TW202316689A - 製備固態元件的方法、固態元件、量子元件及用於製備固態元件的設備 - Google Patents

製備固態元件的方法、固態元件、量子元件及用於製備固態元件的設備 Download PDF

Info

Publication number
TW202316689A
TW202316689A TW111119133A TW111119133A TW202316689A TW 202316689 A TW202316689 A TW 202316689A TW 111119133 A TW111119133 A TW 111119133A TW 111119133 A TW111119133 A TW 111119133A TW 202316689 A TW202316689 A TW 202316689A
Authority
TW
Taiwan
Prior art keywords
substrate
reaction
electromagnetic radiation
reaction chamber
atmosphere
Prior art date
Application number
TW111119133A
Other languages
English (en)
Inventor
約翰尼斯 博施克
沃夫岡 布勞恩
約翰 曼哈特
Original Assignee
馬克斯普朗克科學促進學會
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 馬克斯普朗克科學促進學會 filed Critical 馬克斯普朗克科學促進學會
Publication of TW202316689A publication Critical patent/TW202316689A/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • C23C14/28Vacuum evaporation by wave energy or particle radiation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/02Pretreatment of the material to be coated
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • C23C14/083Oxides of refractory metals or yttrium
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • C23C14/085Oxides of iron group metals
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • C23C14/087Oxides of copper or solid solutions thereof
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/18Metallic material, boron or silicon on other inorganic substrates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/58After-treatment
    • C23C14/5806Thermal treatment
    • C23C14/5813Thermal treatment using lasers
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/58After-treatment
    • C23C14/5846Reactive treatment
    • C23C14/5853Oxidation
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N10/00Quantum computing, i.e. information processing based on quantum-mechanical phenomena
    • G06N10/40Physical realisations or architectures of quantum processors or components for manipulating qubits, e.g. qubit coupling or qubit control
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N60/00Superconducting devices
    • H10N60/01Manufacture or treatment

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Artificial Intelligence (AREA)
  • Mathematical Optimization (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Health & Medical Sciences (AREA)
  • Computational Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Data Mining & Analysis (AREA)
  • Evolutionary Computation (AREA)
  • Optics & Photonics (AREA)
  • Mathematical Analysis (AREA)
  • Thermal Sciences (AREA)
  • Pure & Applied Mathematics (AREA)
  • Computing Systems (AREA)
  • General Engineering & Computer Science (AREA)
  • Mathematical Physics (AREA)
  • Software Systems (AREA)
  • Toxicology (AREA)
  • Physical Vapour Deposition (AREA)
  • Recrystallisation Techniques (AREA)
  • Photovoltaic Devices (AREA)

Abstract

本發明涉及一種製備固態元件的方法,特別是用於量子元件,較佳為用於量子位元,其包括一或多層薄膜,該一或多層薄膜包含第一材料,且各該薄膜具有選自單層及100nm之間的厚度且為沉積於基底的基底表面上,其中製備方法在相對於環境氣氛為密封的反應室中進行。此外,本發明涉及一種固態元件,特別是用於量子元件,較佳為用於量子位元,其包括一或多層薄膜,該一或多層薄膜之一包括具有在單層及100nm之間的厚度的第一材料,並且沉積於基底的基底表面上。此外,本發明還涉及一種包括根據本發明之這種固態元件的量子元件,以及根據本發明之用於製備這種固態元件的設備。

Description

製備固態元件的方法、固態元件、量子元件及用於製備固態元件的設備
本發明涉及一種製備固態元件的方法,特別是用於量子元件,較佳為用於量子位元(qubit),其包括一或多層薄膜,該一或多層薄膜包含第一材料並且各該薄膜具有選自在單層及100nm之間的厚度且沉積於基底的基底表面上,其中該製備方法在相對於環境氣氛(ambient atmosphere)為密封的反應室中進行。此外,本發明涉及一種固態元件,特別是用於量子元件,較佳為用於量子位元,其包括一或多層薄膜,該一或多層薄膜中之一者包括具有在單層及100nm之間的厚度的第一材料,且沉積於基底的基底表面上。此外,本發明還涉及一種包括根據本發明之這種固態元件的量子元件,以及根據本發明之製備這種固態元件的設備。
現代技術中最具挑戰性的課題之一是量子元件的製備。這種量子元件可用於量子電腦,特別是用於處理及/或傳輸量子資訊,因為這兩 種過程皆是基於在所述量子元件中量子狀態的儲存及一體化處理(unitary processing)。量子元件的一個示例是量子位元。在現有技術中,量子位元被實施為如離子阱(ion traps)、半導體元件、拓撲元件(topological components)和超導元件(superconducting components)。原則上所有的,特別是這些示例中的最後三個可基於固態元件來構建。
對於有效的量子計算,在量子元件中的上述量子狀態,分別上述量子態的儲存,需要在夠長的時間內保持穩定。對於目前這代的量子計算裝置,此最小值約為100μs。與儲存各別量子狀態的量子元件的環境的交互作用,特別是非彈性交互作用,例如與量子元件的聲子(phonons)及特別是與帶電或可充電或磁性的缺陷的交互作用,在大多數情況下會破壞量子狀態。因此,量子狀態的耐久性,即所謂的相干時間(coherence time),在目前基於固態元件的量子元件中是有限的。例如,就目前的超導量子位元而言,最大可達到的相干時間是1ms左右。然而,對於有效的量子計算,這個數值是不夠的。
如上所述,量子狀態的相干時間取決於量子狀態儲存在量子元件中的環境。與許多形式的外部干擾(例如電磁輻射,其可藉由遮罩措施來對抗)相反,而量子元件中的聲子,則可藉由在0K附近的溫度下運行各別的量子元件來抑制,量子元件本身結構中的缺陷,如缺少或額外的原子或任何不連續的對稱性,特別是晶格對稱性,在本質上限制著相干時間的最大可能值。
鑒於上述,本發明的目的為提供一種改良的製備固態元件的方法、改良的固態元件、改良的量子元件及改良的用於製備固態元件的設 備,其不具有上述技術現況的缺點。特別是,本發明的目的為提供製備固態元件的方法、固態元件、量子元件和用於製備固態元件的設備,藉此,所製備、執行或展現的固態元件包括減少的缺陷數量,因此在基於所述固態元件的量子元件中,可達成增加的相干時間。
此目標藉由各別的獨立請求項得到滿足。特別是,如請求項1所述的製備固態元件的方法、如請求項26和27中每一項所述的固態元件、如請求項28的量子元件及如請求項33所述的製備固態元件的設備滿足了此目標。附屬請求項描述了本發明的較佳實施方式。關於根據本發明第一方面的方法所描述的細節和優勢,若有技術意義的話,亦指根據本發明第二和第三方面的固態元件、根據本發明第四方面的量子元件和根據本發明第五方面的用於製備固態元件的裝置,反之亦然。
根據本發明的第一方面,該目的是藉由製備固態元件的方法所滿足的,特別是用於量子元件,較佳為用於量子位元,包括一或多層薄膜,該一或多層薄膜包括第一材料,且各該薄膜具有選自在單層和100nm之間的厚度並沉積在基底的基底表面上,其中,該製備方法是在相對於環境氣氛為密封的反應室中所進行的。
根據本發明的該第一方面所述的方法,其特徵在於以下步驟:
a)在該反應室含有第一反應氣氛時,藉由以耦合至該反應室中的第一電磁輻射加熱該基底,來製備該基底表面;
b)在該反應室含有第二反應氣氛時,藉由耦合至該反應室中的第二電磁輻射加熱包括該第一材料的源元素,來蒸發及/或昇華該第一材料,以用於將包括該第一材料的該薄膜沉積至步驟a)中所製備的該基底表面上,且可選擇地
c)在該反應室含有第三反應氣氛時,以耦合至該反應室中的第三電磁輻射,來照亮該一或多層薄膜及/或該基底,以用於形成該固態元件,並用於該固態元件的回火(tempering)及/或受控冷卻,
藉此,在該些步驟a)至c)期間,該反應室相對於環境氣氛保持密封,且該基底及該後成的(subsequent)固態元件分別持續地留在該反應室中。
根據本發明第一方面的方法適用於製備具有減少的缺陷數量的固態元件。特別是,用根據本發明第一方面的方法製備的固態元件理想地包括每平方公分和每層的一些缺陷,從而允許製造具有超過100μs、較佳超過1000μs、甚至更佳為超過10ms的量子位元弛豫時間(relaxation time)和量子位元相干時間(coherence time)的量子位元結構。
因此,用根據本發明第一方面的方法製備的這種固態元件非常適用於作為量子元件的基礎,特別是用於量子位元。為達到如此低的缺陷數量所採取的措施將在下文中描述。
在其最簡單的實施方式中,以根據本發明第一方面的方法製備的固態元件包括一層薄膜,其具有選自在單層及100nm之間的厚度。然而,也有可能是兩層或更多這樣的薄膜堆疊在彼此之上。所述薄膜包括第一材料。
將最下層的薄膜沉積到基底材料的表面。較佳但非唯一的,基底材料可作為單晶提供。若固態元件包括兩層或更多層薄膜,較佳地,將兩層或更多層薄膜的各者連續地沉積到前一個薄膜上。
在下文中,將描述根據本發明第一方面的方法的各個步驟。特別是,將說明各步驟對減少所製備的固態元件的可能缺陷的貢獻。
根據本發明第一方面的方法,形成固態元件的製備方法的所有步驟均在反應室中進行。所述反應室相對於環境氣氛是密封的,因此可包含與環境氣氛不同的反應氣氛。換句話說,在反應室中,可包含適合於根據本發明第一方面的方法的當前步驟的任何反應氣氛。特別是,若合適及/或需要,反應氣氛甚至可為根據本發明第一方面的方法的不同步驟而改變。反應室可包括單一反應容積(reaction volume),但也可為具有兩個或更多個相互為可密封的反應容積的反應室的實施方式。
該方法的起始條件為已經放在反應室中的基底。在反應室中預配置基底之前,可事先製備基底的基底表面,例如化學清洗或在真空中脫氣。反應室相對於環境氣氛是密封的。
在根據本發明第一方面的方法的第一步驟a)中,製備基底的基底表面。為此,反應室中充滿了適用於計畫製備基底表面的第一反應氣氛,例如真空或含氧的反應氣氛。此外,第一電磁輻射藉由適當的耦合裝置耦合至反應室中,例如藉由反應室的室壁上的室視窗。
第一電磁輻射衝擊至基底上。較佳地,衝擊至與該基底表面相對的基底的表面上,即在大多數情況下衝擊到基底的背面。或者,或此外,也有可能是第一電磁輻射的方向是直接衝擊到該基底表面。第一電磁 輻射可以單一的光束或兩個或更多的分離光束提供,此外,也可以脈衝的或連續的方式提供。
藉由至少部分地吸收該衝擊的第一電磁輻射的能量來使基底加熱。藉此,若使用含有氧的第一反應氣氛,可將基底表面的雜質蒸發並且氧化。
此外,基底的加熱也可導致退火過程。換句話說,可降低基底表面上缺失或額外的原子數量,也可修復基底表面上甚至其內部所存在的對稱性不連續的現象。
使用第一電磁輻射進行上述修復還提供了優勢,即在反應室內不需要額外的加熱器或其他用於連接基底至此種加熱器的裝置,如導電銀。因此,可避免由配置在反應室內的額外元素而引起的雜質和缺陷。
總之,在根據本發明第一方面之方法的步驟a)之後,在反應室中提供了基底,其基底表面為接下來的一或多層薄膜的沉積做了充分準備。特別是,基底的基底表面較佳地不包括或至少包括非常少及有限數量的缺陷。
在根據本發明第一方面之方法的第二步驟b)中,在根據本發明第一方面之方法的步驟a)中製備的基底表面上沉積一或多個包含第一材料的薄膜。第一材料可根據所製備的固態元件的目的來選擇,特別是在導電性及/或超導電性方面。
第一材料在反應室中蒸發及/或昇華。為此,將包含第一材料的源元素配置在反應室中。與步驟a)中基底的加熱相同,在根據本發明第一方面之方法的步驟b)中,也使用第二電磁輻射,其同樣藉由適當的耦合 裝置耦合至反應室中,以用於第一材料的蒸發及/或昇華。上述關於使用第一電磁輻射的所有優勢,特別是避免在反應室中使用額外元素的可能性,也可因此在步驟b)中提供。第一材料的蒸發及/或昇華可因此以特別乾淨的方式提供,經蒸發及/或昇華的第一材料具有高純度。
此外,藉由相應地選擇第二電磁輻射的強度,可輕易地調整蒸發及/或昇華速率。因此,可使用最適合用於使第一材料穩定且均勻地沉積到基底表面(換句話說,用於各別薄膜的穩定且均勻的生長速率)的蒸發及/或昇華速率。因此,沉積的一或多層薄膜較佳地不包含或至少包含非常少及有限的缺陷。
如上所述,基底表面較佳地不包括或至少包括非常少及有限的缺陷。由於基底表面的缺陷會由沉積的一或多層薄膜繼承,故上述沉積的一或多層薄膜沒有或至少有非常少及有限數量的缺陷的特點,可藉由已沒有缺陷或至少極少缺陷的基底表面得到進一步改善。
此外,第二電磁輻射的使用允許第一材料的廣泛使用。特別是,在根據本發明第一方面的方法中,所有可提供的固體或液體形式的純化學元素都可輕易地作為第一材料使用。藉由適當地建造為氣室(gas cell)的源元素,其餘的氣態化學元素也可在根據本發明第一方面的方法中用作第一材料。總之,可提供一種在基底表面上沉積薄膜的方法,該薄膜相對於外來原子和晶體雜質具有極高的純度。
然而,本發明第一方面的方法並不限於化學純材料。特別是也可使用化合物、混合物或合金作為第一材料。
此外,對於步驟b),反應室充滿了第二反應氣氛,其是為一或多層薄膜的預期沉積而適當選擇的。作為示例,對於具有高純度的僅經蒸發及/或昇華的第一材料的沉積,可選擇高或超高真空作為第二反應氣氛。另一方面,例如,含有氧的第二反應氣氛允許經蒸發及/或昇華的第一材料的氧化,從而使各別的氧化物的薄膜沉積。
總之,在步驟b)中沉積的一或多層薄膜可從大量的可能成分中選擇。不同的可能性有一個共同點,即沉積的薄膜是高純度的。此外,沉積的一或多層薄膜不包含或至少有非常少的缺陷。
在根據本發明第一方面的方法的最後一個步驟c)中,形成固態元件。為此,將第三電磁輻射耦合至反應室中,同樣藉由適當的耦合裝置。第三電磁輻射用於照明在步驟b)中沉積的一或多層薄膜及/或基底,並可根據以下描述的一或多個目的相應地選擇。同樣,為這些目的使用電磁輻射提供了上述所有的優勢,從而使反應室內有機會不具額外的元素。
首先,可將固態元件進行回火。為此,電磁輻射對固態元件進行加熱,藉此,該加熱引發退火過程。換句話說,可進一步減少固態元件表面的缺失原子或附加原子的已經很低的數量,並可修復固態元件表面上及/或內部中所存在對稱性不連續的現象。
此外,還可提供固態元件的受控冷卻。為此,逐漸減少固態元件的加熱,特別是以小於固態元件未受影響的冷卻速度進行,其通常由輻射冷卻主導。若基底和形成的固態元件包括不同的熱膨脹,這點極具優勢。因此,可避免在固態元件快速冷卻期間由所述不同熱膨脹所引起的內部張力,因其可能再次造成固態元件的缺陷。
此外,在步驟c)中,反應室中充滿了第三種反應氣氛,所述氣氛適合選擇用於預定的製程,特別是用於對形成的固態元件進行回火及/或受控冷卻。
總之,在根據本發明第一方面的方法的步驟c)中,至少保留或甚至進一步降低所形成的固態元件中較佳的缺乏或至少非常低的缺陷數量。
如上所述,根據本發明第一方面的方法的所有步驟a)至c)提供了降低所製備的固態元件中缺陷數量的措施。然而,暴露在外部影響下,特別是暴露在環境氣氛中,會減弱或甚至完全破壞根據步驟a)至c)採取的措施提供的所有積極效果。
因此,根據本發明第一方面的方法,在步驟a)至c)期間反應室相對於環境氣氛保持密封是重要的,並且基底和後成的固態元件兩者都各別持續留在反應室中。換句話說,所有的步驟a)到c)均在同一個反應室中連續進行,即使可能是在反應室的不同反應容積中,而且在整個過程中對環境氣氛的密封是保持不變的。因此,根據本發明第一方面的方法的所有步驟a)至c)是在原位(in-situ)進行的。因此,可避免對基底和隨後形成的固態元件的外部影響,特別是與環境氣氛的接觸。
換句話說,連同基底和隨後形成的固態元件在反應室中連續配置的需求,用於降低所形成的固態元件中的缺陷數量的步驟a)到c)的各者的措施總結起來且甚至互相加強。
總之,用根據本發明第一方面的方法製備的固態元件包括每平方公分和每層沒有或至少為很低數量的缺陷。因此,用根據本發明第一 方面的方法製備的此種固態元件非常適合用於作為量子元件的基礎,特別是用於量子位元。特別是,由於沒有缺陷或至少缺陷的數量非常少,因此可製造出具有超過100μs,較佳超過1000μs,甚至更佳為超過10ms的量子位元弛豫時間(relaxtion time)和量子位元相干時間的量子位元結構。
此外,根據本發明的第一方面所述的方法可包括雷射光,特別是具有在10nm至100μm之間的波長的雷射光,較佳為具有選自在可見的或紅外線範圍內的波長,尤其是具有在350nm到20μm之間的波長,其是用作第一電磁輻射及/或第二電磁輻射及/或第三電磁輻射。雷射光包含其為相干性且可在廣泛的波長和強度範圍內提供的優勢。對於在步驟a)到c)中的各別電磁輻射的各具體目的,可選擇適當的雷射光。例如,對於各種氧化物基底的加熱,可使用具有10μm左右的波長的紅外線雷射,特別是CO2雷射。另一方面,對於蒸發及/或昇華金屬第一材料,具有約1μm或約0.5μm的波長的雷射更適合。雷射光可以脈衝方式提供,或者較佳地以連續方式提供。因此,可提供非常均勻(homogeneous)的基底表面的加熱、第一材料的蒸發及/或昇華、以及一或多層薄膜及/或基底的照明。
此外,根據本發明第一方面的方法可藉由以下方式改進:對於該第一電磁輻射和該第二電磁輻射,及/或對於該第二電磁輻射和該第三電磁輻射,及/或對於該第一電磁輻射和該第三電磁輻射,使用具有相同波長的雷射光。藉由使用具有相同波長的雷射作為三種所使用的電磁輻射中的至少兩種電磁輻射,可降低根據本發明第一方面的方法所需的雷射源數量,以及隨後用於進行該方法的設備的複雜性。初始成本和維護成本也可降低。
進一步地,本發明第一方面的方法可包括第一反應氣氛及/或第二反應氣氛及/或第三反應氣氛,該第一反應氣氛及/或第二反應氣氛及/或第三反應氣氛是選自以下列表:
- 對10-8hPa至10-12hPa的純理想條件而言,在10-4和10-12hPa之間的真空、
- 氧,特別是O2及/或O3
- 氮、以及
- 氫。
此列表並非僅限所列的,若合適,亦可選擇其他氣氛。上方所列的氣態氣氛可以10-8hPa至環境壓力的壓力提供,分別高達1hPa的壓力。氧變體O2和O3是可較佳地以大約9:1的比例提供,如由內嵌的輝光放電臭氧產生器(an inline glow discharge ozone generator)所產生。
根據本發明第一方面的方法亦可為,其中,該第一反應氣氛及/或該第二反應氣氛及/或該第三反應氣氛為至少部分地離子化的,特別是經由電漿游離而離子化。反應氣氛的經離子化的原子或分子可提供各別的反應氣氛的反應性的增強。因此,若有需要各別的反應氣氛的反應,例如對於含有經蒸發及/或昇華的第一材料和各別的第二反應氣氛的元素的反應產物的薄膜的沉積,離子化各別的第二反應氣氛的原子及/或分子可具優勢。
此外,本發明第一方面的方法可包括該第一反應氣氛和該第二反應氣氛和該第三反應氣氛是相同的。換句話說,在所有的步驟a)至c)中,反應氣氛保持不變。在將步驟a)或b)之一完成後,將當前的反 應氣氛改變及/或分別將該基底或該後成的固態元件移入另一個反應容積中是不必要的。綜上所述,可把本發明第一方面的方法簡化。
在根據本發明第一方面之方法的另一實施方式中,該第一反應氣氛和該第二反應氣氛是不同的,且是在步驟a)和步驟b)之間交換,及/或該第二反應氣氛和第三反應氣氛是不同的,且是在步驟b)和步驟c)之間交換。若待製備的固態元件在根據本發明第一方面的方法的步驟a)至c)的至少兩者中要求不同的反應氣氛,則屬於這種情況。
如上所述,藉由選擇最適合於具體目的的反應氣氛,可最佳化所產生的固態元件的關於缺陷的品質。在實際操作中,較佳以反應室來提供用於本發明第一方面的方法的不同步驟的不同反應氣氛,該反應室已包括不同的反應容積,這些反應容積相互為可密封的,因此可包含不同的反應氣氛。在本發明第一方面的方法的各個步驟之間,基底或後成的固態裝置可簡單地在反應室內移動,而不會破壞相對於環境氣氛的密封。
此外,根據本發明第一方面的方法,其特徵在於,基底使用的是選自以下列表的材料:
- SiC、
- AlN、
- GaN、
- Al2O3
- MgO、
- NdGaO3
- DyScO3
- TbScO3
- TiO2
- (LaAlO3)0.3(Sr2TaAlO6)0.35(LSAT)、
- Ga2O3
- SrLaAlO4
- Y:ZrO2(YSZ)、以及
- SrTiO3
此列表並非僅限所列的,若合適也可選擇其他材料作為相應的基底。在此情況下,各別的基底較佳以單晶形式提供。
特別是,根據本發明第一方面的方法可藉由使用在以下一或多個方面中,較佳為在以下所有方面中是類似於薄膜的基底得到增強:
- 晶格對稱性、
- 晶格參數、
- 表面重建(surface reconstruction)、以及
- 表面終端(surface termination)。
在本發明的範圍內,類似於薄膜是指基底各方面的值與薄膜各方面的值相差小於10%,較佳為小於5%。藉由選擇類似於薄膜的基底,可避免從基底到薄膜的驟變(abrupt transition),該驟變亦可再次導致缺陷。藉此,可進一步提高所製備的固態元件的品質。
此外,根據本發明第一方面的方法可包括:在步驟a)中,至少加熱該基底表面至在900℃及3000℃之間的溫度,特別是1000℃至2000℃。這些溫度被認為是最適合於有效修復各種基底材料的缺陷。較佳地, 可藉由加熱基底的背面間接加熱基底表面,因為這樣的背面加熱允許特別緊湊的配置,且特別適用於本發明第一方面的方法的步驟c)中對基底的照明。
此外,根據本發明第一方面的方法,其中,步驟a)包括提供定向至該基底表面的終端材料的通量。較佳地,該終端材料是基底的材料之一。從而,終端的通量填補了基底表面的缺陷。由於包含在步驟a)中的基底加熱可導致基底材料的蒸發及/或昇華,終端材料的通量可用來平衡這種影響。理想地,離開基底表面的原子和附加到基底表面的原子之間將建立一個平衡。這種平衡可藉由調整基底的溫度及/或終端材料的通量來調整。總之,相對於缺陷,基底表面的品質可得到進一步的改善。
在根據本發明第一方面的方法的另一實施方式中,基底支架是使用於將該基底固定,與該基底相比,該基底支架包含相對於該第一電磁輻射及/或該第三電磁輻射較小的吸收。換句話說,即使在根據本發明第一方面的方法的步驟a)及/或c)中基底支架意外地分別被第一和第三電磁輻射照明,其也會吸收較少的能量,因此會減少加熱。從而,可確保除蒸發源外,基底是反應室中溫度最高的元件,這就有效地防止了雜質離開反應室而被吸收到基底上的情況。
此外,根據本發明第一方面的方法可包括,在步驟b)中,該第一材料包括兩種或多種不同的材料組分,且該源元素相應地包括兩種或多種不同的組分部分,藉此,各組分部分提供兩種或多種材料組分中的一種,且藉此,該第二電磁輻射相應地包括兩種或多種組分光束,這兩種或 多種組分光束中的各者適合於該兩種或多種材料組分中之一的蒸發及/或昇華。
換句話說,第一材料不限於單一來源,也可由兩個或更多的組分組成,其中各組分可在獨立的來源中提供。換句話說,即便如此,由於各材料組分都是單獨提供的,而且純度很高,特別是甚至是純化學元素,藉由根據本發明第一方面的方法,也可提供由化學化合物及/或合金組成的薄膜,其化學純度高,缺陷數量少。
實質上,兩種或更多組分同時蒸發及/或昇華。這兩種或更多不同的材料組分可在反應室中及/或在各別沉積到基底表面後相互結合。源元素可包括用於兩個或更多不同組分部分的共同固定結構。替代地,也可是源元素的獨立實體,各實體提供一或多個元件部分。在下文中,「源」的意思是指源元素的組分部分和一個獨立的源元素兩者。總之,可擴大提供於一或多層薄膜的第一材料的種類。
較佳的是,根據本發明第一方面的方法,其特徵在於,步驟b)的蒸發及/或昇華是在低於該第一材料的電漿臨界值所進行的。因此,可確保只有第一材料的蒸發及/或昇華發生。此外,經蒸發及/或昇華的第一材料是在電中性狀態下提供的,因此可避免反應室中的干擾性充電效應。
此外,本發明第一方面的方法可包括:對於該第一材料,使用金屬,較佳為銅鋁、鉭及/或鈮,及/或使用超導材料,特別是金屬,其在溫度>~4K,較佳為>~77K是超導電的(superconductive),較佳為鉭或鈮或鋁或顆粒鋁或NbN或NbTiN或TiN。金屬及/或特別是超導材料最適合 用於固態裝置,其目的是作為量子位元使用。特別是超導材料,其在溫度大於77K是超導電的,可用液態氮進行冷卻,這非常方便。
根據本發明第一方面的方法的另一個較佳實施方式,在步驟b)中使用於蒸發及/或昇華的該第一材料是自支撐的(self-supporting)且從而可以無坩堝提供。因此,在第二電磁輻衝擊第一材料的表面及第一材料蒸發及/或昇華的位置附近沒有其他材料存在。從而,可避免因蒸發及/或昇華及/或併入熔體以及隨後從固定第一材料的固定結構(例如坩堝)的熔體中共同蒸發而造成的雜質。
此外,根據本發明第一方面的方法可包括,在步驟b)中沉積的薄膜的該材料是該經蒸發及/或昇華的第一材料和該第二反應氣氛的組分的反應產物。例如,若第二反應氣氛包括氧,可提供第一材料的氧化物作為沉積在基底表面的薄膜的材料。另外,其他如氮化物或鹵化物的反應產物是有可能的。總之,沉積在基底表面的一或多種薄膜的可能材料的範圍可因此擴大。
此外,根據本發明第一方面的方法,其中,步驟c)包括兩次或多次分隔的回火疊代(iteration)。在各回火疊代中,一些仍然存在於所形成的固態裝置中的缺陷被修復。藉由提供兩次或更多次的回火疊代,可進一步降低最終產生的缺陷數量。
在根據本發明第一方面的方法的較佳改良中,步驟c)包括在該一次或多次回火疊代的各者之後,經由該第三電磁輻射控制冷卻。如上所述,固態元件的快速冷卻可能導致新的缺陷,特別是若基底和所形成的固態元件包括不同的熱膨脹。這可藉由在兩個或更多回火疊代中的各者之 間插入明顯的受控冷卻步驟來避免。特別是,第三電磁輻射用於加熱基底及/或固態元件,藉此逐漸減少加熱量,從而實現緩慢和受控的冷卻。
在根據本發明第一方面的方法的另一實施方式中,重複步驟b)一次或多次,以用於提供薄膜的多層結構。因此,在步驟b)的不同疊代中使用的第一材料可為相同的或不同的。也可根據各步驟b)中使用的第一材料,重複步驟b)的疊代模式。換句話說,這種多層結構可能的層序可為,但不限於以不同的第一材料A、B、C、D的AAAAA、ABABABA、ABCABC、ABACAD、ABBACC。特別是,也可採用超過四種不同的第一材料,尤其是也可採用不同於六層的層數。因此,可為固態元件提供大量的多層結構。
此外,步驟b)的各別的疊代較佳地不要無停頓地、連續地進行,而是在其間有中斷的分開進行。如此可確保反應室中的條件,例如關於由第一電磁輻射照明的各源元素表面的溫度和物質狀態,恢復到其在步驟b)的第一次疊代之前提供的初始值。因此,步驟b)的各重複都是在相同的環境條件下進行的,因此可提供一個特別純和均勻的多層結構。
較佳地,根據本發明第一方面的方法可藉由以下方式得到增強:在步驟b)的各次重複之後,進行步驟c)的疊代。換句話說,在每次重複步驟b)之後,以受控的方式將已沉積到基底上的層進行調溫及/或冷卻。因此,藉由進行步驟c)中任何一種所提供的上述所有優勢都可提供於形成固態元件的多層結構的各層。因此,可進一步降低最終形成的固態元件中的缺陷數量。
在根據本發明第一方面的方法的改良實施方式中,相對於所使用的該電磁輻射及所使用的該反應氣氛以及該第一材料,各步驟b)和各步驟c)是相同進行。因此,根據本發明第一方面的方法的這一實施方式所製備的固態元件包括具有兩個或更多相同層的多層結構。
在根據本發明第一方面的方法的另一種改良中,對於一或多個重複中的一或多個以下參數進行改變:
- 第一材料、
- 第二反應氣氛、
- 第三反應氣氛、
- 第二電磁輻射、以及
- 第三電磁輻射。
換句話說,例如,不同的第一材料可用於多層結構的不同層。
作為另一個示例,藉由改變真空和氧之間的第二反應氣氛,同時保持金屬作為第一材料,可提供具有純金屬和其氧化物的交替層的多層結構。總之,可提供的多層結構的可能變化或多或少不受限制,但有共同的特點,即各變化都可提供無缺陷或至少為非常少的缺陷。
較佳地,本發明第一方面的方法可進一步包括,作為步驟a)的最終流程,把包括緩衝材料的一或多層緩衝層沉積至基底表面,藉此,反應室包含第四反應氣氛時,藉由耦合至反應室中的第四電磁輻射來蒸發及/或昇華該緩衝材料,藉此,較佳為該第四電磁輻射及該第四反應氣氛與該些步驟a)、b)或c)之一中所使用之各者相同。
如上所述,較佳地使用與要沉積到基底表面的薄膜相似的基底。然而,這種根據本發明第一方面的方法進行的較佳方式並不總是可行的。藉由添加緩衝層,可彌補基底和薄膜之間在晶格對稱性、晶格參數、表面重建及/或表面終端方面的差異,或者若可生長出與塊體基底相同材料的緩衝層,其結構品質高於塊體基底本身,則可提高基底表面的品質。
較佳地,藉由使用超過一個的緩衝層,可不同地選擇用於沉積各別緩衝層的緩衝材料和各別的第四反應氣氛,從而使所產生的最接近基底的緩衝層在本發明的意義上與基底相似,藉此在各添加的緩衝層中,降低與基底的相似性,同時加強與薄膜的相似性,而使最頂層的緩衝層在本發明意義上與薄膜相似。因此,可提供薄膜在緩衝層上的平滑沉積,特別是在最頂層的緩衝層上,而不會出現由基底和一或多層薄膜之間的差異所造成的缺陷。
這種緩衝層的典型緩衝材料例如是鋁。
使用電磁輻射來蒸發及/或昇華緩衝材料可提供與上述使用第二電磁輻射相同的優勢。特別是,在反應室中不需要進一步的元素或組分來蒸發及/或昇華緩衝材料,因此可避免由這種進一步的元素和組分引起的雜質。
此外,根據本發明第一方面的方法可包括在進行最終步驟b)之後,把包括覆蓋材料的一或多層覆蓋層沉積至一或多層薄膜上,藉此,該反應室包含第五反應氣氛時,藉由耦合至該反應室中的第五電磁輻射來蒸發及/或昇華該覆蓋材料,藉此,較佳地,該第五電磁輻射和第五反應氣氛是與步驟a)、b)或c)之一中所使用之各者相同。
這樣的覆蓋層,也被稱為蓋層,其為一或多層薄膜提供保護,使其免受環境影響,從而為固態元件提供保護。因此,可提高固態元件中存在的低數量缺陷的耐力。特別是,可提供另外的材料在一或多層薄膜的最上層表面上所不期望的沉積。
使用電磁輻射來蒸發及/或昇華覆蓋材料可提供與上述使用第二電磁輻射相同的優勢。特別是,在反應室中不需要另外的元件或元件來蒸發及/或昇華覆蓋材料,因此可避免藉此種另外的元素和元件而造成的雜質。
根據本發明的第二個方面,本發明的目的是藉由一種固態元件,特別是用於量子元件,較佳為用於量子位元,包括一或多層薄膜,該一或多層薄膜中的一層包括第一材料,該第一材料具有在單層和100nm之間的厚度,且是沉積在基底的基底表面上。
根據本發明第二方面的固態元件,其中,該固態元件可藉由如前述請求項中之一項所述之方法所獲得。藉由這一點,根據本發明第二方面的固態元件可提供上述關於根據本發明第一方面的方法的所有優勢。
根據本發明的第三個方面,本發明的目的是藉由一種固態元件,特別是用於量子元件,較佳為用於量子位元,包括一或多層薄膜,其中該一或多層薄膜包括第一材料,該第一材料具有在單層和100nm之間的厚度,且是沉積在基底的基底表面上。
根據本發明的第三方面的固態元件,其中,該一或多層薄膜中的一層,較佳為該一或多層薄膜之所有層,各自具有超過100μs,較佳為超過1000μs,甚至更佳為超過10ms的量子位元弛豫時間和量子位元 相干時間。這樣的薄膜具有非常少(較佳為沒有)缺陷,並且能夠將這樣的器件作為量子位元使用。較佳地,根據本發明的第三方面的固態元件可藉由根據本發明第一方面的方法得到。
根據本發明的第四方面,該目的可由包括固態元件的量子元件,較佳為量子位元來滿足。根據本發明第四方面的量子元件的特徵在於,該固態元件是分別根據本發明第二或第三方面的固態元件。藉由這點,根據本發明第四方面的量子元件可提供上述根據本發明第二或第三方面面的固態元件的所有優勢。
此外,根據本發明第四方面的量子元件可包括,該量子元件是超導量子位元,特別是電荷量子位元(charge qubit)或通量量子位元(flux qubit)或相位量子位元(phase qubit)。超導量子位元以電流為基礎,由於其超導性,電流流動時沒有阻力。因此,所述電流對外部干擾是穩定的,因此能夠在很長一段時間內保持電流所代表的量子狀態。相干時間可達到超過100μs,較佳為超過1000μs,甚至更佳為超過10ms。
此外,根據本發明第四方面的量子元件可增強的是,超導量子位元包括具有多層結構的薄膜,該多層結構包括一或多層超導層和一或多層隔離層。特別是,薄膜的多層結構的各層是使用根據本發明第一方面的方法沉積的,因此包括上述根據本發明第一方面的方法所描述的所有優勢。特別是,各層不包含缺陷或至少是非常少的缺陷。因此,可達到的相干時間進一步的增加。
在另一實施方式中,根據本發明第四方面的量子元件可包括,該一或多層超導層之一或多層由以下材料之一者所組成:
- Al、特別是顆粒狀的Al,
- Ta、
- Nb、
- NbN,
- NbTiN、以及
- TiN、
及/或該一或多層隔離層之一或多層隔離層由下列材料之一者所組成:
- SiOx
- HfOx、以及
- AlxOy
這兩個列表並非封閉的,其他合適的材料也可分別用於超導層和隔離層。
此外,根據本發明第四方面的量子元件的特徵在於,該一或多層超導層及/或一或多層隔離層包括在1nm及300nm之間的厚度,較佳為10nm及200nm的厚度。特別是,超導層的厚度較佳為在5nm及300nm之間,而隔離層的厚度較佳為在20nm及300nm之間。此外,超導元件之間的隔離屏障,其較佳由多層結構的層或至少部分層構建,可較佳地包括在1nm及10nm之間的厚度。藉由在上述範圍內選擇厚度,可提供根據本發明第四方面的量子元件之特別好的性能。
根據本發明的第五個方面,該目的可藉由用於製備根據本發明第二及/或第三方面的固態元件及/或用於執行根據本發明第一方面的方法的設備來滿足,至少包括:
- 相對於環境氣氛為可密封的反應室、
- 用於該基底的配置的一或多個基底裝置(substrate arrangement)、
- 用於該源元素的配置的一或多個源裝置(source arrangement)、
- 用於將各別的電磁輻射耦合至該反應室中的耦合裝置(coupling means)、以及
- 用於在該反應室中提供各別的反應氣氛的裝置。
較佳地,根據本發明第五方面的裝置是TLE(熱雷射蒸發)裝置。進一步地,藉由製備根據本發明第二或第三方面面的固態元件,特別是藉由進行根據本發明第一方面的方法,根據本發明第五方面的裝置可提供上述關於根據本發明第二或第三方面面的固態元件及/或關於根據本發明第一方面的方法所描述的所有優勢。
在一個較佳的實施方式中,根據本發明第五方面的設備可包括,該反應室包括至少兩個分隔的反應容積,藉此,該至少兩個反應容積是可相互密封的,且藉此,在相對於該環境氣氛為連續地密封的反應室內,該基底裝置可在該至少兩個反應容積之間移動。如此一來,可簡化在固態元件的製備方法中反應氣氛的改變。
若沒有兩個或更多的獨立的反應容積,改變反應氣氛可能是困難和麻煩的。例如,為了將反應氣氛從氣態物質A改變為氣態物質B,確保A不再存在於反應室中為第一步,即必須在反應室中建立真空,特別是超高真空,這可能很耗時。只有在此之後,才能將B填充到反應室中。
與此相反,對於兩個或更多的反應容積,其相對於環境氣氛為密封的,並且也相互為可密封的,各反應容積可包含不同的反應氣氛。 為了改變反應氣氛,例如在進行步驟a)之後和步驟b)開始之前,只需將基底裝置從一個反應容積中移到另一個反應容積中。較佳地,在反應容積之間配置合適的閥門和材料鎖。總之,這簡化了固態元件的製備,且可節省很多時間。
10:反應室
12:真空室
14:第一反應容積
16:第二反應容積
18:真空泵
20:氣體供應
22:基底裝置
24:基底
26:基底加熱雷射器
28:基底支架轉移
30:第一源
32:第二源
34:源裝置
36:第一源加熱雷射器
38:第二源加熱雷射器
40:遮罩孔
42:源支架轉移
44:閘閥
46:基底支架
48:24的基底表面
50:24的背面
52:視窗
54:第一元素、分子、化學式單元
56:第二元素、分子、化學式單元
58:階梯
60:表面
62:薄膜、層
66:邊緣
100:固態元件
102:量子元件
104:第一電磁輻射
106:第二電磁輻射
108:第三電磁輻射
110:第四電磁輻射
112:第五電磁輻射
114:組分光束
116:第一反應氣氛
118:第二反應氣氛
120:第三反應氣氛
122:第四反應氣氛
124:第五反應氣氛
126:第一材料
128:第二材料
130:第三材料
132:緩衝材料
134:緩衝層
136:覆蓋材料
138:覆蓋層
G:製程氣體
T:終端材料
下文將藉由實施方式並參照圖中所示,詳細解釋本發明。
圖1為用於熱雷射磊晶應用的反應室,包括單一真空室;
圖2為用於熱雷射磊晶應用的反應室,包括界定第一和第二反應容積的第一和第二真空室;
圖3為複雜單晶固體的階梯狀表面的剖面,黑色和白色表示不同的原子或分子種類;
圖4為由於基底表面的階梯高度或表面化學成分的不匹配而導致的不良磊晶(faulty epitaxy);
圖5為已登記的磊晶與對應於基底表面的本體週期性的階梯高度;
圖6為具有「白色」終端的晶體表面;
圖7為具有「黑色」終端的晶體表面;
圖8為繪示為「黑色」材料的部分額外覆蓋的表面重建示意圖;
圖9為表面重建的兩個鏡像對稱單位晶胞(unit cell);
圖10為與底層晶體結構完全一致的梯形階梯系統;
圖11為略微偏離立方體面內晶軸(圖中的水準和垂直)的誤切(miscut);
圖12為偏離平面軸45°的誤切;
圖13為利用表面誤切的對稱性破壞(symmetry breaking)以利於兩個可能的表面單位晶胞方向的其中之一;
圖14為製備固態元件的基本步驟;
圖15為添加緩衝層的額外步驟;
圖16為用兩種材料來源沉積薄膜;
圖17為添加覆蓋層的額外步驟;
圖18為量子裝置的第一個實例;
圖19為量子裝置的第二個實例;
圖20為Al2O3
Figure 111119133-A0202-12-0025-37
31 x
Figure 111119133-A0202-12-0025-38
31表面重建的RHEED圖案,具有相對於基底的主晶軸的單一旋轉方向。基底在1700℃下,在1 x 10-6hPa的O2氣氛中退火200秒,並在此氣氛中迅速冷卻至20℃。在20℃下拍攝的影像,其中RHEED光束沿基底的主晶軸排列;
圖21為圖20中相同樣品的RHEED圖案,其為在將基底逆時針旋轉9°之後;
圖22為Al2O3
Figure 111119133-A0202-12-0025-39
31 x
Figure 111119133-A0202-12-0025-40
31表面重建的RHEED圖案,具有相對於基底的主晶軸的旋轉的兩個可能方向。基底在1700℃下,在0.75 x 10-1hPa的O2氣氛中退火200秒,並在此氣氛中迅速冷卻至20℃。在20℃下拍攝的影像,其中RHEED光束沿著基底的主晶軸排列;
圖23為本發明的表面製備製程後的Al2O3表面的AFM顯微鏡照片。在1 x 10-6hPa的O2氣氛中,基底在1700℃下退火200秒,並在此氣氛中迅速冷卻至20℃;
圖24為沿圖22中的線提取的高度輪廓圖;
圖25為藉由本發明的方法所製備的在Al2O3基底上生長的50-nm-厚(影像中參考條長度的1/40)鉭薄膜的AFM顯微鏡照片。在沉積之前,基底在1700℃的超高真空(壓力<10-10hPa)中退火200秒。鉭薄膜是在1200℃的基底溫度下,以壓力<2×10-10hPa,從局部熔融的鉭金屬源中生長出來的;
圖26為藉由本發明的方法所製備的在Al2O3基底上生長的10-nm-厚鉭薄膜的SEM俯視顯微鏡照片。在沉積之前,基底在1700℃的超高真空(壓力<10-10hPa)中退火200秒。在1200℃的基底溫度下,在壓力<2×10-10hPa的情況下生長鉭薄膜;
圖27為藉由本發明的方法所製備的在Al2O3基底上生長的50-nm-厚鉭薄膜的XRD繞射圖。在沉積之前,基底在1700℃的超高真空(壓力<10-10hPa)中退火200秒。鉭薄膜在1200℃下以<2 x 10-10hPa的壓力生長。只有鉭薄膜的α-鉭(110)/(220)等效平面與基底峰一起在表面上為可見的,這證實了鉭薄膜的單一平面外方向對應於完整的磊晶排列;
圖28為藉由TLE、在室溫下、在無磊晶方向的矽樣本上生長的鈮薄膜。沉積時間為40分鐘。層厚為20nm。低基底溫度和乾淨磊晶樣本的缺乏產生了無序的柱狀薄膜結構,其具有大量的缺陷;
圖29為在鈦的雷射蒸發期間利用恆定的雷射功率和氧-臭氧氣體流所測量的腔室壓力Pox
圖30為藉由TLE在矽(100)基底上生長的(a)鈦-、(b)鐵-、(c)鉿-、(d)釩-、(e)鎳-、(f)鈮-氧化物薄膜的掠角X射 線繞射圖(grazing-incidence x-ray diffraction patterns)。以灰線在各圖中標記各氧化物的預期繞射峰位置;
圖31為藉由TLE沉積的幾種氧化物薄膜的剖面SEM影像。各面板顯示Pox的值。大多數的薄膜具有柱狀結構;
圖32為TLE沉積的(a)鈦-氧化物和(b)鎳-氧化物薄膜在數個Pox值下的掠角X射線繞射圖。隨著Pox的增加,鈦源產生金紅石(rutile)和銳鈦礦(anatase)相中的氧化鈦薄膜,而鎳源則形成部分氧化的鎳/氧化鎳薄膜。(a)中的灰線和紫色實心星分別顯示了氧化鈦金紅石和銳鈦礦相的預期繞射峰位置。(b)中的灰線顯示立方相氧化鎳的預期峰位;以及
圖33為(a)鈦(氧化物)和(b)鎳(氧化物)在幾個Pox下測量的沉積率。鈦的沉積率隨著Pox的增加而增加,而對於鎳來說,Pox>10-3hPa的增加幾乎抑制了蒸發過程。
圖1顯示了用於熱雷射磊晶應用的反應室10,包括界定第一反應容積14的單一真空室12。反應室10相對於環境氣氛(即實驗室、工廠、潔淨室或類似者等)可為密封的。真空室12可加壓到101到10-12hPa之間的壓力,對於純理想條件,可使用合適的真空泵18將空氣從真空室12中抽出,如所屬技術領域具有通常知識者所知,以指向真空室12外的箭頭示意地說明。
如有需要,可從氣體供應20沿著指向所述真空室12的箭頭將製程氣體G引入真空室12。製程氣體G,也稱為反應氣體,可選自諸如氧、臭氧、電漿啟動的氧、氮、電漿啟動的氮、氫、F、Cl、Br、I、P、S、Se和Hg等氣體、或諸如NH3、SF6、N2O、CH4等化合物。製程氣體G的壓力可在10-8hPa到環境壓力的範圍內選擇,對於純理想條件,可分別在10-8hPa到1hPa的範圍內選擇。
真空泵18可選擇地與氣體供應20一起在反應室10中提供各自的反應氣氛,即可選擇地與預界定的氣體氣氛相結合的真空。
反應室包括基底裝置22,其可配置基底24。在實際操作中,有可能提供多個基底裝置22及/或在一或多個基底裝置22上配置複數個基底24。
所使用的基底24通常可為單晶晶片(wafer),晶片的材料通常選自由下列成員所組成的群組:SiC、AlN、GaN、Al2O3、MgO、NdGaO3、DyScO3、TbScO3、TiO2、(LaAlO3)0.3(Sr2TaAlO6)0.35(LSAT)、Ga2O3、SrLaAlO4、Y:ZrO2(YSZ)和SrTiO3。這樣的單晶晶片通常用於製備固態元件,是製備如量子位元的量子元件的有趣候選材料。
在對可以單晶晶片的形式存在的基底24進行塗層和預處理的期間,以基底加熱雷射器26對基底24進行加熱。
基底加熱雷射器26通常是紅外線雷射器,其工作波長在紅外線區域,特別是選在約1至20μm的範圍內選擇的波長,尤其是約8至12μm的波長。這樣的波長可藉由CO2雷射器26提供。
基底加熱雷射器26通常經由基底24的背面50間接加熱基底24的基底表面48,即基底24的正面。因此,基底表面48可加熱到900℃至3000℃之間的溫度,特別是1000℃至2000℃。因此,為達到各種所需溫度,基底加熱雷射器26的強度根據昇華率最高的基底成分的昇華率和昇華溫度而有所不同。
通常情況下,對於尺寸為5 x 5mm2或10 x 10mm2的基底,基底加熱雷射器26的強度可在4W至1kW範圍內變化。為了能達到所需的製備溫度,10 x 10mm2的藍寶石基底需要100W來達到2000℃,10 x 10mm2的SrTiO3基底需要500W來達到1400℃。所需的溫度變化很大。根據普朗克輻射定律(Planck’s radiation law),單位面積的發射功率取決於材料的發射率,其為一種材料特性,也取決於溫度T4,這表示所需功率隨著溫度的升高而急劇增加。
為了涵蓋根據本發明製備磊晶樣本的溫度範圍,我們發現基底上必要的最大功率密度為1kW/cm2,明顯較小的數值,例如在2000℃時對藍寶石來說大約為100W/cm2
由於T4對溫度的顯著依賴性,對於需要較低溫度以製備基底的材料,基底加熱雷射器同時需要能夠保持穩定的低功率水平的高動態範圍,且特別是在較低溫度下在基底樣本上沉積磊晶層。
還應注意的是,基底24可從正面、側面或以不同的方式進行加熱。根據加熱方式的不同,只需確保基底表面48的溫度可加熱到900℃至3000℃的範圍內,以便能確保基底成分之一,即形成基底的元素之一, 在加熱步驟中可沿著基底表面48移動,並且可從基底表面48脫附或昇華,以生成所需的磊晶樣本60(例如見下文的圖5至7)。
基底表面48的溫度可用高溫計(pyrometer)或類似的儀器測量(未示出)。
如雙頭箭頭28所示,基底裝置22可用合適的裝置(未示出)轉入和轉出真空室12。
為了用一或多層薄膜62塗覆基底24(見下文圖14至20),反應室10進一步包括配置在源裝置34的第一和第二源元素30、32。這些源元素30、32也可提供為單一源元素30的不同組分部分。
在此情況下,應指出的是,可從週期表的任何元素中選擇各源30、32的材料,只要其在用於沉積薄膜62的各真空室12內選擇的溫度和壓力下是固體即可。
在此情況下應指出,用於各別的源30、32的較佳材料為Sc、Ti、V、Cr、Mn、Fe、Co、Ni、Cu、Zn、Zr、Nb、Mo、Ru、Hf、Al、Mg、Ca、Sr、Ba、Y、Rh、Ta、W、Re、Ir、Ga、In、Si、Ge、Sn、Eu、Ce、Pd、Ag、Pt及Au,若上述元素以大約10%的比例在氧/臭氧混合物中作為反應氣氛來沉積二元氧化物為薄膜62。為了沉積單晶薄膜62,通常使用真空氣氛。
還提供了分別定向至第一及第二源元素30、32的第一及第二源加熱雷射器36、38。第一及第二源加熱雷射器36、38在第一和第二源元素30、32上提供了不同的蒸發及/或昇華溫度。
第一及第二源加熱雷射器36、38通常在第一及第二源元素30、32處提供波長選在280nm和20μm之間的雷射。對於金屬源來說,由於金屬在較短波長下的吸收率越來越高,如果源加熱雷射器36和38能在350nm和800nm之間的波長範圍內提供可用的光,則是較佳的。儘管短波長低於515nm的高功率雷射器在商業上還不可行,但根據低功率測量,最高的吸收率可預期在300nm。若有這種波長的雷射器,源加熱雷射器的較佳波長將為300nm±20nm。
在此情況下,應該進一步指出,雷射器26、36、38可以脈衝模式運行,但最好是作為連續輻射源使用。連續雷射器26、36、38在單位時間內引入的能量少於可能導致源30、32受損的脈衝源。
為使第一和第二源元素30、32的元素昇華及/或蒸發,以確保這些元素到達基底表面48而用於基底24的塗佈,必須選擇第一和第二源加熱雷射器36、38的適當強度。這個強度取決於第一和第二源元素30、32與基底表面48的距離。對於基底表面處給定的通量密度,強度隨著第一和第二源元素30、32遠離及/或朝向基底表面48移動而增加及/或減少。
在本示例中,將基底表面48設置在各別的第一和第二源元素30、32距離60mm的地方。雷射的強度大約與第一和第二源元素30、32與基底表面48之間的距離的平方相關。因此,若第一和第二源元素30、32與基底表面48之間的距離增加2倍,雷射的強度就必須增加4倍左右。
因此,下文中規定的強度是針對第一和第二源元素30、32與基底表面48之間60mm的距離。若選擇較大的距離,各別的第一和第二源加熱雷射器36、38的強度則必須增加,若距離減少,則反之亦然。
一般來說,基底加熱雷射器26、第一和第二源加熱雷射器36、38提供雷射,特別是波長在10nm到100μm之間的雷射,最好是在可見或紅外光範圍內選擇波長,特別是波長在280nm到1.2μm之間。這些雷射器26、36、38提供了第一電磁輻射及/或第二電磁輻射及/或第三電磁輻射,及/或更多類型的電磁輻射。
提供第一和第二源加熱雷射器36、38,藉由將第一和第二源元素30、32加熱至低於第一材料及/或第二材料的電漿臨界值的溫度,從第一和第二源元素30、32蒸發及/或昇華第一和第二材料。
在真空室12中示意性地繪示遮罩孔40,其功能是防止昇華及/或蒸發的源材料沉積在真空室的入口視窗52上。若此材料層沉積在視窗52上,則各別的雷射器26、36、38的強度就必須隨著時間的推移而調整,以補償視窗上吸收的此種材料。
此外,遮罩孔40也可作為一個遮罩,防止其中一個雷射器26、36、38的反射雷射聚焦回至其中一個雷射器26、36、38,這可能會破壞各別的雷射器26、36、38。
遮罩孔40也可構成一或多個各別的雷射器26、36、38的光束整形系統的一部分,因此可用作耦合裝置,將各別的電磁輻射從第一和第二源加熱雷射器36、38耦合至反應室10中以及第一和第二源元素30、32上。
一般來說,在各別的雷射器26、36、38和反應室10之間都配置有各別的視窗52,以便將各別的雷射耦合至反應室10中,作為進一步的耦合裝置。
這表示耦合裝置可包括任何種類的光學元件或雷射光束整形元件,這些元件可用來將雷射器26、36、38之一的光耦合至反應室中,即分別耦合至基底24上的一或多個第一和第二源元素30、32上,供其預定使用。
此情況應注意,反應室10也可只包括單一的源元素30,或超過兩個的源元素30、32,進一步的源元素或者提供進一步的相同或不同的材料,可沉積到反應室10的一或多個基底24上。
在此情況應注意,若在真空室12中提供了兩個或更多的源元素30、32,則來自第一和第二源加熱雷射器36、38中的一個的雷射可指向一個源元素30、32以用於昇華及/或蒸發包括各別的源元素30、32的材料的薄膜62,而不是其他源元素32、30。
此過程可對真空室12中提供的各源元素重複進行,以便在基底24上形成多個不同的層和多層及合金或複合結構。
類似地,兩個源元素30、32,及若有提供另外的源元素可具有來自第一和第二源加熱雷射器36、38之一的雷射,及若有提供來自第三源加熱雷射器的雷射定向至,以便同時從複數個源元素30、32昇華及/或蒸發源材料,以在基底24的表面48上沉積薄膜62,用於在基底24的表面48上沉積化合物。
因此,沉積在基底24上的薄膜62或層的材料是蒸發及/或昇華的材料和反應氣氛的成分的反應產物,即,若提供的化合物與製程氣體G反應,或者,若昇華及/或蒸發是在真空中進行,則提供單一材料薄膜62。
無論在真空室12中提供多少個源元素30、32,並在任何給定的時間用雷射衝擊,都可將製程氣體引入真空室,並使蒸發及/或昇華的源材料與製程氣體發生反應,以便生成由源材料和製程氣體的化合物形成的薄膜,例如氧化物,這點也將在下文討論。
應進一步注意,用於蒸發及/或昇華的第一及/或第二源元素30、32的材料可為自支撐的,因此可在無坩堝的情況下提供,例如,可提供一與坩堝無關的Ta源元素30、32。
圖2顯示了第二種反應室10,包括兩個真空室12,其界定了第一和第二反應容積14、16。第一和第二反應容積透過閘閥44彼此分開。
這樣的反應室10在多層薄膜的形成中可能是有利的選擇(見圖14至19),其薄膜需要在不同的反應氣氛中形成,或者若基底24,作為生產線的一部分,在不同的反應室中分批塗覆上不同的薄膜。
如此,反應室10包括至少兩個分隔的反應容積14、16,據此,至少兩個反應容積14、16相互為可密封的,例如透過閘閥44,據此,基底裝置可在相對於環境氣氛為持續密封的反應室10內的至少兩個反應容積14、16之間移動。
在此情況下,應該注意的是,第一反應氣氛和第二反應氣氛以及若有提供的第三或另外的反應氣氛可為相同的。
可替代地,第一反應氣氛和第二反應氣氛及/或第三反應氣氛是不同的,並且在不同的反應容積14、16之間、或者在第一容積14及/或反應容積16內進行交換,及/或第二反應氣氛和第三反應氣氛是不同的, 並且在不同的反應容積14、16之間、或者在第一容積14及/或反應容積16內進行交換。
在此情況下,應進一步指出,第一反應氣氛及/或第二反應氣氛及/或第三或進一步的反應氣氛至少部分為離子化或激發的,特別是透過電漿游離及/或激發來進行離子化。激發描述了原子或分子內的一或多個電子轉化至能量較高的水準。從這種更高能階的弛豫可提供額外的能量,以促成或改善蒸發的原子或分子與活化或離子化的反應氣體之間的化學反應。
另外,對於基底表面48的製備、對於一或多層薄膜的沉積、以及對於終端回火及/或冷卻,可能分別適合不同的反應氣氛。因此,不同的反應容積14、16的可用性可為額外的優勢。
在此情況下,應注意的是,若應製備包括一或多層薄膜62的固態裝置(特別是量子裝置,較佳用於量子位元),其中一或多層薄膜62包括第一材料且各所述薄膜62具有選在單層和100nm之間的厚度並沉積至基底的正表面,則製備方法可在反應室10中進行,如圖1或圖2所示。接著,反應室10相對於環境氣氛為密封的,以產生可控的真空,可選擇地與製程氣體G提供的氣體反應氣氛一起使用。
此方法包括以下步驟:
a)透過用耦合至反應室10中的第一電磁輻射加熱基底24來製備基底24的正表面48,同時反應室10含有第一反應氣氛,例如真空,可能與如氧的製程氣體20相結合,在此情況下,第一電磁輻射由基底加熱雷射器26提供。
b)透過耦合至反應室10的第二電磁輻射加熱包括第一材料的源元素30、32,以蒸發及/或昇華第一材料,例如反應室10含有第二反應氣氛(例如真空或部分真空和預定的氣體氣氛)時使用第一和第二源加熱雷射器36、38之一,用於將包括第一材料及/或第一材料的化合物的薄膜62沉積到步驟a)所製備的正表面48上,並且可選擇地
c)反應室含有第三反應氣氛時,用耦合至反應室10中的第三電磁輻射來照明一或多層薄膜62及/或基底24,以用於形成固態裝置,並用於固態裝置的回火及/或受控冷卻。
其中,在步驟a)至c)期間,反應室相對於環境氣氛保持密封,並且基底和後成的固態裝置都分別持續留在反應室10中。
在此情況下,應注意的是,根據以下教示可提供製備基底24的正表面48的可能方法。然而,應指出的是,對於基底24上較低純度的層結構也可進行常規的清洗和純化步驟。
一種製備單晶晶片24的表面48作為磊晶樣本60的具體方法,該表面48包括表面原子及/或表面分子,單晶晶片24包括由兩種或更多元素及/或兩種或更多分子組成的單晶作為基底成分,各元素和分子分別具有昇華率,該方法包括以下步驟:
- 提供具有確定的誤切角度和方向的單晶晶片基底24;
- 將基底24加熱至一溫度,在該溫度下,表面原子及/或表面分子可沿著表面48遷移,以形成具有最小階梯密度和階梯邊緣的排列,其根據預定的誤切角度和誤切方向定向;
- 將基底24加熱到一個溫度,在這個溫度下,具有最高昇華率的基底成分的原子或分子可離開表面(昇華、脫附)。
可選擇地,基底24的表面48可以同一物質的連續通量進行照射,以得到離開表面的及到達表面的原子或分子之間界定的通量平衡(化學位能)。這一步通常會導致表面重建,其可能具有能量上同等的平面定向(in-plane orientation)。
因此,可能造成存在於基底表面48的原子及/或分子的對稱性破壞,由於階梯定向(step orientation)迫使表面48只形成不同的平面方向中的其中一種。
如果表面有不同方向的表面重建,具有相對於基底24的晶體方向唯一確定的方向的結晶層(磊晶層)可能在不同的平面方向上生長。這導致了磊晶層的缺陷。如果使用本文所揭露的製備基底的方法,透過提供使用此方法重建的表面24的唯一單一方向,可避免此情況。
在此情況下,應該注意到,兩個或更多元素及/或兩個或更多分子在給定溫度下的昇華率通常彼此不同。
加熱單晶晶片24的步驟包括兩個加熱部分:第一部分是在設置於遠離待處理表面48的表面處加熱單晶晶片24,第二部分是透過用熱蒸發源32、34產生的熱黑體輻射(thermal black-body radiation)照射待處理表面48來提供加熱。
通量在表面48上引入壓力,與表面的脫附通量競爭,從而建立一個平衡,這個平衡界定通量物質在表面的化學位能。
加熱基底表面,並以揮發性成分的平衡通量照射它,導致一些過程變得活躍。
第一個過程是定義特定的終端(「黑色」或「白色」,示意性地),參考相對於圖3的圖6和圖7,其界定了表面結構的重複週期,因此界定了階梯高度垂直於最接近誤切面的晶體平面。
第二個過程是沿表面的原子移動,從而採用階梯結構方面的最低能量表面,其是由第一階梯的階梯高度和誤切角給出的最低階梯數。
第三個過程是特定表面重建的形成,主要由基底溫度和揮發性通量的化學位能決定,該化學位能透過設置揮發性通量來控制。
第四個過程是透過選擇切割方向在表面單位晶胞的不同能量等效方向之間進行選擇,如圖13所示的示意圖。
材料的通量,例如,藍寶石基底24的氧可填補表面48的缺陷,並有助於提供過剩的原子,以得到原子離開和原子增加到表面48之間的平衡狀態。這可透過調整通量施加的壓力,即衝擊到基底上的氧量來改變。
舉例來說,應注意的是,昇華溫度通常是大於950℃的溫度,藍寶石的昇華溫度是1700℃左右,SrTiO3的昇華溫度是1300℃左右。
形成單晶晶片24的兩種或更多元素及/或兩種或更多分子可選自於以下成員的群組:Si、C、Ge、As、Al、O、N、O、Mg、Nd、Ga、Ti、La、Sr、Ta以及上述元素的組合,作為示例,單晶晶片24可由以下化合物之一製成:SiC、AlN、GaN、Al2O3、MgO、NdGaO3、DyScO3、 TbScO3、TiO2、(LaAlO3)0.3(Sr2TaAlO6)0.35(LSAT)、Ga2O3、SrLaAlO4、Y:ZrO2(YSZ)和SrTiO3
加熱的步驟由基底加熱雷射器26進行,可選擇與第一和第二源加熱雷射器36、38中的一個結合進行,條件是各別的源包括單晶晶片24的材料,該材料具有最高的昇華率,並應持續向基底供應。
若不希望在脫附通量和補償穩定通量之間達到平衡,則製備基底24期間的加熱步驟通常選在10-8至10-12hPa範圍內的真空氣氛中進行。
在有穩定通量的情況下,在製備基底24期間的加熱步驟通常是選在10-6至103hPa範圍內的真空氣氛中進行的。
因此,可形成磊晶樣本60,例如在下文的圖5至圖8中示意地顯示。
一般而言,基底24的選擇要使基底與要在上面生長/沉積的層結構相匹配。一般而言,使用的基底24與在其上生長的薄膜62相同,或者在以下一或多個方面,較佳地在以下所有方面均與薄膜62最多相差10%:晶格對稱性、晶格參數、表面重建和表面終端。
為了促進此點,在表面48上沉積薄膜62之前,在表面48上沉積緩衝層可能為必要或有利的。
本發明描述了一種解決方法,即為後成的磊晶或其他應用提供實質上為單晶樣本,其中均勻的原子排列垂直於表面48和平面內是有利的。
圖3顯示了剖析晶體24的示意圖,該晶體由至少兩個元素或化學式單元組成,以方向方式為切開晶體的表面48暴露出由兩個或更多的元素或化學式單元組成的階梯58的交替排列。為了清楚起見,圖3僅顯示了兩個元素或化學式單元,以黑色和白色的顏色表示。為進行表面處理,晶體24要經受夠高的溫度,使原子或分子可離開表面48或附著在上面,與晶體24內的化學式單元相對應的兩種原子或分子的通量是可用的,如此晶體24和通量即處於相互平衡的狀態。由圖3可看出,表面24通常暴露出具有不同表面成分的交替梯度58,以及與晶體24內最小的穩定階梯大小(化學式單位)相對應的階梯高度。
圖4顯示了磊晶層60和沈積在圖3的基底24的表面48上的薄膜62以及由於階梯高度或表面化學不匹配而導致的不良磊晶。
對於所示的典型情況,階梯58結構的階梯高度與磊晶層60的晶格常數不匹配。這導致在階梯邊緣66形成堆積偏移(stacking offset),其中磊晶層60的單位晶胞變得相對於彼此為偏移的。為了清楚起見,在圖4中,這種偏移僅是由於階梯高度的原因。其也可能是由後成的階梯(terrace)上交替的表面化學成分(「白色」與「黑色」)引起的,導致兩個階梯上的基底和磊晶層之間的介面結構不同。一般情況下,這樣的化學不匹配也會在介面上產生幾何偏移,並產生其他的不利影響,例如局部電荷和結構缺陷。反而,我們希望達成圖5所示的介面結構,其中磊晶層62(即薄膜62)和基底24的晶格常數相匹配,且磊晶層62(即薄膜62)總是在各處的一個相同的暴露表面層上生長。此外,這種匹配不僅適用於介面的法線方向,而且表面48也應暴露出晶體結構的單一平面方向,避免形 成圍繞表面法線轉動的不同晶域,或在不平行於表面或暴露的階梯的平面上鏡像。
使用本文所述的製備方法可製備表面48作為磊晶樣本60,該樣本既能在所有階梯58表面提供均勻的表面化學,又能提供(通常為重建的)表面原子配置的單一平面方向。圖3所示的情況稍微理想化,由於對於大多數晶體固體,其成分的蒸氣壓,無論是元素還是分子,往往有很大的不同。因此,特別是在製備基底24的過程中,若沒有任何原子或分子的通量衝擊到表面48上,若將基底24加熱至夠高的溫度,物質將傾向於離開表面48。
因此,圖6和圖7所示的情況是選擇性地發生的,在實際操作中,通常只能實現其中一種情況。然而,這兩張圖顯示了表面製備原則上可能出現的兩個極端:取決於衝擊氣相中一種成分對另一種成分的相對超壓,表面48可製備成這樣的狀態,以使得一種類型的階梯,無論是「白色」的(圖6)還是「黑色」的(圖7),在犧牲另一種類型的情況下生長,最終覆蓋整個表面。
在實際操作中,只有在揮發性較低的元素或化學式單位覆蓋表面48的情況下才能達到完全覆蓋,因為這種化學平衡通常需要不同成分之間有多個數量級的壓力差,以達到一種元素或化學式單位幾乎佔了完全的優勢。值得注意的是,還有兩者之間的內在揮發性差異本身通常也達幾個數量級。
因此,製備方法包括將基底晶體24加熱至一溫度,在此溫度下,至少晶體中最易揮發的成分從表面48昇華。甚至可能有必要在更高的 溫度下以大量的揮發性物質照射表面48,以避免晶體24分解成不同的、非理想的化合物。使用夠高的溫度,以使
- 表面48可與周圍環境交換至少是揮發性物質的原子,並且
- 沿著表面48的原子流動性足夠高,以形成高度有序的最小能量階梯。
允許形成所需的具有均勻表面化學性質的雙階梯表面結構。
在實際操作中,表面48並不在本體終止(bulk-terminated)的表面層之間切換,而是形成表面重建,其中表面原子重新排列到與本體不同的位置,通常甚至具有不同的化學計量,從而使表面能最小化。這在圖8中有所說明,這種含有額外「黑色」材料的表面重建由更厚的黑色層表示。
根據衝擊物質的壓力和表面溫度,對於一個給定的終端,通常可有不同的表面重建,例如,在藍寶石上,至少有兩種不同的富鋁表面重建。
表面重建通常涉及到表面超級晶胞(supercell)的形成,跨越底層體晶(bulk crystal)的幾個單位晶胞。任意的說明性示例顯示在圖7中,該表面單位晶胞覆蓋了兩個體晶的單位晶胞,並有兩個相等的、鏡像對稱的表面單位晶胞。這兩種情況皆顯示了兩個表面單位晶胞;在實際操作中,表面單位晶胞沿表面48在兩個方向週期性地重複,並覆蓋整個階梯58。在這個示例中,表面單元細胞的兩個方向都具有相同的能量,因此以相同的概率獨立成核(nucleate),如此,在大面積的情況下,平均有一半的表面48由各方向覆蓋。
此為非理想的配置,因其導致了晶疇之間的不良邊界。當用作磊晶生長的樣本時,這種不同的表面重建晶疇也可能導致在其上生長的磊晶薄膜62的不同方向,從而將平面的表面重建晶疇邊界轉移到磊晶薄膜62中,作為不同方向的晶體之間的三維平面晶疇邊界。此難題可透過破壞表面48的對稱性來解決,從而透過使其在能量上不相等而有利於一個表面單位晶胞方向。
圖9顯示了表面重建的兩個鏡像對稱的單位晶胞。例如,針對藍寶石單晶晶片24,誤切產生的表面有兩個不同的方向,會導致圖4所示的情況。
根據本發明提出的達成此目的之方法是表面誤切的方向和坡度。當從塊體單晶上切割基底盤(「晶片」24)時,切割面可略微偏離晶體平面。根據這個鄰近的誤切角度,所製備的表面48將有階梯寬度和階梯方向,這取決於切割方向,因此可任意控制。參見立方體平面晶體結構的可能示例,圖11-13中示意性地顯示了三種不同的所產生的階梯結構。
圖10顯示了與底層晶體結構完全對齊的基底表面48的階梯式系統58。在說明性的示例中,此階梯方向並不利於圖9的表面單位晶胞的兩個可能的平面方向中的一個,因為兩者都與表面階梯形成相同的角度。
圖11顯示了在垂直方向上略微偏離面內晶軸的平面方向。大方塊的邊緣表示塊體立方晶體的晶面。最後,圖12顯示了與平面軸線成45°的階梯排列方向。
這種誤切,就像任何其他破壞系統對稱性的方式一樣,現在可用在有利於兩個不同的表面單元晶胞中的一個,如圖13所示。在這個示 意圖中,平面階梯系統(in-plane terrace)是以平行於一個同等的表面重建單位晶胞的階梯方向準備的,在此示例中,這有利於表面重建單元晶胞與階梯邊緣的對齊,即頂部的方向,以及抑制底部的、交叉的方向。
雖然階梯邊緣的平面方向,對應於誤切角的方位分量(azimuthal component),選擇一個表面單元晶胞的方向而不是另一個,誤切角的絕對值、其極性分量,對於穩定單一方向結構也很重要。在高溫下,亂度(entropy)將統計性失序引入任何系統。在此情況下,由於平面表面單位晶胞方向是在邊緣建立的,然後從單位晶胞傳播到單位晶胞,這可能導致在各階梯上的一定平均距離上再次出現方向相反的單位晶胞的不良情形。若誤切角的絕對值夠高,例如0.05°,則在一方向上導入另一方向的穩定步驟就會在如此短的距離內發生,從而可避免這種偏差,並因此增加缺陷密度。
圖14描述了製備固態元件100的方法的三個基本步驟,分別以A、B和C表示。這些步驟是在反應室10(見圖1)中進行的。特別是,反應室10在整個製備方法中與環境氣氛保持密封。如此就可保持各步驟在降低所形成的固態元件100的缺陷數量方面的優勢,從而使量子位元弛豫時間和量子位元相干時間超過100μs,較佳超過1000μs,甚至更佳為超過10ms。
在該方法的第一步a)中,如圖14左側所示,以「A」表示,製備基底24,例如,依本文所討論的,或簡單地在本領域已知的氣體氣氛中進行。將第一反應氣氛116填充至反應室10中。特別是,以第一電磁輻射104將基底24加熱。第一電磁輻射104較佳為由基底加熱雷射器26提 供,參見圖1、2。透過加熱基底,如圖所示,較佳為從與基底表面48相對的背面50加熱,可觸發退火效應。
此外,第一反應氣氛116的選擇可使基底表面48的成分得到保持,即可使用合適的反應或製程氣體G,例如在Al2O3的情況下使用氧,以避免氧耗盡和氧空缺(oxygen vacancy)的形成。此外,還可將終端材料T的通量引導至基底表面48上。較佳地,終端材料T包括,特別是由基底24的材料的元素組成。藉此,終端材料T可填補基底表面48上由原子或分子缺失造成的缺陷,並且/或者可在基底表面48上提供壓力,防止原子或分子從基底表面48蒸發。
作為總體結果,在步驟a)之後,基底表面48較佳為沒有或至少沒有與基底24的晶格結構有關的缺陷,而此外,與表面重建和表面終端有關的缺陷也可大幅減少,較佳為減少到零。
在接下來的步驟b)中,如圖14中間所示,以「B」表示,將一或多個含有第一材料126的薄膜62沉積到先前在步驟a)中製備的基底表面48上。如上所述,在步驟a)和步驟b)之間,反應室10相對於環境氣氛保持密封。
在此方面,應指出,本文所述的薄膜62是具有厚度在單層和100nm之間的同類原子或分子層,或作為封閉薄膜的化學式單元。
如圖14的「B」所示,第一材料126作為第一源30,即作為源元素,透過源裝置34提供魚反應室10內。第一源30由合適的第二電磁輻射106加熱,較佳為由第一源加熱雷射器36(見圖1、2)提供,以用於第一材料126的蒸發及/或昇華。透過使用第二電磁輻射106,在反應室10 內不需要額外的元件,這些元件將成為雜質的來源,從而成為薄膜62的缺陷,用於蒸發及/或昇華過程。
在沉積過程中,反應室10可充滿第二反應氣氛118。除了高真空作為第二反應氣氛118外,如較佳用於由第一材料126組成的高純度薄膜62,還可使用合適的製程氣體G作為第二反應氣氛118。如此,蒸發及/或昇華的第一材料126(在圖14的「B」中描述為箭頭126,可與第二反應氣氛118反應,將由第一材料126和第二反應氣氛118的製程氣體G的材料組成的各別反應產物沉積到基底表面48上。作為示例,第一材料126可為金屬,製程氣體可為氧,所產生的金屬的氧化物沉積成薄膜62。
總之,在步驟b)之後,將一或多層薄膜62沉積到基底表面48上。透過使用第二電磁輻射106,可使用廣泛的第一材料126,據此,透過選擇合適的第二反應氣氛118,進一步擴大一或多層薄膜62的材料可能組成的範圍。此外,可確保第一材料126特別為高純度的蒸發及/或昇華。因此,同樣建立在較佳為無缺陷的基底表面48上,一或多層薄膜62較佳為不具或至少空乏由基底引起的缺陷。
在該方法的最後一步驟c)中,以「C」在圖14的右方表示,第三電磁輻射108用於照明基底24和一或多層薄膜62。這最終形成了固態元件100。在特別描繪的實施方式中,第三電磁輻射108將熱量施加到基底24的背面50,從而間接地施加至一或多層薄膜62。
第三電磁輻射108可達到兩個目的。首先,施加的熱量可用於將固態元件100回火。因此,可進一步減少固態元件100已經很低的缺陷數量。
其次,還可透過適當的變化,特別是減少第三電磁輻射108的強度,來提供固態元件100的受控冷卻。因此,可避免由基底24和一或多層薄膜62的不同熱膨脹引起的缺陷。
回火和受控冷卻都可透過在反應室10內填充合適的第三反應氣氛120來支持。
總之,以圖14中非常基本的版本所示的方法生產的固態元件100包括沒有或至少是非常少的缺陷,理想上如此可達成超過100μs,較佳為超過1000μs,甚至更佳為超過10ms的量子位元弛豫時間和量子位元相干時間。因此,此固態元件100非常適用於作為量子元件102的基礎,見圖18、19,特別是用於量子位元。
圖15顯示了在圖14所示方法的步驟a)中執行的可視選擇的步驟。緩衝材料132由第四電磁輻射110進行蒸發及/或昇華,再次提供了上述關於使用蒸發及/或昇華過程所需能量的外部來源的所有優勢。
蒸發及/或昇華的緩衝材料132(見圖15中各別的箭頭132)沉積在基底表面48上,形成緩衝層134。同樣,將適當選擇的第四反應氣氛122用於支持這種沉積。換句話說,一或多層薄膜62(見圖17、19)的後續沉積是在緩衝層134上進行的。緩衝層可用來平衡基底24和最底層的薄膜62之間的差異,特別是在晶格參數方面。因此,可將藉此差異在一或多層薄膜62中造成的缺陷進行抑制。
圖16顯示了本方法步驟b)的可能的實施方式的快照。特別是,實際描繪的沉積過程包括,第一材料126和第二材料128同時進行蒸發及/或昇華。反應室中充滿了合適的第二反應氣氛118。
在所描述的實施方式中,第二電磁輻射106包括兩個分量束(component beam)114,其中一個定向至包括第一材料126的第一源30上,另一個定向至包括第二材料128的第二源32上。各別的分量光束114被採用,用於各別材料126、128的蒸發及/或昇華。
蒸發及/或昇華的第一和第二材料126、128,參見各別的箭頭126、128,一起進行沉積並形成薄膜62。例如,兩種材料126、128皆可為金屬元素,而薄膜62是由這些金屬的合金形成的。
請注意,圖16中描述的薄膜62包括多層結構,其中也有由第三材料130組成的層存在。若用於沉積第三材料130的各別的第二反應氣氛118與適合並用於同時沉積圖16所述的第一和第二材料126、128的第二反應氣氛118不同,則可易於使用具有兩個反應容積14、16的反應室10(見圖2),其中兩個沉積過程中的一個在第一反應容積14中進行,另一個在第二反應容積16中進行。
圖17顯示了在步驟b)的最後一次疊代和接下來的步驟c)之間或圖14所示方法的步驟c)後執行的可視選擇的子步驟。覆蓋材料136由第五電磁輻射112進行蒸發及/或昇華,再次提供了上述關於使用蒸發及/或昇華過程所需能量的外部來源的所有優勢。
將蒸發及/或昇華的覆蓋材料136(見圖17中各別的箭頭136)沉積到薄膜62上,在圖17中描述的特殊示例中,是多層結構,包括四層,其分別由第一材料126和第二材料128交替組成,並形成覆蓋層138。對於覆蓋層138的沉積,將適當選擇的第五反應氣氛124用於支持此種特殊 的沉積。覆蓋層138阻擋薄膜62受外部的影響。可藉此必免由這種外部影響造成的缺陷,例如另外的材料不理想地沉積到薄膜62的最上層。
在圖18中,顯示了19個量子元件102,根據本發明,該些量子元件102為基於固態元件100的。圖18顯示了非常簡易的量子元件102,圖19顯示了更為複雜的量子元件。此外,需要幾個圖案化的步驟,通常是透過光刻、蝕刻、離子研磨和其他合適的流程來得到有效的量子元件。
固體元件100的共同點為其包括每平方公分夠低的缺陷數量,以及具有超過100μs,較佳為超過1000μs,甚至更佳為超過10ms的量子位元弛豫時間和量子位元相干時間的層,並且/或者由根據本發明的方法製備。固體元件100的低缺陷數量為量子元件102提供了長同調時間。
圖18中所示的量子元件102包括由第一材料126組成的單一薄膜62。該薄膜62沉積於基底24上。
與此相反的,圖19描述了由薄膜62組成的量子元件102,其具有總共六層的多層結構,特別是重複兩次的三層結構。這三個不同的層由第一材料126、第二材料和第二反應氣氛118的元素的反應產物和第三材料130組成,從最下層開始往上。
此外,量子元件102還包括緩衝層134,由基底24和薄膜62的最下層之間的緩衝材料132組成。正如圖15所述,可避免由基底24和下文的薄膜62之間的轉化造成的缺陷。
此外,量子元件102包括由覆蓋材料136組成的覆蓋層138,覆蓋並保護薄膜62。正如針對圖17已描述的,可避免由外部影響引起的缺陷,特別是與環境氣氛的反應,例如進一步材料的非理想的沉積。
如前所述,多層薄膜62可沉積在基底表面48上,各種薄膜62可由不同的材料製成,以便在基底24上形成多層和多材料的薄膜62。
一種元素,如用於第一和第二源元素30、32的第一材料及/或第二材料的金屬,以便形成薄膜62。
為了說明本發明的技術可行性,圖20-28顯示了對Al2O3基底24的技術的實驗驗證,在這些基底上生長了Ta和Nb薄膜62。Ta和Nb在數K的溫度下皆為超導的,因此適用於製造量子位元裝置。
圖20顯示了透過本發明的方法製備的Al2O3基底24的表面繞射圖案,該圖案由反射高能電子繞射(RHEED)得到。RHEED光束以大約2°的極性角度照射在表面48上。
許多點狀物例示了高度有序的二維晶體表面。對角線的鏡像對稱圖案表明RHEED光束是沿著基底的主晶軸排列的。在此情況下,表面重建相對於體晶格旋轉了+9°。這在圖21中變得很清楚,基底24相對於RHEED光束逆時針旋轉了9°,使RHEED光束與表面重建對齊。
同心圓的對稱圖案沒有任何其他可觀察到的點狀物,證明了在整個基底表面上具有單一旋轉+9°的單一表面重建。-9°方向完全不存在的,證實了根據本發明的方法在幾個能量相等的表面重建中選擇一個的可行性。
透過改變氧製程氣體的壓力至0.75 x 10-1hPa,將氧原子離開表面48的化學位能轉移,表面48的最小能量組態不再是在較低壓力下觀察到的單一旋轉重建。圖22顯示,在此情況下,兩種表面旋轉方向均為同樣有利的。RHEED模式是鏡像對稱的,左側和右側的點狀物強度相等。
圖23顯示了圖20中由RHEED成像的基底在製備過程後的表面形態。表面是高度有序的,顯示出最小能量的階梯和階梯結構,直的階梯邊緣66,相對於主晶軸的角度約為+25°,主晶軸大致與影像的邊緣對齊。
圖24顯示了沿圖23中的線所提取的高度輪廓圖。該基板的階梯寬度約為500μm,階梯之間的階梯58的高度差約為0.43nm。對於Al2O3來說,這相當於塊體Al2O3結構中兩個Al層之間的分離。這些Al層對應於圖3-8的示意圖中的「黑色」層。在圖20中觀察到的表面重建對應於在塊體基底24上面的額外的「黑色」層。
圖25顯示了在超純條件下,在允許鉭原子沿表面長程位移的高表面溫度下,在此樣本上生長的鉭薄膜62的表面AFM影像。該薄膜的不同單晶晶疇最初以不同的方向成核,然而,這些方向受到底層結晶表面的長程有序(long-range order)重建的限制。該些底層結晶表面過度生長,並可能納入鄰近的晶疇,形成大型平坦的單晶晶疇,其缺陷密度極低,且橫向延伸約為其厚度的40倍。
由表面上可見的單原子階梯,以及沿具有軸線排列的六重(每60°)六邊形對稱性的底層磊晶樣本的階梯和晶疇邊緣排列,可看出晶疇的單晶性質。
圖26顯示了在名義上相同的條件下生長的薄膜62的類似SEM影像,與圖25相比,橫向解析度大約是兩倍。然而,與圖25相比,其生長只在大約1/5的層厚之後就停止了。因此,該影像代表了不同的、獨立成核的磊晶晶粒之間的凝聚過程的快照,現在開始形成橫向連接的、尺寸逐漸變大的單晶粒。
圖27中所示的X射線掃描圖與圖25中的薄膜相同。這個測量實質上為針對整個樣品表面的平均測量,顯示出薄膜62在實驗的解析度內為完全單晶的,尖銳而明顯的峰值對應於平行於基底24的鉭的單族晶體平面。此結果再次證明了薄膜62與基底24的結構上高度完美且完全的磊晶排列。
最後,圖28顯示了沉積後劈分(cleaved)的層結構的剖面SEM影像,顯示了矽基底24上沒有磊晶排列的鈮薄膜62,並在基底溫度約為250℃下生長。該薄膜62沒有磊晶,顯示出無序的、具有高缺陷密度的柱狀結構。根據本發明,透過使用高溫退火基底製備技術,將其與在無縫集成原位製程中超純淨的後續沉積結合,可避免這種情況。
也有可能將化合物層生長為薄膜62。為此目的,進行一種在基底上形成具有選在單層至數μm範圍內厚度的化合物層62的方法。如前所述,基底24可為單晶晶片。將基底24配置在製程室中,如圖1和圖2中揭露的反應室10,反應室10包括一或多個源材料的來源30、32,該方法包括以下步驟:
- 在製程室10中提供反應氣氛,該反應氣氛包括預定的製程氣體G和反應室壓力。
- 用來自第一和第二源加熱雷射器36、38之一的雷射照射一或多個源30、32,以使源材料的原子及/或分子昇華及/或蒸發。
- 使蒸發的原子及/或分子與製程氣體反應,並在基底上形成化合物層。
在此情況中應注意的是,來自第一和第二源加熱雷射器36、38的雷射是直接面對基底24的源表面的。
反應室的壓力通常選擇在10-6至101hPa的範圍內。在執行形成化合物的方法時,提供反應氣氛的步驟通常包括將製程室10排空至第一壓力,然後引入製程氣體G以得到第二壓力,即反應室10中的反應室壓力。
第一壓力通常低於第二壓力,第二壓力在10-11至10-2hPa的範圍內選擇。
至少將護罩(shroud)及/或反應室10的內壁的溫度控制在77K至500K範圍內選定的溫度。
源材料選自由Sc、Ti、V、Cr、Mn、Fe、Co、Ni、Cu、Zn、Zr、Nb、Mo、Ru、Hf、Al、Mg、Ca、Sr、Ba、Y、Rh、Ta、W、Re、Ir、Ga、In、Si、Ge、Sn、Eu、Ce、Pd、Ag、Pt、Au,上述的合金和上述的組合所組成的群組。
以雷射照射一或多個源30、32來昇華及/或蒸發源材料的原子及/或分子的雷射在一或多個源30、32上聚焦,其強度選在1至2000W的範圍內,光斑大小為1mm2,一或多個源與基底之間的距離選在50至120mm的範圍內。
以雷射照射一或多個源30、32,雷射的波長在280nm到20μm範圍內,特別是在450nm到1.2μm範圍內。
沉積在基底上的化合物可為氧化物、氮化物、氫化物、氟化物、氯化物、溴化物、碘化物、磷化物、硫化物、硒化物或汞化合物中的一種。
在製程氣體G的高壓下,蒸發的原子或分子與氣體原子發生更多的碰撞,導致其方向和動能的隨機化。這導致到達基底24的蒸發原子或分子的比例小得多,然而,在某些情況下,特別是在短工作距離和大型基底上,這對於形成層62仍然是有用的。在這些條件下,基底24上的化合物或氧化物層62的形成可在幾種條件下進行。
- 生長模式1:源材料126在源表面反應或氧化,並蒸發或昇華為化合物或氧化物。其接著作為化合物或氧化物沉積於基底上。
- 生長模式2:源材料126在沒有反應的情況下蒸發或昇華,並在其從源30、32到基底24的軌跡上與氣體原子碰撞而與氣體G反應,並作為化合物或氧化物沉積。
- 生長模式3:源材料126蒸發或昇華而不發生反應,在沒有反應的情況下移動,並在其沉積在基底24上時或之後與衝擊在基底24上的氣體原子或分子發生反應。
- 生長方式4:上述的任何組合。
特別值得關注的是傳輸反應,其中源材料126與氣體G發生反應,形成比源材料126本身具有更高蒸發/昇華率的亞穩態化合物。這種材料在氣 相中進一步反應,並作為最終的化合物沉積為薄膜62,或沉積於基底24上並與另外的氣體G反應,形成最終的、穩定的化合物作為薄膜62。
具體的化合物的示例有。
TiO2:對於TiO2,源材料是Ti,沉積在基底上的化合物主要是銳鈦礦型或金紅石型TiO2,雷射的波長選在515至1070nm的範圍內,特別是在1000至1070nm範圍內,強度在1至2000W範圍內,對應於源表面的功率密度為0.001至2kW/mm2,特別是在100至200W範圍內,對應於功率密度為0.1至0.2kW/mm2,製程氣體是O2和O3的混合物,特別是O3含量為5至10重量%,反應室壓力為10-11至1hPa,特別是10-6至10-2hPa,複合層厚度選在0至180分鐘的時間段內得到,特別是在15至30分鐘的時間段內得到700nm,工作距離為10mm至1m,特別是40至80mm,基底直徑為5至300mm,特別是51mm。
NiO:對於NiO,源材料是Ni,沉積在基底上的化合物主要是NiO,雷射的波長選擇515至1070nm的範圍內,特別是在1000至1070nm的範圍內,強度在1至2000W的範圍內,對應於源表面的功率密度為0.001至2kW/mm2,特別是在100至350W的範圍內,對應於功率密度為0.1至0.35kW/mm2,製程氣體是O2和O3的混合物,特別是O3含量為5至10重量%,反應室壓力為10-11至1hPa,特別是10-6至10-2hPa,複合層厚度選在0至50分鐘的時間段內得到,特別是在10至20分鐘的時間段內得到500nm,工作距離為10mm至1m,特別是40至80mm,基底直徑為5至300mm,特別是51mm。
Co3O4:對於Co3O4,源材料是Co,沉積在基底上的化合物主要是Co3O4,雷射的波長選在515至1070nm的範圍內,特別是在1000至1070nm的範圍內,強度在1至2000W的範圍內,相當於源表面的功率密度為0.001至2kW/mm2,特別是在100至200W的範圍內,相當於功率密度為0.1至0.2kW/mm2,製程氣體是O2和O3的混合物,特別是O3含量為5至10重量%,反應室壓力為10-11至1hPa,特別是10-6至10-2hPa,複合層厚度選擇在0至90分鐘的時間段內得到,特別是在10至20分鐘的時間段內得到200nm,工作距離為10mm至1m,特別是40至80mm,基底直徑為5至300mm,特別是51mm。
Fe3O4:對於Fe3O4,源材料是Fe,沉積在基底上的化合物主要是Fe3O4,雷射的波長選在515至1070nm範圍內,特別是在1000至1070nm範圍內,強度在1至2000W的範圍內,對應於源表面的功率密度為0.001至2kW/mm2,特別是在100至200W的範圍內,對應於功率密度為0.1至0.2kW/mm2,製程氣體是O2和O3的混合物,特別是O3含量為5至10重量%,反應室壓力為10-11至1hPa,特別是10-6至10-2hPa,複合層厚度選在0至30分鐘的時間內得到,特別是在10至20分鐘的時間內得到5μm,工作距離為10mm至1m,特別是40至80mm,基底直徑為5至300mm,特別是51mm。
CuO:對於CuO,源材料是Cu,沉積在基底上的化合物主要是CuO,雷射的波長選在500至1070nm之間,特別是在500至550nm之間,強度在1至900W之間,相當於源表面的功率密度為0.001至0.9kW/mm2,特別是在200至400W之間,相當於功率密度為0.2至0.4 kW/mm2,製程氣體是O2和O3的混合物,特別是O3含量為5至10重量%,反應室壓力為10-11至1hPa,特別是10-6至10-2hPa,複合層厚度選在0至100分鐘的時間段內得到0至1μm的範圍,特別是0.15μm,工作距離為10mm至1m,特別是40至80mm,基底直徑為5至300mm,特別是51mm。
氧化釩:對於氧化釩,源材料是V,沉積在基底上的化合物主要是V2O3、VO2或V2O5,雷射的波長選在515至1100nm的範圍內,特別是在1000至1100nm的範圍內,強度在1至2000W的範圍內,對應於源表面的功率密度為0.001至2kW/mm2,特別是在60至120W的範圍內,對應於功率密度為0.06至0.12kW/mm2,製程氣體是O2和O3的混合物,特別是O3含量為5至10重量%,反應室壓力為10-11至1hPa,特別是10-6至10-2hPa,複合層厚度選在0至60分鐘的時間段內可得到0至1μm的範圍,特別是0.3μm,工作距離為10mm至1m,特別是40至80mm,基底直徑為5至300mm,特別是51mm。
Nb2O5:對於Nb2O5,源材料是Nb,沉積在基底上的化合物主要是Nb2O5,雷射的波長選在515至1100nm之間,特別是在1000至1100nm之間,強度在1至2000W之間,相當於源表面的功率密度為0.001至2kW/mm2,特別是在200至400W之間,相當於功率密度為0.2至0.4kW/mm2,製程氣體是O2和O3的混合物,特別是O3含量為5至10重量%,反應室壓力為10-11至1hPa,特別是10-6至10-2hPa,複合層厚度選在0至20分鐘的時間段內可得到0至2μm的範圍,特別是1.4μm,工 作距離為10mm至1m,特別是40至80mm,基底直徑為5至300mm,特別是51mm。
Cr2O3:對於Cr2O3,源材料是Cr,沉積在基底上的化合物主要是Cr2O3,雷射的波長選在515至1100nm的範圍內,特別是在1000至1100nm的範圍內,強度在1至2000W的範圍內,對應於源表面的功率密度為0.001至2kW/mm2,特別是在20至80W的範圍內,對應於功率密度為0.02至0.08kW/mm2,製程氣體是O2和O3的混合物,特別是O3含量為5至10重量%,反應室壓力為10-11至1hPa,特別是10-6至10-2hPa,複合層厚度選在0至30分鐘的時間段內可得到0至1μm的範圍,特別是0.5μm,工作距離為10mm至1m,特別是40至80mm,基底直徑為5至300mm,特別是51mm。
RuO2:對於RuO2,源材料是Ru,沉積在基底上的化合物主要是RuO2,雷射的波長選擇在515至1100nm之間,特別是在1000至1100nm之間,強度在1至2000W之間,相當於源表面的功率密度為0.001至2kW/mm2,特別是在200至600W之間,相當於功率密度為0.2至0.6kW/mm2,製程氣體是O2和O3的混合物,特別是O3含量為5至10重量%,反應室壓力為10-11至1hPa,特別是10-6至10-2hPa,複合層厚度選擇在0至300分鐘的時間段內可得到0至1μm的範圍,特別是0.06μm,工作距離為10mm至1m,特別是40至80mm,基底直徑為5至300mm,特別是51mm。
ZnO:對於ZnO,源材料是Zn,沉積在基底上的化合物主要是ZnO,雷射的波長選在515至1100nm之間,特別是在1000至1100 nm之間,強度在1至2000W之間,對應於源表面的功率密度為0.001至2kW/mm2,特別是在5至10W之間,對應於功率密度為0.005至0.010kW/mm2,製程氣體是O2和O3的混合物,特別是O3含量為5至10重量%,反應室壓力為10-11至1hPa,特別是10-6至10-2hPa,複合層厚度選擇在0至20分鐘的時間段內可得到0至1μm的範圍,特別是1.4μm,工作距離為10mm至1m,特別是40至80mm,基底直徑為5至300mm,特別是51mm。
MnO:對於氧化錳,源材料是錳,沉積在基底上的化合物主要是氧化錳,雷射的波長選在515至1100nm的範圍內,特別是在1000至1100nm的範圍內,強度在1至2000W的範圍內,相當於源表面的功率密度為0.001至2kW/mm2,特別是在5至10W的範圍內,相當於功率密度為0.005至0。010kW/mm2,製程氣體是O2和O3的混合物,特別是O3含量為5至10重量%,反應室壓力為10-11至1hPa,特別是10-6至10-2hPa,複合層厚度選擇在0至20分鐘的時間段內可得到0至1μm的範圍,特別是1.4μm,工作距離為10mm至1m,特別是40至80mm,基底直徑為5至300mm,特別是51mm。
Sc2O3:對於Sc2O3,源材料是Sc,沉積在基底上的化合物主要是Sc2O3,雷射的波長選在515至1100nm之間,特別是在1000至1100nm之間,強度在1至2000W之間,對應於源表面的功率密度為0.001至2kW/mm2,特別是在20至50W之間,對應於功率密度為0.02至0.05kW/mm2,製程氣體是O2和O3的混合物,特別是O3含量為5至10重量%,反應室壓力為10-11至1hPa,特別是10-6至10-2hPa,複合層厚度選 在0至20分鐘的時間段內可得到0至1μm的範圍,特別是1.3μm,工作距離為10mm至1m,特別是40至80mm,基底直徑為5至300mm,特別是51mm。
Mo4O11或MoO3:對於MO4O11或MoO3,源材料是Mo,沉積在基底上的化合物主要是Mo4O11或MoO3,雷射的波長選擇在515至1100nm之間,特別是在1000至1100nm之間,強度在1至2000W之間,對應於源表面的功率密度為0.001至2kW/mm2,特別是在400至800W之間,對應於功率密度為0.4至0.8kW/mm2,製程氣體是O2和O3的混合物,特別是O3含量為5至10重量%,反應室壓力為10-11至1hPa,特別是10-6至10-2hPa,複合層厚度選擇在0至30分鐘的時間段內可得到0至4μm的範圍,特別是4.0μm,工作距離為10mm至1m,特別是40至80mm,基底直徑為5至300mm,特別是51mm。
二氧化鋯:對於ZrO2,源材料是Zr,沉積在基底上的化合物主要是ZrO2,雷射的波長選在515至1100nm之間,特別是在1000至1100nm之間,強度在1至2000W之間,相當於源表面的功率密度為0.001至2kW/mm2,特別是在300至500W之間,相當於功率密度為0.3至0.5kW/mm2,製程氣體是O2和O3的混合物,特別是O3含量為5至10重量%,反應室壓力為10-11至1hPa,特別是10-6至10-2hPa,複合層厚度選在0至100分鐘的時間段內可得到0至1μm的範圍,特別是0.2μm,工作距離為10mm至1m,特別是40mm至80mm,基底直徑為5mm至300mm,特別是51mm,在15至25分鐘的時間段內得到。
HfO2:對於HfO2,源材料是Hf,沉積在基底上的化合物主要是HfO2,雷射的波長選擇在515至1100nm之間,特別是在1000至1100nm之間,強度在1至2000W之間,相當於源表面的功率密度為0.001至2kW/mm2,特別是在250至400W之間,相當於功率密度為0.25至0.4kW/mm2,製程氣體是O2和O3的混合物,特別是O3含量為5至10重量%,反應室壓力為10-11至1hPa,特別是10-6至10-2hPa,複合層厚度選擇在0至40分鐘的時間段內可得到0至1μm的範圍,特別是0.6μm,工作距離為10mm至1m,特別是40mm至80mm,基底直徑為5mm至300mm,特別是51mm,在15至25分鐘的時間段內得到。
Al2O3:對於Al2O3,源材料是Al,沉積在基底上的化合物主要是Al2O3,雷射的波長選擇在515至1100nm之間,特別是在1000至1100nm之間,強度在1至2000W之間,相當於源表面的功率密度為0.001至2kW/mm2,特別是在200至400W之間,相當於功率密度為0.2至0.4kW/mm2,製程氣體是O2和O3的混合物,特別是O3含量為5至10重量%,反應室壓力為10-11至1hPa,特別是10-6至10-2hPa,複合層厚度選擇在0至20分鐘的時間內可得到0至1μm的範圍,特別是1.0μm,工作距離為10mm至1m,特別是40至80mm,基底直徑為5至300mm,特別是51mm,在15至25分鐘的時間段內得到。對於鋁來說,由於生長模式4的雷射功率為300至500W,可實現每分鐘超過1μm的更高生長速度。
熱雷射蒸發(TLE)是一種特別有前景的金屬薄膜生長技術。在此,我們證明了熱雷射蒸發也適用於非晶和多晶氧化物薄膜的生長。我 們報導了二元氧化物薄膜的光譜,其透過在氧-臭氧氣氛中的元素金屬源的雷射誘導蒸發而沉積。透過TLE進行的氧化物沉積伴隨著元素金屬源的氧化,這系統地影響了源分子通量(source molecular flux)。15種元素金屬成功地用作在未加熱的基底上生長的氧化膜的源,採用了一個相同的雷射器。源材料的範圍包括具有低蒸氣壓的難熔金屬,如Hf、Mo和Ru,以及在低溫下易昇華的Zn。這些結果顯示,TLE非常適合超淨氧化膜的生長。
由於氧化膜62廣泛的有趣和有用的特性而受到了對其能實現的新功能極大的關注。幾乎所有的沉積技術都用於氧化膜的生長,包括電子束蒸發(EBE)、分子束磊晶(MBE)、脈衝雷射沉積(PLD)、濺射和原子層沉積(ALD)。熱雷射蒸發(TLE)最近證明為很具前景的生長超淨金屬薄膜的技術,因其結合了MBE、PLD和EBE的優勢,以雷射光束來熱蒸發金屬源。
透過利用吸附控制的生長模式,MBE特別適合生長具有優異結構品質的薄膜。在MBE中,源材料的分子通量是透過蒸發源材料而產生的。然而,為此首選的歐姆加熱器限制了反應性背景氣體的使用。這種限制對於複雜的金屬氧化物的生長可能是至關重要的。此外,低蒸氣壓的元素,如B、C、Ru、Ir和W,不能透過外部歐姆加熱蒸發。蒸發這些元素需要EBE,但這種技術對於實現精確和穩定的蒸發率來說並不是最佳選擇。PLD透過短週期、高功率的雷射脈衝將源材料轉移到基底上。儘管PLD可在反應性氣體的高背景壓力下操作,但對材料成分的精確控制是具挑戰性的,特別是如果薄膜的成分要平穩變化的話。
在雷射發明後,雷射輔助蒸發已被提出並嘗試用於薄膜沉積。然而,透過連續波(cw)雷射的蒸發過程由於形成了非合金薄膜而捨棄,而高功率密度脈衝雷射的蒸發則導致了PLD的發明。伴隨著cw雷射技術的發展,TLE最近被重新發現為複雜材料磊晶生長的候選方法,其可結合MBE、PLD和EBE的優勢,同時消除各別的缺點。放在真空室12外的雷射器36、38透過局部加熱蒸發純金屬源30、32,這只需要簡單的配置,並允許精確控制各源元素的蒸發,源材料的高純度,以及幾乎無限制地選擇背景氣體G組成和壓力。在許多情況下,局部熔化的源30、32形成自己的坩堝。藉由避免從坩堝中加入雜質,以保證源30、32保持高純度。TLE沉積元素金屬和半導體薄膜62的潛力已透過沉積各種元素作為薄膜62來實現,從高蒸氣壓力的元素如Bi和Zn到低蒸氣壓力的元素如W和Ta。
雖然使用TLE來生長氧化膜62和異質結構也可能是非常有利的,但在氧化性氣氛中能否做到這一點並不明顯。為MBE和EB帶來麻煩的熱源(燈絲)氧化在TLE中是微不足道而不致避免的。然而,金屬源30、32本身在氧化性氣氛中進行雷射光束加熱時,很容易被氧化。若源頭氧化,雷射輻射就不再只是被原來的源頭材料吸收,也會被其氧化物吸收。事實上,整個源頭或源頭的表面可能會氧化,或者氧化物可能會形成浮在熔池上的部分層。此外,源材料的分子通量可能由源的金屬部分和源材料的氧化物共同產生。
為此,我們進行了一系列的蒸發實驗,其中具有高或低蒸氣壓的元素金屬源30、32在各種氧-臭氧氣氛中透過雷射照射進行蒸發。為 了簡單地探索蒸發過程,我們使用了未加熱的Si(100)晶片的基底24,該基底上塗有原生氧化物。我們很容易就成功地生長出了氧化膜62,對於所探索的每一種元素,我們使用了與第一和第二源加熱雷射器36、38相同的雷射光學和雷射波長1030-1070nm。我們的實驗顯示,儘管在過程中源30、32被氧化,但在強氧化氣氛中的元素源蒸發適用於氧化膜的生長。我們還發現,透過調整氧化氣氛,在給定的氣氛中可得到不同的氧化相。此外,我們還發現,沉積過程顯示出作為氧-臭氧壓力的函數的特徵變化。
本研究中使用的TLE室10的示圖示於圖1。透過60mm的工作距離來分開的高純度圓柱形金屬源30、32和2英寸的矽(100)基底24由鉭基支架22支持。我們使用1030nm的光纖耦合圓盤雷射器(fiber-coupled disk laser)36和1070nm的光纖雷射器38以45°入射於頂面,以加熱源30、32。根據這些雷射器36、38的可用性決定,我們用前者的雷射器36來蒸發鈦、鈷、鐵、銅和鎳,用後者的38來蒸發其他元素。我們注意到兩種雷射器36、38的性能沒有差別。兩種雷射器36、38都照明了光源30、32上約1平方mm的橢圓區域。為了進行溫度感應,我們將C型W-Re熱電耦放置在晶片24的背面和光源30、32的底部。
一個流動的氧-臭氧混合物20和一個由兩個渦輪分子泵(turbomolecular pump)和一個串聯的隔膜泵(diaphragm pump)組成的串級聯泵系統(cascade pumping system)18被用來精確控制腔室壓力Pox,其在<10-8和10-2hPa之間變化。臭氧約占由輝光放電連續流臭氧產生器提供的總流量的10wt%(未示出)。在每次沉積過程中,控制該氣體流量的閥門配置保持不變,以提供一個恆定的流量。在蒸發過程中,透過壓力錶 和熱電耦(未示出)監測Pox以及源30、32和基底24的溫度。使用相同的沉積幾何,我們使用TLE蒸發15種不同的金屬元素來沉積氧化膜62。每種元素在幾次運行中使用相同的雷射功率和雷射光學器件但不同的Pox值(範圍介於從10-8至10-2hPa),來進行蒸發。掃描電子顯微鏡(SEM)用來測量薄膜厚度和研究其微觀結構。沉積的薄膜62的晶體結構是透過X射線繞射確定的。光發射光譜用來揭示TLE生長的二氧化鈦薄膜62的氧化狀態。若發現薄膜62是非晶型的,便在500℃下再進行兩小時的氬氣退火,以實現結晶。
由於源30、32和蒸發的材料的氧化引起的氧-臭氧混合氣體的消耗,Pox在沉積過程中經常下降,如圖29所示。該圖顯示了在幾種氣體壓力下鈦蒸發過程中的Pox。鈦的TLE的雷射照射時間為15分鐘。當雷射器36、38在~300秒的時間內打開時,Pox就會減少,當雷射器在~1200秒的時間內關閉時,其很快就回到了更高壓力的初始背景值。在較高的溫度下,氧化作用更加活躍,因此,Pox的減少可主要歸因於元素源的氧化。氧化蒸發的材料所需的最大氧量小於入口氣體流量的1%,這無法解釋觀察到的壓力變化。在用160W雷射在10-2hPa下沉積後,鈦源30、32被一種白色物質覆蓋,此物質很可能是由TiO2組成。其他元素源在使用後也被氧化了。我們在介紹中提到的這種元素源30、32的大量氧化影響了對雷射的吸收、蒸發過程和沉積在基底24上的蒸汽物質。
然而,並非在所有情況下都能觀察到背景壓力的降低。在兩種情況下,壓力變化很小,甚至沒有:第一,如果源30、32在過程開始時已經完全氧化;第二,如果源30、32的氧化在本質上是不利的。在氧化性 氣氛中,Ni的熱雷射蒸發是第一種情況的示例。只有在Pox<10-4hPa時才觀察到Pox的減少。在更高的壓力下,鎳源30、32會被其氧化物覆蓋。因此,進一步的氧化被抑制,Pox的下降也就消失了。因此,在強氧化條件下加熱鎳得到的主要蒸汽物質是由NiO提供的。銅的熱雷射蒸發是第二種情況的示例,因為銅的氧化是相對不利的。在超過1000℃,在10-4至10-2hPa的氧壓力範圍內,金屬銅比其氧化物更穩定。在實驗中,輻照區的源溫度超過1085℃,這一點從銅局部熔化的事實中可看出。在此溫度下,液態銅是熱力學上穩定的相,而元素銅預計將提供主要的蒸汽種類。事實上,如圖S3所示,在銅的蒸發過程中,室壓沒有發生明顯變化。一致地,在TLE過程之後,銅源30、32的雷射照射區域為金屬。
我們已經測試了15種金屬元素作為TLE生長的氧化物薄膜的來源(表1)。圖30顯示了TLE生長的TiO2、Fe3O4、HfO2、V2O3、NiO和Nb2O5薄膜的掠角XRD圖案。這些圖案是這裡研究的所有二元氧化物的典型圖案。如圖所示,62號薄膜是多晶的,在許多情況下是單相的。大多數元素在未加熱的矽基底24上提供了多晶薄膜62,除了鉻,其形成了非晶型的氧化物。隨後兩小時的500℃氬氣退火將該層轉化為多晶的Cr2O3薄膜62。表1總結了觀察到的氧化相。肽、釩和鉬的氧化物形成了數種相,由Pox決定得到哪一相。以釩為例,透過將Pox從10-4增加至10-2hPa,可得到V2O3、VO2或V2O5薄膜62。對於其他元素,我們在所使用的Pox範圍內只觀察到單一的氧化狀態。
為了更詳細地研究薄膜62的結構,我們進行了剖面掃描。如圖31所示,該圖顯示了圖30的薄膜62的SEM剖面,大多數多晶體薄膜 具有柱狀結構。測量的基底溫度和沉積的氧化物的熔點之間的比率由0.05至0.2不等。因此,觀察到的柱狀結構與薄膜生長的區域模型是一致的,對於這裡使用的條件,其預測了柱狀微結構的形成。不過,沉積的氧化物的晶體結構還是影響了薄膜的結構。在10-3和10-2hPa下生長的氧化鉬薄膜分別由棱柱形和六角形板組成。圖31中所示的薄膜62是以幾埃/秒的速率生長的;這些速率被選為氧化膜生長的典型速率。速率(見圖31)是透過將晶片中心的薄膜厚度除以雷射輻照時間來測量的。沉積率並不局限於所提出的數值。事實上,其隨著雷射功率的增加而超線性地(super-linearly)增加。
由於源30、32被局部加熱,其表現得如平坦的、小面積的蒸發源30、32,作為發射角的函數提供餘弦型(cosin-type)的流量分佈。事實上,SEM測量顯示,薄膜62在靠近晶片邊緣的地方比較薄。在我們使用的蒸發參數下,在大多數情況下,薄膜厚度向邊緣的減少相當於20%,略高於理論上預期的15%的值。我們把這種影響歸因於在蒸發過程中源的明顯點蝕(pitting),其集中了分子流量。
我們的研究表明,正如預期般,沉積的氧化物的相位是氧化氣體壓力的函數。這種行為在圖32中對鈦和鎳薄膜62進行了說明。該圖提供了在幾種不同的氧化劑中生長的這種薄膜的XRD圖案。在鈦的情況下,如果在沒有氧-臭氧的情況下進行沉積,就會得到多晶的六方鈦薄膜。隨著Pox的增加,會沉積出亞晶質TiO、金紅石型TiO2和銳鈦礦型TiO2薄膜62。TiO是一種著名的鈦的揮發性亞氧化物。其在Pox~10-6hPa的弱氧化環境下形成的。在37.36°、43.50°和63.18°的峰(圖5a,紅色曲線) 表示立方體TiO。對於Pox~10-4hPa,金紅石型TiO2出現在薄膜中。灰線標誌著金紅石型TiO2的預期繞射峰位置。在10-3hPa時,銳鈦礦TiO2與金紅石相一起生成,如圖5中的紫色星形所示。由於其表面自由能低,可轉移的銳鈦礦相較佳透過大多數合成和沉積方法得到。將銳鈦礦相轉化為金紅石相或直接合成金紅石相的TiO2通常需要高能條件。我們觀察到金紅石相TiO2的優先形成,儘管從蒸發的原子和分子的熱能來看,TLE是一個低能量的過程。在10-2hPa時,沉積的薄膜會失去其結晶性。
用XPS分析了TLE生長的TiO2薄膜62的氧化狀態,並與EBE生長的TiO2薄膜進行比較。EBE沉積的樣品包含大量的Ti3+,而TLE樣品主要包含Ti4+。我們將這一現象歸因於氧-臭氧背景,其抑制了TiO2的熱解離,TiO2(s)→TiO(g)+½ O2(g),並氧化了沉積材料。
有趣的是,我們發現TLE生長的鎳氧化膜62的氧化行為與鈦氧化膜62有明顯的不同。在超高真空條件下,金屬鎳也發現了立方相(圖32b)。儘管鎳源表面30在Pox~10-6hPa時被氧化(如室壓的下降所證明的),但所得到的薄膜62在此Pox下也展現了金屬行為。我們將此歸因於鎳的高氧化電位和鎳具有比氧化鎳更高的蒸氣壓。因此,大多數蒸汽種類來自於輻照熱區的未氧化的鎳。此外,沉積在基底24上的鎳在低基底溫度下不會明顯氧化。NiO相隨著Pox的增加而逐漸演變。圖32中出現了預期的NiO相的繞射峰位置,顯示了立方體NiO的形成。正如金屬和氧化物峰的存在所證明的那樣,在10-5hPa沉積的Ni膜62被部分氧化成NiO。在較高的Pox下,NiO相占主導地位。
Pox也會影響TLE生長的氧化物薄膜62的沉積率。圖33顯示了鈦基和鎳基氧化膜62的沉積率的壓力依賴性。考慮到氧融入薄膜62,我們預計隨著Pox的增加,沉積率也會增加。然而,觀察到的沉積速率行為不能僅用氧的結合來解釋。鈦基薄膜62的生長速度隨著Pox的增加而增加,從基礎壓力下的0.6Å/s到10-3hPa時的3.5Å/s。沉積速率增加了六倍,這就推斷出還有其他影響速率的因素。相反,鎳基氧化物薄膜62的沉積速率在10-4hPa時僅從3.1Å/s增加到4.6Å/s,然後在Pox>10-4hPa時急劇下降到0.3Å/s。薄膜62中的氧化物部分的增加(見圖32)可能是沉積速率最初增加的原因,但不能解釋10-3hPa時沉積速率的大幅下降。鈦和鎳基薄膜62的生長特性代表了大多數薄膜62所觀察到的兩種特徵模式。鐵、鈷、鈮、鋅和鉬顯示了鈦的行為,而鉻、鈧、錳和釩顯示了鎳的行為。
為何Pox會以這兩種相當有特點的方式改變透過TLE生長的氧化物薄膜的沉積率呢?我們認為,這種行為是由源的30,32氧化表面層的蒸汽壓力控制的。如果在源表面形成的氧化物的蒸氣壓力超過金屬的蒸氣壓力,則沉積率隨Pox增加。這對應於類似鈦的沉積率行為。TiO2氣體蒸汽的形成,Ti(s)+O2(g)→TiO2(g),是放熱反應,導致源的氧化物蒸汽的有效生成。由於金屬氧化率以Pox的冪數增加(氧化率
Figure 111119133-A0202-12-0069-42
),沉積率將隨著Pox的增加而相應增加,正如對鐵和鈮觀察到的那樣。相反,如果金屬的蒸氣壓力超過氧化物的蒸氣壓力,就會發現類似鎳的情況。由於NiO的蒸氣壓力比鎳的蒸氣壓力小一個數量級,NiO對源的覆蓋會使沉積率降低相同的係數。這一理解得到了觀察的支持,即鎳的沉積率的突然 下降發生在10-3hPa,與室中的壓降消失的壓力相同,揭示了該源在此Pox下由NiO層62鈍化。
因此,已經證明了透過TLE生長的多晶體氧化物薄膜62。具有可調控氧化態和晶體結構的薄膜62可透過在高達101hPa的氧-臭氧壓力下蒸發純金屬源來生長,而不考慮金屬源30、32的可能氧化。從包括低氣壓和高氣壓元素的各種金屬源中,以幾埃/秒的生長速度在未加熱的Si(100)基底24上沉積出各種氧化狀態的多晶體薄膜62。確定源氧化程度,氧化氣體的壓力強烈影響了沉積速率以及所產生的氧化膜32的組成和相位。我們的工作為不同化合物的超高純度磊晶氧化物異質結構的TLE生長鋪路。
表1.本工作中透過TLE沉積的氧化物薄膜列表。
Figure 111119133-A0202-12-0071-2
24:基底
30:第一源元素
34:源裝置
48:24的基底表面
50:24的背面
62:薄膜、層
100:固態元件
104:第一電磁輻射
106:第二電磁輻射
108:第三電磁輻射
116:第一反應氣氛
118:第二反應氣氛
120:第三反應氣氛
126:第一材料
G:製程氣體
T:終端材料

Claims (34)

  1. 一種製備固態元件之方法,特別是用於量子元件,較佳為用於量子位元(qubit),包括一或多層薄膜,該一或多層薄膜包括第一材料,且各該薄膜具有選自單層和100nm之間的厚度並沉積在基底的基底表面上,其中,該製備方法是在相對於環境氣氛為密封的反應室中進行,
    其特徵在於以下步驟:
    a)在該反應室含有第一反應氣氛時,藉由以耦合至該反應室中的第一電磁輻射加熱該基底,來製備該基底表面;
    b)在該反應室含有第二反應氣氛時,藉由耦合至該反應室中的第二電磁輻射加熱包括該第一材料的源元素,來蒸發及/或昇華該第一材料,以用於將包括該第一材料的該一或多層薄膜沉積至步驟a)中所製備的該基底表面上,且可選擇地
    c)在該反應室含有第三反應氣氛時,以耦合至該反應室中的第三電磁輻射,來照亮該一或多層薄膜及/或該基底,以用於形成該固態元件,並用於該固態元件的回火及/或受控冷卻,
    藉此,在該些步驟a)至c)期間,該反應室相對於環境氣氛保持密封,且該基底及該後成的固態元件兩者分別持續地留在該反應室中。
  2. 如請求項1所述之方法,
    其特徵在於,
    雷射光,特別是具有在10nm至100μm之間的波長的雷射光,較佳為具有選自可見的紅外線範圍內的波長,尤其是具有在350nm和20μm之間的波長,是用作第一電磁輻射及/或第二電磁輻射及/或第三電磁輻射。
  3. 如請求項2所述之方法,
    其特徵在於,
    對於該第一電磁輻射及該第二電磁輻射,及/或對於該第二電磁輻射及該第三電磁輻射,及/或對於該第一電磁輻射和該第三電磁輻射,使用具有相同波長的雷射光。
  4. 如前述請求項中之一項所述的方法,
    其特徵在於,
    該第一反應氣氛及/或該第二反應氣氛及/或該第三反應氣氛是選自以下列表:
    - 對於純理想條件的10-8至10-12hPa而言,在10-4和10-12hPa之間的真空、
    - 氧,特別是O2及/或O3
    - 氮、以及
    - 氫。
  5. 如前述請求項中之一項所述的方法,
    其特徵在於,
    該第一反應氣氛及/或該第二反應氣氛及/或該第三反應氣氛為至少部分地離子化的,特別是經由電漿游離而離子化。
  6. 如前述請求項中之一項所述的方法,
    其特徵在於,
    該第一反應氣氛及該第二反應氣氛及該第三反應氣氛是相同的。
  7. 如前述請求項1至5中之一項所述的方法,
    其特徵在於,
    該第一反應氣氛及該第二反應氣氛是不同的,且是在步驟a)及步驟b)之間交換,及/或
    該第二反應氣氛及該第三反應氣氛是不同的,且是在步驟b)及步驟c)之間交換。
  8. 如前述請求項中之一項所述的方法,
    其特徵在於,
    基底是與選自下列的材料一起使用:
    - SiC、
    - AlN、
    - GaN、
    - Al2O3
    - MgO、
    - NdGaO3
    - DyScO3
    - TbScO3
    - TiO2
    - (LaAlO3)0.3(Sr2TaAlO6)0.35(LSAT)、
    - Ga2O3
    - SrLaAlO4
    - Y:ZrO2(YSZ)、以及
    - SrTiO3
  9. 如前述請求項中之一項所述的方法,
    其特徵在於,
    使用在以下一或多個方面中,較佳為在以下所有方面中類似於薄膜的基底:
    - 晶格對稱性、
    - 晶格參數、
    - 表面重建,以及
    - 表面終端。
  10. 如前述請求項中之一項所述的方法。
    其特徵在於,
    在步驟a)中,至少該基底表面為加熱至在900℃及3000℃之間的溫度,特別是1000℃至2000℃。
  11. 如前述請求項中之一項所述的方法,
    其特徵在於,
    步驟a)包含提供定向至該基底表面的終端材料的通量。
  12. 如前述請求項中之一項所述的方法,
    其特徵在於,
    使用基底支架以固定該基底,與該基底相比,該基底支架包含相對於該第一電磁輻射及/或該第三電磁輻射的較小的吸收。
  13. 如前述請求項中之一項所述的方法,
    其特徵在於,
    在步驟b)中,該第一材料包括兩種或多種不同的材料組分,且該源元素相應地包括兩種或多種不同的組分部分,藉此,各組分部分提供兩種或多種材料組分中的一種,且藉此,該第二電磁輻射相應地包括兩種或多種組分光束,該兩種或多種組分光束中的各者適合於該兩種或多種材料組分中之一的該蒸發及/或昇華。
  14. 如前述請求項中之一項所述的方法,
    其特徵在於,
    步驟b)的該蒸發及/或昇華是在低於該第一材料的電漿臨界值所進行的。
  15. 如前述請求項中之一項所述的方法,
    其特徵在於,
    對於該第一材料,使用金屬,較佳為銅鋁、鉭及/或鈮,及/或使用超導材料,特別是金屬,其在溫度>~4K,較佳為>~77K是超導電的,較佳為鉭或鈮或鋁或顆粒鋁或NbN或NbTiN或TiN。
  16. 如前述請求項中之一項所述的方法,
    其特徵在於,
    該第一材料,特別是步驟b)中使用於該蒸發及/或昇華的該一或多者是自支撐的,且從而可以無坩堝的方式提供。
  17. 如前述請求項中之一項所述的方法。
    其特徵在於,
    在步驟b)中沉積的薄層的該材料是該經蒸發及/或昇華的第一材料與該第二反應氣氛的組分的反應產物。
  18. 如前述請求項中之一項所述的方法,
    其特徵在於,
    步驟c)包括兩次或多次分隔的回火疊代。
  19. 如前述請求項中之一項所述的方法,
    其特徵在於,
    步驟c)包括在該一或多次回火疊代的各次之後,經由該第三電磁輻射受控冷卻。
  20. 如前述請求項中之一項所述的方法,
    其特徵在於,
    重複一或多次步驟b),以用於提供該薄膜的多層結構。
  21. 如請求項20所述之方法,
    其特徵在於,
    在步驟b)的各次重複之後,進行步驟c)的疊代。
  22. 如請求項20或21所述之方法,
    其中,
    相對於所使用的該電磁輻射及所使用的該反應氣氛以及該第一材料,相同地進行各步驟b)和各步驟c)。
  23. 如請求項20或21所述之方法,
    其特徵在於,
    對於該一或多次重複之一或多者,改變以下參數的一或多者:
    - 第一材料、
    - 第二反應氣氛、
    - 第三反應氣氛、
    - 第二電磁輻射,以及
    - 第三電磁輻射。
  24. 如前述請求項中之一項所述的方法,
    其特徵在於,
    作為步驟a)的最終流程,將包括緩衝材料的一或多層緩衝層沉積至該基底表面,藉此,在該反應室含有第四反應氣氛時,藉由耦合至該反應室中的第四電磁輻射來蒸發及/或昇華該緩衝材料,藉此,較佳為該第四電磁輻射及該第四反應氣氛與在該些步驟a)、b)或c)之一中所使用之相應者相同。
  25. 如前述請求項中之一項所述的方法,
    其特徵在於,
    在進行最終的該步驟b)之後,將包括覆蓋材料的一或多層覆蓋層沉積至該一或多層薄膜上,藉此,在該反應室含有第五反應氣氛時,藉由耦合至該反應室中的第五電磁輻射來蒸發及/或昇華該覆蓋材料,藉此,較佳為該第五電磁輻射及該第五反應氣氛是與在該些步驟a)、b)或c)之一中所使用之相應者相同。
  26. 一種固態元件,特別是用於量子元件,較佳為用於量子位元,包括一或多層薄膜,該一或多層薄膜之一者包括第一材料,該第一材料具有在單層及100nm之間的厚度且沉積於基底的基底表面上,
    其特徵在於,
    該固態元件是藉由如前述請求項中之一項所述的方法所獲得。
  27. 一種固態元件,特別是用於量子元件,較佳為用於量子位元,包括一或多層薄膜,該一或多層薄膜之一者包括第一材料,該第一材料具有在單層及100nm之間的厚度且沉積於基底的基底表面上,
    其特徵在於,
    該一或多層薄膜之一者,較佳為該一或多層薄膜之所有者,各自具有超過100μs,較佳為超過1000μs,更佳為超過10ms的量子位元弛豫時間和量子位元相干時間。
  28. 一種量子元件,較佳為量子位元,包括固態元件,
    其特徵在於,
    該固態元件是如請求項26或請求項27所述的固態元件。
  29. 如請求項28所述之量子元件,
    其特徵在於,
    該量子元件是超導量子位元,特別是電荷量子位元或通量量子位元或相位量子位元。
  30. 如請求項29所述之量子元件,
    其特徵在於,
    超導量子位元包括具有多層結構的薄膜,該多層結構包括一或多層超導層及一或多層隔離層。
  31. 如請求項30所述之量子元件,
    其特徵在於,
    該一或多層超導層之一或多者由下列材料之一者所組成:
    - Al,特別是顆粒狀的Al、
    - Ta、
    - Nb、
    - NbN、
    - NbTiN、以及
    - TiN,
    及/或該一或多層隔離層之一或多者由下列材料之一者所組成:
    - SiOx
    - HfOx、以及
    - AlxOy
  32. 如請求項29或30所述之量子元件。
    其特徵在於,
    該一或多層超導層及/或該一或多層隔離層包括在1nm及300nm之間的厚度,較佳為在10nm及200nm之間的厚度。
  33. 一種設備,用於製備如請求項26及/或請求項27所述的固態元件及/或用於進行如請求項1至25中之一項所述的方法,至少包括:
    - 反應室,相對於該環境氣氛為可密封的,
    - 一或多個基底裝置,用於該基底的配置,
    - 一或多個源裝置,用於配置該源元素、
    - 耦合裝置,用於將各別的電磁輻射耦合至該反應室中,以及
    - 裝置,用於在該反應室中提供各別的反應氣氛。
  34. 如請求項33所述之設備,
    其特徵在於,
    該反應室包括至少兩個分隔的反應容積,藉此,該至少兩個反應容積是可相互密封的,且在相對於該環境氣氛為連續地密封的該反應室內,該基底裝置可在該至少兩個反應容積之間移動。
TW111119133A 2021-07-01 2022-05-23 製備固態元件的方法、固態元件、量子元件及用於製備固態元件的設備 TW202316689A (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
WOPCT/EP2021/068244 2021-07-01
PCT/EP2021/068244 WO2023274548A1 (en) 2021-07-01 2021-07-01 Method for producing a solid-state component, solid-state component, quantum component and apparatus for producing a solid-state component

Publications (1)

Publication Number Publication Date
TW202316689A true TW202316689A (zh) 2023-04-16

Family

ID=76891035

Family Applications (1)

Application Number Title Priority Date Filing Date
TW111119133A TW202316689A (zh) 2021-07-01 2022-05-23 製備固態元件的方法、固態元件、量子元件及用於製備固態元件的設備

Country Status (4)

Country Link
EP (1) EP4320560A1 (zh)
CN (1) CN117678348A (zh)
TW (1) TW202316689A (zh)
WO (1) WO2023274548A1 (zh)

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018169585A1 (en) * 2017-03-13 2018-09-20 Google Llc Integrating circuit elements in a stacked quantum computing device

Also Published As

Publication number Publication date
WO2023274548A1 (en) 2023-01-05
EP4320560A1 (en) 2024-02-14
CN117678348A (zh) 2024-03-08

Similar Documents

Publication Publication Date Title
Vu et al. Physical vapour deposition of vanadium dioxide for thermochromic smart window applications
Chiodi et al. Massive Ag migration through metal/ceramic nano-multilayers: an interplay between temperature, stress-relaxation and oxygen-enhanced mass transport
JP6255647B2 (ja) 結晶膜、結晶膜の製造方法、蒸着装置及びマルチチャンバー装置
Baiutti et al. Towards precise defect control in layered oxide structures by using oxide molecular beam epitaxy
Khamlich et al. Morphological and crystallographic properties of rare earth oxides coatings deposited by double dual beam-PLD
Hatayama et al. Phase control of sputter-grown large-area MoTe2 films by preferential sublimation of Te: amorphous, 1T′ and 2H phases
TW202316689A (zh) 製備固態元件的方法、固態元件、量子元件及用於製備固態元件的設備
JP2000178713A (ja) β−FeSi2薄膜の形成方法
Szwachta et al. Structure and thermal stability of Bi3NbO7 thin films grown by pulsed laser deposition
JP4465461B2 (ja) ペロブスカイト型酸化物エピタキシャル薄膜の作製方法
TW202307251A (zh) 化合物層之形成方法
TW202349484A (zh) 作為磊晶模板之單晶晶圓表面之製法、磊晶模板及裝置
JP3465041B2 (ja) Yag第5高調波パルスレーザ蒸着による薄膜の作製方法およびその装置
Bedoya-Pinto et al. Material Preparation and Thin Film Growth
Bodnar et al. Structural and optical properties of AgIn5S8 films prepared by pulsed laser deposition
JPH04182317A (ja) 酸化物超電導薄膜の作製方法
Vu et al. Physical Vapor Deposition and its application in vanadium dioxide synthesis
JP4069198B2 (ja) α−SiCのヘテロエピタキシャル薄膜の作製方法及び同方法で作製した薄膜
Bäuerle et al. Thin-film formation by pulsed-laser deposition and laser-induced evaporation
胡叢余 Low temperature growth of gallium oxide based wide bandgap semiconductors
JP2004217484A (ja) パルスレーザ蒸着によるダイアモンドの結晶薄膜の作製方法及び同方法で作製した薄膜
Kanno et al. Preparation of Pb-based ferroelectric thin films at room temperature using excimer-laser-assisted multi-ion-beam sputtering
Bisht SYNTHESIS AND STRUCTURAL STUDY OF PtSe2 THIN FILM
Lapano A Study of Structure Induced Phase Phenomena in Perovskite Oxide Thin Films
Auciello et al. Physical vapor deposition of multicomponent oxide thin films: techniques, basic deposition processes and film processing-microstructure-property relationships