TW202307251A - 化合物層之形成方法 - Google Patents

化合物層之形成方法 Download PDF

Info

Publication number
TW202307251A
TW202307251A TW111118395A TW111118395A TW202307251A TW 202307251 A TW202307251 A TW 202307251A TW 111118395 A TW111118395 A TW 111118395A TW 111118395 A TW111118395 A TW 111118395A TW 202307251 A TW202307251 A TW 202307251A
Authority
TW
Taiwan
Prior art keywords
range
substrate
source
hpa
minutes
Prior art date
Application number
TW111118395A
Other languages
English (en)
Inventor
約翰 曼哈特
金東詠
沃夫岡 布勞恩
Original Assignee
馬克斯普朗克科學促進學會
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 馬克斯普朗克科學促進學會 filed Critical 馬克斯普朗克科學促進學會
Publication of TW202307251A publication Critical patent/TW202307251A/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/0021Reactive sputtering or evaporation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • C23C14/081Oxides of aluminium, magnesium or beryllium
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • C23C14/083Oxides of refractory metals or yttrium
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • C23C14/085Oxides of iron group metals
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • C23C14/086Oxides of zinc, germanium, cadmium, indium, tin, thallium or bismuth
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • C23C14/087Oxides of copper or solid solutions thereof
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • C23C14/28Vacuum evaporation by wave energy or particle radiation

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Chemical Vapour Deposition (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

本發明係關於一種在諸如單晶晶圓的基板上形成具有在單層到幾毫米範圍內選擇的厚度的化合物之層的方法,該基板佈置在包括一個或多個源的源材料的處理室中。本發明進一步係關於可選地藉由該方法獲得的化合物。

Description

化合物層之形成方法
本發明係關於在諸如單晶晶圓的基板上形成具有在單層至幾毫米範圍內選擇的厚度的化合物層的方法,該基板係佈置在包括一個或多個源之材料源的處理室中。本發明進一步係關於藉由該方法而可選地獲得的化合物。
在基板上形成諸如薄膜之類的層係充分記錄在現有技術中。然而,由化合物形成的薄膜的生長只能在雜質含量高的情況下進行,因為所使用的化合物源通常具有3N(99.9%)的純度水準。
出於這個原因,本發明的一個目的是提供一種以可再現和成本有效的方式將化合物形成為薄層的方法,可選地,具有顯著減少的雜質數量。本發明的另一個目的是提供可用的化合物層以用作量子組分。
該目的通過根據請求項1的方法來實現。
這種在諸如單晶晶圓的基板上形成具有在單層至幾毫米範圍內選擇的厚度的化合物之層的方法,該基板被佈置在處理室中,該處理室包括一個或多個源的源材料,該方法包括以下步驟:
在該處理室中提供反應氣氛,該反應氣氛包括預定的處理氣體和反應室壓力;
用雷射光照射該一個或多個源以熔化和/或昇華和/或蒸發至少存在於該一個或多個源的表面處的該源材料的原子和/或分子;
使該熔化的和/或昇華的和/或蒸發的原子和/或分子與該處理室中的該處理氣體反應,以及
在基板上形成該化合物之該層。
本發明描述了通過在氣體環境中蒸發固體或液體元素來合成化合物,較佳為氧化物。元素通過熱雷射蒸發進行蒸發,並在源表面、到達基板的途中或基板表面與氣態環境發生反應。這些反應可以增強沉積過程。
本發明提供了元素源的提供,該元素源在處理溫度下基本上是固體或液體,其中由於雷射的照射,每單位時間它只有一小部分蒸發或昇華。同時,處理室充滿處理氣體,該處理氣體有意與蒸發或昇華的元素反應形成化合物。然後將該化合物作為薄膜或磊晶薄膜沉積在基板上。
處理氣體被定義為具有足夠高的蒸氣壓力而不會在處理條件下在處理室的任何地方凝結的物質。處理條件通常是指室溫和10-6到101hPa之間的室壓力。在這些條件下,大量沿基板方向蒸發的原子或分子到達基板。已經發現,對於等於或低於10-2hPa的壓力,超過50%的沿基板 方向蒸發的原子或分子也到達基板,即,對於高達10-2hPa的壓力,到達基板的原子或分子的數量>50%,並且對於高於10-2和高達101hPa的壓力,<50%在基板方向上蒸發的原子或分子到達基板。
在反應氣體的較高壓力下,蒸發的原子或分子與氣體原子發生更多的碰撞,導致它們的方向和動能隨機化。這導致蒸發的原子或分子中有小得多的部分到達基板,然而,在某些情況下,這可能仍可用於形成層,特別是對於短工作距離和大基板。在這些條件下在基板上形成化合物或氧化物層可以在以下幾種條件下發生:
‧生長模式1:源材料在源表面發生反應或氧化並蒸發或昇華為化合物或氧化物。然後它以化合物或氧化物的形式沉積在基板上。
‧生長模式2:源材料在不發生反應的情況下蒸發或昇華,並藉由在其從源到基板的軌跡上與氣體原子碰撞而與氣體反應並沉積為化合物或氧化物。
‧生長模式3:源材料在沒有反應的情況下蒸發或昇華,在沒有反應的情況下傳播,並且在其沉積在基板上時或之後與撞擊在基板上的氣體原子或分子反應。
‧生長模式4:以上之任意組合。特別感興趣的是傳輸反應,其中源材料與氣體反應以形成具有比源材料本身更高的蒸發/昇華速率的亞穩態化合物。該材料進一步在氣相中反應並沉積作為最終化合物,或沉積在基板上並與進一步的氣體反應以形成最終的穩定化合物。
在最簡單的情況下,在該過程中使用一種非氣態源元素和一種氣態元素。化學計量(化合物中元素的比率)可以通過通量與氣體壓力的 比率來控制。通過這種方式,我們能夠生產出具有各種V與O比值的氧化釩薄膜。
幾種源材料和幾種氣體分壓可以組合以形成由多於兩種元素組成的複雜化合物,特別是由多於一種源元素、多於一種氣態元素和多於一種兩者組成的複雜化合物。這種化合物中非氣態源元素之間的比例可以透過每個蒸發雷射的雷射功率藉由源之間的相對通量來控制。這種化合物中氣態源元素之間的比例可以藉由室中氣體的相對分壓來控制。
我們已經通過實驗證明了以下元素和具有大約10%臭氧的氧氣/臭氧混合物沉積二元氧化物的此過程。括號中的數字表示上述項目列表中可能的反應模式:Sc(1)、Ti(1,4)、V(1)、Cr(1,4)、Mn(1)、Fe(1,4)、Co(1)、Ni(1)、Cu(3)、Zn(1,3)、Zr(1)、Nb(1,4)、Mo(1)、Ru(1)、Hf(1)、Al(3,4)。從元素物理性質的相似性來看,我們非常有信心以下元素也可用於以相同的過程生長它們的二元氧化物:Mg、Ca、Sr、Ba、Y、Rh、Ta、W、Re、Ir、Ga、In、Si、Ge、Sn、Eu、Ce。我們不確定以下元素是否可行,但有一個實際可行的機會:Pd、Ag、Pt、Au。多於一種基本固體或液體元素與多於一種氣體的組合允許形成複雜的化合物。在這樣的反應中,基本固體或液體元素彼此的比例由它們的相對通量密度控制,而氣態元素彼此的比例由它們的相對分壓控制,並且基本上固態或液態元素與氣態元素的總比率由總通量密度與總氣體壓力的比率決定。
在非冷凝氣體環境下工作還有另一個與過程反應本身無關的主要優勢。如果從源到雷射入口窗口的距離明顯大於從源到基板的距離, 並且氣體(氧氣)壓力可以保持在上限(在受基本固體或液體元素限制的反應的情況下,完全反應或氧化),入口窗口的塗層可以大大減少。
這是由於非氣態源原子或分子與反應氣體的原子或分子的散射。如果將距離和壓力設置為使得源和基板之間基本上沒有碰撞,並且源和雷射入口窗口之間有很多碰撞,那麼通常作為吸收層沉積在入口窗口上的源原子將被散射掉,與直接視線軌跡相比,到達入口窗口的概率要小得多。此外,通過多次碰撞,它們更有可能與反應氣體反應形成化合物(通常是氧化物的情況),該化合物對源加熱雷射波長可能是透明且不吸收的。即使未反應的源材料到達雷射入口窗口,它也可能在沉積後與氧化物反應,再次形成透明的、基本上不吸收的層。這種效果甚至可以足夠大,使得可以省略屏蔽孔,從而簡化沉積室的複雜性及其操作。
用雷射光在一個或多個源的直接面對基板的表面上照射一個或多個源。
用連續雷射光照射一個或多個源。這樣,可以實現源材料的均勻蒸發和/或昇華。
反應室壓力可以選擇在10-6至101hPa的範圍內,特別是在10-4至101的範圍內,尤其是在10-4至10-2hPa的範圍內。以這種方式,一方面可以產生具有盡可能少的缺陷的超純層,或者另一方面可以產生具有更多缺陷但成本更低和沉積速率更高的簡單塗層,其中不需要純度。
在這種情況下,還應注意,Oxide-MBE通常在低於10-6hPA的壓力下進行,因此與本發明相比是在完全不同的壓力區域中工作。
提供反應氣氛的步驟可以包括將處理室抽空至第一壓力,然後引入處理氣體以獲得第二壓力,即反應室中的反應室壓力。以這種方式,可以在將雷射光和處理G引入反應室以形成化合物之前對基板進行脫氣(degassed)。以這種方式,在處理之前包含在腔室的背景氣體壓力中的有害元素可以被泵出到非常高的程度(許多數量級),從而防止結合到沉積層中或磊晶模板的表面上。
第一壓力可以低於第二壓力,以便形成盡可能無缺陷的高品質塗層。
第二壓力可以在10-11至10-2hPa的範圍內選擇。以這種方式,可以形成所需的化合物層,其中非氣態和氣態成分的化學計量不同,這取決於第二壓力。
在這方面,應該注意,MBE應用和電子束應用在如此高的壓力下停止工作,即在10-7hPa以上的壓力下。
至少反應室的護罩和/或反應室的內壁的溫度可以被溫度控制到在77K至500K的範圍內選擇的溫度。
通過這種方式,可以將處理室加熱到高達200℃的溫度,從而允許使用在室溫下會凝結到室壁上的材料。處理室還可以具有液氮冷卻罩以凍結不需要的雜質,在這種情況下,處理條件意味著處理室溫度(至少護罩)低至77K。
源材料可以是在反應氣氛中是固體或液體的材料,該反應氣氛即在反應室中存在的溫度和壓力以及氣體環境下。
反應室可保持在高溫以避免氣體冷凝。該氣體還可用於減少或避免雷射入口窗口塗層。
處理氣體可以選自由以下所組成之群組:氧(O)、臭氧(O3)、電漿活化氧(O)、氮(N)、電漿活化氮(N)、氫(H)、氟(F)、氯(Cl)、溴(Br)、碘(I)、磷(P)、硫(S)、硒(Se)、汞(Hg)、NH3、N2O、CH4及前述之組合。
以這種方式可以有利地產生化合物,例如氧化物、氮化物、氫化物、氟化物、氯化物、溴化物、碘化物、磷化物、硫化物、硒化物或汞基化合物。
源材料選自由以下所組成之群組:Sc、Ti、V、Cr、Mn、Fe、Co、Ni、Cu、Zn、Zr、Nb、Mo、Ru、Hf、Al、Mg、Ca、Sr、Ba、Y、Rh、Ta、W、Re、Ir、Ga、In、Si、Ge、Sn、Eu、Ce、Pd、Ag、Pt、Au、前述的合金和前述的組合。以這種方式,可以在反應室中形成大量不同種類的化合物。
用雷射光照射該一個或多個源以昇華和/或蒸發該源材料的原子和/或分子的該雷射光係聚焦在該一個或多個源處,其中,對於1mm2的斑點尺寸,強度在1到2000W的範圍內選擇,該一個或多個源與該基板之間的距離在50到120mm的範圍內選擇。這種雷射可以以相對較低的成本在市場上買到,並且可以以簡單有效的方式進行操作。
已經發現,通過以相同的比例增加雷射功率和光源上的照射面積,該處理在保持反應條件相同的同時按比例縮放(scale),例如,用2kW的雷射輻射照射4mm2區域將產生與用500W照射1mm2區域相同的處理條件。
以同樣的方式,在第一種情況下產生的四倍大的總通量允許在兩倍遠、四倍面積的基板上沉積相同的層厚,或在相同距離處以四倍的沉積速率沉積。只要平均自由路徑(從源到基板時源材料原子或分子與氣體原子的碰撞之間的平均距離)按與線性尺寸相同的因子(在本說明性示例中為2倍)按比例縮放,這些縮放考慮就適用。
因此,給定的處理條件旨在指定與處理縮放無關的功率密度,從而允許預期之沉積區域所需的縮放。
同樣,已發現沉積速率從在幾乎為零之非常低的雷射功率下縮放到可能大大超過給定標準值的值。該方法可能的生長速率或功率密度值的上限尚未確定。
經受這種電磁輻射的源可以具有暴露在其上的在形成熔池的雷射輻射的位置處的液體表面。由於原子和分子蒸發的表面光滑和平坦,這導致穩定和均勻的蒸發,因此在厚度、成分和處理控制方面具有優異的層特性。
用雷射光照射一個或多個光源的該雷射光具有100nm至20μm範圍內的波長,特別是450nm至1.2μm範圍內的波長。從元素的已知材料特性來看,理想情況下應使用200至400nm範圍內的雷射波長;然而目前尚不存在這種波長具有足夠高功率且價格經濟的雷射,而515nm左右和900至1100nm之間的雷射很容易以每kW的低成本獲得。發現這種波長導致一個或多個源材料的期望蒸發和/或昇華。
根據一個示例,該源材料是Ti,沉積在該基板上的該化合物主要是銳鈦礦或金紅石二氧化鈦,該雷射光具有在515至1070nm範圍內 選擇的波長,特別是在1000至1070nm範圍內,在1至2000W範圍內的強度對應於源表面上0.001至2kW/mm2的功率密度,特別是在100至200W範圍內對應於0.1至0.2kW/mm2的功率密度,處理氣體是O2和O3的混合物,特別是O3含量為5至10重量%,反應室壓力為10-11至1hPa,特別是10-6至10-2hPa,化合物層厚度範圍為0到1μm可在0到180分鐘的時間段內獲得,特別是700nm在15到30分鐘的時間段內,工作距離為10mm到1m,特別是40到80mm,基板直徑為5至300mm,特別是51mm。
根據一個示例,該源材料是Ni,沉積在該基板上的該化合物主要是NiO,該雷射光具有在515至1070nm範圍內選擇的波長,特別是在1000至1070nm範圍內,在1至2000W範圍內的強度對應於源表面上0.001至2kW/mm2的功率密度,特別是在100至350W範圍內對應於0.1至0.35kW/mm2的功率密度,處理氣體是O2和O3的混合物,特別是O3含量為5至10重量%,反應室壓力為10-11至1hPa,特別是10-6至10-2hPa,化合物層厚度範圍為0到1μm可在0到50分鐘的時間段內獲得,特別是500nm在10到20分鐘的時間段內,工作距離為10mm到1m,特別是40到80mm,基板直徑為5至300mm,特別是51mm。
根據一個示例,該源材料是Co,沉積在該基板上的該化合物主要是Co3O4,該雷射光具有在515至1070nm範圍內選擇的波長,特別是在1000至1070nm範圍內,在1至2000W範圍內的強度對應於源表面上0.001至2kW/mm2的功率密度,特別是在100至200W範圍內對應於0.1至0.2kW/mm2的功率密度,處理氣體是O2和O3的混合物,特別是 O3含量為5至10重量%,反應室壓力為10-11至1hPa,特別是10-6至10-2hPa,化合物層厚度範圍為0到1μm可在0到90分鐘的時間段內獲得,特別是200nm在10到20分鐘的時間段內,工作距離為10mm到1m,特別是40到80mm,基板直徑為5至300mm,特別是51mm。
根據一個示例,該源材料是Fe,沉積在該基板上的該化合物主要是Fe3O4,該雷射光具有在515至1070nm範圍內選擇的波長,特別是在1000至1070nm範圍內,在1至2000W範圍內的強度對應於源表面上0.001至2kW/mm2的功率密度,特別是在100至200W範圍內對應於0.1至0.2kW/mm2的功率密度,處理氣體是O2和O3的混合物,特別是O3含量為5至10重量%,反應室壓力為10-11至1hPa,特別是10-6至10-2hPa,化合物層厚度範圍為0到10μm可在0到30分鐘的時間段內獲得,特別是5μm在10到20分鐘的時間段內,工作距離為10mm到1m,特別是40到80mm,基板直徑為5至300mm,特別是51mm。
根據一個示例,該源材料是Cu,沉積在該基板上的該化合物主要是CuO,該雷射光具有在515至1070nm範圍內選擇的波長,特別是在1000至1070nm範圍內,在1至2000W範圍內的強度對應於源表面上0.001至2kW/mm2的功率密度,特別是在200至400W範圍內對應於0.2至0.4kW/mm2的功率密度,處理氣體是O2和O3的混合物,特別是O3含量為5至10重量%,反應室壓力為10-11至1hPa,特別是10-6至10-2hPa,化合物層厚度範圍為0到1μm可在0到100分鐘的時間段內獲得,特別是0.15μm在15到30分鐘的時間段內,工作距離為10mm到1m,特別是40到80mm,基板直徑為5至300mm,特別是51mm。
根據一個示例,該源材料是V,沉積在該基板上的該化合物主要是V2O3、VO2或V2O5,該雷射光具有在515至1100nm範圍內選擇的波長,特別是在1000至1100nm範圍內,在1至2000W範圍內的強度對應於源表面上0.001至2kW/mm2的功率密度,特別是在60至120W範圍內對應於0.06至0.12kW/mm2的功率密度,處理氣體是O2和O3的混合物,特別是O3含量為5至10重量%,反應室壓力為10-11至1hPa,特別是10-6至10-2hPa,化合物層厚度範圍為0到1μm可在0到60分鐘的時間段內獲得,特別是0.3μm在10到20分鐘的時間段內,工作距離為10mm到1m,特別是40到80mm,基板直徑為5至300mm,特別是51mm。
根據一個示例,該源材料是Nb,沉積在該基板上的該化合物主要是Nb2O5,該雷射光具有在515至1100nm範圍內選擇的波長,特別是在1000至1100nm範圍內,在1至2000W範圍內的強度對應於源表面上0.001至2kW/mm2的功率密度,特別是在200至400W範圍內對應於0.2至0.4kW/mm2的功率密度,處理氣體是O2和O3的混合物,特別是O3含量為5至10重量%,反應室壓力為10-11至1hPa,特別是10-6至10-2hPa,化合物層厚度範圍為0到2μm可在0到20分鐘的時間段內獲得,特別是1.4μm在10到20分鐘的時間段內,工作距離為10mm到1m,特別是40到80mm,基板直徑為5至300mm,特別是51mm。
根據一個示例,該源材料是Cr,沉積在該基板上的該化合物主要是Cr2O3,該雷射光具有在515至1100nm範圍內選擇的波長,特別是在1000至1100nm範圍內,在1至2000W範圍內的強度對應於源表 面上0.001至2kW/mm2的功率密度,特別是在20至80W範圍內對應於0.02至0.08kW/mm2的功率密度,處理氣體是O2和O3的混合物,特別是O3含量為5至10重量%,反應室壓力為10-11至1hPa,特別是10-6至10-2hPa,化合物層厚度範圍為0到1μm可在0到30分鐘的時間段內獲得,特別是0.5μm在10到20分鐘的時間段內,工作距離為10mm到1m,特別是40到80mm,基板直徑為5至300mm,特別是51mm。
根據一個示例,該源材料是Ru,沉積在該基板上的該化合物主要是RuO2,該雷射光具有在515至1100nm範圍內選擇的波長,特別是在1000至1100nm範圍內,在1至2000W範圍內的強度對應於源表面上0.001至2kW/mm2的功率密度,特別是在200至600W範圍內對應於0.2至0.6kW/mm2的功率密度,處理氣體是O2和O3的混合物,特別是O3含量為5至10重量%,反應室壓力為10-11至1hPa,特別是10-6至10-2hPa,化合物層厚度範圍為0到1μm可在0到300分鐘的時間段內獲得,特別是0.06μm在10到20分鐘的時間段內,工作距離為10mm到1m,特別是40到80mm,基板直徑為5至300mm,特別是51mm。
根據一個示例,該源材料是Zn,沉積在該基板上的該化合物主要是ZnO,該雷射光具有在515至1100nm範圍內選擇的波長,特別是在1000至1100nm範圍內,在1至2000W範圍內的強度對應於源表面上0.001至2kW/mm2的功率密度,特別是在5至10W範圍內對應於0.005至0.010kW/mm2的功率密度,處理氣體是O2和O3的混合物,特別是O3含量為5至10重量%,反應室壓力為10-11至1hPa,特別是10-6至10-2hPa,化合物層厚度範圍為0到1μm可在0到20分鐘的時間 段內獲得,特別是1.4μm在10到20分鐘的時間段內,工作距離為10mm到1m,特別是40到80mm,基板直徑為5至300mm,特別是51mm。
根據一個示例,該源材料是Mn,沉積在該基板上的該化合物主要是MnO,該雷射光具有在515至1100nm範圍內選擇的波長,特別是在1000至1100nm範圍內,在1至2000W範圍內的強度對應於源表面上0.001至2kW/mm2的功率密度,特別是在5至10W範圍內對應於0.005至0.010kW/mm2的功率密度,處理氣體是O2和O3的混合物,特別是O3含量為5至10重量%,反應室壓力為10-11至1hPa,特別是10-6至10-2hPa,化合物層厚度範圍為0到1μm可在0到20分鐘的時間段內獲得,特別是1.4μm在10到20分鐘的時間段內,工作距離為10mm到1m,特別是40到80mm,基板直徑為5至300mm,特別是51mm。
根據一個示例,該源材料是Sc,沉積在該基板上的該化合物主要是Sc2O3,該雷射光具有在515至1100nm範圍內選擇的波長,特別是在1000至1100nm範圍內,在1至2000W範圍內的強度對應於源表面上0.001至2kW/mm2的功率密度,特別是在20至50W範圍內對應於0.02至0.05kW/mm2的功率密度,處理氣體是O2和O3的混合物,特別是O3含量為5至10重量%,反應室壓力為10-11至1hPa,特別是10-6至10-2hPa,化合物層厚度範圍為0到1μm可在0到20分鐘的時間段內獲得,特別是1.3μm在10到20分鐘的時間段內,工作距離為10mm到1m,特別是40到80mm,基板直徑為5至300mm,特別是51mm。
根據一個示例,該源材料是Mo,沉積在該基板上的該化合物主要是Mo4O11或MoO3,該雷射光具有在515至1100nm範圍內選擇的 波長,特別是在1000至1100nm範圍內,在1至2000W範圍內的強度對應於源表面上0.001至2kW/mm2的功率密度,特別是在400至800W範圍內對應於0.4至0.8kW/mm2的功率密度,處理氣體是O2和O3的混合物,特別是O3含量為5至10重量%,反應室壓力為10-11至1hPa,特別是10-6至10-2hPa,化合物層厚度範圍為0到4μm可在0到30分鐘的時間段內獲得,特別是4.0μm在10到20分鐘的時間段內,工作距離為10mm到1m,特別是40到80mm,基板直徑為5至300mm,特別是51mm。
根據一個示例,該源材料是Zr,沉積在該基板上的該化合物主要是ZrO2,該雷射光具有在515至1100nm範圍內選擇的波長,特別是在1000至1100nm範圍內,在1至2000W範圍內的強度對應於源表面上0.001至2kW/mm2的功率密度,特別是在300至500W範圍內對應於0.3至0.5kW/mm2的功率密度,處理氣體是O2和O3的混合物,特別是O3含量為5至10重量%,反應室壓力為10-11至1hPa,特別是10-6至10-2hPa,化合物層厚度範圍為0到1μm可在0到100分鐘的時間段內獲得,特別是0.2μm在15到25分鐘的時間段內,工作距離為10mm到1m,特別是40到80mm,基板直徑為5至300mm,特別是51mm。
根據一個示例,該源材料是Hf,沉積在該基板上的該化合物主要是HfO2,該雷射光具有在515至1100nm範圍內選擇的波長,特別是在1000至1100nm範圍內,在1至2000W範圍內的強度對應於源表面上0.001至2kW/mm2的功率密度,特別是在250至400W範圍內對應於0.25至0.4kW/mm2的功率密度,處理氣體是O2和O3的混合物,特別 是O3含量為5至10重量%,反應室壓力為10-11至1hPa,特別是10-6至10-2hPa,化合物層厚度範圍為0到1μm可在0到40分鐘的時間段內獲得,特別是0.6μm在15到25分鐘的時間段內,工作距離為10mm到1m,特別是40到80mm,基板直徑為5至300mm,特別是51mm。
根據一個示例,該源材料是Al,沉積在該基板上的該化合物主要是Al2O3,該雷射光具有在515至1100nm範圍內選擇的波長,特別是在1000至1100nm範圍內,在1至2000W範圍內的強度對應於源表面上0.001至2kW/mm2的功率密度,特別是在200至400W範圍內對應於0.2至0.4kW/mm2的功率密度,處理氣體是O2和O3的混合物,特別是O3含量為5至10重量%,反應室壓力為10-11至1hPa,特別是10-6至10-2hPa,化合物層厚度範圍為0到1μm可在0到20分鐘的時間段內獲得,特別是1.0μm在15到25分鐘的時間段內,工作距離為10mm到1m,特別是40到80mm,基板直徑為5至300mm,特別是51mm。
對於Al,由於生長模式4,可以實現超過1μm/分鐘的更高生長速率,即,與源材料反應的處理氣體,在源處、在源和基板之間的通道上以及在基板處,在高於10-5hPa的高氧/臭氧分壓下,雷射功率為300至500W。
以這種方式生產的層具有超純的特殊優勢,因為可以以非常高的純度獲得作為元素金屬的源材料。它們可以在基板在相同的高溫超純真空環境中製備後直接沉積,這為磊晶提供了極清潔且結構非常完美的模板,因此在界面和層中產生低密度的缺陷。磊晶層既可以在低生長速率下以高精度厚度生長,也可以在高生長速率下以大厚度生長。即使通過使用 高基板溫度和/或低生長速率使粘附係數低於1,或者通過使用低基板溫度和/或非常高的生長速率使其遠離它,使用可變的基板溫度,這些層可以沉積得非常接近熱平衡。通過交換源,從上面給出的數字可以明顯看出,許多不同的氧化物可以由許多不同的金屬元素源合成,而操作參數只有很小的變化,特別是在相同的雷射和光學路徑的情況下。
簡單或複雜的氧化物層可以具有許多有趣的特性,例如鐵電性、超導性、半導體性、金屬傳導性、多鐵性和磁性。上述氧化物層的提供可以使具有這種特性的裝置成為可能,特別是作為諸如量子位元之類的量子組件。
用雷射光照射一個或多個源的步驟可以至少熔化一個或多個源的表面。這樣,源材料的原子或分子可以以更簡單的方式從源中釋放出來。
在這種情況下應該注意的是,在MBE中,源是從後面加熱的,因此不能簡單地加熱源,使得只有源的表面和下面的部分被熔化,因為能量的引入會導致整個源融化並因此被摧毀。
用雷射光源照射一個或多個源的步驟可以促進與處理氣體的反應。通過向一個或多個源提供能量,源材料的原子或分子可以以更簡單的方式從源中釋放出來。
根據另一態樣,本發明係關於一種化合物,其在基板上具有自單層至10μm範圍內選擇的厚度,特別是在單層至100nm的範圍內,該化合物可通過本文所述的方法獲得。
根據另一態樣,本發明係關於在基板上作為層存在的化合物,該層在基板上具有在單層至100nm範圍內選擇的厚度,該化合物的量子位元弛豫時間和量子位元相干時間大於100μs,較佳地大於1000μs,甚至更佳地大於10ms並且小於1000ms。
10:反應室
12:真空室
14:第一反應容積、反應容積
16:第二反應容積、反應容積
18:真空泵、級聯泵送系統
20:氣體源、氣體供應、處理氣體、製程氣體
22:基板佈置件、支架
24:基板
26:基板加熱雷射、CO2雷射、雷射
28:雙頭箭頭
30:第一源元件、源元件、源、元素金屬源、高純度圓柱形金屬源
32:第二源元件、源元件、源、元素金屬源、高純度圓柱形金屬源
34:源佈置件、源裝置
36:第一源加熱雷射
38:第二源加熱雷射
40:屏蔽孔
44:閘閥
48:基板表面、表面、前表面
50:背面
52:窗口
58:梯田、梯田狀階梯系統
60:磊晶模板、磊晶層
62:薄膜、磊晶層、磊晶膜、半導體膜、氧化物膜、膜
66:階梯邊緣、直梯田邊緣
100:固態組件
102:量子組件
104:第一電磁輻射
106:第二電磁輻射
108:第三電磁輻射
110:第四電磁輻射
112:第五電磁輻射
114:分量束
116:第一反應氣氛
118:第二反應氣氛
120:第三反應氣氛
122:第四反應氣氛
124:第五反應氣氛
126:第一材料、材料、源材料
128:第二材料、材料
130:第三材料
132:緩衝材料
134:緩衝層
136:覆蓋材料
138:覆蓋層
下面通過實施例並參照附圖對本發明進行詳細說明:
圖1是用於熱雷射磊晶應用的反應室,包括單個真空室;
圖2是用於熱雷射磊晶應用的反應室,包括限定第一和第二反應容積的第一和第二真空室;
圖3是複雜單晶固體的階梯面橫截面圖,黑色和白色表示不同的原子或分子種類;
圖4是由於階梯高度或基板表面的表面化學不匹配而導致的磊晶缺陷;
圖5是磊晶與對應於基板表面的主體週期性的階梯高度對齊;
圖6是帶有“白色”終止的晶體表面;
圖7是帶有“黑色”終止的晶體表面;
圖8是表面重建示意性地顯示為“黑色”材料的部分附加覆蓋;
圖9是表面重建的兩個鏡像對稱單位單元;
圖10是與底層晶體結構完美對齊的梯田狀階梯系統;
圖11是略微偏離立方平面晶軸(圖中水平和垂直)的錯切;
圖12是偏離平面軸線45°的錯切;
圖13是通過表面錯切使用對稱破壞來偏好兩種可能的表面單位單元取向之一;
圖14是生產固態組件的基本步驟;
圖15是添加緩衝層的附加步驟;
圖16是用兩種材料源沉積薄膜;
圖17是添加覆蓋層的附加步驟;
圖18是量子器件的第一個例子;
圖19是量子器件的第二個例子;
圖20是Al2O3
Figure 111118395-A0202-12-0018-37
31 x
Figure 111118395-A0202-12-0018-38
31表面重建的RHEED圖案,相對於基板的主晶軸具有單一旋轉方向。基板在1 x 10-6hPa的O2氣氛中在1700℃下退火200秒,並在此氣氛中快速冷卻至20℃。在20℃下拍攝的圖像,RHEED光束沿基板的主晶軸之一對齊。
圖21是將基板逆時針旋轉9°後,與圖20相同的樣本的RHEED圖案。
圖22是Al2O3
Figure 111118395-A0202-12-0018-40
31 x
Figure 111118395-A0202-12-0018-39
31表面重建的RHEED圖案,相對於基板的主晶軸具有兩種可能的旋轉方向。基板在0.75 x 10-1hPa的O2氣氛中在1700℃下退火200秒,並在此氣氛中快速冷卻至20℃。在20℃下拍攝的圖像,RHEED光束沿基板的主晶軸之一對齊。
圖23是本發明表面處理後Al2O3表面的AFM顯微照片。基板在1 x 10-6hPa的O2氣氛中在1700℃下退火200秒,並在此氣氛中快速冷卻至20℃。
圖24是沿圖22中的線提取的高度輪廓。
圖25是由本發明的方法製備的在Al2O3基板上生長的50nm厚(圖像中參考條長度的1/40)Ta薄膜的AFM顯微照片。在沉積之前,基板在1700℃的超高真空(壓力<10-10hPa)中退火200秒。Ta膜在1200℃基板溫度下從局部熔融的Ta金屬源以<2 x 10-10hPa的壓力生長。
圖26是用本發明方法製備的在Al2O3基板上生長的10nm厚Ta薄膜的SEM俯視圖。在沉積之前,基板在1700℃的超高真空(壓力<10-10hPa)中退火200秒。Ta膜在1200℃基板溫度下以<2 x 10-10hPa的壓力生長;
圖27是本發明方法製備的在Al2O3基板上生長的50nm厚Ta薄膜的XRD衍射圖。在沉積之前,基板在1700℃的超高真空(壓力<10-10hPa)中退火200秒。Ta薄膜在1200℃下以<2 x 10-10hPa的壓力生長。只有Ta膜的α-Ta(110)/(220)等效平面垂直於表面可見,連同基板峰,確認了對應於完整磊晶排列的Ta膜的單個平面外取向;
圖28是室溫下通過TLE在Si模板上生長的Nb薄膜,無需磊晶取向。沉積時間為40分鐘。層厚為20nm。低基板溫度和缺乏乾淨的磊晶模板會產生無序的柱狀膜結構,並帶有大量缺陷。
圖29是在雷射蒸發Ti期間測量的室壓力Pox,使用恆定的雷射功率和氧氣-臭氧氣體流;
圖30是通過TLE在Si(100)基板上生長的(a)Ti-,(b)Fe-,(c)Hf-,(d)V-,(e)Ni-,(f)Nb-氧化物膜的切線入射X射線衍射圖。每種氧化物的預期衍射峰位置在各圖中用灰線標出;
圖31是通過TLE沉積的幾種氧化物膜的橫截面SEM圖像。每個面板顯示Pox的值。大多數的膜具有柱狀結構。
圖32是TLE沉積的(a)Ti-氧化物和(b)Ni-氧化物膜的切線入射X射線衍射圖,用於幾個Pox值。隨著Pox的增加,Ti源產生金紅石和銳鈦礦相的TiO2膜,而Ni源形成部分氧化的Ni/NiO膜。(a)中的灰線和實心紫色星形分別顯示了TiO2金紅石和銳鈦礦相的預期衍射峰位置。(b)中的灰線表示立方NiO的預期峰位置;以及
圖33是(a)Ti(氧化物)和(b)Ni(氧化物)在幾個Pox處測量的沉積速率。Ti的沉積速率隨著Pox的增加而增加,而對於Ni,Pox>10-3hPa的增加幾乎抑制了蒸發過程。
圖1顯示了用於熱雷射磊晶應用的反應室10,其包括限定第一反應容積14的單個真空室12。反應室10可以相對於環境氣氛(即實驗室、工廠、潔淨室等)而密封。真空室12可以被加壓到101和10-12hPa之間的壓力,對於壓力在10-8到10-12hPa範圍內的純理想條件,使用合適的真空泵18從真空室12中抽出空氣,如由指向真空室12的箭頭示意性地示出的,如本領域技術人員已知的。
如果需要,可以將製程氣體G從氣體源20沿指向真空室12的箭頭引入真空室12。製程氣體G,也稱為反應氣體,可以選自如下氣體:氧、臭氧、電漿活化氧、氮、電漿活化氮、氫、F、Cl、Br、I、P、S、Se和Hg,或NH3、SF6、N2O、CH4等化合物。製程氣體G的壓力可以在10-8hPa到環境壓力的範圍內選擇,對於純理想條件分別在10-8hPa到1hPa的範圍內。
真空泵18可選地與氣體供應20一起在反應室10中提供相應的反應氣氛,即可選地與預定氣體氣氛組合的真空。
反應室包括基板佈置件22,基板24可以佈置在該基板佈置件22處。實際上,可以提供複數個基板佈置件22和/或將複數個基板24佈置在一個或多個基板佈置件22上。
使用的基板24通常可以是單晶晶圓,晶圓的材料通常選自由以下所構成之群組:SiC、AlN、GaN、Al2O3、MgO、NdGaO3、DyScO3、TbScO3、TiO2、(LaA-lO3)0.3(Sr2TaAlO6)0.35(LSAT)、Ga2O3,和SrTiO3。這種單晶晶圓通常用於生產固態組件,並且是生產量子組件(例如量子位元)的感興趣之候選者。
在可以以單晶晶圓的形式存在的基板24的塗覆和預處理期間,使用基板加熱雷射26加熱基板24。
基板加熱雷射26典型地是紅外雷射,其以紅外區域中的波長操作,具體地,具有在大約1至20μm,尤其是大約8至12μm的範圍內選擇的波長。這樣的波長可以例如可透過CO2雷射26獲得。
基板加熱雷射26通常通過經由基板24的背面50的間接加熱來加熱基板24的基板表面48,即基板24的正面。因此,基板表面48可以被加熱到900℃到3000℃之間的溫度,特別是1000℃到2000℃。因此,基板加熱雷射26的強度根據具有最高昇華率的基板成分的昇華率和昇華溫度而變化以實現各種所需溫度。
通常,對於5x5mm2或10x10mm2的基板尺寸,基板加熱雷射26的強度可以在4W至1kW的範圍內變化。為了能夠達到所需的製備溫度,10x10mm2藍寶石基板需要100W才能達到2000℃,10x10mm2 SrTiO3基板需要500W才能達到1400℃。所需的溫度變化很大。根據普朗克輻射定律,單位面積的發射功率取決於材料的發射率,這是一種材料特性,並取決於溫度為T4,這意味著所需的功率隨溫度急劇增加。
為了涵蓋根據本發明用於製備磊晶模板的溫度範圍,我們發現基板上必要的最大功率密度為1kW/cm2,具有明顯更小的值,例如藍寶石在2000℃時約為100W/cm2
由於T4對溫度的顯著依賴性,基板加熱雷射同時需要高動態範圍,並且能夠為需要較低溫度進行基板製備的材料保持穩定的低功率水準,以及特別是用於在較低溫度下在基板模板上沉積磊晶層。
還應注意,基板24可以從正面、側面或以不同方式加熱。取決於加熱裝置,應該簡單地確保基板表面48的溫度可以被加熱到900℃至3000℃的範圍內,以便能夠確保基板成分之一(即形成基板的元素之一)在加熱步驟期間可以沿著基板表面48移動並且可以從基板表面48脫附或昇華以產生期望的磊晶模板60(參見例如以下的圖5至7)。
基板表面48的溫度可以使用高溫計等(未示出)來測量。
如雙頭箭頭28所示,可以使用合適的設備(未示出)將基板佈置件22轉移到真空室12中和從真空室12轉移出來。
為了用一層或多層薄膜62(參見下面的圖14至20)塗覆基板24,反應室10還包括佈置在源佈置件34處的第一和第二源元件30、32。這些源元件30、32也可以提供作為單個源元件30的不同組件區段。
在此情況下,應當注意,相應源30、32的材料可以選自元素週期表的任何元素,只要它在用於沉積所述薄膜62的相應真空室12內所選擇的溫度和壓力下是固體的。
就此而言,應當注意,用於相應源30、32的較佳材料是Sc、Ti、V、Cr、Mn、Fe、Co、Ni、Cu、Zn、Zr、Nb、Mo、Ru、Hf、Al、Mg、Ca、Sr、Ba、Y、Rh、Ta、W、Re、Ir、Ga、In、Si、Ge、Sn、Eu、Ce、Pd、Ag、Pt和Au,如果將上述元素沉積在氧氣/臭氧混合物中作為反應氣氛,約10%的二元氧化物沉積為薄膜62。為了沉積單晶薄膜62,通常使用真空氣氛。
還提供了分別指向第一和第二源元件30、32的第一和第二源加熱雷射36、38。第一和第二源加熱雷射36、38在第一和第二源元件30、32處提供不同的蒸發和/或昇華溫度。
第一和第二源加熱雷射36、38通常在第一和第二源元件30、32處提供波長在280nm和20μm之間選擇的雷射光。對於金屬源,因為在較短波長處金屬的吸收率增加,因此較佳的是源加熱雷射36和38提供在350nm和800nm之間選擇的波長範圍內的光。雖然短波長低於515 nm的高功率雷射在商業上尚不可行,但根據低功率測量,預計在300nm處具有最高吸收率。如果具有該波長的雷射可用,則源加熱雷射的較佳波長為300nm±20nm。
在這種情況下,還應注意,雷射26、36、38可以以脈衝模式操作,但較佳用作連續輻射源。與可能導致損壞源30、32的脈衝源相比,連續雷射26、36、38每單位時間引入更少的能量。
為了使來自第一和第二源元件30、32的元素昇華和/或蒸發以確保它們到達基板表面48以塗覆基板24,必須選擇第一和第二源加熱雷射36、38的合適強度。該強度取決於第一和第二源元件30、32與基板表面48的距離。對於基板表面處的給定通量密度,強度隨著第一和第二源元件30、32遠離和/或朝向基板表面48移動而增加和/或減小。
在本示例中,基板表面48被放置在距相應的第一和第二源元件30、32為60mm處。雷射的強度大約與第一和第二源元件30、32與基板表面48之間的距離的平方相關。因此,為了使第一和第二源元件30、32與基板表面48之間的距離增加兩倍,雷射的強度必須增加大約四倍。
因此,以下指定的強度是針對第一和第二源元件30、32與基板表面48之間60mm的距離。如果選擇更大的距離,則必須增加相應的第一和第二源加熱雷射36、38的強度,如果距離減小,反之亦然。
一般而言,基板加熱雷射26、第一和第二源加熱雷射36、38提供可用的雷射光,特別是波長在10nm到100μm之間的雷射光,較佳地具有在可見光或紅外範圍內選擇的波長,尤其是具有在280nm和1.2 μm之間的波長。這些雷射26、36、38提供第一電磁輻射和/或第二電磁輻射和/或第三電磁輻射和/或其他類型的電磁輻射。
提供第一和第二源加熱雷射36、38以藉由將第一和第二源元件30、32加熱到低於第一材料和/或第二材料的電漿閾值的溫度,而從該第一和第二源元件30、32蒸發和/或昇華該第一和第二材料。
在真空室12中示意性地示出了屏蔽孔40,其用作屏蔽以防止昇華和/或蒸發的源材料沉積在室的入口窗口52上。如果這樣的材料層沉積在窗口52上,則相應的雷射26、36、38的強度必須隨時間調整以補償在窗口上吸收的這種材料。
此外,屏蔽孔40還可以用作屏蔽以防止雷射26、36、38之一的反射雷射光被聚焦回到雷射26、36、38之一,這可能破壞相應的雷射26、36、38。
屏蔽孔40還可以形成一個或多個相應雷射26、36、38的光束整形系統的一部分,因此可以用作耦合裝置,用於耦合來自第一和第二源加熱雷射36、38的相應電磁輻射進入反應室10並到第一和第二源元件30、32上。
一般而言,在雷射26、36、38中的每一個與反應室10之間佈置相應的窗口52,以便將相應的雷射光耦合到反應室10中作為進一步的耦合裝置。
這意味著耦合裝置可以包括任何種類的光學元件或雷射光束整形元件,其可以用於將來自雷射26、36、38之一的光耦合到反應室中, 即耦合到基板24上,為了其預期用途,將其分別耦合到第一和第二源元件30、32中的一個或多個上。
在此情況下應注意,反應室10也可以僅包括單個源元件30,或多於兩個源元件30、32,另外的源元件使其他相同或不同種類的材料可用,它們可以沉積在反應室10中的一個或多個基板24上。
在這種情況下,應當注意,如果在真空室12中提供兩個或多個源元件30、32,則來自第一和第二源加熱雷射36、38之一的雷射光可以被引導到一個源元件30、32,用於昇華和/或蒸發包括相應源元件30、32的材料但不包括其他源元件32、30的材料的薄膜62。
可以對真空室12中提供的每個源元件重複該過程,以便在基板24上形成多個不同的層和多層和合金或複合結構。
類似地,源元件30、32和(如果有提供的話)另外的源元件可以具有來自第一和第二源加熱雷射36、38以及(如果有提供的話)指向那裡的第三源加熱雷射中的一個的雷射光,以便同時昇華和/或蒸發來自複數個源元件30、32的源材料,以便在基板24的表面48上沉積薄膜62,用於在基板24的表面48上沉積化合物。
因此,沉積在基板24上的薄膜62或層的材料是蒸發和/或昇華材料與反應氣氛組成的反應產物,即,如果提供與製程氣體G反應的化合物,或者如果昇華和/或蒸發在真空中進行,則提供單一材料薄膜62。
無論在真空室12中提供多少個源元件30、32並在任何給定時間用雷射光照射,都可將製程氣體引入真空室並引起蒸發和/或昇華的源 材料與該製程氣體的反應,以便產生由源材料和製程氣體的化合物(例如氧化物)形成的薄膜,這也將在下文中討論。
還應注意,用於蒸發和/或昇華的第一和/或第二源元件30、32的材料可以是自支撐的,因此可以以無坩堝的方式提供,例如,可以提供不具有與其相關聯的坩堝的Ta源元件30、32。
圖2顯示了第二種反應室10,包括限定第一和第二反應容積14、16的兩個真空室12。第一和第二反應容積通過閘閥44彼此分離。
在需要在不同反應氣氛中形成膜的多層膜(參見圖14至19)的形成中,可以有利地選擇這樣的反應室10,或者如果基板24在作為生產線的一部分的不同反應室中分批塗覆有不同的膜。
以此方式,反應室10包括至少兩個分開的反應容積14、16,藉此至少兩個反應容積14、16可彼此密封,例如透過閘閥44,從而基板佈置可以在反應室10內的至少兩個反應容積14、16之間移動,所述反應室10相對於環境氣氛連續密封。
在這種情況下,應當注意,第一反應氣氛和第二反應氣氛以及(如果有提供的話)第三或另外的反應氣氛可以是相同的。
或者,第一反應氣氛和第二反應氣氛和/或第三反應氣氛不同並且在不同反應容積14、16之間或在第一容積14和/或反應容積16內交換,和/或第二反應氣氛和第三反應氣氛不同並且在不同反應容積14、16之間或在第一容積14和/或反應容積16內交換。
在此情況下還應注意,第一反應氣氛和/或第二反應氣氛和/或第三或另外的反應氣氛至少部分地被電離或激發,特別是藉由電漿電離和 /或激發而離子化。激發描述了原子或分子內的一個或多個電子躍遷到能量更高的能階。從這種更高能階的弛豫(relaxation)可以提供額外的能量,以實現或改善蒸發的原子或分子與活化或電離的反應氣體之間的化學反應。
同樣對於基板表面48的製備、對於一層或多層薄膜的沉積、以及對於終端回火(terminal tempering)和/或冷卻,分別不同的反應氣氛可能是合適的。因此,不同反應容積14、16的可用性可以是進一步的優點。
在此情況下,應注意,如果應生產包括一個或多個薄膜62的固態器件(特別是量子器件,較佳用於量子位元),一個或多個薄膜62包括第一材料並且每個所述薄膜62具有在單層和100nm之間選擇的厚度並沉積在基板的前表面上,則可以在如圖1或圖2所示的反應室10中進行生產過程。然後將反應室10相對於環境氣氛密封,以產生受控真空,可選地連同製程氣體G可用的氣體反應氣氛一起。
這樣的方法包括下列步驟:
a)藉由用耦合到反應室10中的第一電磁輻射加熱基板24來製備基板24的前表面48,同時反應室10包含可能與諸如氧氣的製程氣體20組合的第一反應氣氛(例如,真空),在這種情況下,第一電磁輻射由基板加熱雷射26提供,
b)藉由耦合到反應室10中的第二電磁輻射(例如,使用第一和第二源加熱雷射36、38中的一個)加熱包括第一材料的源元件30、32來蒸發和/或昇華第一材料,同時反應室10包含用於將包含第一材料和/或第一材料的化合物的薄膜62沉積到在步驟a)中製備的前表面48上的第二反應氣氛(例如,真空或部分真空和預定的氣體氣氛),以及可選地
c)用耦合到反應室10中的第三電磁輻射照射一個或多個薄膜62和/或基板24,同時反應室包含第三反應氣氛,用於形成固態器件和用於該固態器件的回火和/或受控冷卻,從而在步驟a)至c)期間,反應室相對於環境氣氛保持密封,並且該基板和隨後的該固態器件分別連續地保持在反應室10中。
在此上下文中,應當注意,可以根據以下教導提供製備基板24的前表面48的可能方法。然而,應當注意,對於基板24上的純度較低的層結構,也可以執行常規的清潔和淨化步驟。
一種製備單晶晶圓24的表面48作為磊晶模板60的具體方法,該表面48包括表面原子和/或表面分子,該單晶晶圓24包括由兩種或更多種元素和/或兩種或更多種分子組成的單晶作為基板成分,每種元素和分子分別具有昇華速率,該方法包括以下步驟:
- 為單晶晶圓基板24提供定義的錯切角和方向;
- 將基板24加熱到一溫度,使得表面原子和/或表面分子可以沿著表面48遷移以形成具有最小階梯密度(step density)的排列並且階梯邊緣(step edges)根據預定義的錯切角和錯切方向取向;
- 將基板24加熱到一溫度,使得具有最高昇華速率的基板成分的原子或分子可以離開表面(昇華、脫附)。
可選地,基板24的表面48可以用相同種類的連續通量照射以獲得離開表面和到達表面的原子或分子之間的限定通量平衡(化學勢)。此步驟通常會導致表面重建,其可能具有能量等效的平面內(in-plane)取向。
因此,由於迫使表面48僅形成不同平面內取向之一的階梯取向,可以導致存在於基板表面48處的原子和/或分子的對稱性破壞。
如果表面具有不同的表面重建取向,則具有相對於基板24的晶體取向唯一定義的取向的晶體層(磊晶層)可以以不同的平面內取向生長。這導致磊晶層中的缺陷。如果使用如本文所公開的製備基板的方法,通過僅提供使用該方法重建的表面24的一個單一取向來避免這種情況。
在這種情況下,應當注意,兩種或更多種元素和/或兩種或更多種分子在給定溫度下的昇華速率通常彼此不同。
加熱單晶晶圓24的步驟包括兩個加熱組件:在遠離待處理之表面48設置的表面處加熱單晶晶圓24的第一組件,以及通過用熱蒸發源32、34產生的熱黑體輻射照射待處理之表面48來提供加熱的第二組件。
通量在表面48上引入壓力,該壓力與來自表面的脫附通量競爭,從而建立限定通量物質在表面處的化學勢的平衡。
加熱基板表面並用揮發性成分的平衡通量照射它會導致幾個過程變得活躍。
第一個是特定終止的定義(“黑色”或“白色”,示意性地),參考圖6和圖7相對於圖3,它定義了表面結構的重複週期,因此定義了垂直於最靠近錯切面的晶面的階梯高度。
第二個是原子沿表面的移動,採用階梯結構方面的最低能量表面,這是由第一步驟的階梯高度和錯切角給出的最低階梯數。
第三個是特定表面重建的形成,主要由基板溫度和揮發性通量的化學勢決定,藉由設置揮發性通量來控制。
第四個是通過選擇錯切方向而在表面單位單元(surface unit cell)的不同能量等效取向之間的選擇,如圖13所示。
材料之通量(例如,用於藍寶石基板24的氧氣)填充表面48中的缺陷並幫助提供多餘的原子以獲得原子離開表面48和向表面48添加原子之間的平衡。這可以通過調整通量施加的壓力來改變,即撞擊到基板上的氧氣量。
舉例來說,應該注意昇華溫度通常是大於950℃的溫度,對於藍寶石大約為1700℃並且對於SrTiO3大約為1300℃。
形成單晶晶圓24的晶體的兩種或更多種元素和/或兩種或更多種分子可以選自由下列所組成之群組:Si、C、Ge、As、Al、O、N、O、Mg、Nd、Ga、Ti、La、Sr、Ta以及前述的組合,例如,單晶晶圓24可以由以下化合物之一製成:SiC、AlN、GaN、Al2O3、MgO、NdGaO3、TiO2、(LaA-lO3)0.3(Sr2TaAlO6)0.35(LSAT)、Ga2O3、SrLaAlO4、Y:ZrO2(YSZ)和SrTiO3
加熱步驟係由基板加熱雷射26可選地與第一和第二源加熱雷射36、38中的一個結合來執行,條件是相應的源包括單晶晶圓24的材料,其具有最高昇華速率並且應當連續地朝向基板供應。
如果不希望脫附通量(desorbing flux)和補償穩定通量(compensating stabilization flux)之間的平衡,則在基板24的製備期間的加熱步驟通常在選擇範圍為10-8至10-12hPa的真空氣氛中進行。
在穩定通量的情況下,在基板24的製備期間的加熱步驟通常在選自10-6至103hPa範圍內的真空氣氛中進行。
從而可以形成磊晶模板60,例如示意性地在下面的圖5到8中示出的。
一般而言,選擇基板24使得基板匹配要在其上生長/沉積的層結構。一般而言,使用與在其上生長的薄膜62相同或在以下一個或多個方面偏離薄膜62最多10%的基板24,較佳在以下所有方面:晶格對稱性、晶格參數、表面重建和表面終止。
為了促進這一點,在表面48上沉積薄膜62之前在表面48上沉積緩衝層可能是必要的或有益的。
本發明描述了為隨後的磊晶或其他應用提供基本單晶模板的問題的解決方案,其中均勻的原子排列既垂直於表面48又在平面內是有利的。
圖3顯示了晶體24的切開示意圖,晶體24由至少兩種元素或化學式單位(formula unit)組成,其取向使得切穿晶體的表面48暴露由兩個或多個元素或化學式單位組成的梯田(terrace)58的交替排列。為清楚起見,圖3僅顯示了兩個元素或化學式單位,用黑色和白色著色。對於表面製備,晶體24經受足夠高的溫度,以使原子或分子可以離開表面48或附著在其上,並且對應於晶體24內的化學式單位的原子或分子的通量是可用的,使得晶體24和通量彼此平衡。從圖3可以看出,表面24通常暴露出具有不同表面成分的交替梯田58,並且階梯高度對應於晶體24內的最小穩定階梯尺寸(化學式單位)。
圖4示出了磊晶層60和沉積在圖3的基板24的表面48上的薄膜62以及由於階梯高度或表面化學不匹配而導致的錯誤磊晶。
對於所示的典型情況,梯田58結構的階梯高度與磊晶層60的晶格常數不匹配。這導致在階梯邊緣66處形成堆疊偏移,其中磊晶層60的單位單元相對於彼此偏移。為清楚起見,在圖4中,這種偏移僅歸因於階梯高度。這也可能是由後續梯田上的交替表面化學(“白色”與“黑色”)引 起的,導致兩個梯田上的基板和磊晶層之間的界面結構不同。通常,這種化學失配還會在界面中產生幾何偏移,並帶來其他有害影響,例如局部電荷和結構缺陷。相反,我們希望實現圖5所示的界面結構,其中磊晶層62(即薄膜62)與基板24的晶格常數匹配,並且磊晶層62(即薄膜62)總是生長在一個相同的暴露表面層上。此外,這種匹配不僅應適用於界面的法線方向,而且表面48還應暴露晶體結構的單一平面內取向,避免形成圍繞表面法線旋轉的不同場域(domain),或鏡像在與表面或暴露的梯田不平行的平面上。
使用本文描述的製備方法允許製備表面48作為磊晶模板60,其在所有梯田58表面上提供均勻的表面化學性質以及提供(通常重建的)表面原子排列的單一平面內取向。圖3所示的情況有些理想化,因為對於大多數結晶固體,其成分(無論是元素還是分子)的蒸氣壓力通常差異很大。因此,特別是在基板24的製備過程中沒有任何原子或分子的通量撞擊表面48的情況下,如果基板24被加熱到足夠高的溫度,一種物質將優先離開表面48。
因此,圖6和圖7中所示的情況如此選擇性地發生,以致在實踐中通常只能實現其中一種情況。然而,這兩個圖顯示了表面製備原則上可能的兩個極端:取決於撞擊氣相中一種成分相對於另一種成分的相對過壓,表面48可以製備成一種狀態,使得一種類型的梯田(“白色”(圖6)或“黑色”(圖7))以消耗另一種類型而生長,最終覆蓋整個表面。
在實務上,只有利用覆蓋表面48的揮發性較小的元素或化學式單位才能實現完全覆蓋,因為這種化學平衡通常需要不同成分之間存在許多數量級的壓力差才能達到一種元素或化學式單位的幾乎完全優勢。值得注意的是,兩者之間的內在揮發性差異通常本身就達到了幾個數量級。
因此,製備方法包括將基板晶體24加熱到至少晶體的最易揮發成分從表面48昇華的溫度。甚至可能需要用較高溫度下的揮發性物質之通量照射表面48,以避免晶體24分解成不同的、不需要的化合物。使用足夠高的溫度,使得
‧表面48可以與其周圍環境交換至少揮發性物質的原子,並且
‧沿表面48的原子的遷移率足夠高以形成高度有序的(highly ordered)最小能量梯田
允許形成具有均勻表面化學性質的所需雙階梯表面結構。
在實務上,表面48不在主體終止的(bulk-terminated)表面層之間切換,而是形成表面重建,其中表面原子重新排列到與主體不同的位置,通常甚至具有不同的化學計量,使得表面能量最小化。這在圖8中進行了說明,其中包含額外“黑色”材料的這種表面重建係由較厚的黑色層表示。
根據撞擊物質的壓力和表面溫度,對於給定的終止,通常可以進行不同的表面重建,例如在藍寶石上,至少有兩種不同的富鋁表面重建。
表面重建通常涉及跨越底層主體晶體的幾個單位單元的表面超單元(surface supercell)的形成。圖7中顯示了一個表面單位單元的任意說明性示例,該表面單位單元覆蓋兩個主體單位單元並具有兩個等效的鏡像對稱表面單位單元。對於這兩種情況,都顯示了兩個表面單位單元;實際上,表面單位單元沿表面48在兩個方向上週期性重複並覆蓋整個梯田58。在示例中,表面單位單元的兩個取向具有相同的能量,因此以相等的概率彼此獨立地成核,使得在大面積上,平均一半的表面48被每個取向覆蓋。
這是一種不期望的配置,因為它會導致場域相遇的錯誤邊界。當用作磊晶生長的模板時,這種不同的表面重建場域也可能導致在其上生長的磊晶膜62的方向不同,從而將平面內表面重建場域邊界轉移到磊晶膜62中,作為不同取向的微晶(crystallites)之間的三維平面場域邊界。這個問題可以通過破壞表面48的對稱性來解決,從而通過使它們在能量上不等價來有利於一個表面單位單元取向而不是另一個。
圖9顯示了表面重建的兩個鏡像對稱單位單元。就是這種情況,例如使用藍寶石單晶晶圓24,其中錯切產生具有兩個不同方向的表面,這可能導致圖4中所示的情況。
根據本發明提出的實現這一點的方法是錯切表面的取向和斜率。當從主體單晶切割基板盤(“晶圓”24)時,切割平面可以直接稍微遠離晶面。根據這個內切錯切角,準備好的表面48將具有取決於切割方向的梯田寬度和梯田方向,因此可以隨意控制。著眼於立方平面內晶體結構的一個可能示例,三種不同的所得梯田結構示意性地顯示在圖11至13中。
圖10顯示了基板表面48的梯田狀階梯系統58,其與下面的晶體結構完全對齊。在說明性示例中,該階梯取向不利於圖9的表面單位單元的兩種可能的平面內取向的其中一個,因為兩者都與表面階梯形成相同的角度。
圖11顯示了在垂直方向上稍微遠離平面內晶軸的平面內取向。大正方形的邊緣表示主體立方晶體的面。最後,圖12顯示了與平面內軸成45°的梯田列(terracc train)。
這種錯切,就像破壞系統對稱性的任何其他方式一樣,現在可以用來有利於兩個不同的表面單位單元之一,如圖13所示。在這個示意圖中,平面內梯田系統係製備有一個平行於等效表面重建單位單元之一的 階梯取向,在這個例子中,這有利於表面重建單位單元與階梯邊緣、頂部取向的對齊,並抑制底部、劃掉的取向(crossed-out orientation)。
雖然階梯邊緣的平面內取向(對應於錯切角的方位角分量)選擇了一個表面單位單元取向而不是另一個,但錯切角的絕對值(它的極坐標分量(polar component))對於穩定單一取向結構也很重要。在高溫下,熵將統計無序(statistical disorder)引入任何系統。在這種情況下,由於平面內表面單位單元取向建立在邊緣,然後從單位單元傳播到單位單元,這可能會導致在每個梯田的某些平均距離處再次出現相反取向的單位單元的錯誤。具有足夠高的錯切角絕對值,例如0.05°,將一個取向印在另一個取向上的穩定步驟會發生在如此短的距離上,以至於可以避免這種偏差,從而避免缺陷密度的增加。
圖14描繪了用於生產固態組件100的方法的三個基本步驟,分別用A、B和C表示。這些步驟在反應室10(見圖1)中進行。特別地,反應室10在整個生產過程中保持對環境氣氛密封。這允許保持每個步驟關於降低形成的固態組件100中的缺陷數量的優勢,導致量子位元弛豫時間和量子位元相干時間高於100μs,較佳高於1000μs,甚至更佳在10ms以上。
在該方法的第一步驟a)中,如圖14左側所示並用“A”表示,製備基板24,例如如本文所討論的或簡單地在現有技術中已知的氣體氣氛中。第一反應氣氛116被填充到反應室10中。特別地,基板24被第一電磁輻射104加熱。該第一電磁輻射104較佳地由基板加熱雷射26提供,參見圖1、2。藉由加熱基板,如較佳地從與基板表面48相對的背面50所示的那樣,可以觸發退火效果。
此外,可以選擇第一反應氣氛116,使得也保持基板表面48的組成,即可以使用合適的反應或製程氣體G,例如,在Al2O3的情況下的氧,以避免氧耗盡和氧空位(oxygen vacancies)的形成。此外,還可以將終止材料(termination material)T的通量引導到基板表面48上。較佳地,終止材料T包括基板24的材料的元素,尤其是由基板24的材料的元素組成。通過這種方式,終止材料T可以填充由於缺少原子或分子而導致的基板表面48上的缺陷和/或可以在基板表面48上提供壓力,從而防止原子或分子從基板表面48蒸發。
作為總體結果,在步驟a)之後,基板表面48較佳地沒有或至少耗盡與基板24的晶格結構相關的缺陷,而此外,關於表面重建和表面終止的缺陷也可以大幅地減少,較佳為降到零。
在接下來的步驟b)中,如圖14中間所示並用“B”表示,將一個或多個包含第一材料126的薄膜62沉積到先前在步驟a)中製備的基板表面48上。如上所述,反應室10在步驟a)和步驟b)之間相對於環境氣氛保持密封。
就此而言,應當注意,如本文所述的薄膜62是一層相同種類的原子或分子,或作為封閉膜的化學式單位,具有單層和100nm之間的厚度。
如圖14的“B”所示,第一材料126作為第一源30,即作為源元件,由源裝置34提供在反應室10內。第一源30由合適的第二電磁輻射106加熱,較佳地由第一源加熱雷射36(見圖1、2)提供用於第一材料126的蒸發和/或昇華。通過使用第二電磁輻射106,蒸發和/或昇華過程在反應室10內不需要額外的組件,這些組件將成為雜質的來源並因此導致薄膜62的缺陷。
在沉積過程中,反應室10可以充滿第二反應氣氛118。除了作為第二反應氣氛118的高真空之外,如較佳用於由第一材料126組成的高純度薄膜62,合適的製程氣體G也可以用作第二反應氣氛118。由此,蒸發和/或昇華的第一材料126(如圖14的“B”中的箭頭126所示)可以與第二反應氣氛118反應,並且由第一材料126和第二反應氣氛118的製程氣體G的材料組成的相應反應產物係沉積在基板表面48上。作為示例,第一材料126可以是金屬並且製程氣體可以是氧氣,從而導致沉積為薄膜62的金屬氧化物。
總之,在步驟b)之後,一個或多個薄膜62被沉積到基板表面48上。藉由使用第二電磁輻射106,可以使用大範圍的第一材料126,其中藉由選擇合適的第二反應氣氛118進一步擴大了一個或多個薄膜62的材料的可能組成範圍。此外,可以確保第一材料126的特別純的蒸發和/或昇華。因此,同樣在較佳地無缺陷的基板表面48上構建,一個或多個薄膜62較佳地也沒有或至少耗盡基板引起的缺陷。
在該方法的最後步驟c)中,如圖14右側所示並用“C”表示,第三電磁輻射108用於照射基板24和一個或多個薄膜62。這最終形成了固態組件100。在具體描繪的實施例中,第三電磁輻射108將熱量施加到基板24的背面50並由此間接地施加到一個或多個薄膜62。
第三電磁輻射108可以用於兩個目的。首先,施加的熱量可以用於對固態組件100進行回火。由此可以進一步減少固態組件100的已經很少數量的缺陷。
其次,固態組件100的受控冷卻也可以通過第三電磁輻射108的強度的適當變化,特別是降低來提供。從而可以避免由基板24和一個或多個薄膜62的不同熱膨脹引起的缺陷。
藉由用合適的第三反應氣氛120填充反應室10可以分別支持回火和受控冷卻。
總之,用圖14中非常基本的版本中所示的方法生產的固態組件100不包含或至少包含非常少數量的缺陷,理想情況下使得量子位元弛豫時間和量子位元相干時間高於100μs,較佳為1000μs以上,甚至更佳為10ms以上。如此,特別對於量子位元,這種固態組件100非常適合用作量子組件102的基礎,見圖18、19。
圖15顯示了圖14所示方法的步驟a)執行的可選子步驟。緩衝材料132藉由第四電磁輻射110蒸發和/或昇華,再次提供上述關於蒸發和/或昇華過程所需的外部能量源的使用的所有優點。
蒸發和/或昇華的緩衝材料132(參見圖15中的相應箭頭132)係沉積在基板表面48上並形成緩衝層134。同樣,適當選擇的第四反應氣氛122係用於支持該沉積。換言之,一個或多個薄膜62(見圖17、19)的後續沉積在緩衝層134上進行。緩衝層可用於平衡基板24和最下面的薄膜62之間的差異,特別是在晶格參數方面。從而可以抑制由這種差異在一個或多個薄膜62中引起的缺陷。
該方法的步驟b)的一個可能實施例的快照(snap-shot)如圖16所示。特別地,實際描繪的沉積過程包括同時蒸發和/或昇華第一材料126和第二材料128。反應室充滿合適的第二反應氣氛118。
在所描繪的實施例中,第二電磁輻射106包括兩個分量束114,其中一個被引導到包括第一材料126的第一源30上,另一個被引導到包括第二材料128的第二源32上。相應的分量束114被採用地選擇用於相應材料126、128的蒸發和/或昇華。
蒸發和/或昇華的第一和第二材料126、128,參見各自的箭頭126、128,被沉積在一起並形成一個薄膜62。例如,材料126、128都可以是金屬元素,並且薄膜62由這些金屬的合金形成。
請注意,圖16中描繪的薄膜62包括多層結構,其中還存在由第三材料130組成的層。如果用於沉積第三材料130的相應的第二反應氣氛118不同於圖16中描繪的適合且用於同時沉積第一和第二材料126、128的第二反應氣氛118,則可以方便地使用具有兩個反應容積14、16(見圖2)的反應室10,其中兩個沉積過程中的一個在第一反應容積14中進行,另一個在第二反應容積16中進行。
圖17顯示了在步驟b)的最後一次迭代和隨後的步驟c)之間或在圖14所示方法的步驟c)之後執行的可選子步驟。覆蓋材料136被第五電磁輻射112蒸發和/或昇華,再次提供上述關於蒸發和/或昇華過程所需的外部能量源的使用的所有優點。
蒸發和/或昇華的覆蓋材料136(參見圖17中的相應箭頭136)被沉積到薄膜62上,在圖17中描繪的特定示例中,一種多層結構,包括四層交替地分別由第一材料126和第二材料128組成,並形成覆蓋層138。同樣對於覆蓋層138的沉積,適當選擇的第五反應氣氛124用於支持該特定沉積。覆蓋層138保護薄膜62免受外部影響。由此可以避免由這種外部影響引起的缺陷,例如在薄膜62的最頂層上不期望地沉積另外的材料。
在圖18、19中,顯示了量子組件102,它們基於根據本發明的固態組件100。圖18顯示了一個非常簡單的量子組件102,圖19顯示了一個更複雜的量子組件。此外,需要幾個圖案化步驟,通常藉由光微影、蝕刻、離子研磨和其他合適的程序進行,以獲得功能性的量子組件。
固態組件100的共同點在於它們包含足夠低數量的每平方厘米缺陷和具有量子位元弛豫時間和量子位元相干時間高於100μs以上、較佳為高於1000μs以上、甚至更佳為高於10ms以上的層和/或通過根據本發明的方法生產。固態組件100的低缺陷數量為量子組件102提供了長的相干時間。
圖18中所示的量子組件102包括由第一材料126組成的單個薄膜62。薄膜62沉積在基板24上。
與此相反,圖19描繪了包括薄膜62的量子組件102,該薄膜62具有總共六層的多層結構,特別是重複兩次的三層圖案。三個不同的層從最下層開始向上由第一材料126、第二材料和第二反應氣氛118的元素的反應產物、以及第三材料130組成。
此外,量子組件102包括緩衝層134,該緩衝層134由基板24和薄膜62的最下層之間的緩衝材料132組成。如關於圖15已經描述的,可以避免由基板24和隨後的薄膜62之間的過渡引起的缺陷。
此外,量子組件102包括由覆蓋材料136組成的覆蓋層138,覆蓋並保護薄膜62。如關於圖17已經描述的,可以避免由外部影響引起的缺陷,尤其是與環境氣氛的反應,例如不期望的其他材料的沉積。
如前所述,可以在基板表面48上沉積複數個薄膜62,各種薄膜62可以由不同的材料製成,以便在基板24上形成多層和多種材料的膜62。,
諸如金屬的元素係用於第一和第二源元件30、32的第一材料和/或第二材料以形成薄膜62。
為了舉例說明本發明的技術可行性,圖20至28顯示了用於Al2O3基板24的技術的實驗驗證,在該基板上已經生長了Ta和Nb薄膜62。Ta和Nb在幾個K下都是超導的,因此適用於製造量子位元器件。
圖20顯示了通過本發明的方法製備的Al2O3基板24的表面衍射圖案,藉由反射高能電子衍射(Reflection High-Energy Electron Diffraction;RHEED)獲得。RHEED光束以大約2°的極角撞擊在表面48上。
許多斑點體現了高度有序的二維晶體表面。對角線的鏡像對稱圖案表明RHEED光束沿基板的主晶軸之一排列。在這種情況下,表面重建相對於主體晶格旋轉了+9°。這在圖21中變得清楚,其中基板24相對於RHEED光束逆時針旋轉9°,使RHEED光束與表面重建對齊。
沒有任何其他可觀察斑點的同心圓的對稱圖案係證明了單個表面重建,其在整個基板表面上單次旋轉+9°。-9°取向完全不存在,證實了根據本發明從幾個能量等效表面重建中選擇一個的方法的可行性。
通過將氧氣製程氣體的壓力改變為0.75 x 10-1hPa,氧原子離開表面48的化學勢發生偏移,並且表面48的最小能量配置不再是在較低壓力下觀察到的單旋轉重建。圖22顯示在這種情況下,兩個表面旋轉方向同樣有利。RHEED圖案是鏡像對稱的,左側和右側斑點的強度相等。
圖23顯示了製備過程後由RHEED在圖20中成像的基板的表面形態。該表面是高度有序的並且顯示出最小能量梯田和階梯結構,直的梯田邊緣66相對於主晶軸以約+25°的角度取向,其與圖像的邊緣大致對齊。
圖24顯示了沿圖23中的線提取的高度剖面。該基板的梯田寬度約為500μm,梯田58之間的階梯高度差約為0.43nm。對於Al2O3, 這對應於主體Al2O3結構內兩個Al層之間的分離。這些Al層對應於圖3至8示意圖中的“黑色”層。圖20中觀察到的表面重建對應於主體基板24頂部的附加“黑色”層。
圖25顯示了在超純條件和允許Ta原子沿表面長範圍位移的高表面溫度下在這樣的模板上生長的Ta膜62的表面的AFM圖像。薄膜的不同單晶場域最初以不同的方向成核,然而,它們受到下面晶體表面的表面重建的長範圍順序的限制。它們過度生長並可能合併相鄰場域以形成具有極低缺陷密度和約40倍其厚度的橫向延伸的大而平坦的單晶區域。
場域的單晶性質係從表面上可見的單個原子階梯以及階梯和場域邊緣沿著下面的磊晶模板的軸以六重(每60°)六角對稱的對齊方式是顯而易見的。
圖26顯示了在名義上相同條件下生長的薄膜62的類似SEM圖像,與圖25相比,橫向解析度大約是圖25的兩倍。然而,與圖25相比,僅在大約1/5的層厚度之後停止生長。因此,該圖像代表了不同的、獨立成核的磊晶晶粒之間的合併過程的快照,現在開始形成橫向連接的、尺寸逐漸變大的單晶晶粒。
與圖25相同的膜的X射線掃描係如圖27所示。該測量值基本上在整個樣本表面上取平均值,並顯示薄膜62在實驗解析度範圍內是完美的單晶,具有對應於與基板24平行取向的Ta的單一晶面族的尖銳而明顯的峰。該結果再次證明了非常高的結構完美性和膜62與基板24的完全磊晶對準。
最後,圖28顯示了在沉積後裂開的層結構的橫截面SEM圖像,顯示了在Si基板24上沒有磊晶對準並且在大約250℃的基板溫度下生長的Nb膜62。膜62不是磊晶的,並且顯示出具有高缺陷密度的無序柱 狀結構。根據本發明,這可以藉由過在無縫整合的原位製程(in-situ process)中使用高溫退火基板製備技術與超淨後續沉積相結合來避免。
也可以將化合物層生長為薄膜62。為此目的,實施了在基板上形成厚度在單層至幾μm範圍內的化合物的層62的方法。如前所述,基板24可以是單晶晶圓。基板24佈置在處理室中,例如圖1和圖2中公開的反應室10,反應室10包括一個或多個由源材料組成的源30、32,該方法包括以下步驟:
- 在處理室10中提供反應氣氛,反應氣氛包括預定的製程氣體G和反應室壓力;
- 用來自第一和第二源加熱雷射36、38之一的雷射光照射一個或多個源30、32,以昇華和/或蒸發源材料的原子和/或分子;
- 使蒸發的原子和/或分子與製程氣體反應並在基板上形成化合物層。
在這種情況下,應當注意來自第一和第二源加熱雷射36、38的雷射光被引導到直接面對基板24的源之表面上。
反應室壓力通常選擇在10-6至101hPa的範圍內。在執行形成化合物的方法時,提供反應氣氛的步驟通常包括將反應室10抽空至第一壓力,然後引入製程氣體G以獲得反應室10中的第二壓力(反應室壓力)。
第一壓力通常低於第二壓力並且第二壓力在10-11至10-2hPa的範圍內選擇。
至少反應室10的護罩和/或內壁的溫度被溫度控制到在77K至500K的範圍內選擇的溫度。
源材料係選自由以下所組成之群組:Sc、Ti、V、Cr、Mn、Fe、Co、Ni、Cu、Zn、Zr、Nb、Mo、Ru、Hf、Al、Mg、Ca、Sr、Ba、 Y、Rh、Ta、W、Re、Ir、Ga、In、Si、Ge、Sn、Eu、Ce、Pd、Ag、Pt、Au、前述的合金和前述的組合。
用雷射光照射一個或多個源30、32以昇華和/或蒸發源材料的原子和/或分子的雷射光係聚焦在一個或多個源30、32處,其中,對於1mm2的斑點尺寸,強度在1到2000W的範圍內選擇,一個或多個源與基板之間的距離在50到120mm的範圍內選擇。
雷射光照射一個或多個源30、32,其中,該雷射光的波長在280nm到20μm範圍內,特別是在450nm到1.2μm範圍內。
沉積在基板上的化合物可以是氧化物、氮化物、氫化物、氟化物、氯化物、溴化物、碘化物、磷化物、硫化物、硒化物或汞化合物中的一種。
在製程氣體G的較高壓力下,蒸發的原子或分子與氣體原子發生更多的碰撞,導致它們的方向和動能隨機化。這導致蒸發的原子或分子中有小得多的部分到達基板24,然而,這在某些情況下仍可用於形成層62,特別是對於短工作距離和大基板而言。在這些條件下在基板24上形成化合物或氧化物層62可以在若干條件下發生:
‧生長模式1:源材料126在源表面發生反應或氧化並蒸發或昇華為化合物或氧化物。然後它以化合物或氧化物的形式沉積在基板上。
‧生長模式2:源材料126在不發生反應的情況下蒸發或昇華,並藉由在其從源30、32到基板24的軌跡上與氣體原子碰撞而與氣體G反應並沉積為化合物或氧化物。
‧生長模式3:源材料126在沒有反應的情況下蒸發或昇華,在沒有反應的情況下傳播,並且在其沉積在基板24上時或之後與撞擊在基板24上的氣體原子或分子反應。
‧生長模式4:以上之任意組合。
特別感興趣的是傳輸反應,其中源材料126與氣體G反應以形成具有比源材料126本身更高的蒸發/昇華速率的亞穩態化合物。該材料進一步在氣相中反應並作為最終化合物沉積為薄膜62,或沉積在基板24上並與進一步的氣體G反應以形成最終的穩定化合物作為薄膜62。
化合物的具體例子有:
TiO2:對於TiO2,源材料是Ti,沉積在基板上的化合物主要是銳鈦礦或金紅石二氧化鈦,雷射光具有在515至1070nm範圍內選擇的波長,特別是在1000至1070nm範圍內,在1至2000W範圍內的強度對應於源表面上0.001至2kW/mm2的功率密度,特別是在100至200W範圍內對應於0.1至0.2kW/mm2的功率密度,製程氣體是O2和O3的混合物,特別是O3含量為5至10wt%,反應室壓力為10-11至1hPa,特別是10-6至10-2hPa,化合物層厚度範圍為0到1μm可在0到180分鐘的時間段內獲得,特別是700nm在15到30分鐘的時間段內,工作距離為10mm到1m,特別是40到80mm,基板直徑為5至300mm,特別是51mm。
NiO:對於NiO,源材料是Ni,沉積在基板上的化合物主要是NiO,雷射光具有在515至1070nm範圍內選擇的波長,特別是在1000至1070nm範圍內,在1到2000W的範圍內的強度對應於源表面上0.001到2kW/mm2的功率密度,特別是在100到350W的範圍內對應於0.1到0.35kW/mm2的功率密度,製程氣體是O2和O3的混合物,特別是O3含量為5至10wt%,反應室壓力為10-11至1hPa,特別是10-6至10-2hPa,化合物層厚度範圍為0到1μm可在0到50分鐘的時間段內獲得,特別是500nm在10到20分鐘的時間段內,工作距離為10mm到1m,特別是40到80mm,基板直徑為5至300mm,特別是51mm。
Co3O4:對於Co3O4,源材料是Co,沉積在基板上的化合物主要是Co3O4,雷射光具有在515至1070nm範圍內選擇的波長,特別是在1000至1070nm範圍內,在1到2000W的範圍內的強度對應於源表面上0.001到2kW/mm2的功率密度,特別是在100到200W的範圍內對應於0.1到0.2kW/mm2的功率密度,製程氣體是O2和O3的混合物,特別是O3含量為5至10wt%,反應室壓力為10-11至1hPa,特別是10-6至10-2hPa,化合物層厚度範圍為0到1μm可在0到90分鐘的時間段內獲得,特別是200nm在10到20分鐘的時間段內,工作距離為10mm到1m,特別是40到80mm,基板直徑為5至300mm,特別是51mm。
Fe3O4:對於Fe3O4,源材料是Fe,沉積在基板上的化合物主要是Fe3O4,雷射光具有在515至1070nm範圍內選擇的波長,特別是在1000至1070nm範圍內,在1到2000W的範圍內的強度對應於源表面上0.001到2kW/mm2的功率密度,特別是在100到200W的範圍內對應於0.1到0.2kW/mm2的功率密度,製程氣體是O2和O3的混合物,特別是O3含量為5至10wt%,反應室壓力為10-11至1hPa,特別是10-6至10-2hPa,化合物層厚度範圍為0到10μm可在0到30分鐘的時間段內獲得,特別是5μm在10到20分鐘的時間段內,工作距離為10mm到1m,特別是40到80mm,基板直徑為5至300mm,特別是51mm。
CuO:對於CuO,源材料是Cu,沉積在基板上的化合物主要是CuO,雷射光具有在500至1070nm範圍內選擇的波長,特別是在500至550nm範圍內,在1到900W的範圍內的強度對應於源表面上0.001到0.9kW/mm2的功率密度,特別是在200到400W的範圍內對應於0.2到0.4kW/mm2的功率密度,製程氣體是O2和O3的混合物,特別是O3含量為5至10wt%,反應室壓力為10-11至1hPa,特別是10-6至10-2hPa, 化合物層厚度範圍為0到1μm可在0到100分鐘的時間段內獲得,特別是0.15μm在15到30分鐘的時間段內,工作距離為10mm到1m,特別是40到80mm,基板直徑為5至300mm,特別是51mm。
氧化釩:對於氧化釩,源材料是V,沉積在基板上的化合物主要是V2O3、VO2或V2O5,雷射光具有在515至1100nm範圍內選擇的波長,特別是在1000至1100nm範圍內,在1到2000W的範圍內的強度對應於源表面上0.001到2kW/mm2的功率密度,特別是在60到120W的範圍內對應於0.06到0.12kW/mm2的功率密度,製程氣體是O2和O3的混合物,特別是O3含量為5至10wt%,反應室壓力為10-11至1hPa,特別是10-6至10-2hPa,化合物層厚度範圍為0到1μm可在0到60分鐘的時間段內獲得,特別是0.3μm在10到20分鐘的時間段內,工作距離為10mm到1m,特別是40到80mm,基板直徑為5至300mm,特別是51mm。
Nb2O5:對於Nb2O5,源材料是Nb,沉積在基板上的化合物主要是Nb2O5,雷射光具有在515至1100nm範圍內選擇的波長,特別是在1000至1100nm範圍內,在1到2000W的範圍內的強度對應於源表面上0.001到2kW/mm2的功率密度,特別是在200到400W的範圍內對應於0.2到0.4kW/mm2的功率密度,製程氣體是O2和O3的混合物,特別是O3含量為5至10wt%,反應室壓力為10-11至1hPa,特別是10-6至10-2hPa,化合物層厚度範圍為0到2μm可在0到20分鐘的時間段內獲得,特別是1.4μm在10到20分鐘的時間段內,工作距離為10mm到1m,特別是40到80mm,基板直徑為5至300mm,特別是51mm。
Cr2O3:對於Cr2O3,源材料是Cr,沉積在基板上的化合物主要是Cr2O3,雷射光具有在515至1100nm範圍內選擇的波長,特別是在 1000至1100nm範圍內,在1到2000W的範圍內的強度對應於源表面上0.001到2kW/mm2的功率密度,特別是在20到80W的範圍內對應於0.02到0.08kW/mm2的功率密度,製程氣體是O2和O3的混合物,特別是O3含量為5至10wt%,反應室壓力為10-11至1hPa,特別是10-6至10-2hPa,化合物層厚度範圍為0到1μm可在0到30分鐘的時間段內獲得,特別是0.5μm在10到20分鐘的時間段內,工作距離為10mm到1m,特別是40到80mm,基板直徑為5至300mm,特別是51mm。
RuO2:對於RuO2,源材料是Ru,沉積在基板上的化合物主要是RuO2,雷射光具有在515至1100nm範圍內選擇的波長,特別是在1000至1100nm範圍內,在1到2000W的範圍內的強度對應於源表面上0.001到2kW/mm2的功率密度,特別是在200到600W的範圍內對應於0.2到0.6kW/mm2的功率密度,製程氣體是O2和O3的混合物,特別是O3含量為5至10wt%,反應室壓力為10-11至1hPa,特別是10-6至10-2hPa,化合物層厚度範圍為0到1μm可在0到300分鐘的時間段內獲得,特別是0.06μm在10到20分鐘的時間段內,工作距離為10mm到1m,特別是40到80mm,基板直徑為5至300mm,特別是51mm。
ZnO:對於ZnO,源材料是Zn,沉積在基板上的化合物主要是ZnO,雷射光具有在515至1100nm範圍內選擇的波長,特別是在1000至1100nm範圍內,在1到2000W的範圍內的強度對應於源表面上0.001到2kW/mm2的功率密度,特別是在5到10W的範圍內對應於0.005到0.010kW/mm2的功率密度,製程氣體是O2和O3的混合物,特別是O3含量為5至10wt%,反應室壓力為10-11至1hPa,特別是10-6至10-2hPa,化合物層厚度範圍為0到1μm可在0到20分鐘的時間段內獲得,特別是 1.4μm在10到20分鐘的時間段內,工作距離為10mm到1m,特別是40到80mm,基板直徑為5至300mm,特別是51mm。
MnO:對於MnO,源材料是Mn,沉積在基板上的化合物主要是MnO,雷射光具有在515至1100nm範圍內選擇的波長,特別是在1000至1100nm範圍內,在1到2000W的範圍內的強度對應於源表面上0.001到2kW/mm2的功率密度,特別是在5到10W的範圍內對應於0.005到0.010kW/mm2的功率密度,製程氣體是O2和O3的混合物,特別是O3含量為5至10wt%,反應室壓力為10-11至1hPa,特別是10-6至10-2hPa,化合物層厚度範圍為0到1μm可在0到20分鐘的時間段內獲得,特別是1.4μm在10到20分鐘的時間段內,工作距離為10mm到1m,特別是40到80mm,基板直徑為5至300mm,特別是51mm。
Sc2O3:對於Sc2O3,源材料是Sc,沉積在基板上的化合物主要是Sc2O3,雷射光具有在515至1100nm範圍內選擇的波長,特別是在1000至1100nm範圍內,在1到2000W的範圍內的強度對應於源表面上0.001到2kW/mm2的功率密度,特別是在20到50W的範圍內對應於0.02到0.05kW/mm2的功率密度,製程氣體是O2和O3的混合物,特別是O3含量為5至10wt%,反應室壓力為10-11至1hPa,特別是10-6至10-2hPa,化合物層厚度範圍為0到1μm可在0到20分鐘的時間段內獲得,特別是1.3μm在10到20分鐘的時間段內,工作距離為10mm到1m,特別是40到80mm,基板直徑為5至300mm,特別是51mm。
Mo4O11或MoO3:對於Mo4O11或MoO3,源材料是Mo,沉積在基板上的化合物主要是Mo4O11或MoO3,雷射光具有在515至1100nm範圍內選擇的波長,特別是在1000至1100nm範圍內,在1到2000W的範圍內的強度對應於源表面上0.001到2kW/mm2的功率密度,特別 是在400到800W的範圍內對應於0.4到0.8kW/mm2的功率密度,製程氣體是O2和O3的混合物,特別是O3含量為5至10wt%,反應室壓力為10-11至1hPa,特別是10-6至10-2hPa,化合物層厚度範圍為0到4μm可在0到30分鐘的時間段內獲得,特別是4.0μm在10到20分鐘的時間段內,工作距離為10mm到1m,特別是40到80mm,基板直徑為5至300mm,特別是51mm。
ZrO2:對於ZrO2,源材料是Zr,沉積在基板上的化合物主要是ZrO2,雷射光具有在515至1100nm範圍內選擇的波長,特別是在1000至1100nm範圍內,在1到2000W的範圍內的強度對應於源表面上0.001到2kW/mm2的功率密度,特別是在300到500W的範圍內對應於0.3到0.5kW/mm2的功率密度,製程氣體是O2和O3的混合物,特別是O3含量為5至10wt%,反應室壓力為10-11至1hPa,特別是10-6至10-2hPa,化合物層厚度範圍為0到1μm可在0到100分鐘的時間段內獲得,特別是0.2μm在15到25分鐘的時間段內,工作距離為10mm到1m,特別是40到80mm,基板直徑為5至300mm,特別是51mm。
HfO2:對於HfO2,源材料是Hf,沉積在基板上的化合物主要是HfO2,雷射光具有在515至1100nm範圍內選擇的波長,特別是在1000至1100nm範圍內,在1到2000W的範圍內的強度對應於源表面上0.001到2kW/mm2的功率密度,特別是在250到400W的範圍內對應於0.25到0.4kW/mm2的功率密度,製程氣體是O2和O3的混合物,特別是O3含量為5至10wt%,反應室壓力為10-11至1hPa,特別是10-6至10-2hPa,化合物層厚度範圍為0到1μm可在0到40分鐘的時間段內獲得,特別是0.6μm在15到25分鐘的時間段內,工作距離為10mm到1m,特別是40到80mm,基板直徑為5至300mm,特別是51mm。
Al2O3:對於Al2O3,源材料是Al,沉積在基板上的化合物主要是Al2O3,雷射光具有在515至1100nm範圍內選擇的波長,特別是在1000至1100nm範圍內,在1到2000W的範圍內的強度對應於源表面上0.001到2kW/mm2的功率密度,特別是在200到400W的範圍內對應於0.2到0.4kW/mm2的功率密度,製程氣體是O2和O3的混合物,特別是O3含量為5至10wt%,反應室壓力為10-11至1hPa,特別是10-6至10-2hPa,化合物層厚度範圍為0到1μm可在0到20分鐘的時間段內獲得,特別是1.0μm在15到25分鐘的時間段內,工作距離為10mm到1m,特別是40到80mm,基板直徑為5至300mm,特別是51mm。對於Al,由於雷射功率為300至500W的生長模式4,可實現每分鐘超過1μm的更高之生長速率。
熱雷射蒸發(thermal laser evaporation;TLE)是一種特別有前景的金屬薄膜生長技術。在這裡,我們證明熱雷射蒸發也適用於非晶和多晶氧化物薄膜的生長。我們報告了已經藉由雷射誘導蒸發在氧氣-臭氧氣氛中之元素金屬源所沉積的二元氧化物膜的光譜。TLE的氧化物沉積伴隨著元素金屬源的氧化,這有系統地影響源分子通量。十五種元素金屬被成功地用作在未加熱的基板上生長的氧化物膜的來源,採用了一種相同的雷射光學元件。源材料的範圍從蒸氣壓力低的難熔金屬,如Hf、Mo和Ru,到在低溫下容易昇華的Zn。這些結果表明,TLE非常適合超淨氧化物膜的生長。
氧化物膜62由於其廣泛的有趣和有用的特性而對實現新功能非常有利。幾乎所有的沉積技術都用於氧化物膜的生長,包括電子束蒸發(EBE)、分子束磊晶(MBE)、脈衝雷射沉積(PLD)、濺射和原子層沉積(ALD)。熱雷射蒸發(TLE)最近已被證明是一種用於生長超淨金屬薄膜的有 前景的技術,因為它藉由用雷射光束熱蒸發金屬源而結合了MBE、PLD和EBE的優點。
通過利用吸附控制的生長模式,MBE特別適合生長具有優異結構品質的膜。在MBE中,源材料的分子通量是通過蒸發源材料產生的。然而,為此目的較佳的歐姆加熱器限制了反應性背景氣體的使用。這種限制對於複雜金屬氧化物的生長至關重要。此外,低蒸氣壓力元素,如B、C、Ru、Ir和W,不能通過外部歐姆加熱蒸發。蒸發這些元素需要EBE,但該技術對於實現精確和穩定的蒸發速率並不是最佳的。PLD通過短週期、高功率雷射脈衝將源材料轉移到基板上。儘管PLD可以在反應氣體的高背景壓力下操作,但材料成分的精確控制具有挑戰性,特別是在膜成分要平穩變化的情況下。
在雷射發明之後,雷射輔助蒸發被提出並嘗試用於薄膜沉積。然而,連續波(cw)雷射的蒸發由於形成非化學計量膜而被放棄,而高功率密度脈衝雷射的蒸發導致了PLD的發明。隨著cw雷射技術的發展,TLE最近被重新發現作為複雜材料磊晶生長的候選,它可以結合MBE、PLD和EBE的優點,同時消除它們各自的弱點。放置在真空室12外部的雷射36、38通過局部加熱蒸發純金屬源30、32,這僅需要簡單的設置並且允許對每個源元件進行精確的蒸發控制、有高純度的源材料以及對背景氣體G的組成和壓力有幾乎無限的選擇。在許多情況下,局部熔融的源30、32形成其自己的坩堝。藉由避免從坩堝中摻入雜質,保證源30、32保持高純度。TLE沉積元素金屬和半導體膜62的潛力已通過沉積各種元素作為膜62來實現,範圍從高蒸氣壓力元素如Bi和Zn到低蒸氣壓力元素如W和Ta。
儘管使用TLE來生長氧化物膜62和異質結構也可能非常有利,但在氧化氣氛中可能並不明顯。在TLE中避免(困擾著MBE和EBE 之)熱源(燈絲)的氧化是微不足道的。然而,當在氧化氣氛中被雷射光束加熱時,金屬源30、32本身易於氧化。如果源氧化,則雷射輻射不再僅被原始源材料吸收,還被其氧化物吸收。實際上,整個源或源表面可能氧化,或者氧化物可能形成漂浮在熔池(melt pool)上的部分層。此外,源材料的分子通量可以由源的金屬部分和源材料氧化物產生。
為此,我們進行了一系列蒸發實驗,其中具有高或低蒸氣壓力的元素金屬源30、32在各種氧氣-臭氧氣氛中藉由雷射照射進行蒸發。為了簡化蒸發過程的探索,我們使用了塗有其天然氧化物之未經加熱的Si(100)晶圓的基板24。我們很容易成功地生長出氧化物膜62,對作為第一和第二源加熱雷射36、38探索的每個元素使用相同的雷射光學元件和1030-1070nm的雷射波長。我們的實驗表明,在強氧化氣氛中元素源的蒸發適用於氧化物膜生長,儘管在該過程中源30、32被氧化。我們還發現,通過調整氧化氣氛,在給定氣氛中可以獲得不同的氧化物相。此外,發現沉積過程顯示出作為氧氣-臭氧壓力函數的特徵變化。
本研究中使用的TLE室10的示意圖如圖1所示。高純度圓柱形金屬源30、32和2英寸Si(100)基板24相隔60mm的工作距離,由Ta基支架22支撐。我們使用1030-nm光纖耦合盤雷射36和1070-nm光纖雷射38在頂面以45°入射,以加熱源30、32。根據這些雷射36、38的可用性,我們使用前一個雷射36來蒸發Ti、Co、Fe、Cu和Ni,而後一個雷射38用於其他元素。並未提到兩個雷射36、38的性能差異。兩個雷射36、38在源30、32上照射約1mm2的近似橢圓區域。針對溫度感測,我們將C W-Re型熱電偶放置在Si晶圓24的背面和源30、32的底部。
使用流動的氧氣-臭氧混合物20和級聯(cascaded)泵送系統18,該系統包括兩個渦輪分子泵和一個隔膜泵串聯在一起,用於精確控制 室壓力Pox,其在<10-8和10-2hPa之間變化。臭氧約佔輝光放電連續流臭氧發生器(未顯示)提供的總流量的10wt%。在每次沉積期間控制該氣體流量的閥門係設置為保持恆定以提供恆定流量。在蒸發過程中,Pox和源30、32和基板24的溫度由壓力計和熱電偶(未示出)監測。使用相同的沉積幾何結構,我們使用TLE蒸發十五種不同的金屬元素以沉積氧化物膜62。使用相同的雷射功率和雷射光學器件但範圍在從10-8到10-2hPa之不同的Pox值以在數次運行中蒸發每種元素。掃描電子顯微鏡(SEM)係用於測量膜厚度並研究其微觀結構。沉積膜62的晶體結構係藉由X射線衍射來識別。進行光電子能譜(photoemission spectroscopy)以揭示TLE生長的TiO2膜62的氧化態。如果發現膜62是非結晶形的,則隨後在500℃對其進行額外的兩小時Ar退火以結晶。
由於源30、32和蒸發材料的氧化導致氧氣-臭氧氣體混合物的消耗,Pox在沉積過程中經常降低,如圖29所示。該圖顯示了在幾種氣體壓力下Ti之蒸發過程中的Pox。隨著雷射36、38在約300秒的時間開啟,Pox降低,並且隨著雷射在約1200秒的關閉,它迅速返回到較高壓力的初始背景值。氧化在較高溫度下更活躍,因此,Pox的降低主要歸因於元素源的氧化。氧化蒸發材料所需的最大氧氣量小於入口氣流的1%,這不能解釋觀察到的壓力變化。在用160W雷射在10-2hPa下沉積後,Ti源30、32被白色物質覆蓋,該物質很可能由TiO2組成。其他元素來源也在使用後被氧化。我們在引言中提到的源30、32的這種顯著氧化會影響雷射光的吸收、蒸發過程和沉積在基板24上的蒸氣物質。
然而,並非在所有情況下都觀察到背景壓力的降低。在兩種情況下壓力變化很小甚至沒有:第一種,如果源30、32在過程開始時已經被完全氧化;第二種,如果源30、32的氧化在本質上是不利的。Ni在氧 化氣氛中的熱雷射蒸發是第一種情況的一個例子。僅在Pox<10-4hPa時觀察到Pox降低。在較高壓力下,Ni源30、32被其氧化物覆蓋。因此進一步的氧化被抑制,Pox的降低消失了。因此,通過在強氧化條件下加熱Ni獲得的主要蒸氣物質係由NiO提供。Cu的熱雷射蒸發是第二種情況的一個例子,因為Cu的氧化相對不利。在1000℃以上和10-4-10-2hPa的氧氣壓力範圍內,金屬Cu比其氧化物更穩定。在實驗中,輻照區域的源溫度超過1085℃,這從Cu局部熔化的事實可以看出。在此溫度下,液態Cu是熱力學穩定相,預計元素Cu將提供主要的蒸氣物質。實際上,如圖S3所示,在Cu的蒸發過程中,室壓力沒有發生顯著變化。一致地,Cu源30、32的雷射照射區域在TLE過程之後是金屬的。
我們已經測試了十五種金屬元素作為氧化物膜之TLE生長的來源(表1)。圖30顯示了TLE生長的TiO2、Fe3O4、HfO2、V2O3、NiO和Nb2O5薄膜的切線入射XRD圖案。這些圖案對於這裡研究的所有二元氧化物都是典型的。如圖所示,膜62是多晶的並且在許多情況下是單相的。大多數元素在未加熱的Si基板24上提供多晶膜62,除了形成非晶氧化物的Cr。隨後2小時的500℃ Ar退火將該層轉變為多晶Cr2O3膜62。表1總結了觀察到的氧化物相。Ti、V和Mo氧化物形成了幾個相,由Pox決定獲得哪個相。在V的情況下,例如,通過將Pox從10-4增加到10-2hPa來獲得V2O3、VO2或V2O5膜62。對於其他元素,我們僅觀察到使用的Pox範圍內的單一氧化態。
為了更詳細地研究膜62的結構,我們進行了橫截面SEM。如圖31所示,其顯示了圖30的膜62的SEM截面,大多數多晶膜具有柱狀結構。測得的基板溫度與沉積氧化物的熔點之比為0.05至0.2。因此,觀察到的柱狀結構與膜生長的區域模型一致,對於此處使用的條件,該模 型預測了柱狀微結構的形成。然而,沉積氧化物的晶體結構會影響膜結構。在10-3和10-2hPa下生長的Mo氧化物膜分別包括稜柱和六角板。圖31所示的薄膜62以幾埃/秒(Å/s)的速率生長;這些速率被選為氧化物膜生長的典型值。通過將晶圓中心處的膜厚度除以雷射照射時間來測量速率(見圖31)。沉積速率不限於呈現的值。事實上,它們隨著雷射功率而超線性增加。
當源30,32被局部加熱時,它表現得像一個平坦的小面積蒸發源30、32,提供作為發射角的函數的餘弦型通量分佈。實際上,SEM測量顯示膜62朝向晶圓邊緣更薄。使用我們使用的蒸發參數,在大多數情況下,膜厚度向邊緣的減少等於~20%,略高於~15%的理論預期值。我們將此效應歸因於蒸發過程中源的顯著點蝕(pitting),它集中了分子通量。
我們的研究表明,正如預期的那樣,沉積氧化物的相是氧化氣體壓力的函數。圖32中說明了Ti和Ni膜62的這種行為。該圖提供了在幾種不同的Pox中生長的這種膜的XRD圖案。在鈦的情況下,如果在沒有氧氣-臭氧的情況下進行沉積,則會獲得多晶六方鈦膜。隨著Pox的增加,亞化學計量的TiO、金紅石TiO2和銳鈦礦TiO2膜62被沉積。TiO是眾所周知的Ti之揮發性次氧化物。它是在Pox~10-6hPa的弱氧化環境中形成的。在37.36°、43.50°和63.18°處的峰(圖5a,紅色曲線)表示立方TiO。金紅石型TiO2出現在Pox~10-4hPa的薄膜中。灰線標記了金紅石TiO2的預期衍射峰位置。在10-3hPa時,銳鈦礦TiO2與金紅石相一起產生,如圖5中紫色星標所示。由於其低表面自由能,亞穩態TiO2銳鈦礦相較佳地係藉由大多數合成和沉積方法獲得。將銳鈦礦相轉變為金紅石相或直接合成金紅石相二氧化鈦通常需要高能條件。儘管給定蒸發原子和分子的熱能,TLE是一個低能量過程,我們觀察到金紅石相TiO2的優先形成。在10-2hPa時,沉積的薄膜會失去結晶度。
通過XPS分析TLE生長的TiO2膜62的氧化態,並與EBE生長的TiO2膜進行比較。而沉積的EBE樣本包含大量的Ti3+,TLE樣本主要包含Ti4+。我們將此現象歸因於氧氣-臭氧背景,它抑制了TiO2的熱解離,TiO2(s)→TiO(g)+½ O2(g),並氧化了沉積的材料。
有趣的是,我們發現TLE生長的Ni氧化物膜62的氧化行為與Ti氧化物膜62的氧化行為顯著不同。在UHV條件下,金屬Ni也存在立方相(圖32b)。儘管Ni源表面30在Pox~10-6hPa時被氧化(如室壓力的降低所證明的那樣),但所獲得的膜62在此Pox下也顯示出金屬行為。我們將此歸因於Ni的高氧化電位和Ni的蒸氣壓力高於NiO。因此,大多數蒸氣種類源自輻照熱區中的未氧化Ni。此外,沉積在基板24上的Ni在低基板溫度下不會顯著氧化。NiO相隨著Pox的增加而逐漸演變。NiO相的預期衍射峰位置如圖32所示,顯示了立方NiO的形成。正如金屬和氧化物峰的存在所證明的那樣,在10-5hPa沉積的Ni膜62被部分氧化為NiO。NiO相在較高的Pox中占主導地位。
Pox還影響TLE生長的氧化物膜62的沉積速率。圖33顯示了Ti和Ni基氧化物膜62的沉積速率與壓力的關係。考慮到膜62中的氧併入,我們預計隨著Pox的增加而有增加的沉積速率。然而,觀察到的沉積速率行為不能僅通過氧併入來解釋。Ti基膜62的生長速率隨著Pox從基礎壓力下的約0.6Å/s增加到10-3hPa下的3.5Å/s。沉積速率增加六倍表明還有其他因素影響該速率。相比之下,Ni基氧化物膜62的沉積速率在10-4hPa時僅從3.1增加到4.6Å/s,然後在Pox>10-4hPa時急劇下降至0.3Å/s。膜62中氧化物分率的增加(見圖32)可能是沉積速率最初增加的原因,但不能解釋在10-3hPa沉積速率的巨大下降。Ti和Ni基薄膜62的 生長特性代表了對大多數膜62觀察到的兩種特徵模式。Fe、Co、Nb、Zn和Mo顯示了Ti的行為,而Cr、Sc、Mn和V顯示了Ni的行為。
為什麼Pox會以這兩種頗具特色的方式改變TLE生長的氧化物膜的沉積速率?我們建議這種行為是由源30、32的氧化表面層的蒸氣壓力控制的。如果在源表面形成的氧化物的蒸氣壓力超過金屬的蒸氣壓力,則沉積速率隨Pox增加。這對應於類似Ti的沉積速率行為。TiO2氣體蒸汽的形成,Ti(s)+O2(g)→TiO2(g),是一種放熱反應,導致從源有效產生氧化物蒸汽。隨著金屬氧化速率隨Pox的冪次增加(氧化速率
Figure 111118395-A0202-12-0059-41
),沉積速率將隨Pox相應增加,正如對Fe和Nb觀察到的那樣。相反,如果金屬的蒸氣壓力超過氧化物的蒸氣壓力,則會發現類似Ni的情況。由於NiO的蒸氣壓力比Ni的蒸氣壓力小大約一個數量級,因此源的NiO覆蓋會使沉積速率以相同的因子降低。這種理解得到以下觀察結果的支持:Ni的沉積速率之突然下降係發生在10-3hPa(室中的壓降消失時的相同壓力),表明源在此Pox處被NiO層62鈍化。
因此已經證明了通過TLE生長多晶氧化物膜62。具有可調氧化態和晶體結構的膜62可以通過在高達101hPa的氧氣-臭氧壓力下蒸發純金屬源來生長,而與源30、32的可能氧化無關。從包括低蒸氣壓力和高蒸氣壓力元素的多種金屬源中,在未加熱的Si(100)基板24上以幾Å/s的生長速率沉積各種氧化態的多晶膜62。確定源氧化的程度,氧化氣體的壓力強烈影響沉積速率以及所得氧化物膜32的組成和相。我們的研究成果為各種化合物的超高純度磊晶氧化物異質結構的TLE生長做好了準備。
表1. TLE在這項研究成果中沉積的氧化物薄膜列表。
Figure 111118395-A0202-12-0059-1
Figure 111118395-A0202-12-0060-2
10:反應室
12:真空室
14:第一反應容積
18:真空泵
20:氣體源、氣體供應、處理氣體
22:基板佈置件
24:基板
26:基板加熱雷射、CO2雷射、雷射
28:雙頭箭頭
30:第一源元件、源元件、源、元素金屬源、高純度圓柱形金屬源
32:第二源元件、源元件、源、元素金屬源、高純度圓柱形金屬源
34:源佈置件、源裝置
36:第一源加熱雷射
38:第二源加熱雷射
40:屏蔽孔
48:基板表面、表面、前表面
50:背面
52:窗口

Claims (37)

  1. 一種在諸如單晶晶圓的基板上形成具有在單層至幾毫米範圍內選擇的厚度的化合物之層的方法,該基板被佈置在處理室中,該處理室包括一個或多個源的源材料,該方法包括以下步驟:
    在該處理室中提供反應氣氛,該反應氣氛包括預定的處理氣體和反應室壓力;
    用雷射光照射該一個或多個源以熔化和/或昇華和/或蒸發至少存在於該一個或多個源的表面處的該源材料的原子和/或分子;
    使熔化的和/或昇華的和/或蒸發的該原子和/或分子與該處理室中的該處理氣體反應,以及
    在該基板上形成該化合物之該層。
  2. 如請求項1所述的方法,其中,該一個或多個源用雷射光照射在該一個或多個源的直接面對該基板的表面上。
  3. 如請求項1或2所述的方法,其中,該一個或多個源用連續雷射光照射。
  4. 如請求項1至3中任一項所述的方法,其中,該反應室壓力係選擇在10-12至101hPa的範圍內。
  5. 如請求項1至4中任一項所述的方法,其中,提供反應氣氛的該步驟包括將該處理室抽空至第一壓力,然後引入該處理氣體以獲得第二壓力,即該反應室中的該反應室壓力。
  6. 如請求項5所述的方法,其中,該第一壓力低於該第二壓力。
  7. 如請求項5或6所述的方法,其中,該第二壓力選擇在10-6至101hPa的範圍內,特別是在10-4至101的範圍內,尤其是在10-4至10-2hPa的範圍內。
  8. 如請求項1至7中任一項所述的方法,其中,至少該反應室之護罩的溫度被溫度控制到在77K至500K範圍內選擇的溫度。
  9. 如請求項1至8中任一項所述的方法,其中,該反應室之內壁的溫度被溫度控制到在77K至500K範圍內選擇的溫度。
  10. 如請求項1至9中任一項所述的方法,其中,該處理氣體係選自由以下所組成之群組:氧(O)、臭氧(O3)、電漿活化氧(O)、氮(N)、電漿活化氮(N)、氫(H)、氟(F)、氯(Cl)、溴(Br)、碘(I)、磷(P)、硫(S)、硒(Se)、汞(Hg)、NH3、N2O、CH4及前述之組合。
  11. 如請求項1至10中任一項所述的方法,其中,該源材料是在該反應氣氛中為固體或液體的材料。
  12. 如請求項1至11中任一項所述的方法,其中,該源材料係選自由以下所組成之群組:Sc、Ti、V、Cr、Mn、Fe、Co、Ni、Cu、Zn、Zr、Nb、Mo、Ru、Hf、Al、Mg、Ca、Sr、Ba、Y、Rh、Ta、W、Re、Ir、Ga、In、Si、Ge、Sn、Eu、Ce、Pd、Ag、Pt、Au、前述之合金和前述之組合。
  13. 如請求項1至12中任一項所述的方法,其中,用雷射光照射該一個或多個源以昇華和/或蒸發該源材料的原子和/或分子的該雷射光係聚焦在該一個或多個源處,其中,對於1mm2的斑點尺寸,強度在1到2000W的範圍內選擇,而該一個或多個源與該基板之間的距離在50到120mm的範圍內選擇。
  14. 如請求項1至13中任一項所述的方法,其中,用雷射光照射該一個或多個源的該雷射光的波長在100nm至20μm的範圍內選擇,特別是在450nm至1.2μm的範圍內選擇。
  15. 如請求項1至14中任一項所述的方法,其中,沉積在該基板上的該化合物是氧化物。
  16. 如請求項1至14中任一項所述的方法,其中,沉積在該基板上的該化合物是氮化物。
  17. 如請求項1至14中任一項所述的方法,其中,沉積在該基板上的該化合物是氫化物、氟化物、氯化物、溴化物、碘化物、磷化物、硫化物、硒化物或汞化合物。
  18. 如請求項1至15中任一項所述的方法,其中,該源材料是Ti,沉積在該基板上的該化合物主要是銳鈦礦或金紅石二氧化鈦,該雷射光具有在515至1070nm範圍內選擇的波長,特別是在1000至1070nm範圍內,在1至2000W範圍內的強度對應於該源表面上0.001至2kW/mm2的功率密度,特別是在100至200W範圍內對應於0.1至0.2kW/mm2的功率密度,處理氣體是O2和O3的混合物,特別是O3含量為5至10重量百分比,反應室壓力為10-11至1hPa,特別是10-6至10-2hPa,化合物層厚度範圍為0到1μm可在0到180分鐘的時間段內獲得,特別是700nm在15到30分鐘的時間段內,工作距離為10mm到1m,特別是40到80mm,而基板直徑為5至300mm,特別是51mm。
  19. 如請求項1至15中任一項所述的方法,其中,該源材料是Ni,沉積在該基板上的該化合物主要是NiO,該雷射光具有在515至1070nm範圍內選擇的波長,特別是在1000至1070nm範圍內,在1至2000W範圍內的強度對應於該源表面上0.001至2kW/mm2的功率密度, 特別是在100至350W範圍內對應於0.1至0.35kW/mm2的功率密度,處理氣體是O2和O3的混合物,特別是O3含量為5至10重量百分比,反應室壓力為10-11至1hPa,特別是10-6至10-2hPa,化合物層厚度範圍為0到1μm可在0到50分鐘的時間段內獲得,特別是500nm在10到20分鐘的時間段內,工作距離為10mm到1m,特別是40到80mm,而基板直徑為5至300mm,特別是51mm。
  20. 如請求項1至15中任一項所述的方法,其中,該源材料是Co,沉積在該基板上的該化合物主要是Co3O4,該雷射光具有在515至1070nm範圍內選擇的波長,特別是在1000至1070nm範圍內,在1至2000W範圍內的強度對應於該源表面上0.001至2kW/mm2的功率密度,特別是在100至200W範圍內對應於0.1至0.2kW/mm2的功率密度,處理氣體是O2和O3的混合物,特別是O3含量為5至10重量百分比,反應室壓力為10-11至1hPa,特別是10-6至10-2hPa,化合物層厚度範圍為0到1μm可在0到90分鐘的時間段內獲得,特別是200nm在10到20分鐘的時間段內,工作距離為10mm到1m,特別是40到80mm,而基板直徑為5至300mm,特別是51mm。
  21. 如請求項1至15中任一項所述的方法,其中,該源材料是Fe,沉積在該基板上的該化合物主要是Fe3O4,該雷射光具有在515至1070nm範圍內選擇的波長,特別是在1000至1070nm範圍內,在1至2000W範圍內的強度對應於該源表面上0.001至2kW/mm2的功率密度,特別是在100至200W範圍內對應於0.1至0.2kW/mm2的功率密度,處理氣體是O2和O3的混合物,特別是O3含量為5至10重量百分比,反應室壓力為10-11至1hPa,特別是10-6至10-2hPa,化合物層厚度範圍為0到10μm可在0到30分鐘的時間段內獲得,特別是5μm在10到20分鐘 的時間段內,工作距離為10mm到1m,特別是40到80mm,而基板直徑為5至300mm,特別是51mm。
  22. 如請求項1至15中任一項所述的方法,其中,該源材料是Cu,沉積在該基板上的該化合物主要是CuO,該雷射光具有在515至1070nm範圍內選擇的波長,特別是在1000至1070nm範圍內,在1至2000W範圍內的強度對應於該源表面上0.001至2kW/mm2的功率密度,特別是在200至400W範圍內對應於0.2至0.4kW/mm2的功率密度,處理氣體是O2和O3的混合物,特別是O3含量為5至10重量百分比,反應室壓力為10-11至1hPa,特別是10-6至10-2hPa,化合物層厚度範圍為0到1μm可在0到100分鐘的時間段內獲得,特別是0.15μm在15到30分鐘的時間段內,工作距離為10mm到1m,特別是40到80mm,而基板直徑為5至300mm,特別是51mm。
  23. 如請求項1至15中任一項所述的方法,其中,該源材料是V,沉積在該基板上的該化合物主要是V2O3、VO2或V2O5,該雷射光具有在515至1100nm範圍內選擇的波長,特別是在1000至1100nm範圍內,在1至2000W範圍內的強度對應於該源表面上0.001至2kW/mm2的功率密度,特別是在60至120W範圍內對應於0.06至0.12kW/mm2的功率密度,處理氣體是O2和O3的混合物,特別是O3含量為5至10重量百分比,反應室壓力為10-11至1hPa,特別是10-6至10-2hPa,化合物層厚度範圍為0到1μm可在0到60分鐘的時間段內獲得,特別是0.3μm在10到20分鐘的時間段內,工作距離為10mm到1m,特別是40到80mm,而基板直徑為5至300mm,特別是51mm。
  24. 如請求項1至15中任一項所述的方法,其中,該源材料是Nb,沉積在該基板上的該化合物主要是Nb2O5,該雷射光具有在515至 1100nm範圍內選擇的波長,特別是在1000至1100nm範圍內,在1至2000W範圍內的強度對應於該源表面上0.001至2kW/mm2的功率密度,特別是在200至400W範圍內對應於0.2至0.4kW/mm2的功率密度,處理氣體是O2和O3的混合物,特別是O3含量為5至10重量百分比,反應室壓力為10-11至1hPa,特別是10-6至10-2hPa,化合物層厚度範圍為0到2μm可在0到20分鐘的時間段內獲得,特別是1.4μm在10到20分鐘的時間段內,工作距離為10mm到1m,特別是40到80mm,而基板直徑為5至300mm,特別是51mm。
  25. 如請求項1至15中任一項所述的方法,其中,該源材料是Cr,沉積在該基板上的該化合物主要是Cr2O3,該雷射光具有在515至1100nm範圍內選擇的波長,特別是在1000至1100nm範圍內,在1至2000W範圍內的強度對應於該源表面上0.001至2kW/mm2的功率密度,特別是在20至80W範圍內對應於0.02至0.08kW/mm2的功率密度,處理氣體是O2和O3的混合物,特別是O3含量為5至10重量百分比,反應室壓力為10-11至1hPa,特別是10-6至10-2hPa,化合物層厚度範圍為0到1μm可在0到30分鐘的時間段內獲得,特別是0.5μm在10到20分鐘的時間段內,工作距離為10mm到1m,特別是40到80mm,而基板直徑為5至300mm,特別是51mm。
  26. 如請求項1至15中任一項所述的方法,其中,該源材料是Ru,沉積在該基板上的該化合物主要是RuO2,該雷射光具有在515至1100nm範圍內選擇的波長,特別是在1000至1100nm範圍內,在1至2000W範圍內的強度對應於該源表面上0.001至2kW/mm2的功率密度,特別是在200至600W範圍內對應於0.2至0.6kW/mm2的功率密度,處理氣體是O2和O3的混合物,特別是O3含量為5至10重量百分比,反應 室壓力為10-11至1hPa,特別是10-6至10-2hPa,化合物層厚度範圍為0到1μm可在0到300分鐘的時間段內獲得,特別是0.06μm在10到20分鐘的時間段內,工作距離為10mm到1m,特別是40到80mm,而基板直徑為5至300mm,特別是51mm。
  27. 如請求項1至15中任一項所述的方法,其中,該源材料是Zn,沉積在該基板上的該化合物主要是ZnO,該雷射光具有在515至1100nm範圍內選擇的波長,特別是在1000至1100nm範圍內,在1至2000W範圍內的強度對應於該源表面上0.001至2kW/mm2的功率密度,特別是在5至10W範圍內對應於0.005至0.010kW/mm2的功率密度,處理氣體是O2和O3的混合物,特別是O3含量為5至10重量百分比,反應室壓力為10-11至1hPa,特別是10-6至10-2hPa,化合物層厚度範圍為0到1μm可在0到20分鐘的時間段內獲得,特別是1.4μm在10到20分鐘的時間段內,工作距離為10mm到1m,特別是40到80mm,而基板直徑為5至300mm,特別是51mm。
  28. 如請求項1至15中任一項所述的方法,其中,該源材料是Mn,沉積在該基板上的該化合物主要是MnO,該雷射光具有在515至1100nm範圍內選擇的波長,特別是在1000至1100nm範圍內,在1至2000W範圍內的強度對應於該源表面上0.001至2kW/mm2的功率密度,特別是在5至10W範圍內對應於0.005至0.010kW/mm2的功率密度,處理氣體是O2和O3的混合物,特別是O3含量為5至10重量百分比,反應室壓力為10-11至1hPa,特別是10-6至10-2hPa,化合物層厚度範圍為0到1μm可在0到20分鐘的時間段內獲得,特別是1.4μm在10到20分鐘的時間段內,工作距離為10mm到1m,特別是40到80mm,而基板直徑為5至300mm,特別是51mm。
  29. 如請求項1至15中任一項所述的方法,其中,該源材料是Sc,沉積在該基板上的該化合物主要是Sc2O3,該雷射光具有在515至1100nm範圍內選擇的波長,特別是在1000至1100nm範圍內,在1至2000W範圍內的強度對應於該源表面上0.001至2kW/mm2的功率密度,特別是在20至50W範圍內對應於0.02至0.05kW/mm2的功率密度,處理氣體是O2和O3的混合物,特別是O3含量為5至10重量百分比,反應室壓力為10-11至1hPa,特別是10-6至10-2hPa,化合物層厚度範圍為0到1μm可在0到20分鐘的時間段內獲得,特別是1.3μm在10到20分鐘的時間段內,工作距離為10mm到1m,特別是40到80mm,而基板直徑為5至300mm,特別是51mm。
  30. 如請求項1至15中任一項所述的方法,其中,該源材料是Mo,沉積在該基板上的該化合物主要是Mo4O11或MoO3,該雷射光具有在515至1100nm範圍內選擇的波長,特別是在1000至1100nm範圍內,在1至2000W範圍內的強度對應於該源表面上0.001至2kW/mm2的功率密度,特別是在400至800W範圍內對應於0.4至0.8kW/mm2的功率密度,處理氣體是O2和O3的混合物,特別是O3含量為5至10重量百分比,反應室壓力為10-11至1hPa,特別是10-6至10-2hPa,化合物層厚度範圍為0到4μm可在0到30分鐘的時間段內獲得,特別是4.0μm在10到20分鐘的時間段內,工作距離為10mm到1m,特別是40到80mm,而基板直徑為5至300mm,特別是51mm。
  31. 如請求項1至15中任一項所述的方法,其中,該源材料是Zr,沉積在該基板上的該化合物主要是ZrO2,該雷射光具有在515至1100nm範圍內選擇的波長,特別是在1000至1100nm範圍內,在1至2000W範圍內的強度對應於該源表面上0.001至2kW/mm2的功率密度, 特別是在300至500W範圍內對應於0.3至0.5kW/mm2的功率密度,處理氣體是O2和O3的混合物,特別是O3含量為5至10重量百分比,反應室壓力為10-11至1hPa,特別是10-6至10-2hPa,化合物層厚度範圍為0到1μm可在0到100分鐘的時間段內獲得,特別是0.2μm在15到25分鐘的時間段內,工作距離為10mm到1m,特別是40到80mm,而基板直徑為5至300mm,特別是51mm。
  32. 如請求項1至15中任一項所述的方法,其中,該源材料是Hf,沉積在該基板上的該化合物主要是HfO2,該雷射光具有在515至1100nm範圍內選擇的波長,特別是在1000至1100nm範圍內,在1至2000W範圍內的強度對應於該源表面上0.001至2kW/mm2的功率密度,特別是在250至400W範圍內對應於0.25至0.4kW/mm2的功率密度,處理氣體是O2和O3的混合物,特別是O3含量為5至10重量百分比,反應室壓力為10-11至1hPa,特別是10-6至10-2hPa,化合物層厚度範圍為0到1μm可在0到40分鐘的時間段內獲得,特別是0.6μm在15到25分鐘的時間段內,工作距離為10mm到1m,特別是40到80mm,而基板直徑為5至300mm,特別是51mm。
  33. 如請求項1至15中任一項所述的方法,其中,該源材料是Al,沉積在該基板上的該化合物主要是Al2O3,該雷射光具有在515至1100nm範圍內選擇的波長,特別是在1000至1100nm範圍內,在1至2000W範圍內的強度對應於該源表面上0.001至2kW/mm2的功率密度,特別是在200至400W範圍內對應於0.2至0.4kW/mm2的功率密度,處理氣體是O2和O3的混合物,特別是O3含量為5至10重量百分比,反應室壓力為10-11至1hPa,特別是10-6至10-2hPa,化合物層厚度範圍為0到1μm可在0到20分鐘的時間段內獲得,特別是1.0μm在1到5分鐘 的時間段內,工作距離為10mm到1m,特別是40到80mm,而基板直徑為5至300mm,特別是51mm。
  34. 如請求項1至33中任一項所述的方法,其中,用雷射光照射該一個或多個源的該步驟至少熔化該一個或多個源的該表面。
  35. 如請求項1至34中任一項所述的方法,其中,用雷射光源表面照射該一個或多個源的該步驟促進與該處理氣體的該反應。
  36. 一種化合物,在基板上的厚度選擇範圍為單層至10μm,特別是單層至100nm,該化合物可通過根據請求項1至5中任一項所述的方法獲得。
  37. 一種化合物作為層存在於基板上,該層具有在基板上的單層至100nm範圍內選擇的厚度,該化合物的量子位元弛豫時間和量子位元相干時間大於100μs,較佳地大於1000μs,甚至更佳地大於10ms並且小於1000ms。
TW111118395A 2021-07-01 2022-05-17 化合物層之形成方法 TW202307251A (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
WOPCT/EP2021/068246 2021-07-01
PCT/EP2021/068246 WO2023274549A1 (en) 2021-07-01 2021-07-01 Method of forming a layer of a compound

Publications (1)

Publication Number Publication Date
TW202307251A true TW202307251A (zh) 2023-02-16

Family

ID=76845211

Family Applications (1)

Application Number Title Priority Date Filing Date
TW111118395A TW202307251A (zh) 2021-07-01 2022-05-17 化合物層之形成方法

Country Status (5)

Country Link
EP (1) EP4314375A1 (zh)
JP (1) JP2024523692A (zh)
CN (1) CN117580971A (zh)
TW (1) TW202307251A (zh)
WO (1) WO2023274549A1 (zh)

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080187684A1 (en) * 2007-02-07 2008-08-07 Imra America, Inc. Method for depositing crystalline titania nanoparticles and films
DE102018127262A1 (de) * 2018-10-31 2020-04-30 MAX-PLANCK-Gesellschaft zur Förderung der Wissenschaften e.V. Beschichtungsvorrichtung sowie Verfahren zum Beschichten eines Substrats

Also Published As

Publication number Publication date
CN117580971A (zh) 2024-02-20
WO2023274549A1 (en) 2023-01-05
JP2024523692A (ja) 2024-06-28
EP4314375A1 (en) 2024-02-07

Similar Documents

Publication Publication Date Title
Vu et al. Physical vapour deposition of vanadium dioxide for thermochromic smart window applications
EP1847632B1 (en) Apparatus and process for the preparation of p-type semiconductor zinc oxide films
US10115888B2 (en) Method for manufacturing crystal film
US4843029A (en) Method of manufacturing a heteroepitaxial compound semiconductor device using photo smoothing between layer growth
Fox et al. Composition/structure/property relations of multi-ion-beam reactive sputtered lead lanthanum titanate thin films: Part I. Composition and structure analysis
US10115887B2 (en) Ferroelectric ceramics and method for manufacturing the same
TW202307251A (zh) 化合物層之形成方法
JP2000178713A (ja) β−FeSi2薄膜の形成方法
TW202349484A (zh) 作為磊晶模板之單晶晶圓表面之製法、磊晶模板及裝置
CN117678348A (zh) 生产固态组件的方法、固态组件、量子组件及生产固态组件的设备
JP4465461B2 (ja) ペロブスカイト型酸化物エピタキシャル薄膜の作製方法
Pell et al. Laser deposition of oriented BiMeVOx films
Surendran et al. A hybrid pulsed laser deposition approach to grow thin films of chalcogenides
Vu et al. Physical Vapor Deposition and its application in vanadium dioxide synthesis
Biswas et al. Epitaxial conducting ABO3 perovskite oxide thin films
JPH04182317A (ja) 酸化物超電導薄膜の作製方法
Haindl et al. Thin Film Growth of Fe-Based Superconductors
KUMAR et al. RepoRt (ms-381) on pULseD LAseR Deposition (pLD)
Bäuerle et al. Thin-film formation by pulsed-laser deposition and laser-induced evaporation
Lapano A Study of Structure Induced Phase Phenomena in Perovskite Oxide Thin Films
JP2004217484A (ja) パルスレーザ蒸着によるダイアモンドの結晶薄膜の作製方法及び同方法で作製した薄膜
Fisher Film growth and structure design in the BaO-SrO-TiC> 2 system
Lei ATOMIC CONSTRUCTION OF OXIDE THIN FILMS BY LASER MOLECULAR BEAM EPITAXY
Fisher Film growth and structure design in the barium oxide-strontium oxide-titanium dioxide system
Ota Growth Study of Cuprate Thin Films by PLD