit;Cit-Ile;Phe-Arg;Arg-Phe;Cit-Trp;Trp-Cit。
在其他實施例中,ECL包含可由溶酶體醣苷酶裂解之葡萄糖苷酸苷單元(參見例如US 2012/0107332,以引用之方式併入本文中)。在一些實施例中,ECL之葡萄糖醛酸苷單元包含經由醣苷鍵(-O'-)連接至下文所描繪之式之自行分解基團(Z)的糖部分(Su)(亦參見US 2012/0107332,以引用之方式併入本文中)。
Figure 02_image009
醣苷鍵(-O'-)典型地為β-葡萄糖醛酸苷酶裂解位點,諸如可由人類溶酶體β-葡萄糖醛酸苷酶裂解之鍵。在葡萄糖醛酸苷單元之情形下,術語「自行分解基團」(SIG)係指能夠將兩個或三個間隔的化學部分(亦即,糖部分(經由醣苷鍵)、PARPi (直接地或經由間隔單元間接地)及在一些實施例中連接子(直接地或經由延伸子單元間接地))共價連接在一起成穩定分子的雙功能或三功能化學部分。在此實施例中,若自行分解基團與糖部分之鍵裂解,則該自行分解基團將自發地與第一化學部分(例如,間隔子或PARPi單元)分離。對胺基苯甲醇(PABA)為通常使用之SIG之實例。
在一些實施例中,糖部分(Su)為諸如哌喃醣之環狀己醣或諸如呋喃醣之環狀戊醣。在一些實施例中,哌喃醣為葡萄糖苷酸或己醣。糖部分通常呈β-D構形。在一特定實施例中,哌喃醣為β-D-葡萄糖苷酸部分(亦即經由可由β-D-葡萄糖醛酸苷酶裂解之醣苷鍵連接至自行分解基團-Z-的β-D-葡萄糖醛酸)。在一些實施例中,糖部分未經取代(例如,為天然存在之環狀己醣或環狀戊醣)。在其他實施例中,糖部分可為經取代β-D-葡萄糖苷酸(亦即,葡萄糖醛酸經由一或多個諸如氫、羥基、鹵素、硫、氮或低碳數烷基之基團取代)。另外的例示性葡萄糖苷酸單元描述於以引用之方式併入本文中之美國專利申請公開案第2012/0107332號中。
在一些實施例中,連接子包括連接PARPi結合物之一或多個組分的間隔子(SP)。間隔子可視間隔子在PARPi結合物中之位置及間隔子之組成而用於多種目的。間隔子可允許可酶裂解連接子或二硫化物連接子更容易地轉化及/或裂解。間隔子可用於改善PARPi結合物之藥物動力學特性、溶解性或聚集特性。使用間隔子可藉由自TTA分離PARPi而使PARPi更能夠接近PARP (例如PARP-1)。間隔子亦可為連接子提供更佳可接近性,尤其在酶裂解或轉化可改善連接子轉化及/或裂解之速率的情況下。間隔子可為水溶性部分或含有一或多個水溶性部分,使得間隔子促成PARPi結合物之水溶性。
在一個實施例中,間隔子係選自-C 1-C 10伸烷基-;-C 1-C 10伸烯基-;-C 1-C 10伸炔基-;碳環-;-O-(C 1-C 8伸烷基)-;O-(C 1-C 8伸烯基)-;-O-(C 1-C 8伸炔基)-;-伸芳基-;-C 1-C 10伸烷基-伸芳基-;-C 2-C 10伸烯基-伸芳基;-C 2-C 10伸炔基-伸芳基;伸芳基-C 1-C 10伸烷基-;-伸芳基-C 2-C 10伸烯基-;-伸芳基-C 2-C 10伸炔基-;-C 1-C 10伸烷基-(碳環)-;-C 2-C 10伸烯基-(碳環)-;-C 2-C 10伸炔基-(碳環)-;-(碳環)-C 1-C 10伸烷基-;-(碳環)-C 2-C 10伸烯基-;-(碳環)-C 2-C 10伸炔基;-雜環-;-C 1-C 10伸烷基-(雜環)-;-C 2-C 10伸烯基-(雜環)-;-C 2-C 10伸炔基-(雜環)-;-(雜環)-C 1-C 10伸烷基-;-(雜環)-C 2-C 10伸烯基-;-(雜環)-C 1-C 10伸炔基-;-(CH 2CH 2O) r-;或-(CH 2CH 2O) r-CH 2-;且r為1至10範圍內之整數,其中該烷基、烯基、炔基、伸烷基、伸烯基、伸炔基、芳基、碳環、碳環基、雜環及伸芳基(無論單獨抑或作為另一基團之部分)視情況經取代。在一些實施例中,該烷基、烯基、炔基、伸烷基、伸烯基、伸炔基、芳基、碳環、碳環基、雜環及伸芳基(無論單獨抑或作為另一基團之部分)未經取代。
其他代表性連接子含有兩個官能基,包括(1)用於與TTA偶合之基團(例如甲酸),及(2)用於與PARPi偶合之羰基(例如醛或酮)。羰基將與PARPi上之醯肼基團反應,以形成腙鍵。此鍵為可藉由水解而裂解的,從而允許在結合至目標後自結合物釋放PARPi。參見例如以引用之方式併入本文中之美國專利第5,773,001號。在本發明之一些態樣中,所使用之可水解連接子為4-(4-乙醯基苯氧基)丁酸(AcBut)。在本發明之其他態樣中,可使用(3-乙醯基苯基)乙酸(AcPAc)或4-巰基-4-甲基-戊酸(醯胺)作為連接分子來形成連接。此類連接子在胞內條件下可裂解,使得連接子之裂解使PARPi自TTA充分釋放至胞內環境中,但抑制PARPi釋放至胞外環境中。在一些實施例中,可裂解連接子為pH敏感的,亦即在某些pH值下對水解敏感。通常,pH敏感連接子在酸性條件下可水解。舉例而言,可使用可在溶體中水解之酸不穩定連接子(例如腙、半卡腙(semicarbazone)、硫半卡腙(thiosemicarbazone)、順式烏頭酸醯胺、原酸酯、縮醛、縮酮或其類似物)。參見例如美國專利第5,122,368號、第5,824,805號、第5,622,929號;Dubowchik及Walker, 1999, Pharm. Therapeutics83:67-123;Neville等人, 1989, Biol Chem264:14653-14661,其皆以引用之方式併入本文中。此等連接子在中性pH條件下(諸如血液中之pH值條件下)相對穩定,但在pH 4.5至5.0之間(近似溶酶體之pH)下不穩定。在某些實施例中,可水解連接子為硫醚連接子,諸如經由醯腙鍵與治療劑連接之硫醚(參見例如美國專利第5,622,929號,以引用之方式併入本文中)。
其他連接子包括諸如以下基團:N-羥基丁二醯亞胺(NHS)酯、磺基-NHS (磺化NHS)酯、PFP (五氟苯基)酯、TFP (四氟苯基)酯、4-硝基苯酯及DNP (二硝基苯基)酯。
所揭示之PARPi結合物之PARPi組分可使用碳二亞胺試劑連接至TTA。舉例而言,視情況經放射性核種放射性標記之PARPi可使用容易與TTA之含氮或含氧側鏈反應的碳二亞胺試劑結合至TTA。在一個實施例中,PARPi使用碳二亞胺試劑偶合至連接子。可使用之碳化二亞胺之實例包括但不限於1-乙基-3-(3-二甲基胺基丙基)碳二亞胺(EDC);N,N'-二環己基碳二亞胺(DCC);N,N'-二異丙基碳二亞胺(DIC);N-環己基-N'-(2-(N-𠰌啉基)乙基)碳二亞胺;N-環己基-N'-[2-(4-甲基𠰌啉-4-鎓-4-基)乙基]碳二亞胺甲苯磺酸酯;N-環己基-N'-[4-(二乙基甲基銨基)環己基]碳二亞胺甲苯磺酸酯;N,N'-雙(2,2-二甲基-1,3-二氧戊環-4-基)甲基]碳二亞胺;及N-苯甲基-N'-異丙基碳二亞胺。
在一個態樣中,連接子具有能夠與TTA上存在之游離半胱胺酸反應形成共價鍵的官能基。此類反應性官能基之非限制性實例包括順丁烯二醯亞胺、鹵乙醯胺、α-鹵乙醯基、活化酯(諸如丁二醯亞胺酯、4-硝基苯酯、五氟苯酯、四氟苯酯)、酸酐、醯氯、磺醯氯、異氰酸酯及異硫氰酸酯。參見例如Klussman等人, Bioconjugate Chemistry, 2004, 15(4):765-773及Abad等人 Chem. Commun.,2012, 48, 6118-6120,其皆以引用之方式併入本文中。
在一些實施例中,連接子具有能夠與TTA上存在之親電子基團反應的官能基。例示性親電子基團包括但不限於醛及酮羰基。在一些實施例中,連接子之反應性官能基之雜原子可與TTA上之親電子基團反應且與TTA形成共價鍵。此類反應性官能基之非限制性實例包括但不限於醯肼、肟、胺基、肼、硫半卡肼、肼羧酸酯及芳基醯肼。
可用以自然地或經由化學操縱將TTA組分連接至PARPi組分的官能基包括但不限於硫氫基、胺基、羥基、碳水化合物之變旋異構羥基及羧基。適合之官能基為硫氫基及胺基。在一個實例中,硫氫基可藉由還原抗體之分子內二硫鍵來產生。在另一實施例中,硫氫基可藉由使TTA之胺基與2-亞胺基硫雜環戊烷(特勞特試劑(Traut's reagent))或其他硫氫基產生試劑反應來產生。在某些實施例中,TTA為重組抗體且經工程改造以攜有一或多個另外的含胺基基團(例如離胺酸)。在某些其他實施例中,TTA為經工程改造以攜有另外之硫氫基(例如另外之半胱胺酸)的重組抗體。
在本發明之其他態樣中,連接子可經由二肽連接子(諸如纈胺酸-瓜胺酸(Val-Cit)、苯丙胺酸-離胺酸(Phe-Lys)連接子或順丁烯二醯亞胺基己醯基-纈胺酸-瓜胺酸-對胺基苯甲氧基羰基(vc)連接子)使TTA偶合至PARPi組分。在另一態樣中,連接子可為磺基丁二醯亞胺基-4-[N-順丁烯二醯亞胺基甲基]環己烷-1-甲酸酯(smcc)。磺基-smcc結合經由與硫氫基反應之順丁烯二醯亞胺基(硫醇,-SH)發生,而其磺基-NHS酯對一級胺有反應性(如在離胺酸及蛋白質或肽N端中發現)。此外,連接子可為順丁烯二醯亞胺基己醯基(mc)。
在一較佳實施例中,TTA經由包含順丁烯二醯亞胺基己醯基(「mc」)、纈胺酸-瓜胺酸(Val-Cit或「vc」)及PABA (稱作「mc-vc-PABA連接子」)之連接子結合至PARPi抑制劑(視情況經放射性標記)。順丁烯二醯亞胺基己醯基充當連接至TTA之連接子且不可裂解。Val-Cit為二肽連接子,其可由溶酶體蛋白酶、特定言之蛋白酶組織蛋白酶B裂解。因此,連接子之Val-Cit組分提供用於在暴露於胞內環境時自PARPi結合物釋放PARPi之手段。在該連接子內,對胺基苯甲醇(PABA)充當間隔子且為自行分解的,允許釋放PARPi。
VI. 經放射性標記且光激致效 PARP 抑制劑結合物關於療法,由於PARP-1為核酶,故使用發射短程輻射之放射性核種最為適當。歐傑電子及α粒子之反沖核皆屬於此類別。由於DNA為細胞對輻射最為敏感之部分,故放射性核種之PARP-1靶向極其有助於增強功效。此外,由於此等輻射為短程的,對相鄰正常組織之破壞可減至最少。放射衰變之位點自細胞之其他部分移位至細胞核會增加放射性粒子之路徑將穿過細胞核且因此增加治療有效性的幾何機率(立體角)。
如本文所用,「放射性核種」係指在其分解且變得更穩定時釋放輻射的化學元素之不穩定形式。此過剩能量可由以下釋放:γ射線之發射;歐傑電子之發射、β粒子之發射、轉化電子之發射或α粒子之發射。歐傑電子及α粒子尤其適用於治療癌症。歐傑電子、α粒子及在α粒子發射期間產生之反沖核具有短程及高直線能量轉移,使得其成為選擇性靶向及治療癌細胞之有效藥劑。
較佳地,放射性核種直接結合至或經由經放射性標記之輔助劑偶合至PARPi。適合於放射線療法之放射性核種包括但不限於α發射體、β發射體及歐傑電子發射體。
放射性核種之實例包括但不限於: 3H、 11C、 13N、 14C、 15N、 15O、 35S、 18F、 32P、 33P、 47Sc、 51Cr、 57Co、 58Co、 59Fe、 62Cu、 64Cu、 67Cu、 67Ga、 68Ga、 75Se、 76Br、 77Br、 86Y、 89Zr、 90Y、 94Tc、 95Ru、 97Ru、 99Tc、 103Ru、 105Rh、 105Ru、 107Hg、 109Pd、 111Ag、 111In、 113In、 119Sb、 121Te、 122Te、 123I、 124I、 125I、 125Te、 126I、 131I、 131In、 133I、 142Pr、 143Pr、 153Pb、 153Sm、 161Tb、 165Tm、 166Dy、 166H、 161Tb、 167Tm、 168Tm、 169Yb、 177Lu、 186Re、 188Re、 189Re、 191Pt、 193mPt、 195mPt、 197Pt、 197Hg、 198Au、 199Au、 201Tl、 203Hg、 211At、 212Bi、 212Pb、 213Bi、 223Ra、 224Ra、 224Ac、 225Ac及 227Th。
在本發明之較佳態樣中,PARPi結合物包含短程發射放射性核種,諸如 123I、 125I、 77Br及 211At。
用於放射性標記本發明之PARP抑制劑及PARPi結合物的代表性方法揭示於美國公開申請案第US20200188541號中,其以全文引用之方式併入本文中。PARP抑制劑之放射性標記可能必須修飾PARP抑制劑之化學結構以允許放射性核種與抑制劑偶合。經修飾之PARP抑制劑將保留核定位、結合於PARP及後續之DNA結合所需之分子部分,且可或可不保留抑制性作用所需之分子部分。PARPi之一些修飾可在不改變PARPi結合及抑制PARP之能力的情況下進行。PARPi之其他修飾可不影響PARPi結合至PARP之能力,但該修飾可改變經修飾PARPi抑制PARP之能力。
在本發明之一個態樣中,放射性核種組分偶合至具有以下結構之PARPi結合物: PARPi(Rd) - 連接子 - TTA; 其中Rd為PARPi結合物的包含放射性核種且偶合至PARPi之組分;TTA為腫瘤靶向劑;且連接子使PARPi(Rd)偶合至TTA。
在本發明之一個態樣中,Rd組分具有以下結構: Cg 1- ArQ - Cg 2; 其中Cg 1為使ArQ偶合至PARPi之偶合基團,且Cg 2為使Rd偶合至連接子之偶合基團; 其中Cg 1及Cg 2各自獨立地為丁二醯亞胺基氧基羰基;順丁烯二醯亞胺;-OC(O)-;-C(O)O-;-OC(O)O-;-OC(O)N(R 1)-;-N(R 1)C(O)-;-C(O)N(R 1)-;-N(R 1)C(O)O-;-N(R 1)C(O)N(R 2)-;-C(O)-;-OC(R 1)(R 2)-;-C(R 1)(R 2)O-;-OC(R 1)(R 2)O-;-C(R 1)(R 2)-;-S-;-S-S-;C-;=C-;-N=;=N-;-C=N-;-N=C-;-O-N=;=N-O-;-C=N-O-;-O-N=C-;-N(R 1)-N=;=N-N(R 1)-;-N(R 1)-N=C-;或-C=N-N(R 1)-;或 Cg 1及Cg 2各自獨立地為具有兩個選自由以下組成之群的官能基之苯基:-OC(O)-;-C(O)O-;-OC(O)O-;-OC(O)N(R 1)-;-N(R 1)C(O)-;-C(O)N(R 1)-;-N(R 1)C(O)O-;-N(R 1)C(O)N(R 2)-;-C(O)-;-OC(R 1)(R 2)-;-C(R 1)(R 2)O-;-OC(R 1)(R 2)O-;-C(R 1)(R 2)-;-S-;-S-S-;C-;=C-;-N=;=N-;-C=N-;-N=C-;-O-N=;=N-O-;-C=N-O-;-O-N=C-;-N(R 1)-N=;=N-N(R 1)-;-N(R 1)-N=C-;及-C=N-N(R 1)-; 其中R 1及R 2係獨立地選自H、分支鏈或非分支鏈C 1-10烷基或芳基; 其中Ar為芳基、雜芳基或放射性核種螯合劑;且 其中Q為放射性核種。
在本發明之一個態樣中,經放射性標記之PARPi結合物中之連接子具有以下結構: ES 1- SS - ES 2其中ES 1具有以下結構:Cg 3-SP-; 其中SS為二硫鍵; 其中ES 2具有以下結構:-SP-Cg 4-; 其中Cg 3及Cg 4各自獨立地為丁二醯亞胺基氧基羰基;順丁烯二醯亞胺;-OC(O)-;-C(O)O-;-OC(O)O-;-OC(O)N(R 1)-;-N(R 1)C(O)-;-C(O)N(R 1)-;-N(R 1)C(O)O-;-N(R 1)C(O)N(R 2)-;-C(O)-;-OC(R 1)(R 2)-;-C(R 1)(R 2)O-;-OC(R 1)(R 2)O-;-C(R 1)(R 2)-;-S-;-S-S-;C-;=C-;-N=;=N-;-C=N-;-N=C-;-O-N=;=N-O-;-C=N-O-;-O-N=C-;-N(R 1)-N=;=N-N(R 1)-;-N(R 1)-N=C-;或-C=N-N(R 1)-;或Cg 3及Cg 4各自獨立地為具有兩個選自由以下組成之群的官能基之苯基:-OC(O)-;-C(O)O-;-OC(O)O-;-OC(O)N(R 1)-;-N(R 1)C(O)-;-C(O)N(R 1)-;-N(R 1)C(O)O-;-N(R 1)C(O)N(R 2)-;-C(O)-;-OC(R 1)(R 2)-;-C(R 1)(R 2)O-;-OC(R 1)(R 2)O-;-C(R 1)(R 2)-;-S-;-S-S-;C-;=C-;-N=;=N-;-C=N-;-N=C-;-O-N=;=N-O-;-C=N-O-;-O-N=C-;-N(R 1)-N=;=N-N(R 1)-;-N(R 1)-N=C-;及-C=N-N(R 1)-; 其中R 1及R 2係獨立地選自H、分支鏈或非分支鏈C 1-10烷基或芳基; 其中SP為-C 1-C 10伸烷基-;-C 1-C 10伸烯基-;-C 1-C 10伸炔基-;碳環-;-O-(C 1-C 8伸烷基)-;O-(C 1-C 8伸烯基)-;-O-(C 1-C 8伸炔基)-;-伸芳基-;-C 1-C 10伸烷基-伸芳基-;-C 2-C 10伸烯基-伸芳基;-C 2-C 10伸炔基-伸芳基;伸芳基-C 1-C 10伸烷基-;-伸芳基-C 2-C 10伸烯基-;-伸芳基-C 2-C 10伸炔基-;-C 1-C 10伸烷基-(碳環)-;-C 2-C 10伸烯基-(碳環)-;C 2-C 10伸炔基-(碳環)-;-(碳環)-C 1-C 10伸烷基-;-(碳環)-C 2-C 10伸烯基-;-(碳環)-C 2-C 10伸炔基;-雜環-;-C 1-C 10伸烷基-(雜環)-;-C 2-C 10伸烯基-(雜環)-;-C 2-C 10伸炔基-(雜環)-;-(雜環)-C 1-C 10伸烷基-;-(雜環)-C 2-C 10伸烯基-;-(雜環)-C 1-C 10伸炔基-;-(CH 2CH 2O) r -;或-(CH 2CH 2O) r -CH 2-, 其中 r為1至10範圍內之整數; 其中Cg 3為與Rd形成共價鍵之偶合基團;且其中Cg 4為與TTA形成共價鍵之偶合基團。
在本發明之另一個態樣中,經放射性標記之PARPi結合物中之連接子具有以下結構: ES - ECL - SIG 其中ES具有以下結構:Cg 3-SP-Cg 4; Cg 3及Cg 4各自獨立地為丁二醯亞胺基氧基羰基、順丁烯二醯亞胺、-OC(O)-;-C(O)O-;-OC(O)O-;-OC(O)N(R 1)-;-N(R 1)C(O)-;-C(O)N(R 1)-;-N(R 1)C(O)O-;-N(R 1)C(O)N(R 2)-;-C(O)-;-OC(R 1)(R 2)-;-C(R 1)(R 2)O-;-OC(R 1)(R 2)O-;-C(R 1)(R 2)-;-S-;-S-S-;C-;=C-;-N=;=N-;-C=N-;-N=C-;-O-N=;=N-O-;-C=N-O-;-O-N=C-;-N(R 1)-N=;=N-N(R 1)-;-N(R 1)-N=C-;或-C=N-N(R 1)-;或Cg 3及Cg 4各自獨立地為具有兩個選自由以下組成之群的官能基之苯基:-OC(O)-;-C(O)O-;-OC(O)O-;-OC(O)N(R 1)-;-N(R 1)C(O)-;-C(O)N(R 1)-;-N(R 1)C(O)O-;-N(R 1)C(O)N(R 2)-;-C(O)-;-OC(R 1)(R 2)-;-C(R 1)(R 2)O-;-OC(R 1)(R 2)O-;-C(R 1)(R 2)-;-S-;-S-S-;C-;=C-;-N=;=N-;-C=N-;-N=C-;-O-N=;=N-O-;-C=N-O-;-O-N=C-;-N(R 1)-N=;=N-N(R 1)-;-N(R 1)-N=C-;及-C=N-N(R 1)-; 其中R 1及R 2係獨立地選自H、分支鏈或非分支鏈C 1-10烷基或芳基; 其中Cg 3為與Rd組分形成共價鍵之偶合基團,且Cg 4為與ECL形成共價鍵之偶合基團; 其中SP為-C 1-C 10伸烷基-;-C 1-C 10伸烯基-;-C 1-C 10伸炔基-;碳環-;-O-(C 1-C 8伸烷基)-;-O-(C 1-C 8伸烯基)-;-O-(C 1-C 8伸炔基)-;-伸芳基-;-C 1-C 10伸烷基-伸芳基-;-C 2-C 10伸烯基-伸芳基;-C 2-C 10伸炔基-伸芳基;伸芳基-C 1-C 10伸烷基-;-伸芳基-C 2-C 10伸烯基-;-伸芳基-C 2-C 10伸炔基-;-C 1-C 10伸烷基-(碳環)-;-C 2-C 10伸烯基-(碳環)-;C 2-C 10伸炔基-(碳環)-;-(碳環)-C 1-C 10伸烷基-;-(碳環)-C 2-C 10伸烯基-;-(碳環)-C 2-C 10伸炔基;-雜環-;-C 1-C 10伸烷基-(雜環)-;-C 2-C 10伸烯基-(雜環)-;-C 2-C 10伸炔基-(雜環)-;-(雜環)-C 1-C 10伸烷基-;-(雜環)-C 2-C 10伸烯基-;-(雜環)-C 1-C 10伸炔基-;-(CH 2CH 2O) r -;或-(CH 2CH 2O) r -CH 2-,其中 r為1至10範圍內之整數; 其中ECL為酶可裂解連接子;且 其中SIG為在ECL與TTA之間形成共價鍵之自行分解基團,其中在ECL裂解後,SIG分解以自ECL釋放TTA。
芳基包括但不限於苯、萘、蒽、苊(acenaphthylene)、蒽酮(anthracenone)、蒽二酮(anthracenedione)、聯伸二苯、茀、茀-9-酮、菲、菲醌(phenanthrenedione)、芘及聯伸三苯;芳基可未經取代或經以下中之一或多者取代:氰基、硝基、羥基、烷氧基、巰基、胺基、羧基、胺基羰基、胺基硫羰基、磺基、胺基磺醯基、鹵素及C 1-C 6烷基。
芳族雜環包括但不限於吖啶、苯并㖕啉、苯并呋喃、苯并喹啉、苯并噻吩、苯并哌喃、咔唑、㖕啉、二苯并噻吩、呋喃、咪唑、吲唑、吲哚、吲
Figure 111124364-002
、異苯并呋喃、異吲哚、異喹啉、異噻唑、㖠啶、㗁唑、菲并噻吩、啡啶、啡啉、啡𠯤、呔𠯤、喋啶、嘌呤、吡𠯤、吡唑、嗒𠯤、吡啶、嘧啶、吡咯、喹唑啉、喹啉、喹㗁啉、四唑、噻唑、噻吩、三𠯤及𠮿
Figure 111124364-003
在一些實施例中,放射性核種結合於螯合劑。螯合劑偶合至PARPi。適用於放射性核種複合之代表性放射性核種螯合劑包括特拉歇坦(tetraxetan)(DOTA)、1,4,7-三氮雜環壬烷-1,4,7-三乙酸(NOTA)、二伸乙基三胺五乙酸酯(DTPA)-異硫氰酸酯、6-肼鎓菸鹼酸丁二醯亞胺酯鹽酸鹽(SHNH)及六甲基伸丙基胺肟(hexamethylpropylene amine oxime;HMPAO)(參見Bakker等人, J Nucl Med, 1990, 31: 1501-1509;Chattopadhyay等人, Nucl Med Biol, 2001, 28: 741-744;Dewanjee等人, J Nucl Med, 1994 35: 1054-63;Krenning等人, Lancet, 1989, 1: 242-244;Sagiuchi等人, Ann Nucl Med, 2001, 15: 267-270;US 6,024,938,其皆以引用之方式併入本文中)。放射性鹵化(Radiohalogenation)方法亦為此項技術中已知,且代表性方案可見於例如Krenning等人, Lancet, 1989, 1:242-4;Bakker等人, J Nucl Med, 1990, 31:1501-9;Coenen等人, Radiochimica Acta 1983; 34: 47-68;及Lewis等人(編) Radiopharmaceutical Chemistry, Springer 2019中,其皆以引用之方式併入本文中。
在一些態樣中,包括在上文所描述之實施例中,ECL視情況可由溶酶體酶(諸如溶酶體蛋白酶或溶酶體醣苷酶,例如由兩個至四個胺基酸構成之肽)裂解。
在本發明之其他態樣中,PARPi結合物包含光敏劑,諸如二氫卟酚(e6)、卟啉或IRDye700DX,代替上文所描述之放射性標記Rd。
VII. 治療性用途應瞭解,本發明之PARPi結合物可用於治療癌症或其他贅生性病症,無論單獨投與抑或與另外的抗癌劑或放射線療法組合投與。所揭示之PARPi結合物尤其適用於大體上治療患有良性或惡性實體腫瘤之個體的贅生性病況。
A.   使用PARP抑制劑結合物之放射敏化 本發明之PARPi結合物可用於使腫瘤放射敏化,從而使得較低量之游離輻射(IR)(較佳其他無毒劑量)為治療有效的。不希望受任何理論束縛,敏感度可歸因於DNA複製過程,在此期間複製叉於延遲單股斷裂修復時瓦解,例如以引用之方式併入本文中之Dungey等人, Int J Radiat Oncol Biol Phys, 2008, 72(4): 1188中所描述。或者,敏感度可歸因於由DNA複製期間停滯之複製叉之瓦解產生的DNA雙股斷裂。當個體用IR治療時,用於放射敏化之PARPi結合物之有效劑量可小於相同PARPi結合物之細胞毒性劑量,亦即作為單一藥劑在治療上有效的劑量。在本發明之某些態樣中,使用所揭示之PARPi結合物之放射敏化係按照增強比率定量的,該增強比率定義為對照用以治療之平均有效劑量,且較佳為至少1.2、至少1.3、至少1.4、至少1.5或更高。
B.   使用經放射性標記之PARP抑制劑結合物的療法 本文所揭示之經放射性標記之PARPi結合物可用作用於治療癌症,尤其以實體腫瘤為特徵之彼等癌症的一流目標療法。所揭示之PARPi結合物之顯著優勢為藉由減少或消除由於治療性放射性核種之非特異性靶向而出現之副作用使PARPi治療指數最佳化。如此,由於提高之治療指數,所揭示之PARPi結合物可以降低劑量及/或侵襲性較小之投與方案使用。特定言之,如本文所揭示之PARPi結合物可顯示改善之治療結果,包括但不限於腫瘤尺寸減小、腫瘤生長延遲、癌轉移較少及/或壽命增加。相較於在僅接受經直接標記之PARPi (亦即並非如在本文所描述之PARPi結合物中一般靶向)之個體中觀測到的治療效果,此類改善為至少約10%、或至少約20%、或至少約30%、或至少約40%、或至少約50%、或至少約60%、或至少約70%、或至少約80%、或至少約90%、或至少約95%、或至少約99%(參見Laird等人 J. Thoracic Oncology2019, 14(10):1743-1752及Makvandi等人 Mol. Cancer Ther.2019, 18(7):1195-1204,皆以引用之方式併入本文中)。在其他態樣中,相較於在僅接受PARPi (亦即並非如在本文所描述之PARPi結合物中一般靶向)之個體中觀測到的任何治療效果,此類改善為至少約2倍、或至少約5倍、或至少約10倍、或至少約20倍、或至少約50倍、或至少約100倍或更高。
同樣,本文所揭示之PARPi結合物經設計成相較於缺乏另外之PARPi核靶向組分(亦即經放射性標記之TTA)的腫瘤細胞靶向放射性核種,具有改善之治療效果。特定言之,相較於在細胞質或細胞表面,放射衰變在細胞核中更具毒性。
短程放射性核種之有效性可使用以引用之方式併入本文中之Goddu等人 MIRD Cellular S-Values, 1997, Reston, VA Society of Nuclear Medicine之MIRD S值計算測定,以比較當放射衰變位點在細胞核中S(N←N)、在細胞質中S(N←Cy)或在細胞表面S上(N←CS)時細胞核將接受之輻射劑量。此等計算係基於典型癌細胞具有約9 µm之細胞半徑及約7 µm之核半徑的觀測結果。參見Akabani等人 Nucl Med. Biol.2006, 33:333-347。用於使用不同類型之治療性輻射之療法的一些臨床上相關放射性核種之S值概述於表1中。值得注意的是,此等計算不包括來自α衰變反沖核之效應,因此,對於α發射體而言很可能為低估值。
劑量增強比率為可藉由使衰變位點自細胞質或細胞表面移動至細胞核而獲得的輻射劑量之增加,且經計算為: 分別地,S(N←N)/S(N←Cy)及S(N←N)/ S(N←CS)。
如自表1可見,放射衰變位點自細胞質移位至細胞核使得對於細胞之輻射敏感要素(其核)之輻射劑量針對α粒子發射體而言增強2.3倍、針對β粒子發射體而言增強2.7至3.0倍且針對歐傑電子發射體而言增強7.0至8.4倍。同樣,放射衰變位點自細胞表面移位至細胞核使得對於細胞核之輻射劑量針對α粒子發射體而言增強3.1至3.2倍、針對β粒子發射體而言增強3.8至4.4倍且針對歐傑電子發射體而言增強10.6至39.3倍。 1. 移動放射衰變位點對於遞送至用於目標放射線療法之所關注放射性核種之細胞核的輻射劑量之影響
放射性核種 治療性輻射 S值(Gy/Bq s) 劑量增強比率
S(N←N) S(N←Cy) S(N←CS) 細胞核/ 細胞質 細胞核/細胞表面
Ga-67 歐傑 7.43E-04 9.32E-05 2.84E-05 8.0 26.2
Br-77 歐傑 5.23E-04 6.52E-05 1.33E-05 8.0 39.3
In-111 歐傑 6.02E-04 8.59E-05 5.70E-05 7.0 10.6
I-123 歐傑 6.29E-04 7.49E-05 4.93E-04 8.4 12.8
I-131 β粒子 3.18E-04 1.19E-04 8.47E-05 2.7 3.8
Lu-177 β粒子 4.72E-04 1.55E-04 1.05E-04 3.0 4.4
At-211 α粒子 4.35E-02 1.91E-02 1.41E-02 2.3 3.1
Bi-213 α粒子 1.25E-03 5.38E-04 3.96E-04 2.3 3.2
Ac-225* α粒子 4.88E-02 2.16E-02 1.60E-02 2.3 3.1
* 不包括來自放射性子體或其類似者之劑量。
因此,相較於包含與PARPi(Rd)結合物相同之TTA及相同之放射性核種的經放射性標記之TTA,本發明之PARPi(Rd)結合物可顯示至少約2或更大之輻射劑量增強比率。舉例而言,劑量增強比率可為至少約3或更大、或4或更大、或5或更大,且在一些態樣中,至少10或更大,諸如20或更大、25或更大、30或更大、40或更大、或50或更大。
C.   個體 本文所揭示之PARPi結合物可用於治療此項技術中經識別之各種癌症及其他贅生性病況中之任一者。在某些態樣中,結合物用於治療與實體腫瘤相關之癌症,包括例如卵巢、乳房、腎上腺、肝臟、腎臟、膀胱、乳房、胃腸道、子宮頸、子宮、前列腺、胰臟、肺、甲狀腺及腦之腫瘤。詳言之,已顯示PARP-1之抑制對於許多類型之腫瘤有效。在本發明之較佳態樣中,使用所揭示之PARPi結合物治療患有卵巢癌、腦癌或乳癌之個體。
在本發明之相關態樣中,所揭示之PARPi結合物及方法可用於治療其特徵在於修復蛋白質缺乏或缺陷的腫瘤,包括前述腫瘤中之任一者,例如缺乏至少一種參與同源重組修復(HRR)路徑之基因的腫瘤。參與同源重組修復路徑之代表性基因包括BRCA1或BRCA2,以及許多其他基因,例如以全文引用之方式併入本文中之US20210106574中所描述。
D.   調配、投與及劑量 所揭示之本發明之PARPi結合物可視需要使用此項技術中公認之技術調配。在一些實施例中,本發明之治療性組合物可呈純淨形式投與或與最少之額外組分一起投與,而其他組合物可視情況經調配為含有適合之醫藥學上可接受之載劑(例如媒劑、佐劑及稀釋劑),包含此項技術中熟知之賦形劑及助劑,包括例如pH調節劑及緩衝劑、張力調節劑、穩定劑、潤濕劑、輻射防護劑及其類似物。某些非限制性例示性載劑包括生理鹽水、緩衝生理鹽水、右旋糖、水、甘油、乙醇及其組合。某些非限制性例示性輻射防護劑包括抗壞血酸、龍膽酸、乙醇及其組合。
一般而言,本發明之化合物及組合物可藉由各種途徑向個體投與,包括但不限於經口、靜脈內、動脈內、皮下、非經腸、鼻內、肌肉內、顱內、心內、室內、氣管內、經頰、經直腸、腹膜內、皮內、局部、經皮及鞘內,或另外藉由植入或吸入。本發明組合物可調配成適合於特定投與模式的呈固體、半固體、液體或氣態形式的製劑,包括例如錠劑、膠囊、散劑、顆粒、軟膏、溶液、栓劑、灌腸劑、注射劑、吸入劑及噴霧劑。
投與本發明之PARPi結合物之特定給藥方案(亦即劑量、時間及重複)將視特定個體及彼個體之醫療史以及諸如藥物動力學(例如半衰期、清除率等)之經驗考慮因素而定。可在治療過程內判定及調節投與頻率。治療有效劑量為足以向個體提供臨床益處之劑量,包括例如足以減小腫瘤尺寸、維持腫瘤尺寸減小、減少或減緩腫瘤生長、延遲轉移發展、提高壽命等的劑量。投與之劑量可經調節或降低以控制潛在副作用及/或毒性。
實例包括以下實例以展現本發明之某些實施例。
實例 1. 製備具有纈胺酸 - 瓜胺酸 -PABC 連接子之經放射性標記之奧拉帕尼合成子流程1描繪一種製成合成子( 6)之方法的實例,該合成子併入有經放射性標記之奧拉帕尼作為PARP-1抑制劑(PARPi),該PARP-1抑制劑可偶合至結合於腫瘤相關抗原/受體或腫瘤特異性抗原/受體之抗體。如本文所用,「合成子」為包括PARPi及連接子之合成中間物。合成子偶合至抗體以形成PARPi結合物。
奧拉帕尼( 1)為用於治療BRCA突變卵巢癌之PARP抑制劑。為促進奧拉帕尼與抗體之偶合,移除環丙基酮端基,留下哌𠯤環作為官能基以連接至抗體奧拉帕尼衍生物( 2)。
Figure 02_image011
如流程1中所描繪,藉由使奧拉帕尼衍生物( 2)與具有兩個偶合基團(Cg、丁二醯亞胺基氧基羰基)的含碘苯部分之分子( 3)反應形成中間物( 4)來製備奧拉帕尼( 1)之類似物。可經由諸如以下中所描述之彼等方法的標準方法,由諸如錫或硼前驅物之適當前驅物合成經放射性標記之中間物( 4):Jannetti等人, J Nucl Med, 2018, 59:8, 1225-1233;Laird等人, J Thorac Oncol, 2019;Makvandi等人, Mol Cancer Ther, 2019, 18:1195-1204;Pirovano等人, BioRxiv, 2019;及Reilly等人, Org. Lett. 2018, 20, 1752−1755,其各自以全文引用之方式併入本文中。後期放射性標記可用於標記結合物以使放射性化學產率及莫耳活性最大化。纈胺酸-瓜胺酸-PABC連接子( 5)連接至放射性標記前驅物( 4)以形成合成子( 6),其可偶合至靶向腫瘤相關抗原或腫瘤特異性抗原之抗體。連接子( 5)由四個組分構成:1)具有結構NH 2-(CH 2) 6-C(O)-之延長間隔子(ES);2)由二肽纈胺酸-瓜胺酸二肽構成之酶可裂解連接子(ECL);3)自行分解基團(SIG)對胺基苯甲醇(PABA);及4)用於使經放射性標記之奧拉帕尼合成子( 6)偶合至抗體的偶合基團(Cg)碳酸對硝基苯酯。所得合成子( 6)包括偶合至酶可裂解自行分解連接子之奧拉帕尼部分,該連接子具有偶合至靶向腫瘤相關抗原或腫瘤特異性抗原之抗體的偶合基團。
Figure 02_image013
流程1
實例 2. 製備具有二硫化物連接子之奧拉帕尼 /TTA 合成子如實例1中所描述製備奧拉帕尼( 4)之含碘類似物。流程2描繪一種製成奧拉帕尼合成子( 9)之方法的實例,該合成子併入有經放射性標記之奧拉帕尼作為PARP-1抑制劑,具有可偶合至結合於腫瘤相關抗原/受體或腫瘤特異性抗原/受體之抗體的二硫化物連接子。使根據流程1合成的放射性標記前驅物( 4)與經保護二硫化物連接子(BocNH-(CH 2) 2-S-S-(CH 2) 2)-NH 2)反應,以允許將連接子單添加至前驅物( 4)。使用三氟乙酸對所得經保護二硫化物醯胺(未展示)去保護,以形成二硫化物中間物( 7)。使具有N-丁二醯亞胺酯偶合基團( 8)之間隔子(-OC(O)-(CH 2) 8-C(O)O-)與二硫化物中間物( 7)反應形成奧拉帕尼合成子( 9)。
Figure 02_image015
流程2
實例 3. 製備具有 PEG 間隔子之奧拉帕尼結合物如流程3中所描繪,藉由使奧拉帕尼衍生物( 2)與經放射性標記之前驅物部分( 3)反應形成中間物( 4)來製備奧拉帕尼之類似物。PEG間隔子偶合至PSMA結合藥效基團(pharmacophore)( 10)以形成PEG/PSMA藥效基團結合部分( 11)。使PEG/PSMA藥效基團結合部分( 11)與中間物( 4)反應,使奧拉帕尼部分連接至PEG間隔子以形成合成子中間物( 12)。合成子中間物( 12)之「X」基團根據流程中所闡述之程序經放射性核種取代。所得經放射性標記之奧拉帕尼合成子( 13)包括經由PEG間隔子偶合至靶向腫瘤相關抗原或腫瘤特異性抗原(例如PSMA)之腫瘤靶向劑的奧拉帕尼部分。
Figure 02_image017
流程3
合成經保護標準物 (20S,24S)-1-(3-(4-(2- -5-((4- 側氧基 -3,4- 二氫呔 𠯤 -1- ) 甲基 ) 苯甲醯基 ) 𠯤 -1- 羰基 )-5- 碘苯基 )-1,14,22- 三側氧基 -5,8,11- 三氧雜 -2,15,21,23- 四氮雜二十六烷 -20,24,26- 三甲酸三 - 三級丁酯 ( 12a) 藉由用1當量可商購之4-(4-氟-3-(哌𠯤-1-羰基)苯甲基)呔𠯤-1(2H)-酮( 2)處理1當量之雙(2,5-二側氧基吡咯啶-1-基)5-碘間苯二甲酸酯( 3a,Vaidyanathan等人, Bioorg. Med. Chem. 2012; 20:  6929-6939)來合成中間物2,5-二側氧基吡咯啶-1-基-3-(4-(2-氟-5-((4-側氧基-3,4-二氫呔𠯤-1-基)甲基)苯甲醯基)哌𠯤-1-羰基)-5-碘苯甲酸酯( 4a)。儘管進行了層析,但產物含有一些酸。在室溫下攪拌 4a(200 mg,1.87 Eq,271 µmol)、(18 S,22 S)-1-胺基-12,20-二側氧基-3,6,9-三氧雜-13,19,21-三氮雜二十四烷-18,22,24-三甲酸三-三級丁酯( 11,100 mg,1 Eq,145 µmol)、EDC (83.2 mg,3.0 Eq,434 µmol)、三乙胺(43.9 mg,60.5 µL,3.0 Eq,434 µmol)於25 mL二氯甲烷中之混合物4 h。添加水且將有機層分離並用無水MgSO 4乾燥。移除揮發物且使用10g BIOTAGE SNAP ULTRA管柱(DCM:MeOH(9:1))對粗產物進行層析,得到呈油狀物之(20 S,24 S)-1-(3-(4-(2-氟-5-((4-側氧基-3,4-二氫呔𠯤-1-基)甲基)苯甲醯基)哌𠯤-1-羰基)-5-碘苯基)-1,14,22-三側氧基-5,8,11-三氧雜-2,15,21,23-四氮雜二十六烷-20,24,26-三甲酸三-三級丁酯( 12a,40 mg,30 µmol,21%)。使用Biotage SFar 6g C18逆相管柱(100%水/100% MeCN)進一步純化,得到18 mg純白色固體。LRMS: (M+H) +1314。HRMS:C 61H 82FIN 8O 15之計算值(M+H) +:1313.5001,實驗值:1313.4928。
合成錫前驅物 (20S,24S)-1-(3-(4-(2- -5-((4- 側氧基 -3,4- 二氫呔 𠯤 -1- ) 甲基 ) 苯甲醯基 ) 𠯤 -1- 羰基 )-5-( 三甲基錫烷基 ) 苯基 )-1,14,22- 三側氧基 -5,8,11- 三氧雜 -2,15,21,23- 四氮雜二十六烷 -20,24,26- 三甲酸三 - 三級丁酯 ( 12a) 藉由用1當量之4-(4-氟-3-(哌𠯤-1-羰基)苯甲基)呔𠯤-1(2H)-酮( 2)處理1當量之雙(2,5-二側氧基吡咯啶-1-基) 5-(三甲基錫烷基)間苯二甲酸酯( 3b) (Vaidyanathan等人, Bioorg. Med. Chem. 2012; 20:  6929-6939)來合成中間物2,5-二側氧基吡咯啶-1-基3-(4-(2-氟-5-((4-側氧基-3,4-二氫呔𠯤-1-基)甲基)苯甲醯基)哌𠯤-1-羰基)-5-(三甲基錫烷基)苯甲酸酯。儘管進行了層析,但產物混雜有一些水解產物。在室溫下攪拌原樣之此化合物( 4b,175 mg,5.2 Eq,226 µmol)、(18 S,22 S)-1-胺基-12,20-二側氧基-3,6,9-三氧雜-13,19,21-三氮雜二十四烷-18,22,24-三甲酸三-三級丁酯( 11,30 mg,1 Eq,43 µmol)、EDC (8.3 mg,1 Eq,43 µmol)、三乙胺(4.4 mg,6.1 µL,1 Eq,43 µmol)於20 mL二氯甲烷中之混合物4 h。添加水且將有機層分離並經無水MgSO 4乾燥。移除揮發物且使用Biotage SFar 6g C18逆相管柱(100%水/100% MeCN)對所得固體進行層析,得到呈灰白色泡沫之(20 S,24 S)-1-(3-(4-(2-氟-5-((4-側氧基-3,4-二氫呔𠯤-1-基)甲基)苯甲醯基)哌𠯤-1-羰基)-5-(三甲基錫烷基)苯基)-1,14,22-三側氧基-5,8,11-三氧雜-2,15,21,23-四氮雜二十六烷-20,24,26-三甲酸三-三級丁酯( 12b,8.1 mg,6.0 µmol,14 %)。LRMS: (M+H) +1351.0 (計算值1351.2)
合成標準物 (20S,24S)-1-(3-(4-(2- -5-((4- 側氧基 -3,4- 二氫呔 𠯤 -1- ) 甲基 ) 苯甲醯基 ) 𠯤 -1- 羰基 )-5- 碘苯基 )-1,14,22- 三側氧基 -5,8,11- 三氧雜 -2,15,21,23- 四氮雜二十六烷 -20,24,26- 三甲酸 ( 13) 將三氟乙酸(TFA;1.0 ml)添加至1-(3-(4-(2-氟-5-((4-側氧基-3,4-二氫呔𠯤-1-基)甲基)苯甲醯基)哌𠯤-1-羰基)-5-碘苯基)-1,14,22-三側氧基-5,8,11-三氧雜-2,15,21,23-四氮雜二十六烷-20,24,26-三甲酸三-三級丁酯( 12a,15 mg,1 Eq,11 µmol)於3.0 ml二氯甲烷中之溶液中。在室溫下攪拌溶液16 h且濃縮至乾燥。藉由使用Biotage 6g SFar C18逆相管柱(含0.1% TFA之水100%至含0.1%TFA之MeCN100%)純化所得殘餘物。收集含有產物之溶離份且減壓濃縮,得到呈白色固體之(20 S,24 S)-1-(3-(4-(2-氟-5-((4-側氧基-3,4-二氫呔𠯤-1-基)甲基)苯甲醯基)哌𠯤-1-羰基)-5-碘苯基)-1,14,22-三側氧基-5,8,11-三氧雜-2,15,21,23-四氮雜二十六烷-20,24,26-三甲酸( 13, 4.2 mg,3.7 µmol,32 %)。LRMS: (M+H) +1145。HRMS:C 49H 58FIN 8O 15之計算值(M+H) +:1145.3123,實驗值:1145.3124。
合成 (20S,24S)-1-(3-(4-(2- -5-((4- 側氧基 -3,4- 二氫呔 𠯤 -1- ) 甲基 ) 苯甲醯基 ) 𠯤 -1- 羰基 )-5-[ 131I] 碘苯基 )-1,14,22- 三側氧基 -5,8,11- 三氧雜 -2,15,21,23- 四氮雜二十六烷 -20,24,26- 三甲酸 ( 13) 將[ 131I]碘化物於0.1 N NaOH (約1 µL;3 mCi)中之溶液添加至 N-氯丁二醯亞胺於甲醇(25 µL,2 mg/mL)中之溶液,之後添加錫前驅物( 12b)於甲醇(10 µL;10 mg/mL)中之溶液、10 µL冰乙酸及25 µL甲醇。徹底混合後,在37℃下加熱混合物20 min。用平緩氬氣流蒸發揮發物,將100 µL三氟乙酸(TFA)添加至剩餘活性物中且在37℃下加熱混合物10 min。用平緩氬氣流蒸發TFA,使剩餘活性物於100 µL 5% (v/v)乙腈/含0.1% TFA之水中復原並注入逆相分析型HPLC管柱(Agilent Poroshell 120 C18,2.7 µm,4.6×50 mm)上。用由含0.1% TFA之各份水(A)及乙腈(B)組成且B之比例在15 min內自5%線性增加至95%的梯度溶離管柱。在此等條件下,以約7 min之滯留時間溶離去保護之最終產物( 13)。彙集含有產物之HPLC溶離份且用氬氣流蒸發大部分乙腈,用水(10 mL)稀釋並穿過活化C18 SepPak濾筒。用10 mL水洗滌濾筒且用MeOH (2×100 µL)溶離產物。蒸發MeOH且在PBS中復原產物以用於生物分析。放射性化學產率為57%。
使 (20S,24S)-1-(3-(4-(2- -5-((4- 側氧基 -3,4- 二氫呔 𠯤 -1- ) 甲基 ) 苯甲醯基 ) 𠯤 -1- 羰基 )-5-[ 131I] 碘苯基 )-1,14,22- 三側氧基 -5,8,11- 三氧雜 -2,15,21,23- 四氮雜二十六烷 -20,24,26- 三甲酸 ([ 131I]PARP-PSMA 組合劑 13 ) 吸收及內化於 PSMA +PIP 細胞中藉由一式三份地在不存在或存在200 µM 2-PMPA之情況下,於37℃下與5×10 5個PIP細胞一起培育0.25-2 h來判定[ 131I]PARP-PSMA組合劑 13之PSMA特異性吸收及內化。移除含未結合活性之培養基後,用50 mM甘胺酸pH 2.8洗滌細胞,且最後用1 M NaOH使細胞裂解。對上清液、甘胺酸洗滌液(膜結合)及裂解物(經內化)溶離份中之放射活性計數且計算輸入劑量之百分比。圖1展示總細胞結合及內化活性隨時間變化之結果。總細胞結合活性在15、30、60及120 min處分別為18.7 ± 1.0%、30.0 ± 0.9%、31.8 ± 1.0及37.9 ± 0.6%。2-PMPA將吸收阻斷>80%,表明PSMA特異性吸收。針對PIP細胞中的經標記之PSMA抑制劑[ 131I]DCIBzL報導(Kiess等人, J Nucl Med, 2016; 57: 1569-1575. DOI: 10.2967/jnumed.116.174300)的總細胞結合活性(在30、60及120 min處分別為5.0 ± 0.3%、9.3 ± 1.5%及16.8 ± 1.0%)明顯更低,表明新組合劑展現更高量之PSMA特異性吸收。
PSMA +PIP 細胞中之 (20S,24S)-1-(3-(4 -(2- -5-((4- 側氧基 -3,4- 二氫呔 𠯤 -1- ) 甲基 ) 苯甲醯基 ) 𠯤 -1- 羰基 )-5-[ 131I] 碘苯基 )-1,14,22- 三側氧基 -5,8,11- 三氧雜 -2,15,21,23- 四氮雜二十六烷 -20,24,26- 三甲酸 ([ 131I]PARP-PSMA 組合劑 13 ) 之亞細胞分級分離使用購自Thermo Scientific之培養細胞亞細胞蛋白分級分離套組 (The Subcelluar Protein Fractionation Kit for Cultured Cells)(編號78840)判定PSMA+ PIP細胞中[ 131I]PARP-PSMA組合劑 13之亞細胞分級分離。將PIP細胞(500萬個)與[ 131I] 13之MBq在1.5 ml試管中一起培育,最終培育體積為500 µL。藉由遵循由Thermo Scientific提供之方案來達成來自PSMA +PIP細胞之細胞質、細胞膜、細胞核可溶性染色質結合蛋白及細胞骨架蛋白萃取物的逐步分離及製備。進行以下實驗組: 1. ([ 131I]PARP-PSMA 組合劑 13. 2. ([ 131I]PARP-PSMA 組合劑 13 + 2-PMPA阻斷劑(680 µM) 3. ([ 131I]PARP-PSMA 組合劑 13 + 奧拉帕尼阻斷劑(6.8 mM) 4. ([ 131I]PARP-PSMA 組合劑 13 + 2-PMPA阻斷劑(6.8 mM) +奧拉帕尼阻斷劑(6.8 mM)
表1展示以上4組之亞細胞分級分離結果。1小時之培育後, ([ 131I]PARP-PSMA 組合劑 13 之總細胞吸收為26.69%。大部分細胞吸收(20.70%)在細胞膜上且細胞核可溶性部分為2.17%。阻斷劑2-PMPA及奧拉帕尼實質上減少細胞吸收。總細胞吸收自無阻斷劑測試的26.69%降低至具有PMPA阻斷劑之組的4.99%、具有奧拉帕尼阻斷劑之組的13.44%及具有PMPA及奧拉帕尼阻斷劑兩者之組的3.78%。類似地,膜結合放射活性自無阻斷劑測試的20.70%降低至具有PMPA阻斷劑之組的3.23%、具有奧拉帕尼阻斷劑之組的9.00%及具有PMPA及奧拉帕尼阻斷劑兩者之組的1.44%。
1 h 時間點 (%) PSMA-PARP PMPA 奧拉帕尼 PMPA+奧拉帕尼
上清液 ( 洗淨 ) 73.31 86.85 82.42 87.21
細胞質 2.50 1.47 3.09 2.13
細胞膜 20.70 3.23 9.00 1.44
細胞核可溶 2.17 0.11 1.01 0.14
微球菌核酸酶 0.59 0.09 0.14 0.03
細胞骨架蛋白 0.28 0.03 0.15 0.02
殘留細胞 0.45 0.06 0.07 0.02
總細胞吸收 26.69 4.99 13.44 3.78
表1
實例 4. 製備具有 PEG 間隔子及二硫化物連接子之奧拉帕尼合成子如實例1中所描述製備奧拉帕尼之含碘衍生物( 4a)。參考流程4,藉由使奧拉帕尼衍生物( 4a)與(2-((2-胺基乙基)二硫烷基)乙基)胺基甲酸三級丁酯( 14)反應來使二硫化物連接子偶合至奧拉帕尼衍生物( 4a),以形成奧拉帕尼二硫化物部分( 15)。使PEG間隔子( 16)偶合至奧拉帕尼二硫化物部分( 15)以形成奧拉帕尼PEG/二硫化物部分( 17)。使PSMA結合藥效基團( 10)(參見流程3)偶合至奧拉帕尼PEG/二硫化物部分( 17)以產生經保護奧拉帕尼合成子( 18),去保護以形成奧拉帕尼合成子( 19)。所得奧拉帕尼合成子( 19)包括偶合至二硫化物連接子之奧拉帕尼部分及連接至靶向腫瘤相關抗原或腫瘤特異性抗原(例如PSMA)之腫瘤靶向劑的PEG間隔子。 [此頁其餘部分有意保持空白]
Figure 02_image019
流程4
實例 5. 替代性製備具有 PEG 間隔子及二硫化物連接子之奧拉帕尼合成子流程5描繪具有PEG間隔子及二硫化物連接子之奧拉帕尼合成子的替代性合成途徑。在此流程中,首先合成奧拉帕尼合成子之間隔子/PSMA結合藥效基團部分。PSMA結合藥效基團( 10)充當流程5之起始物質。使其偶合至PEG間隔子,得到PSMA結合藥效基團-間隔子中間物( 20)。使二硫化物連接子偶合至中間物( 20)以使PSMA結合藥效基團/間隔子( 21)完整。將含碘或錫之奧拉帕尼衍生物( 4a)構築於連接子/間隔子( 21)上。為此,首先使具有兩個偶合基團(例如丁二醯亞胺基氧基羰基)的含碘苯或三烷基矽烷基苯部分之分子( 3a/3b)偶合至間隔子/PSMA結合藥效基團( 21)以形成中間物( 22)。使中間物( 22)與奧拉帕尼衍生物( 2)反應形成合成子( 23a)。可使用三氟乙酸對奧拉帕尼合成子( 23a)去保護。所得去保護合成子( 23b)包括偶合至二硫化物連接子及PEG間隔子之奧拉帕尼部分。奧拉帕尼合成子( 23a23b)靶向腫瘤相關抗原或腫瘤特異性抗原(例如PSMA)。
Figure 02_image021
流程5
實例 6 - 用於 sdAb 位點特異性結合之奧拉帕尼合成子在一實施例中,含奧拉帕尼合成子具有結構( 24)。
Figure 02_image023
合成子( 24)包括偶合至抗體(例如sdAb)之半胱胺酸基團的順丁烯二醯亞胺基。碘基團可為碘放射性核種(例如 131I)。奧拉帕尼合成子( 24)之合成展示於流程6至9中。
Figure 02_image025
流程6
流程6描繪結合物之自行分解酶可裂解基團( 32)之合成。結合物之自行分解酶可裂解基團( 32)包括用於偶合至腫瘤靶向劑(例如抗體)的順丁烯二醯亞胺基,該腫瘤靶向劑偶合至mc-vc-PABA自行分解連接子。以經胺基甲酸苯甲酯保護之纈胺酸( 25)作為起始物質,藉由與N-羥基丁二醯亞胺反應來活化甲酸。使活化之中間產物( 26)與瓜胺酸( 27)反應以形成連接子之Val-Cit部分( 28)。使Val-Cit部分與對胺基苯甲醇反應以形成連接子( 32)之vc-PABA部分( 29)。自中間物( 29)上之Val移除胺基甲酸苯甲酯保護基,且使無保護Val與順丁烯二醯亞胺基己酸( 31)反應形成自行分解酶可裂解基團( 32)。
流程7展示奧拉帕尼合成子( 24)之經修飾奧拉帕尼部分( 35)之合成。藉由環丙烷甲醯胺之水解改變奧拉帕尼,釋放哌𠯤環上之氮,得到奧拉帕尼衍生物( 2)。奧拉帕尼衍生物( 2)與4-三-正丁基錫烷基苯甲酸反應,得到奧拉帕尼合成子( 24)之經修飾奧拉帕尼部分( 35)。錫取代基充當將放射性核種引入至結合物上的控點。
Figure 02_image027
流程7
流程8展示碳酸酯偶合劑( 36)與自行分解酶可裂解基團( 32)連接,得到連接子( 37)。
Figure 02_image029
流程8
Figure 02_image031
流程9
流程9展示合成子( 24)之最終組裝。使連接子( 37)與經修飾奧拉帕尼( 35)反應形成奧拉帕尼合成子( 24)。可使奧拉帕尼合成子( 24)與適合之腫瘤靶向劑(例如抗體)反應且使錫取代基經放射性核種置換以形成奧拉帕尼-抗體結合物。
鑒於本說明書,本發明之各種態樣之進一步修改及替代實施例對於熟習此項技術者而言將顯而易見。因此,應理解本說明書僅為說明性的且出於教示熟習此項技術者執行本發明之通用方式之目的。應理解,本文中所展示及描述之本發明之各形式應視為實施例的實例。要素及材料可替代本文中所說明及描述之要素及材料,部分及製程可顛倒,且可獨立利用本發明之某些特徵,以上所有對受益於本發明之本說明書的熟習此項技術者而言將顯而易見。在不背離在以下申請專利範圍中所描述之本發明之精神及範疇的情況下,可對本文所描述之要素作出改變。
藉由實施例之以下詳細描述且在參考隨附圖式後,本發明之優勢對於熟習此項技術者而言將變得顯而易見,在隨附圖式中: 圖1描繪(20S,24S)-1-(3-(4-(2-氟-5-((4-側氧基-3,4-二氫呔𠯤-1-基)甲基)苯甲醯基)哌𠯤-1-羰基)-5-[ 131I]碘苯基)-1,14,22-三側氧基-5,8,11-三氧雜-2,15,21,23-四氮雜二十六烷-20,24,26-三甲酸([ 131I]PARP-PSMA組合劑(combo agent))在PSMA +PIP細胞中之吸收及內化。 雖然本發明可能容易產生各種修改及替代形式,但其特定實施例已藉助於圖式展示,且將在本文中予以詳細描述。圖式可能未按比例繪製。然而,應理解,該等圖式及其詳細描述並不意欲將本發明限於所揭示之特定形式,而正相反,本發明意欲涵蓋屬於由所附申請專利範圍所界定之本發明之精神及範疇內的所有修改、等效物及替代方案。

Claims (37)

  1. 一種組合物,其包含經放射性標記之聚(ADP-核糖)聚合酶-1抑制劑(PARPi(Rd))結合物,其中該結合物包含偶合至腫瘤靶向劑(TTA)之PARPi(Rd)。
  2. 如請求項1之組合物,其中該PARPi結合物包含式I: PARPi(Rd) - L - TTA  (I) 其中Rd為放射性標記且PARPi(Rd)為經放射性標記之PARPi, 其中L為連接子且TTA為腫瘤靶向劑,且 其中L使該PARPi(Rd)偶合至該TTA。
  3. 如請求項1或2之組合物,其中該PARPi為PARP-1抑制劑。
  4. 如請求項1至3中任一項之組合物,其中該PARPi係選自由以下組成之群:奧拉帕尼(olaparib)、維利帕尼(veliparib)、盧卡帕尼(rucaparib)、尼拉帕尼(niraparib)、帕米帕尼(pamiparib)及他拉唑帕尼(talazoparib)。
  5. 如請求項1至4中任一項之組合物,其中該PARPi使PARP-1對DNA之結合親和力比對不受抑制之PARP-1之DNA之結合親和力提高。
  6. 如請求項1至5中任一項之組合物,其中該PARPi使PARP-1自DNA之釋放比不受抑制之PARP-1自DNA之釋放減緩。
  7. 如請求項1至6中任一項之組合物,其中該TTA為單域抗體片段(sdAb)。
  8. 如請求項1至6中任一項之組合物,其中該TTA為前列腺特異性膜抗原(prostate specific membrane antigen;PSMA)抑制劑/配體。
  9. 如請求項1至8中任一項之組合物,其中該Rd包含發射短程輻射之放射性核種。
  10. 如請求項1至8中任一項之組合物,其中該Rd因發射歐傑電子(Auger electron)及/或α粒子而衰變。
  11. 如請求項2至10中任一項之組合物,其中該Rd具有以下結構: Cg 1- ArQ - Cg 2; 其中Cg 1為使ArQ偶合至該PARPi之偶合基團,且Cg 2為使Rd偶合至該L之偶合基團; 其中Cg 1及Cg 2各自獨立地為丁二醯亞胺基氧基羰基、順丁烯二醯亞胺、-OC(O)-;-C(O)O-;-OC(O)O-;-OC(O)N(R 1)-;-N(R 1)C(O)-;-C(O)N(R 1)-;-N(R 1)C(O)O-;-N(R 1)C(O)N(R 2)-;-C(O)-;-OC(R 1)(R 2)-;-C(R 1)(R 2)O-;-OC(R 1)(R 2)O-;-C(R 1)(R 2)-;-S-;-S-S-;C-;=C-;-N=;=N-;-C=N-;-N=C-;-O-N=;=N-O-;-C=N-O-;-O-N=C-;-N(R 1)-N=;=N-N(R 1)-;-N(R 1)-N=C-;或-C=N-N(R 1)-;或 Cg 1及Cg 2各自獨立地為具有兩個選自由以下組成之群的官能基之苯基:-OC(O)-;-C(O)O-;-OC(O)O-;-OC(O)N(R 1)-;-N(R 1)C(O)-;-C(O)N(R 1)-;-N(R 1)C(O)O-;-N(R 1)C(O)N(R 2)-;-C(O)-;-OC(R 1)(R 2)-;-C(R 1)(R 2)O-;-OC(R 1)(R 2)O-;-C(R 1)(R 2)-;-S-;-S-S-;C-;=C-;-N=;=N-;-C=N-;-N=C-;-O-N=;=N-O-;-C=N-O-;-O-N=C-;-N(R 1)-N=;=N-N(R 1)-;-N(R 1)-N=C-;及-C=N-N(R 1)-; 其中R 1及R 2係獨立地選自H、分支鏈或非分支鏈C 1-10烷基或芳基; 其中Ar為芳基、雜芳基或放射性核種螯合劑;且 其中Q為放射性核種。
  12. 如請求項2至10中任一項之組合物,其中該L具有以下結構: ES 1- SS - ES 2其中ES 1具有以下結構:Cg 3-SP-; 其中SS為二硫鍵; 其中ES 2具有以下結構:-SP-Cg 4-; 其中Cg 3及Cg 4各自獨立地為丁二醯亞胺基氧基羰基;順丁烯二醯亞胺;-OC(O)-;-C(O)O-;-OC(O)O-;-OC(O)N(R 1)-;-N(R 1)C(O)-;-C(O)N(R 1)-;-N(R 1)C(O)O-;-N(R 1)C(O)N(R 2)-;-C(O)-;-OC(R 1)(R 2)-;-C(R 1)(R 2)O-;-OC(R 1)(R 2)O-;-C(R 1)(R 2)-;-S-;-S-S-;C-;=C-;-N=;=N-;-C=N-;-N=C-;-O-N=;=N-O-;-C=N-O-;-O-N=C-;-N(R 1)-N=;=N-N(R 1)-;-N(R 1)-N=C-;或-C=N-N(R 1)-;或Cg 1及Cg 2各自獨立地為具有兩個選自由以下組成之群的官能基之苯基:-OC(O)-;-C(O)O-;-OC(O)O-;-OC(O)N(R 1)-;-N(R 1)C(O)-;-C(O)N(R 1)-;-N(R 1)C(O)O-;-N(R 1)C(O)N(R 2)-;-C(O)-;-OC(R 1)(R 2)-;-C(R 1)(R 2)O-;-OC(R 1)(R 2)O-;-C(R 1)(R 2)-;-S-;-S-S-;C-;=C-;-N=;=N-;-C=N-;-N=C-;-O-N=;=N-O-;-C=N-O-;-O-N=C-;-N(R 1)-N=;=N-N(R 1)-;-N(R 1)-N=C-;及-C=N-N(R 1)-; 其中R 1及R 2係獨立地選自H、分支鏈或非分支鏈C 1-10烷基或芳基; 其中SP為-C 1-C 10伸烷基-;-C 1-C 10伸烯基-;-C 1-C 10伸炔基-;碳環-;-O-(C 1-C 8伸烷基)-;O-(C 1-C 8伸烯基)-;-O-(C 1-C 8伸炔基)-;-伸芳基-;-C 1-C 10伸烷基-伸芳基-;-C 2-C 10伸烯基-伸芳基;-C 2-C 10伸炔基-伸芳基;-伸芳基-C 1-C 10伸烷基-;-伸芳基-C 2-C 10伸烯基-;-伸芳基-C 2-C 10伸炔基-;-C 1-C 10伸烷基-(碳環)-;-C 2-C 10伸烯基-(碳環)-;C 2-C 10伸炔基-(碳環)-;-(碳環)-C 1-C 10伸烷基-;-(碳環)-C 2-C 10伸烯基-;-(碳環)-C 2-C 10伸炔基;-雜環-;-C 1-C 10伸烷基-(雜環)-;-C 2-C 10伸烯基-(雜環)-;-C 2-C 10伸炔基-(雜環)-;-(雜環)-C 1-C 10伸烷基-;-(雜環)-C 2-C 10伸烯基-;-(雜環)-C 1-C 10伸炔基-;-(CH 2CH 2O) r -;或-(CH 2CH 2O) r -CH 2; 其中 r為1至10範圍內之整數; 其中Cg 3為與該Rd形成共價鍵之偶合基團;且其中Cg 4為與該TTA形成共價鍵之偶合基團。
  13. 如請求項2至10中任一項之組合物,其中該L具有以下結構: ES - ECL - SIG 其中ES具有以下結構:Cg 3-SP-Cg 4; Cg 3及Cg 4各自獨立地為丁二醯亞胺基氧基羰基、順丁烯二醯亞胺、-OC(O)-;-C(O)O-;-OC(O)O-;-OC(O)N(R 1)-;-N(R 1)C(O)-;-C(O)N(R 1)-;-N(R 1)C(O)O-;-N(R 1)C(O)N(R 2)-;-C(O)-;-OC(R 1)(R 2)-;-C(R 1)(R 2)O-;-OC(R 1)(R 2)O-;-C(R 1)(R 2)-;-S-;-S-S-;C-;=C-;-N=;=N-;-C=N-;-N=C-;-O-N=;=N-O-;-C=N-O-;-O-N=C-;-N(R 1)-N=;=N-N(R 1)-;-N(R 1)-N=C-;或-C=N-N(R 1)-;或Cg 1及Cg 2各自獨立地為具有兩個選自由以下組成之群的官能基之苯基:-OC(O)-;-C(O)O-;-OC(O)O-;-OC(O)N(R 1)-;-N(R 1)C(O)-;-C(O)N(R 1)-;-N(R 1)C(O)O-;-N(R 1)C(O)N(R 2)-;-C(O)-;-OC(R 1)(R 2)-;-C(R 1)(R 2)O-;-OC(R 1)(R 2)O-;-C(R 1)(R 2)-;-S-;-S-S-;C-;=C-;-N=;=N-;-C=N-;-N=C-;-O-N=;=N-O-;-C=N-O-;-O-N=C-;-N(R 1)-N=;=N-N(R 1)-;-N(R 1)-N=C-;及-C=N-N(R 1)-; 其中R 1及R 2係獨立地選自H、分支鏈或非分支鏈C 1-10烷基或芳基; 其中Cg 3為與該Rd組分形成共價鍵之偶合基團,且Cg 4為與ECL形成共價鍵之偶合基團; 其中SP為-C 1-C 10伸烷基-;-C 1-C 10伸烯基-;-C 1-C 10伸炔基-;-碳環-;-O-(C 1-C 8伸烷基)-;-O-(C 1-C 8伸烯基)-;-O-(C 1-C 8伸炔基)-;-伸芳基-;-C 1-C 10伸烷基-伸芳基-;-C 2-C 10伸烯基-伸芳基;-C 2-C 10伸炔基-伸芳基;伸芳基-C 1-C 10伸烷基-;-伸芳基-C 2-C 10伸烯基-;-伸芳基-C 2-C 10伸炔基-;-C 1-C 10伸烷基-(碳環)-;-C 2-C 10伸烯基-(碳環)-;-C 2-C 10伸炔基-(碳環)-;-(碳環)-C 1-C 10伸烷基-;-(碳環)-C 2-C 10伸烯基-;-(碳環)-C 2-C 10伸炔基;-雜環-;-C 1-C 10伸烷基-(雜環)-;-C 2-C 10伸烯基-(雜環)-;-C 2-C 10伸炔基-(雜環)-;-(雜環)-C 1-C 10伸烷基-;-(雜環)-C 2-C 10伸烯基-;-(雜環)-C 1-C 10伸炔基-;-(CH 2CH 2O) r-;或-(CH 2CH 2O) r-CH 2-;其中 r為1至10範圍內之整數; 其中ECL為酶可裂解連接子;且 其中SIG為在該ECL與該TTA之間形成共價鍵之自行分解基團,其中在該ECL裂解後,該SIG分解以自該ECL釋放該TTA。
  14. 如請求項13之組合物,其中該ECL可由溶酶體酶裂解。
  15. 如請求項14之組合物,其中該溶酶體酶為溶酶體蛋白酶。
  16. 如請求項13至15中任一項之組合物,其中該ECL為由兩個至四個胺基酸構成之肽。
  17. 如請求項14之組合物,其中該溶酶體酶為溶酶體醣苷酶。
  18. 如請求項1至17中任一項之組合物,其中該PARPi包含奧拉帕尼。
  19. 如請求項1至17中任一項之組合物,其中該PARPi包含他拉唑帕尼。
  20. 如請求項1之組合物,其中該PARPi(Rd)-L具有結構( VI):
    Figure 03_image033
    其中X為放射性核種。
  21. 如請求項1之組合物,其中該PARPi(Rd)-L具有結構( IX):
    Figure 03_image035
    其中X為放射性核種。
  22. 如請求項1之組合物,其中該PARPi(Rd)-L具有以下結構:
    Figure 03_image037
    其中X為放射性核種。
  23. 如請求項1之組合物,其中該PARPi(Rd)-L具有以下結構:
    Figure 03_image039
    其中X為放射性核種。
  24. 一種組合物,其包含聚(ADP-核糖)聚合酶-1抑制劑(PARPi)結合物,其中該結合物包含偶合至腫瘤靶向劑(TTA)之PARPi。
  25. 如請求項24之組合物,其中該PARPi結合物包含式II: PARPi - L - TTA;(II) 其中L為連接子且TTA為腫瘤靶向劑,且 其中L使該PARPi偶合至該TTA。
  26. 一種醫藥組合物,其包含如請求項1至25中任一項之組合物及醫藥學上可接受之載劑。
  27. 如請求項26之醫藥組合物,其進一步包含光敏劑。
  28. 一種如請求項26或27之醫藥組合物的用途,其用於癌症治療。
  29. 一種放射敏化癌症個體中之腫瘤的方法,其包含向該個體投與如請求項26或27之醫藥組合物。
  30. 一種治療個體之癌症的方法,其包含以下步驟:(i)向該個體投與如請求項26或27之醫藥組合物,及(ii)投與游離輻射。
  31. 一種治療個體之癌症的方法,其包含向該個體投與如請求項26或27之醫藥組合物。
  32. 如請求項29至31中任一項之方法,其中該癌症為卵巢癌。
  33. 如請求項29至31中任一項之方法,其中該癌症為乳癌。
  34. 如請求項29至31中任一項之方法,其中該癌症為腦癌。
  35. 如請求項29至31中任一項之方法,其中該癌症為前列腺癌。
  36. 如請求項29至35中任一項之方法,其中該個體缺乏參與同源重組修復(homologous recombination repair;HRR)路徑之至少一種基因。
  37. 如請求項29至36中任一項之方法,其中該醫藥組合物係與化學療法組合投與。
TW111124364A 2021-06-29 2022-06-29 用於癌症治療之經放射性標記之parp抑制劑結合物 TW202317205A (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US202163216301P 2021-06-29 2021-06-29
US63/216,301 2021-06-29
US202263355336P 2022-06-24 2022-06-24
US63/355,336 2022-06-24

Publications (1)

Publication Number Publication Date
TW202317205A true TW202317205A (zh) 2023-05-01

Family

ID=84691601

Family Applications (1)

Application Number Title Priority Date Filing Date
TW111124364A TW202317205A (zh) 2021-06-29 2022-06-29 用於癌症治療之經放射性標記之parp抑制劑結合物

Country Status (2)

Country Link
TW (1) TW202317205A (zh)
WO (1) WO2023278592A1 (zh)

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10512700B2 (en) * 2014-08-27 2019-12-24 Memorial Sloan Kettering Cancer Center Radiohalide-labeled targeted diagnostics and therapeutics
EP3493853A1 (en) * 2016-08-03 2019-06-12 Pfizer Inc Heteroaryl sulfone-based conjugation handles, methods for their preparation, and their use in synthesizing antibody drug conjugates

Also Published As

Publication number Publication date
WO2023278592A1 (en) 2023-01-05

Similar Documents

Publication Publication Date Title
ES2952017T3 (es) Conjugado de anticuerpo-oligonucleótido mejorado
US20230131121A1 (en) Branched discrete peg constructs
CA3093327C (en) Targeted cd73 antibody and antibody-drug conjugate, and preparation method therefor and uses thereof
Sapra et al. Anti-CD74 antibody-doxorubicin conjugate, IMMU-110, in a human multiple myeloma xenograft and in monkeys
Vhora et al. Protein–and peptide–drug Conjugates: An emerging drug delivery technology
Miller et al. A DNA-interacting payload designed to eliminate cross-linking improves the therapeutic index of antibody–drug conjugates (ADCs)
JP6223962B2 (ja) トランス−シクロオクテンジエノフィル及びジエンを有するイメージング又は治療用プレターゲティングキット
JP7402807B2 (ja) グリピカン3抗体およびそのコンジュゲート
Vugts et al. Synthesis of phosphine and antibody–azide probes for in vivo Staudinger ligation in a pretargeted imaging and therapy approach
EP3108886A2 (en) Conjugates of cc-1065 analogs and bifunctional linkers
JP2015500287A (ja) 抗体−薬物のコンジュゲート、ならびに関連する化合物、組成物および方法
WO2018004338A1 (en) Cleavable tetrazine used in bio-orthogonal drug activation
AU2020297253B2 (en) Compounds for fast and efficient click release
US9839704B2 (en) Prosthetic compounds for labeling internalizing biomolecules
Gallo et al. Enhancing the pharmacokinetics and antitumor activity of an α-amanitin-based small-molecule drug conjugate via conjugation with an Fc domain
TW202146055A (zh) 喜樹鹼衍生物及其結合物
JP2023532679A (ja) 抗体-薬物コンジュゲート及び抗体-サポニンコンジュゲートの組合せ
Liu et al. Albumin binding domain fusing R/KXXR/K sequence for enhancing tumor delivery of doxorubicin
Thanki et al. Recent advances in tumor targeting approaches
TW202317205A (zh) 用於癌症治療之經放射性標記之parp抑制劑結合物
US20070128116A1 (en) Multifunctional core for molecular imaging and targeted delivery of macromolecules and drugs
Goldmacher et al. Linker technology and impact of linker design on ADC properties
JPH05500953A (ja) 免疫共役体およびその代謝物の非標的保持量を減少させる方法
Novak et al. An efficient site-selective, dual bioconjugation approach exploiting N-terminal cysteines as minimalistic handles to engineer tailored anti-HER2 affibody conjugates
Koumarianou et al. Development of a novel bi-specific monoclonal antibody approach for tumour targeting