TW202311556A - 選擇性鈍化及選擇性沉積 - Google Patents

選擇性鈍化及選擇性沉積 Download PDF

Info

Publication number
TW202311556A
TW202311556A TW111128044A TW111128044A TW202311556A TW 202311556 A TW202311556 A TW 202311556A TW 111128044 A TW111128044 A TW 111128044A TW 111128044 A TW111128044 A TW 111128044A TW 202311556 A TW202311556 A TW 202311556A
Authority
TW
Taiwan
Prior art keywords
layer
deposited
substrate
deposition
dielectric
Prior art date
Application number
TW111128044A
Other languages
English (en)
Inventor
簡 威廉 梅斯
麥可 尤金 吉芬斯
蘇維 P 豪卡
瓦蒙西 帕魯齊里
伊佛 約翰尼斯 雷馬克思
鄧少任
安德里亞 伊利貝里
伊娃 E 托伊斯
戴爾芬 隆吉
查理斯 德茲拉
馬可 托米寧
Original Assignee
荷蘭商Asm Ip私人控股有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US17/390,608 external-priority patent/US20210358745A1/en
Application filed by 荷蘭商Asm Ip私人控股有限公司 filed Critical 荷蘭商Asm Ip私人控股有限公司
Publication of TW202311556A publication Critical patent/TW202311556A/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/32Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers using masks
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/02Pretreatment of the material to be coated
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/04Coating on selected surface areas, e.g. using masks
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides
    • C23C16/403Oxides of aluminium, magnesium or beryllium
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]
    • C23C16/45553Atomic layer deposition [ALD] characterized by the use of precursors specially adapted for ALD
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02172Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides
    • H01L21/02175Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides characterised by the metal
    • H01L21/02178Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides characterised by the metal the material containing aluminium, e.g. Al2O3
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02205Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • H01L21/02263Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase
    • H01L21/02271Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition
    • H01L21/0228Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition deposition by cyclic CVD, e.g. ALD, ALE, pulsed CVD
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02296Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer
    • H01L21/02299Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer pre-treatment
    • H01L21/02312Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer pre-treatment treatment by exposure to a gas or vapour

Abstract

本發明提供一種選擇性沉積之方法。材料係被選擇性地沉積於一基板之第一表面上,相對於不同材料所組成之一第二表面。一抑制劑(例如:一聚醯亞胺層)係自氣相反應物選擇性地形成於相對該第二表面的該第一表面上。一感興趣的層係自氣相反應物選擇性地沉積於該第二表面上,相對該第一表面。該第一表面可以是金屬性的,而該第二表面是介電性的。據此,材料(例如:介電性過渡金屬氧化物及氮化物)可使用本文所述之技術選擇性地沉積於相對於介電性表面的金屬表面上。

Description

選擇性鈍化及選擇性沉積
本發明大體上係關於將材料選擇性地沉積於一基板之一第一表面上,相對於由不同材料所組成之一第二表面。
隨著半導體製造中裝置尺寸逐漸的減小,需要新的創新處理方法。傳統上,半導體處理中之圖案化涉及減成法製程,其中覆蓋層被沉積、透過光微影技術進行遮罩、並透過遮罩中之開口被蝕刻。添加性圖案化亦為已知,其中遮罩步驟是在沉積感興趣的材料之前進行,例如:使用剝離技術或嵌入處理之圖案化。在大多數情況下,昂貴的多步驟微影技術是被應用來做圖案化。
圖案化可藉由選擇性沉積來簡化,其已在半導體製造商中獲得愈來愈多的關注。選擇性沉積將會在各種方面是高度有益的。明顯的是,它可使微影步驟減少,從而降低加工成本。選擇性沉積也可於狹窄結構中實現增強的縮放,例如透過使得由下而上之填充成為可能。電化學沉積是選擇性沉積之一種形式,猶如金屬是可選擇性地形成於導電元件上。由於化學氣相沉積(CVD)及原子層沉積(ALD)是表面敏感性技術氣相沉積技術,且因此已被研究作為選擇性沉積之良好候選技術。選擇性ALD是在(例如)美國專利第6,391,785號中被提出來。
選擇性沉積中之一個挑戰是沉積製程之選擇性經常沒有高至足以完成選擇性目標。表面預處理有時可用於抑制或促進在一個或兩個表面上之沉積,但這類處理本身經常需要微影,以使該些處理被施行或僅維持待處理之表面上不變。
因此,仍存在需要更實際的製程,以實現選擇性沉積。
在一個態樣中,本發明提供一種方法,用於選擇性沉積於一基板之一第二表面上,其相對於該基板之一第一表面,其中該第一及第二表面具有不同的組成。該方法依序包括:選擇性地自氣相反應物形成一抑制劑層在相對該第二表面的該第一表面上;烘烤該抑制劑層;及選擇性地自氣相反應物沉積一感興趣的層於相對於該保護層的該第二表面上。
在一些實施例中,該方法額外包括在選擇性地形成該抑制劑層之前,處理該第一及第二表面。在一些實施例中,該方法包括其中之處理包括將該基板暴露於一電漿。在一些實施例中,處理包括將該基板暴露於一矽烷,例如:烷基胺基矽烷。在一些實施例中,處理包括將該基板暴露於N-(三甲基矽烷基)二甲胺(TMSDMA)或三甲基氯矽烷。在一些實施例中,該方法更包括在選擇性地形成該抑制劑層之後,清潔該第二表面,以移除任何抑制劑。在一些實施例中,該方法包括其中的清潔包括用氫電漿處理。在一些實施例中,烘烤包括將該基板加熱至約300℃至400℃之溫度。
在一些實施例中,該方法更包括在選擇性地沉積該感興趣的層之後,清潔該第一及第二表面。在一些實施例中,清潔包括用氫電漿處理該些表面。在一些實施例中,該方法更包括其中選擇性地形成一抑制劑層包括選擇性地氣相沉積一有機層於該第一表面上。在一些實施例中,該有機層是一聚醯亞胺層。
在一些實施例中,該感興趣的層是藉由一原子層沉積製程而被選擇性地沉積。在一些實施例中,該第一表面包括一金屬或金屬材料,且該第二表面包括一介電材料。
在一些實施例中,其中該感興趣的層包括一金屬氧化物。在一些實施例中,該金屬氧化物包括氧化鋯、氧化鉿、氧化鋁、氧化鈦、氧化鉭、氧化釔、氧化鑭、其他過渡金屬氧化物或其混合物。在一些實施例中,該金屬氧化物包括一介電性過渡金屬氧化物。在一些實施例中,該金屬氧化物包括氧化鋁。在一些實施例中,該氧化鋁係使用一鋁前驅物來沉積,該鋁前驅物包含三甲基鋁(TMA)、二甲基氯化鋁、三氯化鋁(AlCl 3)、二甲基異丙醇鋁(DMAI)或三乙基鋁(TEA)。在一些實施例中,該氧化鋁係使用一鋁前驅物來沉積,該鋁前驅物包含一鋁烷基化合物,該鋁烷基化合物包括兩個不同的烷基作為配體。在一些實施例中,該氧化鋁係使用一鋁前驅物來沉積,該鋁前驅物具有一個烷基配體及兩個烷氧基配體。在一些實施例中,該氧化鋁係使用一鋁前驅物來沉積,該鋁前驅物包含AlMe(OMe) 2、AlMe(OEt) 2、AlMe(OiPr) 2、AlMe(OtBu) 2、AlEt(OMe) 2、AlEt(OEt) 2、AlEt(OiPr) 2及AlEt(OtBu) 2中之一或多者。在一些實施例中,該氧化鋁係使用一鋁前驅物來沉積,該鋁前驅物包含一或多個醋酸根配體。例如,在一些實施例中,鋁前驅物包含三乙酸鋁。在一些實施例中,該氧化鋁係使用一鋁前驅物來沉積,該鋁前驅物包含一異配鋁化合物,該異配鋁化合物包含一烷基及另一配體,例如鹵素,比如:Cl。在一些實施例中,該鋁化合物係使用一鋁前驅物來沉積,該鋁前驅物包含一金屬有機鋁化合物或一有機金屬鋁化合物。
在一些實施例中,該感興趣的層包括一金屬氮化物。在一些實施例中,該金屬氮化物是氮化鈦。在一些實施例中,該氮化鈦係藉由一氣相沉積製程由TiCl 4及NH 3沉積而來。
在另一態樣中,本發明提供一種集束型製程設備,用於相對於一基板之一第一表面將一感興趣的層選擇性沉積於該基板之一第二表面上,其中該第一及第二表面具有不同之組成。該集束型製程設備包括:一第一模組,被配置成用於預處理該基板;一第二模組,被配置成用於以電漿處理該基板;一第三模組,被配置成用於相對於該基板之第二表面將一抑制劑氣相沉積於該基板之第一表面上;及一第四模組,被配置成用於氣相沉積該感興趣的層。
在另一態樣中,本發明提供一種系統,用以相對於一基板之一第一表面,將一介電質選擇性沉積於該基板之一第二表面上。該系統包括:一第一腔室,被配置成用於選擇性沉積一有機保護層及用於部分回蝕該有機保護層;及一第二腔室,被配置成用於將該介電質選擇性沉積於相對於該基板之第一表面的該第二表面上。
在另一態樣中,本發明提供一種系統,用於將一感興趣的膜選擇性沉積於一基板之一第二表面上,相對於該基板之第一表面。該系統包括:一第一腔室,被配置成用於預處理該基板及用於蝕刻處理;一第二腔室,被配置成用於選擇性沉積一有機保護層;及一第三腔室,被配置成用於將該感興趣的膜選擇性沉積於該基板之一第二表面上,相對於該基板之第一表面。
在一些實施例中,該第三腔室更被配置成用於一烘烤程序。在一些實施例中,該系統更包括一第四腔室,其被配置成用於一烘烤程序。
本申請案係延續2019年9月30日所提交之美國申請案第16/588,600號,其接續主張2019年2月14日所提交之美國臨時專利申請案第62/805,471號及2018年10月2日所提交之美國臨時專利申請案第62/740,124號之權益,其各自之整體以參考的方式併入本文。
本發明揭示一種方法及裝置,用於選擇性沉積材料於相對於一第一表面的一第二表面上方,其中該第一及第二表面具有材料差異。舉例來說,該些表面中之其中一者可包括一金屬材料,且另一表面可包括一無機介電材料。在本文所述之實施例中,一有機保護層係選擇性地被沉積於相對該第二表面的該第一表面上。在一些實施例中,該第一表面是金屬性,且該第二表面是介電性;在其他實施例中,該第一表面是介電性,且第二表面是金屬性。其後,一感興趣的層選擇性地被沉積於相對於該有機保護層的該第二表面上。在一些實施例中,該感興趣的層可以是一Al 2O 3層。在一些實施例中,該感興趣的層可以是一TiN層。其他的層可選擇性地被沉積於該感興趣的層上,位於相對於該有機保護層的該第二表面上方。
在一個實施例中,該第一表面包括一金屬表面,例如:元素金屬或金屬合金;而該第二表面包括一無機介電性表面,例如:低k材料。低k材料之實例包括以氧化矽為主之材料,包括經生長或沉積之二氧化矽、經摻雜及/或多孔之氧化物、矽上天然氧化物等。一聚合物保護層係選擇性地被沉積於相對於該無機介電性表面的該金屬表面上。其後,一感興趣的層係選擇性地被沉積於該無機介電性表面上。該感興趣的層可包含一金屬元素。該感興趣的層之實例包括介電質,例如:氧化鋯(例如:ZrO 2)、氧化鉿(例如:HfO 2)、氧化鋁(例如:Al 2O 3)、氮化鈦(例如:TiN)及氧化鈦(例如:TiO 2)。本發明提供製程以將這類材料選擇性地沉積於相對於聚合物表面的以氧化矽為主之表面上。
在一第二實施例中,該第一表面包括一無機介電性表面,例如:低k材料;而該第二表面包括一金屬表面,例如:元素金屬或金屬合金。低k材料之實例包括以氧化矽為主之材料,包括經生長或沉積之二氧化矽、經摻雜及/或多孔之氧化物、矽上天然氧化物等。一聚合物保護層係選擇性地被沉積於相對於金屬表面的該無機介電性表面上。在沉積該聚合物保護層之前,該金屬表面可形成有一鈍化阻擋層,例如:自組裝單層(self-assembled monolayer,SAM)。該鈍化阻擋層有利於該聚合物沉積於無機介電性表面上之選擇性,且可在之後被移除,以允許將一感興趣的層選擇性沉積於相對於該聚合物保護層的該金屬表面上。該感興趣的層可包含一金屬元素。該感興趣的層之實例包括金屬層(例如:參見2015年2月17日公告之美國專利第8,956,971號及2015年8月18日公告之美國專利第9,112,003號)、金屬氮化物層(例如:氮化鈦)及金屬氧化物層(例如:氧化鋯、氧化鉿、氧化鈦及氧化鋁)。本發明提供製程,以將這類材料選擇性地沉積於相對於聚合物表面的金屬表面上。
在一第三實施例中,執行該第二實施例之製程以選擇性地提供一感興趣的層於相對於經聚合物鈍化之無機介電性表面的一金屬表面上方。其後,另一感興趣的層係選擇性地被沉積於該感興趣的層上方,同時該聚合物維持鈍化該無機介電性表面。舉例來說,該感興趣的層可包括一金屬層,而另一感興趣的層包括一金屬氧化物層(例如:氧化鋯、氧化鉿、氧化鈦)。本發明提供製程,以將這類材料選擇性地沉積於相對於聚合物表面的金屬表面上。
在該感興趣的層被選擇性沉積於該第二表面上方之後,該聚合物保護層可自該第一表面被移除。例如,氧化製程可選擇性地移除聚合物材料。條件係經選擇以避免損壞該基板上之周圍材料。
本發明亦提供多個實施例,以對選擇性沉積之層控制該些邊緣輪廓及邊緣位置,相對於該基板上之其他特徵,例如:在底層的金屬表面與介電性表面之間的邊界。據此,無需昂貴之微影圖案化來對選擇性層邊緣之相對定位提供控制。描繪這類控制之應用的實例包括:該選擇性層與該材料(其上之沉積被最小化)重疊的實例;該選擇性層形成有一間隙使該層與該材料(其上之沉積被最小化)隔開的實例;及該選擇性層之邊緣與該兩種截然不同的底層材料之間的邊界對齊的實例。 基板表面
根據本發明之一些態樣,可使用選擇性沉積來將感興趣的膜沉積於相對於一第一表面的一第二表面上。該兩個表面可具有不同材料性質,以允許其上選擇性形成一有機材料,例如:將一聚合物層選擇性沉積於相對該第二表面的該第一表面上,繼而允許後續將一感興趣的層選擇性沉積於相對於該有機鈍化之第一層的該第二表面上。
舉例來說,在本文所述之實施例中,該些表面中之一者可以是一基板之導電性(例如:金屬或金屬性)表面,而另一表面可以是該基板之非導電性(例如:無機介電性)表面。在一些實施例中,該非導電性表面包括-OH基團,例如:以氧化矽為主之表面(例如:低k材料,包括經生長及沉積之氧化矽材料及矽上天然氧化物)。在一些實施例中,該非導電性表面可另外包括-H終端,例如:經HF浸漬之Si表面或經HF浸漬之Ge表面。在這類實施例中,該感興趣的表面將被視為包括該-H終端及在-H終端下方之材料兩者。
對於上述任何的實例,該兩個表面之間的材料差異使得氣相沉積方法可將該有機保護層選擇性地沉積於相對該第二表面的該第一表面上。在一些實施例中,使用循環氣相沉積,例如:使用循環CVD或原子層沉積(ALD)製程。在一些實施例中,該有機保護層之選擇性可被實現,無需在該表面上之鈍化/阻擋劑去接收較少的有機層;及/或無需該表面上之催化劑去接收較多的有機層。舉例來說,在該第一表面是金屬性且該第二表面是介電性之實施例中,聚合物可直接地選擇性沉積於相對於無機介電性表面的金屬表面上。在該第一表面是介電性且該第二表面是金屬性之其他實施例中,該第二表面係首先經過處理,以抑制其上方之聚合物沉積。舉例來說,一鈍化阻擋自組裝單層(SAM)可首先被形成於金屬表面上方相對,從而有利於一聚合物保護層選擇性沉積於相對於一SAM覆蓋之第二金屬表面的一介電性表面(例如:一無機介電性表面)上。在完成該有機鈍化層之選擇性沉積之後,感興趣之材料(例如:金屬氧化物或金屬層)的選擇性沉積可進一步在相對於該經鈍化之第一表面的該未經鈍化之第二表面上進行。
對於一個表面包括一金屬而另一表面不包括之實施例,除非另外指示,否則若在本文中將一表面稱作一金屬表面,則其可以是金屬表面或金屬性表面。在一些實施例中,該金屬或金屬性表面可包括金屬、金屬氧化物及/或其混合物。在一些實施例中,該金屬或金屬性表面可包括表面氧化。在一些實施例中,該金屬或金屬性表面之金屬或金屬材料無論表面是否氧化皆是導電的。在一些實施例中,金屬或一金屬性表面包括一或多種過渡金屬。在一些實施例中,該金屬或金屬性表面包括Al、Cu、Co、Ni、W、Nb、Fe或Mo中之一或多者。在一些實施例中,一金屬性表面包括氮化鈦。在一些實施例中,該金屬或金屬性表面包括一或多種貴金屬,例如:Ru。在一些實施例中,該金屬或金屬性表面包括一導電金屬氧化物、氮化物、碳化物、硼化物或其組合。舉例來說,該金屬或金屬性表面可包括RuO x、NbC x、NbB x、NiO x、CoO x、NbO x、MoO x、WO x、WNC x、TaN或TiN中之一或多者。
在一些實施例中,一金屬或金屬性表面包括鈷(Co)、銅(Cu)、鎢(W)或鉬(Mo)。在一些實施例中,該金屬或金屬性表面可以是任何可接受或與該第一或第二前驅物配位之表面,其中該第一或第二前驅物係在該有機保護層或是該感興趣的層之選擇性沉積製程中使用,如本文所述,取決於該實施例。
在一些實施例中,一有機鈍化材料(例如:聚醯亞胺)係選擇性地被沉積於一金屬表面(例如:Co、Cu、W或Mo表面)上。在一些實施例中,該有機鈍化材料在該金屬表面上之選擇性沉積發生在生長速率約0.5埃/循環至約20埃/循環、約1埃/循環至約15埃/循環、約1.5埃/循環至約10埃/循環或約2埃/循環至約8埃/循環。在一些實施例中,該有機鈍化材料在該金屬表面上之生長速率是大於約0.5埃/循環、大於約1埃/循環、大於約3埃/循環、大於約5埃/循環,而在一些實施例中,在頂端上,該生長速率是小於約20埃/循環、小於約15埃/循環、小於約10埃/循環或小於約8埃循環。在一些實施例中,該金屬表面相對於一第二表面之選擇性係保持在這些生長速率。
在一些實施例中,一有機鈍化材料係選擇性地被沉積於相對於其他表面的一金屬氧化物表面上。一金屬氧化物表面可以是(例如)WO x、TiO x表面。在一些實施例中,一金屬氧化物表面是一金屬性材料之一氧化表面。在一些實施例中,一金屬氧化物表面係使用氧化合物來氧化一金屬材料之至少該表面而產生,其中該氧化合物是(例如)包含O 3、H 2O、H 2O 2、O 2、氧原子、電漿或自由基之化合物或其混合物。在一些實施例中,一金屬氧化物表面是形成於一金屬性材料上之一天然氧化物。
在一些實施例中,該表面可包括一金屬表面,其上包括一鈍化阻擋層。亦即,在一些實施例中,該第二表面可包括一金屬表面,該金屬表面包含一材料,其會抑制該保護層沉積於其上,例如:一自組裝單層(SAM)。
在一些實施例中,一有機鈍化材料選擇性地被沉積於相對於一第二介電性表面的一第一金屬氧化物表面(其為金屬材料之氧化表面)上。
在一些實施例中,該第一及第二表面中之其中一者是一基板的一金屬或金屬性表面,且另一表面是該基板之一介電性表面。用語介電性在本文的描述中是用於簡單地與另一表面(亦即:金屬或金屬性表面)區分。熟習之技藝人士應理解,並非所有非導電性表面皆是介電性表面,且相反地,並非所有金屬表面皆是導電的。舉例來說,該金屬或金屬表面可包括一氧化的金屬表面,其不具導電性或具有相當高的電阻率。本文中所教示之選擇性沉積製程可沉積在這類非導電性的金屬表面上,而在經鈍化之介電性表面上具有最少沉積,且類似地,選擇性沉積製程可沉積於介電性表面上,而在經鈍化之非導電性金屬表面上具有最少沉積。
在一些實施例中,可在該選擇性沉積製程之前或在其開始時對該基板進行預處理或清潔。在一些實施例中,可在該選擇性沉積製程之前或在其開始時對該基板進行一電漿清潔程序。在一些實施例中,一電漿清潔程序可不包括離子轟擊,或可包括相對少量之離子轟擊。舉例來說,在一些實施例中,該基板表面可在該選擇性保護層沉積製程之前或在其開始時暴露於電漿、自由基、受激發物種及/或原子物種。在一些實施例中,該基板表面可在該選擇性保護層沉積製程之前或在其開始時暴露於氫電漿、自由基或原子物種。
在一些實施例中,進行的是一非電漿預處理製程。舉例來說,在一些實施例中,該基板表面可暴露於一矽反應物,例如:N-(三甲基矽烷基)二甲胺(TMSDMA)或三甲基氯矽烷。該反應物可以一單一長脈衝,或以多個短脈衝的序列提供。在一些實施例中,該反應物是以約1至約60秒的1至25個脈衝提供。在脈衝之間,該反應室可用一惰性氣體吹洗。該吹洗可以是(例如)持續約1至30秒。
在一些實施例中,該表面與具有式(R I) 3Si(NR IIR III)之烷基胺基矽烷接觸,其中R I是一直鏈或支鏈的C1-C5烷基或一直鏈或支鏈的C1-C4烷基,R II是一直鏈或支鏈的C1-C5烷基、一直鏈或支鏈的C1-C4烷基或氫,且R III是一直鏈或支鏈的C1-C5烷基或一直鏈或支鏈的C1-C4烷基。
在一些實施例中,該表面與具有通式(R I) 3SiA之矽烷接觸,其中R I是一直鏈或支鏈的C1-C5烷基或一直鏈或支鏈的C1-C4烷基,且A是可與該含矽表面起反應之任何配體。亦即,該矽烷經由配體A與該表面鍵結,或配體A與該表面形成鍵結,但隨後配體A可轉移遠離該表面及/或矽烷。
該預處理程序之溫度可以是(例如)約100至約300℃。在該預處理程序期間之壓力可以是(例如)約10 -5至約760托,或在一些實施例中,約1至10托或約0.1至約10托。在一些實施例中,預處理或清潔程序可原位進行,亦即在與一選擇性沉積製程相同之反應室中進行。然而,在一些實施例中,一預處理或清潔程序可在另一分開的反應室中進行。在一些實施例中,進行該預處理程序之反應室是一集束型製程設備之一部分,包括一或多個額外的反應室。舉例來說,這類集束型製程設備可包括額外反應室,用於沉積該抑制劑、蝕刻及/或沉積該感興趣的膜。在一些實施例中,一集束型製程設備包括獨立的模組,用於預處理、抑制劑沉積、抑制劑沉積後之電漿清潔(蝕刻)、感興趣的層之沉積及沉積後之電漿清潔。在一些實施例中,相同模組可用於兩或更多個製程。舉例來說,相同模組可用於預處理、在抑制劑沉積之後及在感興趣的層沉積之後的電漿清潔。在一些實施例中,一集束型製程設備包括一第一預處理模組、一電漿清潔模組、一抑制劑沉積模組及用於沉積該感興趣的層之模組。 選擇性
熟習之技藝人士將瞭解選擇性沉積可以是完全地選擇性或部分地選擇性。一部分選擇性製程可藉由一沉積後蝕刻來造成一完全選擇性層。該沉積後蝕刻會自表面B上方移除所有的沉積材料,而不會自表面A上方移除所有的沉積材料。由於一簡單的回蝕製程可留下一完全選擇性結構,而無需昂貴之光罩製程,因此該選擇性沉積無需是完全選擇性即可獲得所期望之效益。
相對於表面B,沉積於表面A上之選擇性可以[(表面A上之沉積)-(表面B上之沉積)]/(表面A上之沉積)所計算出之百分比表示。沉積可以任何的各種方式測量。舉例來說,沉積可以該沉積材料所量測的厚度來表示,或可以材料沉積所量測的量來表示。在本文所述之實施例中,一有機保護層之選擇性沉積可在相對於一第二表面(B)的一第一表面(A)上進行。隨後,一感興趣的層係選擇性地被沉積於相對於該第一表面上方之該有機保護層(B)的該第二表面(A)上。
在一些實施例中,對於選擇性沉積保護層於第一表面上(相對於該第二表面)之選擇性,及/或該感興趣的層在該第二表面上(相對於該第一表面上之該保護層)之選擇性是大於約10%、大於約50%、大於約75%、大於約85%、大於約90%、大於約93%、大於約95%、大於約98%、大於約99%或甚至大於約99.5%。在本文所述之實施例中,對於該有機保護層沉積之選擇性可隨一沉積之持續時間或厚度而改變。出人意料地,對於本文所述之氣相聚合物層沉積,已發現選擇性隨著沉積的持續時間而增加。相反地,基於在不同表面上之差別成核的典型選擇性沉積係傾向於隨著較大之沉積持續時間或厚度而變為較少的選擇性。
在一些實施例中,沉積僅發生在該第一表面上,且並不發生在該第二表面上。在一些實施例中,沉積於該基板之表面A上相對於該基板之表面B具有至少約80%的選擇性,這對於一些特定應用可以是足夠的選擇性。在一些實施例中,沉積於該基板之表面A上相對於該基板之表面B具有至少約50%的選擇性,這對於一些特定應用可以是足夠的選擇性。在一些實施例中,沉積於該基板之表面A上相對於該基板之表面B具有至少約10%的選擇性,這對於一些特定應用可以是足夠的選擇性。熟習之技藝人士當明瞭,一部分選擇性製程可藉由一沉積後蝕刻來造成一完全選擇性結構層,其中該沉積後蝕刻會自表面B上方移除所有的沉積材料,而不自表面A上方移除所有的沉積材料。此外,該沉積後蝕刻亦可幫助調整該選擇性沉積層的位置及/或輪廓,如從以下圖17至圖23B的說明將可以更好地理解。
在一些實施例中,沉積於該基板之第一表面上之該有機層之厚度可小於約50奈米、小於約20奈米、小於約10奈米、小於約5奈米、小於約3奈米、小於約2奈米或小於約1奈米,而沉積於該基板之第一表面上相對於該基板之第二表面的材料比率可以是大於或等於約200:1、大於或等於約100:1、大於或等於約50:1、大於或等於約25:1、大於或等於約20:1、大於或等於約15:1、大於或等於約10:1、大於或等於約5:1、大於或等於約3:1或大於或等於約2:1。
在一些實施例中,本文所述之選擇性沉積製程的選擇性可取決於界定該基板之第一及/或第二表面的材料之材料組成。舉例來說,在一些實施例中,當該第一表面包含一經BTA鈍化之Cu表面且該第二表面包含一天然或化學的二氧化矽表面時,該選擇性可以是大於約8:1或大於約15:1。在一些實施例中,當該第一表面包含一金屬或金屬氧化物且該第二表面包含一天然或化學的二氧化矽表面時,該選擇性可以是大於約5:1或大於約10:1。 介電質上之選擇性沉積
圖1A至圖1D示意性地繪示一第一實施例,用於選擇性鈍化相對於一第二表面的一第一表面,隨後選擇性沉積於相對於該鈍化之第一表面的該第二表面上。在所繪示之實施例中,該第一表面包括一金屬材料;該第二表面包括一無機介電材料;且沉積於該第二表面上之感興趣的材料包括一介電材料。
圖1A繪示一基板,其具有材料上不同之暴露表面。舉例來說,該第一表面可包含或由一金屬來界定,例如:鈷(Co)、銅(Cu)、鎢(W)或鉬(Mo)。該第二表面可包含或由一無機介電質界定,例如:低k層(通常是以氧化矽為主之層)或其上方形成有天然氧化物之矽表面(也是氧化矽的一種形式)。
圖1B顯示圖1A之基板在一保護層被選擇性沉積於該第一表面上之後的情形。舉例來說,該保護層可以是一聚合物層,選擇性地沉積於該第一層之金屬表面上。藉由氣相沉積技術選擇性沉積聚合物層之方法揭示於2016年6月1日所提交之美國專利申請案第15/170,769號中,其全部揭示內容出於所有目的係以引用之方式併入本文。關於選擇性沉積聚合物層作為該保護層之進一步資訊及實例提供如下。
在一些實施例中,該選擇性沉積之聚合物是聚醯亞胺。在一些實施例中,所沉積之聚合物是聚醯胺。所沉積之聚合物的其他實例包括二聚體、三聚體、聚脲層、聚噻吩(polythiophene)、聚胺基甲酸酯、聚硫脲、聚酯、聚亞胺、上述材料之其他聚合形式或混合物。氣相沉積的有機材料包括聚醯胺酸,其可以是供聚合物形成的一前驅物。選擇性沉積的層可以是包括聚合物及聚醯胺酸之混合物,其出於本發明案之目的將被視為一聚合物。
在一些實施例中,該聚合物(例如:聚醯亞胺)在該第一含金屬表面(例如:Cu表面)上之選擇性沉積發生在生長速率是約0.5埃/循環至約20埃/循環、約1埃/循環至約15埃/循環、約1.5埃/循環至約10埃/循環或約2埃/循環至約8埃/循環。在一些實施例中,該聚合物(例如:聚醯亞胺)在該第一含金屬表面(例如:Cu)上之生長速率是大於約0.5埃/循環、大於約1埃/循環、大於約3埃/循環、大於約5埃/循環,而在一些實施例中,在頂端上之生長速率是小於約20埃/循環、小於約15埃/循環、小於約10埃/循環或小於約8埃/循環。在一些實施例中,選擇性係維持在這些生長速率。
在一些實施例中,選擇性沉積一聚醯亞胺於Cu表面上是發生在生長速率是約0.5埃/循環至約20埃/循環、約1埃/循環至約15埃/循環、約1.5埃/循環至約10埃/循環或約2埃/循環至約8埃/循環。在一些實施例中,該聚醯亞胺在該Cu表面上之生長速率是大於約0.5埃/循環、大於約1埃/循環、大於約3埃/循環、大於約5埃/循環,而在一些實施例中,在頂端上之生長速率是小於約20埃/循環、小於約15埃/循環、小於約10埃/循環或小於約8埃/循環。在一些實施例中,選擇性係維持在這些生長速率。
如上所述,沉積於該第二表面(在此實例中是一無機介電性表面)上之任何有機材料可藉由一回蝕製程來移除。在一些實施例中,接續選擇性沉積該有機層的一蝕刻製程可移除沉積在該基板之第一表面及第二表面兩者上之有機材料。在一些實施例中,該蝕刻製程可以是異向性的。
在一些實施例中,該蝕刻製程可自該第一及第二表面移除相同量或厚度的材料。亦即,在一些實施例中,沉積於該第一表面上之有機材料之蝕刻速率可以是實質上類似於沉積於該第二表面上之有機材料的蝕刻速率。由於本文所述之沉積製程的選擇性本質,沉積於該基板之第二表面上之有機材料的量實質上是小於沉積於該基板之第一表面上之材料的量。因此,一蝕刻製程可自該基板之第二表面完全地移除所沉積之有機材料,同時所沉積之有機材料可保留在該基板之第一表面上。適合蝕刻聚合物之製程係參照圖1D描述於下文中。
圖1C顯示圖1B之基板在將一感興趣的層X選擇性沉積於該第二表面(在此例中是一無機介電性表面)上的情形,相對於該第一表面(在此例中是一金屬表面)上之保護層。該感興趣的層X可以是一介電材料,例如:一金屬氧化物(例如:氧化鋯、氧化鉿、氧化鋁、氧化鈦、氧化鉭、氧化釔、氧化鑭)、其他過渡金屬氧化物或其混合物。在一些實施例中,該金屬氧化物是一介電性過渡金屬氧化物或介電性過渡金屬氧化物之混合物。在一些實施例中,該感興趣的層X可以是一金屬氮化物,例如:氮化鈦。利用氣相沉積技術選擇性地沉積這類金屬氧化物層之方法,其採用疏水性前驅物來幫助相對於有機保護層之選擇性,已揭示於2016年5月5日所提交之美國臨時專利申請案第62/332,396號中,其全部揭示內容出於所有目的係以引用之方式併入本文中。關於金屬氧化物及其他感興趣的層之選擇性沉積的進一步資訊及實例提供如下。
如上所述,任何沉積於該第一表面上方之保護層上的X材料皆可藉由一回蝕製程來移除。由於該感興趣的層是選擇性地被沉積於該第二表面上,因此任何留在該鈍化表面上之X材料皆會較形成於該金屬表面上之保護層為薄。據此,可控制該回蝕製程以移除該保護層上方之所有X材料,而不會自該介電性表面上方移除所有感興趣的層。依此方式重複地選擇性沉積及回蝕可促使X材料於該介電質上之厚度隨著每一循環之沉積及蝕刻而增加。依此方式重複地選擇性沉積及回蝕亦可促使X材料於該介電質上之總體選擇性增加,因為每一循環之沉積及蝕刻會留下一乾淨的保護層,在其上方之選擇性X沉積成核不良。或者,在隨後移除該保護層期間,可移除任何的X材料,其實例的條件係參照以下圖1D以一剝離程序描述。如本領域中所知,一剝離程序移除一上層材料是藉由移除底層材料之底切來進行。在一短暫選擇性沉積製程中,該保護層上所形成之任何X材料皆傾向於是非連續的,使得該蝕刻劑能夠抵達待移除之底層材料。該剝離蝕刻無需完全地移除該保護層來從該保護層表面移除所有不需要之X材料,故而可使用直接蝕刻或該剝離方法,在一循環選擇性沉積及移除中,從該保護層表面移除X材料。
圖1D顯示圖1C之基板在該保護層自該第一表面被移除後之情形。在一些實施例中,該蝕刻製程可包括將該基板暴露至一電漿。在一些實施例中,該電漿可包括氧原子、氧自由基、氧電漿或其組合。在一些實施例中,電漿可包括氫原子、氫自由基、氫電漿或其組合(參見例如:以下關於保護層之選擇性沉積的實例2)。在一些實施例中,該電漿亦可包含稀有氣體物種,例如:Ar或He物種。在一些實施例中,該電漿可基本上由稀有氣體物種組成。在一些情況下,該電漿可包括其他物種,例如:氮原子、氮自由基、氮電漿或其組合。在一些實施例中,該蝕刻製程可包括將該基板暴露至包含氧(例如:O 3)之蝕刻劑。在一些實施例中,該基板可在約30℃與約500℃之間、或在約100℃與約400℃之間的溫度下暴露於一蝕刻劑。在一些實施例中,該蝕刻劑可以一個連續脈衝供應,或可以多個較短脈衝供應。如上所述,該保護層移除可被用來自該保護層上方剝離任何剩餘之X材料,在一循環選擇性沉積及移除中,以完全移除該保護層或以部分移除該保護層的方式進行。
如上所述,在一些實施例中,可於該蝕刻製程中使用O 3(例如:O 3/N 2)來移除該有機保護層。在一些實施例中,該蝕刻製程可於約20℃至約500℃之基板溫度下進行。在一些實施例中,該蝕刻製程可於約50℃至約300℃之基板溫度下進行。在一些實施例中,該蝕刻製程可於約100℃至約250℃之基板溫度下進行。在一些實施例中,該蝕刻製程可於約125℃至約200℃之基板溫度下進行。在一些實施例中,該蝕刻製程可於約0.05奈米/分至約50.0奈米/分之速率下進行。在一些實施例中,該蝕刻製程可於約0.1奈米/分至約5.0奈米/分之速率下進行。在一些實施例中,該蝕刻製程可於約0.2奈米/分至約2.5奈米/分之速率下進行。在一些實施例中,對於單晶圓或小批量(例如:5個晶圓或以下)加工處理,可使用低O 3濃度蝕刻製程,其中該低O 3濃度蝕刻製程是在0.01托至200托,或約0.1托至100托(例如:2托)下進行。蝕刻劑脈衝可以是在0.01秒與20秒之間、在0.05秒與10秒之間或在0.1秒與2秒之間(例如:0.5秒脈衝/0.5秒O 3吹洗)。O 3流量可在0.01 slm至1 slm或0.01 slm至0.250 slm之範圍內。惰性(例如:N 2)載氣流量可在0.1 slm至20 slm或0.5 slm至5 slm(例如:1.2 slm)之範圍內。在一些實施例中,可使用一高O 3濃度蝕刻製程,其中該高O 3濃度蝕刻製程是在1-100托或5-20托(例如:9托)下進行,每個循環具有較長的暴露。舉例來說,O 3暴露時間可在0.1秒與20秒之間,或在0.5秒與5秒之間(例如:1秒脈衝/1秒O 3吹洗)。用於這類高O 3濃度製程之O 3流量可在0.1 slm與2.0 slm之間,或在0.5 slm與1.5 slm之間(例如:750 sccm),其中惰性(例如:N 2)稀釋流量是0.1 slm至20 slm,或0.5 slm至5 slm (例如:1.2 slm)。
在一些實施例中,一烘烤步驟可在蝕刻之後進行。該烘烤可在與沉積該有機材料相同之反應器中、與該蝕刻製程相同之反應器中、與隨後沉積一感興趣的層相同之反應器中進行或可在與一或多個那些樣態之製程分開之反應器中進行。在一些實施例中,該烘烤程序是在一反應室中進行,該反應室是一集束型製程設備的一部分,且在該烘烤之後,該基板被移動至該集束型製程設備之一或多個不同反應室進行額外的加工處理。
在一些實施例中,該基板被烘烤約1至約15分鐘的時間段。在一些實施例中,該基板是在約200至約500℃之溫度下烘烤。在一些實施例中,該烘烤步驟包括二或更多的步驟,其中該基板在一第一溫度下持續烘烤一第一時間段,且隨後在一第二溫度下持續烘烤一第二時間段。
可在前述製程之前、中、後執行額外的處理(例如:熱處理或化學處理)。舉例來說,處理可改變該些表面或移除部分在該製程之各個階段中所暴露之金屬、氧化矽、聚合物鈍化及金屬氧化物表面。在一些實施例中,可在該選擇性沉積製程之前或在其開始時對該基板進行預處理或清潔。在一些實施例中,可在該選擇性沉積製程之前或在其開始時對該基板進行一電漿清潔程序。在一些實施例中,一電漿清潔程序可不包括離子轟擊,或可包括相對少量之離子轟擊。舉例來說,在一些實施例中,可在該選擇性沉積製程之前或在其開始時將該基板表面暴露於電漿、自由基、受激發物種及/或原子物種中。在一些實施例中,可在該選擇性沉積製程之前或在其開始時將該基板表面暴露於氫電漿、自由基或原子物種中。在一些實施例中,可在與一選擇性沉積製程相同之反應室中進行預處理或清潔程序,然而在一些實施例中,可在一分開的反應室中進行預處理或清潔程序。 金屬上之選擇性沉積
圖2A至圖2E示意性地繪示一第二實施例,用於選擇性鈍化相對於一第二表面的一第一表面,隨後選擇性沉積於相對於該鈍化之第一表面的該第二表面上。在所繪示之實施例中,該第一表面包括一無機介電材料;該第二表面包括一金屬表面;且該第二表面上所沉積之感興趣的材料包含一介電材料或一金屬。
圖2A繪示與圖1A類似之基板,其具有材料上不同之表面。然而,對於此實施例,該些表面係以相反之用語來闡述。尤其,該第二表面可包含或由一金屬性材料所界定,例如鈷(Co)、銅(Cu)、鎢(W)或鉬(Mo)。該第一表面可包括一無機介電質,例如:低k層(通常是以氧化矽為主之層)或其上形成有天然氧化物之矽表面(亦是氧化矽的一種形式)。一鈍化阻擋層被形成於該第二表面上方。應注意,用語「阻擋」並不意謂隨後一保護層之選擇性沉積係完全地由該鈍化阻擋層所阻擋。反之,該第二表面上方之鈍化阻擋層僅需要抑制該保護層之沉積而具有相對於該第一表面上方之生長速率之一較低的生長速率。
在一實施例中,該鈍化阻擋層包括一自組裝單層(SAM)。一SAM可選擇性地形成於該第二(金屬性)表面上方,而不形成於該第一(介電性)表面上。有利地,含硫SAM已被發現可有效使其上方之該保護層的沉積最少化。
圖2B顯示一保護層(例如:有機保護層)被選擇性形成於相對於該第二表面上方之鈍化阻擋層的該第一表面(在此例中是該無機介電層)上方。如上文併入之2016年6月1日所提交之專利申請案第15/170,769號中所述,其中描述之氣相沉積製程能夠於無機介電質上沉積聚合物,且甚至可於不同類型之氧化矽上方選擇性地(亦即 以不同的沉積速率)沉積。在本實施例中,含硫SAM會抑制聚合物沉積於其上,使得聚合物可選擇性地形成於該第一表面上方,且可作為一保護層,抵抗一後續的沉積。
圖2C顯示圖2B之基板在該鈍化阻擋層自該第二表面上方移除之後的情形。舉例來說,含硫SAM材料可藉由在溫度低於可將一聚合物層(比如:聚醯亞胺)移除之溫度下進行熱處理來移除。據此,一保護層係選擇性地留在該第一表面上方,而該第二表面是被暴露的。該結構是類似於圖1B之結構,其差別在於在此實施例中,該第一鈍化表面是一無機介電質,而該第二表面是一金屬表面。
圖2D顯示圖2C之基板在一感興趣的層X被選擇性地沉積於相對於該第一表面上方之保護層的該第二表面上的情形。參照該第一實施例,如上文併入之2016年5月5日所提交之臨時專利申請案第62/332,396號中所述,可採用氣相沉積技術及疏水性前驅物來選擇性地沉積金屬氧化物,以幫助在多個不同表面上相對於有機保護層之選擇性。關於金屬氧化物及其他感興趣的層之選擇性沉積的進一步資訊及實例提供如下。
或者,該感興趣的層X是一金屬層。2015年2月17日公告之美國專利第8,956,971號及2015年8月18日公告之美國專利第9,112,003號教示選擇性沉積金屬材料在相對於在其他材料表面(包括有機表面)的金屬表面上之製程,其全部揭示內容出於所有目的係以引用之方式併入本文中。
圖2E顯示圖2D之基板在該保護層自該第一表面被移除後的情形,留下一選擇性形成之介電質在金屬上(或金屬在金屬上)。參照第一實施例,該保護層可如上所述被移除,例如:藉由O 3蝕刻。
圖3A至圖3B繪示一第三實施例,用於選擇性鈍化相對於一第二表面的一第一表面,隨後選擇性沉積於相對於該鈍化之第一表面的該第二表面上。在所繪示之實施例中,首先進行圖2A至圖2D之程序。
圖3A顯示圖2D之基板在另一選擇性沉積之後的情形。在該感興趣的層X是一金屬性材料之情況下,該另一選擇性沉積可於該第一感興趣的層上方選擇性地形成一介電材料,作為一第二感興趣的層Y,選擇性地相對於該有機保護層。參照該第一及第二實施例,如上文及上文併入之2016年5月5日所提交之臨時專利申請案第62/332,396號中所述,可利用氣相沉積技術及疏水性前驅物來選擇性地沉積金屬氧化物,以幫助在多個不同表面上之選擇性,相對於有機保護層。關於金屬氧化物及其他感興趣的層之選擇性沉積的進一步資訊及實例提供如下。
圖3B顯示圖3A之基板在該保護層自該第一表面移除後的情形,留下一選擇性形成的介電質在金屬上。參照第一實施例,該保護層可如上所述被移除,例如:藉由O 3蝕刻。
如同該第一實施例,該第二及第三實施例可涉及在前述製程之前、中、後所進行之額外處理,例如:熱處理或化學處理。 保護層之選擇性沉積
如併入之2016年6月1日所提交之美國專利申請案第15/170,769號中所揭示,可將氣相沉積技術應用至有機保護層及聚合物,例如:聚醯亞胺層、聚醯胺層、聚脲層、聚胺基甲酸酯層、聚噻吩層等。相較於液態前驅物之應用,聚合物層之CVD可產生較大的厚度控制、機械可撓性、保形覆蓋及生物相容性。聚合物之序列沉積處理可在小型研究規模反應器中產生高的生長速率。類似於CVD,序列沉積製程可產生較大之厚度控制、機械可撓性及保形性。用語「序列沉積」以及「循環沉積」在本文中是用來應用在該基板是交替地或依序地暴露於不同前驅物之製程,無論該反應機制是否類似於ALD、CVD、MLD或其混合體。
參照圖4A及在一些實施例中,在方塊11中,提供一基板,其包括一第一表面及一第二表面。如本文所述,該第一及第二表面可具有不同的材料特性。在一些實施例中,該第一表面可以是一導電性表面,例如:一金屬或金屬性表面,且該第二表面可以是一介電性表面(參見例如:圖1A至圖1D)。在一些實施例中,該第一表面可以是一介電性表面,且該第二表面可以是一第二個不同之介電性表面。在一些實施例中,該第一表面可以是一介電性表面,例如:以氧化矽為主之材料,且該第二表面可以是一鈍化阻擋材料,例如:SAM(參見例如:圖2A至圖3B)。
在一些實施例中,該第一前驅物可在一第一溫度下汽化,以形成該第一氣相前驅物。在一些實施例中,該第一前驅物蒸氣係在一第二溫度下經由一氣體管線被輸送至該基板。在一些實施例中,該第二輸送溫度係高於該第一汽化溫度。在一些實施例中,在方塊12中,該基板係與一第一氣相前驅物或反應物接觸並持續一第一暴露時間段。在一些實施例中,該基板可在高於該第一溫度的一第三溫度下與該第一氣相前驅物接觸。
在一些實施例中,該第一前驅物暴露時間段是約0.01秒至約60秒、約0.05秒至約30秒、約0.1秒至約10秒或約0.2秒至約5秒。熟習之技藝人士可基於特定情況輕易地判定出最佳暴露時間段。在一些實施例中,在可使用分批反應器的情況下,可使用大於60秒之暴露時間段。
在一些實施例中,在方塊13中,該基板係與一第二氣相前驅物或反應物接觸並持續一第二暴露時間段。在一些實施例中,該第二前驅物可在一第四溫度下汽化,以形成該第二氣相前驅物。在一些實施例中,該第二反應物蒸氣是在一第二溫度下經由一氣體管線被輸送至該基板。在一些實施例中,該第五輸送溫度係高於該第一汽化溫度。在一些實施例中,該基板可在高於該第四溫度之一第六溫度下與該第二氣相前驅物接觸。在一些實施例中,該第六溫度可實質上相同於該第一氣相前驅物接觸該基板時之第三溫度。
在一些實施例中,該第二前驅物暴露時間段是約0.01秒至約60秒、約0.05秒至約30秒、約0.1秒至約10秒或約0.2秒至約5秒。熟習之技藝人士可基於特定情況輕易地判定出最佳暴露時間段。在一些實施例中,在可使用批式反應器的情況下,可使用大於60秒之暴露時間段。
在方塊14中,一有機層係選擇性地被沉積於相對該第二表面的該第一表面上。熟習之技藝人士將瞭解一有機層之選擇性沉積是上述接觸動作12-13之結果,而非一個別之動作。在一些實施例中,上述之接觸動作(方塊12-13)可被視為一沉積循環。這種選擇性沉積循環可被重複,直至於該基板上留下足夠厚度之層為止(方塊15),且沉積結束(方塊16)。該選擇性沉積循環可包括額外的動作,在每個重複中無需以相同順序或以相同方式進行,且可輕易地被延伸至更複雜之氣相沉積技術。舉例來說,一選擇性沉積循環可包括額外之反應物供應程序,例如:在每個循環中或在選定的循環中供應及移除(相對於該基板)額外的反應物。儘管未顯示,但該製程可另外包括處理該沉積層,以形成一聚合物(例如:UV處理、退火等)。該選擇性形成之有機層可作為一保護層,以抑制其上之沉積,且隨後在一感興趣的層之選擇性沉積中增加選擇性,如上所述。
參照圖4B,圖4A之氣相沉積製程可在一些實施例中包括一原子層沉積製程。在方塊21中,提供一基板,其包括一第一表面及一第二表面。該第一及第二表面可具有不同的材料特性。在一些實施例中,該第一表面可以是一導電性表面,例如:一金屬或金屬性表面,且該第二表面可以是一介電性表面(參見例如:圖1A至圖1D)。在一些實施例中,該第一表面可以是一介電性表面,且該第二表面可以是一第二個不同之介電性表面。在一些實施例中,該第一表面可以是一介電性表面,例如:以氧化矽為主之材料,且該第二表面可以是一鈍化阻擋材料,例如:SAM(參見例如:圖2A至圖3B)。
在一些實施例中,在方塊22中,一有機保護層之選擇性氣相沉積的序列沉積方法包括在一第一溫度下汽化一第一有機前驅物,以形成一第一前驅物蒸氣。在一些實施例中,該第一前驅物蒸氣係在一第二溫度下經由一氣體管線被輸送至該基板。在一些實施例中,該第二輸送溫度係高於該第一汽化溫度。在一些實施例中,在方塊23中,該基板是與該氣相第一前驅物接觸並持續一第一暴露時間段。在一些實施例中,該第一前驅物或其物種係以自飽和或自限制方式化學吸附於該基板上。該氣體管線可以是任何將該第一前驅物蒸氣從該源輸送至該基板之管道。在一些實施例中,該基板可在高於該第一溫度之一第三溫度下暴露於該第一前驅物蒸氣。
在一些實施例中,該第一前驅物暴露時間段是約0.01秒至約60秒、約0.05秒至約30秒、約0.1秒至約10秒或約0.2秒至約5秒。熟習之技藝人士可基於特定情況輕易地判定出最佳暴露時間段。在一些實施例中,在可使用批式反應器的情況下,可使用大於60秒之暴露時間段。
在方塊24中,過量之第一前驅物蒸氣(及任何揮發性反應副產物)可隨後自與該基板之接觸中移除。這類移除可藉由(例如)吹洗、泵吸、移動該基板離開該第一反應物所暴露的一腔室或區域或其組合來完成。在一些實施例中,一第一前驅物移除時間段,例如:吹洗時間段,是約0.01秒至約60秒、約0.05秒至約30秒、約0.1秒至約10秒或約0.2秒至約5秒。熟習之技藝人士可基於特定情況輕易地判定出最佳移除時間段。在一些實施例中,在可使用批式反應器的情況下,可使用大於60秒之移除時間段。
在一些實施例中,在方塊25中,該第二前驅物可在一第四溫度下汽化,以形成該第二氣相前驅物。在一些實施例中,該第二反應物蒸氣是在一第二溫度下經由一氣體管線被輸送至該基板。在一些實施例中,該第五輸送溫度係高於該第一汽化溫度。在一些實施例中,該基板可在高於該第四溫度之一第六溫度下與該第二氣相前驅物接觸。在一些實施例中,該第六溫度可實質上相同於該第一氣相前驅物接觸該基板時之第三溫度。在一些實施例中,在方塊26中,可使該基板暴露於一第二前驅物蒸氣並持續一第二暴露時間段。在一些實施例中,該第二反應物可與該基板上之該第一反應物的被吸附物種起反應。
在一些實施例中,該第一前驅物暴露時間段是從約0.01秒至約60秒、約0.05秒至約30秒、約0.1秒至約10秒或約0.2秒至約5秒。熟習之技藝人士可基於特定情況輕易地判定出最佳暴露時間段。在一些實施例中,在可使用批式反應器的情況下,可使用大於60秒之暴露時間段。
在一些實施例中,在方塊27中,過量之第二前驅物蒸氣(及任何揮發性反應副產物)自與該基板之接觸中被移除,使得該第一反應物蒸氣與該第二反應物蒸氣不會混合。在一些實施例中,該有機層之氣相沉積製程不使用電漿及/或自由基,且可被視為一熱氣相沉積製程。在一些實施例中,一第二前驅物移除時間段,例如:吹洗時間段,是從約0.01秒至約60秒、約0.05秒至約30秒、約0.1秒至約10秒或約0.2秒至約5秒。熟習之技藝人士可基於特定情況輕易地判定出最佳移除時間段。在一些實施例中,在可使用批式反應器的情況下,可使用大於60秒之移除時間段。
在方塊28中,一有機層係選擇性地沉積於相對該第二表面的該第一表面上。熟習之技藝人士將瞭解一有機層之選擇性沉積是上述接觸動作之結果,而非個別之動作。在一些實施例中,上述之接觸及移除(及/或停止供應)動作(方塊23-27)可視為一沉積循環。在一些實施例中,沉積循環可被重複,直至選擇性地沉積出所需厚度之有機層為止。此種選擇性沉積循環可被重複(方塊29),直至該基板上留下足夠厚度之層為止,且沉積結束(方塊30)。該選擇性沉積循環可包括額外的動作,在每個重複中無需以相同順序或以相同方式進行,且可輕易地被延伸至更複雜之氣相沉積技術。舉例來說,一選擇性沉積循環可包括額外之反應物供應程序,例如:在每個循環中或在選定的循環中供應及移除額外的反應物。儘管未顯示,但該製程可另外包括處理該沉積層,以形成一聚合物(例如:UV處理、退火等)。
可將各種的反應物用於上述製程。舉例來說,在一些實施例中,該第一前驅物或反應物是一有機反應物,例如:二胺,比如:1,6-二胺基己烷(DAH)或任何其他具有兩個反應性基團之單體。在一些實施例中,該第二反應物或前驅物亦是一有機反應物,其能夠在該些沉積條件下與該第一反應物之被吸附物種起反應。舉例來說,該第二反應物可以是酐,例如:呋喃-2,5-二酮(furan-2,5-dione)(順丁烯二酸酐)。所述之酐可包括二酐,例如:苯均四酸二酐(pyromellitic dianhydride, PMDA),或任何其他具有兩個反應性基團而會與該第一反應物起反應之單體。
在一些實施例中,該基板是在與該第二前驅物接觸之前就先與該第一前驅物接觸。因此,在一些實施例中,該基板是在與另一前驅物接觸之前,就先與胺(例如:二胺,比如:1,6-二胺基己烷(DAH))接觸。然而,在一些實施例中,該基板在與第一前驅物接觸之前可先與該第二前驅物接觸。因此,在一些實施例中,該基板在與另一前驅物接觸之前,先與酐(例如:呋喃-2,5-二酮(順丁烯二酸酐))或二酐(例如:苯均四酸二酐(PMDA))接觸。
在一些實施例中,不同的反應物可用來調整層特性。舉例來說,一聚醯亞胺層可使用4,4'-氧基二苯胺或1,4-二胺基苯替代1,6-二胺基己烷來沉積,以得到具有更多芳香性及增加之抗乾式蝕刻性的一更為剛性之結構。
在一些實施例中,該些反應物不含有金屬原子。在一些實施例中,該些反應物不含有半金屬原子。在一些實施例中,該些反應物中之一者包括金屬或半金屬原子。在一些實施例中,該些反應物含有碳及氫及以下元素中之一或多者:N、O、S、P或鹵化物(比如:Cl或F)。在一些實施例中,該第一反應物可包含(例如)己二醯氯(AC)。
沉積條件可視所選的反應物而有所不同,且可根據選擇予以最佳化。在一些實施例中,該反應溫度可選自約80℃至約250℃之範圍。在一些實施例中,該反應室壓力可以是從約1毫托至約1000托、約10 -5至約760托,或在一些實施例中,約1至10托。在一些實施例中,例如:在該選擇性沉積之有機層包括聚醯胺時,該反應溫度可選自約80℃至約150℃之範圍中。在一些實施例中,在該選擇性沉積之有機層包括聚醯胺時,該反應溫度可大於約80℃、90℃、100℃、110℃、120℃、130℃、140℃或150℃。在一些實施例中,在該選擇性沉積之有機層包括聚醯亞胺時,該反應溫度可大於約160℃、180℃、190℃、200℃或210℃。
舉例來說,對於在一單一晶圓沉積設備中使用PMDA及DAH之序列沉積聚醯亞胺,基板溫度可選自約150℃至約250℃或約170℃至約210℃之範圍,且壓力可選自約1毫托至約760托的範圍或在約100毫托至約100托之間。
在一些實施例中,用於本文所述之選擇性沉積製程之反應物可具有以下通式: (1)         R 1(NH 2) 2其中R 1可以是一脂族碳鏈,其包括1-5個碳原子、2-5個碳原子、2-4個碳原子、5個或更少個碳原子、4個或更少個碳原子、3個或更少個碳原子或2個碳原子。在一些實施例中,在該反應物或前驅物中的碳原子之間的鍵結可以是單鍵、雙鍵、參鍵或其某些組合。因此,在一些實施例中,反應物可包括兩個胺基。在一些實施例中,反應物之胺基可佔據一脂族碳鏈上之一個或兩個末端位置。然而,在一些實施例中,反應物之胺基可不佔據一脂族碳鏈上之任一末端位置。在一些實施例中,反應物可包括二胺。在一些實施例中,反應物可包括一有機前驅物,其係選自以下之群組:1,2-二胺基乙烷(l)、1,3-二胺基丙烷(l)、1,4-二胺基丁烷(l)、1,5-二胺基戊烷(l)、1,2-二胺基丙烷(l)、2,3-丁二胺、2,2-二甲基-1,3-丙二胺(l)。
在一些實施例中,用於本文所述之選擇性沉積製程之反應物可具有以下通式: (2)         R 2(COCl) 2其中R 2可以是一脂族碳鏈,其包括1-3個碳原子、2-3個碳原子或3個或較少的碳原子。在一些實施例中,在該反應物或前驅物中的碳原子之間的鍵結可以是單鍵、雙鍵、參鍵或其某些組合。在一些實施例中,反應物可包括氯化物。在一些實施例中,反應物可包括二醯基氯。在一些實施例中,反應物可包括一有機前驅物,其係選自以下的群組:乙二醯氯(I)、丙二醯氯及反丁烯二醯氯。
在一些實施例中,反應物包括一有機前驅物,其係選自以下之群組:1,4-二異氰酸丁烷或1,4-二異氰酸苯。在一些實施例中,反應物包括一有機前驅物,其係選自以下的群組:對酞醯二氯、烷二醯二氯(例如:己二醯二氯、辛二醯二氯、壬二醯二氯、癸二醯二氯)或對酞醯二氯。在一些實施例中,反應物包括一有機前驅物,其係選自以下之群組:1,4-二異硫氰酸苯或對苯二醛。在一些實施例中,被汽化之反應物亦可以是二胺,比如:1,4-二胺基苯、癸烷-1,10-二胺、4-硝基苯-1,3-二胺、4,4'-氧基二苯胺或乙二胺。在一些實施例中,反應物可以是對苯二甲酸雙(2-羥乙基)酯。在一些實施例中,反應物可以是羧酸,例如:烷基-、烯基-、鏈二烯基-二羧酸或三羧酸,比如:乙二酸、丙二酸、丁二酸、戊二酸或丙烷-1,2,3-三羧酸。在一些實施例中,反應物可以是芳族羧酸或二羧酸,比如:苯甲酸、苯-1,2-二羧酸、苯-1,4-二羧酸或苯-1,3-二羧酸。在一些實施例中,反應物可包括一或多個OH-基團,鍵結至一烴。在一些實施例中,反應物可選自以下之群組:二醇、三醇、胺基酚,比如,4-胺基酚、苯-1,4-二醇或苯-1,3,5-三醇。在一些實施例中,反應物可以是8-喹啉醇(8-quinolinol)。在一些實施例中,反應物可包括烯基氯矽烷,像是烯基三氯矽烷,比如:7-辛烯基三氯矽烷。
在一些實施例中,反應物可在約20℃或室溫之溫度下具有大於約0.5托、0.1托、0.2托、0.5托、1托或更大之蒸氣壓。在一些實施例中,反應物可具有小於約400℃、小於300℃、小於約250℃、小於約200℃、小於約175℃、小於約150℃或小於約100℃之沸點。 相對於有機表面選擇性沉積感興趣的層
在有機保護層沉積之後,一層(例如:金屬氧化物層)係被選擇性地沉積於該第二非鈍化表面上。在一些實施例中,選擇在較會在非鈍化表面上成核的反應物。
如已併入之2016年5月5日所提交之美國臨時專利申請案第62/332,396號中所揭示,選擇性沉積金屬材料及金屬氧化物相對於有機材料(例如:本文所揭示之保護層)可藉由使用疏水性反應物來促進。在一些實施例中,在該第一表面上選擇性地形成一保護層之後,藉由使該基板交替地且依序地與一第一疏水性反應物(其包含金屬氧化物之金屬)及一第二反應物(其包含氧)接觸而選擇性地沉積一金屬氧化物於該第二表面上。在一些實施例中,該第二反應物是水或H 2O 2。在一些實施例中,類似於圖4A之順序,該基板依序與該第一及第二反應物接觸,除了一非有機層係選擇性地沉積於該第二表面上或上方(參見例如:圖1A至圖3B)之外。
該疏水性反應物包括一或多個疏水性配體。在一些實施例中,該疏水性反應物包括兩個至四個疏水性配體。在一些實施例中,在疏水性反應物包括具有 n之價數/氧化態之金屬的情況下,該疏水性前驅物包含 n-1或 n-2個疏水性配體。
在一些實施例中,至少一疏水性配體僅包含C及H。在一些實施例中,至少一疏水性配體包含C、H及Si或Ge,但無其他元素。
在一些實施例中,烴配體包括以下中之一或多者: ●         C1-C10烴(單、雙或參鍵結) ○         烷基 ■         C1至C5烷基 ●        Me、Et、Pr、 iPr、Bu、 tBu ○         烯基 ■         C1至C6烯基 ○         環烴 ■         C3至C8 ●        環戊二烯基 ●        環庚二烯基 ●        環庚三烯基 ●        環己基 ●        彼等之衍生物 ○         芳香族 ■         C6芳環及彼等之衍生物
在一些實施例中,該疏水性反應物不包括親水性配體。然而,在一些實施例中,該疏水性反應物可包括一或兩個親水性配體。在一些實施例中,親水性配體包括氮、氧及/或鹵素基團。
在一些實施例中,親水性配體是烷基胺(-NR 2,其中每個R可以是烷基、氫)。在一些實施例中,該親水性配體可以是-NMe 2、-NEtMe或-NEt 2
在一些實施例中,親水性配體是烷氧化物,例如:-OMe、-OEt、-O iPr、-O tBu。
在一些實施例中,親水性配體包括鹵化物,例如:氯化物、氟化物或其他鹵化物。
在一些實施例中,該疏水性前驅物包含下式: ○         L nMX y,其中 ■         在一些實施例中,n是從1至6; ●         在一些實施例中,n是從1至4或3至4。 ■         在一些實施例中,y是從0至2; ●         在一些實施例中,y是從0至1。 ■         L是疏水性配體; ●         在一些實施例中,L是Cp或C1至C4烷基配體。 ■         X是親水性配體; ●         在一些實施例中,X是烷基胺、烷氧化物或鹵化物配體。 ■         M是金屬(包括第13族元素、B、Ga); ●         在一些實施例中,M具有+I至+VI之氧化態。 ○         在一些實施例中,M具有+IV至+V之氧化態。 ●         在一些實施例中,M可以是一過渡金屬。 ○         在一些實施例中,M是Ti、Ta、Nb、W、Mo、Hf、Zr、V或Cr。 ■         在一些實施例中,M是Hf、Zr、Ta或Nb。 ●         在一些實施例中,M是Zr。 ○         在一些實施例中,M是Co、Fe、Ni、Cu或Zn。 ○         在一些實施例中,該金屬不是W或Mo。 ●         在一些實施例中,M可以是一稀土金屬。 ○         在一些實施例中,M是La、Ce或Y。 ●         在一些實施例中,M可以是來自第2族至第13族之金屬。 ○         在一些實施例中,M是Ba、Sr、Mg、Ca或Sc。 ●         在一些實施例中,M不是貴金屬。
更一般來說,在一些實施例中,該選擇性ALD製程使用一金屬前驅物。在一些實施例中,該金屬前驅物之金屬可選自包含以下之群組:Al、Ti、Ta、Nb、W、Mo、Hf、Zr、V、Cr、Co、Fe、Ni、Cu、Zn、La、Ce、Y、Ba、Sr、Mg、Ca或Sc或其混合物。在一些實施例中,該金屬可以是Al。
在一些實施例中,該疏水性反應物是雙(甲基環戊二烯基)甲氧基甲基鋯(IV)((CpMe) 2-Zr-(OMe)Me)。
在一些實施例中,該疏水性反應物是雙(甲基環戊二烯基)甲氧基甲基鉿(IV)((CpMe) 2-Hf-(OMe)Me)。
在其他實施例中,該選擇性ALD製程使用一Al前驅物。Al前驅物之實例包括三甲基鋁(TMA)、三氯化鋁(AlCl 3)、二甲基異丙醇鋁(DMAI)、三乙基鋁(TEA)AlMe(OMe) 2、AlMe(OEt) 2、AlMe(OiPr) 2、 AlMe(OtBu) 2、AlEt(OMe) 2、AlEt(OEt) 2、AlEt(OiPr) 2、AlEt(OtBu) 2及三乙酸鋁。
在一些實施例中,該鋁前驅物是一異配位(heteroleptic)鋁化合物。在一些實施例中,該異配位鋁化合物包括一烷基及另一配體,例如:鹵化物(比如:Cl)。在一些實施例中,該鋁化合物是二甲基氯化鋁。在一些實施例中,該鋁前驅物是一烷基前驅物,其包括兩個不同的烷基作為配體。在一些實施例中,該鋁前驅物是一金屬有機化合物。在一些實施例中,該鋁前驅物是一有機金屬化合物。
在一些實施例中,該選擇性ALD製程利用包括至少一個烷基配體及至少一個烷氧基配體之鋁前驅物。在一些實施例中,該些烷氧基配體中之一或多者可以是一同位素配體。在一些實施例中,該些烷氧基配體中之一或多者可以是甲氧基或乙氧基配體,或較大的配體,例如:第三丁氧基配體。在一些實施例中,該些烷基配體中之一或多者可以是甲基配體。在一些實施例中,該些烷基配體中之一或多者可以是乙基配體。
在一些實施例中,鋁前驅物包含兩個烷基配體及一個烷氧基配體。例如,鋁前驅物可以是二甲基異丙醇鋁,如上所述。在一些實施例中,鋁前驅物包含一個烷基配體及兩個烷氧基配體。在一些實施例中,鋁前驅物包含AlMe(OMe) 2、AlMe(OEt) 2、AlMe(OiPr) 2、AlMe(OtBu) 2、AlEt(OMe) 2、AlEt(OEt) 2、AlEt(OiPr) 2及AlEt(OtBu) 2中之一或多者。
在一些實施例中,鋁前驅物包含一或多個醋酸根配體。例如,在一些實施例中,鋁前驅物包含三乙酸鋁。在一些實施例中,利用的是包含一或多個醋酸根配體之鋁前驅物,且在沉積該製程期間釋放醋酸酐。該醋酸酐有助於乾燥該表面並增加該製程的選擇性。
在一些實施例中,該第二反應物貢獻一或多個元素至選擇性沉積之材料。舉例來說,該第二反應物可以是用於沉積金屬氧化物之氧前驅物,或是用於沉積金屬氮化物之氮前驅物。
在一些實施例中,該第二反應物包括一氧前驅物。
在一些實施例中,該第二反應物包括H 2O。
在一些實施例中,該第二反應物包括O 3
在一些實施例中,該第二反應物包括H 2O 2
在一些實施例中,該第二反應物包括氧電漿、離子、自由基、原子O或氧之受激發物種。
在一些實施例中,該第二反應物包括一氮前驅物。
在一些實施例中,該第二反應物包括NH 3
在一些實施例中,該第二反應物包括N 2H 4
在一些實施例中,該第二反應物包括含氮電漿、離子、自由基、原子N或包括N的受激發物種。在一些實施例中,該氮反應物可包括具有對應氫物種的混合物。
在一些實施例中,可利用其他反應物來貢獻除N或O以外之元素至該沉積的材料。除了N或O第二反應物之外,還可使用這些反應物,或其它們本身可作為第二反應物。舉例來說,在一些實施例中,硫反應物可用於沉積硫化物,碳反應物可用於沉積碳,或矽反應物可用於沉積矽化物。
在一些實施例中,可使用有助於沉積一金屬或金屬性膜(例如:元素金屬膜)之一第二(或額外)反應物。舉例來說,在一些實施例中,可使用一氫反應物。
或者,如參照圖2D所述,一感興趣的金屬性導電膜可經選擇性地被沉積於相對於該有機保護層的該第二表面(金屬性表面)上。舉例來說,2015年2月17日公告之美國專利第8,956,971號及2015年8月18日公告之美國專利第9,112,003號教示選擇性沉積金屬材料於相對於非金屬表面(包括有機材料)的金屬表面上之製程,其全部揭示內容出於所有目的係以引用之方式併入本文中。參照圖3A,亦如上所述,可在移除該有機保護層之前,將另一介電層(金屬氧化物材料)選擇性地形成於該選擇性形成之金屬材料層上方。
在一些實施例中,一薄膜(其包含一感興趣之材料,例如:氧化鋁,比如:Al 2O 3或氮化鈦,比如:TiN)係選擇性地被沉積於相對於一或多個第二金屬表面的一或多個第一介電性或低k的表面上,例如:銅、鈷、氮化鈦或鎢表面。圖13中繪示一例示性製程。
在圖13之步驟1A中,預處理一基板,該基板包括低k表面及金屬表面。如上所述,在一些實施例中,預處理可包括將該基板暴露於電漿,例如:氫電漿。在一些實施例中,進行一非電漿預處理製程。舉例來說,在一些實施例中,該基板表面可暴露於一矽反應物,例如:N-(三甲基矽烷基)二甲胺(TMSDMA)或三甲基氯矽烷。該反應物可以一單一長脈衝,或以多個短脈衝的序列提供。在一些實施例中,該反應物是以約1至約60秒的1至25個脈衝提供。在脈衝之間,該反應室可用一惰性氣體吹洗。該吹洗可以是(例如)持續約1至30秒。
在一些實施例中,該表面係與具有式(R I) 3Si(NR IIR III)之烷基胺基矽烷接觸,其中R I為直鏈或支鏈的C1-C10烴基或直鏈或支鏈的C1-C5烷基或直鏈或支鏈的C1-C4烷基;R II為直鏈或支鏈的C1-C10烴基或直鏈或支鏈的C1-C5烷基、直鏈或支鏈的C1-C4烷基或氫;及R III為直鏈或支鏈的C1-C10烴基或直鏈或支鏈的C1-C5烷基或直鏈或支鏈的C1-C4烷基。
在一些實施例中,該表面係與具有通式(R I) 3SiA之矽烷接觸,其中R I為直鏈或支鏈的C1-C10烴基或直鏈或支鏈的C1-C5烷基或直鏈或支鏈的C1-C4烷基,且A為任何可與該含矽表面反應之配體。亦即,該矽烷經由配體A與該表面鍵結,或配體A與該表面形成鍵結,但隨後配體A可轉移遠離該表面及/或矽烷。
該預處理製程之溫度可以是(例如)從約100至約300℃。在該預處理製程期間之壓力可以是(例如)從約10 -5至約760托,或在一些實施例中,從約1至10托或約0.1至約10托。在一些實施例中,預處理或清潔程序可原位進行,亦即在與一選擇性沉積製程相同之反應室中進行。
在步驟1B中,一抑制劑(例如:有機材料,比如:聚醯亞胺)係選擇性地被沉積於該金屬表面上。該抑制劑可如本文所述來沉積。在一些實施例中,該沉積溫度是約160至約220℃。該反應室壓力可以是(例如)約10 -5至約760托,或在一些實施例中,約1至10托或約1至25托。在一些實施例中,用於沉積聚醯亞胺抑制劑之氣相沉積循環係進行約1至1000次。
在一些實施例中,聚醯亞胺抑制劑係藉由交替且依序地使該基板與DAH及PDMA接觸來沉積。該DAH及PDMA可以脈衝長度約0.1至10秒之脈衝,接著脈衝之間約0.1至10s之吹洗而交替地且依序地提供至該反應空間。
在步驟1C中,進行一清潔程序,以移除存在於該低k表面上之任何抑制劑。該清潔程序可包括H 2電漿處理。該清潔程序可如本文所述進行。在一些實施例中,該清潔程序是在約室溫至約400℃之溫度下進行。約10至1000瓦或約25至250瓦之電漿功率可用在(例如)以約10至500 sccm之流率的流動H 2中生成電漿。在抑制劑沉積之後的清潔時間可以是(例如)約1至600秒。
在步驟1D中,進行烘烤。該烘烤可(例如)使該抑制層緻密化且使其更堅固,例如:抵抗隨後之高溫程序。在一些實施例中,該烘烤是在約100至約800℃,例如:約300至約600℃之溫度下進行。在一些實施例中,該烘烤步驟是在大於300℃之溫度下進行。在一些實施例中,該烘烤步驟是在約400℃之溫度下進行。在一些實施例中,該烘烤時間是約1至約15分鐘。該烘烤可包括兩個步驟:在低溫下之一第一步驟,及在高溫下之一第二步驟。舉例來說,該烘烤可包括在約250℃之溫度下的一第一步驟,及在約400℃之溫度下的一第二步驟。在一些實施例中,該第一及第二步驟進行相同之時間量。在其他實施例中,它們進行不同之時間量。
在一些實施例中,該烘烤是在與後續該感興趣之材料的選擇性沉積相同之反應器中進行。在一些實施例中,該烘烤在與抑制劑之沉積相同的反應器中進行。在一些實施例中,該烘烤在一個別的反應室中進行。
在步驟1E中,材料係藉由一氣相沉積製程選擇性地沉積於相對於包含該抑制劑之金屬表面的該介電性表面上。選擇性沉積可如本文所述。
在一些實施例中,在步驟1E中,氧化鋁是藉由交替地使該基板與鋁反應物及氧反應物接觸來沉積。在一些實施例中,該鋁反應物可包括一或多種鋁前驅物。例如,該鋁反應物可包括三甲基鋁(TMA)、三氯化鋁(AlCl 3)、二甲基異丙醇鋁(DMAI)、三乙基鋁(TEA)、AlMe(OMe) 2、AlMe(OEt) 2、AlMe(OiPr) 2、AlMe(OtBu) 2、AlEt(OMe) 2、AlEt(OEt) 2、AlEt(OiPr) 2、AlEt(OtBu) 2及三乙酸鋁中之一或多者。在一些實施例中,該鋁前驅物是一異配位鋁化合物。在一些實施例中,該異配位鋁化合物包括一烷基及另一配體,例如:鹵化物(比如:Cl)。在一些實施例中,該鋁化合物是二甲基氯化鋁。在一些實施例中,該鋁前驅物是一烷基前驅物,其包括兩個不同烷基作為配體。
在一些實施例中,該鋁反應物包含一鋁前驅物,該鋁前驅物包含至少一個烷基配體及至少一個烷氧基配體。在一些實施例中,該些烷氧基配體中之一或多者可以是一異丙氧基配體。在一些實施例中,該些烷氧基配體中之一或多者可以是甲氧基或乙氧基配體,或較大的配體,例如:第三丁氧基配體。在一些實施例中,該些烷基配體中之一或多者可以是甲基配體。在一些實施例中,該些烷基配體中之一或多者可以是乙基配體。在一些實施例中,鋁前驅物包含兩個烷基配體及一個烷氧基配體。
在一些實施例中,鋁反應物包含一鋁前驅物,其具有一個烷基配體及兩個烷氧基配體。在一些實施例中,鋁反應物包括AlMe(OMe) 2、AlMe(OEt) 2、AlMe(OiPr) 2、AlMe(OtBu) 2、AlEt(OMe) 2、AlEt(OEt) 2、AlEt(OiPr) 2及AlEt(OtBu) 2中之一或多者。
在一些實施例中,鋁前驅物包含一或多個醋酸根配體。例如,在一些實施例中,鋁反應物包括三乙酸鋁。
在一些實施例中,該鋁前驅物是一金屬有機化合物。在一些實施例中,該鋁前驅物是一有機金屬化合物。
該氧反應物可包括(例如)水或H 2O 2。在一些實施例中,氧化鋁可藉由一原子層沉積製程來沉積,其中該基板係交替地及依序地與二甲基異丙醇鋁(DMAI)及水或H 2O 2接觸。在一些實施例中,在氧化鋁沉積期間,該反應室中之溫度是約150至約350℃。該反應物之脈衝時間可以是約0.1至約10秒,且在反應物脈衝之間的吹洗時間亦可以是約0.1至約10秒。該反應室壓力可以是(例如)約10 -5至約760托,或在一些實施例中,約1至10托。
在一些實施例中,在步驟1E中,氮化鈦是藉由交替地使該基板與一鈦反應物及一氮反應物接觸來沉積。該鈦反應物可包括(例如)TiCl 4。該氮反應物可包括(例如)NH 3。在一些實施例中,TiN可藉由一原子層沉積製程來沉積,其中該基板是交替地且依序地與TiCl 4及NH 3接觸。在一些實施例中,在氮化鈦沉積期間,該反應室中之溫度是約250至約500℃。該鈦反應物之脈衝時間可以是約0.2至約10秒,且該氮反應物之脈衝時間可以是約0.1至約10秒。在該些反應物脈衝之間的吹洗時間亦可以是約0.1至約10秒。該反應室壓力可以是(例如)約10 -5至約760托,或在一些實施例中,約1至10托。氮化鈦層是使用圖13中所繪示之製程流程來沉積。
在步驟1F中,對該基板進行一後沉積清潔步驟,以自該金屬表面移除該抑制劑,例如:用H 2電漿處理。該清潔步驟可包括H 2電漿處理。該清潔程序可如本文所述進行。在一些實施例中,該清潔步驟在約室溫至約400℃之溫度下進行。約10至2000瓦、25至1000瓦或25至250瓦之電漿功率可被用來在流動的H 2中生成電漿,(例如)以約10至500 sccm之流率。在該感興趣的層沉積之後,該清潔時間可以是(例如)約1至600秒。
在一些實施例中,一薄膜(其包含一感興趣之材料,例如:氧化鋁(例如:Al 2O 3)或氮化鈦(例如:TiN))係選擇性地沉積於相對於一或多個第二表面的一個三維結構之一第一表面上。該三維結構可包括(例如)一通孔或一溝槽。在一些實施例中,一抑制劑(例如:聚醯亞胺層)係非選擇性地沉積於該三維結構上。該抑制劑隨後被圖案化以暴露需要選擇性沉積之區域。舉例來說,異向性蝕刻可用於將該層自需要沉積之表面上移除。隨後進行氣相沉積,以在未覆蓋有抑制劑之區域上沉積該感興趣的層。
圖14繪示一例示性製程,用於在三維結構上選擇性沉積。圖中繪示一結構,其包括一溝槽或一通孔開口。如步驟2A中所示,一抑制劑係保形地沉積於該特徵上。該抑制劑可如本文所述來沉積。舉例來說,聚醯亞胺可如本文所述來氣相沉積。在步驟2B中,該抑制劑是藉由異向性蝕刻而自該溝槽之底部移除。如步驟2C中所示,蝕刻後,抑制劑被烘烤,且該感興趣的層選擇性地被沉積於相對於包括該抑制劑之表面的該溝槽底部之暴露表面上。最後,如步驟2D中所示,該抑制劑材料自該其餘表面移除。儘管未繪示,但額外預處理步驟可如本文所述來進行。 鈍化阻擋層
如上所述,一自組裝單層(SAM)可用以抑制一有機保護層之沉積,因此有助於該有機保護層選擇性沉積於其他表面上。因此,用語「阻擋」只是一標籤,且無需意指該有機保護層的沉積是100%去活化。如本文它處所述,即使是不完全之選擇性可足夠在一回蝕製程之後獲得一完全選擇性結構。
在一個實施例中,一鈍化阻擋層係形成於該第二表面上,以抑制沉積包括含硫之SAM。在一個實施例中,該第二表面是一金屬性表面。在一個實施例中,在SAM形成之前,該金屬性表面用酸處理來作預處理。 沉積設備
可用於本文所述之選擇性沉積製程的合適反應器的實例包括可商業採購的ALD設備。除ALD反應器之外,還可使用許多其他類型能夠生長有機保護層的反應器,包括CVD反應器、VDP反應器及MLD反應器。
參照圖1A至圖1D,本文所述之在介電質沉積上之選擇性介電質可在多達五個程序中進行。(1)預處理;(2)選擇性沉積有機保護層於該第一表面上;(3)自該第二表面上方部分回蝕(亦稱作「清潔」蝕刻)任何有機材料;(4)選擇性沉積介電質於該第二表面上;及(5)自該第一表面上方移除該有機保護層。
在一實施例中,該序列之設備的最小化可藉由結合(2)選擇性沉積有機保護層及(3)在一腔室中進行部分回蝕,及使用一集束型腔室來執行(4)選擇性沉積介電質於該第二表面上來達成。該預處理可在另一平台(例如:濕式清洗台)上進行,或經由調整特定配方來省略。移除有機保護層可在一個別灰化設備(例如:常用於移除光阻劑及其他有機材料之設備)中進行,或在該沉積腔室中使用與部分回蝕有機材料相同或類似之化學物質來進行。因此,該沉積階段及介入回蝕可在一平台中進行,該平台包括2個反應器(其包括4個或8個處理站,用於聚醯亞胺沉積及回蝕);及2個反應器(其包括4個或8個處理站,用於選擇性介電質沉積)。
在一些實施例中,一集束型製程設備包括三個或更多個反應室。舉例來說,一第一腔室可用於預處理及蝕刻加工中之一或兩者。一第二腔室可用於沉積有機層,且一第三腔室可用於選擇性沉積該感興趣的膜。一烘烤程序可在與該感興趣的膜之選擇性沉積相同之腔室中原位進行,或可在不同的腔室中進行。
在一些實施例中,如本文所述之選擇性沉積製程可在至少六個程序中進行,如圖13中所述。(步驟1A)預處理;(步驟1B)選擇性沉積抑制劑,例如:沉積有機層於第一表面上之沉積;(步驟1C)自該第二表面上方部分回蝕(亦稱作「清潔」蝕刻)任何有機材料;(步驟1D)烘烤該有機層;(步驟1E)選擇性沉積於第二表面上;及(步驟1F)自該第一表面上方移除該有機層。
參照圖5,提供用於原位進行聚合物沉積及有機材料回蝕之設備100。該設備100包括界定有一反應空間115的一反應室,該反應空間115是被配置以容納至少一個基板120。該設備100亦包括一第一反應物容器105,其被配置用來汽化一第一有機反應物110,以形成一第一反應物蒸氣。一氣體管線130將該第一反應物容器105流體地連接至一反應空間115,該反應空間115內可容納該基板120。該氣體管線130係被配置以將該第一反應物蒸氣從該第一反應物容器105選擇性地輸送至一入口歧管135,進而送至該反應空間115。該設備100亦包括容納一第二反應物145的一第二反應物容器140。在一些實施例中,該第二反應物145自然狀態下是氣態;在其他實施例中,該第二反應物容器140亦被配置成使該第二反應物145自一天然的液態或固態汽化。該第二反應物容器140與該入口歧管135係選擇性流體連通。該入口歧管135可包括一共用分配室(其橫跨該腔室寬度,且呈一噴頭或交叉流之型態),或可針對個別反應物維持通向該反應空間120之個別路徑。對於序列沉積實施例,可能需要保持反應物入口路徑分開,直至引入至該反應空間115為止,以避免多個反應物沿著共同流動路徑之表面反應,這可能會導致顆粒產生。在一些實施例中,該設備可包括額外的容器,用於供應額外之反應物。
所繪示之設備100亦包括一電漿源147。雖然示意性繪示為如同附接至該反應空間115,但熟習之技藝人士將瞭解,該電漿源可以是位於該反應空間115外部的一遠程電漿源,或可以是一原位電漿產生器,用於在該反應空間115內直接電漿產生(例如:電容耦合式)。替代地或另外地,一臭氧產生器可用來移除有機材料。
一或多個額外的氣體源150係選擇性流體連通該第一反應物容器105、該反應空間115及該電漿源147(達到與該反應空間115分開之程度)。該(些)氣體源150可包括可作為吹洗及載流氣體之惰性氣體,及用於電漿回蝕之其他氣體(例如:Ar/H 2)。如圖所示,來自該(些)氣體源之惰性氣體供應亦可以是選擇性流體連通該第二反應物容器140及任何其他所需的反應物容器,以作為一載流氣體。
根據本文所述之有機保護層沉積及回蝕方法,一控制系統125係與該氣體分佈系統之閥門連通。該控制系統125通常包括至少一個處理器及一記憶體,其被程式化以用於所需之加工處理。對於序列沉積加工處理,該些閥門係以交替地且重複地將該基板暴露於該些反應物之方式來操作,然而對於在一習知CVD製程中反應物之同時供應,可操作該些閥門,以將該基板同時地暴露於彼此具反應性的反應物。
來自該反應空間115之一排氣口155係經由一排氣管線160與一真空泵165連通。該控制系統125係被配置來操作該真空泵165,以維持一所需的操作壓力,並經由該排氣口155排出過量之反應物蒸氣及副產物。
該控制系統125亦可控制該設備100之各種組件中之壓力及溫度。舉例來說,該控制系統可被程式化以使該基板120保持在適合於進行該些程序之溫度下。在一實施例中,控制系統125亦被配置成使該第一反應物容器105中之該第一反應物110維持在一溫度A下,且被配置成使該反應空間115中之該基板120維持在一溫度B下,其中該溫度B係低於該溫度A。在一實施例中,該控制系統125或一個別的溫度控制亦被配置成使該氣體管線130維持在一溫度C下,其中該溫度C係高於該溫度A。
因此,該設備100包括源容器105、140,用於汽化並供應上文所述用於聚合物沉積之反應物(例如:一個容器用於二胺,且一個容器用於二酐前驅物)。該電漿源147係連通包括H 2及惰性氣體(例如:稀有氣體,比如:氬氣或氦氣)之來源的氣體源150。另外,該設備100包括一控制系統125,其被程式化以供應氣體並操作該電漿源之方式來進行本文所述之聚合物沉積及一氫電漿回蝕。該控制系統125將該基板120維持在180℃至220℃或約190℃至210℃之範圍內,使得該聚合物沉積及回蝕可在相同溫度下依序進行,而不需要將該基板120自該反應空間115移除。該回蝕可以是從0.5-600秒、1-120秒、1-60秒、1-20秒、2-15秒及5-15秒。作為另一實施例,一脈衝的臭氧(O 3)蝕刻製程可用於該回蝕製程。如熟習之技藝人士將瞭解,可修改製程條件用於較緩慢且更受控的蝕刻,以便部分回蝕來最小化該第一表面上之所需保護層之過度蝕刻。實際上,蝕刻速率很大程度上取決於用於O 3蝕刻聚合物之蝕刻溫度。將該保護層之選擇性沉積與該部分回蝕結合並不會使單一腔室之製程時間增加很多,因為該蝕刻製程通常相當短暫。該相同的設備及蝕刻劑亦可用於移除該保護層。
經配置用於聚合物沉積及回蝕之設備100可以是具有固體源容器的一蓮蓬頭反應器,用於DAH(具有約40ºC之汽化溫度)及PMDA(具有約170ºC之汽化溫度)。在一個實施例中,該電漿源147包括一原位直接電漿(例如:電容耦合式)設備,其供應氬氣及H 2,以用於原位回蝕。在另一實施例中,該設備100可以是一交叉流反應器,而非一噴頭反應器,但仍具有上文所述具有固體源容器105、140及直接電漿能力者。在另一實施例中,該電漿源147包括一遠程電漿被連接至該反應空間115,以供應產生自Ar/H 2電漿之電漿。在另一實施例中,該電漿源147可以連接至該反應空間115的一臭氧產生器來替代。該遠程電漿或臭氧產生器可(例如)被連接至一噴頭反應器。
該聚合物沉積設備100係理想地包括自清潔能力,以使該反應空間115及排氣管線160於多次沉積之後保持乾淨。在一些實施例中,上文提及用於回蝕之原位或遠程Ar/H 2電漿源147可經調適用於周期腔室清潔,可能是在高功率或溫度下,因其可在不存在生產基板下操作且僅是周期性地(而非每個晶圓)。或者,該聚合物沉積腔室可設置有一遠程電漿,供應NF 3蝕刻,或一臭氧供應,以進行定期腔室清潔。在一些實施例中,O 3/N 2供應可經調適用於周期性的腔室清潔,相較於聚合物部分回蝕或移除製程,可能是在較高功率或溫度下,因為該腔室清潔程序是在不存在生產基板下操作,且僅是周期性地(而非每個晶圓)。 線邊緣位置
參照圖6且在一些實施例中,如上所述,選擇性沉積於一第二表面上可藉由選擇性鈍化一第一表面,隨後再將一介電質(例如:ZrO 2)選擇性沉積於該第二表面上來完成。在所繪示之流程圖中,該第一表面可以是金屬性(例如:在一積體電路層間介電質(ILD)中之一嵌入性金屬特徵),且該第二表面可以是介電質(例如:該ILD)。在步驟1中,該鈍化可包括選擇性地沉積於相對於一部件之該第二表面的該第一表面上的一聚合物或其他有機材料。隨後,在步驟2中,進行一聚合物回蝕(有時稱作「清潔」蝕刻,以使該選擇性完全),以移除可能已沉積於該第二表面上之聚合物,而不自該第一表面移除所有的聚合物。在步驟3中,由於該聚合物係作為一保護層,因此一介電材料係選擇性地被沉積於該第二表面上。在步驟3中,可使用任何數目之適合的介電材料。在一些實施例中,該介電材料可選自ZrO 2及其他金屬氧化物,例如:過渡金屬氧化物或氧化鋁,或其他介電性氧化物,包括具有對以SiO 2為主之材料蝕刻選擇性的混合物,或是具有在蝕刻以SiO 2為主之材料的情況中緩慢蝕刻速率的混合物。儘管某些這類的金屬氧化物可具有高k值,高於5或甚至高於10,但它們較薄,係位在金屬化結構中避免顯著寄生電容之位置中,且有利地允許遮蔽表面以防止選擇性蝕刻氧化矽材料。在其他實施例中,該介電質可以是以氧化矽為主之材料,但可能較厚以作為如本文所述之蝕刻遮罩。在圖6之步驟4中,該聚合物鈍化係自該第一表面移除。
圖7繪示從該第二表面移除該鈍化(例如:聚合物或其他有機層)之回蝕時間對所形成之介電層的影響。更具體言之,可藉由選擇該中間聚合物回蝕製程之程度來控制經選擇性形成之介電層的邊緣之位置,相對於該底層金屬性表面與介電性表面之間的邊界。在一實施例中,聚合物係被沉積於相對於一部件之該第二表面的該第一表面上,如先前於圖6之步驟1中所述,如由圖7之第1列圖示可見。如由所沉積之聚合物繪示中可見,該聚合物於該第一表面上之沉積在該第一表面上方產生一較厚之聚合物層表面,且在該第二表面上方具有相對薄之聚合物層,因此在該第一/第二表面邊界處具有從該第一表面向下傾斜至該第二表面之聚合物厚度。隨後,如先前於圖6之步驟2中所述,可進行一聚合物回蝕並持續不同的持續時間(或以不同蝕刻速率持續相同持續時間,例如:藉由不同溫度或蝕刻劑濃度,或持續不同持續時間及不同蝕刻速率),以控制該聚合物層之厚度及形狀,如由圖7之第一行圖示的第2列至第6列可見。該回蝕可以是同向性或異向性。在一些實施例中,一聚合物蝕刻時間是最少,且該聚合物蝕刻不會移除足以使該第二表面暴露之聚合物,如由圖7之第2列圖示可見。在此情況下,隨後之選擇性介電質沉積未起作用,因為該第一及第二表面皆經保護層覆蓋,且即使有少量的介電質沉積,它會被用來移除該保護層的一剝離製程移除。在一些實施例中,選定一聚合物蝕刻時間以自該第二表面移除所形成之大部分聚合物,但留下一聚合物層前緣,其係在該第一/第二表面邊界上方延伸至該第二表面上,如由圖7之第3列圖示可見。在此情況下,隨後之介電質選擇性沉積及聚合物移除會在所沉積之介電質邊緣與該第一/第二表面邊界之間留下一間隙。在一些實施例中,選定一聚合物蝕刻時間以自該第二表面移除聚合物,且留下與第一/第二表面邊界對齊之一聚合物層邊緣。在此情況下,隨後之介電質選擇性沉積及聚合物移除會留下所沉積介電質之底面邊緣,與該第一/第二表面邊界對齊。在一些實施例中,選定一聚合物蝕刻時間以自該第二表面移除聚合物,並自該第一表面移除一部分的聚合物,且在一聚合物層前緣與第一/第二表面邊界之間存在一第一間隙,如由圖7之第5列圖示可見。在此情況下,隨後之介電質選擇性沉積及聚合物移除會留下該沉積的介電質,延伸於該第一/第二表面邊界上方且與該第一表面重疊。若執行該聚合物蝕刻時間持續一延長的時間段,且該聚合物蝕刻完全地將聚合物自該第一表面及該第二表面兩者移除,如由圖7之第6列圖示可見,則隨後之介電質沉積不具選擇性。
因此,如先前於圖6之步驟3及4中所述,可進行選擇性介電質選擇性沉積及部分的聚合物回蝕,以在該第二表面上之該選擇性沉積的介電層邊緣與該第一及第二表面之間的界線之間產生各種的關係,取決於其選擇性沉積之後的鈍化回蝕程度,如由圖6之第三行圖示的第2列至第6列之最右側圖像可見。在一些實施例中,由於該聚合物層鈍化該第二表面,因而未形成介電層,如由圖7之第2列圖示可見。在一些實施例中,在該第二表面上之介電質與該第一表面之間存在一間隙,如由圖7之第3列圖示可見。在一些實施例中,該介電層邊緣是與該第一/第二表面邊界對齊,如由圖7之第4列圖示可見。在一些實施例中,該介電層是與該第一表面重疊,如由圖7之第5列圖示可見。在一些配置中,由於沒有聚合物層鈍化該第一表面,因此該介電層形成於該第一表面及該第二表面兩者上。
圖8繪示該保護層沉積厚度對所形成之介電層的影響。更具體言之,可藉由選擇該中間聚合物保護層之厚度來控制該選擇性形成之介電層的邊緣之位置,相對於該底層金屬性表面及介電性表面之間的邊界。隨著保護層沉積厚度增加,該保護層在該第一表面及第二表面兩者上之厚度也增加。然而,由於該保護層是選擇性地被沉積在該第一表面上,因此在該第二表面上方之鈍化厚度增加少於該第一表面上方之保護層厚度。因此,鈍化回蝕、介電質沉積及鈍化移除將產生具有不同位置之選擇性介電層,相對於該第一/第二表面邊界。在一些實施例中,沉積的是保護層,這會在一選擇性沉積之介電層邊緣與該第一/第二表面邊界之間產生一間隙,如由圖8之第1行圖示可見。在一些實施例中,沉積的是較厚之聚合物層,這會在一選擇性沉積之介電層邊緣與該第一表面之間產生一較大的間隙,如由圖8之第2行圖示可見。
圖9繪示選擇性沉積之介電質厚度對所形成之介電層與第一/第二表面邊界之相對位置的影響。更具體言之,可藉由選擇該選擇性介電層之厚度來控制該選擇性形成之介電層邊緣的位置,相對於該底層金屬性表面與介電性表面之間的邊界。隨著選擇性地沉積在該第二表面上之介電質沉積厚度的增加,該介電質懸垂邊緣逐漸更延伸越過該第一/第二表面邊界。在一些實施例中,沉積的是介電層,這會產生一特定之懸垂結構,如由圖9之第1行圖示可見。在一些實施例中,沉積的是一較厚之介電層,這會產生一較大的懸垂,如由圖9之第2行圖示可見。在一些實施例中,沉積的甚至是更厚之介電層,這會在該第一表面上方產生一甚至更大之介電質懸垂,如由圖9之第3行圖示可見。對於某些後續製程,例如:異向性加工處理(比如:異向性反應性離子蝕刻),該懸垂之程度可遮蔽部分之第一表面並保護後續之加工處理。
因此,在一些實施例中,儘管類似於圖1D是大部分選擇性地形成於該介電性表面上方,該介電層仍是選擇性地被沉積,以產生一懸垂及/或與該金屬性特徵重疊。在一些實施例中,該介電層不包括一懸垂或重疊,且該介電質上之選擇性沉積的介電質之邊緣可與該金屬性特徵之邊緣對齊,或在該選擇性沉積之介電層與該金屬性特徵之邊緣之間可存在一間隙。由於本文所教示之選擇性沉積技術,該選擇性沉積之介電層可具有選擇性沉積特性之特徵,而不使用傳統遮罩及蝕刻來對該介電層圖案化。舉例來說,該介電層之邊緣可以低於45度之斜率傾斜,而非如光微影圖案化層特有之具有垂直或大幅度傾斜之側壁。無論是否使該選擇性沉積層遭受過一清潔蝕刻或部分回蝕,此特性的蝕刻輪廓皆可保持。
圖10A至圖10D繪示表面形態可如何影響一選擇性沉積之介電質與該第一及第二表面之間的邊界之間的關係。
圖10A繪示一平面結構,其導致一選擇性沉積之介電質2502之邊緣與該第一/第二表面邊界對齊。藉由一保護層2504 (例如:聚合物材料)所鈍化之該第一表面可由一金屬材料(例如:嵌入式金屬2506)所界定,且該第二表面可由一低k介電質(例如:層間介電質 2508,ILD)所界定。該保護層2504係選擇性地被沉積於該第一表面上方,且該介電層2502是選擇性地沉積於該第二表面上方,其中該介電層2502之邊緣係與該第一/第二表面邊界對齊。
圖10B繪示相對於該第二表面的一內凹的第一表面。如上所述,該第一表面可包括一金屬材料2506,其被嵌入並內凹於一低k介電材料2508(其界定該第二表面)中。該保護層2504係選擇性地形成於該凹部內之第一表面上方。該介電層2502係設置於該第二表面上方及該凹壁上方,其中該介電層2502之邊緣與該保護層2504之表面會合。移除該保護層2504將導致該介電層2502選擇性地形成於該第二表面上,但與該第一表面(例如:金屬性特徵2506)重疊。
圖10C繪示相對於該第二表面的一抬升的第一表面。該第一表面可由嵌入並突出於該第二表面(其可以是一低k介電材料2508)上方的一金屬性材料2506所界定。該保護層2504係設置於該第一表面(包括突出的側壁)上方,且因此至少部分地設置於該第二表面上方。該介電層2502係設置於該第二表面上方,但藉由該側壁上之鈍化材料2504的厚度而與該第一表面隔開。因此,在移除該保護層2504之後,在該介電層2502與該第一表面(例如:突出的金屬性特徵2606)之間存在一間隙。
圖10D繪示一些實施例中之一內凹的第一表面。在此情況下,在移除該保護層2504之後,在該第二表面上之選擇性沉積的介電層2502與該第一表面之間留下一間隙。在此情況下,該間隙會沿用該第二表面之一垂直側壁的形態,並隨後暴露於後續的加工處理。
因此,圖7至圖10D繪示可被調整以調節一選擇性沉積之介電質2502的位置(例如:在介電性第二表面上)之變數,相對於該第一及第二表面之間的一界線(例如:在一金屬性特徵2506與低k介電質2508之間)。特定言之,圖7顯示保護層回蝕之程度或時間可如何影響該相對位置;圖8顯示該選擇性沉積之保護層的厚度可如何影響該相對位置;圖9顯示該選擇性沉積之介電層的厚度可如何影響該相對位置;且圖10A至圖10D顯示該第一及第二表面之表面形態可如何影響該相對位置。因此,可調整這些變數以影響該第二表面上之選擇性沉積的介電質是否與該第一表面對齊、是否具有相對於該第一表面的一間隙或是否與該第一表面重疊。 實例應用
圖11A至圖11E繪示一裝置及製作裝置之製程,且在一些實施例中具有改良之電氣隔離。圖11A繪示一部分製造的積體電路,其具有一嵌入式金屬性特徵2606,其所界定的一第一表面與由該周圍低k材料2608所界定之一第二表面齊平,類似於圖10A中所示之平面結構。該金屬性特徵包括一第一材料,其更包括Cu 2610及TaN障壁材料2612,設置於一第一低k介電材料2608內。
圖11B繪示圖11A之裝置接續該第一材料上方之一導電障壁層2614的情形。在一些實施例中,該障壁層2614可以是W。雖然繪示為突出,但在一些實施例中,在Cu 2610線或通孔上方之該障壁材料2614可嵌入該周圍之低k材料2608中並與其齊平。
圖11C繪示圖11B之裝置接續現由該金屬性障壁層2614(W)所界定之第一表面上方之保護層2604的選擇性沉積之情形,其中該第一表面之邊緣是暴露的。在一些實施例中,該保護層2604可以是一有機材料,例如:聚合物。在一些實施例中,在該選擇性沉積的保護層2604之後,接著的是回蝕該保護層材料至足以使一些金屬性第一表面暴露。
圖11D繪示圖11C之裝置接續該第二表面上方之的一介電層2602的選擇性沉積,進而與該金屬性第一表面重疊的情形。在一些實施例中,該介電層2602可以是一高k材料。在一些實施例中,該高k材料可以是ZrO 2。在一些實施例中,該選擇性介電層2602可以是一低k材料,例如:SiOC、Al 2O 3及SiN。在一些實施例中,該選擇性沉積之介電材料2602可作為對後續蝕刻通過低k材料2608的一蝕刻終止,以打開暴露該金屬性障壁材料2614之溝槽或通孔。
圖11E繪示圖11D之裝置接續移除該聚合物保護層2604的情形,藉此暴露該底層之金屬層表面(在此情況下是障壁材料2614的表面)。該選擇性介電質2602與由該障壁層2614所界定之該金屬性第一表面重疊,且降低在一後續的金屬性特徵(例如:覆蓋的金屬線或通孔)形成於其上時的短路風險。尤其,一低k材料係沉積於圖11E之結構上方,且多個開口被產生,並以金屬填充。該些開口係藉由遮罩及選擇性低k蝕刻來製作,且蝕刻終止於該選擇性沉積之介電質(例如:ZrO 2)上。該選擇性沉積之介電質2602與由該障壁層2614所界定之金屬性特徵的重疊(其源於在鈍化、回蝕、介電質沉積及/或形貌變化期間之情況的選擇)防止未對準。因此,該重疊會防止與相鄰的金屬性特徵接觸,或較低之低k材料2608之不期望的蝕刻。應注意,該選擇性沉積之介電材料2602可留在該最終積體電路裝置中,作為ILD層之間的一蝕刻終止。雖然在金屬化製程中通常是避免高k材料,但寄生電容是最小的。最小的寄生電容歸因於該高k材料在該低k材料上方的主要位置,該高k材料之薄度歸因於其功能,且對於高k材料上方之此介電質覆蓋層,高選擇性之優勢超越由材料選擇所引起之輕微寄生電容。當然,高蝕刻選擇性亦可利用將較低k材料選擇性地沉積於ILD上來達成。
圖12A至圖12B繪示在一些實施例中具有氣隙之裝置及製作裝置之製程,該些氣隙基於各種理由可能是期望的,例如:降低積體電路中緊密間隔的金屬性特徵(例如:金屬線)之間的寄生電容。圖12A繪示一些實施例之部分製造的積體電路之平的表面,類似於先前顯示於圖10A中之裝置。該起始結構可以是金屬性特徵2706(例如:具有介電性及障壁襯料之Cu線)所界定的一第一表面,該金屬性特徵2706被一介電材料2608(例如:低k的ILD)所界定的一第二表面所包圍。一保護層2704係選擇性地被沉積於該第一表面上方,且執行一回蝕來暴露該第二表面,如此地將該保護層2704留在該第一表面上方及部分地留在該第二表面上方。一介電質2702係選擇性地被沉積於該第二表面上方,其中該介電層邊緣在該第二表面上與該第一/第二表面邊界間隔開來。圖12B繪示圖12A之裝置接續移除該保護層2704的情形,以暴露該第一表面並部分地暴露先前由該第一材料所覆蓋之第二表面,從而在該選擇性沉積之介電材料與該第一表面(金屬性特徵2706)之間留下一間隙2710。隨後,選擇性地蝕刻該暴露之第二材料在緊鄰該金屬性特徵之那些間隙2710中形成空洞2712。在一些實施例中,被選擇性蝕刻之該第二材料是SiO。在一些實施例中,選擇性蝕刻是一HBr乾式蝕刻。一HBr乾式蝕刻可以約6-8奈米/分選擇性地蝕刻氧化矽,而某些其他材料係以較低速率蝕刻,例如:氮化矽(<0.3奈米/分)及氧化鋯(<0.3奈米/分),且若無氯氣(例如:Cl 2)或六氟化硫(例如:SF 6)的話,可能不會蝕刻鎢。以足夠低之保形性沉積一第三材料2714(例如:標準低k材料)會在鄰近該金屬性特徵2706之橫向側邊的該低k材料2708內留下氣隙2716。如本領域中所知,該空氣之空洞降低該ILD的總k值,且降低金屬性特徵之間的寄生電容。
雖然已闡述某些實施例及實例,但熟習之技藝人士當明瞭,申請專利範圍之範疇延伸超過經明確揭示的實施例至其他替代實施例及/或用途及明顯修改及其等效物。
11,12,13,14,15,16:方塊 21,22,23,24,25,26,27,28,29,30:方塊 100:設備 105:第一反應物容器 110:第一有機反應物 115:反應空間 120:基板 125:控制系統 130:氣體管線 135:入口歧管 140:第二反應物容器 145:第二反應物 147:電漿源 150:氣體源 155:排氣口 160:排氣管線 165:真空泵 2502:介電質 2504:保護層 2506:金屬性材料 2508:低k介電材料 2602:介電層 2604:保護層 2606:金屬性特徵 2608:低k材料 2610:Cu 2612:TaN障壁材料 2614:障壁層 2702:介電質 2704:保護層 2706:金屬性特徵 2708:低k材料 2710:間隙 2712:空洞 2714:第三材料 2716:氣隙
[圖1A]係根據第一實施例之部分基板的剖面示意圖,其中該基板具有不同組成之第一及第二表面。 [圖1B]係圖1A之基板在該第一表面的選擇性鈍化之後的剖面示意圖。 [圖1C]係圖1B之基板在選擇性沉積於該第二表面之後的剖面示意圖。 [圖1D]係圖1C之基板在該鈍化材料自該第一表面被移除之後的剖面示意圖。 [圖2A]係根據第二實施例之部分基板的剖面示意圖,其中該基板具有不同組成之第一及第二表面,且該第二表面上形成有一鈍化阻擋材料。 [圖2B]係圖2A之基板在該第一表面的選擇性鈍化之後的剖面示意圖。 [圖2C]係圖2B之基板在該鈍化阻擋材料自該第二表面被移除之後的剖面示意圖。 [圖2D]係圖2C之基板在選擇性沉積於該第二表面之後的剖面示意圖。 [圖2E]係圖2D之基板在該鈍化材料自該第一表面被移除之後的剖面示意圖。 [圖3A]係根據第三實施例顯示圖2D之基板在將另一材料選擇性沉積於該第二表面上方之後的剖面示意圖。 [圖3B]係圖3A之基板在該鈍化材料自該第一表面被移除之後的剖面示意圖。 [圖4A]係大致繪示製程的流程圖,用於選擇性沉積一有機保護層。 [圖4B]係大致繪示原子層沉積(ALD)製程的流程圖,用於選擇性沉積一有機層。 [圖5]係繪示一裝置,其被配置成用於選擇性沉積一聚合物層及從不要的表面原位回蝕。 [圖6]係根據實施例大致繪示製程的流程圖,用於在以有機材料選擇性鈍化第一表面之後,將一介電層選擇性沉積於第二表面上。 [圖7]係利用具有不同組成之第一及第二表面的部分基板的剖面示意圖所呈現的流程圖,且大致繪示在該鈍化材料上之回蝕程度對所形成之介電層與該第一及第二表面之界線的關係之影響。 [圖8]係利用具有不同組成之第一及第二表面之部分基板的剖面示意圖所呈現的流程圖,且大致繪示保護層厚度對所形成之介電層與該第一及第二表面之界線的關係之影響。 [圖9]係利用具有不同組成之第一及第二表面之部分基板的剖面示意圖所呈現的流程圖,且大致繪示介電層厚度對所形成之介電層與該第一及第二表面之界線的關係之影響。 [圖10A]係部分基板之剖面示意圖,該基板具有不同組成之齊平的第一及第二表面,且保護層及介電層分別選擇性地沉積於其上。 [圖10B]係部分基板的剖面示意圖,該基板具有不同組成之第一及第二表面,其中該第一表面相對於該第二表面內凹,且保護層及介電層分別選擇性地沉積於其上。 [圖10C]係部分基板的剖面示意圖,該基板具有不同組成之第一及第二表面,其中該第一表面相對於該第二表面被抬高,且保護層及介電層分別選擇性地沉積於其上。 [圖10D]係部分基板的剖面示意圖,該基板具有不同組成之第一及第二表面,其中該第一表面相對於該第二表面內凹,且保護層及介電層分別選擇性地沉積於其上。 [圖11A]係部分基板的剖面示意圖,該基板具有一嵌入式金屬特徵。 [圖11B]係圖11A之基板在一金屬帽形成以界定一第一表面之後的剖面示意圖。 [圖11C]係圖11B之基板在選擇性鈍化沉積及回蝕之後的剖面示意圖,留下鈍化膜於該金屬帽上方且金屬帽之邊緣暴露出來。 [圖11D]係圖11C之基板在一介電材料選擇性沉積於該基板的低k表面上方之後的剖面示意圖,其中所沉積之介電質抵抗低k材料之蝕刻且與該金屬帽重疊。 [圖11E]係圖11D之基板在該保護層被移除之後的剖面示意圖。 [圖12A]係顯示具有不同組成之第一及第二表面之部分基板的剖面示意圖之流程圖,且大致繪示該第一表面之選擇性鈍化、以留下鈍化與該第二表面重疊之方式回蝕及選擇性沉積一介電蝕刻遮罩於該第二表面之其餘部分上。 [圖12B]係圖12A之基板在該保護層被移除的剖面示意圖,留下間隙於該第一表面與該介電蝕刻遮罩之間,選擇性蝕刻暴露於該些間隙中之該低k材料,且沉積以留下氣隙於該基板內。 [圖13]係繪示選擇性沉積之製程的流程圖。 [圖14]係繪示在三維結構(例如:溝槽或通孔)上選擇性沉積之製程的流程圖。

Claims (20)

  1. 一種方法,用於將一金屬氧化物選擇性地沉積於一基板之一第二表面上,其相對於該基板之一第一表面,其中該第一及第二表面具有不同之組成,該方法依序包括: 選擇性地自氣相反應物形成一有機保護層於相對於該第二表面的該第一表面上;及 選擇性地自氣相反應物沉積金屬氧化物於相對於該保護層的該第二表面上。
  2. 如請求項1所述之方法,其中該第一表面包括一金屬或金屬性材料,且該第二表面包括一介電材料。
  3. 如請求項1所述之方法,其中該金屬氧化物包括氧化鋯、氧化鉿、氧化鋁、氧化鈦、氧化鉭、氧化釔、氧化鑭、其他過渡金屬氧化物或其混合物。
  4. 如請求項1所述之方法,其中該金屬氧化物包括氧化鋁。
  5. 如請求項4所述之方法,其中該氧化鋁係使用一鋁前驅物來沉積,該鋁前驅物包含三甲基鋁(TMA)、二甲基氯化鋁、三氯化鋁(AlCl 3)、二甲基異丙醇鋁(DMAI)或三乙基鋁(TEA)。
  6. 如請求項4所述之方法,其中該氧化鋁係使用一鋁前驅物來沉積,該鋁前驅物包含一異配位鋁化合物,該異配位鋁化合物包括一烷基及另一配體。
  7. 如請求項4所述之方法,其中該氧化鋁係使用一鋁前驅物來沉積,該鋁前驅物包含一金屬有機鋁化合物或一有機金屬鋁化合物。
  8. 如請求項4所述之方法,其中該氧化鋁係使用一鋁前驅物來沉積,該鋁前驅物包含一鋁烷基化合物,該鋁烷基化合物包括兩個不同烷基作為配體。
  9. 如請求項4所述之方法,其中該氧化鋁係使用一鋁前驅物來沉積,該鋁前驅物包含至少一個烷基配體及至少一個烷氧基配體。
  10. 如請求項9所述之方法,其中該鋁前驅物具有一個烷基配體及兩個烷氧基配體。
  11. 如請求項9所述之方法,其中該鋁前驅物具有兩個烷基配體及一個烷氧基配體。
  12. 如請求項4所述之方法,其中該氧化鋁係使用一鋁前驅物來沉積,該鋁前驅物包括AlMe(OMe) 2、AlMe(OEt) 2、AlMe(OiPr) 2、AlMe(OtBu) 2、AlEt(OMe) 2、AlEt(OEt) 2、AlEt(OiPr) 2及AlEt(OtBu) 2中之一或多者。
  13. 如請求項4所述之方法,其中該氧化鋁係使用一鋁前驅物來沉積,該鋁前驅物包含一或多個醋酸根配體。
  14. 如請求項13所述之方法,其中該鋁前驅物包含三乙酸鋁。
  15. 如請求項1所述之方法,其中該金屬氧化物係透過一原子層沉積製程而被選擇性地沉積。
  16. 如請求項1所述之方法,更包括在選擇性地形成該有機保護層之前,處理該第一及第二表面。
  17. 如請求項16所述之方法,其中處理包括將該基板暴露於一電漿或一矽烷。
  18. 如請求項16所述之方法,其中處理包括將該基板暴露於N-(三甲基矽烷基)二甲胺(TMSDMA)、三甲基氯矽烷或烷基胺基矽烷。
  19. 如請求項1所述之方法,其中選擇性地形成一有機聚醯亞胺層包括選擇性地沉積一聚醯亞胺層於相對該第二表面的該第一表面上。
  20. 如請求項19所述之方法,更包括利用UV處理或退火來處理該沉積層,以形成一聚合物層。
TW111128044A 2021-07-30 2022-07-27 選擇性鈍化及選擇性沉積 TW202311556A (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US17/390,608 2021-07-30
US17/390,608 US20210358745A1 (en) 2018-10-02 2021-07-30 Selective passivation and selective deposition

Publications (1)

Publication Number Publication Date
TW202311556A true TW202311556A (zh) 2023-03-16

Family

ID=85061417

Family Applications (1)

Application Number Title Priority Date Filing Date
TW111128044A TW202311556A (zh) 2021-07-30 2022-07-27 選擇性鈍化及選擇性沉積

Country Status (3)

Country Link
KR (1) KR20230019044A (zh)
CN (1) CN115679286A (zh)
TW (1) TW202311556A (zh)

Also Published As

Publication number Publication date
KR20230019044A (ko) 2023-02-07
CN115679286A (zh) 2023-02-03

Similar Documents

Publication Publication Date Title
US11145506B2 (en) Selective passivation and selective deposition
TWI794209B (zh) 選擇性沉積之方法、用於有機層沉積之設備以及積體電路金屬化結構
US9587307B2 (en) Enhanced deposition of noble metals
JP2009158927A (ja) Ald法又はcvd法による金属含有膜の調製
KR20210122693A (ko) 금속 표면에 대해 유전체 표면 상으로 실리콘 산화물 막의 선택적 증착
TW202140832A (zh) 氧化矽在金屬表面上之選擇性沉積
US20210358745A1 (en) Selective passivation and selective deposition
US20230140812A1 (en) Selective thermal deposition method
KR20230062781A (ko) 열 및 플라즈마 강화 방법을 사용한 선택적 증착
US20220084817A1 (en) Silicon oxide deposition method
TW202311556A (zh) 選擇性鈍化及選擇性沉積
KR20240060762A (ko) 선택적 패시베이션 및 선택적 증착
TW202325887A (zh) 使用電漿選擇性沉積含矽及氧之材料
TW202041701A (zh) 金屬氧化物在金屬表面上之選擇性沉積