TW202314291A - Imaging method and imaging system - Google Patents

Imaging method and imaging system Download PDF

Info

Publication number
TW202314291A
TW202314291A TW111131945A TW111131945A TW202314291A TW 202314291 A TW202314291 A TW 202314291A TW 111131945 A TW111131945 A TW 111131945A TW 111131945 A TW111131945 A TW 111131945A TW 202314291 A TW202314291 A TW 202314291A
Authority
TW
Taiwan
Prior art keywords
radiation
bombardment
image
target
beams
Prior art date
Application number
TW111131945A
Other languages
Chinese (zh)
Inventor
曹培炎
Original Assignee
大陸商深圳幀觀德芯科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大陸商深圳幀觀德芯科技有限公司 filed Critical 大陸商深圳幀觀德芯科技有限公司
Publication of TW202314291A publication Critical patent/TW202314291A/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/02Arrangements for diagnosis sequentially in different planes; Stereoscopic radiation diagnosis
    • A61B6/03Computed tomography [CT]
    • A61B6/032Transmission computed tomography [CT]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/40Arrangements for generating radiation specially adapted for radiation diagnosis
    • A61B6/4007Arrangements for generating radiation specially adapted for radiation diagnosis characterised by using a plurality of source units
    • A61B6/4014Arrangements for generating radiation specially adapted for radiation diagnosis characterised by using a plurality of source units arranged in multiple source-detector units
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/02Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material
    • G01N23/04Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material and forming images of the material
    • G01N23/046Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material and forming images of the material using tomography, e.g. computed tomography [CT]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/54Control of apparatus or devices for radiation diagnosis
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2235/00X-ray tubes
    • H01J2235/08Targets (anodes) and X-ray converters
    • H01J2235/086Target geometry
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J35/00X-ray tubes
    • H01J35/02Details
    • H01J35/14Arrangements for concentrating, focusing, or directing the cathode ray
    • H01J35/153Spot position control

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Medical Informatics (AREA)
  • General Health & Medical Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Physics & Mathematics (AREA)
  • Radiology & Medical Imaging (AREA)
  • Pathology (AREA)
  • Molecular Biology (AREA)
  • Pulmonology (AREA)
  • Theoretical Computer Science (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Biophysics (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • Optics & Photonics (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)

Abstract

Disclosed herein is a method comprising sending M bombardment beams (bombardment beams (i), i=1, ..., M) respectively toward target spots (i), i=1, ..., M on a target resulting in radiation beams (i), i=1, ..., M emitting respectively from the target spots (i), i=1, ..., M and propagating toward an object, wherein M is an integer greater than 1; and for each value of i, obtaining a 2D (two-dimensional) image (i) of the object using radiation of the radiation beam (i) that has passed through the object, wherein the target is stationary with respect to the object.

Description

成像方法及成像系統Imaging method and imaging system

本發明是有關於一種成像方法及成像系統。The invention relates to an imaging method and an imaging system.

輻射檢測器是一種測量輻射性質的裝置。性質的示例可以包括輻射的強度、相位和偏振的空間分佈。輻射可以是已經與物體相互作用的輻射。例如,由輻射檢測器測量的輻射可以是已經穿透物體的輻射。輻射可以是電磁輻射,例如紅外光、可見光、紫外光、X射線或γ射線。輻射也可以是其它類型,例如α射線和β射線。成像系統可以包括一個或多個圖像感測器,每個圖像感測器可以具有多個輻射檢測器。A radiation detector is a device that measures the properties of radiation. Examples of properties may include the spatial distribution of the intensity, phase and polarization of the radiation. The radiation may be radiation that has interacted with the object. For example, the radiation measured by the radiation detector may be radiation that has penetrated the object. The radiation may be electromagnetic radiation, such as infrared light, visible light, ultraviolet light, X-rays or gamma rays. Radiation can also be of other types, such as alpha and beta rays. An imaging system may include one or more image sensors, each of which may have multiple radiation detectors.

本文公開了一種方法,所述方法包括:將M個轟擊束(轟擊束(i),i=1、……、M)分別向目標上的目標點(i),i=1、……、M發送,從而得到分別從目標點(i)i=1、……、M發射並向物體傳播的輻射束(i),i=1、……、M,其中,M為大於1的整數;以及對於i的每個值,使用已經穿過所述物體的所述輻射束(i)的輻射來獲得所述物體的2D(二維)圖像(i),其中,所述目標相對於所述物體是靜止的。This paper discloses a method, which includes: directing M bombardment beams (bombardment beams (i), i=1, ..., M) to target points (i) on the target, i=1, ..., M is sent, thereby obtain the radiation beam (i) that is emitted from the target point (i) i=1, ..., M and propagates to the object respectively, i=1, ..., M, wherein, M is an integer greater than 1; and for each value of i, a 2D (two-dimensional) image (i) of the object is obtained using the radiation of the radiation beam (i) that has passed through the object, wherein the object is relative to the The object is stationary.

在一方面,所述方法還包括由所述2D圖像(i),i=1、……、M重建所述物體的3D(三維)圖像。In an aspect, the method further comprises reconstructing a 3D (three-dimensional) image of said object from said 2D image (i), i=1, . . . , M.

在一方面,所述獲得所述物體的2D圖像(i)包括:使用已經穿過所述物體的所述輻射束(i)的所述輻射來逐個捕獲所述物體的Ni個局部圖像,其中,Ni為大於1的整數;以及拼接所述物體的所述Ni個局部圖像,從而得到所述物體的所述2D圖像(i)。In an aspect, said obtaining 2D images (i) of said object comprises: using said radiation of said radiation beam (i) that has passed through said object to capture Ni partial images of said object one by one , wherein, Ni is an integer greater than 1; and stitching the Ni partial images of the object to obtain the 2D image (i) of the object.

在一方面,所有Ni,i=1、......、M都是相同的。In one aspect, all Ni, i=1, . . . , M are the same.

在一方面,所述M個轟擊束中的每一個都包括電子束。In one aspect, each of the M bombardment beams comprises an electron beam.

在一方面,所述目標包含銅或鎢。In one aspect, the target comprises copper or tungsten.

在一方面,所述轟擊束(i),i=1、……、M被逐個發送。In one aspect, said bombardment beams (i), i=1, . . . , M are sent one by one.

在一方面,圖像感測器獲得所有的所述2D圖像(i),i=1、……、M。In one aspect, an image sensor acquires all said 2D images (i), i=1, . . . , M.

在一方面,所述發送M個轟擊束是使用轟擊束發生器進行的,所述轟擊束發生器包括多個電子槍,每個所述電子槍發送M個所述轟擊束中的至少一個。In an aspect, said transmitting M bombardment beams is performed using a bombardment beam generator comprising a plurality of electron guns, each of said electron guns transmitting at least one of M said bombardment beams.

在一方面,所述轟擊束發生器物理地固定於所述目標。In one aspect, the bombardment beam generator is physically fixed to the target.

本文公開了一種成像系統,包括:轟擊束發生器;目標;以及圖像感測器系統,所述圖像感測器系統包括至少一個圖像感測器,其中,所述轟擊束發生器被配置為將M個轟擊束(轟擊束(i),i=1、……、M)分別向所述目標上的目標點(i),i=1、……、M發送,從而得到分別從所述目標點(i)i=1、……、M發射並向所述物體傳播的輻射束(i),i=1、……、M,其中,M為大於1的整數,其中,所述圖像感測器系統被配置為,對於i的每個值,使用已經穿過所述物體的所述輻射束(i)的輻射來獲得所述物體的2D(二維)圖像(i),並且其中,所述目標相對於所述物體是靜止的。Disclosed herein is an imaging system comprising: a bombardment beam generator; a target; and an image sensor system including at least one image sensor, wherein the bombardment beam generator is It is configured to send M bombardment beams (bombardment beam (i), i=1, ..., M) to the target point (i), i = 1, ..., M on the target, respectively, so as to obtain The radiation beam (i) emitted by the target point (i) i=1,...,M and propagating to the object, i=1,...,M, wherein, M is an integer greater than 1, wherein, the The image sensor system is configured to obtain, for each value of i, a 2D (two-dimensional) image (i) of the object using the radiation of the radiation beam (i) that has passed through the object ), and wherein the target is stationary relative to the object.

在一方面,所述圖像感測器系統還被配置為由所述2D圖像(i),i=1、……、M重建所述物體的3D(三維)圖像。In an aspect, the image sensor system is further configured to reconstruct a 3D (three-dimensional) image of the object from the 2D image (i), i=1, . . . , M.

在一方面,所述圖像感測器系統還被配置為通過以下方式來獲得所述物體的所述2D圖像(i):使用已經穿過所述物體的所述輻射束(i)的所述輻射來逐個捕獲所述物體的Ni個局部圖像,其中,Ni為大於1的整數;以及拼接所述物體的所述Ni個局部圖像,從而得到所述物體的所述2D圖像(i)。In an aspect, the image sensor system is further configured to obtain the 2D image (i) of the object by using an image of the radiation beam (i) that has passed through the object capturing Ni partial images of the object one by one by the radiation, wherein Ni is an integer greater than 1; and splicing the Ni partial images of the object to obtain the 2D image of the object (i).

在一方面,所有Ni,i=1、......、M都是相同的。In one aspect, all Ni, i=1, . . . , M are the same.

在一方面,所述M個轟擊束中的每一個都包括電子束。In one aspect, each of the M bombardment beams comprises an electron beam.

在一方面,所述目標包含銅或鎢。In one aspect, the target comprises copper or tungsten.

在一方面,所述轟擊束(i),i=1、……、M被逐個發送。In one aspect, said bombardment beams (i), i=1, . . . , M are sent one by one.

在一方面,所述圖像感測器系統的圖像感測器獲得所有的所述2D圖像(i),i=1、……、M。In one aspect, the image sensors of the image sensor system obtain all of the 2D images (i), i=1, . . . , M.

在一方面,所述轟擊束發生器包括多個電子槍,每個所述電子槍發送所述M個所述轟擊束中的至少一個。In one aspect, the bombardment beam generator includes a plurality of electron guns, each of the electron guns transmitting at least one of the M said bombardment beams.

在一方面,所述轟擊束發生器物理地固定於所述目標。In one aspect, the bombardment beam generator is physically fixed to the target.

輻射檢測器radiation detector

作為示例,圖1示意性地示出了輻射檢測器100。輻射檢測器100可以包括圖元150(也稱為感測元件150)陣列。該陣列可以是矩形陣列(如圖1所示)、蜂窩陣列、六邊形陣列或任何其它合適的陣列。圖1的示例中的圖元150陣列有4列7行;然而,通常,圖元150陣列可以具有任意數量的行和任意數量的列。As an example, FIG. 1 schematically shows a radiation detector 100 . Radiation detector 100 may include an array of picture elements 150 (also referred to as sensing elements 150 ). The array may be a rectangular array (as shown in Figure 1), a honeycomb array, a hexagonal array, or any other suitable array. The array of primitives 150 in the example of FIG. 1 has 4 columns and 7 rows; however, in general, the array of primitives 150 can have any number of rows and any number of columns.

每個圖元150可以被配置為檢測從輻射源(未示出)入射在其上的輻射,並且可以被配置為測量輻射的特性(例如,粒子的能量、波長和頻率)。輻射可以包括粒子,例如光子和亞原子粒子。每個圖元150可以被配置為在一段時間內對入射在其上的能量落在多個能量區間中的輻射粒子的數量進行計數。所有圖元150可以被配置為在同一段時間內對多個能量區間內的入射在其上的輻射粒子的數量進行計數。當入射輻射粒子具有相似能量時,圖元150可以簡單地被配置為在一段時間內對入射在其上的輻射粒子的數量進行計數,而不測量各個輻射粒子的能量。Each primitive 150 may be configured to detect radiation incident thereon from a radiation source (not shown), and may be configured to measure properties of the radiation (eg, energy, wavelength, and frequency of particles). Radiation can include particles such as photons and subatomic particles. Each primitive 150 may be configured to count, over a period of time, the number of radiation particles incident thereon whose energies fall within a plurality of energy intervals. All primitives 150 may be configured to count the number of radiation particles incident thereon in multiple energy intervals over the same period of time. When the incident radiation particles have similar energies, the primitive 150 may simply be configured to count the number of radiation particles incident thereon over a period of time without measuring the energy of the individual radiation particles.

每個圖元150可以具有其自己的類比數位轉換器(ADC),其被配置為將表示入射輻射粒子的能量的類比信號數位化為數位信號,或者將表示多個入射輻射粒子的總能量的類比信號數位化成數位信號。圖元150可以被配置為平行作業。例如,當一個圖元150測量入射輻射粒子時,另一個圖元150可以正在等待輻射粒子到達。圖元150可以不必是可單獨定址的。Each primitive 150 may have its own analog-to-digital converter (ADC) configured to digitize an analog signal representing the energy of an incident radiation particle into a digital signal, or convert an analog signal representing the total energy of a plurality of incident radiation particles to a digital signal. Analog signals are digitized into digital signals. Primitives 150 may be configured to work in parallel. For example, while one primitive 150 is measuring incident radiation particles, another primitive 150 may be waiting for the radiation particles to arrive. Primitives 150 may not necessarily be individually addressable.

這裡描述的輻射檢測器100可以應用於例如X射線望遠鏡、X射線乳房照相、工業X射線缺陷檢測、X射線顯微鏡或微射線照相、X射線鑄造檢查、X射線無損測試、X射線焊縫檢查、X射線數位減影血管造影等。使用該輻射檢測器100代替照相底板、照相膠片、PSP板、X射線圖像增強器、閃爍體或其它半導體X射線檢測器也可能是合適的。The radiation detector 100 described herein can be used in, for example, X-ray telescopes, X-ray mammography, industrial X-ray defect detection, X-ray microscopy or microradiography, X-ray casting inspection, X-ray non-destructive testing, X-ray weld inspection, X-ray digital subtraction angiography, etc. It may also be appropriate to use the radiation detector 100 in place of a photographic plate, photographic film, PSP plate, X-ray image intensifier, scintillator, or other semiconductor X-ray detector.

圖2示意性地示出了根據實施例的圖1的輻射檢測器100沿著線2-2的簡化剖視圖。具體地,輻射檢測器100可以包括輻射吸收層110和用於處理或分析入射輻射在輻射吸收層110中產生的電信號的電子器件層120(可以包括一個或多個ASIC或專用積體電路)。輻射檢測器100可以包括或不包括閃爍體(未示出)。輻射吸收層110可以包含半導體材料,例如矽、鍺、GaAs、CdTe、CdZnTe或其組合。該半導體材料可以對關注的輻射具有高質量衰減係數。Figure 2 schematically illustrates a simplified cross-sectional view of the radiation detector 100 of Figure 1 along line 2-2, according to an embodiment. Specifically, the radiation detector 100 may include a radiation absorbing layer 110 and an electronics layer 120 (which may include one or more ASICs or application specific integrated circuits) for processing or analyzing electrical signals generated in the radiation absorbing layer 110 by incident radiation. . The radiation detector 100 may or may not include a scintillator (not shown). The radiation absorbing layer 110 may include semiconductor materials such as silicon, germanium, GaAs, CdTe, CdZnTe or combinations thereof. The semiconductor material may have a high mass attenuation coefficient for the radiation of interest.

圖3示意性地示出了作為示例的圖1的輻射檢測器100沿著線2-2的詳細剖視圖。具體地,輻射吸收層110可以包括由第一摻雜區111、第二摻雜區113的一個或多個離散區114形成的一個或多個二極體(例如,p-i-n或p-n)。第二摻雜區113可以通過可選的本徵區112與第一摻雜區111分離。離散區114可以通過第一摻雜區111或本徵區112彼此分離。第一摻雜區111和第二摻雜區113可以具有相反類型的摻雜(例如,區域111是p型,區域113是n型,或者,區域111是n型,區域113是p型)。在圖3的示例中,第二摻雜區113的每個離散區114與第一摻雜區111和可選的本徵區112形成二極體。即,在圖3的示例中,輻射吸收層110具有多個二極體(更具體地,7個二極體對應於圖1的陣列中一列的7個圖元150,為了簡單起見,圖3中僅標記了其中的兩個圖元150)。多個二極體可以具有作為共用(公共)電極的電觸點119A。第一摻雜區111還可以具有離散部分。FIG. 3 schematically shows a detailed cross-sectional view of the radiation detector 100 of FIG. 1 along line 2-2 as an example. Specifically, the radiation absorbing layer 110 may include one or more diodes (eg, p-i-n or p-n) formed by the first doped region 111 , one or more discrete regions 114 of the second doped region 113 . The second doped region 113 may be separated from the first doped region 111 by an optional intrinsic region 112 . The discrete regions 114 may be separated from each other by the first doped region 111 or the intrinsic region 112 . The first doped region 111 and the second doped region 113 may have opposite types of doping (eg, region 111 is p-type and region 113 is n-type, or region 111 is n-type and region 113 is p-type). In the example of FIG. 3 , each discrete region 114 of the second doped region 113 forms a diode with the first doped region 111 and optionally the intrinsic region 112 . That is, in the example of FIG. 3, the radiation absorbing layer 110 has a plurality of diodes (more specifically, 7 diodes correspond to 7 primitives 150 in a column in the array of FIG. 3, only two of them are marked 150). Multiple diodes may have an electrical contact 119A as a common (common) electrode. The first doped region 111 may also have discrete portions.

電子器件層120可以包括適合於處理或解釋由入射在輻射吸收層110上的輻射產生的信號的電子系統121。電子系統121可以包括諸如濾波器網路、放大器、積分器和比較器之類的類比電路,或者諸如微處理器和記憶體之類的數位電路。電子系統121可以包括一個或多個ADC(類比數位轉換器)。電子系統121可以包括由圖元150共用的元件或專用於單個圖元150的元件。例如,電子系統121可以包括專用於每個圖元150的放大器和在所有圖元150之間共用的微處理器。電子系統121可以通過通孔131電連接到圖元150。通孔之間的空間可以使用填充材料130填充,這可以增加電子器件層120與輻射吸收層110的連接的機械穩定性。其它接合技術可以在不使用通孔131的情況下將電子系統121連接到圖元150。The electronics layer 120 may include an electronic system 121 suitable for processing or interpreting signals generated by radiation incident on the radiation absorbing layer 110 . Electronic system 121 may include analog circuits such as filter networks, amplifiers, integrators, and comparators, or digital circuits such as microprocessors and memory. Electronic system 121 may include one or more ADCs (analog-to-digital converters). Electronic system 121 may include elements shared by primitives 150 or elements specific to a single primitive 150 . For example, electronic system 121 may include an amplifier dedicated to each picture element 150 and a microprocessor shared among all picture elements 150 . Electronic system 121 may be electrically connected to graphics element 150 through via 131 . The spaces between the via holes may be filled with a filling material 130 , which may increase the mechanical stability of the connection of the electronic device layer 120 to the radiation absorbing layer 110 . Other bonding techniques may connect electronics 121 to primitive 150 without using vias 131 .

當來自輻射源(未示出)的輻射撞擊包括二極體的輻射吸收層110時,輻射粒子可被吸收並通過多種機制產生一個或多個電荷載流子(例如,電子、電洞)。電荷載流子可以在電場下漂移到二極體之一的電極。該電場可以是外部電場。電觸點119B可以包括離散部分,每個離散部分與離散區114電接觸。術語“電觸點”可以與詞“電極”互換使用。在實施例中,電荷載流子可以在各方向上漂移,使得由單個輻射粒子產生的電荷載流子基本上不被兩個不同的離散區114共用(這裡“基本上不被......共用”意指相比於其餘的電荷載流子,這些電荷載流子中的小於2%,小於0.5%,小於0.1%或小於0.01%的電荷載流子流向一個不同的離散區114)。由入射在這些離散區114之一的覆蓋區周圍的輻射粒子產生的電荷載流子基本上不與這些離散區114中的另一個共用。與離散區114相關聯的圖元150可以是離散區114周圍的區域,其中由入射到其中的輻射粒子產生的基本上全部(大於98%,大於99.5%,大於99.9%,或大於99.99%)的電荷載流子流向離散區114。即,這些電荷載流子中的小於2%、小於1%、小於0.1%或小於0.01%的電荷載流子流過圖元150。When radiation from a radiation source (not shown) strikes the radiation absorbing layer 110 comprising diodes, radiation particles may be absorbed and generate one or more charge carriers (eg, electrons, holes) through a variety of mechanisms. Charge carriers can drift to the electrodes of one of the diodes under the electric field. The electric field may be an external electric field. Electrical contacts 119B may include discrete portions each in electrical contact with a discrete region 114 . The term "electrical contact" may be used interchangeably with the word "electrode". In an embodiment, the charge carriers may drift in all directions such that charge carriers generated by a single radiation particle are not substantially shared by two distinct discrete regions 114 (herein "substantially not shared by...  ..shared means that less than 2%, less than 0.5%, less than 0.1%, or less than 0.01% of these charge carriers flow to a different discrete region 114 compared to the rest of the charge carriers ). Charge carriers generated by radiation particles incident around the footprint of one of the discrete regions 114 are substantially not shared with the other of the discrete regions 114 . The primitives 150 associated with the discrete region 114 may be the area surrounding the discrete region 114 in which substantially all (greater than 98%, greater than 99.5%, greater than 99.9%, or greater than 99.99%) of the The charge carriers flow to the discrete regions 114 . That is, less than 2%, less than 1%, less than 0.1%, or less than 0.01% of these charge carriers flow through the primitive 150 .

圖4示意性地示出了根據可替換實施例的圖1的輻射檢測器100沿著線2-2的詳細剖視圖。更具體地,輻射吸收層110可以包含諸如矽、鍺、GaAs、CdTe、CdZnTe或其組合之類的半導體材料的電阻器,但不包括二極體。該半導體材料可以對關注的輻射具有高質量衰減係數。在實施例中,圖4的電子器件層120在結構和功能方面類似於圖3的電子器件層120。Figure 4 schematically illustrates a detailed cross-sectional view of the radiation detector 100 of Figure 1 along line 2-2, according to an alternative embodiment. More specifically, the radiation absorbing layer 110 may include resistors of semiconductor materials such as silicon, germanium, GaAs, CdTe, CdZnTe, or combinations thereof, but not diodes. The semiconductor material may have a high mass attenuation coefficient for the radiation of interest. In an embodiment, the electronics layer 120 of FIG. 4 is similar in structure and function to the electronics layer 120 of FIG. 3 .

當輻射撞擊包括電阻器而不包括二極體的輻射吸收層110時,它可以被吸收並通過多種機制產生一個或多個電荷載流子。輻射粒子可以產生10至100,000個電荷載流子。電荷載流子可以在電場下漂移到電觸點119A和119B。該電場可以是外部電場。電觸點119B可以包括離散部分。在實施例中,電荷載流子可以在各方向上漂移,使得由單個輻射粒子產生的電荷載流子基本上不被電觸點119B的兩個不同的離散部分共用(這裡“基本上不被......共用”意指相比於其餘的電荷載流子,這些電荷載流子中的小於2%,小於0.5%,小於0.1%或小於0.01%的電荷載流子流向一個不同的離散部分)。由入射在電觸點119B的這些離散部分之一的覆蓋區周圍的輻射粒子產生的電荷載流子基本上不與電觸點119B的這些離散部分中的另一個共用。與電觸點119B的離散部分相關聯的圖元150可以是離散部分周圍的區域,其中由入射到其中的輻射粒子產生的基本上全部(大於98%,大於99.5%,大於99.9%,或大於99.99%)的電荷載流子流向電觸點119B的離散部分。即,這些電荷載流子中的小於2%、小於0.5%、小於0.1%或小於0.01%的電荷載流子流過與電觸點119B的一個離散部分相關聯的圖元。When radiation strikes the radiation absorbing layer 110, which includes a resistor and does not include a diode, it can be absorbed and generate one or more charge carriers through a variety of mechanisms. Radiation particles can generate anywhere from 10 to 100,000 charge carriers. Charge carriers can drift to electrical contacts 119A and 119B under the electric field. The electric field may be an external electric field. Electrical contacts 119B may include discrete portions. In an embodiment, the charge carriers may drift in all directions such that the charge carriers generated by a single radiation particle are not substantially shared by two different discrete portions of the electrical contact 119B (herein "substantially not shared by ...shared"means that less than 2%, less than 0.5%, less than 0.1%, or less than 0.01% of these charge carriers flow to a different discrete parts of ). Charge carriers generated by radiation particles incident around the footprint of one of the discrete portions of electrical contact 119B are substantially not shared with the other of the discrete portions of electrical contact 119B. The primitive 150 associated with the discrete portion of the electrical contact 119B may be the area around the discrete portion in which substantially all (greater than 98%, greater than 99.5%, greater than 99.9%, or greater than 99.99%) of the charge carriers flow to the discrete portion of electrical contact 119B. That is, less than 2%, less than 0.5%, less than 0.1%, or less than 0.01% of the charge carriers flow through the picture element associated with a discrete portion of the electrical contact 119B.

輻射檢測器封裝Radiation Detector Package

圖5示意性地示出了包括輻射檢測器100和印刷電路板(PCB)510的封裝500的俯視圖。如本文使用的術語“PCB”不限於特定材料。例如,PCB可以包括半導體。輻射檢測器100可以被安裝到PCB 510。為了清楚起見,未示出輻射檢測器100和PCB 510之間的佈線。PCB 510可以具有一個或多個輻射檢測器100。PCB 510可以具有未被輻射檢測器100覆蓋的區域512(例如,用於容納接合線514)。輻射檢測器100可以具有圖元150(圖1)所處的有效區域190。輻射檢測器100可以具有輻射檢測器100邊緣附近的周邊區195。周邊區195沒有圖元150,並且輻射檢測器100不檢測入射到周邊區195上的輻射粒子。FIG. 5 schematically shows a top view of a package 500 comprising a radiation detector 100 and a printed circuit board (PCB) 510 . The term "PCB" as used herein is not limited to a specific material. For example, a PCB may include semiconductors. The radiation detector 100 may be mounted to the PCB 510 . For clarity, the wiring between the radiation detector 100 and the PCB 510 is not shown. PCB 510 may have one or more radiation detectors 100 . PCB 510 may have an area 512 not covered by radiation detector 100 (eg, to accommodate bond wire 514 ). The radiation detector 100 may have an active area 190 in which the picture element 150 (FIG. 1) is located. The radiation detector 100 may have a peripheral region 195 near the edge of the radiation detector 100 . The peripheral zone 195 has no primitives 150 and the radiation detector 100 does not detect radiation particles incident on the peripheral zone 195 .

圖像感測器image sensor

圖6示意性地示出了根據實施例的圖像感測器600的剖視圖。圖像感測器600可以包括安裝到系統PCB 650的一個或多個圖5的封裝500。作為示例,圖6示出了兩個封裝500。PCB 510和系統PCB 650之間的電連接可以通過接合線514來實現。為了在PCB 510上容納接合線514,PCB 510可以具有未被輻射檢測器100覆蓋的區域512。為了在系統PCB 650上容納接合線514,封裝500之間可以具有間隙。間隙可以為約1 mm以上。入射在周邊區195、區域512或間隙上的輻射粒子不能被系統PCB 650上的封裝500檢測到。輻射檢測器(例如,輻射檢測器100)的死區是輻射檢測器的輻射接收表面的入射在其上的輻射粒子不能被該輻射檢測器檢測到的區域。封裝(例如,封裝500)的死區是該封裝的輻射接收表面的入射在其上的輻射粒子不能被該封裝中的一個或多個輻射檢測器檢測到的區域。在圖5和圖6所示的該示例中,封裝500的死區包括周邊區195和區域512。具有一組封裝(例如,安裝在同一PCB上且佈置在同一層或不同層中的封裝500)的圖像感測器(例如,圖像感測器600)的死區(例如,688)包括該組中的各封裝的死區和各封裝之間的各間隙的組合。FIG. 6 schematically shows a cross-sectional view of an image sensor 600 according to an embodiment. Image sensor 600 may include one or more packages 500 of FIG. 5 mounted to system PCB 650 . As an example, FIG. 6 shows two packages 500 . Electrical connection between PCB 510 and system PCB 650 may be achieved through bond wires 514 . To accommodate bond wires 514 on PCB 510 , PCB 510 may have an area 512 not covered by radiation detector 100 . To accommodate bond wires 514 on system PCB 650 , there may be a gap between packages 500 . The gap may be about 1 mm or more. Radiation particles incident on the perimeter region 195 , the region 512 or the gap cannot be detected by the package 500 on the system PCB 650 . A dead zone of a radiation detector (eg, radiation detector 100 ) is a region of a radiation receiving surface of the radiation detector where radiation particles incident thereon cannot be detected by the radiation detector. A dead zone of a package (eg, package 500 ) is an area of the package's radiation receiving surface where radiation particles incident thereon cannot be detected by one or more radiation detectors in the package. In the example shown in FIGS. 5 and 6 , the dead zone of package 500 includes perimeter zone 195 and region 512 . The dead zone (eg, 688 ) of an image sensor (eg, image sensor 600 ) having a group of packages (eg, package 500 mounted on the same PCB and arranged in the same layer or in different layers) includes The combination of the dead zone of each package in the group and each gap between each package.

在實施例中,由其自身操作的輻射檢測器100(圖1)可以被認為是圖像感測器。在實施例中,由其自身操作的封裝500(圖5)可以被認為是圖像感測器。In an embodiment, radiation detector 100 ( FIG. 1 ), operated by itself, may be considered an image sensor. In an embodiment, package 500 (FIG. 5) operating by itself may be considered an image sensor.

包括輻射檢測器100的圖像感測器600可以具有不能檢測入射輻射的死區688。然而,圖像感測器600可以捕獲物體或場景(未示出)的多個局部圖像,然後可以將這些捕獲的局部圖像拼接以形成整個物體或場景的圖像。Image sensor 600 including radiation detector 100 may have dead zone 688 where incident radiation cannot be detected. However, image sensor 600 may capture multiple partial images of an object or scene (not shown), and then these captured partial images may be stitched to form an image of the entire object or scene.

成像系統imaging system

圖7A至圖7C示意性地示出了根據實施例的操作中的成像系統700的透視圖。在實施例中,成像系統700可以包括轟擊束發生器710、目標725和圖像感測器系統100a+100b+100c。在實施例中,轟擊束發生器710可以被配置為產生朝向目標725的轟擊束(例如,電子束)。7A-7C schematically illustrate perspective views of an imaging system 700 in operation according to an embodiment. In an embodiment, imaging system 700 may include bombardment beam generator 710, target 725, and image sensor system 100a+100b+100c. In an embodiment, bombardment beam generator 710 may be configured to generate a bombardment beam (eg, an electron beam) toward target 725 .

在實施例中,目標725可以具有如圖所示的環形。在實施例中,在目標725的表面上可以有3個目標點720a、720b和720c。目標點720a、720b和720c中的每一個可以是目標725表面上的要接收來自轟擊束發生器710的轟擊粒子(例如,電子)的區域或領域。表示3個目標點720a、720b和720c的3個黑圈只是大致指示目標點720a、720b和720c在目標725上的位置,並且不必一定指示目標點720a、720b和720c的大小、形狀或朝向。In an embodiment, the target 725 may have a ring shape as shown. In an embodiment, there may be three target points 720a, 720b, and 720c on the surface of the target 725 . Each of target points 720a, 720b, and 720c may be an area or field on the surface of target 725 that is to receive bombardment particles (eg, electrons) from bombardment beam generator 710 . The three black circles representing the three target points 720a, 720b, and 720c only roughly indicate the location of the target points 720a, 720b, and 720c on the target 725, and do not necessarily indicate the size, shape, or orientation of the target points 720a, 720b, and 720c.

在實施例中,目標725可以由銅或鎢製成。如圖所示,目標725可以是一件式的。或者,目標725可以包括多個單獨的部件(未示出)。In an embodiment, target 725 may be made of copper or tungsten. As shown, target 725 may be one-piece. Alternatively, target 725 may include multiple separate components (not shown).

在實施例中,圖像感測器系統100a+100b+100c可以包括3個輻射檢測器100a、100b和100c,這3個輻射檢測器可以類似於圖1的輻射檢測器100。表示3個輻射檢測器100a、100b、100c的3個平行四邊形只是大致指示了輻射檢測器100a、100b、100c的位置和朝向,並且不必一定指示輻射檢測器100a、100b、100c的大小和形狀。在實施例中,輻射檢測器100a、100b和100c可以物理地固定於圓形軌道105,如圖所示。In an embodiment, image sensor system 100a+100b+100c may include 3 radiation detectors 100a, 100b and 100c, which may be similar to radiation detector 100 of FIG. 1 . The three parallelograms representing the three radiation detectors 100a, 100b, 100c only roughly indicate the positions and orientations of the radiation detectors 100a, 100b, 100c, and do not necessarily indicate the size and shape of the radiation detectors 100a, 100b, 100c. In an embodiment, radiation detectors 100a, 100b, and 100c may be physically fixed to circular track 105, as shown.

在實施例中,物體730可以定位在目標點720a、720b和720c與圖像感測器系統100a+100b+100c之間,如圖所示,以便由成像系統700進行成像。物體730可以是患者,其身體部位需要進行成像以用於醫療診斷目的。在實施例中,目標點720a、720b和720c可以使得當來自轟擊束發生器710的轟擊束(例如,電子束)轟擊目標點720a、720b和720c處的目標725時,輻射束(例如,X射線)將從目標點720a、720b和720c發射並向物體730傳播。In an embodiment, object 730 may be positioned between target points 720a, 720b, and 720c and image sensor system 100a+100b+100c, as shown, for imaging by imaging system 700 . Object 730 may be a patient whose body parts need to be imaged for medical diagnostic purposes. In an embodiment, target points 720a, 720b, and 720c may be such that when a bombardment beam (e.g., an electron beam) from bombardment beam generator 710 strikes target 725 at target points 720a, 720b, and 720c, the radiation beam (e.g., X Rays) will be emitted from target points 720a, 720b and 720c and propagate towards object 730.

在實施例中,在成像系統700對物體730進行成像的操作期間,目標725可以是相對於物體730靜止的。在實施例中,在成像系統700對物體730進行成像的操作期間,軌道105可以是相對於物體730靜止的。In an embodiment, target 725 may be stationary relative to object 730 during operation of imaging system 700 to image object 730 . In an embodiment, the track 105 may be stationary relative to the object 730 during operation of the imaging system 700 to image the object 730 .

第一2D圖像捕獲First 2D image capture

在實施例中,參照圖7A,可以按如下進行第一2D(二維)圖像捕獲。轟擊束發生器710可以生成朝向目標725上的目標點720a的轟擊束712a,從而導致從目標點720a向物體730發射輻射束722a。使用已經通過物體730的輻射束722a的輻射,輻射檢測器100a可以捕獲物體730的第一2D圖像。In an embodiment, referring to FIG. 7A , the first 2D (two-dimensional) image capture may be performed as follows. Bombardment beam generator 710 may generate bombardment beam 712a toward target point 720a on target 725 , causing radiation beam 722a to be emitted from target point 720a toward object 730 . Using the radiation of radiation beam 722a that has passed through object 730 , radiation detector 100a may capture a first 2D image of object 730 .

第二2D圖像捕獲Second 2D image capture

在實施例中,參照圖7B,可以按如下進行第二2D圖像捕獲。轟擊束發生器710可以生成朝向目標725上的目標點720b的轟擊束712b,從而導致從目標點720b向物體730發射輻射束722b。使用已經通過物體730的輻射束722b的輻射,輻射檢測器100b可以捕獲物體730的第二2D圖像。In an embodiment, referring to FIG. 7B , the second 2D image capture may be performed as follows. Bombardment beam generator 710 may generate bombardment beam 712b toward target point 720b on target 725 , causing radiation beam 722b to be emitted from target point 720b toward object 730 . Using the radiation of radiation beam 722b that has passed through object 730 , radiation detector 100b may capture a second 2D image of object 730 .

第三2D圖像捕獲Third 2D image capture

在實施例中,參照圖7C,可以按如下執行第三2D圖像捕獲。轟擊束發生器710可以生成朝向目標725上的目標點720c的轟擊束712c,從而導致從目標點720c向物體730發射輻射束722c。使用已經通過物體730的輻射束722c的輻射,輻射檢測器100c可以捕獲物體730的第三2D圖像。In an embodiment, referring to FIG. 7C , the third 2D image capture may be performed as follows. Bombardment beam generator 710 may generate bombardment beam 712c toward target point 720c on target 725, thereby causing radiation beam 722c to be emitted from target point 720c toward object 730. Using the radiation of radiation beam 722c that has passed through object 730 , radiation detector 100c may capture a third 2D image of object 730 .

用於概括的流程圖Flowchart for recap

圖8示出了概括上述成像系統700的操作的流程圖800。具體地,在步驟810中,將M個轟擊束(轟擊束(i),i=1、……、M)分別向目標上的目標點(i),i=1、……、M發送,從而得到分別從目標點(i)i=1、……、M發射並向物體傳播的輻射束(i),i=1、……、M,其中,M為大於1的整數。例如,參照圖7A至圖8,三個轟擊束712a、712b和712c(這裡M=3)分別向目標725上的目標點720a、720b和720c發送,從而得到分別從目標點720a、720b和720c發射並向物體730傳播的輻射束722a、722b和722c。FIG. 8 shows a flowchart 800 outlining the operation of the imaging system 700 described above. Specifically, in step 810, M bombardment beams (bombardment beam (i), i=1, ..., M) are respectively sent to the target point (i), i = 1, ..., M on the target, Thus, radiation beams (i), i=1, . . . , M emitted from target points (i) i=1, . . . For example, referring to Fig. 7A to Fig. 8, three bombardment beams 712a, 712b and 712c (where M=3) are respectively sent to target points 720a, 720b and 720c on the target 725, thereby obtaining Radiation beams 722 a , 722 b , and 722 c are emitted and propagate toward object 730 .

在步驟820中,對於i的每個值,使用已經穿過物體的輻射束(i)的輻射來獲得物體的2D圖像(i)。例如,對於i=1,使用已經穿過物體730的輻射束722a(圖7A)的輻射來獲得物體730的第一2D圖像。對於i=2,使用已經穿過物體730的輻射束722b(圖7B)的輻射來獲得物體730的第二2D圖像。對於i=3,使用已經穿過物體730的輻射束722c(圖7C)的輻射來獲得物體730的第三2D圖像。In step 820, for each value of i, a 2D image (i) of the object is obtained using the radiation of the radiation beam (i) that has passed through the object. For example, for i=1, a first 2D image of object 730 is obtained using radiation of radiation beam 722a ( FIG. 7A ) that has passed through object 730 . For i=2, a second 2D image of the object 730 is obtained using the radiation of the radiation beam 722b ( FIG. 7B ) that has passed through the object 730 . For i=3, a third 2D image of the object 730 is obtained using the radiation of the radiation beam 722c ( FIG. 7C ) that has passed through the object 730 .

同樣在步驟820中,目標相對於物體是靜止的。例如,目標725相對於物體730是靜止的。Also in step 820, the target is stationary relative to the object. For example, target 725 is stationary relative to object 730 .

3D圖像重建3D image reconstruction

在實施例中,參照圖8的流程圖800中的步驟820,物體的3D(三維)圖像可以由2D圖像(i),i=1、……、M重建。例如,參照圖7A至圖7C,物體730的3D圖像可以由物體730的第一2D圖像、第二2D圖像和第三2D圖像(如上所述)重建。在實施例中,輻射檢測器100a、100b和100c可以被配置為相互通信,使得它們中的至少一個可以訪問所有的第一、第二和第三2D圖像,並且可以由第一、第二和第三2D圖像重建3D圖像。In an embodiment, referring to step 820 in the flowchart 800 of FIG. 8 , a 3D (three-dimensional) image of an object may be reconstructed from a 2D image (i), i=1, . . . ,M. For example, referring to FIGS. 7A to 7C , the 3D image of the object 730 may be reconstructed from the first 2D image, the second 2D image, and the third 2D image of the object 730 (as described above). In an embodiment, radiation detectors 100a, 100b, and 100c may be configured to communicate with each other such that at least one of them has access to all of the first, second, and third 2D images, and may be accessed by the first, second and the third 2D image to reconstruct a 3D image.

單個輻射檢測器獲得所有2D圖像A single radiation detector acquires all 2D images

在實施例中,參照圖6的流程圖800的步驟820,可以使用單個圖像感測器來獲得所有2D圖像(i),i=1、……、M。例如,參照圖7A至圖7C,代替如上所述用來分別獲得第一、第二和第三2D圖像的三個輻射檢測器100a、100b和100c,輻射檢測器100a(其本身可以被認為是圖像感測器)可以沿著軌道105移動並獲得所有的第一、第二和第三2D圖像。如果逐個進行第一2D圖像捕獲、第二2D圖像捕獲和第三2D圖像捕獲,則這是可能的。這意味著轟擊束發生器710逐個發送轟擊束712a、712b和712c。In an embodiment, referring to step 820 of the flowchart 800 of FIG. 6 , a single image sensor may be used to obtain all 2D images (i), i=1, . . . , M. For example, referring to FIGS. 7A-7C , instead of the three radiation detectors 100a, 100b, and 100c described above for obtaining the first, second, and third 2D images, respectively, the radiation detector 100a (itself may be considered is the image sensor) can move along the track 105 and obtain all the first, second and third 2D images. This is possible if the first 2D image capture, the second 2D image capture and the third 2D image capture are performed one by one. This means that the bombardment beam generator 710 sends the bombardment beams 712a, 712b and 712c one by one.

具體地,當轟擊束發生器710發送轟擊束712a(圖7A)時,輻射檢測器100a可以在其如圖7A所示的位置處並且可以捕獲第一2D圖像。稍後,在實施例中,當轟擊束發生器710發送轟擊束712b(圖7B)時,輻射檢測器100a可以在如圖7B所示的輻射檢測器100b的位置處並且可以捕獲第二2D圖像。稍後,在實施例中,當轟擊束發生器710發送轟擊束712c(圖7C)時,輻射檢測器100a可以在如圖7C所示的輻射檢測器100c的位置處並且可以捕獲第三2D圖像。結果是,輻射檢測器100a獲得所有的第一、第二和第三2D圖像。Specifically, when bombardment beam generator 710 sends bombardment beam 712a (FIG. 7A), radiation detector 100a may be in its position as shown in FIG. 7A and may capture a first 2D image. Later, in an embodiment, when bombardment beam generator 710 sends bombardment beam 712b (FIG. 7B), radiation detector 100a may be at the location of radiation detector 100b as shown in FIG. 7B and may capture a second 2D map picture. Later, in an embodiment, when bombardment beam generator 710 sends bombardment beam 712c (FIG. 7C), radiation detector 100a may be at the location of radiation detector 100c as shown in FIG. 7C and may capture a third 2D map picture. As a result, the radiation detector 100a acquires all of the first, second and third 2D images.

每個2D圖像的多個局部圖像Multiple partial images per 2D image

在實施例中,參照圖8的流程圖800中的步驟820,所述獲得物體的2D圖像(i)可以包括(A)使用已經穿過物體的輻射束(i)的輻射來逐個捕獲物體的Ni個局部圖像,其中,Ni為大於1的整數;以及(B)拼接物體的Ni個局部圖像,從而得到物體的2D圖像(i)。例如,參照圖7A,對於第一2D圖像捕獲(即,對於i=1),代替如上所述在一次拍攝中捕獲第一2D圖像,輻射檢測器100a可以使用已經穿過物體730的輻射束722a的輻射來捕獲物體730的N1個局部圖像。In an embodiment, referring to step 820 in the flowchart 800 of FIG. 8, said obtaining the 2D image (i) of the object may comprise (A) capturing the object one by one using the radiation of the radiation beam (i) that has passed through the object Ni partial images, wherein Ni is an integer greater than 1; and (B) splicing the Ni partial images of the object to obtain a 2D image (i) of the object. For example, referring to FIG. 7A , for the first 2D image capture (ie, for i=1), instead of capturing the first 2D image in one shot as described above, the radiation detector 100a can use radiation that has passed through the object 730 N1 partial images of object 730 are captured using radiation from beam 722a.

具體地,假定N1=3,在輻射束722a開啟的同時,輻射檢測器100a可以在輻射檢測器100a位於如圖7A所示的第一位置處時捕獲物體730的第一局部圖像。接下來,在實施例中,在輻射束722a仍然開啟的同時,輻射檢測器100a可以沿著軌道105移動到第二位置(未示出),然後在輻射檢測器100a位於第二位置處時捕獲物體730的第二局部圖像。接下來,在實施例中,在輻射束722a仍然開啟的同時,輻射檢測器100a可以進一步沿著軌道105移動到第三位置(未示出),然後在輻射檢測器100a位於第三位置處時捕獲物體730的第三局部圖像。接下來,在實施例中,第一、第二和第三局部圖像可以由輻射檢測器100a拼接,從而得到物體730的第一2D圖像。Specifically, assuming N1=3, while radiation beam 722a is on, radiation detector 100a may capture a first partial image of object 730 when radiation detector 100a is at a first position as shown in FIG. 7A . Next, in an embodiment, radiation detector 100a may be moved along track 105 to a second position (not shown) while radiation beam 722a is still on, and then capture A second partial image of object 730 . Next, in an embodiment, while radiation beam 722a is still on, radiation detector 100a may be moved further along track 105 to a third position (not shown), and then A third partial image of object 730 is captured. Next, in an embodiment, the first, second and third partial images may be stitched together by the radiation detector 100 a to obtain a first 2D image of the object 730 .

在實施例中,第二2D圖像和第三2D圖像可以分別由輻射檢測器100b和100c以類似的方式獲得。或者,輻射檢測器100a可以獨自沿著軌道105移動並捕獲物體730的所有9個局部圖像(假定N1=N2=N3=3),從而獲得物體730的所有的第一、第二和第三2D圖像。In an embodiment, the second 2D image and the third 2D image may be obtained in a similar manner by the radiation detectors 100b and 100c, respectively. Alternatively, radiation detector 100a can move along track 105 alone and capture all nine partial images of object 730 (assuming N1=N2=N3=3), thereby obtaining all first, second and third 2D image.

在實施例中,所有的Ni,i=1、......、M可以是相同的。例如,在上述實施例中,N1=N2=N3=3。換句話說,為了獲得第一、第二和第三2D圖像中的每個2D圖像,可以逐個捕獲物體730的3個局部圖像並然後拼接,以獲得如上所述的2D圖像。通常,Ni,i=1,...,M不必一定相同。例如,也可以是N1=3、N2=4以及N3=2。In an embodiment, all Ni, i=1, . . . , M may be the same. For example, in the above embodiment, N1=N2=N3=3. In other words, in order to obtain each of the first, second and third 2D images, 3 partial images of the object 730 may be captured one by one and then stitched to obtain the 2D image as described above. Usually, Ni, i=1,..., M do not have to be the same. For example, N1=3, N2=4, and N3=2 may also be used.

關於轟擊束發生器的更多資訊More About Bombardment Beam Generators

在實施例中,參照圖7A至圖7C,轟擊束發生器710可以是相對於物體730靜止的。在實施例中,轟擊束發生器710可以物理地固定於目標725。In an embodiment, referring to FIGS. 7A-7C , bombardment beam generator 710 may be stationary relative to object 730 . In an embodiment, bombardment beam generator 710 may be physically fixed to target 725 .

在實施例中,轟擊束發生器710可以包括多個電子槍(未示出),每個電子槍可以發送轟擊束712a、712b和712c中的至少一個。例如,轟擊束發生器710可以包括第一電子槍和第二電子槍(未示出),其中,第一電子槍發送轟擊束712a,而第二電子槍發送轟擊束712b和712c。在實施例中,第二電子槍可以逐個發送轟擊束712b和712c。In an embodiment, bombardment beam generator 710 may include a plurality of electron guns (not shown), each of which may transmit at least one of bombardment beams 712a, 712b, and 712c. For example, bombardment beam generator 710 may include a first electron gun and a second electron gun (not shown), wherein the first electron gun transmits bombardment beam 712a and the second electron gun transmits bombardment beams 712b and 712c. In an embodiment, the second electron gun may send the bombardment beams 712b and 712c one by one.

儘管本文已經公開了各個方面和實施例,但其他方面和實施例對於本領域技術人員來說將是顯而易見的。本文所公開的各個方面和實施例是出於說明的目的而不是限制性的,真正的範圍和精神由所附申請專利範圍指示。Although various aspects and embodiments have been disclosed herein, other aspects and embodiments will be apparent to those skilled in the art. The various aspects and embodiments disclosed herein are for purposes of illustration and not limitation, with the true scope and spirit being indicated by the appended claims.

2-2:線 100:輻射檢測器 100a、100b、100c:輻射檢測器 105:軌道 110:輻射吸收層 111:第一摻雜區 112:本徵區 113:第二摻雜區 114:離散區 119A、119B:電觸點 120:電子器件層 121:電子系統 130:填充材料 131:通孔 150:圖元 190:有效區域 195:周邊區 500:封裝 510:印刷電路板 512:區域 514:接合線 600:圖像感測器 650:系統PCB 688:死區 700:成像系統 710:轟擊束發生器 712a、712b、712c:轟擊束 720a、720b、720c:目標點 722a、722b、722c:輻射束 725:目標 730:物體 800:流程圖 810、820:步驟 2-2: Line 100: radiation detector 100a, 100b, 100c: radiation detectors 105: track 110: Radiation absorbing layer 111: the first doped region 112: Intrinsic area 113: the second doped region 114: discrete area 119A, 119B: electrical contacts 120: Electronic device layer 121: Electronic system 130: filling material 131: Through hole 150: primitive 190: effective area 195: Surrounding area 500: Encapsulation 510: printed circuit board 512: area 514: bonding wire 600: image sensor 650: System PCB 688: dead zone 700: Imaging system 710: Bombardment Beam Generator 712a, 712b, 712c: bombardment beams 720a, 720b, 720c: target points 722a, 722b, 722c: radiation beams 725: target 730: object 800: flow chart 810, 820: steps

圖1示意性地示出了根據實施例的輻射檢測器。 圖2示意性地示出了根據實施例的輻射檢測器的簡化剖視圖。 圖3示意性地示出了根據實施例的輻射檢測器的詳細剖視圖。 圖4示意性地示出了根據可替換實施例的輻射檢測器的詳細剖視圖。 圖5示意性地示出了根據實施例的包括輻射檢測器和印刷電路板(PCB)的封裝的俯視圖。 圖6示意性地示出了根據實施例的包括安裝到系統PCB(印刷電路板)的圖5的封裝的圖像感測器的剖視圖。 圖7A至圖7C示意性地示出了根據實施例的操作中的成像系統的透視圖。 圖8示出了概括成像系統操作的流程圖。 Fig. 1 schematically shows a radiation detector according to an embodiment. Fig. 2 schematically shows a simplified cross-sectional view of a radiation detector according to an embodiment. Fig. 3 schematically shows a detailed cross-sectional view of a radiation detector according to an embodiment. Figure 4 schematically shows a detailed cross-sectional view of a radiation detector according to an alternative embodiment. Fig. 5 schematically shows a top view of a package comprising a radiation detector and a printed circuit board (PCB) according to an embodiment. FIG. 6 schematically illustrates a cross-sectional view of an image sensor including the package of FIG. 5 mounted to a system PCB (Printed Circuit Board) according to an embodiment. 7A-7C schematically illustrate perspective views of an imaging system in operation according to an embodiment. Figure 8 shows a flowchart outlining the operation of the imaging system.

100a、100b、100c:輻射檢測器 100a, 100b, 100c: radiation detectors

105:軌道 105: track

700:成像系統 700: Imaging system

710:轟擊束發生器 710: Bombardment Beam Generator

712a:轟擊束 712a: Bombardment Beam

720a、720b、720c:目標點 720a, 720b, 720c: target points

722a:輻射束 722a: Radiation Beam

725:目標 725: target

730:物體 730: object

Claims (20)

一種成像方法,包括: 將M個轟擊束(轟擊束(i),i=1、……、M)分別向目標上的目標點(i),i=1、……、M發送,從而得到分別從目標點(i)i=1、……、M發射並向物體傳播的輻射束(i),i=1、……、M,其中,M為大於1的整數;以及 對於i的每個值,使用已經穿過所述物體的所述輻射束(i)的輻射來獲得所述物體的2D(二維)圖像(i), 其中,所述目標相對於所述物體是靜止的。 A method of imaging comprising: Send M bombardment beams (bombardment beam (i), i=1, ..., M) to the target point (i) on the target, i = 1, ..., M, so as to get the results from the target point (i ) radiation beams (i) emitted by i=1,...,M and propagating to the object, i=1,...,M, wherein M is an integer greater than 1; and For each value of i, a 2D (two-dimensional) image (i) of said object is obtained using the radiation of said radiation beam (i) which has passed through said object, Wherein, the target is stationary relative to the object. 如請求項1所述的成像方法,還包括由所述2D圖像(i),i=1、……、M重建所述物體的3D(三維)圖像。The imaging method according to claim 1, further comprising reconstructing a 3D (three-dimensional) image of the object from the 2D image (i), i=1, . . . , M. 如請求項1所述的成像方法,其中,所述獲得所述物體的所述2D圖像(i)包括: 使用已經穿過所述物體的所述輻射束(i)的輻射來逐個捕獲所述物體的Ni個局部圖像,其中,Ni為大於1的整數;以及 拼接所述物體的所述Ni個局部圖像,從而得到所述物體的所述2D圖像(i)。 The imaging method according to claim 1, wherein said obtaining said 2D image (i) of said object comprises: capturing Ni partial images of the object one by one using radiation of the radiation beam (i) that has passed through the object, where Ni is an integer greater than 1; and Stitching the Ni partial images of the object, so as to obtain the 2D image (i) of the object. 如請求項3所述的成像方法,其中,所有Ni,i=1、……、M都是相同的。The imaging method as claimed in claim 3, wherein all Ni, i=1, . . . , M are the same. 如請求項1所述的成像方法,其中,所述M個轟擊束中的每一個都包括電子束。The imaging method of claim 1, wherein each of the M bombardment beams comprises an electron beam. 如請求項1所述的成像方法,其中,所述目標包含銅或鎢。The imaging method according to claim 1, wherein the target comprises copper or tungsten. 如請求項1所述的成像方法,其中,所述轟擊束(i),i=1、……、M被逐個發送。The imaging method according to claim 1, wherein the bombardment beams (i), i=1, ..., M are sent one by one. 如請求項1所述的成像方法,其中,使用圖像感測器獲得所有的所述2D圖像(i),i=1、……、M。The imaging method according to claim 1, wherein all the 2D images (i) are obtained using an image sensor, i=1, . . . , M. 如請求項1所述的成像方法,其中,所述發送所述M個轟擊束是使用轟擊束發生器進行的,所述轟擊束發生器包括多個電子槍,每個所述電子槍發送所述M個所述轟擊束中的至少一個。The imaging method according to claim 1, wherein the sending of the M bombardment beams is performed using a bombardment beam generator, and the bombardment beam generator includes a plurality of electron guns, and each of the electron guns sends the M at least one of the bombardment beams. 如請求項9所述的成像方法,其中,所述轟擊束發生器物理地固定於所述目標。The imaging method of claim 9, wherein the bombardment beam generator is physically fixed to the target. 一種成像系統,包括: 轟擊束發生器; 目標;以及 圖像感測器系統,包括至少一個圖像感測器, 其中,所述轟擊束發生器被配置為將M個轟擊束(轟擊束(i),i=1、……、M)分別向所述目標上的目標點(i),i=1、……、M發送,從而得到分別從所述目標點(i)i=1、……、M發射並向所述物體傳播的輻射束(i),i=1、……、M,其中,M為大於1的整數, 其中,所述圖像感測器系統被配置為,對於i的每個值,使用已經穿過所述物體的所述輻射束(i)的輻射來獲得所述物體的2D(二維)圖像(i),並且 其中,所述目標相對於所述物體是靜止的。 An imaging system comprising: bombardment beam generator; target; and image sensor system comprising at least one image sensor, Wherein, the bombardment beam generator is configured to send M bombardment beams (bombardment beam (i), i=1, ..., M) to the target point (i) on the target, i = 1, ... ..., M, so as to obtain the radiation beams (i), i=1, ..., M emitted from the target point (i) i=1, ..., M and propagating to the object respectively, wherein, M is an integer greater than 1, wherein the image sensor system is configured, for each value of i, to obtain a 2D (two-dimensional) map of the object using the radiation of the radiation beam (i) that has passed through the object like (i), and Wherein, the target is stationary relative to the object. 如請求項11所述的成像系統,其中,所述圖像感測器系統還被配置為由所述2D圖像(i),i=1、……、M重建所述物體的3D(三維)圖像。The imaging system according to claim 11, wherein the image sensor system is further configured to reconstruct the 3D (three-dimensional )image. 如請求項11所述的成像系統,其中,所述圖像感測器系統還被配置為通過以下方式來獲得所述物體的所述2D圖像(i): 使用已經穿過所述物體的所述輻射束(i)的輻射來逐個捕獲所述物體的Ni個局部圖像,其中,Ni為大於1的整數;以及 拼接所述物體的所述Ni個局部圖像,從而得到所述物體的所述2D圖像(i)。 The imaging system according to claim 11, wherein the image sensor system is further configured to obtain the 2D image (i) of the object by: capturing Ni partial images of the object one by one using radiation of the radiation beam (i) that has passed through the object, where Ni is an integer greater than 1; and Stitching the Ni partial images of the object, so as to obtain the 2D image (i) of the object. 如請求項13所述的成像系統,其中,所有Ni,i=1、......、M都是相同的。The imaging system of claim 13, wherein all Ni, i=1, . . . , M are the same. 如請求項11所述的成像系統,其中,所述M個轟擊束中的每一個都包括電子束。The imaging system of claim 11, wherein each of the M bombardment beams comprises an electron beam. 如請求項11所述的成像系統,其中,所述目標包含銅或鎢。The imaging system of claim 11, wherein the target comprises copper or tungsten. 如請求項11所述的成像系統,其中,所述轟擊束(i),i=1、……、M被逐個發送。The imaging system according to claim 11, wherein the bombardment beams (i), i=1, . . . , M are sent one by one. 如請求項11所述的成像系統,其中,所述圖像感測器系統的圖像感測器獲得所有的所述2D圖像(i),i=1、……、M。The imaging system according to claim 11, wherein the image sensors of the image sensor system obtain all of the 2D images (i), i=1, . . . , M. 如請求項11所述的成像系統,其中,所述轟擊束發生器包括多個電子槍,每個所述電子槍發送所述M個所述轟擊束中的至少一個。The imaging system according to claim 11, wherein the bombardment beam generator comprises a plurality of electron guns, each of which transmits at least one of the M bombardment beams. 如請求項19所述的成像系統,其中,所述轟擊束發生器物理地固定於所述目標。The imaging system of claim 19, wherein the bombardment beam generator is physically fixed to the target.
TW111131945A 2021-09-16 2022-08-24 Imaging method and imaging system TW202314291A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
PCT/CN2021/118628 WO2023039774A1 (en) 2021-09-16 2021-09-16 Imaging methods using multiple radiation beams
WOPCT/CN2021/118628 2021-09-16

Publications (1)

Publication Number Publication Date
TW202314291A true TW202314291A (en) 2023-04-01

Family

ID=85602260

Family Applications (1)

Application Number Title Priority Date Filing Date
TW111131945A TW202314291A (en) 2021-09-16 2022-08-24 Imaging method and imaging system

Country Status (3)

Country Link
CN (1) CN117940808A (en)
TW (1) TW202314291A (en)
WO (1) WO2023039774A1 (en)

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ATE538841T1 (en) * 2005-10-17 2012-01-15 Alberta Health Services INTEGRATED EXTERNAL BEAM RADIOTHERAPY AND MRI SYSTEM
WO2010131209A1 (en) * 2009-05-12 2010-11-18 Koninklijke Philips Electronics N.V. X-ray source with a plurality of electron emitters
EP2834830B1 (en) * 2012-06-14 2017-03-22 Siemens Aktiengesellschaft X-ray source, use thereof and method for producing x-rays
CN104364876B (en) * 2012-06-15 2017-05-17 西门子公司 X-ray source, use thereof and method for producing X-rays
WO2016187623A1 (en) * 2015-05-15 2016-11-24 Sigray, Inc. X-ray techniques using structured illumination
EP4111235A4 (en) * 2020-02-26 2023-11-01 Shenzhen Xpectvision Technology Co., Ltd. Imaging systems and methods of operating the same
CN111584332A (en) * 2020-06-17 2020-08-25 西安中科英威特光电技术有限公司 Electron bombardment imaging photoelectric device and high-speed camera

Also Published As

Publication number Publication date
WO2023039774A1 (en) 2023-03-23
CN117940808A (en) 2024-04-26

Similar Documents

Publication Publication Date Title
TWI776834B (en) Image sensors having x-ray detectors
CN109690351B (en) Package for semiconductor X-ray detector
US11740188B2 (en) Method of phase contrast imaging
US11904187B2 (en) Imaging methods using multiple radiation beams
TWI769704B (en) Imaging systems and methods of operating the same
TWI831899B (en) Image system and method for operating the same
TW202314291A (en) Imaging method and imaging system
TW202222069A (en) Imaging systems and imaging methods
TWI806225B (en) Imaging methods and imaging systems
TWI797891B (en) Imaging method and imaging system
US11617554B2 (en) Imaging systems using x-ray fluorescence
WO2023123301A1 (en) Imaging systems with rotating image sensors
US11948285B2 (en) Imaging systems with multiple radiation sources
CN115023605A (en) Phase contrast imaging method
WO2023115516A1 (en) Imaging systems and methods of operation
WO2024031301A1 (en) Imaging systems and corresponding operation methods
TWI802283B (en) Imaging systems
WO2023039701A1 (en) 3d (3-dimensional) printing with void filling
TW202331301A (en) Method and system for performing diffractometry
TW202329481A (en) Methods of operation of image sensors
TW202242449A (en) Imaging methods using an image sensor with multiple radiation detectors
TW202404464A (en) Imaging system and method for sorting animals by anatomy
TW202305406A (en) Battery roll testing method with imaging systems
TW202300905A (en) Method of battery film testing with imaging systems and imaging system