TW202312763A - 無線電資源控制閒置或非活動狀態定位期間的輔助資料更新過程 - Google Patents

無線電資源控制閒置或非活動狀態定位期間的輔助資料更新過程 Download PDF

Info

Publication number
TW202312763A
TW202312763A TW111129372A TW111129372A TW202312763A TW 202312763 A TW202312763 A TW 202312763A TW 111129372 A TW111129372 A TW 111129372A TW 111129372 A TW111129372 A TW 111129372A TW 202312763 A TW202312763 A TW 202312763A
Authority
TW
Taiwan
Prior art keywords
positioning
assistance data
positioning assistance
base station
rrc
Prior art date
Application number
TW111129372A
Other languages
English (en)
Inventor
亞力山德羅斯 瑪諾拉寇斯
索尼 阿卡拉力南
史林法斯 亞瑞馬里
Original Assignee
美商高通公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 美商高通公司 filed Critical 美商高通公司
Publication of TW202312763A publication Critical patent/TW202312763A/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W64/00Locating users or terminals or network equipment for network management purposes, e.g. mobility management
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S5/00Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
    • G01S5/02Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations using radio waves
    • G01S5/0205Details
    • G01S5/0236Assistance data, e.g. base station almanac
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/08Testing, supervising or monitoring using real traffic
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/02Services making use of location information
    • H04W4/029Location-based management or tracking services
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W68/00User notification, e.g. alerting and paging, for incoming communication, change of service or the like
    • H04W68/005Transmission of information for alerting of incoming communication
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W8/00Network data management
    • H04W8/02Processing of mobility data, e.g. registration information at HLR [Home Location Register] or VLR [Visitor Location Register]; Transfer of mobility data, e.g. between HLR, VLR or external networks
    • H04W8/08Mobility data transfer
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/20Manipulation of established connections
    • H04W76/27Transitions between radio resource control [RRC] states

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Databases & Information Systems (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

公開了用於定位的技術。在一方面中,網路實體從在無線電資源控制(RRC)非活動狀態下操作的用戶設備(UE)的第一基地台接收事件報告訊息,其中該事件報告訊息指示UE已接收到執行定位過程的請求,並且基於決定UE將從用於定位過程的更新的定位輔助資料中受益,將更新的定位輔助資料發送到UE的第二基地台,以使第二基地台能夠向UE發送更新的定位輔助資料。

Description

無線電資源控制閒置或非活動狀態定位期間的輔助資料更新過程
概括地說,本公開內容的各方面涉及無線通信。
無線通信系統已經歷了數代的發展,包括第一代類比無線電話服務(1G)、第二代(2G)數位無線電話服務(包括暫時的2.5G和2.75G網路)、第三代(3G)高速資料、支援網際網路的無線服務和第四代(4G)服務(例如,長期演進(LTE)或WiMax)。當前,使用了許多不同類型的無線通信系統,包括蜂巢式和個人通信服務(PCS)系統。已知蜂巢式系統的示例包括蜂巢式類比先進行動電話系統(AMPS)以及基於分碼多重存取(CDMA)、分頻多重存取(FDMA)、分時多重存取(TDMA)、全球行動通信系統(GSM)等的數位蜂巢式系統。
第五代(5G)無線標準(被稱為新無線電(NR))要求更高的資料傳送速度、更大數量的連接和更好的覆蓋、以及其它改善。根據下一代行動網路聯盟所說,5G標準被設計為向數以萬計的用戶中的每一者提供每秒數十百萬位元的資料速率,其中向一個辦公室樓層的數十員工提供每秒十億位元的資料速率。為了支援大型感測器部署,應當支援數十萬個同時連接。因此,與當前4G標準相比,應當顯著地增強5G行動通信的頻譜效率。此外,與當前標準相比,應當增強信令效率並且應當大幅度減小等待時間。
下文給出了與本文公開的一個或多個方面相關的簡化概述。因此,以下概述不應當被認為是與所有預期方面相關的詳盡綜述,而且以下概述既不應當被認為識別與所有預期方面相關的關鍵或重要元素,也不應當被認為描繪與任何特定方面相關聯的範圍。相應地,以下概述的唯一目的是以簡化的形式給出與涉及本文公開的機制的一個或多個方面相關的某些概念,作為下文給出的詳細描述的前序。
在一方面中,一種由網路實體執行的定位方法包括:從在無線電資源控制(RRC)非活動狀態的用戶設備(UE)下操作的第一基地台接收事件報告訊息,其中所述事件報告訊息指示所述UE已接收到執行定位過程的請求;以及基於決定所述UE將從用於所述定位過程的更新的定位輔助資料中受益,向UE的第二基地台發送所述更新的定位輔助資料,以使所述第二基地台能夠向所述UE發送所述更新的定位輔助資料。
在一方面中,一種由網路節點執行的定位方法包括:向網路實體發送訊息,所述訊息指示在無線電資源控制(RRC)非活動狀態下操作並參與定位過程的用戶設備(UE)已經從第一發送接收點(TRP)的覆蓋區域移動到第二TRP的覆蓋區域;基於所述UE已經從所述第一TRP的所述覆蓋區域移動到所述第二TRP的所述覆蓋區域,從所述網路實體接收用於所述定位過程的更新的定位輔助資料;以及向所述UE發送傳呼訊息,所述傳呼訊息向所述UE指示所述更新的定位輔助資料可用。
在一方面中,一種由網路節點執行的定位方法包括:從網路實體接收第一訊息,所述第一訊息指示用於可配置給用戶設備(UE)的多個定位輔助資料集中的每個定位輔助資料集的一個或多個有效性標準;決定所述UE已從第一發送接收點(TRP)的覆蓋區域移動到第二TRP的覆蓋區域,其中所述第二TRP的所述覆蓋區域滿足針對所述多個定位輔助資料集中的一個定位輔助資料集的所述一個或多個有效性標準;以及向所述UE發送第二訊息,所述第二訊息向所述UE指示所述定位輔助資料集可用。
在一方面中,一種由網路節點執行的定位方法包括:從網路實體接收針對在無線電資源控制(RRC)非活動狀態下操作並參與定位過程的用戶設備(UE)的更新的定位輔助資料;以及向所述UE發送所述更新的定位輔助資料,以使所述UE執行所述定位過程。
在一方面中,一種由用戶設備(UE)執行的無線定位方法包括:在無線電資源控制(RRC)非活動狀態下操作時,向第一網路節點發送RRC恢復請求,所述RRC恢復請求包括用於指示所述UE是否需要更新的定位輔助資料進行定位過程的一個或多個標準;以及從第二網路節點接收所述更新的定位輔助資料。
在一方面中,一種網路實體包括記憶體、至少一個收發機、以及通信地耦接到所述記憶體和所述至少一個收發機的至少一個處理器,所述至少一個處理器被配置為:經由所述至少一個收發機,從在無線電資源控制(RRC)非活動狀態或在RRC閒置狀態下操作的用戶設備(UE)的基地台接收事件報告訊息,其中所述事件報告訊息指示所述UE已接收到執行定位過程的請求;基於決定所述UE將從用於所述定位過程的更新的定位輔助資料中受益,經由所述至少一個收發機,向所述基地台發送所述更新的定位輔助資料,以使所述基地台能夠向所述UE發送所述更新的定位輔助資料。
在一方面中,一種網路節點包括記憶體、至少一個收發機、以及通信地耦接到所述記憶體和所述至少一個收發機的至少一個處理器,所述至少一個處理器被配置為:經由所述至少一個收發機向網路實體發送訊息,所述訊息指示在無線電資源控制(RRC)非活動狀態或在RRC閒置狀態下操作並參與定位過程的用戶設備(UE)已經從第一發送接收點(TRP)的覆蓋區域移動到第二TRP的覆蓋區域;基於所述UE已經從所述第一TRP的所述覆蓋區域移動到所述第二TRP的所述覆蓋區域,經由所述至少一個收發機從所述網路實體接收用於所述定位過程的更新的定位輔助資料;以及經由所述至少一個收發機向所述UE發送傳呼訊息,所述傳呼訊息向所述UE指示所述更新的定位輔助資料可用。
在一方面中,一種網路節點包括記憶體、至少一個收發機、以及通信地耦接到所述記憶體和所述至少一個收發機的至少一個處理器,所述至少一個處理器被配置為:經由所述至少一個收發機從網路實體接收第一訊息,所述第一訊息指示用於可配置給用戶設備(UE)的多個定位輔助資料集中的每個定位輔助資料集的一個或多個有效性標準;決定所述UE已從第一發送接收點(TRP)的覆蓋區域移動到第二TRP的覆蓋區域,其中所述第二TRP的所述覆蓋區域滿足針對所述多個定位輔助資料集中的一個定位輔助資料集的所述一個或多個有效性標準;以及經由所述至少一個收發機向所述UE發送第二訊息,所述第二訊息向所述UE指示所述定位輔助資料集可用。
在一方面中,一種網路節點包括記憶體、至少一個收發機、以及通信地耦接到所述記憶體和所述至少一個收發機的至少一個處理器,所述至少一個處理器被配置為:經由所述至少一個收發機從網路實體接收針對在無線電資源控制(RRC)非活動狀態或在RRC閒置狀態下操作並參與定位過程的用戶設備(UE)的更新的定位輔助資料;以及經由所述至少一個收發機向所述UE發送所述更新的定位輔助資料,以使所述UE執行所述定位過程。
在一方面中,一種用戶設備(UE)包括記憶體、至少一個收發機、以及通信地耦接到所述記憶體和所述至少一個收發機的至少一個處理器,所述至少一個處理器被配置為:在無線電資源控制(RRC)非活動狀態或在RRC閒置狀態下操作時,經由所述至少一個收發機向第一網路節點發送RRC恢復請求,所述RRC恢復請求包括用於指示所述UE是否需要更新的定位輔助資料進行定位過程的一個或多個標準;以及經由所述至少一個收發機從第二網路節點接收所述更新的定位輔助資料。
在一方面中,一種網路實體包括:用於從在無線電資源控制(RRC)非活動狀態或在RRC閒置狀態下操作的用戶設備(UE)的基地台接收事件報告訊息的構件,其中所述事件報告訊息指示所述UE已接收到執行定位過程的請求;用於基於決定所述UE將從用於所述定位過程的更新的定位輔助資料中受益,向所述基地台發送所述更新的定位輔助資料,以使所述基地台能夠向所述UE發送所述更新的定位輔助資料的構件。
在一方面中,一種網路節點包括:用於向網路實體發送訊息的構件,所述訊息指示在無線電資源控制(RRC)非活動狀態或在RRC閒置狀態下操作並參與定位過程的用戶設備(UE)已經從第一發送接收點(TRP)的覆蓋區域移動到第二TRP的覆蓋區域;用於基於所述UE已經從所述第一TRP的所述覆蓋區域移動到所述第二TRP的所述覆蓋區域,從所述網路實體接收用於所述定位過程的更新的定位輔助資料的構件;以及用於向所述UE發送傳呼訊息,所述傳呼訊息向所述UE指示所述更新的定位輔助資料可用的構件。
在一方面中,一種網路節點包括:用於從網路實體接收第一訊息的構件,所述第一訊息指示用於可配置給用戶設備(UE)的多個定位輔助資料集中的每個定位輔助資料集的一個或多個有效性標準;用於決定所述UE已從第一發送接收點(TRP)的覆蓋區域移動到第二TRP的覆蓋區域的構件,其中,所述第二TRP的所述覆蓋區域滿足針對所述多個定位輔助資料集中的一個定位輔助資料集的所述一個或多個有效性標準;以及用於向所述UE發送第二訊息,所述第二訊息向所述UE指示所述定位輔助資料集可用的構件。
在一方面中,一種網路節點包括:用於從網路實體接收針對在無線電資源控制(RRC)非活動狀態或在RRC閒置狀態下操作並參與定位過程的用戶設備(UE)的更新的定位輔助資料的構件;用於向所述UE發送所述更新的定位輔助資料,以使所述UE執行所述定位過程的構件。
在一方面中,一種用戶設備(UE)包括:用於在無線電資源控制(RRC)非活動狀態或在RRC閒置狀態下操作時,向第一網路節點發送RRC恢復請求的構件,所述RRC恢復請求包括用於指示所述UE是否需要更新的定位輔助資料進行定位過程的一個或多個標準;以及用於從第二網路節點接收所述更新的定位輔助資料的構件。
在一方面中,一種非暫時性計算機可讀媒體,其儲存計算機可執行指令,當所述計算機可執行指令被網路實體執行時,使得所述網路實體從在無線電資源控制(RRC)非活動狀態或在RRC閒置狀態下操作的用戶設備(UE)的基地台接收事件報告訊息,其中所述事件報告訊息指示所述UE已接收到執行定位過程的請求;以及基於決定所述UE將從用於所述定位過程的更新的定位輔助資料中受益,向所述基地台發送所述更新的定位輔助資料,以使所述基地台能夠向所述UE發送所述更新的定位輔助資料。
在一方面中,一種非暫時性計算機可讀媒體,其儲存計算機可執行指令,當所述計算機可執行指令被網路節點執行時,使得所述網路節點向網路實體發送訊息,所述訊息指示在無線電資源控制(RRC)非活動狀態或在RRC閒置狀態下操作並參與定位過程的用戶設備(UE)已經從第一發送接收點(TRP)的覆蓋區域移動到第二TRP的覆蓋區域;基於所述UE已經從所述第一TRP的所述覆蓋區域移動到所述第二TRP的所述覆蓋區域,從所述網路實體接收用於所述定位過程的更新的定位輔助資料;以及向所述UE發送傳呼訊息,所述傳呼訊息向所述UE指示所述更新的定位輔助資料可用。
在一方面中,一種非暫時性計算機可讀媒體,其儲存計算機可執行指令,當所述計算機可執行指令被網路節點執行時,使得所述網路節點進行以下操作:從網路實體接收第一訊息,所述第一訊息指示用於可配置給用戶設備(UE)的多個定位輔助資料集中的每個定位輔助資料集的一個或多個有效性標準;決定所述UE已從第一發送接收點(TRP)的覆蓋區域移動到第二TRP的覆蓋區域,其中,所述第二TRP的所述覆蓋區域滿足針對所述多個定位輔助資料集中的一個定位輔助資料集的所述一個或多個有效性標準;以及向所述UE發送第二訊息,所述第二訊息向所述UE指示所述定位輔助資料集可用。
在一方面中,一種非暫時性計算機可讀媒體,其儲存計算機可執行指令,當所述計算機可執行指令被網路節點執行時,使得所述網路節點進行以下操作:從網路實體接收針對在無線電資源控制(RRC)非活動狀態或在RRC閒置狀態下操作並參與定位過程的用戶設備(UE)的更新的定位輔助資料;以及向所述UE發送所述更新的定位輔助資料,以使所述UE執行所述定位過程。
在一方面中,一種非暫時性計算機可讀媒體,其儲存計算機可執行指令,當所述計算機可執行指令被用戶設備(UE)執行時,使得該UE進行以下操作:在無線電資源控制(RRC)非活動狀態或在RRC閒置狀態下操作時,向第一網路節點發送RRC恢復請求,所述RRC恢復請求包括用於指示所述UE是否需要更新的定位輔助資料進行定位過程的一個或多個標準;以及從第二網路節點接收所述更新的定位輔助資料。
基於圖式和詳細描述,與本文所公開的各方面相關聯的其它目的和優點對於本領域一般技術人員將是顯而易見的。
在涉及出於說明的目的而提供的各個示例的下文描述和相關圖式中提供了本公開內容的各方面。可以在不脫離本公開內容的範圍的情況下,設計替代的各方面。另外,將不詳細地描述或者將省略本公開內容的習知的元素,以避免使本公開內容的相關細節模糊不清。
本文使用“示例性”和/或“示例”的詞語來意指“充當示例、實例或說明”。本文中被描述為“示例性”和/或“示例”的任何方面不必被解釋為相對於其它各方面優選或具有優勢。同樣,術語“本公開內容的各方面”不要求本公開內容的所有方面都包括所論述的特徵、優勢或操作模式。
本領域技術人員將認識到的是,下文描述的資訊和信號可以使用各種不同的技術和方法中的任何技術和方法來表示。例如,可能遍及下文描述所提及的資料、指令、命令、資訊、信號、位元、符號和碼片可以由電壓、電流、電磁波、磁場或粒子、光場或粒子或其任意組合來表示,這部分地取決於特定應用,部分地取決於期望設計,部分地取決於對應技術,等等。
此外,按照要由例如計算設備的元素執行的動作的序列來描述許多方面。將認識到的是,本文描述的各個動作可以由特定電路(例如,特殊應用積體電路(ASIC))、由一個或多個處理器執行的程式指令、或者由兩者的組合來執行。另外,本文描述的這些動作的序列可以被認為是完全體現在任何形式的非暫時性計算機可讀儲存媒體中,所述非暫時性計算機可讀儲存媒體具有儲存在其中的相應的計算機指令的集合,所述計算機指令的集合在被執行時將使得或指示設備的相關聯的處理器執行本文描述的功能。因此,本公開內容的各個方面可以在多種不同的形式中體現,所有這些形式被預期在所要求保護的標的的範圍內。另外,對於本文描述的各方面中的每個方面,任何這樣的方面的相應形式在本文中可以被描述為例如“邏輯地被配置為”執行所描述的動作。
如本文使用的,除非另外指出,否則術語“用戶設備”(UE)和“基地台”不旨在是特定於或以其它方式限於任何特定的無線電存取技術(RAT)。通常,UE可以是被用戶用來在無線通信網路上進行通信的任何無線通信設備(例如,行動電話、路由器、平板型計算機、膝上型計算機、消費者資產定位設備、可穿戴設備(例如,智慧型手錶、眼鏡、擴增實境(AR)/虛擬實境(VR)頭戴式耳機等)、車輛(例如,汽車、摩托車、自行車等)、物聯網(IoT)設備等)。UE可以是移動的或者(例如,在某些時間處)可以是靜止的,並且可以與無線電存取網路網路(RAN)進行通信。如本文中使用的,術語“UE”可以可互換地被稱為“存取終端”或“AT”、“客戶端設備”、“無線設備”、“訂戶設備”、“訂戶終端”、“訂戶站”、“用戶終端”或UT、“行動設備”“行動終端”、“行動站”或其變型。通常,UE可以經由RAN與核心網路進行通信,以及透過核心網路可以將UE與諸如網際網路的外部網路以及與其它UE連接。當然,對於UE而言,連接到核心網路和/或網際網路的其它機制也是可能的,諸如在有線存取網路網路、無線區域網路(WLAN)網路(例如,基於電機與電子工程師協會(IEEE)802.11規範等)上等等。
基地台在與UE的通信中可以根據若干RAT中的一種RAT來進行操作,這取決於基地台部署在其中的網路,並且基地台可以被替代地稱為存取點(AP)、網路節點、節點B、演進型節點B(eNB)、下一代eNB(ng-eNB)、新無線電(NR)節點B(也被稱為gNB或gNodeB)等。基地台可以主要用於支援UE的無線存取,包括支援針對所支援的UE的資料、語音和/或信令連接。在一些系統中,基地台可以提供純邊緣節點信令功能,而在其它系統中,其可以提供另外的控制和/或網路管理功能。UE可以透過其來向基地台發送信號的通信鏈路被稱為上行鏈路(UL)信道(例如,反向流量信道、反向控制信道、存取信道等)。基地台可以透過其來向UE發送信號的通信鏈路被稱為下行鏈路(DL)或前向鏈路信道(例如,傳呼信道、控制信道、廣播信道、前向流量信道等)。如本文中使用的,術語流量信道(TCH)可以指代上行鏈路/反向流量信道或者下行鏈路/前向流量信道。
術語“基地台”可以是指單個實體發送接收點(TRP),或者是指可以是共址的或可以不是共址的多個實體TRP。例如,在術語“基地台”是指單個實體TRP的情況下,實體TRP可以是基地台的、與基地台的小區(或若干小區扇區)相對應的天線。在術語“基地台”是指多個共址的實體TRP的情況下,實體TRP可以是基地台的天線陣列(例如,如在多輸入多輸出(MIMO)系統中或者在基地台採用波束成形的情況下)。在術語“基地台”是指多個非共址的實體TRP的情況下,實體TRP可以是分布式天線系統(DAS)(經由傳輸媒體連接到公共來源的在空間上分離的天線的網路)或遠程無線頭端(RRH)(被連接到服務基地台的遠程基地台)。替代地,非共址的實體TRP可以是從UE接收測量報告的服務基地台和UE正在測量其參考射頻(RF)信號的鄰居基地台。因為如本文所使用的,TRP是基地台從其發送和接收無線信號的點,所以對來自基地台的發送或者在基地台處的接收的提及要被理解為指代基地台的特定TRP。
在支援UE的定位的一些實現方式中,基地台可能不支援UE的無線存取(例如,可能不支援針對UE的資料、語音和/或信令連接),但是可以替代地向UE發送參考信號以由UE測量,和/或可以接收和測量由UE發送的信號。這樣的基地台可以被稱為定位信標(例如,當向UE發送信號時)和/或位置測量單元(例如,當接收和測量來自UE的信號時)。
“RF信號”包括透過發射機與接收機之間的空間來傳輸資訊的具有給定頻率的電磁波。如本文中使用的,發射機可以向接收機發送單個“RF信號”或多個“RF信號”。然而,由於RF信號透過多路徑信道的傳播特性,因此接收機可以接收與每個所發送的RF信號相對應的多個“RF信號”。在發射機與接收機之間的不同路徑上所發送的相同的RF信號可以被稱為“多路徑”RF信號。如本文所使用的,RF信號還可以稱為“無線信號”或簡稱為“信號”,其中根據上下文清楚的是,術語“信號”指的是無線信號或RF信號。
圖1示出了根據本公開內容的各方面的示例無線通信系統100。無線通信系統100(其也可以被稱為無線廣域網路(WWAN))可以包括各種基地台102(標記為“BS”)和各種UE 104。基地台102可以包括宏小區基地台(高功率蜂巢式基地台)和/或小型小區基地台(低功率蜂巢式基地台)。在一方面中,宏小區基地台可以包括eNB和/或ng-eNB(其中無線通信系統100對應於LTE網路)或gNB(其中無線通信系統100對應於NR網路)或兩者的組合,以及小型小區基地台可以包括毫微微小區、微微小區、微小區等。
基地台102可以共同地形成RAN並且透過回程鏈路122與核心網路170(例如,演進封包核心(EPC)或5G核心(5GC))以介面方式連接,並且透過核心網路170以介面方式連接到一個或多個位置伺服器172(例如,位置管理功能單元(LMF)或安全用戶平面位置(SUPL)位置平台(SLP))。位置伺服器172可以是核心網路170的一部分或者可以在核心網路170的外部)。位置伺服器172可以與基地台102整合在一起。UE 104可以直接地或間接地與位置伺服器172進行通信。例如,UE 104可以經由當前服務於該UE 104的基地台102與位置伺服器172進行通信。UE 104還可以例如經由應用伺服器(未示出)、經由另一網路(例如,經由無線區域網路(WLAN)存取點(AP)(例如,下面描述的AP 150)等等),透過另一路徑與位置伺服器172進行通信。出於信令目的,UE 104和位置伺服器172之間的通信可以表示為間接連接(例如,透過核心網路170等)或直接連接(例如,如經由直接連接128所示),為了清楚說明起見,從信令圖中省略了中間節點(如果有的話)。
除了其它功能之外,基地台102還可以執行與以下各項中的一項或多項相關的功能:對用戶資料的傳送、無線電信道加密和解密、完整性保護、標頭壓縮、行動性控制功能(例如,交接、雙連接)、小區間干擾協調、連接建立和釋放、負載平衡、針對非存取層(NAS)訊息的分發、NAS節點選擇、同步、RAN共用、多媒體廣播多播服務(MBMS)、訂戶和設備追蹤、RAN資訊管理(RIM)、傳呼、定位、以及對警告訊息的遞送。基地台102可以透過回程鏈路134(其可以是有線的或無線的)來直接或間接地(例如,透過EPC/5GC)相互通信。
基地台102可以與UE 104無線地進行通信。基地台102中的每個基地台102可以為各自的地理覆蓋區域110提供通信覆蓋。在一方面中,基地台102在每個地理覆蓋區域110中可以支援一個或多個小區。“小區”是用於與基地台進行通信(例如,在某個頻率資源(被稱為載波頻率、分量載波、載波、頻帶等)上)的邏輯通信實體,並且可以與用於區分經由相同或不同的載波頻率進行操作的小區的識別符(例如,實體小區識別符(PCI)、增強型小區識別符(ECI)、虛擬小區識別符(VCI)、小區全域識別符(CGI)等)相關聯。在一些情況下,不同的小區可以是根據可以提供針對不同類型的UE的存取的不同的協定類型(例如,機器類型通信(MTC)、窄頻IoT(NB-IoT)、增強型行動寬頻(eMBB)或其它協定類型)來配置的。因為小區是特定基地台所支援的,所以術語“小區”可以指代邏輯通信實體和支援其基地台中的任一者或兩者,這取決於上下文。此外,因為TRP是典型地小區的實體發送點,所以術語“小區”和“TRP”可以是可交換地使用的。在一些情況下,術語“小區”還可以是指基地台的地理覆蓋區域(例如,扇區),其中在該範圍內,載波頻率可以被偵測到並且用於地理覆蓋區域110的某個部分內的通信。
雖然相鄰的宏小區基地台102地理覆蓋區域110可以部分地重疊(例如,在交接區域中),但是地理覆蓋區域110中的一些地理覆蓋區域110可以與較大的地理覆蓋區域110大幅度地重疊。例如,小型小區基地台102'(針對“小型小區”標記為“SC”)可以具有與一個或多個宏小區基地台102的地理覆蓋區域110大幅度地重疊的地理覆蓋區域110'。包括小型小區基地台和宏小區基地台兩者的網路可以被稱為異質網路。異質網路還可以包括家庭eNB(HeNB),其可以向被稱為封閉用戶組(CSG)的受限群組提供服務。
在基地台102和UE 104之間的通信鏈路120可以包括從UE 104到基地台102的上行鏈路(也被稱為反向鏈路)傳輸和/或從基地台102到UE 104的下行鏈路(DL)(也被稱為前向鏈路)傳輸。通信鏈路120可以使用MIMO天線技術,其包括空間多工、波束成形和/或發射分集。通信鏈路120可以是透過一個或多個載波頻率的。對載波的分配可以關於下行鏈路和上行鏈路是不對稱的(例如,與針對上行鏈路相比,可以針對下行鏈路分配更多或更少的載波)。
無線通信系統100還可以包括無線區域網路(WLAN)存取點(AP)150,其在非許可頻譜(例如,5 GHz)中經由通信鏈路154來與WLAN站(STA)152相通信。當在非許可頻譜中進行通信時,WLAN STA 152和/或WLAN AP 150可以在進行通信之前執行閒置信道評估(CCA)或先聽後說(LBT)過程,以便決定信道是否是可用的。
小型小區基地台102'可以在經許可和/或非許可頻譜中進行操作。當在非許可頻譜中進行操作時,小型小區基地台102'可以採用LTE或NR技術並且使用與由WLAN AP 150所使用的5 GHz非許可頻譜相同的5 GHz非許可頻譜。採用在非許可頻譜中的LTE/5G的小型小區基地台102'可以提升對存取網路網路的覆蓋和/或增加存取網路網路的容量。在非許可頻譜中的NR可以被稱為NR-U。在非許可頻譜中的LTE可以被稱為LTE-U、許可輔助存取(LAA)或MulteFire。
無線通信系統100還可以包括與UE 182進行通信的毫米波(mmW)基地台180,其可以在mmW頻率和/或近mmW頻率中操作。極高頻(EHF)是RF在電磁頻譜中的一部分。EHF具有30 GHz到300 GHz的範圍並且具有在1毫米和10毫米之間的波長。在該頻帶中的無線電波可以被稱為毫米波。近mmW可以向下擴展到3 GHz的頻率,具有100毫米的波長。超高頻(SHF)頻帶在3 GHz和30 GHz之間擴展,也被稱為釐米波。使用mmW/近mmW射頻頻帶的通信具有高路徑損耗和相對短的距離。mmW基地台180和UE 182可以利用mmW通信鏈路184上的波束成形(發送和/或接收)來補償極高的路徑損耗和短距離。此外,將瞭解到的是,在替代配置中,一個或多個基地台102還可以使用mmW或近mmW和波束成形來進行發送。相應地,將領會的是,前述說明僅是示例並且不應當被解釋為限制本文所公開的各個方面。
發射波束成形是一種用於將RF信號聚集在特定方向上的技術。傳統地,當網路節點(例如,基地台)廣播RF信號時,其在所有方向上(全向地)廣播該信號。利用發射波束成形,網路節點決定給定的目標設備(例如,UE)位於何處(相對於發送網路節點而言)並且將較強的下行鏈路RF信號投影在該特定方向上,從而為接收設備提供更快(在資料速率方面)且更強的RF信號。為了在進行發送時改變RF信號的方向,網路節點可以在廣播RF信號的一個或多個發射機中的每個發射機處控制RF信號的相位和相對幅度。例如,網路節點可以使用天線的陣列(被稱為“相控陣列”或“天線陣列”),其建立能夠被“引導”到不同方向上的點的RF波的波束,而不需要實際地移動天線。具體而言,將來自發射機的RF電流饋送至具有正確的相位關係的個體天線,使得來自單獨天線的無線電波加在一起以在期望的方向上增加輻射,而在不期望的方向上相消以抑制輻射。
發射波束可以是準共址的,這意味著其在接收機(例如,UE)看來是具有相同的參數,而不管網路節點的發射天線本身是否是實體地共址的。在NR中,存在四種類型的準共址(QCL)關係。具體而言,給定類型的QCL關係意味著關於第二波束上的第二參考RF信號的某些參數可以是根據關於來源波束上的來源參考RF信號的資訊推導出的。因此,如果來源參考RF信號是QCL類型A,則接收機可以使用來源參考RF信號來估計在相同的信道上發送的第二參考RF信號的都卜勒頻移、都卜勒擴展、平均延遲和延遲擴展。如果來源參考RF信號是QCL類型B,則接收機可以使用來源參考RF信號來估計在相同的信道上發送的第二參考RF信號的都卜勒頻移和都卜勒擴展。如果來源參考RF信號是QCL類型C,則接收機可以使用來源參考RF信號來估計在相同的信道上發送的第二參考RF信號的都卜勒頻移和平均延遲。如果來源參考RF信號是QCL類型D,則接收機可以使用來源參考RF信號來估計在相同的信道上發送的第二參考RF信號的空間接收參數。
在接收波束成形中,接收機使用接收波束來對在給定信道上偵測到的RF信號進行放大。例如,接收機可以在特定方向上增加增益設置和/或調整天線陣列的相位設置,以對從該方向接收的RF信號進行放大(例如,以增加該RF信號的增益水平)。因此,當稱接收機在某個方向進行波束成形時,其意味著該方向上的波束增益相對於沿著其它方向的波束增益而言是高的,或者該方向上的波束增益與可用於接收機的所有其它接收波束在該方向上的波束增益相比是最高的。這導致從該方向接收的RF信號的較強的接收信號強度(例如,參考信號接收功率(RSRP)、參考信號接收品質(RSRQ)、信號與干擾加雜訊比(SINR)等)。
發射波束和接收波束在空間上可以是相關的。空間關聯意味著針對用於第二參考信號的第二波束(例如,發射波束和接收波束)的參數可以是根據關於用於第一參考信號的第一波束(例如,接收波束或發射波束)的資訊來推導的。例如,UE可以使用特定接收波束來從基地台接收參考下行鏈路參考信號(例如,同步信號區塊(SSB))。然後,UE可以基於接收波束的參數來形成用於向該基地台發送上行鏈路參考信號(例如,探測參考信號(SRS))的發射波束。
要注意的是,“下行鏈路”波束可以是發射波束或者接收波束,這取決於形成其的實體。例如,如果基地台正在形成用於向UE發送參考信號的下行鏈路波束,則下行鏈路波束是發射波束。然而,如果UE正在形成下行鏈路波束,則其是用於接收下行鏈路參考信號的接收波束。類似地,“上行鏈路”波束可以是發射波束或者接收波束,這取決於形成其的實體。例如,如果基地台正在形成上行鏈路波束,則其是上行鏈路接收波束,並且如果UE正在形成上行鏈路波束,則其是上行鏈路發射波束。
通常基於頻率/波長,將電磁頻譜細分為各種類別、頻帶、信道等等。在5G NR中,已將兩個初始操作頻帶識別為頻率範圍名稱FR1(410 MHz-7.125 GHz)和FR2(24.25 GHz-52.6 GHz)。應當理解的是,儘管FR1的一部分大於6 GHz,但是在各種文件和文章中,FR1通常(可互換地)稱為“低於6 GHz”頻帶。FR2有時會出現類似的命名問題,儘管與國際電信聯盟(ITU)定義為“毫米波”頻段的極高頻(EHF)頻帶(30 GHz-300 GHz)不同,但在各種文件和文章中通常將其(可互換地)稱為“毫米波”頻帶。
FR1和FR2之間的頻率通常稱為中頻帶頻率。最近的5G NR研究已將這些中頻帶頻率的操作頻帶決定為頻率範圍名稱FR3(7.125 GHz-24.25 GHz)。落在FR3內的頻帶可以繼承FR1特徵和/或FR2特徵,並且因此可以有效地將FR1和/或FR2的特徵擴展到中頻帶頻率。此外,目前正在探索更高的頻帶,以將5G NR的運行擴展到52.6 GHz以上。例如,三個更高的操作頻帶已被識別為頻率範圍名稱FR4a或FR4-1(52.6 GHz-71 GHz)、FR4(52.6 GHz-114.25 GHz)和FR5(114.25 GHz-300 GHz)。這些較高頻帶中的每一個頻帶都落入EHF頻帶。
考慮到以上方面,除非另外明確說明,否則應當理解,術語“低於6 GHz”等等(如果本文使用的話)可以廣義地表示可以小於6 GHz的頻率,其可以在FR1內,或者可以包括中頻帶頻率。此外,除非另外明確說明,否則應當理解,術語“毫米波”等等(如果本文使用的話)可以廣泛地表示以下各項的頻率:包括中頻帶頻率,可以在FR2、FR4、FR4-a或FR4-1和/或FR5內,或者可以在EHF頻帶內。
在多載波系統(例如,5G)中,其中一個載波頻率稱為“主載波”或“錨定載波”或“主服務小區”或“ PCell”,以及剩餘的載波頻率稱為“輔載波”或“輔服務小區”或“SCell”。在載波聚合中,錨定載波是在UE 104/182所使用的主頻率(例如,FR1)上操作的載波、以及UE 104/182在其中執行初始無線電資源控制(RRC)連接建立過程或者發起RRC連接重新建立過程的小區。主載波攜帶所有公共控制信道和特定於UE的控制信道,並且可以是許可頻率中的載波(但是,並非總是如此)。輔載波是在第二頻率(例如,FR2)上操作的載波,一旦在UE 104和錨定載波之間建立了RRC連接,就可以對第二頻率進行配置,並且可以使用其來提供額外的無線電資源。在一些情況下,輔載波可以是非許可頻率中的載波。輔載波可以僅包含必要的信令資訊和信號,例如,由於主上行鏈路和下行鏈路載波兩者通常都是特定於UE的,因此在輔載波中可能不存在特定於UE的那些資訊和信號。這意味著小區中的不同UE 104/182可以具有不同的下行鏈路主載波。上行鏈路主載波也是如此。網路能夠在任何時間改變任何UE 104/182的主載波。例如,這樣做是為了平衡不同載波上的負載。因為“服務小區”(無論是PCell還是SCell)對應於一些基地台正在之上進行通信的載波頻率/分量載波,所以術語“小區”、“服務小區”、“分量載波”、“載波頻率”等等可以互換地使用。
例如,仍然參照圖1,宏小區基地台102利用的頻率中的一個頻率可以是錨載波(或“PCell”),並且宏小區基地台102和/或mmW基地台180利用的其它頻率可以是輔載波(“SCell”)。對多個載波的同時發送和/或接收使UE 104/182能夠顯著地增加其資料發送和/或接收速率。例如,多載波系統中的兩個20 MHz聚合載波在理論上將帶來資料速率的兩倍增加(即,40 MHz)(與單個20 MHz載波所達到的資料速率相比)。
無線通信系統100還可以包括UE 164,其可以在通信鏈路120上與宏小區基地台102進行通信和/或在mmW通信鏈路184上與mmW基地台180進行通信。例如,宏小區基地台102可以支援用於UE 164的PCell和一個或多個SCell,並且mmW基地台180可以支援用於UE 164的一個或多個SCell。
在一些情況下,UE 164和UE 182可能能夠進行側行鏈路通信。具備側行鏈路能力的UE(SL-UE)可以使用Uu介面(即,UE和基地台之間的空中介面),透過通信鏈路120與基地台102進行通信。SL-UE(例如,UE 164、UE 182)還可以使用PC5介面(即,具備側行鏈路能力的UE之間的空中介面),透過無線側行鏈路162彼此直接通信。無線側行鏈路(或簡稱為“側行鏈路”)是對核心蜂巢式(例如,LTE、NR)標準的調整,其允許兩個或更多個UE之間的直接通信,而無需透過基地台進行通信。側行鏈路通信可以是單播或多播,並且可以用於設備對設備(D2D)媒體共用、車輛對車輛(V2V)通信、車聯網(V2X)通信(例如,蜂巢式V2X(cV2X)通信、增強型V2X(eV2X)通信等)、緊急救援應用等等。利用側行鏈路通信的一組SL-UE中的一個或多個SL-UE可以在基地台102 的地理覆蓋區域110內。這樣的組中的其它SL-UE可以在基地台102的地理覆蓋區域110之外,或者不能以其它方式接收來自基地台102的傳輸。在一些情況下,經由側行鏈路通信進行通信的SL-UE組可以利用一對多(1:M)系統,其中每個SL-UE向該組中的每個其它SL-UE發送信號。在一些情況下,基地台102有助於排程用於側行鏈路通信的資源。在其它情況下,在SL-UE之間執行側行鏈路通信,而無需基地台102的參與。
在一方面中,側行鏈路160可以在感興趣的無線通信媒體上操作,可以與其它車輛和/或基礎設施存取點之間的其它無線通信以及其它RAT共用該無線通信媒體。“媒體”可以由與一個或多個發射機/接收機對之間的無線通信相關聯的一個或多個時間、頻率和/或空間通信資源(例如,其涵蓋一個或多個載波上的一個或多個信道)組成。在一方面中,感興趣的媒體可以對應於在各種RAT之間共用的非許可頻帶的至少一部分。儘管(例如,諸如美國聯邦通信委員會(FCC)之類的政府機構)已為某些通信系統保留了不同的許可頻段,但是這些系統(特別是那些採用小型小區存取點的系統)最近已將操作擴展到非許可的頻段,例如無線區域網路(WLAN)技術使用的非許可的國家資訊基礎設施(U-NII)頻段,最值得注意的是通常稱為“Wi-Fi”的IEEE 802.11x WLAN技術。這種類型的示例系統包括CDMA系統、TDMA系統、FDMA系統、正交FDMA(OFDMA)系統、單載波FDMA(SC-FDMA)系統等等的不同變型。
注意的是,雖然圖1僅將UE中的兩個UE示出為SL-UE(即,UE 164和UE 182),但是所示出的UE中的任何一個UE都可以是SL-UE。另外,雖然僅將UE 182描述為能夠進行波束成形,但是所示出的UE中的任何一個UE(包括UE 164)都能夠進行波束成形。在SL-UE能夠進行波束成形的情況下,其可以朝向彼此(即,朝向其它SL-UE)、朝向其它UE(例如,UE 104)、朝向基地台(例如,基地台102、180、小型小區102’、存取點150)等等進行波束成形。因此,在一些情況下,UE 164和UE 182可以在側行鏈路160上利用波束成形。
在圖1的示例中,所示UE中的任何一個UE(為簡單起見,在圖1中示出為單個UE 104)可以從一個或多個地球軌道太空載具(SV)112(例如,衛星)接收信號124。在一方面中,SV 112可以是衛星定位系統的一部分,UE 104可以將其用作位置資訊的獨立來源。衛星定位系統通常包括發射機系統(例如,SV 112),將該發射機系統定位成使接收機(例如,UE 104)能夠至少部分地基於從發射機接收的定位信號(例如,信號124)來決定其在地球上或地球上方的位置。這樣的發射機通常發送標記有設定數量的碼元的重複偽隨機雜訊(PN)碼的信號。雖然通常位於SV 112中,但是發射機有時可能位於基於地面的控制站、基地台102和/或其它UE 104上。UE 104可以包括專門被設計為接收用於從SV 112導出地理位置資訊的信號124的一個或多個專用接收機。
在衛星定位系統中,對信號124的使用可以由各種基於衛星的增強系統(SBAS)增強,SBAS可以與一個或多個全球和/或區域導航衛星系統相關聯或以其它方式實現與一個或多個全球和/或區域導航衛星系統一起使用。例如,SBAS可以包括提供完整性資訊、差分校正等的增強系統,諸如廣域增強系統(WAAS)、歐洲地球靜止導航覆蓋服務(EGNOS)、多功能衛星增強系統(MSAS)、全球定位系統(GPS)輔助地理增強導航或GPS和地理增強導航系統(GAGAN)等。因此,如本文所使用的,衛星定位系統可以包括與這樣的一個或多個衛星定位系統相關聯的一個或多個全球和/或區域導航衛星的任何組合。
在一方面中,SV 112可以另外地或替代地是一個或多個非陸地網路(NTN)的一部分。在NTN中,SV 112連接到地球站(也稱為地面站、NTN閘道器或閘道器),而地球站又連接到5G網路中的元件,例如修改的基地台 102(沒有地面天線)或5GC中的網路節點。該元件轉而將提供對5G網路中其它元件的存取,並且最終提供對5G網路外部實體(例如,網際網路Web伺服器和其它用戶設備)的存取。以這種方式,UE 104可以從SV 112接收通信信號(例如,信號124),而不是接收來自陸地基地台102的通信信號,或者除了接收來自陸地基地台102的通信信號之外的信號。
無線通信系統100還可以包括經由一個或多個設備對設備(D2D)點對點(P2P)鏈路(被稱為“側行鏈路”)間接地連接到一個或多個通信網路的一個或多個UE(諸如UE 190)。在圖1的示例中,UE 190具有與連接到基地台102中的一個基地台102的UE 104中的一個UE 104的D2D P2P鏈路192(例如,透過D2D P2P鏈路192,UE 190可以間接地獲得蜂巢式連接性)和與連接到WLAN AP 150的WLAN STA 152的D2D P2P鏈路194(透過D2D P2P鏈路194,UE 190可以間接地獲得基於WLAN的網際網路連接性)。在一示例中,可以利用任何習知的D2D RAT(諸如LTE直連(LTE-D)、WiFi直連(WiFi-D)、藍牙®等等)來支援D2D P2P鏈路192和194。
圖2A示出了示例無線網路結構200。例如,可以在功能上將5GC 210(也被稱為下一代核心(NGC))視為控制平面(C平面)功能單元214(例如,UE註冊、認證、網路存取、閘道器選擇等)和用戶平面(U平面)功能單元212(例如,UE閘道器功能、對資料網路的存取、IP路由等),控制平面功能單元214和用戶平面功能單元212合作地操作以形成核心網路。用戶平面介面(NG-U)213和控制平面介面(NG-C)215將gNB 222連接到5GC 210,以及具體而言,分別連接到用戶平面功能單元212和控制平面功能單元214。在另外的配置中,還可以經由到控制平面功能單元214的NG-C 215和到用戶平面功能單元212的NG-U 213將ng-eNB 224連接到5GC 210。此外,ng-eNB 224可以經由回程連接223直接與gNB 222進行通信。在一些配置中,下一代RAN(NG-RAN)220可以具有一個或多個gNB 222,而其它配置包括ng-eNB 224和gNB 222兩者中的一項或多項。gNB 222或者ng-eNB 224(或兩者)可以與一個或多個UE 204(例如,圖1中描述的任何UE)進行通信。
另一可選方面可以包括位置伺服器230,其可以與5GC 210相通信以為UE 204提供位置幫助。位置伺服器230可以被實現為多個分離的伺服器(例如,在實體上分離的伺服器、單個伺服器上的不同軟體模組、分佈在多個實體伺服器上的不同軟體模組等),或者替代地,可以各自對應於單個伺服器。位置伺服器230可以被配置為支援針對可以經由核心網路、5GC 210和/或經由網際網路(未示出)連接到位置伺服器230的UE 204的一種或多種位置服務。此外,位置伺服器230可以被整合到核心網路的組件中,或者替代地,可以在核心網路外部(例如,第三方伺服器,諸如原始設備製造商(OEM)伺服器或服務伺服器)。
圖2B示出了另一種示例無線網路結構250。例如,可以在功能上將5GC 260(其可以對應於圖2A中的5GC 210)視作為由存取和行動性管理功能(AMF)264提供的控制平面功能、以及由用戶平面功能(UPF)262提供的用戶平面功能,其協同地操作以形成核心網路(即,5GC 260)。AMF 264的功能包括註冊管理、連接管理、可到達性管理、行動性管理、合法攔截、一個或多個UE 204(例如,本文所描述的UE中的任何一個UE)與對話管理功能(SMF)266之間的對話管理(SM)訊息的傳輸、用於路由SM訊息的透明代理服務、存取認證和存取授權、UE 204和短訊息服務功能(SMSF)(未示出)之間的短訊息服務(SMS)訊息的傳輸以及安全錨定功能(SEAF)。AMF 264還與認證伺服器功能(AUSF)(未示出)和UE 204進行互動,並且接收作為UE 204認證過程的結果而建立的中間密鑰。在基於UMTS(通用行動電信系統)用戶身份模組(USIM)進行認證的情況下,AMF 264從AUSF提取安全材料。AMF 264的功能還包括安全上下文管理(SCM)。SCM從SEAF接收密鑰,其用於導出特定於存取網路的密鑰。AMF 264的功能還包括用於監管服務的位置服務管理、在UE 204和位置管理功能(LMF)270(其充當位置伺服器230)之間的位置服務訊息的傳輸、在NG-RAN 220和LMF 270之間的位置服務訊息的傳輸、用於與演進封包系統(EPS)互通的EPS承載識別符分配、以及UE 204行動性事件通知。此外,AMF 264還支援非3GPP(第三代合作夥伴計劃)存取網路的功能。
UPF 262的功能包括:充當用於RAT內/RAT間行動性(在適用時)的錨點,充當互連到資料網路(未示出)的外部協定資料單元(PDU)對話點,提供封包路由和轉發、封包檢驗、用戶平面策略規則實施(例如,閘控、重定向、流量引導)、合法偵聽(用戶平面收集)、流量利用率報告、用於用戶平面的服務品質(QoS)處理(例如,上行鏈路/下行鏈路速率實施、下行鏈路中的反映性QoS標誌)、上行鏈路流量驗證(服務資料流(SDF)到QoS流映射)、上行鏈路和下行鏈路中的傳送等級封包標誌、下行鏈路封包緩衝和下行鏈路資料通知觸發,以及向來源RAN節點發送和轉發一個或多個“結束標誌”。UPF 262還可以支援在UE 204與位置伺服器(諸如SLP 272)之間在用戶平面上傳送位置服務訊息。
SMF 266的功能包括對話管理、UE網際網路協定(IP)地址分配和管理、對用戶平面功能的選擇和控制、在UPF 262處將流量引導配置為向正確的目的地路由流量、對策略實現和QoS的部分的控制、以及下行鏈路資料通知。SMF 266在其上與AMF 264進行通信的介面被稱為N11介面。
另一可選方面可以包括LMF 270,其可以與5GC 260通信,以向UE 204提供位置幫助。LMF 270能夠被實現為多個分離的伺服器(例如,在實體上分離的伺服器、單個伺服器上的不同軟體模組、分佈在多個實體伺服器上的不同軟體模組等),或者替代地,可以各自對應於單個伺服器。LMF 270可以被配置為支援用於UE 204的一個或多個位置服務,UE 204可以經由核心網路、5GC 260和/或經由網際網路(未示出)連接到LMF 270。SLP 272可以支援與LMF 270類似的功能,但是LMF 270可以在控制平面上與AMF 264、NG-RAN 220和UE 204進行通信(例如,使用旨在傳送信令訊息而不是語音或資料的介面和協定),SLP 272可以在用戶平面上與UE 204和外部客戶端(例如,第三方伺服器274)進行通信(例如,使用旨在攜帶語音和/或資料的協定,諸如傳輸控制協定(TCP)和/或IP)。
另一可選方面可以包括第三方伺服器274,第三方伺服器274可以與LMF 270、SLP 272、5GC 260(例如,經由AMF 264和/或UPF 262)、NG-RAN 220和/或UE 204進行通信以獲得UE 204的位置資訊(例如,位置估計)。照此,在一些情況下,第三方伺服器274可以稱為位置服務(LCS)客戶端或外部客戶端。第三方伺服器274可以實現為多個單獨的伺服器(例如,實體上單獨的伺服器、單個伺服器上的不同軟體模組、分佈在多個實體伺服器上的不同軟體模組等等),或者替代地每個對應於單一伺服器。
用戶平面介面263和控制平面介面265將5GC 260(特別是UPF 262和AMF 264)分別連接到NG-RAN 220中的一個或多個gNB 222和/或ng-eNB 224。gNB 222和/或ng-eNB 224與AMF 264之間的介面稱為“N2”介面,以及gNB 222和/或ng-eNB 224與UPF 262之間的介面稱為“N3”介面。NG-RAN 220的gNB 222和/或ng-eNB 224可以經由稱為“Xn-C”介面的回程連接223彼此直接通信。gNB 222和/或ng-eNB 224中的一者或多者可以透過稱為“Uu”介面的無線介面與一個或多個UE 204進行通信。
可以將gNB 222的功能劃分在gNB中央單元(gNB-CU)226、一個或多個gNB分布式單元(gNB-DU)228和一個或多個gNB無線電單元(gNB-RU)229之間。gNB-CU 226是邏輯節點,其包括傳輸用戶資料、行動性控制、無線電存取網路網路共用、定位、對話管理等等的基地台功能,除了那些被專門分配給gNB-DU的功能228之外。具體地說,gNB-CU 226通常託管gNB 222的無線電資源控制(RRC)、服務資料適配協定(SDAP)和封包資料彙聚協定(PDCP)協定。gNB-DU 228是通常託管gNB 222的無線電鏈路控制(RLC)和媒體存取控制(MAC)層的邏輯節點。其操作由gNB-CU 226進行控制。一個gNB-DU 228可以支援一個或多個小區,並且一個小區僅由一個gNB-DU 228支援。gNB-CU 226和一個或多個gNB-DU 228之間的介面232稱為“F1”介面。gNB 222的實體(PHY)層功能通常由一個或多個獨立的gNB-RU 229託管,其中gNB-RU 229執行諸如功率放大和信號發送/接收之類的功能。gNB-DU 228和gNB-RU 229之間的介面稱為“Fx”介面。因此,UE 204經由RRC、SDAP和PDCP層與gNB-CU 226進行通信,經由RLC和MAC層與gNB-DU 228進行通信,並且經由PHY層與gNB-RU 229進行通信。
圖3A、圖3B和圖3C示出了可以併入到UE 302(其可以對應於本文描述的任何UE)、基地台304(其可以對應於本文描述的任何基地台)和網路實體306(其可以對應於或體現本文描述的任何網路功能單元(包括位置伺服器230和LMF 270),或者替代地,可以獨立於圖2A和圖2B中描繪的NG-RAN 220和/或5GC 210/260基礎設施(諸如專用網路))中以支援如本文所教示的文件傳輸操作的若干示例組件(由對應的方塊表示)。將領會的是,這些組件可以在不同的實現中(例如,在ASIC中、在單晶片系統(SoC)中等)在不同類型的裝置中實現。所示出的組件還可以併入到通信系統中的其它裝置中。例如,系統中的其它裝置可以包括與所描述的那些組件類似的組件,以提供類似的功能。另外,給定裝置可以包含組件中的一個或多個組件。例如,裝置可以包括使該裝置能夠在多個載波上操作和/或經由不同技術進行通信的多個收發機組件。
UE 302和基地台304各自分別包括一個或多個無線廣域網路(WWAN)收發機310和350,其提供用於經由一個或多個無線通信網路(未示出)(諸如NR網路、LTE網路、GSM網路等)進行通信的構件(例如,用於發送的構件、用於接收的構件、用於測量的構件、用於調諧的構件、用於避免發送的構件等)。WWAN收發機310和350可以各自分別連接到一個或多個天線316和356,以在感興趣的無線通信媒體(例如,特定頻譜中的某個時間/頻率資源集合)上經由至少一個指定的RAT(例如,NR、LTE、GSM等)與其它網路節點(諸如其它UE、存取點、基地台(例如,eNB、gNB)等)進行通信。WWAN收發機310和350可以不同地被配置用於根據指定的RAT來分別發送和編碼信號318和358(例如,訊息、指示、資訊等)以及相反地分別接收和解碼信號318和358(例如,訊息、指示、資訊、導頻等)。具體地,WWAN收發機310和350分別包括一個或多個發射機314和354,其分別用於發送和編碼信號318和358,並且分別包括一個或多個接收機312和352,其分別用於接收和解碼信號318和358。
至少在一些情況下,UE 302和基地台304各自還分別包括一個或多個短距離無線收發機320和360。短距離無線收發機320和360可以分別連接到一個或多個天線326和366,並且提供用於在感興趣的無線通信媒體上經由至少一個指定的RAT(例如,WiFi、LTE-D、藍牙®、紫蜂®、Z-Wave®、PC5、專用短距離通信(DSRC)、車輛環境無線存取(WAVE)、近場通信(NFC)等)與其它網路節點(諸如其它UE、存取點、基地台等)進行通信的構件(例如,用於發送的構件、用於接收的構件、用於測量的構件、用於調諧的構件、用於避免發送的構件等)。短距離無線收發機320和360可以不同地被配置用於根據指定的RAT來分別發送和編碼信號328和368(例如,訊息、指示、資訊等)以及相反地分別接收和解碼信號328和368(例如,訊息、指示、資訊、導頻等)。具體地,短距離無線收發機320和360分別包括一個或多個發射機324和364,其分別用於發送和編碼信號328和368,並且分別包括一個或多個接收機322和322,其分別用於接收和解碼信號328和368。作為具體示例,短距離無線收發機320和360可以是WiFi收發機、藍牙®收發機、紫蜂®和/或Z-Wave®收發機、NFC收發機或車輛對車輛(V2V)和/或車聯網(V2X)收發機。
至少在一些情況下,UE 302和基地台304還包括衛星信號接收機330和370。衛星信號接收機330和370可以分別連接到一個或多個天線336和376,並且可以提供用於分別接收和/或測量衛星定位/通信信號的構件338和378。其中,衛星信號接收機330和370是衛星定位系統接收機,衛星定位/通信信號338和378可以是全球定位系統(GPS)信號、全球導航衛星系統(GLONASS)信號、伽利略信號、北斗信號、印度區域導航衛星系統(NAVIC)、準天頂衛星系統(QZSS)等等。在衛星信號接收機330和370是非陸地網路(NTN)接收機的情況下,衛星定位/通信信號338和378可以是源自5G網路的通信信號(例如,攜帶控制和/或用戶資料)。衛星信號接收機330和370可以包括用於分別接收和處理衛星定位/通信信號338和378的任何適當的硬體和/或軟體。衛星信號接收機330和370可以向其它系統請求適當的資訊和操作,並且至少在一些情況下,使用透過任何適當的衛星定位系統演算法獲得的測量值來分別執行決定UE 302和基地台304的位置所需的計算。
基地台304和網路實體306各自分別包括一個或多個網路收發機380和390,其提供用於與其它網路實體(例如,其它基地台304、其它網路實體306)進行通信的構件(例如,用於發送的構件、用於接收的構件等)。例如,基地台304可以採用一個或多個網路收發機380以在一個或多個有線的回程鏈路或無線回程鏈路上與其它基地台304或網路實體306進行通信。舉另一示例,網路實體306可以採用一個或多個網路收發機390以在一個或多個有線的回程鏈路或無線回程鏈路上與一個或多個基地台304進行通信,或者在一個或多個有線或無線核心網路介面上與其它網路實體306進行通信。
收發機可以被配置為透過有線或無線鏈路進行通信。收發機(無論是有線收發機還是無線收發機)包括發射機電路(例如,發射機314、324、354、364)和接收機電路(例如,接收機312、322、352、362)。在一些實現方式中,收發機可以是整合設備(例如,在單個設備中體現發射機電路和接收機電路),在一些實現中可以包括分離的發射機電路和分離的接收機電路,或者可以在其它實現中以其它方式體現。有線收發機(例如,在一些實現方式中的網路收發機380和390)的發射機電路和接收機電路可以耦接到一個或多個有線網路介面埠。無線發射機電路(例如,發射機314、324、354、364)可以包括或耦接到諸如天線陣列的多個天線(例如,天線316、326、356、366),其允許相應的裝置(例如,UE 302、基地台 304)執行發射“波束成形”,如本文所述。類似地,無線接收機電路(例如,接收機312、322、352、362)可以包括或耦接到諸如天線陣列的多個天線(例如,天線316、326、356、366),其允許相應的裝置(例如,UE 302、基地台304)執行接收波束成形,如本文所述。在一方面中,發射機電路和接收機電路可以共用相同的多個天線(例如,天線316、326、356、366),使得各個裝置在給定時間只能接收或發送,而不是在同一時間同時接收或發送。無線收發機(例如,WWAN收發機310和350、短距離無線收發機320和360)還可以包括用於執行各種測量的網路監聽模組(NLM)等。
如本文所使用的,各種無線收發機(例如,收發機310、320、350和360,以及在一些實現中的網路收發機380和390)和有線收發機(例如,在一些實現中的網路收發機380和390)可以通常描述為“一個收發機”、“至少一個收發機”或“一個或多個收發機”。照此,可以從所執行的通信類型推斷特定收發機是有線收發機還是無線收發機。例如,網路設備或伺服器之間的回程通信通常將涉及經由有線收發機的信令,而UE(例如,UE 302)和基地台(例如,基地台304)之間的無線通信將通常涉及經由無線收發機的信令。
UE 302、基地台304和網路實體306還包括可以結合本文所公開的操作使用的其它組件。UE 302、基地台304和網路實體306分別包括一個或多個處理器332、384和394,用於提供與例如無線通信有關的功能,以及用於提供其它處理功能。因此,處理器332、384和394可以提供用於處理的構件,諸如用於決定的構件、用於計算的構件、用於接收的構件、用於發送的構件、用於指示的構件等。在一方面中,處理器332、384和394可以包括例如一個或多個通用處理器、多核心處理器、中央處理單元(CPU)、ASIC、數位信號處理器(DSP)、現場可程式化閘陣列(FPGA)、其它可程式化邏輯器件或處理電路、或其各種組合。
UE 302、基地台304和網路實體306包括用於實現記憶體340、386和396(例如,每個包括記憶體設備)的記憶體電路,以分別用於維護資訊(例如,指示保留資源、閾、參數的資訊等等)。因此,記憶體340、386和396可以提供用於儲存的構件、用於提取的構件、用於維持的構件等等。在一些情況下,UE 302、基地台304和網路實體306可以分別包括定位組件342、388和398。定位組件342、388和398可以是分別作為處理器332、384和394的一部分或耦接到處理器332、384和394的硬體電路,其在執行時使得UE 302、基地台304和網路實體306來執行本文所描述的功能。在其它方面中,定位組件342、388和398可以在處理器332、384和394外部(例如,數據機處理系統的一部分,與另一處理系統整合等等)。替代地,定位組件342、388和398可以分別是儲存在記憶體340、386和396中的記憶體模組,當其由處理器332、384和394(或數據機處理系統、另一處理系統等等)執行時,使得UE 302、基地台304和網路實體306執行本文所描述的功能。圖3A示出了定位組件342的可能位置,例如,定位組件342可以是一個或多個WWAN收發機310、記憶體340、一個或多個處理器332或其任意組合的一部分,或者可以是獨立組件。圖3B示出了定位組件388的可能位置,例如,定位組件388可以是一個或多個WWAN收發機350、記憶體386、一個或多個處理器384或其任意組合的一部分,或者可以是獨立組件。圖3C示出了定位組件398的可能位置,例如,定位組件398可以是一個或多個網路收發機390、記憶體396、一個或多個處理器394或其任意組合的一部分,或者可以是獨立組件。
UE 302可以包括耦接到一個或多個處理器332的一個或多個感測器344,以提供用於感測或偵測獨立於根據由一個或多個WWAN收發機310、一個或多個短距離無線收發機320和/或衛星信號接收機330接收的信號推導出的運動資料的運動和/或方向資訊的構件。舉例而言,感測器344可以包括加速計(例如,微電子機械系統(MEMS)設備)、陀螺儀、地磁感測器(例如,羅盤)、高度計(例如,氣壓高度計)和/或任何其它類型的運動偵測感測器。此外,感測器344可以包括多個不同類型的設備並且組合它們的輸出以提供運動資訊。例如,感測器344可以使用多軸加速計和方向感測器的組合來提供在二維(2D)和/或三維(3D)座標系中計算位置的能力。
此外,UE 302包括用戶介面346,用戶介面346提供用於向用戶提供指示(例如,聽覺和/或視覺指示)和/或用於接收用戶輸入(例如,在用戶啟動諸如鍵盤、觸控螢幕、麥克風等之類的感測設備時)的構件。儘管未示出,但是基地台304和網路實體306還可以包括用戶介面。
更詳細地參照一個或多個處理器384,在下行鏈路中,來自網路實體306的IP封包可以被提供給處理器384。一個或多個處理器384可以實現針對RRC層、封包資料彙聚協定(PDCP)層、無線電鏈路控制(RLC)層和媒體存取控制(MAC)層的功能。一個或多個處理器384可以提供:與以下各項相關聯的RRC層功能:對系統資訊(例如,主資訊區塊(MIB)、系統資訊區塊(SIB))的廣播、RRC連接控制(例如,RRC連接傳呼、RRC連接建立、RRC連接修改、以及RRC連接釋放)、RAT間行動性、以及用於UE測量報告的測量配置;與以下各項相關聯的PDCP層功能:標頭壓縮/解壓、安全性(加密、解密、完整性保護、完整性驗證)、以及交接支援功能;與以下各項相關聯的RLC層功能:對上層PDU的傳送、透過自動重傳請求(ARQ)的糾錯、對RLC服務資料單元(SDU)的串接、分段和重組、對RLC資料PDU的重新分段、以及對RLC資料PDU的重新排序;以及與以下各項相關聯的MAC層功能:在邏輯信道和傳輸信道之間的映射、排程資訊報告、糾錯、優先級處置、以及邏輯信道優先化。
發射機354和接收機352可以實現與各種信號處理功能相關聯的層1(L1)功能。層1(其包括實體(PHY)層)可以包括在傳輸信道上的錯誤偵測、傳輸信道的前向糾錯(FEC)編碼/解碼,交錯、速率匹配、映射到實體信道上、實體信道的調變/解調、以及MIMO天線處理。發射機354處理基於各種調變方案(例如,二進制相移鍵控(BPSK)、正交相移鍵控(QPSK)、M-相移鍵控(M-PSK)、M-正交振幅調變(M-QAM))的到信號星座圖的映射。經編碼且經調變的符號隨後可以被拆分成並行的串流。每個串流隨後可以被映射到正交分頻多工(OFDM)子載波,與在時域和/或頻域中的參考信號(例如,導頻)多工,以及隨後使用快速傅立葉逆轉換(IFFT)組合到一起,以產生用於攜帶時域OFDM符號串流的實體信道。OFDM符號串流被空間預編碼以產生多個空間串流。來自信道估計器的信道估計可以用於決定編碼和調變方案,以及用於空間處理。可以根據由UE 302發送的參考信號和/或信道狀況反饋推導信道估計。可以隨後將每一個空間串流提供給一個或多個不同的天線356。發射機354可以利用各自的空間串流來對RF載波進行調變以用於傳輸。
在UE 302處,接收機312透過其各自的天線316接收信號。接收機312恢復出被調變到RF載波上的資訊,以及將該資訊提供給至少一個處理器332。發射機314和接收機312實現與各種信號處理功能相關聯的層1功能。接收機312可以執行對該資訊的空間處理以恢復出以UE 302為目的地的任何空間串流。如果多個空間串流以UE 302為目的地,則可以由接收機312將所述多個空間串流合併成單個OFDM符號串流。接收機312隨後使用快速傅立葉轉換(FFT)將該OFDM符號串流從時域轉換到頻域。頻域信號包括針對該OFDM信號的每一個子載波的單獨的OFDM符號串流。透過決定由基地台304發送的最有可能的信號星座圖點來對在每個子載波上的符號和參考信號進行恢復和解調。這些軟決策可以基於由信道估計器計算的信道估計。該軟決策隨後被解碼和解交錯以恢復出由基地台304最初在實體信道上發送的資料和控制信號。隨後將該資料和控制信號提供給一個或多個處理器332,其實現層3(L3)和層2(L2)功能。
在上行鏈路中,一個或多個處理器332提供在傳輸信道和邏輯信道之間的解多工、封包重組、解密、標頭解壓縮、以及控制信號處理,以恢復出來自核心網路的IP封包。一個或多個處理器332還負責錯誤偵測。
與結合由基地台304進行的下行鏈路傳輸所描述的功能類似,一個或多個處理器332提供:與以下各項相關聯的RRC層功能:系統資訊(例如,MIB、SIB)捕獲、RRC連接、以及測量報告;與以下各項相關聯的PDCP層功能:標頭壓縮/解壓縮、以及安全性(加密、解密、完整性保護、完整性驗證);與以下各項相關聯的RLC層功能:對上層PDU的傳送、透過ARQ的糾錯、對RLC SDU的串接、分段和重組、對RLC資料PDU的重新分段、以及對RLC資料PDU的重新排序;以及與以下各項相關聯的MAC層功能:在邏輯信道和傳輸信道之間的映射、MAC SDU到傳輸區塊(TB)上的多工、MAC SDU從TB的解多工、排程資訊報告、透過混合自動重傳請求(HARQ)的糾錯、優先級處置、以及邏輯信道優先化。
發射機314可以使用由信道估計器根據由基地台304發送的參考信號或反饋來推導出的信道估計來選擇適當的編碼和調變方案,並且促進空間處理。可以將由發射機314產生的空間串流提供給不同的天線316。發射機314可以利用各自的空間串流來對RF載波進行調變,以用於傳輸。
在基地台304處,以與結合在UE 302處的接收機功能所描述的方式相類似的方式來處理上行鏈路傳輸。接收機352透過其各自的天線356接收信號。接收機352恢復出被調變到RF載波上的資訊並且將該資訊提供給一個或多個處理器384。
在上行鏈路中,一個或多個處理器384提供在傳輸信道和邏輯信道之間的解多工、封包重組、解密、標頭解壓縮、控制信號處理,以恢復出來自UE 302的IP封包。可以將來自一個或多個處理器384的IP封包提供給核心網路。一個或多個處理器384還負責錯誤偵測。
為了方便起見,在圖3A、3B和圖3C中將UE 302、基地台304和/或網路實體306示出為包括可以根據本文所述的各種示例配置的各種組件。但是,應當理解,所說明的組件在不同的設計方案中可以具有不同的功能。具體地說,圖3A到3C中的各種組件在替代配置中是可選的,並且各個方面包括可能由於設計選擇、成本、設備的使用或其它考慮而變化的配置。例如,在圖3A的情況下,UE 302的特定實現可以省略WWAN收發機310(例如,可穿戴設備或平板計算機或PC或膝上型計算機可以具有Wi-Fi和/或藍牙能力而沒有蜂巢式能力),或者可以省略短距離無線收發機320(例如,僅蜂巢式等),或者可以省略衛星信號接收機330,或者可以省略感測器344等等。在另一示例中,在圖3B的情況下,基地台304的特定實現可以省略WWAN收發機350(例如,沒有蜂巢式能力的Wi-Fi“熱點”存取點),或者可以省略短距離無線收發機360(例如,僅蜂巢式等),或者可以省略衛星接收機370等等。為了簡潔起見,本文沒有提供對各種替代配置的說明,但是這對於本領域一般技術人員來說是容易理解的。
UE 302、基地台304和網路實體306的各種組件可以分別在資料匯流排334、382和392上彼此通信地耦接。在一方面中,資料匯流排334、382和392可以分別形成UE 302、基地台304和網路實體306的通信介面或作為其一部分。例如,在相同的設備中體現不同邏輯實體的情況下(例如,gNB和位置伺服器功能單元併入到相同的基地台304中),資料匯流排334、382和392可以提供所述不同邏輯實體之間的通信。
可以以各種方式來實現圖3A、3B和圖3C的組件。在一些實現方式中,可以在一個或多個電路(諸如例如,一個或多個處理器和/或一個或多個ASIC(其可以包括一個或多個處理器))中實現圖3A、3B和圖3C的組件。這裡,每個電路可以使用和/或併入至少一個記憶體組件,以用於儲存由該電路使用以提供該功能的資訊或可執行碼。例如,方塊310至346所表示的功能中的一些或全部可以由UE 302的處理器和記憶體組件來實現(例如,透過執行適當的碼和/或透過處理器組件的適當配置)。類似地,方塊350至388所表示的功能中的一些或全部功能可以由基地台304的處理器和記憶體組件來實現(例如,透過執行適當的碼和/或透過處理器組件的適當配置)。此外,方塊390至398所表示的功能中的一些或全部功能可以由網路實體306的處理器和記憶體組件來實現(例如,透過執行適當的碼和/或透過處理器組件的適當配置)。為了簡單起見,本文將各種操作、動作和/或功能描述為“由UE”、“由基地台”、“由網路實體”等等執行。但是,應當理解,這些操作、動作和/或功能實際上可以由UE 302、基地台304、網路實體306等等的特定組件或組件組合(例如,處理器332、384、394、收發機310、320、350和360、記憶體340、386和396、定位組件342、388和398等等)來執行。
在一些設計中,網路實體306可以被實現為核心網路組件。在其它設計中,網路實體306可以不同於網路運營商或蜂巢式網路基礎設施(例如,NG RAN 220和/或5GC 210/260)的操作。例如,網路實體306可以是專用網路的組件,該專用網路可以被配置為經由基地台304與UE 302進行通信,或者獨立於基地台304(例如,透過諸如WiFi之類的非蜂巢式通信鏈路)與UE 302進行通信。
可以使用各種幀結構來支援網路節點(例如,基地台和UE)之間的下行鏈路和上行鏈路傳輸。圖4A是示出根據本公開內容的各方面的示例幀結構的示意圖400。該幀結構可以是下行鏈路或上行鏈路幀結構。其它無線通信技術可能具有不同的幀結構和/或不同的信道。
LTE,並且在某些情況下的NR,在下行鏈路上利用OFDM,以及在上行鏈路上利用單載波分頻多工(SC-FDM)。但是,與LTE不同,NR也可以選擇在上行鏈路上使用OFDM。OFDM和SC-FDM將系統頻寬劃分成多個(K)正交子載波,這些子載波通常也稱為音調、頻段等等。每個子載波可以利用資料進行調變。通常,在頻域中使用OFDM發送調變符號,而在時域中使用SC-FDM進行發送。相鄰子載波之間的間隔可以是固定的,以及子載波的總數(K)可以取決於系統頻寬。例如,子載波的間隔可以是15千赫茲(kHz),並且最小資源分配(資源區塊)可以是12個子載波(或180 kHz)。因此,對於1.25、2.5、5、10或20兆赫茲(MHz)的系統頻寬,標稱FFT大小可以分別等於128、256、512、1024或2048。也可以將系統頻寬劃分為子頻帶。例如,一個子頻帶可以覆蓋1.08 MHz(即,6個資源區塊),並且對於1.25、2.5、5、10或20 MHz的系統頻寬而言,可以分別存在1、2、4、8或16個子頻帶。
LTE支援單個數位方案(numerology)(子載波間隔(SCS)、符號長度等等)。相比而言,NR可以支援多種數位方案(µ),例如,15 kHz(µ=0)、30 kHz(µ=1)、60 kHz(µ=2)、120 kHz(µ=3)和240 kHz(µ=4)或更大的子載波間隔可以是可用的。在每個子載波間隔中,每個時隙有14個符號。對於 15 kHz SCS(µ=0),每個子幀有1個時隙,每幀10個時隙,時隙持續時間為1毫秒(ms),符號持續時間為66.7微秒(µs),以及4K FFT大小的最大標稱系統頻寬(以MHz為單位)為50。對於30 kHz SCS(µ=1),每個子幀有兩個時隙,每幀20個時隙,時隙持續時間為0.5 ms,符號持續時間為33.3 µs,4K FFT大小的最大標稱系統頻寬(以MHz為單位)為100。對於60 kHz SCS(µ=2),每個子幀有四個時隙,每幀40個時隙,時隙持續時間為0.25 ms,符號持續時間為16.7 µs,以及4K FFT大小的最大標稱系統頻寬(MHz)為200。對於120 kHz SCS(µ=3),每個子幀有8個時隙,每幀80個時隙,時隙持續時間為0.125 ms,符號持續時間為8.33 µs,以及4K FFT大小的最大標稱系統頻寬(以MHz為單位)為 400。對於240 kHz SCS(µ=4),每個子幀有16個時隙,每幀160個時隙,時隙持續時間為0.0625 ms,符號持續時間為4.17 µs,以及4K FFT大小的最大標稱系統頻寬(MHz)為800。
在圖4A的示例中,使用15 kHz的數位方案。因此,在時域中,將10 ms幀劃分為10個大小相等的子幀(每個1ms),並且每個子幀包括一個時隙。在圖4A中,在水平方向上(在X軸上)表示時間,時間從左到右增加,而在垂直方向上(在Y軸上)表示頻率,頻率從下到上增加(或減少)。
資源網格可以用於表示時隙,每個時隙包括頻域中的一個或多個時間併發資源區塊(RB)(也稱為實體RB(PRB))。進一步將資源網格劃分為多個資源元素(RE)。一個RE可以對應時域中的一個符號長度和頻域中的一個子載波。在圖4A的數位方案中,對於一般循環前綴,一個RB在頻域可以包含12個連續的子載波,以及在時域可以包含7個連續的符號,總共84個RE。對於擴展循環前綴,一個RB可以在頻域中包含12個連續的子載波,以及在時域中包含6個連續的符號,總共72個RE。每個RE攜帶的位元數取決於調變方案。
RE中的一些RE可以攜帶參考(導頻)信號(RS)。參考信號可以包括定位參考信號(PRS)、追蹤參考信號(TRS)、相位追蹤參考信號(PTRS)、特定於小區的參考信號(CRS)、信道狀態資訊參考信號(CSI-RS)、解調參考信號(DMRS)、主同步信號(PSS)、輔同步信號(SSS)、同步信號區塊(SSB)、探測參考信號(SRS)等,這取決於所示幀結構是用於上行鏈路還是下行鏈路通信。圖4A示出了攜帶參考信號(標記為“R”)的RE的示例位置。
用於傳輸PRS的資源元素(RE)的集合稱為“PRS 資源”。資源元素的集合可以跨越頻域中的多個PRB,以及時域中一個時隙內的‘N’個(例如,一個或多個)連續符號。在時域中給定的OFDM符號中,一個PRS資源佔用頻域中連續的PRB。
對給定PRB內的PRS資源的傳輸具有特定的梳狀尺寸(也稱為“梳狀密度”)。梳狀尺寸“N”表示PRS資源配置的每個符號內的子載波間隔(或頻率/音調間隔)。具體地說,對於梳狀尺寸‘N’,PRS在PRB符號的每第N個子載波中發送。例如,對於comb-4,對於PRS資源配置的每個符號,與每第四個子載波相對應的RE(例如,子載波0、4、8)用於發送PRS資源的PRS。目前,DL-PRS支援comb-2、comb-4、comb-6和comb-12的梳狀尺寸。圖4A示出了用於comb-4(其跨度四個符號)的示例PRS資源配置。也就是說,陰影RE(標記為“R”)的位置指示comb-4 PRS資源配置。
目前,DL-PRS資源可以跨度具有完全頻域交錯模式的時隙內的2、4、6或12個連續符號。可以將DL-PRS資源配置在任何更高層配置的時隙的下行鏈路或靈活(FL)符號中。對於給定DL-PRS資源的所有RE,可能存在每資源元素的恆定能量(EPRE)。以下是梳狀尺寸2、4、6和12在2、4、6和12個符號上的符號到符號頻率偏移。2符號comb-2:{0, 1};4符號comb-2:{0, 1, 0, 1};6符號comb-2:{0, 1, 0, 1, 0, 1};12符號comb-2:{0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1};4符號comb-4:{0,2,1,3}(如圖4A的示例中);12符號comb-4:{0, 2, 1, 3, 0, 2, 1, 3, 0, 2, 1, 3};6符號comb-6:{0, 3, 1, 4, 2, 5};12符號comb-6:{0, 3, 1, 4, 2, 5, 0, 3, 1, 4, 2, 5};以及12符號comb-12:{0, 6, 3, 9, 1, 7, 4, 10, 2, 8, 5, 11}。
“PRS資源集”是用於傳輸PRS信號的一組PRS資源,其中每個PRS資源具有一個PRS資源ID。另外,PRS資源集中的PRS資源與相同的TRP相關聯。PRS資源集透過PRS資源集ID來識別,並且與特定TRP(透過TRP ID來識別)相關聯。此外,PRS資源集中的PRS資源可以具有相同的週期性、共同的靜音模式配置、以及跨時隙的相同重複因子(例如,“PRS-ResourceRepetitionFactor”)。該週期性是從第一PRS實例的第一PRS資源的第一次重複到下一個PRS實例的相同的第一PRS資源的相同的第一次重複的時間。該週期可以具有從2^µ*{4, 5, 8, 10, 16, 20, 32, 40, 64, 80, 160, 320, 640, 1280, 2560, 5120, 10240}個時隙中選擇的長度,其中µ = 0、1、2、3。重複因子可以具有從{1, 2, 4, 6, 8, 16, 32}個時隙中選擇的長度。
PRS資源集中的PRS資源ID可以與從單個TRP發送的單個波束(或波束ID)相關聯(其中TRP可以發送一個或多個波束)。也就是說,PRS資源集中的每個PRS資源可以在不同的波束上進行發送,並且照此,“PRS資源”(或簡稱為“資源”)也可以稱為“波束”。注意的是,這對於UE是否知道TRP和在其上發送PRS的波束沒有任何影響。
“PRS 實例”或“PRS 時機”是在其中預期要發送PRS的週期性重複時間窗(例如,一組的一個或多個連續時隙)的一個實例。PRS時機也可以稱為“PRS定位時機”、“PRS定位實例”、“定位時機”、“定位實例”、“定位重複”,或簡稱為“時機”、“實例”或“重複”。
“定位頻率層”(也簡稱為“頻率層”)是跨越一個或多個TRP的、對於某些參數具有相同的值的一個或多個PRS資源集的集合。具體來說,PRS 資源集的集合具有相同的子載波間隔和循環前綴(CP)類型(意味著PRS也支援實體下行鏈路共用信道(PDSCH)支援的所有數位方案)、相同的A點、相同的下行鏈路PRS頻寬值、相同的起始PRB(和中心頻率)和相同的梳狀尺寸。A點參數取參數“ARFCN-ValueNR”的值(其中“ARFCN”代表“絕對射頻信道號”),並是一個識別符/碼,指定一對用於發送和接收的實體無線電信道。下行鏈路PRS頻寬可以具有4個PRB的粒度,最少24個PRB,以及最多272個PRB。目前,最多定義了四個頻率層,每個頻率層的每個TRP最多可以配置兩個PRS資源集。
頻率層的概念有點類似於分量載波和頻寬部分(BWP)的概念,但不同之處在於,分量載波和BWP由一個基地台(或宏小區基地台和小型小區基地台)使用來發送資料信道,而頻率層被若干(通常是三個或更多)基地台用來發送PRS。當UE向網路發送其定位能力時(例如,在LTE定位協定(LPP)對話期間),UE可以指示其能夠支援的頻率層數。例如,UE可以指示它是否可以支援一個或四個定位頻率層。
注意,術語“定位參考信號”和“PRS”通常是指在NR和LTE系統中定位時使用的特定參考信號。然而,如本文所使用的,術語“定位參考信號”和“PRS”還可以指代可以用於定位的任何類型的參考信號,例如但不限於:在LTE和NR中定義的PRS、TRS、PTRS、CRS、CSI-RS、DMRS、PSS、SSS、SSB、SRS、UL-PRS等。此外,除非上下文另外說明,否則術語“定位參考信號”和“PRS”可以指代下行鏈路或上行鏈路定位參考信號。如果需要進一步區分PRS的類型,可以將下行鏈路定位參考信號稱為“DL-PRS”,將上行鏈路定位參考信號(如,SRS-for-positioning,PTRS)稱為“UL-PRS”。此外,對於可以在上行鏈路和下行鏈路中發送的信號(例如,DMRS、PTRS),可以在信號前面加上“UL”或“DL”以區分方向。例如,“UL-DMRS”可以區別於“DL-DMRS”。
圖4B是示出示例下行鏈路時隙內的各種下行鏈路信道的示意圖450。在圖4B中,隨著時間從左到右增加,時間水平地表示(在X軸上),而隨著頻率從下到上增加(或減少),頻率垂直地表示(在Y軸上)。在圖4B的示例中,使用了15 kHz的數位方案。因此,在時域中,所示時隙的長度為一毫秒(ms),分為14個符號。
在NR中,將信道頻寬或系統頻寬劃分為多個頻寬部分(BWP)。BWP 是從給定載波上給定數位方案的公共RB的連續子集中選擇的一組連續RB。通常,可以在下行鏈路和上行鏈路中最多指定四個BWP。也就是說,一個UE在下行鏈路上最多可以配置有四個BWP,以及在上行鏈路上最多可以配置有四個BWP。在給定時間可能只有一個BWP(上行鏈路或下行鏈路)處於活動狀態,這意味著UE一次只能透過一個BWP進行接收或發送。在下行鏈路上,每個BWP的頻寬應當等於或大於SSB的頻寬,但是其可能包含SSB也可能不包含SSB。
參照圖4B,UE使用主同步信號(PSS)來決定子幀/符號時序和實體層識別。UE使用輔同步信號(SSS)來決定實體層小區識別組號和無線電幀時序。基於實體層識別和實體層小區識別組號,UE可以決定PCI。基於PCI,UE可以決定上述DL-RS的位置。攜帶主資訊區塊(MIB)的實體廣播信道(PBCH)可以與PSS和SSS邏輯封包,以形成SSB(也稱為SS/PBCH)。MIB提供下行鏈路系統頻寬中的多個RB和系統幀號(SFN)。實體下行鏈路共用信道(PDSCH)攜帶用戶資料、不透過PBCH發送的廣播系統資訊(例如,系統資訊區塊(SIB)和傳呼訊息)。
實體下行鏈路控制信道(PDCCH)在一個或多個控制信道單元(CCE)內攜帶下行鏈路控制資訊(DCI),每個CCE包括一個或多個RE組(REG)捆綁(其可以在時域上跨度多個符號),每個REG捆綁包括一個或多個REG,每個REG對應於頻域中的12個資源元素(一個資源區塊)和時域中的一個OFDM符號。用於攜帶PDCCH/DCI的實體資源集在NR中稱為控制資源集(CORESET)。在NR中,將PDCCH限制在單個CORESET中,以及與其自己的DMRS一起發送。這為PDCCH啟用了特定於UE的波束成形。
在圖4B的示例中,每個BWP有一個CORESET,以及CORESET在時域中跨度三個符號(儘管可能只有一個或兩個符號)。與佔用整個系統頻寬的LTE控制信道不同,在NR中,PDCCH信道位於頻域中的特定區域(即,CORESET)。因此,將圖4B中所示的PDCCH的頻率分量示出為在頻域中少於單個BWP。注意的是,儘管所示的CORESET在頻域中是連續的,但它不必如此。此外,CORESET在時域中可能跨度少於三個符號。
PDCCH內的DCI攜帶關於上行鏈路資源分配(持久和非持久)的資訊和關於發送給UE的下行鏈路資料的描述(分別稱為上行鏈路和下行鏈路準許)。具體地說,DCI指示為下行鏈路資料信道(例如,PDSCH)和上行鏈路資料信道(例如,實體上行鏈路共用信道(PUSCH))排程的資源。在PDCCH中可以配置多個(例如,最多8個)DCI,以及這些DCI可以具有多種格式中的一種格式。例如,上行鏈路排程、下行鏈路排程、上行鏈路發射功率控制(TPC)等等具有不同的DCI格式。一個PDCCH可以由1、2、4、8或16個CCE傳輸,以適應不同的DCI酬載大小或編碼率。
NR支援多種基於蜂巢式網路的定位技術,其包括基於下行鏈路、基於上行鏈路以及基於下行鏈路和上行鏈路的定位方法。基於下行鏈路的定位方法包括LTE中的觀測到達時間差(OTDOA)、NR中的下行鏈路到達時間差(DL-TDOA)和NR中的下行鏈路離開角(DL-AoD)。在OTDOA或DL-TDOA定位過程中,UE測量從基地台對接收到的參考信號(例如,定位參考信號(PRS))的到達時間(ToA)之間的差異(稱為參考信號時間差(RSTD)或到達時間差(TDOA)測量),以及將其報告給定位實體。具體地說,UE在輔助資料中接收參考基地台(例如,服務基地台)和多個非參考基地台的識別符(ID)。然後,UE測量參考基地台和每個非參考基地台之間的RSTD。基於所涉及基地台的已知位置和RSTD測量,定位實體(例如,用於基於UE的定位的UE或用於UE輔助定位的位置伺服器)可以估計UE的位置。
對於DL-AoD定位,定位實體使用來自UE的關於多個下行鏈路發射波束的接收信號強度測量的波束報告,來決定UE和發射基地台之間的角度。然後,定位實體可以基於所決定的角度和發射基地台的已知位置來估計UE的位置。
基於上行鏈路的定位方法包括上行鏈路到達時間差(UL-TDOA)和上行鏈路到達角(UL-AoA)。UL-TDOA類似於DL-TDOA,但是基於UE發送的上行鏈路參考信號(例如,探測參考信號(SRS))。對於UL-AoA定位,一個或多個基地台測量在一個或多個上行鏈路接收波束上從UE接收的一個或多個上行鏈路參考信號(例如,SRS)的接收信號強度。定位實體使用信號強度測量和接收波束的角度,來決定UE和基地台之間的角度。基於決定的角度和基地台的已知位置,定位實體然後可以估計UE的位置。
基於下行鏈路和上行鏈路的定位方法包括增強型小區ID(E-CID)定位和多往返時間(RTT)定位(也稱為“多小區 RTT”和“多RTT”)。在RTT過程中,第一實體(例如,基地台或UE)向第二實體(例如,UE或基地台)發送第一RTT相關信號(例如,PRS或SRS),第二實體(例如,UE或基地台)將第二與RTT相關的信號(例如,SRS或PRS)發送回第一實體。每個實體測量接收到的RTT相關信號的到達時間(ToA)和發送的RTT相關信號的傳輸時間之間的時間差。該時間差稱為接收到發送(Rx-Tx)時間差。可以進行或可以調整Rx-Tx時間差測量,以便僅包括接收和發送信號的最近子幀邊界之間的時間差。然後兩個實體可以將它們的Rx-Tx時間差測量值發送到位置伺服器(例如,LMF 270),該位置伺服器根據兩個Rx-Tx時間差測量值來計算兩個實體之間的往返傳播時間(即,RTT)(例如,作為兩個Rx-Tx時間差測量值的總和)。替代地,一個實體可以將其Rx-Tx時間差測量值發送給另一實體,然後由後者計算RTT。可以根據RTT和已知的信號速度(例如,光速)來決定這兩個實體之間的距離。對於多RTT定位,第一實體(例如,UE或基地台)與多個第二實體(例如,多個基地台或UE)執行RTT定位過程,以使能夠基於到第二實體的距離和第二實體的已知位置來決定第一實體的位置(例如,使用多點測量)。RTT和多RTT方法可以與其它定位技術(例如,UL-AoA和DL-AoD)相結合,以提高定位精度。
E-CID定位方法是基於無線電資源管理(RRM)測量。在E-CID中,UE報告服務小區ID、時序前置(TA)、以及偵測到的相鄰基地台的識別符、估計時序和信號強度。然後基於該資訊和基地台的已知位置,來估計UE的位置。
為了輔助定位操作,位置伺服器(例如,位置伺服器230、LMF 270、SLP 272)可以向UE提供輔助資料。例如,該輔助資料可以包括從其測量參考信號的基地台(或基地台的小區/TRP)的識別符、參考信號配置參數(例如,連續定位子幀的數量、定位子幀的週期、靜音序列、跳頻序列、參考信號識別符、參考信號頻寬等等)和/或適用於特定定位方法的其它參數。替代地,輔助資料可以直接源自基地台本身(例如,在週期性廣播的負擔訊息中等等)。在一些情況下,UE可能能夠在不使用輔助資料的情況下自行偵測相鄰網路節點。
在OTDOA或DL-TDOA定位過程的情況下,輔助資料還可以包括預期RSTD值和在預期RSTD周圍的相關聯的不確定性或搜尋窗口。在一些情況下,預期RSTD的值範圍可以是+/- 500 微秒(µs)。在一些情況下,當用於定位測量的任何資源在FR1中時,預期RSTD的不確定性的值的範圍可以是+/- 32 µs。在其它情況下,當用於定位測量的所有資源都在FR2中時,預期RSTD的不確定性的值範圍可以是+/- 8 µs。
位置估計可以用諸如定位估計、位置、定位、定位固定、固定等等之類的其它名稱來指代。位置估計可以是大地測量的,並且包括座標(例如,緯度、經度和可能的高度),或者可以是城市的並且包括街道地址、郵政地址或位置的一些其它口頭描述。可以進一步相對於一些其它已知位置來定義位置估計,或者以絕對術語(例如,使用緯度、經度和可能的高度)來定義位置估計。位置估計可以包括預期的誤差或不確定性(例如,透過包括一個區域或體積,該位置預計將在某個指定的或預設的信心水準上包含在該區域或體積內)。
圖5示出了在UE 504和位置伺服器(示出為位置管理功能(LMF)570)之間用於執行定位操作的示例長期演進(LTE)定位協定(LPP)過程500。如圖5中所示,經由UE 504和LMF 570之間的LPP訊息的交換來支援UE 504的定位。可以經由UE 504的服務基地台(示出為服務gNB 502)和核心網路(未示出),在UE 504和LMF 570之間交換LPP訊息。LPP過程500可以用於定位UE 504,以支援各種與位置相關的服務,例如用於UE 504(或用於UE 504的用戶)的導航、或用於路由、或用於向公共安全應答點(PSAP)提供與從UE 504到PSAP的緊急呼叫相關聯的準確位置、或出於某種其它原因。LPP過程500也可以稱為定位對話,並且對於不同類型的定位方法(例如,下行鏈路到達時間差(DL-TDOA)、往返時間(RTT)、增強小區識別(E-CID)等)可以存在多個定位對話。
最初,UE 504可以在階段510,從LMF 570接收對其定位能力的請求(例如,LPP請求能力訊息)。在階段520,UE 504透過向LMF 570發送LPP提供能力訊息,相對於LPP協定向LMF 570提供其定位能力,其中LPP提供能力訊息指示UE 504使用LPP所支援的定位方法和這些定位方法的特徵的。在一些方面,LPP提供能力訊息中指示的能力可以指示UE 504支援的定位類型(例如,DL-TDOA、RTT、E-CID等),並且可以指示UE 504支援這些類型的定位的能力。
在接收到LPP提供能力訊息後,在階段520,LMF 570基於指示的UE 504支援的定位類型,來決定要使用的特定類型的定位方法(例如,DL-TDOA、RTT、E-CID等),以及決定一組的一個或多個發送接收點(TRP),UE 504將從這些TRP測量下行鏈路定位參考信號或UE 504將向其發送上行鏈路定位參考信號。在階段530,LMF 570向UE 504發送識別該組TRP的LPP提供輔助資料訊息。
在一些實現方式中,響應於由UE 504發送到LMF 570的LPP請求輔助資料訊息(圖5中未示出),LMF 570可以將階段530的LPP提供輔助資料訊息發送到UE 504。LPP 請求輔助資料訊息可以包括 UE 504服務TRP的識別符和對相鄰TRP的定位參考信號(PRS)配置的請求。
在階段540,LMF 570向UE 504發送對位置資訊的請求。該請求可以是LPP請求位置資訊訊息。該訊息通常包括用於定義位置資訊類型、位置估計的期望精度和響應時間(即,期望等待時間)的資訊元素。注意的是,低等待時間要求允許更長的響應時間,而高等待時間要求需要更短的響應時間。然而,較長響應時間稱為高等待時間,以及較短響應時間稱為低等待時間。
注意的是,在一些實現方式中,在階段540接收到對位置資訊的請求之後,如果例如UE 504向LMF 570發送對輔助資料的請求(例如,在圖5中未示出的LPP請求輔助資料訊息中發送)則在540的LPP請求位置資訊訊息之後,發送在階段530發送的LPP提供輔助資料訊息。
在階段550,UE 504利用在階段530接收的輔助資訊和在階段540接收的任何其它資料(例如,期望的定位精度或最大響應時間),來執行定位操作(例如,對DL-PRS的測量、對UL-PRS的傳輸等)以用於所選擇的定位方法。
在階段560,在任何最大響應時間到期(例如,LMF 570 在階段 540 提供的最大響應時間)之前或之時,UE 504可以向LMF 570發送LPP提供位置資訊訊息,傳送在階段550獲得的任何測量的結果(例如,到達時間(ToA)、參考信號時間差(RSTD))、接收到發送(Rx-Tx)等)。在階段560的LPP提供位置資訊訊息還可以包括獲得定位測量的時間(或次數)和獲得定位測量的TRP的識別。注意的是,在540處對位置資訊的請求與在560處的響應之間的時間是“響應時間”,以及指示定位對話的等待時間。
LMF 570至少部分地基於在階段 560在LPP提供位置資訊訊息中接收的測量,使用適當的定位技術(例如,DL-TDOA、RTT、E-CID等)來計算UE 504的估計位置。
在隨機存取過程之後,UE處於RRC連接狀態。該RRC協定用於UE和基地台之間的空中介面。RRC協定的主要功能包括連接建立和釋放功能、系統資訊廣播、無線承載建立、重新配置和釋放、RRC連接行動性過程、傳呼通知和釋放、以及外環功率控制。在LTE中,UE可以處於兩種RRC狀態(連接或閒置)之一,但是在NR中,UE可以處於三種RRC狀態(連接、閒置或非活動)之一。不同的RRC狀態具有與其相關聯的不同無線電資源,當UE處於給定狀態時,UE可以使用這些無線電資源。注意的是,不同的RRC狀態通常大寫,如上所述;但是,這不是必需的,以及這些狀態也可以用小寫字母書寫。
圖6是根據本公開內容的各方面的在NR中可用的不同RRC狀態(也稱為RRC模式)的示意圖600。當UE加電時,其最初處於RRC斷開/閒置狀態610。在隨機存取過程之後,其轉到RRC連接狀態620。如果UE在短時間內沒有活動,其可以透過轉到RRC非活動狀態630來掛起其對話。UE可以透過執行隨機存取過程以轉換回RRC連接狀態620來恢復其對話。因此,UE需要執行隨機存取過程以轉換到RRC連接狀態620,無論UE是處於RRC閒置狀態610還是RRC非活動狀態 630。
在RRC閒置狀態610中執行的操作包括公共陸地行動網路(PLMN)選擇、對系統資訊的廣播、小區重選行動性、行動台終止資料的傳呼(由5GC發起和管理)、用於核心網路傳呼的不連續接收(DRX)(由非存取層(NAS)配置)。在RRC連接狀態620中執行的操作包括 5GC(例如,5GC 260)和NG-RAN(例如,NG-RAN 220)連接建立(控制和用戶平面兩者)、在NG-RAN和UE處的UE上下文儲存,UE所屬小區的NG-RAN知識、去往/來自UE的單播資料的傳輸、以及網路控制的行動性。在RRC非活動狀態630中執行的操作包括對系統資訊的廣播、用於行動性的小區重選、傳呼(由NG-RAN發起)、基於RAN的通知區域(RNA)管理(由NG-RAN執行)、用於RAN傳呼的DRX(由NG-RAN配置)、用於UE的5GC和NG-RAN連接建立(控制平面和用戶平面兩者)、在NG-RAN和UE中儲存UE上下文、以及UE所屬的RNA的NG-RAN知識。
傳呼是網路通知UE其具有用於該UE的資料的機制。在大多數情況下,傳呼過程發生在UE處於RRC閒置狀態610或RRC非活動狀態630時。這意味著UE需要監測網路是否正在向其發送任何傳呼訊息。例如,在RRC閒置狀態610期間,UE進入在其DRX週期中定義的休眠模式。UE週期性地甦醒,以及在PDCCH上監測其傳呼幀(PF)和該PF內的傳呼時機(PO),以檢查傳呼訊息的存在。PF和PO指示RAN(例如,服務基地台/TRP/小區)將向UE發送任何傳呼的時間段(例如,一個或多個符號、時隙、子幀等)、並且因此的UE應當監測傳呼的時間段。應當理解的是,PF和PO被配置為週期性地發生,具體地說,在每個DRX週期(其等於傳呼週期)期間至少發生一次。儘管需要PF和PO來決定監測傳呼的時間,但是為簡單起見,通常只引用PO。如果PDCCH經由PF和PO指示在子幀中發送傳呼訊息,則UE需要解調PDSCH上的傳呼信道(PCH),以查看傳呼訊息是否是針對於其的。
使用波束掃描和重複來發送PDCCH和PDSCH。對於波束掃描,在每個PO內,在小區中發送的SSB的所有SSB波束上發送傳呼PDCCH和PDSCH。這是因為當UE處於RRC閒置狀態610或RRC非活動狀態630時,基地台不知道UE位於其地理覆蓋區域的哪個位置,並且因此需要對其整個地理覆蓋區域進行波束成形。對於重複,可以在PO內的每個波束上多次發送傳呼PDCCH和PDSCH。因此,每個PO包含多個連續的傳呼PDCCH監測時機(PMO)。
傳統UE預計在其傳呼週期中監測所有PO(通常每個UE每個傳呼週期一個PO)。然而,在NR中,網路(例如,服務基地台)可以在PO之前的監測時機期間向UE發送傳呼指示(PI)。PI指示在即將到來的PO中是否傳呼該UE。具體地說,如果PI指示不傳呼該UE,則UE不需要對傳呼PDCCH和PDSCH進行解碼。只有當PI指示對該UE進行傳呼時,UE才會繼續解碼傳呼PDCCH和PDSCH。
為了與基地台(或更具體地,服務小區/TRP)建立上行鏈路同步和RRC連接,UE需要執行隨機存取過程(也稱為隨機存取信道(RACH)過程或實體隨機存取信道(PRACH)過程)。NR中有兩種類型的隨機存取可用:基於競爭的隨機存取(CBRA)(也稱為“四步”隨機存取),以及無競爭隨機存取(CFRA)(也稱為“三步”隨機存取使用)。在某些情況下,還可以執行“兩步”隨機存取過程來代替四步隨機存取過程。
圖7示出根據本公開內容的各方面的示例四步隨機存取過程700。在UE 704和基地台702(圖示為gNB)之間執行四步隨機存取過程700,UE 704和基地台702可以分別對應於本文描述的任何UE和基地台。
存在UE 704可以執行四步隨機存取過程700的各種情況。例如,UE 704可以在執行初始RRC連接建立(即,獲取退出RRC閒置狀態後的初始網路存取)時,在執行RRC連接重建過程時,在UE 704具有上行鏈路資料要發送時,在UE 704具有上行鏈路資料要發送並且UE 704處於RRC連接狀態但沒有可用於排程請求(SR)的PUCCH資源時,或者當存在排程請求失敗時,執行四步隨機存取過程700。
在執行四步隨機存取過程700之前,UE 704讀取由基地台702廣播的一個或多個同步信號區塊(SSB),其中UE 704正在與基地台702一起執行四步隨機存取過程700。在NR中,基地台(例如,基地台702)發送的每個波束與不同的SSB相關聯,並且UE(例如,UE 704)選擇某個波束以用於與基地台702進行通信。基於所選波束的SSB,UE 704隨後可以讀取系統資訊區塊(SIB)類型1(SIB1),其攜帶小區存取相關資訊,以及向UE 704提供對在所選波束上發送的其它系統資訊區塊的排程。
當UE 704將四步隨機存取過程700的第一個訊息發送到基地台702時,其發送稱為“前導碼”(也稱為“RACH前導碼”、“PRACH前導碼”、“序列”)的特定模式。該前導碼區分來自不同UE 704的請求。在CBRA中,UE 704從與其它UE 704共用的前導碼池(NR中為64個)中隨機選擇前導碼。然而,如果兩個UE 704同時使用相同的前導碼,然後可能會發生衝突或競爭。
因此,在710處,UE 704選擇64個前導碼之一作為RACH請求(也稱為“隨機存取請求”)發送到基地台702。該訊息在四步隨機存取過程700中稱為“訊息1”或“Msg1”。基於來自基地台702的同步資訊(例如,SIB1),UE 704在與所選SSB/波束相對應的RACH時機(RO)發送前導碼。更具體地,為了讓基地台702決定UE 704已經選擇了哪個波束,在SSB和RO之間定義了特定映射(每10、20、40、80或160 ms發生一次)。透過偵測UE 704在哪個RO發送了前導碼,基地台702可以決定UE 704選擇了哪個SSB/波束。
注意的是,RO是用於發送前導碼的時間頻率傳輸機會,並且前導碼索引(即,對於64個可能的前導碼,從0到63的值)使UE 704能夠產生在基地台702處預期的前導碼類型。基地台702可以在SIB中將RO和前導碼索引配置給UE 704。RACH資源是其中發送一個前導碼索引的RO。照此,術語“RO”(或“RACH 時機”)和“RACH 資源”可以取決於上下文互換地使用。
由於互易性,UE 704可以使用與在同步期間決定的最佳下行鏈路接收波束相對應的上行鏈路發射波束(即,從基地台702接收選定的下行鏈路波束的最佳接收波束)。也就是說,UE 704使用用於從基地台702接收SSB波束的下行鏈路接收波束的參數,來決定上行鏈路發射波束的參數。如果在基地台702處互易性可用,則UE 704可以在一個波束上發送前導碼。否則,UE 704在其所有上行鏈路發射波束上重複對相同前導碼的傳輸。
UE 704還需要(經由基地台702)向網路提供其識別,以便網路可以在下一步中對其進行尋址。該識別稱為隨機存取無線電網路暫時識別(RA-RNTI),並根據發送前導碼的時隙來決定。
如果UE 704在某個時間段內沒有接收到來自基地台702的響應,則它以固定的步長增加其發射功率,並且再次發送前導碼/Msgl。更具體地,UE 704發送前導碼的第一組重複,然後,如果它沒有接收到響應,則它增加其發射功率並發送前導碼的第二組重複。UE 704繼續以增量步長來增加其發射功率,直到它接收到來自基地台702的響應為止。
在720處,基地台702在所選定的波束上向UE 704發送隨機存取響應(RAR)(在四步隨機存取過程700中稱為“訊息2”或“Msg2”)。在實體下行鏈路共用信道(PDSCH)上發送RAR,以及尋址到根據發送前導碼的時隙(即,RO)計算的RA-RNTI。RAR攜帶以下資訊:小區無線電網路暫時識別符(C-RNTI)、時序前置(TA)值和上行鏈路準許資源。基地台702將C-RNTI指派給UE 704,以實現與UE 704的進一步通信。TA值指定UE 704應當改變其時序多少,以補償UE 704與基地台702之間的傳播延遲。上行鏈路準許資源指示UE 704可以在實體上行鏈路共用信道(PUSCH)上使用的初始資源。在該步驟之後,UE 704和基地台702建立可以在後續步驟中使用的粗略波束對準。
在730處,使用分配的PUSCH,UE 704向基地台702發送稱為“訊息3”或“Msg3”的RRC連接請求訊息。因為UE 704透過基地台702排程的資源發送Msg3,基地台702知道從哪裡(空間上)偵測Msg3,並且因此應當使用哪個上行鏈路接收波束。注意的是,可以在與Msg1相同或不同的上行鏈路發射波束上發送Msg3 PUSCH。
UE 704透過在先前步驟中指派的C-RNTI,在Msg3中識別自己。該訊息包含UE 704的識別和連接建立原因。UE 704的識別是暫時行動用戶識別(TMSI)或隨機值。如果UE 704先前已連接到同一網路,則使用TMSI。在核心網路中透過TMSI來識別UE 704。如果UE 704第一次連接到網路,則使用隨機值。隨機值或TMSI的原因是,由於多個請求同時到達,在前一步驟中,可能已經將C-RNTI分配給多於一個UE 704。連接建立原因指示UE 704需要連接到網路的原因(例如,對於定位對話,因為其有上行鏈路資料要發送、因為其從網路接收到傳呼等等)。
如上所述,四步隨機存取過程700是CBRA過程。因此,如上所述,連接到相同的基地台702的任何UE 704都可以在710發送相同的前導碼,在這種情況下,在來自各個UE 704的請求之間存在衝突或競爭的可能性。因此,基地台702使用競爭解決機制來處理這種類型的存取請求。然而,在該過程中,結果是隨機的,以及並不是所有的隨機存取都會成功。
因此,在740處,如果成功接收到Msg3,則基地台702使用稱為“訊息4”或“Msg4”的競爭解決訊息進行響應。該訊息尋址到TMSI或隨機值(來自Msg3),但包含將用於進一步通信的新C-RNTI。具體地說,基地台702使用前一步驟決定的下行鏈路發射波束在PDSCH中發送Msg4。
如圖7中所示,四步隨機存取過程700需要UE 704和基地台702之間的兩個往返週期,這不僅增加了等待時間而且還帶來額外的控制信令負擔。為了解決這些問題,在NR中針對CBRA引入了兩步隨機存取。兩步隨機存取背後的動機是透過在UE和基地台之間具有單個往返循環來減少等待時間和控制信令負擔。這是透過將前導碼(Msg1)和排程的PUSCH傳輸(Msg3)組合成從UE到基地台的單個訊息(稱為“MsgA”)來實現的。類似地,將隨機存取響應(Msg2)和競爭解決訊息(Msg4)組合成從基地台到UE的單個訊息(稱為“MsgB”)。這減少了等待時間和控制信令負擔。
圖8示出了根據本公開內容的各方面的示例兩步隨機存取過程800。可以在UE 804和基地台802(圖示為gNB)之間執行兩步隨機存取過程800,其中UE 804和基地台802可以分別對應於本文描述的任何UE和基地台。
在810處,UE 804向基地台802發送RACH訊息A(“MsgA”)。在兩步隨機存取過程800中,將上面參考圖7描述的Msg1和Msg3折疊(即,組合)成MsgA以及被發送到基地台800。照此,MsgA包括類似於四步隨機存取過程700的Msg3 PUSCH的前導碼和PUSCH。可以如上面參考圖7所描述的,從64個可能的前導碼中選擇該前導碼,並且該前導碼可以用作對在MsgA中發送的資料進行解調的參考信號。在820處,UE 804從基地台802接收RACH訊息B(“MsgB”)。MsgB可以是上面參考圖7所描述的Msg2和Msg4的組合。
Msgl和Msg3組合成一個MsgA以及Msg2和Msg4組合成一個MsgB,允許UE 804減少RACH過程建立時間以支援NR的低等待時間要求。儘管UE 804可以被配置為支援兩步隨機存取過程800,但是如果UE 804由於某些限制(例如,高發射功率要求等)不能使用兩步隨機存取過程800,則UE 804仍然可以支援四步隨機存取過程700作為後降。因此,NR中的UE 804可以被配置為支援四步隨機存取過程700和兩步隨機存取過程800,並且可以基於從基地台802接收的RACH配置資訊來決定要使用哪個隨機存取過程。
目前,NR定位僅支援處於RRC連接狀態(例如,RRC連接狀態620)的UE。每當要執行定位操作時,處於RRC閒置狀態(例如,RRC斷開/閒置狀態610)或RRC非活動狀態(例如,RRC非活動狀態630)的UE必須轉換到RRC連接狀態。這種機制增加了UE的功耗、定位等待時間和網路負載。照此,對處於RRC閒置或非活動狀態的UE的定位支援,是未來定位相關標準的增強領域之一。然而,尚未定義如何配置UE在RRC閒置或非活動狀態時接收DL-PRS並發送用於定位的SRS。已經提出先前的解決方案,以在UE處於RRC連接狀態時為UE預配置必要的PRS和/或SRS配置,使得其可以使用這些配置來在RRC閒置或非活動狀態下進行定位。
正在考慮兩個標的,其中一個特徵(即小資料傳輸(SDT))可以被另一特徵(即,定位)使用。已為處於RRC非活動模式的UE定義了SDT。當針對SDT配置時,處於RRC非活動狀態的UE被配置為向服務基地台發送小資料封包,而UE不會轉換到RRC連接狀態以傳輸每個小封包(其可能稀疏地到達)。SDT提供省電功能,以及預計主要用於固定UE。因此,SDT技術不支援RRC非活動模式的跨小區行動性、閉環功率控制、時序前置(TA)調整等等,即使UE在小區的覆蓋區域內移動。
圖9A和9B示出根據本公開內容的各方面的用於處於RRC非活動狀態的UE的示例基於下行鏈路和上行鏈路的定位過程900。將定位過程900分成兩個SDT過程:圖9A中所示的上行鏈路(UL)準備階段和圖9B中所示的事件和測量報告階段。
在階段1,如3GPP技術規範(TS)23.273(其可公開獲得,並透過引用方式將其全部內容併入本文)所規定的,UE 204針對週期性或觸發的定位事件來執行延遲的5GC行動終止定位請求(5GC-MT-LR)過程的階段1到21。在階段2,UE 204偵測到事件,並且作為響應,在階段3a,向服務gNB 222(S)發送隨機存取(RA)前導碼(例如,如圖7的階段710)。在階段3b,UE 204從服務gNB 222(S)接收隨機存取響應(例如,如圖7的階段720),使得UE 204在階段4向服務gNB 222(S)發送RRC恢復請求。該RRC恢復請求可以包括定位事件指示。UE 204現在處於RRC連接狀態。
在階段5a,服務gNB 222(S)將針對UE 204的UL-PRS配置的UE上下文請求發送到錨定gNB 222(A)(當處於RRC非活動模式時UE 204從其接收傳呼的gNB;由於行動性,UE 204可以具有多個錨定gNB 222(A))。在階段5b,服務gNB 222(S)從錨定gNB 222(A)接收包括用於UE 204的UL-PRS配置的上下文響應。在階段6,服務gNB 222(S)向LMF 270發送NR定位協定類型A(NRPPa)定位資訊更新訊息(其包括UL-PRS配置)。在階段7,LMF 270向gNB 222(S)發送NRPPa定位啟用請求 。在階段8,服務gNB 222(S)向UE 204發送RRC釋放訊息,使UE 204轉換回RRC非活動狀態。RRC釋放訊息包括UL-PRS 配置、MAC控制元素(MAC-CE)SRS啟用和配置的准許(CG)配置(以發送DL-PRS測量)。在階段9,服務gNB 222(S)向LMF 270發送NRPPa定位啟用響應。在階段10,LMF 270向NG-RAN 220中的每個涉及的gNB 222發送NRPPa測量請求訊息。
在完成上行鏈路準備階段之後,UE 204再次處於RRC非活動狀態。在階段11,UE 204根據在階段8接收到的UL-PRS配置來發送UL-PRS。在階段12a,UE 204執行對gNB 222在NG-RAN 220中發送的DL-PRS資源的測量(有時稱為“DL-PRS測量”)。在定位過程900中,UE 204先前已經配置有要在階段12a測量的DL-PRS資源。在階段12b,gNB 222對UE 204在階段11發送的UL-PRS資源進行測量(有時稱為“UL-PRS 測量”)。
定位過程900的事件和測量報告階段開始於階段13a。在階段13a,UE 204向服務gNB 222(S)發送隨機存取前導碼,並且作為響應,在階段13b接收隨機存取響應。在階段14,UE 204向服務gNB 222(S)發送RRC恢復請求,該請求包括在階段12a執行的事件報告和DL-PRS測量(例如,在LPP提供位置資訊(PLI)訊息中,如在圖5的階段560)。在階段15,服務gNB 222將事件報告轉發給錨定gNB 222(A)和LMF 270。在階段16,LMF 270從NG-RAN 220涉及的gNB 222接收一個或多個NRPPa測量響應訊息。在階段17,LMF 270執行位置相關計算,以基於DL-PRS測量和UL-PRS測量來估計UE 204的位置。
在階段18a,LMF 270向gNB 222發送NRPPa定位去啟用請求。在階段18b,服務gNB 222(S)可以可選地向UE 204發送UL-PRS去啟用訊息。在階段19, LMF 270向gNB 222發送事件報告確認。在階段20,服務gNB 222(S)向UE 204發送包括事件報告確認的RRC釋放訊息。在階段 21,UE 204針對週期性或觸發位置事件,執行延遲的5GC-MT-LR過程的階段28至31,如3GPP TS 23.273中所定義的。
在一些情況下,UE 204可以在階段11發送UL-PRS資源,在階段12a測量DL-PRS,並且使用配置的准許(CG)PUSCH來報告DL-PRS測量。替代地,UE 204可以恢復RRC連接並在RRC連接狀態下發送測量和事件報告,如圖9B所示。
已經同意的是,可以以兩種方式將用於RRC非活動狀態定位的DL-PRS配置傳送給UE:定位SIB(posSIB)和當UE處於RRC連接狀態時的LPP訊息。對於後一種情況,UE可以獲得特定於UE/小區的PRS配置。然而,由於處於RRC非活動狀態的UE的行動性,PRS配置的一部分可能變得無效。例如,當UE移出某個區域時,一些以前的PRS配置(例如,對要測量的TRP的優先級指示、預期的RSTD等等)可能不再適用。TRP的優先級可以與UE的位置有關。例如,為了保證定位精度,可以將UE所在小區周圍的一些TRP指示為高優先級。然而,隨著UE移動到RRC非活動狀態,先前具有高優先級的TRP可能遠離UE,以及當前靠近UE的TRP可能被指示為低優先級。如果UE繼續使用先前的優先級規則進行測量和報告,可能會影響定位精度和效率。因此,應當考慮經由RRC連接狀態下的LPP訊息傳送的RRC非活動狀態下的PRS配置的有效性標準。
因此,應當考慮用於在RRC連接狀態中經由LPP訊息傳送的用於RRC非活動狀態定位的PRS配置的有效性標準。例如,用於特定於UE/小區的PRS配置的有效性標準可以與優先級指示、預期RSTD等等有關。
此外,至少在LPP對話中(例如,如圖5中所示),還同意支援對UE的輔助資料的預先配置。尚未定義如何啟用此類功能的詳細資訊(例如,可能需要延遲定位過程之外的其它功能)。此外,已經同意LPP請求位置資訊訊息可以用作對UE利用預先配置的輔助資料的指示。尚未定義使用預配置輔助資料的其它條件和/或有效性標準。
圖10A和圖10B示出根據本公開內容的各方面的用於處於RRC非活動狀態的UE的示例基於下行鏈路的定位過程1000。基於下行鏈路的定位過程1000類似於基於下行鏈路和上行鏈路的定位過程900,但沒有與對UL-PRS的上行鏈路發送和接收相關的操作。
在階段1,執行用於3GPP TS 23.273中規定的週期性或觸發位置事件的延遲5GC-MT-LR過程的階段1至21。然後,服務gNB 222(S)發送帶有“suspendConfig”的“RRCConnectionRelease”,以將UE 204轉到RRC非活動狀態。在執行這些階段之後,將向UE 204提供位置請求資訊(例如,請求的定位方法和模式、QoS等)和可能的任何所需的輔助資料(也稱為“定位輔助資料”、“一組定位輔助資料”、“一組輔助資料”等等)。UE 204可以像往常一樣在事件報告階段期間,經由posSI和/或LPP請求輔助資料來請求/接收其它的/更新的輔助資料。
在階段2a和2b,UE 204監測在階段1期間請求的觸發的或週期性事件的發生。UE 204根據階段1中的請求,決定哪種定位方法將用於偵測到的事件(基於LPP請求位置資訊訊息中包括的定位方法,在階段1期間的LCS週期性觸發調用請求中攜帶該訊息)。當偵測到該事件時(或稍微在此之前),UE 204執行位置測量。
在階段3a到3c,如果未配置或不能選擇CG-SDT資源,則UE 204執行兩步或四步RACH過程。在兩步RACH的情況下,UE 204在用於MsgA的PUSCH酬載中包括RRC恢復請求訊息。在四步RACH的情況下,UE 204在Msg3中向服務gNB 222(S)發送RRC恢復請求訊息。否則,如果在所選上行鏈路載波上配置了CG-SDT資源並且是有效的,則UE 204在CG傳輸中向服務gNB 222(S)發送RRC恢復請求訊息。UE 204將包含UL NAS傳輸訊息的RRC UL資訊傳輸訊息連同RRC恢復請求一起發送。UE 204將LCS事件報告和LPP提供位置資訊(PLI)訊息包括在UL NAS傳輸訊息的酬載容器中,以及在階段1期間接收的延遲路由識別符包括在UL NAS傳輸訊息的額外資訊中,如3GPP TS 24.501所定義的(該文獻可公開獲得,並透過引用方式將其全部內容併入本文中)。UE 204發送RRC恢復請求訊息以及關於UE必須發送多少訊息的額外資訊(例如,類似於MAC-CE緩衝器狀態報告(BSR))。嵌入式LPP PLI包括“moreMessagesOnTheWay”標誌。
在階段4,服務gNB 222(S)向LMF 270發送具有LPP PLI訊息的SS事件報告(經由服務AMF 264並且可能經由錨定gNB 222(A))。在階段5,服務gNB 222(S)向UE 204發送Msg4或MsgB。
在階段6a和6b,UE 204在SDT後續資料傳輸階段中,發送額外LPP PLI訊息段。在階段7a和7b,服務gNB 222(S)向LMF 270發送LPP PLI訊息(經由服務AMF 264和可能的錨定gNB 222(A))。
在階段8a,一旦已經接收到LPP PLI中的“noMoreMessages”標誌,LMF 270就向錨定gNB 222(A)發送SS事件報告確認,該錨定gNB 222(A)將該訊息轉發到服務gNB 222(S)。服務gNB 222(S)隨後在階段8b,在DL資訊傳輸訊息以及終止SDT過程的RRC釋放訊息中,向UE 204提供SS事件報告確認。
在階段9,執行用於在TS 23.273中指定的週期性或觸發位置事件的延遲5GC-MT-LR過程的階段28-31。
在定位過程1000中,由於UE 204可以離開UE接收到“suspendConfig”的(最後一個)gNB 222,並駐留在不同的小區中,所以提供給UE 204的輔助資料可能不再是最優的。例如,如果“NR-DL-PRS-AssistanceData”的大小足以覆蓋基於RAN的通知區域(RNA),則至少可能需要更新“NR-SelectedDL-PRS-IndexList”。一種選項是提供輔助資料的多種配置(類似於針對基於上行鏈路的過程提出的配置),以及指示哪種配置適合當前UE位置。另一種選項是使用SDT提供新配置。在任何情況下,如果可能,需要減少RRC狀態轉換。
因此,本公開內容提供了用於在RRC閒置或RRC非活動定位過程期間,輔助資料更新過程的技術。在以下每種技術中,UE已發送對單播輔助資料的請求(例如,在LPP請求輔助資料訊息中發送),其中單播輔助資料包括小區ID。UE在其處於RRC連接狀態時已接收到輔助資料(例如,在LPP提供輔助資料訊息中)。UE隨後轉換到RRC非活動狀態,在該狀態下其執行下行鏈路定位測量(例如,RSTD、ToA、RSRP 等)。UE隨後發送RRC恢復請求訊息,如圖10A的階段3c,其可以至少包括“事件報告資訊”訊息。最後,服務gNB將該資訊轉發給LMF,如圖10A的階段4所示。
作為第一種技術,在LMF/網路側,在LMF 270從錨定gNB接收轉發的資訊(即,事件報告)(UE 204在處於RRC非活動模式時從其接收傳呼的gNB;UE 204由於行動性而可能具有多個錨定gNB 222(A)),它使用包括在該訊息中的資訊,以將其與先前的輔助資料進行比較並決定UE是否將從新的輔助資料中受益。如果答案是肯定的,將通知錨定gNB這個新的輔助資料(或現有資料的重新優先級劃分)。然後錨定gNB將在RRC釋放訊息中(例如,在圖10B的階段8b)或者在Msg4或MsgB中(例如,在圖10A的階段5),向UE報告新的輔助資料。
作為第二種技術,同樣在LMF/網路側,在LMF從錨定gNB接收到轉發的資訊(即,事件報告)之後,透過決定哪個gNB轉發了來自UE的訊息來隱式決定新的錨定gNB是什麼。LMF將與該gNB相關聯的輔助資料與之前發送給UE的輔助資料進行比較。然後,LMF決定UE是否將從新的輔助資料中受益。如果答案是肯定的,它將通知錨定gNB這個新的輔助資料(或現有資料的重新優先級劃分)。然後,錨定gNB將在RRC釋放訊息中(例如,在圖10B的階段8b)或者在Msg4或MsgB中(例如,在圖10A的階段5),向UE報告新的輔助資料。
作為第三種技術,在UE側,UE可以在圖10A的階段3c的RRC恢復請求中,包括將幫助LMF決定UE是否應當接收新的輔助資料的資訊。該資訊可以包括:(1)指示UE是否需要更新的輔助資料的標誌(例如,一個位元),(2)它在其附近觀察/測量的一個或多個小區ID的集合,(3)到目前為止在UE處活動使用的輔助資料的ID/時間戳,和/或(4)當前輔助資料中參考TRP(用於RSTD測量)的測量品質(例如,RSRP、SINR、品質度量)(如果定期測量報告沒有提供的話)。例如,對於RTT、DL-AoD定位過程,UE通常不提供該資訊。因此,其將以新資訊元素(IE)的形式包括在報告中。
作為第四種技術,在LMF/網路側,NG-RAN可以決定UE已經潛在地移動(例如,交接錨定小區)。因此,NG-RAN向LMF詢問UE的這個新的潛在位置,是否應當發送新的輔助資料。LMF使用新的輔助資料(以及區域/小區組有效性或到期計時器)以積極的方式響應查詢,或消極地響應。NG-RAN接收到來自LMF的響應,以及針對該UE發送新的傳呼訊息,向UE通知新的輔助資料可用於該UE。可以將新的輔助資料作為傳呼的PDSCH中的酬載,或者作為RRC釋放訊息中的酬載(例如,在圖10B的階段8b)發送到UE。
作為第五種技術,LMF決定UE處於RRC非活動或閒置狀態,並向NG-RAN通知潛在有效性標準,其涉及用於不同輔助資料集的錨定gNB、區域、小區ID等等。NG-RAN決定UE已潛在地移動到滿足給定輔助資料候選的有效性標準的區域。NG-RAN向UE發送新的傳呼訊息或RRC釋放訊息,向UE通知有新的輔助資料可用。然後,可以將新的輔助資料作為傳呼的PDSCH中的酬載,或者作為RRC釋放訊息中的酬載(例如,在圖10B的階段8b)發送到UE。
圖11示出了根據本公開內容的各方面的定位的示例方法1100。在一方面中,方法1100可以由網路實體(例如,LMF 270)來執行。
在1110處,網路實體從在RRC非活動狀態或在RRC閒置狀態下操作的UE(例如,UE 204)的基地台(例如,錨定gNB 222)接收事件報告訊息,該事件報告訊息指示UE已接收到執行定位過程的請求。在一方面中,操作1110可以由一個或多個網路收發機390、一個或多個處理器394、記憶體396和/或定位組件398執行,可以認為這些組件中的任何或全部組件是用於執行該操作的構件。
在1120處,網路實體基於決定UE將從用於定位過程的更新的定位輔助資料中受益,向基地台發送更新的定位輔助資料,以使基地台能夠向UE發送更新的定位輔助資料。在一方面,操作1120可以由一個或多個網路收發機390、一個或多個處理器394、記憶體396和/或定位組件398來執行,可以認為這些組件中的任何或全部組件是用於執行該操作的構件。
圖12示出根據本公開內容的各方面的定位的示例方法1200。在一方面中,方法1200可以由網路節點(例如,gNB 222)來執行。
在1210處,網路節點向網路實體(例如,LMF 270)發送指示在RRC非活動狀態或在RRC閒置狀態下操作並參與定位過程的UE(例如,UE 204)已經從第一TRP(例如,本文描述的任何基地台的TRP)的覆蓋區域移動到第二TRP的覆蓋區域。在一方面中,操作1210可以由一個或多個網路收發機380、一個或多個處理器384、記憶體386和/或定位組件388執行,可以認為這些組件中的任何或全部組件是用於執行該操作的構件。
在1220處,網路節點基於UE已經從第一TRP的覆蓋區域移動到第二TRP的覆蓋區域,從網路實體接收用於定位過程的更新的定位輔助資料。在一方面中,操作1220可以由一個或多個網路收發機380、一個或多個處理器384、記憶體386和/或定位組件388執行,可以認為這些組件中的任何或全部組件是用於執行該操作的構件。
在1230處,網路節點向UE發送傳呼訊息,所述傳呼訊息向UE指示更新的定位輔助資料可用。在一方面中,操作1230可以由一個或多個WWAN收發機350、一個或多個處理器384、記憶體386和/或定位組件388執行,可以認為這些組件中的任何或全部組件是用於執行該操作的構件。
圖13示出了根據本公開內容的各方面的定位的示例方法1300。在一方面中,方法1300可以由網路節點(例如,gNB 222)來執行。
在1310處,網路節點從網路實體(例如,LMF 270)接收第一訊息,該第一訊息指示用於可配置給UE(例如,UE 204)的多個定位輔助資料集中的每個定位輔助資料集的一個或多個有效性標準。在一方面中,操作1310可以由一個或多個網路收發機380、一個或多個處理器384、記憶體386和/或定位組件388執行,可以認為這些組件中的任何或全部組件是用於執行該操作的構件。
在1320處,網路節點決定UE已經從第一TRP(例如,本文描述的任何基地台的TRP)的覆蓋區域移動到第二TRP的覆蓋區域,其中第二TRP的覆蓋區域滿足針對多個定位輔助資料集合中的一個定位輔助資料集合的一個或多個有效性標準。在一方面中,操作1320可以由一個或多個WWAN收發機350、一個或多個網路收發機380、一個或多個處理器384、記憶體386和/或定位組件388執行,可以認為這些組件中的任何或全部組件是用於執行該操作的構件。
在1330處,網路節點向UE發送第二訊息,第二訊息向UE指示該定位輔助資料集可用。在一方面中,操作1330可以由一個或多個WWAN收發機350、一個或多個處理器384、記憶體386和/或定位組件388執行,可以認為這些組件中的任何或全部組件是用於執行該操作的構件。
圖14示出了根據本公開內容的各方面的定位的示例方法1400。在一方面中,方法1400可以由網路節點(例如,gNB 222)來執行。
在1410處,網路節點從網路實體(例如,LMF 270)接收針對在RRC非活動狀態或在RRC閒置狀態下操作並參與定位過程的UE(例如,UE 204)的更新的定位輔助資料。在一方面中,操作1410可以由一個或多個網路收發機380、一個或多個處理器384、記憶體386和/或定位組件388來執行,可以認為這些組件中的任何或全部組件是用於執行該操作的構件。
在1420處,網路節點向UE發送更新的定位輔助資料,以使UE執行定位過程。在一方面中,操作1420可以由一個或多個WWAN收發機350、一個或多個處理器384、記憶體386和/或定位組件388執行,可以認為這些組件中的任何或全部組件是用於執行該操作的構件。
圖15示出了根據本公開內容的各方面的無線定位的示例方法1500。在一方面中,方法1500可以由UW(例如,UE 204)來執行。
在1510處,當在RRC非活動狀態或在RRC閒置狀態下操作時,UE向第一網路節點(例如,服務gNB 222)發送RRC恢復請求,該RRC恢復請求包括用於指示UE是否需要更新的定位輔助資料進行定位過程的一個或多個標準。在一方面中,操作1510可以由一個或多個WWAN收發機310、一個或多個處理器332、記憶體340和/或定位組件342執行,可以認為這些組件中的任何或全部組件是用於執行該操作的構件。
在1520處,UE從第二網路節點(例如,錨定gNB 222)接收更新的定位輔助資料。在一方面中,操作1520可以由一個或多個WWAN收發機310、一個或多個處理器332、記憶體340和/或定位組件342執行,可以認為這些組件中的任何或全部組件是用於執行該操作的構件。
應當理解,方法1100至1500的技術優點是UE在處於RRC非活動狀態或RRC閒置狀態時,由於UE的行動性而為UE提供更新的定位輔助資料。
在上面的詳細描述中,可以看出,在示例中,將不同的特徵組合在一起。這種公開方式不應被理解為是示例性條款具有比每個條款中明確提到的特徵更多的特徵的目的。而是,本公開內容的各個方面可以包括比所公開的單個示例性條款的所有特徵更少的特徵。因此,應當將以下條款視作為併入在說明書中,其中每個條款本身可以作為單獨的示例。儘管每個附屬條款可以在條款中引用與其它條款之一的特定組合,但是該附屬條款的各方面並不限於該特定組合。應當理解,其它示例性條款還可以包括附屬條款方面與任何其它附屬條款或獨立條款的標的的組合,或者任何特徵與其它附屬條款和獨立條款的組合。除非明確表達或者可以容易地推斷出不希望有特定的組合,否則本文公開的各個方面明確地包括這些組合(例如,矛盾的方面,比如將元件既定義為絕緣體又定義為導體)。此外,即使一個條款不直接取決於獨立條款,也旨在將該條款的各方面包括在任何其它獨立條款中。
在以下編號的條款中描述了實現示例:
條款1、一種由網路實體執行的定位方法,包括:從在無線電資源控制(RRC)非活動狀態或在RRC閒置狀態下操作中的用戶設備(UE)的基地台接收事件報告訊息,其中所述事件報告訊息指示所述UE已接收到執行定位過程的請求;以及基於決定所述UE將從用於所述定位過程的更新的定位輔助資料中受益,向所述基地台發送所述更新的定位輔助資料,以使所述基地台能夠向所述UE發送所述更新的定位輔助資料。
條款2、根據條款1所述的方法,其中,所述更新的定位輔助資料包括:新的定位輔助資料、對先前配置給所述UE的定位輔助資料的重新優先級排序、或其任意組合。
條款3、根據條款1至2中的任何一項所述的方法,其中,決定所述UE將從更新的定位輔助資料中受益是基於:先前配置給所述UE的定位輔助資料與所述事件報告訊息中的資訊的比較。
條款4、根據條款3所述的方法,其中,所述事件報告訊息中的所述資訊至少包括與所述基地台相關聯的小區識別符。
條款5、根據條款1至4中的任何一項所述的方法,其中:所述基地台是用於所述UE的錨定基地台,並且決定所述UE將從更新的定位輔助資料中受益是基於:先前配置給所述UE的定位輔助資料與基於所述UE處於所述錨定基地台的覆蓋區域中而將提供給所述UE的定位輔助資料的比較。
條款6、根據條款1至5中的任何一項所述的方法,其中,所述網路實體是位置伺服器。
條款7、一種由網路節點執行的定位的方法,包括:向網路實體發送訊息,所述訊息指示在無線電資源控制(RRC)非活動狀態或在RRC閒置狀態下操作並參與定位過程的用戶設備(UE)已經從第一發送接收點(TRP)的覆蓋區域移動到第二TRP的覆蓋區域;基於所述UE已經從所述第一TRP的所述覆蓋區域移動到所述第二TRP的所述覆蓋區域,從所述網路實體接收用於所述定位過程的更新的定位輔助資料;以及向所述UE發送傳呼訊息,所述傳呼訊息向所述UE指示所述更新的定位輔助資料可用。
條款8、根據條款7所述的方法,還包括:在所述傳呼訊息的酬載中,向所述UE發送所述更新的定位輔助資料。
條款9、根據條款7所述的方法,還包括:在RRC釋放訊息中向所述UE發送所述更新的定位輔助資料。
條款10、根據條款7至9中的任何一項所述的方法,還包括:從所述網路實體接收以下各項的指示:所述更新的定位輔助資料對其有效的小區組、區域、與所述更新的定位輔助資料相關聯的到期定時器、或其任意組合。
條款11、根據條款7至10中的任何一項所述的方法,其中:所述網路節點是基地台,並且所述網路實體是位置伺服器。
條款12、一種由網路節點執行的定位方法,包括:從網路實體接收第一訊息,所述第一訊息指示用於可配置給用戶設備(UE)的多個定位輔助資料集中的每個定位輔助資料集的一個或多個有效性標準;決定所述UE已從第一發送接收點(TRP)的覆蓋區域移動到第二TRP的覆蓋區域,其中所述第二TRP的所述覆蓋區域滿足針對所述多個定位輔助資料集中的一個定位輔助資料集的所述一個或多個有效性標準;以及向所述UE發送第二訊息,所述第二訊息向所述UE指示所述定位輔助資料集可用。
條款13、根據條款12所述的方法,其中,所述第二訊息是傳呼訊息。
條款14、根據條款13所述的方法,還包括:在所述傳呼訊息的酬載中,向所述UE發送所述定位輔助資料集。
條款15、根據條款12所述的方法,其中,所述第二訊息是RRC釋放訊息。
條款16、根據條款12至15中的任何一項所述的方法,還包括:在RRC釋放訊息中,向所述UE發送所述定位輔助資料集。
條款17、根據條款12至16中的任何一項所述的方法,其中,所述一個或多個有效性標準包括:錨定基地台的識別符、區域、一個或多個小區識別符、或其任意組合。
條款18、根據條款12至17中的任何一項所述的方法,其中:所述網路節點是基地台,並且所述網路實體是位置伺服器。
條款19、一種由網路節點執行的定位方法,包括:從網路實體接收針對在無線電資源控制(RRC)非活動狀態或在RRC閒置狀態下操作並參與定位過程的用戶設備(UE)的更新的定位輔助資料;以及向所述UE發送所述更新的定位輔助資料,以使所述UE執行所述定位過程。
條款20、根據條款19所述的方法,還包括:從所述UE接收事件報告訊息,其中所述事件報告訊息指示所述UE已接收到執行所述定位過程的請求;以及將所述事件報告訊息轉發給所述網路實體,其中響應於所述事件報告訊息而接收所述更新的定位輔助資料。
條款21、根據條款19至20中的任何一項所述的方法,其中,所述更新的定位輔助資料是在RRC釋放訊息中發送的。
條款22、根據條款19至20中的任何一項所述的方法,其中,所述更新的定位輔助資料是在隨機存取過程的最終訊息中發送的。
條款23、根據條款19至22中的任何一項所述的方法,其中:所述網路節點是用於所述UE的錨定基地台,並且所述網路實體是位置伺服器。
條款24、一種由用戶設備(UE)執行的無線定位的方法,包括:在無線電資源控制(RRC)非活動狀態或在RRC閒置狀態下操作時,向第一網路節點發送RRC恢復請求,所述RRC恢復請求包括用於指示所述UE是否需要更新的定位輔助資料進行定位過程的一個或多個標準;以及從第二網路節點接收所述更新的定位輔助資料。
條款25、根據條款24所述的方法,其中,所述一個或多個標準包括:指示所述UE需要新的定位輔助資料的標誌、所述UE在其當前位置偵測到的一個或多個小區識別符、與所述UE當前用於所述定位過程的定位輔助資料相關聯的識別符、與所述UE當前用於所述定位過程的所述定位輔助資料相關聯的時間戳、所述UE當前用於所述定位過程的所述定位輔助資料中的參考發送接收點(TRP)的測量品質、或其任意組合。
條款26、根據條款25所述的方法,還包括:在處於RRC連接狀態時,接收所述UE當前用於所述定位過程的所述定位輔助資料。
條款27、根據條款24至26中的任何一項所述的方法,其中,所述RRC恢復請求包括指示所述UE已經接收到執行所述定位過程的請求的事件報告訊息。
條款28、根據條款24至27中的任何一項所述的方法,其中:所述第一網路節點是所述UE的服務基地台,並且所述第二網路節點是用於所述UE的錨定基地台。
條款29、根據條款24至28中的任何一項所述的方法,其中,所述第一網路節點和所述第二網路節點是相同的網路節點。
條款30、根據條款24至29中的任何一項所述的方法,還包括:在處於所述RRC非活動狀態或所述RRC閒置狀態時,基於所述更新的定位輔助資料來執行對下行鏈路定位參考信號(PRS)的定位測量。
條款31、一種網路實體,包括:記憶體;至少一個收發機;以及通信地耦接到所述記憶體和所述至少一個收發機的至少一個處理器,所述至少一個處理器被配置為:經由所述至少一個收發機,從在無線電資源控制(RRC)非活動狀態或在RRC閒置狀態下操作的用戶設備(UE)的基地台接收事件報告訊息,其中所述事件報告訊息指示所述UE已接收到執行定位過程的請求;以及經由所述至少一個收發機,基於決定所述UE將從用於所述定位過程的更新的定位輔助資料中受益,向所述基地台發送所述更新的定位輔助資料,以使所述基地台能夠向所述UE發送所述更新的定位輔助資料。
條款32、根據條款31所述的網路實體,其中,所述更新的定位輔助資料包括:新的定位輔助資料,對先前配置給所述UE的定位輔助資料的重新優先級排序,或其任意組合。
條款33、根據條款31至32中的任何一項所述的網路實體,其中,決定所述UE將從更新的定位輔助資料中受益是基於:先前配置給所述UE的定位輔助資料與所述事件報告訊息中的資訊的比較。
條款34、根據條款33所述的網路實體,其中,所述事件報告訊息中的所述資訊至少包括與所述基地台相關聯的小區識別符。
條款35、根據條款31至34中的任何一項所述的網路實體,其中:所述基地台是用於所述UE的錨定基地台,並且決定所述UE將從更新的定位輔助資料中受益是基於:先前配置給所述UE的定位輔助資料與基於所述UE處於所述錨定基地台的覆蓋區域中而將提供給所述UE的定位輔助資料的比較。
條款36、根據條款31至35中的任何一項所述的網路實體,其中,所述網路實體是位置伺服器。
條款37、一種網路節點,包括:記憶體;至少一個收發機;以及通信地耦接到所述記憶體和所述至少一個收發機的至少一個處理器,所述至少一個處理器被配置為:經由所述至少一個收發機,向網路實體發送訊息,所述訊息指示在無線電資源控制(RRC)非活動狀態或在RRC閒置狀態下操作並參與定位過程的用戶設備(UE)已經從第一發送接收點(TRP)的覆蓋區域移動到第二TRP的覆蓋區域;經由所述至少一個收發機,基於所述UE已經從所述第一TRP的所述覆蓋區域移動到所述第二TRP的所述覆蓋區域,從所述網路實體接收用於所述定位過程的更新的定位輔助資料;並經由所述至少一個收發機,向所述UE發送傳呼訊息,所述傳呼訊息向所述UE指示所述更新的定位輔助資料可用。
條款38、根據條款37所述的網路節點,其中,所述至少一個處理器進一步被配置為:經由所述至少一個收發機,在所述傳呼訊息的酬載中,向所述UE發送所述更新的定位輔助資料。
條款39、根據條款37所述的網路節點,其中,所述至少一個處理器進一步被配置為:經由所述至少一個收發機,在RRC釋放訊息中向所述UE發送所述更新的定位輔助資料。
條款40、根據條款37至39中的任何一項所述的網路節點,其中,所述至少一個處理器進一步被配置為:經由所述至少一個收發機,從所述網路實體接收對以下各項的指示:所述更新的定位輔助資料對其有效的小區組、區域、與所述更新的定位輔助資料相關聯的到期定時器、或其任意組合。
條款41、根據條款37至40中的任何一項所述的網路節點,其中:所述網路節點是基地台,並且所述網路實體是位置伺服器。
條款42、一種網路節點,包括:記憶體;至少一個收發機;以及通信地耦接到所述記憶體和所述至少一個收發機的至少一個處理器,所述至少一個處理器被配置為:經由所述至少一個收發機,從網路實體接收第一訊息,所述第一訊息指示用於可配置給用戶設備(UE)的多個定位輔助資料集中的每個定位輔助資料集的一個或多個有效性標準;決定所述UE已從第一發送接收點(TRP)的覆蓋區域移動到第二TRP的覆蓋區域,其中所述第二TRP的所述覆蓋區域滿足針對所述多個定位輔助資料集中的一個定位輔助資料集的所述一個或多個有效性標準;以及經由所述至少一個收發機,向所述UE發送第二訊息,所述第二訊息向所述UE指示所述定位輔助資料集可用。
條款43、根據條款42所述的網路節點,其中,所述第二訊息是傳呼訊息。
條款44、根據條款43所述的網路節點,其中,所述至少一個處理器進一步被配置為:經由所述至少一個收發機,在所述傳呼訊息的酬載中,向所述UE發送所述定位輔助資料集。
條款45、根據條款42所述的網路節點,其中,所述第二訊息是RRC釋放訊息。
條款46、根據條款42至45中的任何一項所述的網路節點,其中,所述至少一個處理器進一步被配置為:經由所述至少一個收發機,在RRC釋放訊息中,向所述UE發送所述定位輔助資料集。
條款47、根據條款42至46中的任何一項所述的網路節點,其中,所述一個或多個有效性標準包括:錨定基地台的識別符、區域、一個或多個小區識別符、或其任意組合。
條款48、根據條款42至47中的任何一項所述的網路節點,其中:所述網路節點是基地台,並且所述網路實體是位置伺服器。
條款49、一種網路節點包括:記憶體;至少一個收發機;以及通信地耦接到所述記憶體和所述至少一個收發機的至少一個處理器,所述至少一個處理器被配置為:經由所述至少一個收發機,從網路實體接收針對在無線電資源控制(RRC)非活動狀態或在RRC閒置狀態下操作並參與定位過程的用戶設備(UE)的更新的定位輔助資料;以及經由所述至少一個收發機,向所述UE發送所述更新的定位輔助資料,以使所述UE執行所述定位過程。
條款50、根據條款49所述的網路節點,其中,所述至少一個處理器進一步被配置為:經由所述至少一個收發機,從所述UE接收事件報告訊息,其中所述事件報告訊息指示所述UE已接收到執行所述定位過程的請求;以及將所述事件報告訊息轉發給所述網路實體,其中響應於所述事件報告訊息而接收所述更新的定位輔助資料。
條款51、根據條款49至50中的任何一項所述的網路節點,其中,所述更新的定位輔助資料是在RRC釋放訊息中發送的。
條款52、根據條款49至50中的任何一項所述的網路節點,其中,所述更新的定位輔助資料是在隨機存取過程的最終訊息中發送的。
條款53、根據條款49至52中的任何一項所述的網路節點,其中:所述網路節點是用於所述UE的錨定基地台,並且所述網路實體是位置伺服器。
條款54、一種用戶設備(UE)包括:記憶體;至少一個收發機;以及通信地耦接到所述記憶體和所述至少一個收發機的至少一個處理器,所述至少一個處理器被配置為:經由所述至少一個收發機,在無線電資源控制(RRC)非活動狀態或在RRC閒置狀態下操作時,向第一網路節點發送RRC恢復請求,所述RRC恢復請求包括用於指示所述UE是否需要更新的定位輔助資料進行定位過程的一個或多個標準;以及經由所述至少一個收發機,從第二網路節點接收所述更新的定位輔助資料。
條款55、根據條款54所述的UE,其中,所述一個或多個標準包括:指示所述UE需要新的定位輔助資料的標誌、所述UE在其當前位置偵測到的一個或多個小區識別符、與所述UE當前用於所述定位過程的定位輔助資料相關聯的識別符、與所述UE當前用於所述定位過程的所述定位輔助資料相關聯的時間戳、所述UE當前用於所述定位過程的所述定位輔助資料中的參考發送接收點(TRP)的測量品質、或其任意組合。
條款56、根據條款55所述的UE,其中,所述至少一個處理器進一步被配置為:經由所述至少一個收發機,在處於RRC連接狀態時,接收所述UE當前用於所述定位過程的所述定位輔助資料。
條款57、根據條款54至56中的任何一項所述的UE,其中,所述RRC恢復請求包括指示所述UE已經接收到執行所述定位過程的請求的事件報告訊息。
條款58、根據條款54至57中的任何一項所述的UE,其中:所述第一網路節點是所述UE的服務基地台,並且所述第二網路節點是用於所述UE的錨定基地台。
條款59、根據條款54至58中的任何一項所述的UE,其中,所述第一網路節點和所述第二網路節點是相同的網路節點。
條款60、根據條款54至59中的任何一項所述的UE,其中,所述至少一個處理器進一步被配置為:在處於所述RRC非活動狀態或所述RRC閒置狀態時,基於所述更新的定位輔助資料來執行下行鏈路定位參考信號(PRS)的定位測量。
條款61、一種網路實體包括:用於從在無線電資源控制(RRC)非活動狀態或在RRC閒置狀態下操作的用戶設備(UE)的基地台接收事件報告訊息的構件,其中所述事件報告訊息指示所述UE已接收到執行定位過程的請求;以及用於基於決定所述UE將從用於所述定位過程的更新的定位輔助資料中受益,向所述基地台發送所述更新的定位輔助資料,以使所述基地台能夠向所述UE發送所述更新的定位輔助資料的構件。
條款62、根據條款61所述的網路實體,其中,所述更新的定位輔助資料包括:新的定位輔助資料、對先前配置給所述UE的定位輔助資料的重新優先級排序、或其任意組合。
條款63、根據條款61至62中的任何一項所述的網路實體,其中,決定所述UE將從更新的定位輔助資料中受益是基於:先前配置給所述UE的定位輔助資料與所述事件報告訊息中的資訊的比較。
條款64、根據條款63所述的網路實體,其中,所述事件報告訊息中的所述資訊至少包括與所述基地台相關聯的小區識別符。
條款65、根據條款61至64中的任何一項所述的網路實體,其中:所述基地台是用於所述UE的錨定基地台,並且決定所述UE將從更新的定位輔助資料中受益是基於:先前配置給所述UE的定位輔助資料與基於所述UE處於所述錨定基地台的覆蓋區域中而將提供給所述UE的定位輔助資料的比較。
條款66、根據條款61至65中的任何一項所述的網路實體,其中,所述網路實體是位置伺服器。
條款67、一種網路節點包括:用於向網路實體發送訊息的構件,所述訊息指示在無線電資源控制(RRC)非活動狀態或在RRC閒置狀態下操作並參與定位過程的用戶設備(UE)已經從第一發送接收點(TRP)的覆蓋區域移動到第二TRP的覆蓋區域;用於基於所述UE已經從所述第一TRP的所述覆蓋區域移動到所述第二TRP的所述覆蓋區域,從所述網路實體接收用於所述定位過程的更新的定位輔助資料的構件;用於向所述UE發送傳呼訊息,所述傳呼訊息向所述UE指示所述更新的定位輔助資料可用的構件。
條款68、根據條款67所述的網路節點,還包括:用於在所述傳呼訊息的酬載中,向所述UE發送所述更新的定位輔助資料的構件。
條款69、根據條款67所述的網路節點,還包括:用於在RRC釋放訊息中向所述UE發送所述更新的定位輔助資料的構件。
條款70、根據條款67至69中的任何一項所述的網路節點,還包括:用於從所述網路實體接收對以下各項的指示的構件:所述更新的定位輔助資料對其有效的小區組、區域、與所述更新的定位輔助資料相關聯的到期定時器、或其任意組合。
條款71、根據條款67至70中的任何一項所述的網路節點,其中:所述網路節點是基地台,並且所述網路實體是位置伺服器。
條款72、一種網路節點包括:用於從網路實體接收第一訊息的構件,所述第一訊息指示用於可配置給用戶設備(UE)的多個定位輔助資料集中的每個定位輔助資料集的一個或多個有效性標準;用於決定所述UE已從第一發送接收點(TRP)的覆蓋區域移動到第二TRP的覆蓋區域的構件,其中所述第二TRP的所述覆蓋區域滿足針對所述多個定位輔助資料集中的一個定位輔助資料集的所述一個或多個有效性標準;以及用於向所述UE發送第二訊息,所述第二訊息向所述UE指示所述定位輔助資料集可用的構件。
條款73、根據條款72所述的網路節點,其中,所述第二訊息是傳呼訊息。
條款74、根據條款73所述的網路節點,還包括:用於在所述傳呼訊息的酬載中,向所述UE發送所述定位輔助資料集的構件。
條款75、根據條款72所述的網路節點,其中,所述第二訊息是RRC釋放訊息。
條款76、根據條款72至75中的任何一項所述的網路節點,還包括:用於在RRC釋放訊息中,向所述UE發送所述定位輔助資料集的構件。
條款77、根據條款72至76中的任何一項所述的網路節點,其中,所述一個或多個有效性標準包括:錨定基地台的識別符、區域、一個或多個小區識別符、或其任意組合。
條款78、根據條款72至77中的任何一項所述的網路節點,其中:所述網路節點是基地台,並且所述網路實體是位置伺服器。
條款79、一種網路節點包括:用於從網路實體接收針對在無線電資源控制(RRC)非活動狀態或在RRC閒置狀態下操作並參與定位過程的用戶設備(UE)的更新的定位輔助資料的構件;以及用於向所述UE發送所述更新的定位輔助資料,以使所述UE執行所述定位過程的構件。
條款80、根據條款79所述的網路節點,還包括:用於從所述UE接收事件報告訊息的構件,其中所述事件報告訊息指示所述UE已接收到執行所述定位過程的請求;以及用於將所述事件報告訊息轉發給所述網路實體的構件,其中響應於所述事件報告訊息而接收所述更新的定位輔助資料。
條款81、根據條款79至80中的任何一項所述的網路節點,其中,所述更新的定位輔助資料是在RRC釋放訊息中發送的。
條款82、根據條款79至80中的任何一項所述的網路節點,其中,所述更新的定位輔助資料是在隨機存取過程的最終訊息中發送的。
條款83、根據條款79至82中的任何一項所述的網路節點,其中:所述網路節點是用於所述UE的錨定基地台,並且所述網路實體是位置伺服器。
條款84、一種用戶設備(UE)包括:用於在無線電資源控制(RRC)非活動狀態或在RRC閒置狀態下操作時,向第一網路節點發送RRC恢復請求的構件,所述RRC恢復請求包括用於指示所述UE是否需要更新的定位輔助資料進行定位過程的一個或多個標準;以及用於從第二網路節點接收所述更新的定位輔助資料的構件。
條款85、根據條款84所述的UE,其中,所述一個或多個標準包括:指示所述UE需要新的定位輔助資料的標誌、所述UE在其當前位置偵測到的一個或多個小區識別符、與所述UE當前用於所述定位過程的定位輔助資料相關聯的識別符、與所述UE當前用於所述定位過程的所述定位輔助資料相關聯的時間戳、所述UE當前用於所述定位過程的所述定位輔助資料中的參考發送接收點(TRP)的測量品質、或其任意組合。
條款86、根據條款85所述的UE,還包括:用於在處於RRC連接狀態時,接收所述UE當前用於所述定位過程的所述定位輔助資料的構件。
條款87、根據條款84至86中的任何一項所述的UE,其中,所述RRC恢復請求包括指示所述UE已經接收到執行所述定位過程的請求的事件報告訊息。
條款88、根據條款84至87中的任何一項所述的UE,其中:所述第一網路節點是所述UE的服務基地台,並且所述第二網路節點是用於所述UE的錨定基地台。
條款89、根據條款84至88中的任何一項所述的UE,其中,所述第一網路節點和所述第二網路節點是相同的網路節點。
條款90、根據條款84至89中的任何一項所述的UE,還包括:用於在處於所述RRC非活動狀態或所述RRC閒置狀態時,基於所述更新的定位輔助資料來執行下行鏈路定位參考信號(PRS)的定位測量的構件。
條款91、一種非暫時性計算機可讀媒體,其儲存計算機可執行指令,當所述計算機可執行指令被網路實體執行時,使得所述網路實體進行以下操作:從在無線電資源控制(RRC)非活動狀態或在RRC閒置狀態下操作的用戶設備(UE)的基地台接收事件報告訊息,其中所述事件報告訊息指示所述UE已接收到執行定位過程的請求;以及基於決定所述UE將從用於所述定位過程的更新的定位輔助資料中受益,向所述基地台發送所述更新的定位輔助資料,以使所述基地台能夠向所述UE發送所述更新的定位輔助資料。
條款92、根據條款91所述的非暫時性計算機可讀媒體,其中,所述更新的定位輔助資料包括:新的定位輔助資料、對先前配置給所述UE的定位輔助資料的重新優先級排序、或其任意組合。
條款93、根據條款91至92中的任何一項所述的非暫時性計算機可讀媒體,其中,決定所述UE將從更新的定位輔助資料中受益是基於:先前配置給所述UE的定位輔助資料與所述事件報告訊息中的資訊的比較。
條款94、根據條款93所述的非暫時性計算機可讀媒體,其中,所述事件報告訊息中的所述資訊至少包括與所述基地台相關聯的小區識別符。
條款95、根據條款91至94中的任何一項所述的非暫時性計算機可讀媒體,其中:所述基地台是用於所述UE的錨定基地台,並且決定所述UE將從更新的定位輔助資料中受益是基於:先前配置給所述UE的定位輔助資料與基於所述UE處於所述錨定基地台的覆蓋區域中而將提供給所述UE的定位輔助資料的比較。
條款96、根據條款91至95中的任何一項所述的非暫時性計算機可讀媒體,其中,所述網路實體是位置伺服器。
條款97、一種非暫時性計算機可讀媒體,其儲存計算機可執行指令,當所述計算機可執行指令被網路節點執行時,使得所述網路節點進行以下操作:向網路實體發送訊息,所述訊息指示在無線電資源控制(RRC)非活動狀態或在RRC閒置狀態下操作並參與定位過程的用戶設備(UE)已經從第一發送接收點(TRP)的覆蓋區域移動到第二TRP的覆蓋區域;基於所述UE已經從所述第一TRP的所述覆蓋區域移動到所述第二TRP的所述覆蓋區域,從所述網路實體接收用於所述定位過程的更新的定位輔助資料;以及向所述UE發送傳呼訊息,所述傳呼訊息向所述UE指示所述更新的定位輔助資料可用。
條款98、根據條款97所述的非暫時性計算機可讀媒體,還包括當被所述網路節點執行時,使得所述網路節點執行以下操作的計算機可執行指令:在所述傳呼訊息的酬載中,向所述UE發送所述更新的定位輔助資料。
條款99、根據條款97所述的非暫時性計算機可讀媒體,還包括當被所述網路節點執行時,使得所述網路節點執行以下操作的計算機可執行指令:在RRC釋放訊息中向所述UE發送所述更新的定位輔助資料。
條款100、根據條款97至99中的任何一項所述的非暫時性計算機可讀媒體,還包括當被所述網路節點執行時,使得所述網路節點執行以下操作的計算機可執行指令:從所述網路實體接收對以下各項的指示:所述更新的定位輔助資料對其有效的小區組、區域、與所述更新的定位輔助資料相關聯的到期定時器、或其任意組合。
條款101、根據條款97至100中的任何一項所述的非暫時性計算機可讀媒體,其中:所述網路節點是基地台,並且所述網路實體是位置伺服器。
條款102、一種非暫時性計算機可讀媒體,其儲存計算機可執行指令,當所述計算機可執行指令被網路節點執行時,使得所述網路節點進行以下操作:從網路實體接收第一訊息,所述第一訊息指示用於可配置給用戶設備(UE)的多個定位輔助資料集中的每個定位輔助資料集的一個或多個有效性標準;決定所述UE已從第一發送接收點(TRP)的覆蓋區域移動到第二TRP的覆蓋區域,其中所述第二TRP的所述覆蓋區域滿足針對所述多個定位輔助資料集中的一個定位輔助資料集的所述一個或多個有效性標準;以及向所述UE發送第二訊息,所述第二訊息向所述UE指示所述定位輔助資料集可用。
條款103、根據條款102所述的非暫時性計算機可讀媒體,其中,所述第二訊息是傳呼訊息。
條款104、根據條款103所述的非暫時性計算機可讀媒體,還包括當被所述網路節點執行時,使得所述網路節點進行以下操作的計算機可執行指令:在所述傳呼訊息的酬載中,向所述UE發送所述定位輔助資料集。
條款105、根據條款102所述的非暫時性計算機可讀媒體,其中,所述第二訊息是RRC釋放訊息。
條款106、根據條款102至105中的任何一項所述的非暫時性計算機可讀媒體,還包括當被所述網路節點執行時,使得所述網路節點進行以下操作的計算機可執行指令:在RRC釋放訊息中,向所述UE發送所述定位輔助資料集。
條款107、根據條款102至106中的任何一項所述的非暫時性計算機可讀媒體,其中,所述一個或多個有效性標準包括:錨定基地台的識別符、區域、一個或多個小區識別符、或其任意組合。
條款108、根據條款102至107中的任何一項所述的非暫時性計算機可讀媒體,其中:所述網路節點是基地台,並且所述網路實體是位置伺服器。
條款109、一種非暫時性計算機可讀媒體,其儲存計算機可執行指令,當所述計算機可執行指令被網路節點執行時,使得所述網路節點進行以下操作:從網路實體接收針對在無線電資源控制(RRC)非活動狀態或在RRC閒置狀態下操作並參與定位過程的用戶設備(UE)的更新的定位輔助資料;以及向所述UE發送所述更新的定位輔助資料,以使所述UE執行所述定位過程。
條款110、根據條款109所述的非暫時性計算機可讀媒體,還包括當被所述網路節點執行時,使得所述網路節點執行以下操作的計算機可執行指令:從所述UE接收事件報告訊息,其中所述事件報告訊息指示所述UE已接收到執行所述定位過程的請求;以及將所述事件報告訊息轉發給所述網路實體,其中響應於所述事件報告訊息而接收所述更新的定位輔助資料。
條款111、根據條款109至110中的任何一項所述的非暫時性計算機可讀媒體,其中,所述更新的定位輔助資料是在RRC釋放訊息中發送的。
條款112、根據條款109至110中的任何一項所述的非暫時性計算機可讀媒體,其中,所述更新的定位輔助資料是在隨機存取過程的最終訊息中發送的。
條款113、根據條款109至112中的任何一項所述的非暫時性計算機可讀媒體,其中:所述網路節點是用於所述UE的錨定基地台,並且所述網路實體是位置伺服器。
條款114、一種非暫時性計算機可讀媒體,其儲存計算機可執行指令,當所述計算機可執行指令被用戶設備(UE)執行時,使得所述UE進行以下操作:在無線電資源控制(RRC)非活動狀態或在RRC閒置狀態下操作時,向第一網路節點發送RRC恢復請求,所述RRC恢復請求包括用於指示所述UE是否需要更新的定位輔助資料進行定位過程的一個或多個標準;以及從第二網路節點接收所述更新的定位輔助資料。
條款115、根據條款114所述的非暫時性計算機可讀媒體,其中,所述一個或多個標準包括:指示所述UE需要新的定位輔助資料的標誌,所述UE在其當前位置偵測到的一個或多個小區識別符,與所述UE當前用於所述定位過程的定位輔助資料相關聯的識別符,與所述UE當前用於所述定位過程的所述定位輔助資料相關聯的時間戳,所述UE當前用於所述定位過程的所述定位輔助資料中的參考發送接收點(TRP)的測量品質,或其任意組合。
條款116、根據條款115所述的非暫時性計算機可讀媒體,還包括當被所述UE執行時,使得所述UE進行以下操作的計算機可執行指令:在處於RRC連接狀態時,接收所述UE當前用於所述定位過程的所述定位輔助資料。
條款117、根據條款114至116中的任何一項所述的非暫時性計算機可讀媒體,其中,所述RRC恢復請求包括指示所述UE已經接收到執行所述定位過程的請求的事件報告訊息。
條款118、根據條款114至117中的任何一項所述的非暫時性計算機可讀媒體,其中:所述第一網路節點是所述UE的服務基地台,並且所述第二網路節點是用於所述UE的錨定基地台。
條款119、根據條款114至118中的任何一項所述的非暫時性計算機可讀媒體,其中,所述第一網路節點和所述第二網路節點是相同的網路節點。
條款120、根據條款114至119中的任何一項所述的非暫時性計算機可讀媒體,還包括當被所述UE執行時,使得所述UE進行以下操作的計算機可執行指令:在處於所述RRC非活動狀態或所述RRC閒置狀態時,基於所述更新的定位輔助資料來執行下行鏈路定位參考信號(PRS)的定位測量。
本領域技術人員將明白的是,資訊和信號可以使用多種不同的技術和方法中的任何一種來表示。例如,可能貫穿以上描述所提及的資料、指令、命令、資訊、信號、位元、符號和碼片可以由電壓、電流、電磁波、磁場或粒子、光場或粒子或其任意組合來表示。
此外,本領域技術人員將明白的是,結合本文所公開的方面描述的各種說明性的邏輯方塊、模組、電路和演算法步驟可以實現為電子硬體、計算機軟體或兩者的組合。為了清楚地說明硬體和軟體的這種可互換性,上文已經圍繞各種說明性的組件、方塊、模組、電路和步驟的功能,對它們進行了總體描述。至於這樣的功能是實現為硬體還是軟體,取決於特定的應用以及施加在整個系統上的設計約束。熟練的技術人員可以針對每個特定的應用,以變通的方式來實現所描述的功能,但是這樣的實現決策不應當被解釋為導致脫離本公開內容的範圍。
結合本文公開的各方面所描述的各種說明性的邏輯方塊、模組和電路可以利用被設計成執行本文所描述的功能的通用處理器、數位信號處理器(DSP)、ASIC、現場可程式化閘陣列(FPGA)或其它可程式化邏輯器件、離散閘或電晶體邏輯、離散硬體組件、或其任意組合來實現或執行。通用處理器可以是微處理器,但是在替代方案中,處理器可以是任何常規處理器、控制器、微控制器或狀態機。處理器還可以實現為計算設備的組合(例如,DSP與微處理器的組合、多個微處理器、一個或多個微處理器結合DSP核、或任何其它這樣的配置)。
結合本文公開的各方面描述的方法、序列和/或演算法可以直接地體現在硬體中、由處理器執行的軟體模組中、或者兩者的組合中。軟體模組可以位於隨機存取記憶體(RAM)、快閃記憶體、唯讀記憶體(ROM)、可擦除可程式化ROM(EPROM)、電可擦除可程式化ROM(EEPROM)、暫存器、硬碟、可移動碟、CD-ROM或者本領域已知的任何其它形式的儲存媒體中。示例儲存媒體耦接到處理器,以使處理器可以從儲存媒體讀取資訊,以及向儲存媒體寫入資訊。在替代的方式中,儲存媒體可以是處理器的組成部分。處理器和儲存媒體可以位於ASIC中。ASIC可以位於用戶終端(例如,UE)中。在替代的方式中,處理器和儲存媒體可以作為用戶設備中的離散組件存在的。
在一個或多個示例方面中,所描述的功能可以用硬體、軟體、韌體或其任意組合來實現。如果用軟體來實現,則所述功能可以作為一個或多個指令或碼儲存在計算機可讀媒體上或者透過其進行發送。計算機可讀媒體可以包括計算機儲存媒體和通信媒體兩者,所述通信媒體包括促進計算機程式從一個地方傳送到另一地方的任何媒體。儲存媒體可以是可由計算機存取的任何可用的媒體。透過舉例而非限制性的方式,這樣的計算機可讀媒體可以包括RAM、ROM、EEPROM、CD-ROM或其它光碟儲存、磁碟儲存或其它磁儲存設備、或者可以用於以指令或資料結構的形式攜帶或儲存期望的程式碼以及可以由計算機存取的任何其它媒體。此外,任何連接被適當地稱為計算機可讀媒體。例如,如果使用同軸電纜、光纖光纜、雙絞線、數位用戶線(DSL)或無線技術(諸如紅外線、無線電和微波)從網站、伺服器或其它遠程來源發送軟體,則同軸電纜、光纖光纜、雙絞線、DSL或無線技術(諸如紅外線、無線電和微波)被包括在媒體的定義中。如在本文中使用的,磁碟和光碟包括壓縮光碟(CD)、雷射光碟、光碟、數位多功能光碟(DVD)、軟碟和藍光光碟,其中磁碟通常磁性地複製資料,而光碟利用雷射來光學地複製資料。上述的組合也應當包括在計算機可讀媒體的範圍內。
雖然前面的公開內容示出了本公開內容的說明性方面,但是應當注意的是,在不脫離由所附申請專利範圍所限定的本公開內容的範圍的情況下,可以在本文中進行各種改變和修改。根據本文所描述的公開內容的各方面的方法請求項的功能、步驟和/或動作不需要以任何特定次序執行。此外,儘管可能以單數形式描述或要求保護本公開內容的各元素,但是複數形式是可預期的,除非明確地聲明限於單數形式。
100:無線通信系統 102:基地台 102’:基地台 104:UE 110:地理覆蓋區域 110’:地理覆蓋區域 112:太空載具 120:通信鏈路 122:回程鏈路 124:信號 134:回程鏈路 150:無線區域網路(WLAN)存取點(AP) 152:WLAN站(STA) 154:通信鏈路 164:UE 170:核心網路 172:位置伺服器 180:毫米波(mmW)基地台 182:UE 184:mmW通信鏈路 190:UE 192:D2D P2P鏈路 194:D2D P2P鏈路 200:無線網路結構 204:UE 210:5GC 212:用戶平面(U平面)功能 213:用戶平面介面(NG-U) 214:控制平面功能 215:控制平面介面(NG-C) 220:下一代RAN(ng-RAN) 222:gNB 223:回程連接 224:ng-eNB 226:gNB中央單元(gNB-CU) 228:gNB分布式單元(gNB-DU) 230:位置伺服器 232:介面 250:無線網路結構 260:5GC 262:用戶平面功能(UPF) 263:用戶平面介面 264:存取和行動性管理功能(AMF) 265:控制平面介面 266:對話管理功能(SMF) 270:位置管理功能(LMF) 272:SLP 274:第三方伺服器 302:UE 304:基地台 306:網路實體 310:無線廣域網路(WWAN)收發器 312:接收器 314:發送器 320:短程無線收發器 322:接收器 324:發送器 326:天線 328:信號 330:衛星信號接收器 332:處理器 334:資料匯流排 336:天線 338:衛星定位/通信信號 340:記憶體 342:定位組件 344:感測器 346:用戶介面 350:無線廣域網路(WWAN)收發器 352:接收器 354:發送器 356:天線 358:信號 360:短程無線收發器 362:接收器 364:發送器 366:天線 368:信號 370:衛星信號接收器 376:天線 378:衛星定位/通信信號 380:網路收發器 382:資料匯流排 384:處理器 386:記憶體 388:定位組件 390:網路收發器 392:資料匯流排 394:處理器 396:記憶體 398:定位組件 400:示意圖 450:示意圖 500:長期演進(LTE)定位協定(LPP)過程 502:服務gNB 504:UE 510:階段 520:階段 530:階段 540:階段 550:階段 560:階段 600:示意圖 610:RRC閒置狀態 620:RRC連接狀態 630:RRC非活動狀態 700:四步隨機存取過程 702:UE 704:UE 710:階段 720:階段 730:階段 740:階段 800:兩步隨機存取過程 802:基地台 804:UE 810:階段 820:階段 900:定位過程 1000:定位過程 1100:方法 1110:操作 1120:操作 1200:方法 1210:操作 1220:操作 1230:操作 1300:方法 1310:操作 1320:操作 1330:操作 1400:方法 1410:操作 1420:操作 1500:方法 1510:操作 1520:操作
給出圖式以幫助描述本公開內容的各個方面,以及提供圖式只是用於描繪這些方面,而不是對其進行限制。
圖1示出根據本公開內容的各方面的一種示例無線通信系統。
圖2A和圖2B示出根據本公開內容的各方面的示例無線網路結構。
圖3A、3B和3C是可以分別在用戶設備(UE)、基地台和網路實體中採用並且被配置為支援如本文所教示的通信的組件的一些示例方面的簡化方塊方塊圖。
圖4A是示出根據本公開內容的各方面的示例幀結構的示意圖。
圖4B是示出根據本公開內容的各方面的示例下行鏈路時隙內的各種下行鏈路信道的示意圖。
圖5示出了用於執行定位操作的UE和位置伺服器之間的示例長期演進(LTE)定位協定(LPP)呼叫流。
圖6示出根據本公開內容的各方面的可用於新無線電(NR)的不同無線電資源控制(RRC)狀態。
圖7示出了根據本公開內容的各方面的示例四步隨機存取過程。
圖8示出了根據本公開內容的各方面的示例兩步隨機存取過程。
圖9A和圖9B示出根據本公開內容的各方面的用於處於RRC非活動狀態的UE的示例基於下行鏈路和上行鏈路的定位過程。
圖10A和圖10B示出根據本公開內容的各方面的用於處於RRC非活動狀態的UE的示例基於下行鏈路的定位過程。
圖11至圖15示出根據本公開內容的各方面的定位的示例方法。
1100:方法
1110:操作
1120:操作

Claims (60)

  1. 一種由網路實體執行的定位的方法,包括: 從在無線電資源控制(RRC)非活動狀態或在RRC閒置狀態下操作的用戶設備(UE)的基地台接收事件報告訊息,所述事件報告訊息指示所述UE已接收到執行定位過程的請求;以及 基於決定所述UE將從用於所述定位過程的更新的定位輔助資料中受益,向所述基地台發送所述更新的定位輔助資料,以使得所述基地台能夠向所述UE發送所述更新的定位輔助資料。
  2. 根據請求項1所述的方法,其中,所述更新的定位輔助資料包括: 新的定位輔助資料, 對先前配置給所述UE的定位輔助資料的重新優先級排序,或 其任意組合。
  3. 根據請求項1所述的方法,其中,決定所述UE將從更新的定位輔助資料中受益是基於:先前配置給所述UE的定位輔助資料與所述事件報告訊息中的資訊的比較。
  4. 根據請求項3所述的方法,其中,所述事件報告訊息中的所述資訊至少包括與所述基地台相關聯的小區識別符。
  5. 根據請求項1所述的方法,其中: 所述基地台是用於所述UE的錨定基地台,以及 決定所述UE將從更新的定位輔助資料中受益是基於:先前配置給所述UE的定位輔助資料與基於所述UE處於所述錨定基地台的覆蓋區域中而將提供給所述UE的定位輔助資料的比較。
  6. 根據請求項1所述的方法,其中,所述網路實體是位置伺服器。
  7. 一種由網路節點執行的定位的方法,包括: 向網路實體發送訊息,所述訊息指示在無線電資源控制(RRC)非活動狀態或在RRC閒置狀態下操作並參與定位過程的用戶設備(UE)已經從第一發送接收點(TRP)的覆蓋區域移動到第二TRP的覆蓋區域; 基於所述UE已經從所述第一TRP的所述覆蓋區域移動到所述第二TRP的所述覆蓋區域,從所述網路實體接收用於所述定位過程的更新的定位輔助資料;以及 向所述UE發送傳呼訊息,所述傳呼訊息向所述UE指示所述更新的定位輔助資料可用。
  8. 根據請求項7所述的方法,還包括: 在所述傳呼訊息的酬載中,向所述UE發送所述更新的定位輔助資料。
  9. 根據請求項7所述的方法,還包括: 在RRC釋放訊息中向所述UE發送所述更新的定位輔助資料。
  10. 根據請求項7所述的方法,還包括: 從所述網路實體接收對以下各項的指示:所述更新的定位輔助資料對其有效的小區組、區域、與所述更新的定位輔助資料相關聯的到期定時器、或其任意組合。
  11. 根據請求項7所述的方法,其中: 所述網路節點是基地台,並且 所述網路實體是位置伺服器。
  12. 一種由網路節點執行的定位方法,包括: 從網路實體接收第一訊息,所述第一訊息指示用於可配置給用戶設備(UE)的多個定位輔助資料集中的每個定位輔助資料集的一個或多個有效性標準; 決定所述UE已從第一發送接收點(TRP)的覆蓋區域移動到第二TRP的覆蓋區域,其中,所述第二TRP的所述覆蓋區域滿足針對所述多個定位輔助資料集中的一個定位輔助資料集的所述一個或多個有效性標準;以及 向所述UE發送第二訊息,所述第二訊息向所述UE指示所述定位輔助資料集可用。
  13. 根據請求項12所述的方法,其中,所述第二訊息是傳呼訊息。
  14. 根據請求項13所述的方法,還包括: 在所述傳呼訊息的酬載中,向所述UE發送所述定位輔助資料集。
  15. 根據請求項12所述的方法,其中,所述第二訊息是RRC釋放訊息。
  16. 根據請求項12所述的方法,還包括: 在RRC釋放訊息中,向所述UE發送所述定位輔助資料集。
  17. 根據請求項12所述的方法,其中,所述一個或多個有效性標準包括: 錨定基地台的識別符, 區域, 一個或多個小區識別符,或 其任意組合。
  18. 根據請求項12所述的方法,其中: 所述網路節點是基地台,並且 所述網路實體是位置伺服器。
  19. 一種由網路節點執行的定位方法,包括: 從網路實體接收針對在無線電資源控制(RRC)非活動狀態或在RRC閒置狀態下操作並參與定位過程的用戶設備(UE)的更新的定位輔助資料;以及 向所述UE發送所述更新的定位輔助資料,以使得所述UE能夠執行所述定位過程。
  20. 根據請求項19所述的方法,還包括: 從所述UE接收事件報告訊息,所述事件報告訊息指示所述UE已接收到執行所述定位過程的請求;以及 將所述事件報告訊息轉發給所述網路實體,其中,響應於所述事件報告訊息而接收所述更新的定位輔助資料。
  21. 根據請求項19所述的方法,其中,所述更新的定位輔助資料是在RRC釋放訊息中發送的。
  22. 根據請求項19所述的方法,其中,所述更新的定位輔助資料是在隨機存取過程的最終訊息中發送的。
  23. 根據請求項19所述的方法,其中: 所述網路節點是用於所述UE的錨定基地台,並且 所述網路實體是位置伺服器。
  24. 一種由用戶設備(UE)執行的無線定位的方法,包括: 在無線電資源控制(RRC)非活動狀態或在RRC閒置狀態下操作時,向第一網路節點發送RRC恢復請求,所述RRC恢復請求包括用於指示所述UE是否需要更新的定位輔助資料進行定位過程的一個或多個標準;以及 從第二網路節點接收所述更新的定位輔助資料。
  25. 根據請求項24所述的方法,其中,所述一個或多個標準包括: 指示所述UE需要新的定位輔助資料的標誌, 所述UE已經在其當前位置偵測到的一個或多個小區識別符, 與所述UE當前用於所述定位過程的定位輔助資料相關聯的識別符, 與所述UE當前用於所述定位過程的所述定位輔助資料相關聯的時間戳, 所述UE當前用於所述定位過程的所述定位輔助資料中的參考發送接收點(TRP)的測量品質,或 其任意組合。
  26. 根據請求項25所述的方法,還包括: 在處於RRC連接狀態時,接收所述UE當前用於所述定位過程的所述定位輔助資料。
  27. 根據請求項24所述的方法,其中,所述RRC恢復請求包括指示所述UE已經接收到執行所述定位過程的請求的事件報告訊息。
  28. 根據請求項24所述的方法,其中: 所述第一網路節點是所述UE的服務基地台,並且 所述第二網路節點是用於所述UE的錨定基地台。
  29. 根據請求項24所述的方法,其中,所述第一網路節點和所述第二網路節點是相同的網路節點。
  30. 根據請求項24所述的方法,還包括: 在處於所述RRC非活動狀態或所述RRC閒置狀態時,基於所述更新的定位輔助資料來執行下行鏈路定位參考信號(PRS)的定位測量。
  31. 一種網路實體,包括: 記憶體; 至少一個收發機;以及 通信地耦接到所述記憶體和所述至少一個收發機的至少一個處理器,所述至少一個處理器被配置為進行以下操作: 經由所述至少一個收發機,從在無線電資源控制(RRC)非活動狀態或在RRC閒置狀態下操作的用戶設備(UE)的基地台接收事件報告訊息,所述事件報告訊息指示所述UE已接收到執行定位過程的請求;以及 經由所述至少一個收發機,基於決定所述UE將從用於所述定位過程的更新的定位輔助資料中受益,向所述基地台發送所述更新的定位輔助資料,以使得所述基地台能夠向所述UE發送所述更新的定位輔助資料。
  32. 根據請求項31所述的網路實體,其中,所述更新的定位輔助資料包括: 新的定位輔助資料, 對先前配置給所述UE的定位輔助資料的重新優先級排序,或 其任意組合。
  33. 根據請求項31所述的網路實體,其中,決定所述UE將從更新的定位輔助資料中受益是基於:先前配置給所述UE的定位輔助資料與所述事件報告訊息中的資訊的比較。
  34. 根據請求項33所述的網路實體,其中,所述事件報告訊息中的所述資訊至少包括與所述基地台相關聯的小區識別符。
  35. 根據請求項31所述的網路實體,其中: 所述基地台是用於所述UE的錨定基地台,以及 決定所述UE將從更新的定位輔助資料中受益是基於:先前配置給所述UE的定位輔助資料與基於所述UE處於所述錨定基地台的覆蓋區域中而將提供給所述UE的定位輔助資料的比較。
  36. 根據請求項31所述的網路實體,其中,所述網路實體是位置伺服器。
  37. 一種網路節點,包括: 記憶體; 至少一個收發機;以及 通信地耦接到所述記憶體和所述至少一個收發機的至少一個處理器,所述至少一個處理器被配置為進行以下操作: 經由所述至少一個收發機,向網路實體發送訊息,所述訊息指示在無線電資源控制(RRC)非活動狀態或在RRC閒置狀態下操作並參與定位過程的用戶設備(UE)已經從第一發送接收點(TRP)的覆蓋區域移動到第二TRP的覆蓋區域; 經由所述至少一個收發機,基於所述UE已經從所述第一TRP的所述覆蓋區域移動到所述第二TRP的所述覆蓋區域,從所述網路實體接收用於所述定位過程的更新的定位輔助資料;以及 經由所述至少一個收發機,向所述UE發送傳呼訊息,所述傳呼訊息向所述UE指示所述更新的定位輔助資料可用。
  38. 根據請求項37所述的網路節點,其中,所述至少一個處理器還被配置為: 經由所述至少一個收發機,在所述傳呼訊息的酬載中,向所述UE發送所述更新的定位輔助資料。
  39. 根據請求項37所述的網路節點,其中,所述至少一個處理器還被配置為: 經由所述至少一個收發機,在RRC釋放訊息中向所述UE發送所述更新的定位輔助資料。
  40. 根據請求項37所述的網路節點,其中,所述至少一個處理器還被配置為: 經由所述至少一個收發機,從所述網路實體接收對以下各項的指示:所述更新的定位輔助資料對其有效的小區組、區域、與所述更新的定位輔助資料相關聯的到期定時器、或其任意組合。
  41. 根據請求項37所述的網路節點,其中: 所述網路節點是基地台,並且 所述網路實體是位置伺服器。
  42. 一種網路節點,包括: 記憶體; 至少一個收發機;以及 通信地耦接到所述記憶體和所述至少一個收發機的至少一個處理器,所述至少一個處理器被配置為進行以下操作: 經由所述至少一個收發機,從網路實體接收第一訊息,所述第一訊息指示用於可配置給用戶設備(UE)的多個定位輔助資料集中的每個定位輔助資料集的一個或多個有效性標準; 決定所述UE已從第一發送接收點(TRP)的覆蓋區域移動到第二TRP的覆蓋區域,其中,所述第二TRP的所述覆蓋區域滿足針對所述多個定位輔助資料集中的一個定位輔助資料集的所述一個或多個有效性標準;以及 經由所述至少一個收發機,向所述UE發送第二訊息,所述第二訊息向所述UE指示所述定位輔助資料集可用。
  43. 根據請求項42所述的網路節點,其中,所述第二訊息是傳呼訊息。
  44. 根據請求項43所述的網路節點,其中,所述至少一個處理器還被配置為: 經由所述至少一個收發機,在所述傳呼訊息的酬載中,向所述UE發送所述定位輔助資料集。
  45. 根據請求項42所述的網路節點,其中,所述第二訊息是RRC釋放訊息。
  46. 根據請求項42所述的網路節點,其中,所述至少一個處理器還被配置為: 經由所述至少一個收發機,在RRC釋放訊息中,向所述UE發送所述定位輔助資料集。
  47. 根據請求項42所述的網路節點,其中,所述一個或多個有效性標準包括: 錨定基地台的識別符, 區域, 一個或多個小區識別符,或 其任意組合。
  48. 根據請求項42所述的網路節點,其中: 所述網路節點是基地台,並且 所述網路實體是位置伺服器。
  49. 一種網路節點,包括: 記憶體; 至少一個收發機;以及 通信地耦接到所述記憶體和所述至少一個收發機的至少一個處理器,所述至少一個處理器被配置為進行以下操作: 經由所述至少一個收發機,從網路實體接收針對在無線電資源控制(RRC)非活動狀態或在RRC閒置狀態下操作並參與定位過程的用戶設備(UE)的更新的定位輔助資料;以及 經由所述至少一個收發機,向所述UE發送所述更新的定位輔助資料,以使得所述UE能夠執行所述定位過程。
  50. 根據請求項49所述的網路節點,其中,所述至少一個處理器還被配置為進行以下操作: 經由所述至少一個收發機,從所述UE接收事件報告訊息,所述事件報告訊息指示所述UE已接收到執行所述定位過程的請求;以及 將所述事件報告訊息轉發給所述網路實體,其中,響應於所述事件報告訊息而接收所述更新的定位輔助資料。
  51. 根據請求項49所述的網路節點,其中,所述更新的定位輔助資料是在RRC釋放訊息中發送的。
  52. 根據請求項49所述的網路節點,其中,所述更新的定位輔助資料是在隨機存取過程的最終訊息中發送的。
  53. 根據請求項49所述的網路節點,其中: 所述網路節點是用於所述UE的錨定基地台,並且 所述網路實體是位置伺服器。
  54. 一種用戶設備(UE),包括: 記憶體; 至少一個收發機;以及 通信地耦接到所述記憶體和所述至少一個收發機的至少一個處理器,所述至少一個處理器被配置為進行以下操作: 經由所述至少一個收發機,在無線電資源控制(RRC)非活動狀態或在RRC閒置狀態下操作時,向第一網路節點發送RRC恢復請求,所述RRC恢復請求包括用於指示所述UE是否需要更新的定位輔助資料進行定位過程的一個或多個標準;以及 經由所述至少一個收發機,從第二網路節點接收所述更新的定位輔助資料。
  55. 根據請求項54所述的UE,其中,所述一個或多個標準包括: 指示所述UE需要新的定位輔助資料的標誌, 所述UE在其當前位置偵測到的一個或多個小區識別符, 與所述UE當前用於所述定位過程的定位輔助資料相關聯的識別符, 與所述UE當前用於所述定位過程的所述定位輔助資料相關聯的時間戳, 所述UE當前用於所述定位過程的所述定位輔助資料中的參考發送接收點(TRP)的測量品質,或 其任意組合。
  56. 根據請求項55所述的UE,其中,所述至少一個處理器還被配置為: 經由所述至少一個收發機,在處於RRC連接狀態時,接收所述UE當前用於所述定位過程的所述定位輔助資料。
  57. 根據請求項54所述的UE,其中,所述RRC恢復請求包括指示所述UE已經接收到執行所述定位過程的請求的事件報告訊息。
  58. 根據請求項54所述的UE,其中: 所述第一網路節點是所述UE的服務基地台,並且 所述第二網路節點是用於所述UE的錨定基地台。
  59. 根據請求項54所述的UE,其中,所述第一網路節點和所述第二網路節點是相同的網路節點。
  60. 根據請求項54所述的UE,其中,所述至少一個處理器還被配置為: 在處於所述RRC非活動狀態或所述RRC閒置狀態時,基於所述更新的定位輔助資料來執行下行鏈路定位參考信號(PRS)的定位測量。
TW111129372A 2021-08-25 2022-08-04 無線電資源控制閒置或非活動狀態定位期間的輔助資料更新過程 TW202312763A (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
GR20210100571 2021-08-25
GR20210100571 2021-08-25
WOPCT/US22/74451 2022-08-03
PCT/US2022/074451 WO2023028413A2 (en) 2021-08-25 2022-08-03 Assistance data update procedures during radio resource control (rrc) idle or inactive state positioning

Publications (1)

Publication Number Publication Date
TW202312763A true TW202312763A (zh) 2023-03-16

Family

ID=83149585

Family Applications (1)

Application Number Title Priority Date Filing Date
TW111129372A TW202312763A (zh) 2021-08-25 2022-08-04 無線電資源控制閒置或非活動狀態定位期間的輔助資料更新過程

Country Status (4)

Country Link
KR (1) KR20240043144A (zh)
CN (1) CN117837232A (zh)
TW (1) TW202312763A (zh)
WO (1) WO2023028413A2 (zh)

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9220028B2 (en) * 2010-02-12 2015-12-22 Blackberry Limited Methods and apparatus to perform measurements

Also Published As

Publication number Publication date
CN117837232A (zh) 2024-04-05
KR20240043144A (ko) 2024-04-02
WO2023028413A3 (en) 2023-06-22
WO2023028413A2 (en) 2023-03-02

Similar Documents

Publication Publication Date Title
EP3912406B1 (en) Positioning using random access channel (rach)
JP2023536808A (ja) 基準信号時間差(rstd)測定のための測定期間公式化
CN115552995A (zh) 用于对物理下行链路信道执行的定位测量的传送接收点(trp)关联
CN116783984A (zh) 无线电资源控制(rrc)不活动和rrc空闲模式定位配置
JP2023521847A (ja) 測位基準信号(prs)バッファリング目的のためのダウンリンクprsシンボル持続時間の計算
TW202135544A (zh) 定位信令中的波束管理
TW202147889A (zh) 減少定位狀態資訊中報告測量和傳送接收點識別符的負擔
KR20220110734A (ko) Srs(sounding reference signal) 자원을 rach(random access channel)에 연관시키기 위한 절차
KR20230051176A (ko) 다수의 불연속 수신(multi-drx) 그룹들에 걸친 포지셔닝 기준 신호(prs) 번들링
TW202226877A (zh) 用於定位指示的隨機存取前導碼
CN117999489A (zh) 用于联合定位会话的基于非连续接收(drx)的锚用户装备(ue)选择
TW202306426A (zh) 用於未來時間的應需定位參考信號定位對話的請求
KR20240008850A (ko) 포지셔닝 전용 사용자 장비들(ues)의 지원
TW202228470A (zh) 無線電資源控制(rrc)非活動模式定位
TW202147870A (zh) 減少定位狀態資訊(psi)報告中的時間戳的開銷
US20240205872A1 (en) Configuration details for autonomous gaps for positioning
US11528629B1 (en) Bandwidth part (BWP) configuration for positioning in an inactive state
US20230319767A1 (en) User equipment (ue) positioning for radio resource control (rrc) idle and inactive state during a positioning session
TW202232976A (zh) 用於定位的無線電存取網路通知區域的配置
TW202312763A (zh) 無線電資源控制閒置或非活動狀態定位期間的輔助資料更新過程
KR20240088876A (ko) 포지셔닝 참조 신호 인스턴스의 타이밍에 기반한 페이징 어케이젼의 스케줄링
EP4393227A2 (en) Assistance data update procedures during radio resource control (rrc) idle or inactive state positioning
TW202224481A (zh) 用於定位的正交隨機存取信道前置碼序列
WO2023069823A1 (en) Scheduling of paging occasion based upon timing of positioning reference signal instance
WO2023132988A1 (en) Methods and apparatuses for determining positioning reference signal measurement period for user equipment in inactive state