TW202313449A - 使用非發火性儲氫合金之3d列印儲氫系統 - Google Patents

使用非發火性儲氫合金之3d列印儲氫系統 Download PDF

Info

Publication number
TW202313449A
TW202313449A TW111127566A TW111127566A TW202313449A TW 202313449 A TW202313449 A TW 202313449A TW 111127566 A TW111127566 A TW 111127566A TW 111127566 A TW111127566 A TW 111127566A TW 202313449 A TW202313449 A TW 202313449A
Authority
TW
Taiwan
Prior art keywords
atomic
hydrogen storage
alloy
storage system
compartmentalized
Prior art date
Application number
TW111127566A
Other languages
English (en)
Other versions
TWI828247B (zh
Inventor
逢宣 李
寶泉 黃
世熙 趙
柯比 艾倫 史密斯
Original Assignee
美商哈尼斯智慧產權有限責任公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 美商哈尼斯智慧產權有限責任公司 filed Critical 美商哈尼斯智慧產權有限責任公司
Publication of TW202313449A publication Critical patent/TW202313449A/zh
Application granted granted Critical
Publication of TWI828247B publication Critical patent/TWI828247B/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C30/00Alloys containing less than 50% by weight of each constituent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/20Direct sintering or melting
    • B22F10/28Powder bed fusion, e.g. selective laser melting [SLM] or electron beam melting [EBM]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F12/00Apparatus or devices specially adapted for additive manufacturing; Auxiliary means for additive manufacturing; Combinations of additive manufacturing apparatus or devices with other processing apparatus or devices
    • B22F12/40Radiation means
    • B22F12/41Radiation means characterised by the type, e.g. laser or electron beam
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C1/00Pressure vessels, e.g. gas cylinder, gas tank, replaceable cartridge
    • F17C1/10Pressure vessels, e.g. gas cylinder, gas tank, replaceable cartridge with provision for protection against corrosion, e.g. due to gaseous acid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C1/00Pressure vessels, e.g. gas cylinder, gas tank, replaceable cartridge
    • F17C1/14Pressure vessels, e.g. gas cylinder, gas tank, replaceable cartridge constructed of aluminium; constructed of non-magnetic steel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C11/00Use of gas-solvents or gas-sorbents in vessels
    • F17C11/005Use of gas-solvents or gas-sorbents in vessels for hydrogen
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2999/00Aspects linked to processes or compositions used in powder metallurgy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y70/00Materials specially adapted for additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y80/00Products made by additive manufacturing
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C2202/00Physical properties
    • C22C2202/04Hydrogen absorbing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2201/00Vessel construction, in particular geometry, arrangement or size
    • F17C2201/01Shape
    • F17C2201/0104Shape cylindrical
    • F17C2201/0109Shape cylindrical with exteriorly curved end-piece
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2201/00Vessel construction, in particular geometry, arrangement or size
    • F17C2201/01Shape
    • F17C2201/0104Shape cylindrical
    • F17C2201/0119Shape cylindrical with flat end-piece
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2203/00Vessel construction, in particular walls or details thereof
    • F17C2203/06Materials for walls or layers thereof; Properties or structures of walls or their materials
    • F17C2203/0634Materials for walls or layers thereof
    • F17C2203/0636Metals
    • F17C2203/0646Aluminium
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2203/00Vessel construction, in particular walls or details thereof
    • F17C2203/06Materials for walls or layers thereof; Properties or structures of walls or their materials
    • F17C2203/0634Materials for walls or layers thereof
    • F17C2203/0636Metals
    • F17C2203/0648Alloys or compositions of metals
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2209/00Vessel construction, in particular methods of manufacturing
    • F17C2209/21Shaping processes
    • F17C2209/2109Moulding
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2209/00Vessel construction, in particular methods of manufacturing
    • F17C2209/21Shaping processes
    • F17C2209/2181Metal working processes, e.g. deep drawing, stamping or cutting
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2221/00Handled fluid, in particular type of fluid
    • F17C2221/01Pure fluids
    • F17C2221/012Hydrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2223/00Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
    • F17C2223/03Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by the pressure level
    • F17C2223/035High pressure (>10 bar)
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2260/00Purposes of gas storage and gas handling
    • F17C2260/05Improving chemical properties
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2260/00Purposes of gas storage and gas handling
    • F17C2260/05Improving chemical properties
    • F17C2260/053Reducing corrosion
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/32Hydrogen storage
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Optics & Photonics (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Hydrogen, Water And Hydrids (AREA)
  • Filling Or Discharging Of Gas Storage Vessels (AREA)
  • Powder Metallurgy (AREA)

Abstract

本發明係關於一種儲氫系統,其包括儲氫合金安全殼,該儲氫合金安全殼包含外部壓力安全殼及配置於該壓力安全殼內之導熱隔室化網路。該隔室化網路於配置儲氫合金之該壓力殼內產生隔室。該隔室化網路及該壓力殼中之一或兩者可藉由3D列印方法,諸如藉由選擇性雷射熔化(SLM)及/或直接金屬雷射燒結(DMLS)形成。該儲氫合金係具有以下之非發火性AB 2型拉弗氏相儲氫合金:不大於0.5之A位點對B位點元素比率;及包括以下之(以原子%計)合金組成:Zr:2.0至5.5、Ti:27至31.3、V:8.3至9.9、Cr:20.6至30.5、Mn:25.4至33.0、Fe:1.0至5.9、Al:0.1至0.4及/或Ni:0.0至4.0。

Description

使用非發火性儲氫合金之3D列印儲氫系統
本發明大體上係關於使用非發火性AB 2型拉弗氏相儲氫合金之3D列印儲氫系統。 聯邦資助研究聲明
不適用。
氫(一般認為係最終燃料)呈現許多待實現之潛在益處及許多待克服之困難。就作為內燃機、從燃燒中獲得熱能並使用之其他過程之燃料;及直接轉化過程(諸如,舉例而言,彼等電化學燃料電池中使用者)中電化學能源之直接來源之能力,氫提供產生能源之機會,而不產生具有處置困難之廢物。
氫燃燒之產物無論熱或電化學均為能量及水。此等中任一者均沒有毒性,亦不呈現溫室氣體、煙灰或放射性廢物之處置困難。出於作為有用、高能量含量燃料之角度,氫係當前使用化石燃料之大多數用途之極佳候選者。當於燃料電池中用於直接轉化為電能時,氫不產生通常毒害用於此等電化學電池中之催化材料的碳的氧化物,亦不如同供電核動力發電機之情況產生放射性廢物。
由於將氫用作燃料產生此等巨大益處,因此在使用氫作為燃料時可預期一些負擔。該等負擔存在且提供待克服之挑戰。使用氫作為燃料之最大困難在於其容載及運輸。氫可液化但冷卻及壓縮涉及之成本巨大;另外,安全殼無法完全密封;透過蒸發發生巨大損失。氣體本身之壓縮成本儘管不如液化那麼高但仍較高,且需堅固、耐用及沉重之容器。就每單位體積之能量儲存而言,兩者均為低效儲存形式。其他儲存方式將係有用的。
各種金屬及金屬合金組成可用於將氫儲存在金屬晶格內,一般作為氫化物。金屬氫化物系統具有長時間以高密度儲存氫之優點,因為其等係藉由將氫原子插入金屬之晶格內形成。由於可提高體積效率,因此將氫作為固體儲存頗具吸引力。此等材料一般將在充電、吸氫、吸收氫或氫化時釋放熱量。相反,需熱量以從金屬結構中釋放儲存之氫。
可逆金屬氫化物係經歷與氫之可逆反應之材料之廣泛類別。整體可逆反應書寫為: M(s) + x/2 H 2(g)  ⇔  MH X(s) + ΔH                  (1) 其中M為可氫化合金,MH X為金屬氫化物及ΔH為形成該金屬氫化物之熱量。用以催化氫分子分解成氫原子之可氫化合金表面在此反應前將為有用的。吸收反應係放熱的,而解吸反應係吸熱的。在此反應期間,金屬晶格隨氫之吸收而膨脹,及金屬結構隨氫之解吸而收縮,因此儲氫合金通常將具有較大之有效表面積或較小之顆粒。當其等曝露於空氣時,存在此等合金之另一可能反應: M(s) + x/2 O 2(g)  ⇔  MO X+ ΔH                      (2)
金屬粉末與氧發生巨大產熱生反應,導致表面溫度顯著升高。高溫引起表面氧化物層之不穩定性,導致該金屬粉末與氧之間的鏈反應。此稱為發火性。
此自燃意謂必須藉由持續提供非氧化性氣氛/環境特殊處理材料。從儲氫容量之分佈及改善來看,更重要地,此等材料之自燃性質在運輸期間需特殊處理。其等運輸方法亦受嚴格限制;通常,例如,此等材料由於其發火性性質而通常無法空運。因此,某些儲氫合金之發火性性質係與呈氫化物合金形式之儲氫之商業用途相關之主要安全問題之一。
Ovshinsky等人的標題為「Non-pyrophoric hydrogen storage alloy」之美國專利6,517,970及6,737,194中揭示一系列非發火性金屬氫化物。該等專利聲明Ovshinsky合金: 一般而言,該合金包含鈦、鋯、釩、鉻及錳。該合金可較佳進一步包含鐵及鋁且亦可含有總計1至10原子%之至少一種選自由以下組成之群之元素:Ba、Co、Cu、Cs、K、Li、Mm、Mo、Na、Nb、Ni、Rb、Ta、Tl及W (其中Mm係混合稀土金屬)。具體言之,低溫儲氫合金包含0.5至10原子% Zr、29至35原子% Ti、10至15原子% V、13至20原子% Cr、32至38原子% Mn、1.5至3.0原子% Fe及0.05至0.5原子% Al。
不幸地,相較於傳統金屬氫化物,此等先前技術非發火性材料之壓力組成溫度(PCT)曲線具有相對高之斜率及更大之氫捕獲。此捕獲減小合金之可逆儲存容量並於實際應用中造成各種困難。需具有非發火性,及高可逆容量、低PCT曲線斜率(平坦之平台壓力)、定製平台壓力及低材料成本之新穎先進材料,以滿足當今儲氫系統之要求。 用於大規模商業用途之理想儲氫材料必須具有: 1) 相對於儲存合金材料之重量之高儲存容量; 2) 合適之解吸溫度/壓力; 3) 良好動力學; 4) 良好可逆性; 5) 抗中毒(即循環時外部雜質對合金之污染)之能力,包括用於循環之商業氫中存在之典型污染物(例如氧及水蒸氣,商業氫之純度僅為99.995%);及 6) 相對低成本。
若材料缺少此等特性中之任一者,則其將無法用於大規模商業用途。
在許多應用中,尤其當氫化物用於行動應用中時,每單位重量材料之儲氫容量係重要考量。相對於該材料之重量,低儲氫容量可例如減小使用此材料之氫燃料載具之里程及因此續航里程。為減小釋放氫所需之能量,需低解吸溫度/高平台壓力。同樣,為有效利用來自載具、機械、燃料電池或其他類似設備之可用廢熱,需相對低之解吸溫度來釋放儲存之氫。
因此,此項技術中需非發火性、具有高可逆儲氫容量、低氫解吸溫度/高平台壓力、相對平坦之PCT等溫線曲線平台壓力、低滯後、低捕獲及低材料成本之儲氫材料。
本發明包含一種儲氫系統。該儲氫系統可包括儲氫合金安全殼。該儲氫合金安全殼可包括外部壓力安全殼。該儲氫合金安全殼亦可包括配置於該外部壓力安全殼內之導熱隔室化網路。該導熱隔室化網路可於可配置儲氫合金之外部壓力安全殼內產生隔室。
儲氫合金安全殼可進一步包括沈積於其中之儲氫合金。該儲氫合金可為非發火性AB 2型拉弗氏相儲氫合金。該合金可具有不大於約0.5之A位點對B位點元素比率。該合金可具有包括約(以原子%計)以下之合金組成:Zr:2.0至5.5、Ti:27至31.3、V:8.3至9.9、Cr:20.6至30.5、Mn:25.4至33.0、Fe:1.0至5.9及Al:0.1至0.4。更佳地,該合金可具有包括約(以原子%計)以下之合金組成:Zr:2.9至5.5、Ti:27至30.3、V:8.3至9.3、Cr:20.6至26.5、Mn:29.4至32.1、Fe:1.5至5.9及Al:0.1至0.4。
非發火性AB 2型拉弗氏相儲氫合金可進一步包括至多約4原子%鎳作為至多約2原子%鉻或至多約2原子%錳或兩者之等同替代物。該合金在約500 psi及約20℃下可具有至少約1.7重量%或1.8重量%之總儲氫容量。該合金在約14.5 psi及約20℃下可進一步具有不大於約0.25重量% (較佳不大於約0.2重量%及更佳不大於約0.15重量%或0.10重量%)之捕獲氫容量。
儲氫合金可具有不大於約0.8 (較佳不大於約0.7或0.6)之PCT等溫線斜率。該非發火性AB 2型拉弗氏相儲氫合金可具有不大於約0.5或0.4 (較佳不大於約0.3及更佳不大於約0.2或0.1)之滯後。
合金亦可含有總計約1至10原子%之至少一種選自由以下組成之群之元素:Ba、Co、Cu、Cs、K、Li、Mm、Mo、Na、Nb、Ni、Rb、Ta、Tl及W (其中Mm係混合稀土金屬)。
外部壓力安全殼及導熱隔室化網路中之一或兩者可藉由3D列印方法製造。該外部壓力安全殼及該導熱隔室化網路中之兩者均可藉由3D列印方法同時製造為單個單元。
導熱隔室化網路可藉由3D金屬列印方法製造,其中高導熱列印金屬係選自由以下組成之群:鋁、鋁合金、銅、銅合金、鎂及鎂合金。該3D金屬列印方法可包括藉由選擇性雷射熔化(SLM)及/或直接金屬雷射燒結(DMLS)沈積。
另外,本發明包括一種藉由經由3D列印方法製造配置於該外部壓力安全殼內之導熱隔室化網路,並使儲氫合金沈積於該儲氫合金安全殼內來製造儲氫系統之方法。
外部壓力安全殼及導熱隔室化網路兩者均可藉由3D列印方法製造。該外部壓力安全殼及該導熱隔室化網路兩者均可藉由該3D列印方法同時製造為單個單元。該3D列印方法可包括藉由選擇性雷射熔化(SLM)及/或直接金屬雷射燒結(DMLS)沈積。
導熱隔室化網路可藉由3D列印方法製造,其中高導熱列印金屬係選自由以下組成之群:鋁、鋁合金、銅、銅合金、鎂及鎂合金。該3D列印方法可包括藉由選擇性雷射熔化(SLM)及/或直接金屬雷射燒結(DMLS)沈積。
相關申請案之交叉參考
本申請案主張以下之優先權:2021年7月23日申請之標題為「Non-Pyrophoric Hydrogen Storage Alloys and Hydrogen Storage Systems Using the Alloys」之美國臨時申請案序列號63/225,366;2021年7月23日申請之標題為「Hydrogen Storage Systems Using Non-Pyrophoric Hydrogen Storage Alloys」之美國臨時申請案序列號63/225,389;及2021年7月23日申請之標題為「3D Printed Hydrogen Storage Systems Using Non-Pyrophoric Hydrogen Storage Alloys」之美國臨時申請案序列號63/225,399。前述申請案之完整內容係以引用之方式併入本文中。
本發明係一種非發火性、AB 2型拉弗氏相儲氫合金及使用該等合金之儲氫系統。該合金可較佳具有約<=0.5之A位點對B位點元素比率。該合金可較佳在約500 psi及約20℃下具有至少約1.7重量%或1.8%重量%之總儲氫容量。該合金在約14.5 psi及約20℃下可進一步具有不大於約0.25重量% (較佳不大於約0.2重量%及更佳不大於約0.15重量%或0.1重量%)之捕獲氫容量。
儲氫合金可具有不大於約0.8 (較佳不大於約0.7或0.6)之壓力組成溫度(PCT)等溫線斜率。非發火性AB 2型拉弗氏相儲氫合金可具有不大於約0.5或0.4 (較佳不大於約0.3及更佳不大於約0.2或0.1)之滯後。
概括地說,進步性儲氫合金含有約(以原子%計):Zr:2.0至5.5、Ti:27至31.3、V:8.3至9.9、Cr:20.6至30.5、Mn:25.4至33.0、Fe:1.0至5.9及Al:0.1至0.4。
更嚴格地說,進步性儲氫可含有約(以原子%計):Zr:2.9至5.5、Ti:27至30.3、V:8.3至9.3、Cr:20.6至26.5、Mn:26.4至32.1、Fe:1.5至5.9及Al:0.1至0.4。
合金亦可含有總計約1至10原子%之至少一種選自由以下組成之群之元素:Ba、Co、Cu、Cs、K、Li、Mm、Mo、Na、Nb、Ni、Rb、Ta、Tl及W (其中Mm係混合稀土金屬)。低電負度元素(諸如Ba、Cs、K、Li、Na、Rb、Mm)可藉由與雜質氧化物反應純化該合金,而相對高電負度元素(諸如Co、Cu、Mo、Nb、Ta、Tl及W)可溶解於AB 2型拉弗氏相中以改善氫化性質。
非發火性AB 2型拉弗氏相儲氫合金可進一步包括至多約4原子%鎳作為至多約2原子%鉻或至多約2原子%錳或兩者之等同替代物。由於鎳之高度催化性質及延性,因此將鎳添加至該等合金可有助於減少滯後。鎳亦可防止合金中形成體心立方(BCC)二次相,因為其合金具有較高外電子平均數。
為在曝露於環境大氣時達成非發火性,延性增強元素之原子%已增加且脆性增強元素之原子%已降低以減少進步性合金材料之熱爆。氫藉由進入晶界並於最弱點處產生壓力而使金屬脆化。此導致開始傳播通過晶粒結構之微裂。此過程稱為熱爆。熱爆係在長時間循環期間損失容量之主要原因。通常,高含量錳合金容易熱爆,因為錳係高脆性元素。或者,含有釩、鉻或鎳之合金具有較少之熱爆問題。
表1列舉本發明之非發火性合金、兩種典型發火性合金及Ovshinsky專利之先前技術合金之組成及性質。 表1
Figure 02_image001
A/B比率= A(Ti+Zr)/B(V+Cr+Mn+Fe+Al+Ni) 斜率=在20℃下之d In P(psi)/ d(容量(重量%)) 滯後=在20℃下之In Pa/ In Pd 捕獲(重量%) =在14.5 psi及20℃下之捕獲能力 能力(重量%) =在500 psi及20℃下之儲存能力 平台(psia) =在20℃下之解吸中間平台壓力
圖1顯示進步性非發火性儲氫合金之實例在20℃下之解吸PCT等溫線圖。表1及圖2中之樣品HA697及HA703係具有大於約37原子%錳之發火性合金。此等樣品在曝露於環境大氣時自燃。或者,具有較高鉻及釩(相較於其等發火性對應物)及較少錳之進步性合金(諸如HA1036)係非自燃的。
圖2顯示進步性非發火性儲氫合金(HA1036)與兩種可比較發火性合金(HA697及HA703)在20℃下之吸收及解吸壓力組成溫度(PCT)等溫線圖。
進步性儲氫合金之延性增強元素(諸如釩及鉻)之較高含量的另一優點可增加金屬氫化物合金之延性,其進一步減少滯後。
為瞭解滯後,應注意金屬氫化物儲存系統之最重要特徵之一係其平台壓力,其指示金屬氫化物可逆吸收/解吸大量氫時之壓力。一般而言,在壓力組成等溫線中吸收及解吸之等效壓力之間存在差異。吸收及解吸壓力中之此差異稱為滯後。
例如,如圖2及表2中顯示,相較於低滯後(0.143) HA1036,低釩及鉻HA697及HA703合金分別具有0.827及0.616之高滯後值。 表2
Figure 02_image003
釩及錳含量極大影響AB 2型拉弗氏相儲氫合金之滯後,而該鉻之影響相對弱。高釩含量可顯著減少滯後,而高錳含量則相反。
進步性高釩及鉻、儲氫合金趨於不發火之另一原因在於V及Cr趨於形成緻密氧化物層,該等氧化物層可阻止該合金進一步氧化(即發火性燃燒)。或者,錳及鐵形成無法阻止該合金與氧進一步接觸並反應之多孔氧化物層。
不幸地,AB 2型拉弗氏相合金中高含量之釩及鉻趨於形成二次體心立方(BCC)相。該BCC相係固溶體原子之無序結構且需具有相似原子尺寸及低外電子之元素。一般而言,存在平均外電子數小於5.4之體心立方相。因此,此等合金中鈦、釩及鉻之高含量由於其等相似之原子尺寸及較低之外電子數而促進該BCC相之形成。
此二次BCC相之存在扭曲PCT等溫線之平台壓力之平坦度,因為該BCC相具有兩種氫化物結構。此等包括氫原子佔據八面體位點之BCC相及氫原子位於四面體位點中之面心立方(FCC)相。通常,BCC氫化物相之大八面體位點中之氫為不可逆的,藉此捕獲大量氫,而該FCC相之小四面體位點中之氫為可逆的,但該FCC相之平台壓力可不為AB 2型拉弗氏相合金之範圍。
由於錳具有較大原子半徑及高外電子數,因此高含量之錳可防止於AB 2型拉弗氏相中形成第二BCC相。因此,該高含量錳AB 2型合金具有相對平坦之平台壓力但具有高度自燃性及高滯後。為達成不發火及低滯後,AB 2合金中之錳含量應不超過約33原子%。更佳地,該錳不超過約32原子%。
將鋯添加至合金可有助於減少二次BCC相之形成。此係因為鋯原子大且不喜歡與鈦、釩及鉻形成無序固溶體相。將Zr添加至AB 2合金可產生具有高熱穩定性及低平台壓力之儲氫合金。此係因為鋯之大半徑及低電負度。
圖3顯示展示鋯含量對進步性非發火性儲氫合金在20℃下之平台壓力之影響的解吸PCT等溫線圖。此由具有不同Zr含量之合金之平台壓力中之差異證明。HA944 (具有5.5原子% Zr)之中間平台壓力為55 psia,而HA1040 (具有3.78原子% Zr)及HA1032 (具有2.94原子% Zr)之中間平台壓力分別為110 psia及145 psia (參見表1)。
針對AB 2型拉弗氏相合金,Zr/Ti比率控制四面體間隙位點及平均電負度,及確定平台壓力。較低Zr/Ti值促進具有高平台壓力之合金之形成,而較高值導致較低平台壓力。因此,該平台壓力可至少根據儲氫合金之最終用途之需求進行調整。
在AB 2型拉弗氏相中,A/B比率可影響平台平坦度。該A/B比率已略微降低至小於或等於0.5以限制任何二次BCC相之形成。此係因為具有低外電子數之A位點元素有利於BCC無序固溶體相之形成。因此,貧A位點元素之合金限制該二次相。該二次BCC相之存在可破壞平台之平坦度,因為該BCC相具有兩種氫化物結構,即氫原子佔據八面體位點之BCC相及氫原子位於四面體位點處之FCC相。在合理之壓力及溫度下,BCC氫化物相之八面體位點處儲存之氫為不可逆的,因此於金屬晶格中形成氫阱。儘管該FCC相之四面體位點處之氫為可逆的,但平台壓力不如該AB 2型拉弗氏相中之彼等有用。
圖4顯示貧A位點進步性合金HA1032與富A位點先前技術合金OV555之解吸PCT等溫線圖(在20℃下)。具有0.515之A/B比率之合金OV555顯示1.145之高斜率及0.26重量%之高捕獲,而具有0.485之A/B比率之本發明HA1032的合金顯示0.693之低斜率及0.15重量%之低捕獲。此指示該A/B比率顯著影響平台壓力及平台平坦度。因此,該A/B比率之減小已導致具有高平台壓力及更平坦平台之合金的形成。
儘管熱爆係在長時間循環及發火性燃燒期間容量損失之主要原因,但另一原因部分與充電/放電循環之應力及應變相關。高滯後通常顯示高應力及應變,藉此導致高熱爆。一些元素(諸如釩、鉻及鎳)可減少此等材料中之此缺點。
純釩之價格比釩鐵高數倍。用低成本釩鐵代替純釩將顯著降低產生合金之材料之成本。通常,釩鐵合金含有15%至17% Fe及1%至2% Al。鐵不利影響AB 2型拉弗氏相合金之可燃性及高滯後,而鋁不利影響容量及平台平坦度,導致兩種元素之較低含量及更佳性能。表3列舉本發明之具有低Fe含量之非發火性合金之組成及性質。圖5顯示具有低Fe含量之進步性非發火性儲氫合金之實例在20℃下之解吸PCT等溫線圖。 表3
Figure 02_image005
A/B比率= A(Ti+Zr)/B(V+Cr+Mn+Fe+Al+Ni) 斜率=在20℃下之d In P(psi)/ d(容量(重量%)) 滯後=在20℃下之In Pa/ In Pd 捕獲(重量%) =在14.5 psi及20℃下之捕獲能力 能力(重量%) =在500 psi及20℃下之儲存能力 平台(psia) =在20℃下之解吸中間平台壓力
Zr可為2.0原子%、2.1原子%、2.2原子%、2.3原子%、2.4原子%、2.5原子%、2.6原子%、2.7原子%、2.8原子%、2.9原子%、3.0原子%、3.1原子%、3.2原子%、3.3原子%、3.4原子%、3.5原子%、3.6原子%、3.7原子%、3.8原子%、3.9原子%、4.0原子%、4.1原子%、4.2原子%、4.3原子%、4.4原子%、4.5原子%、4.6原子%、4.7原子%、4.8原子%、4.9原子%、5.0原子%、5.1原子%、5.2原子%、5.3原子%、5.4原子%、5.5原子%或介於之間的其他增量原子%。
Ti可為約27.0原子%、27.1原子%、27.2原子%、27.3原子%、27.4原子%、27.5原子%、27.6原子%、27.7原子%、27.8原子%、27.9原子%、28.0原子%、28.1原子%、28.2原子%、28.3原子%、28.4原子%、28.5原子%、28.6原子%、28.7原子%、28.8原子%、28.9原子%、29.0原子%、29.1原子%、29.2原子%、29.3原子%、29.4原子%、29.5原子%、29.6原子%、29.7原子%、29.8原子%、29.9原子%、30.0原子%、30.1原子%、30.2原子%、30.3原子%、30.4原子%、30.5原子%、30.6原子%、30.7原子%、30.8原子%、30.9原子%、31.0原子%、31.1原子%、31.2原子%、3.3原子%或介於之間的其他增量原子%。
V可為約8.3原子%、8.4原子%、8.5原子%、8.6原子%、8.7原子%、8.8原子%、8.9原子%、9.0原子%、9.1原子%、9.2原子%、9.3原子%、9.4原子%、9.5原子%、9.6原子%、9.7原子%、9.8原子%、9.9原子%或介於之間的其他增量原子%。
Cr可為約20.6原子%、20.7原子%、20.8原子%、20.9原子%、21.0原子%、21.1原子%、21.2原子%、21.3原子%、21.4原子%、21.5原子%、21.6原子%、21.7原子%、21.8原子%、21.9原子%、22.0原子%、22.1原子%、22.2原子%、22.3原子%、22.4原子%、22.5原子%、22.6原子%、22.7原子%、22.8原子%、22.9原子%、23.0原子%、23.1原子%、23.2原子%、23.3原子%、23.4原子%、23.5原子%、23.6原子%、23.7原子%、23.8原子%、23.9原子%、24.0原子%、24.1原子%、24.2原子%、24.3原子%、24.4原子%、24.5原子%、24.6原子%、24.7原子%、24.8原子%、24.9原子%、25.0原子%、25.1原子%、25.2原子%、25.3原子%、25.4原子%、25.5原子%、25.6原子%、25.7原子%、25.8原子%、25.9原子%、26.0原子%、26.1原子%、26.2原子%、26.3原子%、26.4原子%、26.5原子%、26.6原子%、26.7原子%、26.8原子%、26.9原子%、27.0原子%、27.1原子%、27.2原子%、27.3原子%、27.4原子%、27.5原子%、27.6原子%、27.7原子%、27.8原子%、27.9原子%、28.0原子%、28.1原子%、28.2原子%、28.3原子%、28.4原子%、28.5原子%、28.6原子%、28.7原子%、28.8原子%、28.9原子%、29.0原子%、29.1原子%、29.2原子%、29.3原子%、29.4原子%、29.5原子%、29.6原子%、29.7原子%、29.8原子%、29.9原子%、30.0原子%、30.1原子%、30.2原子%、30.3原子%、30.4原子%、30.5原子%或介於之間的其他增量原子%。
Mn可為約25.4原子%、25.5原子%、25.6原子%、25.7原子%、25.8原子%、25.9原子%、26.0原子%、26.1原子%、26.2原子%、26.3原子%、26.4原子%、26.5原子%、26.6原子%、26.7原子%、26.8原子%、26.9原子%、27.0原子%、27.1原子%、27.2原子%、27.3原子%、27.4原子%、27.5原子%、27.6原子%、27.7原子%、27.8原子%、27.9原子%、28.0原子%、28.1原子%、28.2原子%、28.3原子%、28.4原子%、28.5原子%、28.6原子%、28.7原子%、28.8原子%、28.9原子%、29.0原子%、29.1原子%、29.2原子%、29.3原子%、29.4原子%、29.5原子%、29.6原子%、29.7原子%、29.8原子%、29.9原子%、30.0原子%、30.1原子%、30.2原子%、30.3原子%、30.4原子%、30.5原子%、30.6原子%、30.7原子%、30.8原子%、30.9原子%、31.0原子%、31.1原子%、31.2原子%、31.3原子%、31.4原子%、31.5原子%、31.6原子%、31.7原子%、31.8原子%、31.9原子%、32.0原子%、32.1原子%、32.2原子%、32.3原子%、32.4原子%、32.5原子%、32.6原子%、32.7原子%、32.8原子%、32.9原子%、33.0原子%或介於之間的其他增量原子%。
Fe可為約1.0原子%、1.1原子%、1.2原子%、1.3原子%、1.4原子%、1.5原子%、1.6原子%、1.7原子%、1.8原子%、1.9原子%、2.0原子%、2.1原子%、2.2原子%、2.3原子%、2.4原子%、2.5原子%、2.6原子%、2.7原子%、2.8原子%、2.9原子%、3.0原子%、3.1原子%、3.2原子%、3.3原子%、3.4原子%、3.5原子%、3.6原子%、3.7原子%、3.8原子%、3.9原子%、4.0原子%、4.1原子%、4.2原子%、4.3原子%、4.4原子%、4.5原子%、4.6原子%、4.7原子%、4.8原子%、4.9原子%、5.0原子%、5.1原子%、5.2原子%、5.3原子%、5.4原子%、5.5原子%、5.6原子%、5.7原子%、5.8原子%、5.9原子%或介於之間的其他增量原子%。
Al可為約0.1原子%、0.2原子%、0.3原子%、0.4原子%或介於之間的其他增量百分比。
Ni可為約0.0原子%、0.1原子%、0.2原子%、0.3原子%、0.4原子%、0.5原子%、0.6原子%、0.7原子%、0.8原子%、0.9原子%、1.0原子%、1.1原子%、1.2原子%、1.3原子%、1.4原子%、1.5原子%、1.6原子%、1.7原子%、1.8原子%、1.9原子%、2.0原子%、2.1原子%、2.2原子%、2.3原子%、2.4原子%、2.5原子%、2.6原子%、2.7原子%、2.8原子%、2.9原子%、3.0原子%、3.1原子%、3.2原子%、3.3原子%、3.4原子%、3.5原子%、3.6原子%、3.7原子%、3.8原子%、3.9原子%、4.0原子%或介於之間的其他增量原子%。
Ba、Co、Cu、Cs、K、Li、Mm、Mo、Na、Nb、Ni、Rb、Ta、Tl及W (其中Mm係混合稀土金屬)可為約1.0原子%、1.1原子%、1.2原子%、1.3原子%、1.4原子%、1.5原子%、1.6原子%、1.7原子%、1.8原子%、1.9原子%、2.0原子%、2.1原子%、2.2原子%、2.3原子%、2.4原子%、2.5原子%、2.6原子%、2.7原子%、2.8原子%、2.9原子%、3.0原子%、3.1原子%、3.2原子%、3.3原子%、3.4原子%、3.5原子%、3.6原子%、3.7原子%、3.8原子%、3.9原子%、4.0原子%、4.1原子%、4.2原子%、4.3原子%、4.4原子%、4.5原子%、4.6原子%、4.7原子%、4.8原子%、4.9原子%、5.0原子%、5.1原子%、5.2原子%、5.3原子%、5.4原子%、5.5原子%、5.6原子%、5.7原子%、5.8原子%、5.9原子%、6.0原子%、6.1原子%、6.2原子%、6.3原子%、6.4原子%、6.5原子%、6.6原子%、6.7原子%、6.8原子%、6.9原子%、7.0原子%、7.1原子%、7.2原子%、7.3原子%、7.4原子%、7.5原子%、7.6原子%、7.7原子%、7.8原子%、7.9原子%、8.0原子%、8.1原子%、8.2原子%、8.3原子%、8.4原子%、8.5原子%、8.6原子%、8.7原子%、8.8原子%、8.9原子%、9.0原子%、9.1原子%、9.2原子%、9.3原子%、9.4原子%、9.5原子%、9.6原子%、9.7原子%、9.8原子%、9.9原子%、10.0原子%或介於之間的其他增量原子%。
合金可具有不大於約0.08重量%、0.09重量%、0.10重量%、0.11重量%、0.12重量%、0.13重量%、0.14重量%、0.15重量%、0.16重量%、0.17重量%、0.18重量%、0.19重量%、0.20重量%、0.21重量%、0.22重量%、0.23重量%、0.24重量%、0.25重量%或介於之間的其他增量重量%之捕獲氫容量(在約14.5 psi及約20℃下)。該合金可具有小於0.08重量%之捕獲氫容量(在約14.5 psi及約20℃下)。
合金可具有不大於約0.50、0.51、0.52、0.53、0.54、0.55、0.56、0.57、0.58、0.59、0.60、0.61、0.62、0.63、0.64、0.65、0.66、0.67、0.68、0.69、0.70、0.71、0.72、0.73、0.74、0.75、0.76、0.77、0.78、0.79、0.80或介於之間的其他增量值之PCT等溫線斜率。該合金可具有小於0.50之PCT等溫線斜率。
合金可具有不大於約0.04、0.05、0.06、0.07、0.08、0.09、0.10、0.11、0.12、0.13、0.14、0.15、0.16、0.17、0.18、0.19、0.20、0.21、0.22、0.23、0.24、0.25、0.26、0.27、0.28、0.29、0.30、0.31、0.32、0.33、0.34、0.35、0.36、0.37、0.38、0.39、0.40、0.41、0.42、0.43、0.44、0.45、0.46、0.47、0.48、0.49、0.50或介於之間的其他增量值之滯後。
合金可具有至少約1.70重量%、1.71重量%、1.72重量%、1.73重量%、1.74重量%、1.75重量%、1.76重量%、1.77重量%、1.78重量%、1.79重量%、1.80重量%或介於之間的其他增量重量%之總儲氫容量(在約500 psi及約20℃下)。該合金可具有大於1.80重量%之總儲氫容量(在約500 psi及約20℃下)。
圖6中可見本發明之儲氫系統1。圖6繪示包括儲氫合金安全殼之儲氫系統1。該儲氫合金安全殼包括外部壓力安全殼2。該儲氫合金安全殼進一步包括配置於該外部壓力安全殼2內之導熱隔室化網路3。該導熱隔室化網路3於該外部壓力安全殼2內產生導熱隔室。儲氫合金7配置於該導熱隔室化網路3之導熱隔室內。通常,習知壓力閥4與該外部壓力安全殼2之閥開口連接以控制氫氣自該外部壓力安全殼2之流入及流出用於儲存在該儲氫合金7中。其他實施例可包括與其他系統(諸如其他類型之儲存系統、載具、發動機、設備或無論已知或未知的使用氫之任何其他系統)介接之不同或專用壓力閥。
較佳地,至少導熱隔室化網路3係藉由3D列印方法產生。或者,該導熱隔室化網路3及外部壓力安全殼2兩者均藉由3D列印方法同時產生。
圖7繪示儲氫系統1頂部之放大影像。如圖7中繪示,導熱隔室化網路3由位於外部壓力安全殼2內之複數個細長管5形成。該複數個細長管5包裝於該外部壓力安全殼2內以形成連貫、緊密包裝之束,其中該等細長管5之縱軸平行於該外部壓力安全殼2之縱軸。該等細長管5較佳為薄壁且由鋁、銅、鎂或此等金屬之合金製成以避免該等細長管與該外部壓力安全殼2內之氫氣氛相互作用之任何問題。當根據已知技術適當設計時,該外部壓力安全殼2可由鋁、銅、不銹鋼、碳鋼,及其他金屬製成。
將細長管2緊密裝入外部壓力安全殼2內之束中使得該束中之各細長管5沿其縱向表面與其他細長管5之縱向表面緊密接觸。另外,該束中之外部細長管5使得沿其等縱向表面與該外部壓力安全殼2之縱向內表面緊密接觸。
圖8A至8E繪示本發明之不同儲氫系統之橫截面圖。該等系統包括含有導熱隔室化網路3之外部壓力安全殼2。該儲氫合金7係配置於該等導熱隔室化網路3之隔室內。一般而言,該導熱隔室化網路3將該外部壓力安全殼2之內部分為至少兩個隔室。在圖8A、8B及8D中,該導熱隔室化網路3將該外部壓力安全殼2之內部分為四個隔室。或者,圖8C及8E之系統之導熱隔室化網路3將該外部壓力安全殼2分為更多複數個隔室。
儲氫系統可包括該系統內之非儲存組件4。此等非儲存組件4可包括熱輸送及/或產生構件,及氣體輸送構件。此外,該等非儲存組件4可為感測器,諸如,舉例而言監測內部溫度之熱探針。視需要,該等非儲存組件4可插入儲氫合金7內(參見圖8A及8B),但其等亦可在隔室化網路3內具有專用位置4' (參見圖8C)。
如圖8D及8E中繪示,導熱隔室化網路3可進一步包括內部集線器區域5。此內部集線器區域5可容許該導熱隔室化網路3之集中區域內非儲存組件4之任何及/或所有功能。此內部集線器區域5亦可容許經由接線6互連多個儲氫系統。
圖9A至9D繪示其他導熱隔室化網路3結構之另外橫截面圖。此等結構包括兩個集線器區域5及複雜之隔室化網路3。此等類型之導熱隔室化網路3由於其等複雜之性質而可使其等本身適合3D列印。特定言之,同時3D列印該外部壓力安全殼2及該導熱隔室化網路3容許使用更少材料之更強系統。即,該導熱隔室化網路3連接至該外部壓力安全殼2並加強之,使得該外部壓力安全殼2可含有較少材料且仍可耐受將氫儲存於儲氫合金內所需之內部壓力。儘管圖8A至8D中顯示兩個集線器5,但應注意取決於系統尺寸、熱考量、機械要求等,可視需要使用任何數量之集線器5。
圖10繪示本發明之儲氫系統之一實施例之橫截面圖。該系統具有外部壓力安全殼2及亦含有形成為細長六邊形基材之導熱隔室化網路3。該儲氫合金7係配置於該細長六邊形基材之隔室內。
圖11A顯示圖10之細長六邊形基材,而圖11B至11E繪示於導熱隔室化網路3內形成其他形狀之隔室之其他細長基材結構。此等實施例之導熱隔室化網路3可包括非儲存組件4/4'。與圖9A至9D之結構一樣,此等細長基材配置較佳經由3D列印形成。
圖12A至12C繪示各種可經由3D列印產生之導熱隔室化網路3。圖12A係極高強度金屬基材,其可插入外部壓力殼2內。圖12B係發泡金屬基材,其亦可插入該外部壓力殼2內。最後,圖12C繪示諸如圖10及11A中繪示之細長六邊形基材。
圖13A及13B繪示一種產生本發明之儲氫系統1之方法。即,如自圖13A可見,外部壓力安全殼2可包含複數個壓力殼部分(即2'及2")。該複數個部分容許外部產生導熱隔室化網路3並將其插入該外部壓力安全殼之一或多個部分內。如圖13B中顯示,一經插入該導熱隔室化網路3,該複數個外部壓力安全殼部分即接合以封閉該導熱隔室化網路3。該等外部壓力安全殼部分可藉由諸如焊接、銅焊、摩擦焊接、機械螺紋連接在一起之技術,或諸如可產生可接受之外部壓力安全殼2之其他技術接合。
用於形成本發明之儲氫系統1之另一技術係將外部產生之導熱隔室化網路3插入原壓力殼內。一經插入該導熱隔室化網路3,該原壓力殼即經機械加工以形成包圍該導熱隔室化網路3之最終外部壓力安全殼2。
或者,可經由3D列印技術同時形成整個儲氫系統1,包括外部壓力安全殼2及導熱隔室化網路3。此通常包括金屬之3D列印之方法。
金屬3D列印係數個技術家族之統稱術語。簡單來說,金屬3D列印係指任何透過與金屬燒結、熔化及焊接逐層產生金屬物體之技術。
金屬3D列印係投資最多且發展最快之製造技術中之一者。金屬3D列印可與其他製造技術結合使用,但其亦可自行產生原型及成品。在一些情況下,3D列印之金屬物體表現得與機製件一樣好。金屬3D列印可用於原型設計、航空航太、機械工程、特殊工具及其他應用中。
鋁係具有高可撓性、良好強度及極佳熱性質之輕質合金且其已成為3D列印中使用之主要金屬。鋁3D列印機已用於生物醫學、汽車及航空航太應用中。鋁之核心優勢在於其可成型並用於功能性物體及原型。該材料適用於原型設計及製造。3D列印之鋁零件之品質堪比合成零件之品質。鋁之材料性質使其成為經受高負載之高性能功能零件之極佳選擇。 可用3D列印技術包括(但不限於): 1.熔融沈積建模(FDM) 2.立體微影術(SLA) 3.數位光處理(DLP) 4.選擇性雷射燒結(SLS) 5.材料噴射(MJ) 6.按需噴墨(DoD) 7.砂黏合劑噴射 8.金屬黏合劑噴射 9.直接金屬雷射燒結(DMLS)及選擇性雷射熔化(SLM);及 10.電子束熔化(EBM)。
其中,可認為DMSL/SLM係適用於形成整個儲氫系統1之技術。
選擇性雷射熔化(SLM)及直接金屬雷射燒結(DMLS)係兩種使用金屬粉末床熔合之金屬增材製造方法,該方法利用熱源一次熔合一層金屬顆粒。兩者均以類似於SLS之方式製造物體,主要差異為此等技術用以產生金屬零件而非塑膠。使用之典型材料為金屬粉末、鋁、不銹鋼及鈦。
DMLS用於由金屬合金產生零件。DMLS用雷射將金屬粉末加熱至其於分子水平上融合在一起之程度而非將其熔化。SLM使用該雷射使該金屬粉末完全熔化以形成均勻零件,換而言之,其自單元素材料(諸如鈦)製造零件。
DMLS及SLM方法確實需結構支撐以限制變形之可能性,該變形可由列印期間使用之高溫造成。該等兩種技術具有許多相似性:兩者均使用雷射掃描並選擇性融合(或熔化)金屬粉末顆粒,將其等黏合在一起並逐層構建零件。此外,兩種方法中使用之材料均為呈顆粒/粉末形式之金屬。
SLM及DMLS之間的差異歸結為顆粒鍵合過程之基本原理。SLM使用具有單一熔化溫度之金屬粉末並使該等顆粒完全熔化,而於DMLS中,該粉末由在高溫下於分子水平上融合之具有可變熔點之材料組成。基本上,SLM自單一金屬產生零件,而DMLS自金屬合金產生零件。
SLM及DMLS兩者均用於工業應用中以建立最終用途之工程產品。使用此等技術,可同時形成包括外部壓力安全殼2及導熱隔室化網路3之整個儲氫系統1。
使用SLM及/或DMLS,可逐層形成本發明之儲氫系統1使得外部壓力安全殼2及導熱隔室化網路3兩者均可一點一點同時形成。此可涉及針對整個儲氫系統1使用單一材料。然而,該外部壓力安全殼2及該導熱隔室化網路3亦可使用相同技術由不同材料形成。適用於該導熱隔室化網路3之金屬合金為高導熱合金。此等包括諸如以下之金屬:鋁及鋁合金;銅及銅合金;鎂及鎂合金。該外部壓力安全殼2可由製造習知壓力容器之彼等材料形成。此等包括鋁、鋁合金及鋼(即碳及不鏽鋼)。
另外,本發明包括一種藉由經由3D列印方法製造配置於該外部壓力安全殼內之導熱隔室化網路,並使儲氫合金沈積於該儲氫合金安全殼內來製造儲氫系統之方法。
外部壓力安全殼及導熱隔室化網路兩者均可藉由3D列印方法製造。該外部壓力安全殼及該導熱隔室化網路兩者均可藉由該3D列印方法同時製造為單個單元。該3D列印方法可包括藉由選擇性雷射熔化(SLM)及/或直接金屬雷射燒結(DMLS)沈積。
導熱隔室化網路可藉由3D列印方法製造,其中高導熱列印金屬係選自由以下組成之群:鋁、鋁合金、銅、銅合金、鎂及鎂合金。該3D列印方法可包括藉由選擇性雷射熔化(SLM)及/或直接金屬雷射燒結(DMLS)沈積。
將瞭解本文描述之特定實施例藉助於闡述且非作為本發明之限制顯示。本發明之主要特徵可用於各種實施例中而不背離本發明之範圍。熟習此項技術者將認知或可僅使用例行性實驗確定本文描述之特定程式之許多等同物。此等等同物視為於本發明之範圍內且由申請專利範圍涵蓋。
本說明書中提及之所有公開案、專利申請案及專利指示熟習本發明所屬領域者之技術水準。所有公開案及專利申請案均以引用之方式併入本文中,該引用之程度就如同將各個別公開案或專利申請案明確且個別地併入本文中一樣。
於申請專利範圍及/或說明書中當結合術語「包含」使用時,字組「一」或「一個」之使用可意謂「一個」但亦符合「一或多個」、「至少一個」及「一或多於一個」之含義。儘管本發明支持僅係指替代方案及「及/或」之定義,但除非明確指示僅係指替代方案或該等替代方案相互排斥,否則申請專利範圍中使用術語「或」用以意謂「及/或」。在整個本申請案中,術語「約」用以指示一個值包括裝置、用以確定該值之方法之固有誤差變化,或研究對象之間存在之變化。
如本說明書及申請專利範圍中使用,字組「包含(comprising)」 (及包含之任何形式,諸如「包含(comprise及comprises)」)、「具有(having)」 (及具有之任何形式,諸如「具有(have及has)」)、「包括(including)」 (及包括之任何形式,諸如「包括(includes及include)」)或「含有(containing)」 (及含有之任何形式,諸如「含有(contains及contain)」)為包容性或開放式的且不排除另外、未列舉之元素或方法步驟。在本文提供之組合物及方法之任一者之實施例中,「包含」可替換為「基本上由……構成」或「由……構成」。如本文使用,片語「基本上由……構成」需指定整數或步驟及彼等不實質影響本文主張之本發明之特徵或功能之整數或步驟。如本文使用,術語「由……構成」僅用以指示列舉之整數(例如,一種特徵、元素、特性、性質、方法/過程步驟或限制)或整數組(例如,多種特徵、元素、特性、性質、方法/過程步驟或限制)之存在。
如本文使用之術語「或其組合」係指該術語前列舉項目之所有排列及組合。例如,「A、B、C,或其組合」旨在包括以下中之至少一者:A、B、C、AB、AC、BC或ABC,且若順序於特定內文中係重要的,則亦BA、CA、CB、CBA、BCA、ACB、BAC或CAB。以此實例繼續,明確包括含有一或多個項目或術語之重複之組合,諸如BB、AAA、AB、BBC、AAABCCCC、CBBAAA、CABABB等等。熟習技工將瞭解除非從內文中另外顯而易見,否則通常對任何組合中項目或術語之數量無限制。
如本文使用,近似用語(諸如但不限於「約」、「基本上」或「大體上」)係指以下情況,如此修飾時應瞭解理解為不必是絕對的或完美的,但將被視為對於一般技術者而言足夠接近,以保證指定該情況為存在。描述可改變之程度將取決於可設立變化之大小且仍使一般技術者認知經修飾之特徵仍具有未修飾特徵所需之特性及能力。一般而言,但受限於先前討論,本文中由諸如「約」之近似詞修飾之數值可自規定值變化至少±1、2、3、4、5、6、7、10、12或15%。
鑑於本發明,本文揭示並主張之所有裝置及/或方法可在無過度實驗之情況下製造及執行。儘管已根據較佳實施例描述本發明之裝置及/或方法,但熟習此項技術者將顯而易見,可對組合物及/或方法及於本文描述之方法之步驟中或於步驟順序中施加變化而不背離本發明之概念、精神及範圍。認為所有此等對熟習此項技術者而言顯而易見之類似替代及修飾均於如由所附申請專利範圍定義之本發明之精神、範圍及概念內。
此外,除如下文申請專利範圍中描述者外,無意限制本文顯示之構造或設計之細節。因此顯而易見,可改變或修飾上文揭示之特定實施例且認為所有此等變化均於本發明之範圍及精神內。因此,本文尋求之保護係如下文申請專利範圍中闡述。
為幫助專利局,及根據本申請案發佈之任何專利之任何讀者解釋所附申請專利範圍,申請人希望注意,除非在特定技術方案中明確使用字組「用於……之構件(means for)」或「用以……之步驟(step for)」,否則其等不希望所附申請專利範圍中任一技術方案援引35 U.S.C. § 112第6段,因為該段在本申請案提交之日即存在。
1:儲氫系統 2:外部壓力安全殼 2':壓力殼部分 2'':壓力殼部分 3:導熱隔室化網路 4:壓力閥/非儲存組件 4':專用位置/非儲存組件 5:細長管/集線器區域/集線器 6:接線 7:儲氫合金
為更充分瞭解本發明之特徵及優點,現參考本發明之實施方式連同附圖且其中:
圖1顯示進步性非發火性儲氫合金之實例在20℃下之解吸壓力組成溫度(PCT)等溫線圖;
圖2顯示進步性非發火性儲氫合金與兩種可比較發火性合金在20℃下之吸收及解吸(PCT)等溫線圖;
圖3顯示展現鋯含量對進步性非發火性儲氫合金在20℃下之平台壓力之影響的解吸PCT等溫線圖;
圖4顯示本發明之貧A位點非發火性儲氫合金與先前技術Ovshinsky專利之富A位點非發火性儲氫合金之解吸PCT等溫線圖(在20℃下);
圖5顯示具有低鐵含量之進步性非發火性儲氫合金之實例在20℃下之解吸PCT等溫線圖;
圖6繪示根據本發明之儲氫系統;
圖7繪示圖6中儲氫系統頂部之放大影像;
圖8A至8E繪示本發明之儲氫系統之各種實施例的橫截面圖;
圖9A至9D繪示本發明之儲氫系統之另外實施例的橫截面圖;
圖10繪示本發明之儲氫系統之一實施例的橫截面圖,該系統具有細長六邊形基材隔室化網路;
圖11A至11E繪示圖10之六邊形基材之變體;
圖12A至12C繪示各種可經由3D列印產生之隔室化網路;及
圖13A至13B繪示一種產生本發明之儲氫系統之方法。

Claims (30)

  1. 一種儲氫系統,其包含: 儲氫合金安全殼,其中該儲氫合金安全殼包含: 外部壓力安全殼; 配置於該外部壓力安全殼內之導熱隔室化網路,該導熱隔室化網路於配置儲氫合金之該壓力殼內產生隔室; 配置於該儲氫合金安全殼內之該儲氫合金,其中該儲氫合金包含非發火性AB 2型拉弗氏相儲氫合金,其包含: 不大於約0.5之A位點對B位點元素比率;及 包括約(以原子%計)以下之合金組成:Zr:2.0至5.5、Ti:27至31.3、V:8.3至9.9、Cr:20.6至30.5、Mn:25.4至33.0、Fe:1.0至5.9及Al:0.1至0.4。
  2. 如請求項1之儲氫系統,其中該合金組成包括(以原子%計):Zr:2.9至5.5、Ti:27至30.3、V:8.3至9.3、Cr:20.6至26.5、Mn:29.4至32.1、Fe:1.5至5.9及Al:0.1至0.4。
  3. 如請求項1之儲氫系統,其中該合金組成進一步包括至多約4原子%鎳作為至多約2原子%鉻或至多約2原子%錳或兩者之等同替代物。
  4. 如請求項1之儲氫系統,其中該合金在約500 psi及約20℃下具有至少約1.7重量%之總儲氫容量。
  5. 如請求項1之儲氫系統,其中該合金在約500 psi及約20℃下具有至少約1.8重量%之總儲氫容量。
  6. 如請求項1之儲氫系統,其中該合金在約14.5 psi及約20℃下具有不大於約0.25重量%之捕獲氫容量。
  7. 如請求項1之儲氫系統,其中該合金在約14.5 psi及約20℃下具有不大於約0.20重量%之捕獲氫容量。
  8. 如請求項1之儲氫系統,其中該合金在約14.5 psi及約20℃下具有不大於約0.15重量%之捕獲氫容量。
  9. 如請求項1之儲氫系統,其中該合金在約14.5 psi及約20℃下具有不大於約0.10重量%之捕獲氫容量。
  10. 如請求項1之儲氫系統,其中該合金具有不大於約0.8之壓力組成溫度(PCT)等溫線斜率。
  11. 如請求項1之儲氫系統,其中該合金具有不大於約0.7之PCT等溫線斜率。
  12. 如請求項1之儲氫系統,其中該合金具有不大於約0.6之PCT等溫線斜率。
  13. 如請求項1之儲氫系統,其中該合金具有不大於約0.5之滯後。
  14. 如請求項1之儲氫系統,其中該合金具有不大於約0.4之滯後。
  15. 如請求項1之儲氫系統,其中該合金具有不大於約0.3之滯後。
  16. 如請求項1之儲氫系統,其中該合金具有不大於約0.2之滯後。
  17. 如請求項1之儲氫系統,其中該合金具有不大於約0.1之滯後。
  18. 如請求項1之儲氫系統,其中該合金組成進一步包含總計約1.0至10.0原子%之至少一種選自由以下組成之群之元素:Ba、Co、Cu、Cs、K、Li、Mm、Mo、Na、Nb、Ni、Rb、Ta、Tl及W (其中Mm係混合稀土金屬)。
  19. 如請求項1之儲氫系統,其中該導熱隔室化網路係藉由3D列印方法製造。
  20. 如請求項1之儲氫系統,其中該外部壓力安全殼及該導熱隔室化網路兩者均藉由3D列印方法製造。
  21. 如請求項1之儲氫系統,其中該外部壓力安全殼及該導熱隔室化網路兩者均藉由3D列印方法同時製造為單個單元。
  22. 如請求項21之儲氫系統,其中該3D列印方法包括藉由選擇性雷射熔化(SLM)及/或直接金屬雷射燒結(DMLS)沈積。
  23. 如請求項1之儲氫系統,其中該導熱隔室化網路係藉由3D金屬列印方法製造,其中高導熱列印金屬係選自由以下組成之群:鋁、鋁合金、銅、銅合金、鎂及鎂合金。
  24. 如請求項23之儲氫系統,其中該3D金屬列印方法包括藉由選擇性雷射熔化(SLM)及/或直接金屬雷射燒結(DMLS)沈積。
  25. 一種製造如請求項1之該儲氫系統之方法,其包括: 經由3D列印方法製造配置於該外部壓力安全殼內之該導熱隔室化網路;及 使該儲氫合金沈積於該儲氫合金安全殼內。
  26. 如請求項25之方法,其進一步包括藉由該3D列印方法製造該外部壓力安全殼及該導熱隔室化網路兩者。
  27. 如請求項25之方法,其中該外部壓力安全殼及該導熱隔室化網路兩者均藉由該3D列印方法同時製造為單個單元。
  28. 如請求項26之方法,其中該3D列印方法包括藉由選擇性雷射熔化(SLM)及/或直接金屬雷射燒結(DMLS)沈積。
  29. 如請求項25之方法,其進一步包括藉由該3D金屬列印方法製造該導熱隔室化網路,其中高導熱列印金屬係選自由以下組成之群:鋁、鋁合金、銅、銅合金、鎂及鎂合金。
  30. 如請求項29之方法,其中該3D列印方法包括藉由選擇性雷射熔化(SLM)及/或直接金屬雷射燒結(DMLS)沈積。
TW111127566A 2021-07-23 2022-07-22 使用非發火性儲氫合金之3d列印儲氫系統 TWI828247B (zh)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
US202163225389P 2021-07-23 2021-07-23
US202163225366P 2021-07-23 2021-07-23
US202163225399P 2021-07-23 2021-07-23
US63/225,399 2021-07-23
US63/225,366 2021-07-23
US63/225,389 2021-07-23

Publications (2)

Publication Number Publication Date
TW202313449A true TW202313449A (zh) 2023-04-01
TWI828247B TWI828247B (zh) 2024-01-01

Family

ID=84980111

Family Applications (4)

Application Number Title Priority Date Filing Date
TW112144283A TW202409308A (zh) 2021-07-23 2022-07-22 非發火性儲氫合金及使用該合金之儲氫系統
TW111127544A TWI828246B (zh) 2021-07-23 2022-07-22 使用非發火性儲氫合金之儲氫系統
TW111127566A TWI828247B (zh) 2021-07-23 2022-07-22 使用非發火性儲氫合金之3d列印儲氫系統
TW111127537A TWI825865B (zh) 2021-07-23 2022-07-22 非發火性儲氫合金及使用該合金之儲氫系統

Family Applications Before (2)

Application Number Title Priority Date Filing Date
TW112144283A TW202409308A (zh) 2021-07-23 2022-07-22 非發火性儲氫合金及使用該合金之儲氫系統
TW111127544A TWI828246B (zh) 2021-07-23 2022-07-22 使用非發火性儲氫合金之儲氫系統

Family Applications After (1)

Application Number Title Priority Date Filing Date
TW111127537A TWI825865B (zh) 2021-07-23 2022-07-22 非發火性儲氫合金及使用該合金之儲氫系統

Country Status (5)

Country Link
US (6) US11685978B2 (zh)
EP (1) EP4373984A1 (zh)
KR (1) KR20240039147A (zh)
TW (4) TW202409308A (zh)
WO (3) WO2023004016A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11685978B2 (en) 2021-07-23 2023-06-27 Harnyss Ip, Llc Non-pyrophoric hydrogen storage alloys and hydrogen storage systems using the alloys

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5002730A (en) 1989-07-24 1991-03-26 Energy Conversion Devices Preparation of vanadium rich hydrogen storage alloy materials
US5238756A (en) * 1990-04-26 1993-08-24 Ovonic Battery Company Electrode alloy having decreased hydrogen overpressure and/or low self-discharge
US5468309A (en) 1992-09-14 1995-11-21 Matsushita Electric Industrial Co., Ltd. Hydrogen storage alloy electrodes
US5393617A (en) 1993-10-08 1995-02-28 Electro Energy, Inc. Bipolar electrochmeical battery of stacked wafer cells
US6461766B1 (en) 1998-08-27 2002-10-08 Ovonic Battery Company, Inc. Hydrogen storage powder and process for preparing the same
WO2001009191A1 (en) 1999-08-02 2001-02-08 Synt:Em S.A. Computational design methods for making molecular mimetics
US6536487B2 (en) 1999-11-06 2003-03-25 Energy Conversion Devices, Inc. Atomically engineered hydrogen storage alloys having extended storage capacity at high pressures and high pressure hydrogen storage units containing variable amounts thereof
US6591616B2 (en) 1999-11-06 2003-07-15 Energy Conversion Devices, Inc. Hydrogen infrastructure, a combined bulk hydrogen storage/single stage metal hydride hydrogen compressor therefor and alloys for use therein
US6517970B2 (en) * 2001-06-04 2003-02-11 Energy Conversion Devices, Inc. Non-pyrophoric hydrogen storage alloy
US20030103861A1 (en) 2001-11-30 2003-06-05 Stetson Ned T. Hydrogen storage material including a modified Ti-Mn2 alloy
DE102006047346A1 (de) 2006-10-06 2008-04-10 Transtissue Technologies Gmbh Matrix-Gel-Transplantat ohne Zellen
US20130090265A1 (en) 2011-10-11 2013-04-11 Biolauncher Ltd. Systems and methods for generation of context-specific, molecular field-based amino acid substitution matrices
US20160118654A1 (en) * 2014-10-24 2016-04-28 Ovonic Battery Company, Inc. Bcc metal hydride alloys for electrochemical applications
WO2016130561A1 (en) 2015-02-11 2016-08-18 Basf Corporation Hydrogen storage alloys
US10199637B2 (en) 2016-06-07 2019-02-05 Nanotek Instruments, Inc. Graphene-metal hybrid foam-based electrode for an alkali metal battery
GB2574673B (en) 2018-06-15 2020-06-17 H2Go Power Ltd Hydrogen storage device
US11692232B2 (en) * 2018-09-05 2023-07-04 Gregory Vartanov High strength precipitation hardening stainless steel alloy and article made therefrom
GB2577491A (en) * 2018-09-24 2020-04-01 Oxmet Tech Limited An alpha titanium alloy for additive manufacturing
GB2577490B (en) * 2018-09-24 2022-03-02 Alloyed Ltd A beta titanium alloy for additive manufacturing
JP7031068B2 (ja) 2019-07-02 2022-03-07 新電元工業株式会社 制御回路、制御装置及びシステム
US20230212718A1 (en) 2019-08-05 2023-07-06 Newsouth Innovations Pty Ltd Hydrogen storage alloys
US11685978B2 (en) 2021-07-23 2023-06-27 Harnyss Ip, Llc Non-pyrophoric hydrogen storage alloys and hydrogen storage systems using the alloys

Also Published As

Publication number Publication date
TWI828246B (zh) 2024-01-01
WO2023004016A1 (en) 2023-01-26
TWI825865B (zh) 2023-12-11
US12077838B2 (en) 2024-09-03
US11661641B2 (en) 2023-05-30
US20240287658A1 (en) 2024-08-29
KR20240039147A (ko) 2024-03-26
EP4373984A1 (en) 2024-05-29
US20230044663A1 (en) 2023-02-09
WO2023004003A1 (en) 2023-01-26
TW202409308A (zh) 2024-03-01
US20230272880A1 (en) 2023-08-31
TW202308936A (zh) 2023-03-01
US20230039589A1 (en) 2023-02-09
US12054815B2 (en) 2024-08-06
US11685978B2 (en) 2023-06-27
US20230265546A1 (en) 2023-08-24
TW202307228A (zh) 2023-02-16
WO2023004000A1 (en) 2023-01-26
US12054814B2 (en) 2024-08-06
US20230041451A1 (en) 2023-02-09
TWI828247B (zh) 2024-01-01

Similar Documents

Publication Publication Date Title
US6193929B1 (en) High storage capacity alloys enabling a hydrogen-based ecosystem
US20240287658A1 (en) 3D Printed Hydrogen Storage Systems Using Non-Pyrophoric Hydrogen Storage Alloys
Oelerich et al. Mg-based hydrogen storage materials with improved hydrogen sorption
US6627340B1 (en) Fuel cell hydrogen supply systems using secondary fuel to release stored hydrogen
US6491866B1 (en) High storage capacity, fast kinetics, long cycle-life, hydrogen storage alloys
US6726783B1 (en) High storage capacity alloys having excellent kinetics and a long cycle life
EP1404886B1 (en) Non-pyrophoric hydrogen storage alloy
JPS604256B2 (ja) 水素貯蔵用合金
Marty Fruchart et al.(43) Pub. Date: Mar. 15, 2012