TW202315085A - 3d and flash memory device and method of fabricating the same - Google Patents

3d and flash memory device and method of fabricating the same Download PDF

Info

Publication number
TW202315085A
TW202315085A TW110134325A TW110134325A TW202315085A TW 202315085 A TW202315085 A TW 202315085A TW 110134325 A TW110134325 A TW 110134325A TW 110134325 A TW110134325 A TW 110134325A TW 202315085 A TW202315085 A TW 202315085A
Authority
TW
Taiwan
Prior art keywords
separation
layers
layer
flash memory
channel
Prior art date
Application number
TW110134325A
Other languages
Chinese (zh)
Other versions
TWI794974B (en
Inventor
胡志瑋
葉騰豪
呂函庭
Original Assignee
旺宏電子股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旺宏電子股份有限公司 filed Critical 旺宏電子股份有限公司
Priority to TW110134325A priority Critical patent/TWI794974B/en
Application granted granted Critical
Publication of TWI794974B publication Critical patent/TWI794974B/en
Publication of TW202315085A publication Critical patent/TW202315085A/en

Links

Images

Landscapes

  • Non-Volatile Memory (AREA)
  • Semiconductor Memories (AREA)

Abstract

A three-dimensional AND flash memory device includes a stack structure, isolators, channel pillars, source pillars and drain pillars, and charge storage structures. The stack structure is located on a dielectric substrate and includes gate layers and insulating layers alternately stacked with each other. The isolators divide the stack structure into sub-blocks and include walls and slits. The walls include isolation layers and the insulating layers stacked alternately with each other, and the isolation layers are buried in the gate layers. The slits alternate with the walls, and each of the slits extends through the stack structure. The channel pillars extend through the stack structure in each of the sub-blocks. The source pillars and the drain pillars are located in the channel pillars. The charge storage structures are located between the gate layers and the channel pillar.

Description

三維AND快閃記憶體元件及其製造方法Three-dimensional AND flash memory device and manufacturing method thereof

本發明是有關於一種半導體元件及其製造方法,且特別是有關於一種三維AND快閃記憶體元件及其製造方法。The present invention relates to a semiconductor element and its manufacturing method, and in particular to a three-dimensional AND flash memory element and its manufacturing method.

非揮發性記憶體具有可使得存入的資料在斷電後也不會消失的優點,因此廣泛採用於個人電腦和其他電子設備中。目前業界較常使用的三維記憶體包括反或式(NOR)記憶體以及反及式(NAND)記憶體。此外,另一種三維記憶體為及式(AND)記憶體,其可應用在多維度的記憶體陣列中而具有高積集度與高面積利用率,且具有操作速度快的優點。因此,三維記憶體元件的發展已逐漸成為目前的趨勢。Non-volatile memory has the advantage that the stored data will not disappear after power failure, so it is widely used in personal computers and other electronic devices. The 3D memory commonly used in the industry currently includes Negative OR (NOR) memory and Negative AND (NAND) memory. In addition, another type of three-dimensional memory is an AND memory, which can be applied in a multi-dimensional memory array and has high integration and high area utilization, and has the advantage of fast operation speed. Therefore, the development of three-dimensional memory components has gradually become a current trend.

本發明提出一種三維AND快閃記憶體元件及其製造方法可以減少堆疊結構傾斜或倒塌。The invention provides a three-dimensional AND flash memory element and its manufacturing method, which can reduce the tilt or collapse of stacked structures.

本發明的一實施例提出一種三維AND快閃記憶體元件,包括:堆疊結構,位於介電基底上,其中所述堆疊結構包括彼此交替堆疊的多個閘極層與多個絕緣層;多個分隔物,將所述堆疊結構分隔成多個子區塊,所述多個分隔物包括:多個堆疊牆,包括彼此交替堆疊的多個分隔層與所述多個絕緣層,其中所述多個分隔層埋在所述多個閘極層中;多個分隔狹縫,與所述多個堆疊牆彼此交替,其中每一分隔狹縫延伸穿過所述堆疊結構的所述多個閘極層與所述多個絕緣層;多個通道柱,延伸穿過每一子區塊的所述堆疊結構;多個源極柱與多個汲極柱,位於所述多個通道柱內,且與所述多個通道柱電性連接;以及多個電荷儲存結構,位於所述多個閘極層與所述通道柱之間。An embodiment of the present invention proposes a three-dimensional AND flash memory device, comprising: a stack structure located on a dielectric substrate, wherein the stack structure includes a plurality of gate layers and a plurality of insulating layers stacked alternately with each other; a plurality of A divider, which separates the stacked structure into a plurality of sub-blocks, and the plurality of dividers include: a plurality of stacking walls, including a plurality of separation layers and the plurality of insulating layers stacked alternately with each other, wherein the plurality of separation layers buried in the plurality of gate layers; a plurality of separation slits alternating with the plurality of stack walls, wherein each separation slit extends through the plurality of gate layers of the stack structure and the plurality of insulating layers; a plurality of channel columns extending through the stacked structure of each sub-block; a plurality of source columns and a plurality of drain columns located in the plurality of channel columns, and with the plurality of channel columns The plurality of channel pillars are electrically connected; and a plurality of charge storage structures are located between the plurality of gate layers and the channel pillars.

本發明的一實施例提出一種三維AND快閃記憶體元件,包括:形成堆疊結構於介電基底上,其中所述堆疊結構包括彼此交替堆疊的多個中間層與多個絕緣層;形成多個通道柱延伸穿過所述堆疊結構;於所述多個通道柱內形成與所述多個通道柱電性連接的多個源極柱與多個汲極柱;圖案化所述堆疊結構,以在所述堆疊結構中形成多個分隔溝槽,每一分隔溝槽延伸穿過所述堆疊結構的所述多個中間層與所述多個絕緣層;局部地移除所述多個中間層,以形成多個水平開口,其中未被移除的部分所述多個中間層形成多個分隔層,所述多個分隔層與所述多個絕緣層形成多個堆疊牆,所述多個分隔溝槽與所述多個堆疊牆彼此交替,並將所述堆疊結構分隔成多個子區塊;在所述多個水平開口中形成多個閘極層,其中每一分隔層夾在所述多個閘極層之間;形成多個電荷儲存結構,位於所述多個閘極層與所述通道柱之間;以及於所述多個分隔溝槽中形成多個分隔狹縫,其中所述多個分隔狹縫與所述多個堆疊牆彼此交替,並將所述堆疊結構分隔成多個子區塊。An embodiment of the present invention provides a three-dimensional AND flash memory device, comprising: forming a stack structure on a dielectric substrate, wherein the stack structure includes a plurality of intermediate layers and a plurality of insulating layers stacked alternately; forming a plurality of channel pillars extending through the stack structure; forming a plurality of source pillars and a plurality of drain poles electrically connected to the plurality of channel pillars in the plurality of channel pillars; patterning the stack structure to forming a plurality of separation trenches in the stack structure, each separation trench extending through the plurality of intermediate layers and the plurality of insulating layers of the stack structure; partially removing the plurality of intermediate layers , to form a plurality of horizontal openings, wherein the portions of the plurality of intermediate layers that are not removed form a plurality of separation layers, and the plurality of separation layers and the plurality of insulating layers form a plurality of stacked walls, the plurality of separation trenches alternate with the plurality of stack walls, and separate the stack structure into a plurality of sub-blocks; a plurality of gate layers are formed in the plurality of horizontal openings, wherein each separation layer is sandwiched between the Between the plurality of gate layers; forming a plurality of charge storage structures, located between the plurality of gate layers and the channel column; and forming a plurality of separation slits in the plurality of separation trenches, wherein the The plurality of separation slits alternate with the plurality of stacking walls, and separate the stacking structure into a plurality of sub-blocks.

基於上述,在本發明實施例中,將中間層留下來做為分隔物,可以減少分隔溝槽的數量,藉此以避免堆疊結構倒塌的情形。Based on the above, in the embodiment of the present invention, the intermediate layer is left as a separator, which can reduce the number of separation trenches, thereby avoiding the collapse of the stacked structure.

三維快閃記憶體的閘極是將絕緣層與中間層的堆疊結構中的中間層進行閘極取代製程而成。然而,將中間層移除之後,堆疊結構的結構性不佳且支撐性不足,常有傾斜或塌陷,因而導致後續在形成之全域位元線(GBL)接觸窗時發生錯誤對準,因而造成所形成的接觸窗與頂層的閘極層發生短路。本發明實施例將部分的中間層留下來做為分隔層,其可與其上下方的絕緣層共同形成堆疊牆。堆疊牆可以與通道柱共同做為支撐結構,避免堆疊結構傾斜或倒塌,因此可以提升良率,並且可以避免接觸窗與頂層的閘極層發生短路。The gate of the three-dimensional flash memory is formed by performing a gate replacement process on the intermediate layer in the stacked structure of the insulating layer and the intermediate layer. However, after the interlayer is removed, the stacked structure is poorly structured and supportive, often tilted or collapsed, which leads to misalignment in the subsequent formation of global bit line (GBL) contact windows, resulting in The formed contacts are short-circuited with the top gate layer. In the embodiment of the present invention, part of the middle layer is left as a separation layer, which can form a stacking wall together with insulating layers above and below it. The stack wall can be used as a support structure together with the channel pillar to prevent the stack structure from tilting or collapsing, thus improving the yield and avoiding the short circuit between the contact window and the top gate layer.

圖1A示出根據一些實施例的3D AND快閃記憶體陣列的電路圖。圖1B示出根據一些實施例的3D AND快閃記憶體陣列的上視圖。圖1C示出圖1B中簡化的部分的記憶陣列的局部三維視圖。圖1D示出圖1C的切線I-I’的剖面圖。圖1E示出圖1C、圖1D的切線II-II’的上視圖。Figure 1A shows a circuit diagram of a 3D AND flash memory array according to some embodiments. FIG. 1B shows a top view of a 3D AND flash memory array according to some embodiments. FIG. 1C shows a partial three-dimensional view of the simplified portion of the memory array in FIG. 1B. Fig. 1D shows a cross-sectional view along line I-I' of Fig. 1C. Fig. 1E shows a top view of the line II-II' of Fig. 1C, Fig. 1D.

圖1A為包括配置成列及行的垂直AND記憶陣列10的2個子區塊BLOCK (i)與BLOCK (i+1)的示意圖。子區塊BLOCK (i)中包括記憶陣列A (i)。記憶陣列A (i)的一列(例如是第m+1列)是具有共同字元線(例如WL (i) m+1)的AND記憶單元20集合。每一列(例如是第m+1列)的AND記憶單元20對應於共同字元線(例如WL (i) m+1),且耦接至不同的源極柱(例如SP (i) n與SP (i) n+1)與汲極柱(例如DP (i) n與DP (i) n+1),從而使得AND記憶單元20沿共同字元線(例如WL (i) m+1)邏輯地配置成一列。 FIG. 1A is a schematic diagram of two sub-blocks BLOCK (i) and BLOCK (i+1) including a vertical AND memory array 10 arranged in columns and rows. The sub-block BLOCK (i) includes the memory array A (i) . A column (eg column m+1) of the memory array A (i) is a set of AND memory cells 20 having a common word line (eg WL (i) m+1 ). The AND memory cells 20 of each column (eg column m+1) correspond to a common word line (eg WL (i) m+1 ), and are coupled to different source columns (eg SP (i) n and SP (i) n+1 ) and drain poles (such as DP (i) n and DP (i) n+1 ), so that the AND memory cell 20 is along a common word line (such as WL (i) m+1 ) Logically arranged into a column.

記憶陣列A ( i )的一行(例如是第n行)是具有共同源極柱(例如SP ( i ) n)與共同汲極柱(例如DP ( i ) n)的AND記憶單元20集合。每一行(例如是第n行)的AND記憶單元20對應於不同字元線(例如WL ( i ) m+1與WL ( i ) m),且耦接至共同的源極柱(例如SP ( i ) n)與共同的汲極柱(例如DP ( i ) n),從而使得AND記憶單元20沿共同源極柱(例如SP ( i ) n)與共同汲極柱(例如DP ( i ) n)邏輯地配置成一行。在實體佈局中,根據所應用的製造方法,行或列可經扭曲,以蜂巢式模式或其他方式配置,以用於高密度或其他原因。 A row (eg row n ) of the memory array A ( i ) is a set of AND memory cells 20 having a common source column (eg SP ( i ) n ) and a common drain column (eg DP ( i ) n ). The AND memory cells 20 in each row (eg row n) correspond to different word lines (eg WL ( i ) m+1 and WL ( i ) m ), and are coupled to a common source column (eg SP ( i ) n ) and a common drain column (such as DP ( i ) n ), so that the AND memory cell 20 is connected along a common source column (such as SP ( i ) n ) and a common drain column (such as DP ( i ) n ) are logically arranged in one line. In a physical layout, the rows or columns may be distorted, arranged in a honeycomb pattern or otherwise, for high density or for other reasons, depending on the fabrication method applied.

在圖1A中,在子區塊BLOCK (i)中,記憶陣列A (i)的第n行的AND記憶單元20共用共同的源極柱(例如SP ( i ) n)與共同的汲極柱(例如DP ( i ) n)。第n+1行的AND記憶單元20共用共同的源極柱(例如SP (i) n+1)與共同的汲極柱(例如DP ( i ) n+1)而耦接至共同的位元線(例如BL n+1)。 In FIG. 1A, in the sub-block BLOCK (i) , the AND memory cells 20 in the nth row of the memory array A (i) share a common source column (for example, SP ( i ) n ) and a common drain column. (e.g. DP ( i ) n ). The AND memory cells 20 in row n+1 share a common source column (eg SP (i) n+1 ) and a common drain column (eg DP ( i ) n+1 ) and are coupled to a common bit line (eg BL n+1 ).

在一些實施例中,子區塊BLOCK (i+1)包括記憶陣列A (i+1),其與在子區塊BLOCK (i)中的記憶陣列A (i)相似。記憶陣列A (i+1)的一列(例如是第m+1列)是具有共同字元線(例如WL (i+1) m+1)的AND記憶單元20集合。每一列(例如是第m+1列)的AND記憶單元20對應於共同字元線(例如WL (i+1) m+1),且耦接至不同的源極柱(例如SP (i+1) n與SP (i+1) n+1)與汲極柱(例如DP (i+1) n與DP (i+1) n+1)。記憶陣列A ( i+1 )的一行(例如是第n行)是具有共同源極柱(例如SP ( i+1 ) n)與共同汲極柱(例如DP ( i+1 ) n)的AND記憶單元20集合。每一行(例如是第n行)的AND記憶單元20對應於不同字元線(例如WL ( i+1 ) m+1與WL ( i+1 ) m),且耦接至共同的源極柱(例如SP ( i+1 ) n)與共同的汲極柱(例如DP ( i+1 ) n),從而使得AND記憶單元20沿共同源極柱(例如SP ( i+1 ) n)與共同汲極柱(例如DP ( i+1 ) n)邏輯地配置成一行。 In some embodiments, sub-block BLOCK (i+1) includes memory array A (i+1) similar to memory array A (i) in sub-block BLOCK ( i). A column (eg column m+1) of the memory array A (i +1) is a set of AND memory cells 20 having a common word line (eg WL (i+1) m+1 ). The AND memory cells 20 of each column (eg column m+1) correspond to a common word line (eg WL (i+1) m+1 ), and are coupled to different source columns (eg SP (i+ 1) n and SP (i+1) n+1 ) and drain legs (eg DP (i+1) n and DP (i+1) n+1 ). A row (for example, row n) of memory array A ( i+1 ) is an AND with a common source column (for example, SP ( i+1 ) n ) and a common drain column (for example, DP ( i+1 ) n ) A collection of memory units 20 . The AND memory cells 20 in each row (eg row n) correspond to different word lines (eg WL ( i+1 ) m+1 and WL ( i+1 ) m ), and are coupled to a common source column (eg SP ( i+1 ) n ) and a common drain column (eg DP ( i+1 ) n ), so that the AND memory cell 20 is connected to a common source column (eg SP ( i+1 ) n ) Drain posts (eg DP ( i+1 ) n ) are logically arranged in a row.

子區塊BLOCK (i+1)與子區塊BLOCK (i)共用源極線(例如是SL n與SL n+1)與位元線(例如BL n與BL n+1)。因此,源極線SL n與位元線BL n耦接至子區塊BLOCK (i)的AND記憶陣列中的第n行AND記憶單元20,且耦接至子區塊BLOCK (i+1)中的AND記憶陣列中的第n行AND記憶單元20。同樣,源極線SL n+1與位元線BL n+1耦接至子區塊BLOCK (i)的AND記憶陣列中的第n+1行AND記憶單元20,且耦接至子區塊BLOCK (i+1)中的AND記憶陣列中的第n+1行AND記憶單元20。 The sub-blocks BLOCK (i+1) and the sub-blocks BLOCK (i) share source lines (such as SL n and SL n+1 ) and bit lines (such as BL n and BL n+1 ). Therefore, the source line SL n and the bit line BL n are coupled to the n-th row of AND memory cells 20 in the AND memory array of the sub-block BLOCK (i) , and are coupled to the sub-block BLOCK (i+1) The AND memory unit 20 of the nth row in the AND memory array. Similarly, the source line SL n+1 and the bit line BL n+1 are coupled to the n+1th row of AND memory cells 20 in the AND memory array of the sub-block BLOCK (i) , and are coupled to the sub-block The AND memory unit 20 in the n+1th row of the AND memory array in BLOCK (i+1) .

請參照圖1B,記憶陣列10可包括多個分隔物SEP,將閘極堆疊結構52分成多個子區塊B,例如是子區塊B1與子區塊B2。本發明之分隔物SEP包括在Y方向上彼此交替設置的多個堆疊牆STW與多個分隔狹縫SLT。堆疊牆STW與分隔狹縫SLT為不同的絕緣材料。絕緣材料可包括有機絕緣材料、無機絕緣材料或其組合。堆疊牆STW是由多個分隔層56與多個絕緣層54堆疊而成的堆疊結構,如圖1D所示。分隔層56與絕緣層54的材料別例如為氮化矽和氧化矽。分隔狹縫SLT例如為氧化矽。各子區塊B1與B2可包括設置在介電基底50上的閘極堆疊結構52、多個通道柱16、多個導體柱(又可稱為源極柱)32a與多個導體柱(又可稱為汲極柱)32b和多個電荷儲存結構40,如圖1C所示。Referring to FIG. 1B , the memory array 10 may include a plurality of partitions SEP to divide the gate stack structure 52 into a plurality of sub-blocks B, such as sub-block B1 and sub-block B2 . The partition SEP of the present invention includes a plurality of stacked walls STW and a plurality of separation slits SLT arranged alternately in the Y direction. The stack walls STW are of different insulating material than the separation slots SLT. The insulating material may include an organic insulating material, an inorganic insulating material, or a combination thereof. The stacked wall STW is a stacked structure formed by stacking a plurality of separation layers 56 and a plurality of insulating layers 54 , as shown in FIG. 1D . Materials of the separation layer 56 and the insulating layer 54 are, for example, silicon nitride and silicon oxide. The separation slit SLT is, for example, silicon oxide. Each sub-block B1 and B2 may include a gate stack structure 52 disposed on a dielectric substrate 50, a plurality of channel pillars 16, a plurality of conductor pillars (also referred to as source pillars) 32a and a plurality of conductor pillars (also referred to as source pillars) 32a and a plurality of conductor pillars (also called may be referred to as a drain post) 32b and a plurality of charge storage structures 40, as shown in FIG. 1C.

請參照圖1B與圖1C,記憶陣列10可安置於半導體晶粒的後段製程(back end of line;BEOL)中。舉例而言,記憶陣列10可安置於半導體晶粒的內連線結構中,諸如,安置於在半導體基底上形成的一或多個主動元件(例如電晶體)上方。因此,介電基底50例如是形成於矽基板上的金屬內連線結構上方的介電層,例如氧化矽層。介電基底50可包括陣列區AR與階梯區SR。Referring to FIG. 1B and FIG. 1C , the memory array 10 can be disposed in the back end of line (BEOL) of semiconductor die. For example, the memory array 10 may be disposed in an interconnect structure of a semiconductor die, such as disposed over one or more active devices (eg, transistors) formed on a semiconductor substrate. Therefore, the dielectric substrate 50 is, for example, a dielectric layer, such as a silicon oxide layer, formed above the metal interconnect structure on the silicon substrate. The dielectric substrate 50 may include an array region AR and a stepped region SR.

請參照圖1B與圖1C,閘極堆疊結構52形成在陣列區AR與階梯區SR的介電基底50上。閘極堆疊結構52包括在介電基底50的表面上垂直堆疊的多個閘極層(又稱為字元線)38與多層的絕緣層54。在Z方向上,這些閘極層38藉由設置在其彼此之間的絕緣層54電性隔離。閘極層38在與介電基底50(示於圖1D)的表面平行的方向上延伸。在階梯區SR的閘極層38可具有階梯結構SC(示於圖1B),以使得下部的閘極層38比上部閘極層38長,且下部的閘極層38的末端橫向延伸出上部閘極層38的末端。用於連接閘極層38的接觸窗C1可著陸於閘極層38的末端,藉以將各層閘極層38連接至各個導線。Referring to FIG. 1B and FIG. 1C , the gate stack structure 52 is formed on the dielectric substrate 50 in the array region AR and the step region SR. The gate stack structure 52 includes a plurality of gate layers (also referred to as word lines) 38 and multiple layers of insulating layers 54 vertically stacked on the surface of the dielectric substrate 50 . In the Z direction, the gate layers 38 are electrically isolated by an insulating layer 54 disposed between them. Gate layer 38 extends in a direction parallel to the surface of dielectric substrate 50 (shown in FIG. 1D ). The gate layer 38 in the stepped region SR may have a stepped structure SC (shown in FIG. 1B ), so that the lower gate layer 38 is longer than the upper gate layer 38 and the end of the lower gate layer 38 extends laterally out of the upper end of gate layer 38 . The contact C1 for connecting the gate layer 38 may land on the end of the gate layer 38 so as to connect each gate layer 38 to each wire.

請參照圖1B至圖1E,記憶陣列10還包括多個通道柱16。通道柱16連續延伸穿過陣列區AR的閘極堆疊結構52。在一些實施例中,通道柱16於上視角度來看可具有環形的輪廓。通道柱16的材料可以是半導體,例如是未摻雜的多晶矽。Referring to FIG. 1B to FIG. 1E , the memory array 10 further includes a plurality of channel pillars 16 . The channel pillar 16 extends continuously through the gate stack structure 52 of the array region AR. In some embodiments, the channel post 16 may have a ring-shaped profile when viewed from above. The material of the channel pillar 16 can be semiconductor, such as undoped polysilicon.

請參照圖1C至圖1E,記憶陣列10還包括絕緣填充層24、絕緣柱28、多個導體柱(又可稱為源極柱)32a與多個導體柱(又可稱為汲極柱)32b。導體柱32a與32b以及絕緣柱28設置在通道柱16內各自在垂直於閘極層38的方向(即Z方向)上延伸。導體柱32a與32b藉由絕緣填充層24與絕緣柱28分隔,且與通道柱16電性耦接。導體柱32a與32b例如是摻雜的多晶矽。絕緣柱28例如是氮化矽。Please refer to FIG. 1C to FIG. 1E, the memory array 10 further includes an insulating filling layer 24, an insulating column 28, a plurality of conductor columns (also called source columns) 32a and a plurality of conductor columns (also called drain columns) 32b. The conductive columns 32 a and 32 b and the insulating column 28 are disposed in the channel column 16 and each extends in a direction perpendicular to the gate layer 38 (ie, the Z direction). The conductive pillars 32 a and 32 b are separated from the insulating pillar 28 by the insulating filling layer 24 , and are electrically coupled to the channel pillar 16 . The conductive pillars 32a and 32b are, for example, doped polysilicon. The insulating pillar 28 is, for example, silicon nitride.

請參照圖1D,電荷儲存結構40設置於通道柱16與多層閘極層38之間。電荷儲存結構40可以包括穿隧層(或稱為能隙工程穿隧氧化層)14、電荷儲存層12以及阻擋層36。電荷儲存層12位於穿隧層14與阻擋層36之間。在一些實施例中,穿隧層14、電荷儲存層12以及阻擋層36例如是氧化矽、氮化矽與氧化矽。在一些實施例中,電荷儲存結構40的一部分(穿隧層14)在垂直於閘極層38的方向(即Z方向)上連續延伸,而電荷儲存結構40的另一部分(電荷儲存層12與阻擋層36)環繞於閘極層38的周圍,如圖1D所示Referring to FIG. 1D , the charge storage structure 40 is disposed between the channel pillar 16 and the multilayer gate layer 38 . The charge storage structure 40 may include a tunneling layer (or called a bandgap engineered tunnel oxide layer) 14 , a charge storage layer 12 and a blocking layer 36 . The charge storage layer 12 is located between the tunneling layer 14 and the blocking layer 36 . In some embodiments, the tunneling layer 14 , the charge storage layer 12 and the blocking layer 36 are, for example, silicon oxide, silicon nitride, and silicon oxide. In some embodiments, a part of the charge storage structure 40 (the tunneling layer 14 ) extends continuously in a direction perpendicular to the gate layer 38 (ie, the Z direction), while another part of the charge storage structure 40 (the charge storage layer 12 and The barrier layer 36) surrounds the gate layer 38, as shown in FIG. 1D

請參照圖1E,閘極層38與其所環繞的電荷儲存結構40、通道柱16以及源極柱32a與汲極柱32b界定出記憶單元20。記憶單元20可藉由不同的操作方法進行1位元操作或2位元操作。舉例來說,在對源極柱32a與汲極柱32b施加電壓時,由於源極柱32a與汲極柱32b與通道柱16連接,因此電子可沿著通道柱16傳送並儲存在整個電荷儲存結構40中,如此可對記憶單元20進行1位元的操作。此外,對於利用福勒-諾德漢穿隧(Fowler-Nordheim tunneling)的操作來說,可使電子或是電洞被捕捉在源極柱32a與汲極柱32b之間的電荷儲存結構40中。對於源極側注入(source side injection)、通道熱電子(channel-hot-electron)注入或帶對帶穿隧熱載子(band-to-band tunneling hot carrier)注入的操作來說,可使電子或電洞被局部地捕捉在鄰近兩個源極柱32a與汲極柱32b中的一者的電荷儲存結構40中,如此可對記憶單元20進行單位晶胞(SLC,1位元)或多位晶胞(MLC,大於或等於2位元)的操作。Referring to FIG. 1E , the gate layer 38 and the surrounding charge storage structure 40 , the channel pillar 16 , and the source pillar 32 a and the drain pillar 32 b define the memory cell 20 . The memory unit 20 can perform 1-bit operation or 2-bit operation through different operation methods. For example, when a voltage is applied to the source column 32a and the drain column 32b, since the source column 32a and the drain column 32b are connected to the channel column 16, electrons can be transmitted along the channel column 16 and stored in the entire charge storage In the structure 40, a 1-bit operation can be performed on the memory unit 20 in this way. In addition, for the operation utilizing Fowler-Nordheim tunneling, electrons or holes can be trapped in the charge storage structure 40 between the source post 32a and the drain post 32b. . For source side injection, channel-hot-electron injection, or band-to-band tunneling hot carrier injection, electrons can be Or the holes are locally trapped in the charge storage structure 40 adjacent to one of the two source posts 32a and drain posts 32b, so that the unit cell (SLC, 1 bit) or multiple Bit cell (MLC, greater than or equal to 2 bits) operations.

在進行操作時,將電壓施加至所選擇的字元線(閘極層)38,例如施加高於對應記憶單元20的相應起始電壓(V th)時,與所選擇的字元線38相交的通道柱16的通道區被導通,而允許電流從位元線BL n或BL n+1(示於圖1C)進入汲極柱32b,並經由導通的通道區流至源極柱32a(例如,在由箭頭60所指示的方向上),最後流到源極線SL n或SL n+1(示於圖1C)。 In operation, a voltage is applied to a selected word line (gate layer) 38 , such as when a corresponding threshold voltage (V th ) higher than that of the corresponding memory cell 20 is applied, intersecting the selected word line 38 The channel region of the channel column 16 is turned on, allowing current to enter the drain column 32b from the bit line BL n or BL n+1 (shown in FIG. 1C ) and flow to the source column 32a (eg , in the direction indicated by the arrow 60 ), finally flows to the source line SL n or SL n+1 (shown in FIG. 1C ).

請參照圖1B,閘極層38是將絕緣層54與中間層之堆疊結構中的中間層移除,並經由閘極取代製程而形成。在本發明中,部分的多個中間層被留下來做為分隔層56。分隔層56與絕緣層54彼此堆疊而形成子區塊B之間的堆疊牆STW。Referring to FIG. 1B , the gate layer 38 is formed by removing the intermediate layer in the stacked structure of the insulating layer 54 and the intermediate layer, and through a gate replacement process. In the present invention, part of the plurality of intermediate layers is left as the spacer layer 56 . The separation layer 56 and the insulating layer 54 are stacked to form a stacking wall STW between the sub-blocks B. As shown in FIG.

堆疊牆STW的分隔層56與分隔狹縫SLT在X方向上連續延伸。在一些實施例中,堆疊牆STW的分隔層56在陣列區AR連續延伸且延伸至階梯區SR。在另一些實施例中,堆疊牆STW的分隔層56在陣列區AR連續延伸,但不會延伸至階梯區SR。亦即,堆疊牆STW的分隔層56在X方向上的長度L1小於或等於分隔狹縫SLT在X方向上的長度L2。The partition layer 56 of the stack wall STW extends continuously in the X direction with the partition slit SLT. In some embodiments, the separation layer 56 of the stack wall STW extends continuously in the array region AR and extends to the step region SR. In some other embodiments, the separation layer 56 of the stack wall STW extends continuously in the array area AR, but does not extend to the stepped area SR. That is, the length L1 of the partition layer 56 of the stack wall STW in the X direction is smaller than or equal to the length L2 of the partition slit SLT in the X direction.

再者,堆疊牆STW的分隔層56在Y方向上的寬度W1小於或等於分隔狹縫SLT在Y方向上的寬度W2。堆疊牆STW的分隔層56在Z方向上的高度H1小於或等於分隔狹縫SLT在Z方向上的高度H2,如圖1D所示。此外,堆疊牆STW的分隔層56與分隔狹縫SLT具有不同的輪廓。從上視圖觀之,堆疊牆STW的分隔層56具有彎曲的輪廓,而分隔狹縫SLT大致呈長矩形,如圖1B所示。Furthermore, the width W1 of the partition layer 56 of the stack wall STW in the Y direction is smaller than or equal to the width W2 of the partition slit SLT in the Y direction. The height H1 of the partition layer 56 of the stack wall STW in the Z direction is smaller than or equal to the height H2 of the partition slit SLT in the Z direction, as shown in FIG. 1D . Furthermore, the separation layer 56 of the stack wall STW has a different profile than the separation slit SLT. Seen from above, the partition layer 56 of the stack wall STW has a curved profile, while the partition slit SLT is roughly rectangular, as shown in FIG. 1B .

在本發明中,留下來的分隔層56可與絕緣層54一起作為子區塊B之間的堆疊牆STW,因此,分隔層56可以做為支撐結構,減少用來形成分隔狹縫SLT的分隔溝槽的數量,避免在進行閘極取代製程時,因為移除中間層而發生堆疊結構傾倒或倒塌的情形。In the present invention, the remaining separation layer 56 can be used together with the insulating layer 54 as the stacking wall STW between the sub-blocks B. Therefore, the separation layer 56 can be used as a supporting structure to reduce the separation used to form the separation slit SLT. The number of trenches prevents the stack structure from toppling or collapsing due to the removal of the intermediate layer during the gate replacement process.

堆疊牆STW的方法形成可參照圖2A至圖2G以及圖3A至圖3E詳細說明之。圖2A至圖2G是依照本發明的實施例的一種三維AND快閃記憶體元件的剖面示意圖。圖2C至圖2G為圖3A至圖3E切線IV-IV’的剖面圖。圖3A至圖3E示出圖2C至圖2G的切線III-III’的上視圖。圖4示出一種三維AND快閃記憶體元件的分隔物的上視圖。圖5示出一種三維AND快閃記憶體元件的立體圖。The method of forming the stacked wall STW can be described in detail with reference to FIGS. 2A to 2G and FIGS. 3A to 3E . 2A to 2G are schematic cross-sectional views of a three-dimensional AND flash memory device according to an embodiment of the present invention. 2C to 2G are cross-sectional views of line IV-IV' in FIGS. 3A to 3E . Figures 3A to 3E show top views of the line III-III' of Figures 2C to 2G. FIG. 4 shows a top view of a partition of a three-dimensional AND flash memory device. FIG. 5 shows a perspective view of a three-dimensional AND flash memory device.

請參照圖2A,提供介電基底100。介電基底100例如是形成於矽基板上的金屬內連線結構的介電層,例如氧化矽層。介電基底100包括陣列區AR與階梯區SR。於陣列區AR與階梯區SR的介電基底100上形成堆疊結構SK1。堆疊結構SK1又可稱為絕緣堆疊結構SK1。在本實施例中,堆疊結構SK1由依序交錯堆疊於介電基底100上的絕緣層104與中間層106所構成。在其他實施例中,堆疊結構SK1可由依序交錯堆疊於介電基底100上的中間層106與絕緣層104所構成。此外,在本實施例中,堆疊結構SK1的最上層為絕緣層104。絕緣層104例如為氧化矽層。中間層106例如為氮化矽層。中間層106可作為犧牲層,在後續的製程中被局部移除之。在本實施例中,堆疊結構SK1具有8層絕緣層104與7層中間層106,但本發明不限於此。在其他實施例中,可視實際需求來形成更多層的絕緣層104與更多層的中間層106。Referring to FIG. 2A , a dielectric substrate 100 is provided. The dielectric substrate 100 is, for example, a dielectric layer of a metal interconnect structure formed on a silicon substrate, such as a silicon oxide layer. The dielectric substrate 100 includes an array region AR and a stepped region SR. A stack structure SK1 is formed on the dielectric substrate 100 in the array region AR and the step region SR. The stack structure SK1 can also be called an insulating stack structure SK1. In this embodiment, the stack structure SK1 is composed of insulating layers 104 and intermediate layers 106 stacked on the dielectric substrate 100 in sequence. In other embodiments, the stack structure SK1 may be formed by the intermediate layer 106 and the insulating layer 104 that are sequentially stacked on the dielectric substrate 100 . In addition, in this embodiment, the uppermost layer of the stack structure SK1 is the insulating layer 104 . The insulating layer 104 is, for example, a silicon oxide layer. The middle layer 106 is, for example, a silicon nitride layer. The intermediate layer 106 can be used as a sacrificial layer, which is partially removed in subsequent processes. In this embodiment, the stack structure SK1 has 8 insulating layers 104 and 7 intermediate layers 106 , but the invention is not limited thereto. In other embodiments, more insulating layers 104 and more intermediate layers 106 can be formed according to actual needs.

在一些實施例中,在形成堆疊結構SK1之前,在介電基底100上先形成絕緣層101、停止層102與導體層103。絕緣層101例如是氧化矽。停止層102形成在絕緣層中101。停止層102例如是導體圖案,例如是多晶矽圖案。導體層103例如是接地的多晶矽層。導體層103又可以稱為虛設閘極,其可以用來關閉漏電路徑。In some embodiments, before forming the stack structure SK1 , the insulating layer 101 , the stop layer 102 and the conductive layer 103 are first formed on the dielectric substrate 100 . The insulating layer 101 is, for example, silicon oxide. A stopper layer 102 is formed in the insulating layer 101 . The stop layer 102 is, for example, a conductive pattern, such as a polysilicon pattern. The conductive layer 103 is, for example, a grounded polysilicon layer. The conductive layer 103 can also be called a dummy gate, which can be used to close the leakage path.

將堆疊結構SK1圖案化,以在階梯區SR形成階梯結構SC(如圖3A與圖5所示)。The stacked structure SK1 is patterned to form a stepped structure SC in the stepped region SR (as shown in FIG. 3A and FIG. 5 ).

接著,請參照圖2B與圖3A,於陣列區AR的堆疊結構SK1中形成多個開孔108。在本實施例中,開孔108延伸穿過導體層103,且其底面暴露出停止層102與絕緣層101,但本發明不限於此。在本實施例中,以上視角度來看,開孔108具有圓形的輪廓,但本發明不限於此。在其他實施例中,開孔108可具有其他形狀的輪廓,例如多邊形(未示出)。Next, referring to FIG. 2B and FIG. 3A , a plurality of openings 108 are formed in the stack structure SK1 of the array area AR. In the present embodiment, the opening 108 extends through the conductive layer 103 , and the bottom surface thereof exposes the stopper layer 102 and the insulating layer 101 , but the invention is not limited thereto. In this embodiment, from the above perspective, the opening 108 has a circular outline, but the invention is not limited thereto. In other embodiments, the opening 108 may have other shaped contours, such as a polygon (not shown).

請參照圖2B與圖3A,在開孔108之中形成穿隧層114與通道柱116。穿隧層例如是氧化矽層。通道柱116的材料可為半導體,例如未摻雜多晶矽。穿隧層114與通道柱116的形成方法例如是在堆疊結構SK1上以及開孔108之中形成穿隧材料層以及通道材料層。接著,進行回蝕製程,以局部移除穿隧材料層與通道材料層,形成穿隧層114與通道柱116。穿隧層114與通道柱116覆蓋在開孔108的側壁上,裸露出開孔108的底部。穿隧層114與通道柱116可延伸穿過堆疊結構SK1並延伸至絕緣層101中。通道柱116的上視圖例如為環形,且在其延伸方向上(例如垂直介電基底100的方向上)可為連續的。也就是說,通道柱116在其延伸方向上為整體的,並未分成多個不相連的部分。在一些實施例中,通道柱116於上視角度來看可具有圓形的輪廓,但本發明不限於此。在其他實施例中,通道柱116以上視角度來看也可具有其他形狀(例如多邊形)的輪廓。Referring to FIG. 2B and FIG. 3A , a tunneling layer 114 and a channel column 116 are formed in the opening 108 . The tunneling layer is, for example, a silicon oxide layer. The material of the channel pillar 116 can be a semiconductor, such as undoped polysilicon. The method for forming the tunneling layer 114 and the channel pillar 116 is, for example, forming a tunneling material layer and a channeling material layer on the stack structure SK1 and in the opening 108 . Next, an etch-back process is performed to partially remove the tunneling material layer and the channel material layer to form the tunneling layer 114 and the channel pillar 116 . The tunneling layer 114 and the channel pillar 116 cover the sidewall of the opening 108 , exposing the bottom of the opening 108 . The tunneling layer 114 and the channel pillar 116 can extend through the stack structure SK1 and extend into the insulating layer 101 . The channel column 116 is, for example, ring-shaped in a top view, and may be continuous in its extending direction (eg, in a direction perpendicular to the dielectric substrate 100 ). That is to say, the channel column 116 is integral in its extending direction, and is not divided into a plurality of disconnected parts. In some embodiments, the channel post 116 may have a circular profile viewed from above, but the invention is not limited thereto. In other embodiments, the channel column 116 may also have other shapes (such as polygonal) contours from the above perspective.

在本實施例中,電荷儲存結構140的穿隧層114形成在開孔108之內,電荷儲存結構140的儲存層112與阻擋層136在閘極取代製程期間才形成在水平開口134之中,如圖2F所示。In this embodiment, the tunneling layer 114 of the charge storage structure 140 is formed in the opening 108, and the storage layer 112 and the blocking layer 136 of the charge storage structure 140 are formed in the horizontal opening 134 during the gate replacement process. As shown in Figure 2F.

請參照圖2B與圖3A,在開孔108中形成絕緣填充層124與絕緣柱128。絕緣填充層124的材料例如是氧化矽;絕緣柱128的材料例如是氮化矽。在絕緣填充層124填充開孔108時,在尚未完全填滿而留下孔洞之際,填入不同於絕緣填充層124的絕緣材料,將開孔108完全封口。在經由乾蝕刻或濕蝕刻製程將絕緣材料回蝕至絕緣填充層124的表面裸露出來,留在開孔108正中心的絕緣材料形成絕緣柱128。Referring to FIG. 2B and FIG. 3A , an insulating filling layer 124 and insulating pillars 128 are formed in the opening 108 . The material of the insulating filling layer 124 is, for example, silicon oxide; the material of the insulating pillar 128 is, for example, silicon nitride. When the insulating filling layer 124 fills the opening 108 , before it is completely filled and leaves a hole, an insulating material different from the insulating filling layer 124 is filled to completely seal the opening 108 . After the insulating material is etched back to expose the surface of the insulating filling layer 124 through the dry etching or wet etching process, the insulating material remaining in the center of the opening 108 forms the insulating pillar 128 .

請參照圖2C與圖3A,進行圖案化製程,例如是微影與蝕刻製程,以在絕緣填充層124中形成孔130a與130b。在進行蝕刻的過程中,可以停止層102做為蝕刻停止層。因此,所形成的孔130a與130b從堆疊結構SK1延伸至裸露出停止層102為止。圖案化製程所定義的孔的圖案的輪廓可以與絕緣柱128的輪廓相切。圖案化製程所定義的孔的圖案的輪廓也可超出絕緣柱128的輪廓。由於絕緣柱128的蝕刻速率小於絕緣填充層124的蝕刻速率,因此,絕緣柱128幾乎不會遭受蝕刻的破壞而保留下來。此外,在一些實施例中,圖案化製程所定義的孔的圖案的輪廓會超出開孔108的輪廓,使得孔130a與130b裸露出堆疊結構SK1的部分頂絕緣層104。Referring to FIG. 2C and FIG. 3A , patterning processes, such as lithography and etching processes, are performed to form holes 130 a and 130 b in the insulating filling layer 124 . During the etching process, the stop layer 102 can be used as an etch stop layer. Therefore, the formed holes 130 a and 130 b extend from the stack structure SK1 to the exposed stop layer 102 . The contour of the hole pattern defined by the patterning process may be tangent to the contour of the insulating pillar 128 . The contour of the hole pattern defined by the patterning process may also exceed the contour of the insulating pillar 128 . Since the etching rate of the insulating pillar 128 is lower than that of the insulating filling layer 124 , the insulating pillar 128 is hardly damaged by etching and remains. In addition, in some embodiments, the contour of the hole pattern defined by the patterning process exceeds the contour of the opening 108 , so that the holes 130 a and 130 b expose part of the top insulating layer 104 of the stacked structure SK1 .

請參照圖3A,在一些實施例中,還在階梯區SR中形成虛設柱118。虛設柱118可以在後續閘極取代製程中做為支撐柱。虛設柱118可以在形成穿隧層114、通道柱116、絕緣填充層124以及絕緣柱128時同時形成。虛設柱118也可以另外形成。虛設柱118的數量可以依據需要而定。在一些實施例中,在階梯區SR的虛設柱118彼此相錯,且階梯區SR的虛設柱118之間的距離D2大於或等於通道柱116之間的距離D1,且其密度低於在陣列區AR的通道柱116的密度。Referring to FIG. 3A , in some embodiments, dummy pillars 118 are also formed in the stepped region SR. The dummy pillar 118 can be used as a supporting pillar in the subsequent gate replacement process. The dummy pillar 118 may be formed simultaneously when the tunneling layer 114 , the channel pillar 116 , the insulating filling layer 124 and the insulating pillar 128 are formed. Dummy pillars 118 may also be additionally formed. The number of dummy columns 118 can be determined according to needs. In some embodiments, the dummy pillars 118 in the step region SR are staggered with each other, and the distance D2 between the dummy pillars 118 in the step region SR is greater than or equal to the distance D1 between the channel pillars 116, and its density is lower than that in the array The density of channel pillars 116 of region AR.

參照圖2C與圖3A,在孔130a與130b中形成導體柱132a與132b。導體柱132a與132b可分別做為源極柱與汲極柱,且分別與通道柱116電性連接。導體柱132a與132b可以是在絕緣填充層124上以及孔130a與130b中形成導體層,然後再經由回蝕刻而形成。導體柱132a與132b例如是摻雜的多晶矽。導體柱132a與132b的徑向尺寸可以相同或是相異。導體柱132a與132b的中心的連線可以與Y方向夾銳角(如圖3A所示);或與Y方向平行(未示出),即與後續形成的分隔狹縫SLT垂直(如圖3E所示)。此外,相鄰兩列的通道柱116可以彼此相錯(如圖3A至圖3E所示),或是彼此對齊(未示出)。Referring to FIG. 2C and FIG. 3A, conductor posts 132a and 132b are formed in the holes 130a and 130b. The conductor posts 132 a and 132 b can be used as source posts and drain posts respectively, and are electrically connected to the channel posts 116 respectively. The conductive pillars 132a and 132b may be formed by forming a conductive layer on the insulating filling layer 124 and in the holes 130a and 130b, and then etching back. The conductor pillars 132a and 132b are, for example, doped polysilicon. The radial dimensions of the conductor posts 132a and 132b can be the same or different. The line connecting the centers of the conductor columns 132a and 132b may form an acute angle with the Y direction (as shown in FIG. 3A ); or be parallel to the Y direction (not shown), that is, perpendicular to the subsequent separation slit SLT (as shown in FIG. 3E ). Show). In addition, the channel pillars 116 in two adjacent columns may be staggered (as shown in FIG. 3A to FIG. 3E ) or aligned with each other (not shown).

之後,參照圖2D至圖2G以及圖3B至圖3E,進行取代製程,以將多層中間層106取代為多層閘極層138等。首先,參照圖2D與圖3B,對堆疊結構SK1進行圖案化製程,例如是微影與蝕刻製程,以形成多個分隔溝槽133。在進行蝕刻製程時,可以導體層103做為蝕刻停止層,使得分隔溝槽133裸露出導體層103。Afterwards, referring to FIGS. 2D to 2G and FIGS. 3B to 3E , a replacement process is performed to replace the multi-layer intermediate layer 106 with a multi-layer gate layer 138 and the like. First, referring to FIG. 2D and FIG. 3B , a patterning process, such as lithography and etching process, is performed on the stack structure SK1 to form a plurality of separation trenches 133 . During the etching process, the conductive layer 103 can be used as an etching stop layer, so that the separation trench 133 exposes the conductive layer 103 .

參照圖3B,分隔溝槽133沿著X方向延伸,使陣列區AR與階梯區SR的堆疊結構SK1分割成多個區塊TB。每個區塊TB包括堆疊結構SK2、多個通道柱116以及位於多個通道柱116之中的構件,例如導體柱132a與132b、穿隧層114、絕緣填充層124與絕緣柱128。本發明的區塊TB的面積是後續形成之子區塊B的面積的兩倍以上,具有較低的高寬比。Referring to FIG. 3B , the separation trench 133 extends along the X direction to divide the stacked structure SK1 of the array region AR and the step region SR into a plurality of blocks TB. Each block TB includes a stack structure SK2 , a plurality of channel pillars 116 , and components located in the plurality of channel pillars 116 , such as conductor pillars 132 a and 132 b , tunneling layer 114 , insulating filling layer 124 and insulating pillar 128 . The area of the block TB of the present invention is more than twice the area of the subsequently formed sub-block B, and has a lower aspect ratio.

接著,請參照圖2E與圖3C,進行蝕刻製程,例如濕式蝕刻製程,以將部分的多層中間層106移除。由於蝕刻製程所採用的蝕刻液(例如是熱磷酸)注入於分隔溝槽133之中,再將所接觸的部分的多層中間層106移除。因此,在較接近分隔溝槽133之處的多層中間層106會先被移除,而較遠離分隔溝槽133之處的多層中間層106會較慢被移除。在進行蝕刻的過程中,當通道柱116與分隔溝槽133之間的多層中間層106被移除時,由於穿隧層114與中間層106的材料不同,因此,穿隧層114可以做為蝕刻停止層,以保護通道柱116。繼續進行蝕刻製程,藉由時間模式的控制,將大部分的多層中間層106移除,以形成多個水平開口134的堆疊結構SK3。距離分隔溝槽133較遠的部分的中間層106a被留下來,而形成分隔層156。留下來的分隔層156位於兩個水平開口134之間,如圖2E所示。Next, referring to FIG. 2E and FIG. 3C , an etching process, such as a wet etching process, is performed to remove part of the multi-layer intermediate layer 106 . The etchant (such as hot phosphoric acid) used in the etching process is injected into the separation trench 133 , and then the contacted portion of the multi-layer intermediate layer 106 is removed. Therefore, the interlayer layers 106 closer to the separation trenches 133 are removed first, and the interlayer layers 106 farther away from the separation trenches 133 are removed slower. During the etching process, when the multi-layer intermediate layer 106 between the channel column 116 and the separation trench 133 is removed, since the materials of the tunneling layer 114 and the intermediate layer 106 are different, the tunneling layer 114 can be used as Etch stop layer to protect the channel pillar 116 . The etching process is continued, and most of the multi-layer intermediate layer 106 is removed by controlling the time mode, so as to form a stacked structure SK3 of a plurality of horizontal openings 134 . The portion of the intermediate layer 106 a farther from the separation trench 133 is left to form the separation layer 156 . The remaining spacer layer 156 is located between the two horizontal openings 134, as shown in Figure 2E.

在一些實施例中,在階梯區SR的虛設柱118的密度較低,因此,蝕刻速率較大。在陣列區AR的通道柱116的密度較高,蝕刻液的流動速率較低,蝕刻速率較低,距離分隔溝槽133最遠的多層中間層106a被留下來。因而使得階梯區SR與陣列區AR的分隔層156的寬度不同(未示出)。此外,在一些實施例中,分隔層156具有彎曲的輪廓。所留下來的分隔層156的大小,除了可以藉由蝕刻的時間控制之外,也可以藉由階梯區SR的虛設柱118的尺寸與密度與陣列區AR的通道柱116的尺寸與密度的調整來加以控制階梯區SR與陣列區AR的中間層106的蝕刻速率。In some embodiments, the density of the dummy pillars 118 in the stepped region SR is lower, and thus, the etch rate is higher. The density of the channel pillars 116 in the array region AR is relatively high, the flow rate of the etchant is relatively low, and the etching rate is relatively low, and the multi-layer intermediate layer 106 a farthest from the separation trench 133 is left. Therefore, the width of the separation layer 156 in the step region SR and the array region AR is different (not shown). Additionally, in some embodiments, spacer layer 156 has a curved profile. The size of the remaining separation layer 156 can not only be controlled by the etching time, but also can be adjusted by the size and density of the dummy pillars 118 in the step region SR and the size and density of the channel pillars 116 in the array region AR. to control the etch rate of the intermediate layer 106 in the step region SR and the array region AR.

分隔層156與絕緣層104共同在Z方向上彼此交替堆疊而形成堆疊牆STW。因此,堆疊牆STW可以與通道柱116以及虛設柱118共同做為支撐結構,避免堆疊結構SK3傾斜或倒塌,如圖2E與圖3C所示。The separation layers 156 and the insulating layers 104 are stacked alternately in the Z direction to form a stacking wall STW. Therefore, the stacking wall STW, together with the channel column 116 and the dummy column 118 can be used as a supporting structure to prevent the stacking structure SK3 from tilting or collapsing, as shown in FIG. 2E and FIG. 3C .

此外,由於多層中間層106a可與絕緣層104共同做為堆疊牆STW,而將區塊TB分成兩個子區塊B(例如子區塊B1與B2)。堆疊牆STW的位置不需先形成分隔溝槽133,因此,可以減少分隔溝槽133的數量,保留截面積較大且高寬比較小的區塊TB,以避免因為子區塊B的堆疊結構的截面積過小且高寬比過大而發生傾斜或倒塌,如圖4與圖5所示。In addition, the block TB is divided into two sub-blocks B (eg, sub-blocks B1 and B2 ) because the multi-layer intermediate layer 106 a and the insulating layer 104 can serve as the stacking wall STW. The position of the stacked wall STW does not need to form the separation trench 133 first, therefore, the number of the separation trench 133 can be reduced, and the block TB with a large cross-sectional area and a small aspect ratio is reserved to avoid the stacking structure of the sub-block B. If the cross-sectional area is too small and the aspect ratio is too large, it will tilt or collapse, as shown in Figure 4 and Figure 5.

請參照圖2F與圖3D,在多個水平開口134中形成多層儲存層112、多層阻擋層136以及閘極層138。儲存層112例如是氮化矽。阻擋層136例如為介電常數大於或等於7的高介電常數的材料,例如氧化鋁(Al 1O 3)、氧化鉿(HfO 2)、氧化鑭(La 2O 5)、過渡金屬氧化物、鑭系元素氧化物或其組合。閘極層138例如是鎢。在一些實施例中,在形成多層閘極層138之前,還形成阻障層137。阻障層137的材料例如為鈦(Ti)、氮化鈦(TiN)、鉭(Ta)、氮化鉭(TaN)或其組合。 Referring to FIG. 2F and FIG. 3D , a multilayer storage layer 112 , a multilayer barrier layer 136 and a gate layer 138 are formed in a plurality of horizontal openings 134 . The storage layer 112 is, for example, silicon nitride. The barrier layer 136 is, for example, a material with a high dielectric constant greater than or equal to 7, such as aluminum oxide (Al 1 O 3 ), hafnium oxide (HfO 2 ), lanthanum oxide (La 2 O 5 ), transition metal oxide , lanthanide oxides, or combinations thereof. The gate layer 138 is, for example, tungsten. In some embodiments, before forming the multilayer gate layer 138 , a barrier layer 137 is also formed. The material of the barrier layer 137 is, for example, titanium (Ti), titanium nitride (TiN), tantalum (Ta), tantalum nitride (TaN) or a combination thereof.

儲存層112、阻擋層136、阻障層137以及閘極層138的形成方法例如是在分隔溝槽133與水平開口134之中依序形成儲存材料層、阻擋材料層、阻障材料層以及導體材料層,然後,再進行回蝕刻製程,移除多個分隔溝槽133中的儲存材料層、阻擋材料層、阻障材料層以及導體材料層,以在多個水平開口134中形成儲存層112、阻擋層136、阻障層137以及閘極層138。阻擋層136、穿隧層114與儲存層112合稱為電荷儲存結構140。至此,形成閘極堆疊結構150。閘極堆疊結構150,設置於介電基底100上,且包括彼此交互堆疊的多層閘極層138與多層絕緣層104。閘極層138中埋有分隔層156。分隔層156的兩側與閘極層138相鄰,如圖2F所示。The method for forming the storage layer 112, the barrier layer 136, the barrier layer 137, and the gate layer 138 is, for example, sequentially forming a storage material layer, a barrier material layer, a barrier material layer, and a conductor in the separation trench 133 and the horizontal opening 134. material layer, and then perform an etch-back process to remove the storage material layer, the barrier material layer, the barrier material layer and the conductor material layer in the plurality of separation trenches 133, so as to form the storage layer 112 in the plurality of horizontal openings 134 , barrier layer 136 , barrier layer 137 and gate layer 138 . The blocking layer 136 , the tunneling layer 114 and the storage layer 112 are collectively referred to as the charge storage structure 140 . So far, the gate stack structure 150 is formed. The gate stack structure 150 is disposed on the dielectric substrate 100 and includes multiple gate layers 138 and multiple insulating layers 104 stacked alternately. A spacer layer 156 is buried in the gate layer 138 . Two sides of the spacer layer 156 are adjacent to the gate layer 138 , as shown in FIG. 2F .

請參照圖2G與圖3E,在分隔溝槽133中形成分隔狹縫SLT。分隔狹縫SLT的形成方法包括在閘極堆疊結構150上以及分隔溝槽133中填入絕緣材料,然後經由回蝕刻製程或是平坦化製程移除閘極堆疊結構150上多餘的絕緣材料。絕緣材料例如氧化矽。分隔狹縫SLT與其相鄰的儲存層112、閘極層138以及絕緣層104接觸且具有界面133I。而在堆疊牆STW中的分隔層156與其相鄰的儲存層112接觸且具有界面156I;而堆疊牆STW中位於分隔層156上下方的絕緣層104,則是連續延伸至儲存層112下方。亦即,界面133I在Z方向為連續延伸;而界面156I則是在Z方向為不連續延伸。在Y方向上彼此交替設置的多個堆疊牆STW與多個分隔狹縫SLT將閘極堆疊結構150分隔成多個子區塊B。多個堆疊牆STW與多個分隔狹縫SLT共同形成分隔物SEP。在階梯區SR的分隔層156長度小於或等於在階梯區SR的分隔狹縫SLT的長度,如圖5所示。Referring to FIG. 2G and FIG. 3E , a separation slit SLT is formed in the separation trench 133 . The method for forming the separation slit SLT includes filling the insulating material on the gate stack structure 150 and the separation trench 133 , and then removing excess insulating material on the gate stack structure 150 through an etch-back process or a planarization process. insulating material such as silicon oxide. The separation slit SLT is in contact with the adjacent storage layer 112 , the gate layer 138 and the insulating layer 104 and has an interface 133I. The separation layer 156 in the stack wall STW is in contact with the adjacent storage layer 112 and has an interface 156I; and the insulating layer 104 above and below the separation layer 156 in the stack wall STW extends continuously to the storage layer 112 below. That is, the interface 133I extends continuously in the Z direction; while the interface 156I extends discontinuously in the Z direction. A plurality of stacked walls STW and a plurality of separation slits SLT arranged alternately in the Y direction separate the gate stack structure 150 into a plurality of sub-blocks B. Referring to FIG. The plurality of stack walls STW together with the plurality of separation slits SLT form a partition SEP. The length of the separation layer 156 in the stepped region SR is less than or equal to the length of the separation slit SLT in the stepped region SR, as shown in FIG. 5 .

請參照圖3E,之後,在階梯區SR中形成接觸窗C1。接觸窗C1著陸於階梯區SR的閘極層138的末端,並與其電性連接。Referring to FIG. 3E , afterward, a contact window C1 is formed in the stepped region SR. The contact C1 lands on the end of the gate layer 138 of the step region SR and is electrically connected thereto.

以上的實施例是以3D AND快閃記憶體來說明。然而,本發明實施例不以此為限,本發明實施例亦可應用於3D NOR快閃記憶體或3D NAND快閃記憶體。The above embodiments are illustrated with 3D AND flash memory. However, the embodiments of the present invention are not limited thereto, and the embodiments of the present invention can also be applied to 3D NOR flash memory or 3D NAND flash memory.

本發明實施例在進行閘極取代製程時,將部分的中間層留下來做為分隔層。因此,可以與現有製程整合,不會增加製程步驟,且可以藉由蝕刻製程有效控制製程變異。再者,這些分隔層可與絕緣層共同形成堆疊牆。堆疊牆可以與通道柱共同做為支撐結構,避免堆疊結構傾斜或倒塌,因此可以提升良率,並且可以避免後續在形成之位元線(GBL)接觸窗時因為堆疊結構傾斜而發生錯誤對準,因而導致所形成的接觸窗與頂層的閘極層發生短路。In the embodiment of the present invention, when the gate replacement process is performed, part of the intermediate layer is left as a spacer layer. Therefore, it can be integrated with the existing process without adding process steps, and the process variation can be effectively controlled by the etching process. Furthermore, these spacer layers may form stacked walls together with insulating layers. The stack wall can be used as a support structure together with the channel column to prevent the stack structure from tilting or collapsing, thus improving the yield rate and avoiding misalignment due to the tilt of the stack structure in the subsequent formation of the bit line (GBL) contact window. , thus causing the formed contact window to be short-circuited with the top gate layer.

10、A (i)、A (i+1):記憶陣列 12:電荷儲存層 14、114:穿隧層 15、56、156:分隔層 16、116:通道柱 20:記憶單元 24、124:絕緣填充層 28、128:絕緣柱 32a:源極柱/導體柱 32b:汲極柱/導體柱 36、136:阻擋層 38、138:閘極層/字元線 40、140:電荷儲存結構 50、100:介電基底 52、150:閘極堆疊結構 54、101、104:絕緣層 60:箭頭 102:停止層 103:導體層 106、106a:中間層 108:開孔 112:儲存層 118:虛設柱 130a、130b:孔 132a、132b:導體柱 133:分隔溝槽 133I、156I:界面 134:水平開口 137:阻障層 AR:陣列區 B、B1、B2、BLOCK、BLOCK (i)、BLOCK (i+1):子區塊 BL n、BL n+1:位元線 C1:接觸窗 D1、D2:距離 SP ( i ) n、SP (i) n+1、SP ( i+1 ) n、SP (i+1) n+1:源極柱 DP (i) n、DP i) n+1、DP i+1) n、DP (i+1) n+1:源極柱 H1、H2:高度 X、Y、Z:方向 L1、L2:長度 NAND、NOR:D SC:階梯結構 SEP:分隔物 SK2、SK2、SK3:堆疊結構 SLT:分隔狹縫 SR:階梯區 STW:堆疊牆 TB:區塊 W1、W2:寬度 WL (i) m、WL (i) m+1、WL (i+1) m、WL (i+1) m+1:字元線 X、Y、Z:方向 I-I’、II-II’、III-III’、IV-IV’:切線 10. A (i) , A (i+1) : memory array 12: charge storage layer 14, 114: tunneling layer 15, 56, 156: separation layer 16, 116: channel column 20: memory unit 24, 124: Insulation filling layer 28, 128: insulating column 32a: source column/conductor column 32b: drain column/conductor column 36, 136: barrier layer 38, 138: gate layer/word line 40, 140: charge storage structure 50 , 100: dielectric substrate 52, 150: gate stack structure 54, 101, 104: insulating layer 60: arrow 102: stop layer 103: conductor layer 106, 106a: intermediate layer 108: opening 112: storage layer 118: dummy Columns 130a, 130b: holes 132a, 132b: conductor columns 133: separation trenches 133I, 156I: interfaces 134: horizontal openings 137: barrier layer AR: array regions B, B1, B2, BLOCK, BLOCK (i) , BLOCK ( i+1) : sub-block BL n , BL n+1 : bit line C1 : contact window D1, D2 : distance SP ( i ) n , SP (i) n+1 , SP ( i+1 ) n , SP (i+1) n+1 : source pole DP (i) n , DP i) n+1 , DP i+1) n , DP (i+1) n+1 : source pole H1, H2: Height X, Y, Z: Direction L1, L2: Length NAND, NOR: D SC: Ladder structure SEP: Divider SK2, SK2, SK3: Stacking structure SLT: Separation slit SR: Ladder area STW: Stacking wall TB: Area Block W1, W2: width WL (i) m , WL (i) m+1 , WL (i+1) m , WL (i+1) m+1 : word line X, Y, Z: direction I- I', II-II', III-III', IV-IV': tangent

圖1A示出根據一些實施例的3D AND快閃記憶體陣列的電路圖。 圖1B示出根據一些實施例的3D AND快閃記憶體陣列的上視圖。 圖1C示出圖1B中簡化的部分的記憶陣列的局部三維視圖。 圖1D示出圖1C的切線I-I’的剖面圖。 圖1E示出圖1C、圖1D的切線II-II’的上視圖。 圖2A至圖2G是依照本發明的實施例的一種三維AND快閃記憶體元件的剖面示意圖。圖2C至圖2G為圖3A至圖3E切線IV-IV’的剖面圖。 圖3A至圖3E示出圖2C至圖2G的切線III-III’的上視圖。 圖4示出一種三維AND快閃記憶體元件的分隔物的上視圖。 圖5示出一種三維AND快閃記憶體元件的立體圖。 Figure 1A shows a circuit diagram of a 3D AND flash memory array according to some embodiments. FIG. 1B shows a top view of a 3D AND flash memory array according to some embodiments. FIG. 1C shows a partial three-dimensional view of the simplified portion of the memory array in FIG. 1B. Fig. 1D shows a cross-sectional view along line I-I' of Fig. 1C. Fig. 1E shows a top view of the line II-II' of Fig. 1C, Fig. 1D. 2A to 2G are schematic cross-sectional views of a three-dimensional AND flash memory device according to an embodiment of the present invention. 2C to 2G are cross-sectional views of line IV-IV' in FIGS. 3A to 3E . Figures 3A to 3E show top views of the line III-III' of Figures 2C to 2G. FIG. 4 shows a top view of a partition of a three-dimensional AND flash memory device. FIG. 5 shows a perspective view of a three-dimensional AND flash memory device.

B、B1、B2:子區塊 B, B1, B2: sub-blocks

100:介電基底 100: Dielectric substrate

101、104:絕緣層 101, 104: insulating layer

102:停止層 102: stop layer

103:導體層 103: conductor layer

106a:中間層 106a: middle layer

112:儲存層 112: storage layer

114:穿隧層 114: Tunneling layer

116:通道柱 116: channel column

124:絕緣填充層 124: insulating filling layer

128:絕緣柱 128: Insulation column

132a、132b:導體柱 132a, 132b: conductor post

133:分隔溝槽 133: separation groove

134:水平開口 134: horizontal opening

156:分隔層 156:Separation layer

SK3:堆疊結構 SK3: stacked structure

STW:堆疊牆 STW: Stacked Wall

III-III’:切線 III-III': Tangent

Y、Z:方向 Y, Z: direction

Claims (10)

一種三維AND快閃記憶體元件,包括: 堆疊結構,位於介電基底上,其中所述堆疊結構包括彼此交替堆疊的多個閘極層與多個絕緣層; 多個分隔物,將所述堆疊結構分隔成多個子區塊,所述多個分隔物包括: 多個堆疊牆,包括彼此交替堆疊的多個分隔層與所述多個絕緣層,其中所述多個分隔層埋在所述多個閘極層中; 多個分隔狹縫,與所述多個堆疊牆彼此交替,其中每一分隔狹縫延伸穿過所述堆疊結構的所述多個閘極層與所述多個絕緣層; 多個通道柱,延伸穿過每一子區塊的所述堆疊結構; 多個源極柱與多個汲極柱,位於所述多個通道柱內,且與所述多個通道柱電性連接;以及 多個電荷儲存結構,位於所述多個閘極層與所述通道柱之間。 A three-dimensional AND flash memory element, comprising: a stack structure located on the dielectric substrate, wherein the stack structure includes a plurality of gate layers and a plurality of insulating layers alternately stacked on each other; A plurality of partitions, separating the stacked structure into a plurality of sub-blocks, the plurality of partitions comprising: a plurality of stacked walls, including a plurality of spacer layers and the plurality of insulating layers alternately stacked with each other, wherein the plurality of spacer layers are buried in the plurality of gate layers; a plurality of separation slits alternating with the plurality of stack walls, wherein each separation slit extends through the plurality of gate layers and the plurality of insulating layers of the stack structure; a plurality of channel columns extending through the stacked structure of each sub-block; A plurality of source posts and a plurality of drain posts are located in the plurality of channel posts and electrically connected with the plurality of channel posts; and A plurality of charge storage structures are located between the plurality of gate layers and the channel column. 如請求項1所述的三維AND快閃記憶體元件,其中所述每一分隔層具有彎曲的輪廓。The three-dimensional AND flash memory device as claimed in claim 1, wherein each spacer layer has a curved profile. 如請求項1所述的三維AND快閃記憶體元件,其中所述每一分隔層的長度小於或等於所述每一分隔狹縫的長度;所述每一分隔層的寬度小於或等於所述每一分隔狹縫的寬度。The three-dimensional AND flash memory element as claimed in claim 1, wherein the length of each separation layer is less than or equal to the length of each separation slit; the width of each separation layer is less than or equal to the The width of each separating slit. 如請求項1所述的三維AND快閃記憶體元件,其中所述多個分隔層的材料與所述分隔狹縫的材料不同。The three-dimensional AND flash memory device as claimed in claim 1, wherein the material of the plurality of separation layers is different from that of the separation slit. 如請求項1所述的三維AND快閃記憶體元件,其中所述每一分隔層的兩側與所述多個閘極層相鄰。The three-dimensional AND flash memory device according to claim 1, wherein two sides of each spacer layer are adjacent to the plurality of gate layers. 如請求項1所述的三維AND快閃記憶體元件,其中所述多個分隔層的每一側壁與所述電荷儲存結構接觸。The three-dimensional AND flash memory device as claimed in claim 1, wherein each sidewall of the plurality of separation layers is in contact with the charge storage structure. 一種三維AND快閃記憶體元件的製造方法,包括: 形成堆疊結構於介電基底上,其中所述堆疊結構包括彼此交替堆疊的多個中間層與多個絕緣層; 形成多個通道柱延伸穿過所述堆疊結構; 於所述多個通道柱內形成與所述多個通道柱電性連接的多個源極柱與多個汲極柱; 圖案化所述堆疊結構,以在所述堆疊結構中形成多個分隔溝槽,每一分隔溝槽延伸穿過所述堆疊結構的所述多個中間層與所述多個絕緣層; 局部地移除所述多個中間層,以形成多個水平開口,其中未被移除的部分所述多個中間層形成多個分隔層,所述多個分隔層與所述多個絕緣層形成多個堆疊牆,所述多個分隔溝槽與所述多個堆疊牆彼此交替,並將所述堆疊結構分隔成多個子區塊; 在所述多個水平開口中形成多個閘極層,其中每一分隔層夾在所述多個閘極層之間; 形成多個電荷儲存結構,位於所述多個閘極層與所述通道柱之間;以及 於所述多個分隔溝槽中形成多個分隔狹縫,其中所述多個分隔狹縫與所述多個堆疊牆彼此交替,並將所述堆疊結構分隔成多個子區塊。 A method for manufacturing a three-dimensional AND flash memory element, comprising: forming a stack structure on the dielectric substrate, wherein the stack structure includes a plurality of intermediate layers and a plurality of insulating layers stacked alternately with each other; forming a plurality of channel columns extending through the stack; forming a plurality of source columns and a plurality of drain columns electrically connected to the plurality of channel columns in the plurality of channel columns; patterning the stack structure to form a plurality of separation trenches in the stack structure, each separation trench extending through the plurality of intermediate layers and the plurality of insulating layers of the stack structure; partially removing the plurality of intermediate layers to form a plurality of horizontal openings, wherein the unremoved portions of the plurality of intermediate layers form a plurality of separation layers, the plurality of separation layers and the plurality of insulating layers forming a plurality of stacked walls, the plurality of separation grooves and the plurality of stacked walls alternate with each other, and separate the stacked structure into a plurality of sub-blocks; forming a plurality of gate layers in the plurality of horizontal openings, wherein each spacer layer is sandwiched between the plurality of gate layers; forming a plurality of charge storage structures between the plurality of gate layers and the channel pillar; and A plurality of separation slits are formed in the plurality of separation trenches, wherein the plurality of separation slits and the plurality of stacking walls alternate with each other, and separate the stacked structure into a plurality of sub-blocks. 如請求項7所述的三維AND快閃記憶體元件的製造方法,其中所述每一分隔層的長度小於或等於所述每一分隔狹縫的長度;所述每一分隔層的寬度小於或等於所述每一分隔狹縫的寬度。The manufacturing method of the three-dimensional AND flash memory element as claimed in item 7, wherein the length of each of the separation layers is less than or equal to the length of each separation slit; the width of each separation layer is less than or equal to It is equal to the width of each separating slit. 如請求項7所述的三維AND快閃記憶體元件的製造方法,其中所述多個分隔層的材料與所述分隔狹縫的材料不同。The method for manufacturing a three-dimensional AND flash memory device as claimed in claim 7, wherein the material of the plurality of separation layers is different from the material of the separation slits. 如請求項7所述的三維AND快閃記憶體元件的製造方法,其中每一所述分隔層的多個側壁裸露於所述多個水平開口。The method for manufacturing a three-dimensional AND flash memory device as claimed in claim 7, wherein a plurality of sidewalls of each of the separation layers are exposed to the plurality of horizontal openings.
TW110134325A 2021-09-15 2021-09-15 3d and flash memory device and method of fabricating the same TWI794974B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW110134325A TWI794974B (en) 2021-09-15 2021-09-15 3d and flash memory device and method of fabricating the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW110134325A TWI794974B (en) 2021-09-15 2021-09-15 3d and flash memory device and method of fabricating the same

Publications (2)

Publication Number Publication Date
TWI794974B TWI794974B (en) 2023-03-01
TW202315085A true TW202315085A (en) 2023-04-01

Family

ID=86692106

Family Applications (1)

Application Number Title Priority Date Filing Date
TW110134325A TWI794974B (en) 2021-09-15 2021-09-15 3d and flash memory device and method of fabricating the same

Country Status (1)

Country Link
TW (1) TWI794974B (en)

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8203187B2 (en) * 2009-03-03 2012-06-19 Macronix International Co., Ltd. 3D memory array arranged for FN tunneling program and erase
TWI718649B (en) * 2019-08-30 2021-02-11 旺宏電子股份有限公司 Non-volatile memory with gate all around tine film transistor and method of manufacturing the same
US11133329B2 (en) * 2019-09-09 2021-09-28 Macronix International Co., Ltd. 3D and flash memory architecture with FeFET
TWI717063B (en) * 2019-10-18 2021-01-21 旺宏電子股份有限公司 Three-dimensional and type flash memory and manufacturing method thereof
TWI738489B (en) * 2020-09-02 2021-09-01 旺宏電子股份有限公司 Memory device
WO2022099464A1 (en) * 2020-11-10 2022-05-19 Yangtze Memory Technologies Co., Ltd. Channel structures having protruding portions in three-dimensional memory device and method for forming the same

Also Published As

Publication number Publication date
TWI794974B (en) 2023-03-01

Similar Documents

Publication Publication Date Title
TW201539721A (en) High aspect ratio etching method
CN112534576A (en) Bottom select gate contact for center ladder structure in three-dimensional memory device
CN114649340A (en) Three-dimensional memory element and manufacturing method thereof
TWI759015B (en) Three-dimensional memory device and method for manufacturing the same
TWI785804B (en) 3d and flash memory device and method of fabricating the same
TW202141756A (en) Memory device and method of fabricating the same
TWI785764B (en) 3d and flash memory device and method of fabricating the same
TWI794974B (en) 3d and flash memory device and method of fabricating the same
CN115497952A (en) Memory element and flash memory element
US20230082361A1 (en) 3d and flash memory device and method of fabricating the same
TWI822311B (en) Memory device and method of fabricating the same
TWI817369B (en) 3d and flash memory device and method of fabricating the same
TWI817319B (en) 3d and flash memory device and method of fabricating the same
TWI837642B (en) Memory device and method of fabricating the same
TWI830427B (en) Memory device and method of fabricating the same
TWI805228B (en) 3d and flash memory device and method of fabricating the same
US20230077489A1 (en) 3d and flash memory device and method of fabricating the same
US20230225126A1 (en) 3d and flash memory device and method of fabricating the same
US20240081058A1 (en) Memory device and method of fabricating the same
TWI832643B (en) Memory device and method for manufacturing the same
TWI840172B (en) Memory device and method of fabricating the same
TWI812164B (en) 3d and flash memory device and method of fabricating the same
TW202341447A (en) Memory device and method of fabricating the same
TWI817485B (en) Semiconductor device, memory device and method of fabricating the same
TWI768969B (en) Memory device