TW202304018A - Power generation element, power generation device, electronic device, and method for manufacturing power generation element - Google Patents

Power generation element, power generation device, electronic device, and method for manufacturing power generation element Download PDF

Info

Publication number
TW202304018A
TW202304018A TW111111916A TW111111916A TW202304018A TW 202304018 A TW202304018 A TW 202304018A TW 111111916 A TW111111916 A TW 111111916A TW 111111916 A TW111111916 A TW 111111916A TW 202304018 A TW202304018 A TW 202304018A
Authority
TW
Taiwan
Prior art keywords
electrode
substrate
power generating
generating element
power generation
Prior art date
Application number
TW111111916A
Other languages
Chinese (zh)
Inventor
後藤博史
坂田稔
魯健
Original Assignee
日商Gce研究開發有限公司
國立研究開發法人產業技術總合研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日商Gce研究開發有限公司, 國立研究開發法人產業技術總合研究所 filed Critical 日商Gce研究開發有限公司
Publication of TW202304018A publication Critical patent/TW202304018A/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J45/00Discharge tubes functioning as thermionic generators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N11/00Generators or motors not provided for elsewhere; Alleged perpetua mobilia obtained by electric or magnetic means

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Photovoltaic Devices (AREA)
  • Power Conversion In General (AREA)

Abstract

To provide a power generation element, a power generation device, an electronic device, and a method for manufacturing a power generation element, which can suppress a decrease in power generation efficiency due to the adhesion of nanoparticles. A power generation element 1 for converting thermal energy into electrical energy comprises: a first substrate 15 and a second substrate 16 spaced apart from each other along a first direction Z; a first electrode 11 provided on the main surface of the first substrate 15; a second electrode 12 spaced apart from the first electrode 11 and provided on the main surface of the second substrate 16, and having a higher work function than the first electrode 11; an intermediate part 14 provided between the first electrode 11 and the second electrode 12 and containing a solvent 142 in which nanoparticles 141 are dispersed; a support part 17 provided in contact with and between the first substrate 15 and the second substrate 16 and spaced apart from the immediate part 14, and containing metal; and a protective part 22 that is provided between the intermediate part 14 and the support part 17, is in contact with the intermediate part 14, and has insulating properties.

Description

發電元件,發電裝置,電子機器及發電元件的製造方法Power generating element, power generating device, electronic device and method for manufacturing power generating element

此發明是關於將熱能量變換成電氣能量的發電元件,發電裝置,電子機器及發電元件的製造方法。This invention relates to a power generating element for converting thermal energy into electrical energy, a power generating device, an electronic device and a method for manufacturing the power generating element.

近年來,盛行利用熱能量來產生電氣能量的發電元件的開發。特別是關於不需要溫度差的發電元件,例如專利文獻1所揭示的發電元件等被提案。如此的發電元件是與利用給予電極溫度差來產生電氣能量的構成作比較,可期待朝各種的用途利用。In recent years, the development of power generating elements that utilize thermal energy to generate electrical energy has been flourishing. In particular, regarding a power generating element that does not require a temperature difference, for example, the power generating element disclosed in Patent Document 1 has been proposed. Such a power generating element is expected to be used in various applications as compared with a configuration in which electrical energy is generated by applying a temperature difference to electrodes.

在專利文獻1揭示一種熱電元件,具備: 具有第1主面的第1基板; 具有與第1主面對向的第2主面的第2基板; 與第2基板隔離的第1電極部; 具有與第1電極部不同的功函數的第2電極部; 被設在第1基板與第2基板之間,和第1電極部及第2電極部隔離,含有金屬的支撐部;及 被設在第1電極部與第2電極部之間,含有奈米粒子的中間部。 [先前技術文獻] [專利文獻] A thermoelectric element is disclosed in Patent Document 1, which has: a first substrate having a first major surface; a second substrate having a second main surface facing the first main surface; a first electrode portion isolated from a second substrate; a second electrode portion having a work function different from that of the first electrode portion; a metal-containing support portion disposed between the first substrate and the second substrate, isolated from the first electrode portion and the second electrode portion; and An intermediate portion containing nanoparticles is provided between the first electrode portion and the second electrode portion. [Prior Art Literature] [Patent Document]

[專利文獻1] 日本特開2020-47631號公報[Patent Document 1] Japanese Patent Laid-Open No. 2020-47631

(發明所欲解決的課題)(Problem to be solved by the invention)

在此,就不需要溫度差的發電元件而言,是一方面期待不間斷的發電,一方面恐有奈米粒子附著於含金屬的支撐部的側面之虞。此時,其課題,可舉因為被分散於電極間的奈米粒子的量減少,所以隨著時間經過造成發電效率的降低。此點,就專利文獻1而言,是難以解決上述的課題。Here, in the case of a power generating element that does not require a temperature difference, uninterrupted power generation is expected, but there is a risk of nanoparticles adhering to the side surfaces of the metal-containing support. In this case, as a problem, since the amount of nanoparticles dispersed between the electrodes decreases, the power generation efficiency decreases over time. In this regard, Patent Document 1 makes it difficult to solve the above-mentioned problems.

於是,本發明是有鑑於上述的問題點而研發出者,其目的是在於提供一種可抑制發電效率的降低之發電元件,發電裝置,電子機器及發電元件的製造方法。 (用以解決課題的手段) Therefore, the present invention was developed in view of the above-mentioned problems, and an object of the present invention is to provide a power generation element, a power generation device, an electronic device, and a method of manufacturing a power generation element that can suppress a decrease in power generation efficiency. (means to solve the problem)

第1發明的發電元件,係將熱能量變換成電氣能量的發電元件,其特徵係具備: 沿著第1方向來彼此隔離而設的第1基板及第2基板; 被設在前述第1基板的主面上之第1電極; 與前述第1電極隔離而設在前述第2基板的主面上,具有比前述第1電極更高的功函數之第2電極; 被設在前述第1電極與前述第2電極之間,含有使奈米粒子分散的溶媒之中間部; 接觸於前述第1基板與前述第2基板之間而設,和前述中間部隔離,含有金屬之支撐部;及 被設在前述中間部與前述支撐部之間,和前述中間部接觸,具有絕緣性之保護部。 The power generating element of the first invention is a power generating element that converts thermal energy into electrical energy, and is characterized in that it has: a first substrate and a second substrate arranged in isolation from each other along the first direction; a first electrode provided on the main surface of the first substrate; A second electrode having a higher work function than the first electrode, provided on the main surface of the second substrate separated from the first electrode; An intermediate part that is provided between the first electrode and the second electrode and contains a medium for dispersing the nanoparticles; a metal-containing support portion provided in contact with the first substrate and the second substrate, and isolated from the intermediate portion; and An insulating protective portion provided between the intermediate portion and the support portion, in contact with the intermediate portion.

第2發明的發電元件,其特徵為在第1發明中,前述保護部係與前述支撐部隔離而設。A power generating element according to a second invention is characterized in that in the first invention, the protective portion is provided separately from the supporting portion.

第3發明的發電元件,其特徵為在第2發明中,前述保護部係接觸於前述第1電極與前述第2電極之間而設。A power generating element according to a third invention is characterized in that in the second invention, the protective portion is provided in contact between the first electrode and the second electrode.

第4發明的發電元件,其特徵為在第1發明中,前述支撐部係與前述第1電極及前述第2電極隔離。A power generating element according to a fourth invention is characterized in that in the first invention, the support portion is separated from the first electrode and the second electrode.

第5發明的發電元件,其特徵為在第1發明中,更具備被設在前述第1基板及前述第2基板的至少任一者的貫通部。A power generating element according to a fifth invention is characterized in that in the first invention, it further includes a penetrating portion provided on at least one of the first substrate and the second substrate.

第6發明的發電元件,其特徵為在第5發明中,從前述第1方向看,前述貫通部係與前述第1電極及前述第2電極隔離。A power generating element according to a sixth invention is characterized in that in the fifth invention, the penetrating portion is isolated from the first electrode and the second electrode when viewed from the first direction.

第7發明的發電裝置,其特徵係具備: 第1發明的發電元件; 與前述第1電極電性連接的第1配線;及 與前述第2電極電性連接的第2配線。 The power generating device of the seventh invention is characterized in that it has: The power generating element of the first invention; a first wiring electrically connected to the aforementioned first electrode; and A second wiring electrically connected to the second electrode.

第8發明的電子機器,其特徵係具備: 第1發明的發電元件;及 將前述發電元件用在電源而被驅動的電子零件。 The electronic device of the eighth invention is characterized in that it has: the power generating element of the first invention; and An electronic component that is driven by using the aforementioned power generating element as a power source.

第9發明的發電元件的製造方法,其特徵係具備: 電極形成工序,其係在第1基板的主面上形成第1電極,且在第2基板的主面上形成比前述第1電極更高的功函數之第2電極; 支撐部形成工序,其係在前述第1基板的主面上方及前述第2基板的主面上方的至少任一者形成含有金屬的支撐部; 保護部形成工序,其係在前述第1基板的主面上方及前述第2基板的主面上方的至少任一者形成具有絕緣性的保護部; 接合工序,其係以將前述第1電極及前述第2電極隔離於第1方向而對向的方式,經由前述支撐部來接合前述第1基板與前述第2基板;及 中間部形成工序,其係以和前述保護部接觸,和前述支撐部隔離的方式,形成含有奈米粒子被分散的溶媒之中間部。 [發明的效果] The method of manufacturing a power generating element according to the ninth invention is characterized by comprising: An electrode forming step of forming a first electrode on the main surface of the first substrate, and forming a second electrode having a higher work function than the first electrode on the main surface of the second substrate; a support portion forming step of forming a metal-containing support portion on at least one of above the main surface of the first substrate and above the main surface of the second substrate; A protective portion forming step of forming an insulating protective portion on at least one of the upper surface of the first substrate and the upper surface of the second substrate; a bonding step of bonding the first substrate and the second substrate through the supporting portion in such a manner that the first electrode and the second electrode face each other in a first direction; and The intermediate part forming step is to form the intermediate part containing the medium in which the nanoparticles are dispersed in such a manner that it is in contact with the protective part and separated from the support part. [Effect of the invention]

若根據第1發明~第8發明,則具備:與中間部隔離,含有金屬的支撐部;及被設在中間部與支撐部之間,和中間部接觸,具有絕緣性的保護部。因此,可抑制被分散於各電極之間的奈米粒子的量的減少。藉此,可抑制發電效率的降低。According to the first invention to the eighth invention, it includes: a metal-containing support part isolated from the middle part; and an insulating protective part provided between the middle part and the support part and in contact with the middle part. Therefore, reduction in the amount of nanoparticles dispersed between the electrodes can be suppressed. Thereby, reduction in power generation efficiency can be suppressed.

特別是若根據第2發明,則保護部是與支撐部隔離而設。因此,在經由支撐部來接合第1基板與第2基板時,可防止例如保護部接觸於支撐部所致的接合力的降低。藉此,可藉由支撐部來牢固地接合第1基板與第2基板。According to 2nd invention especially, a protection part is provided separately from a support part. Therefore, when the first substrate and the second substrate are bonded via the support portion, it is possible to prevent, for example, a decrease in bonding force caused by the contact of the protective portion with the support portion. Thereby, the first substrate and the second substrate can be firmly bonded by the support portion.

特別是若根據第3發明,則保護部是接觸於第1電極與第2電極之間而設。因此,比將保護部固定於第1基板及第2基板的情況更可將保護部牢固地固定於第1電極及第2電極。藉此,可抑制保護部的變動。In particular, according to the third invention, the protective portion is provided in contact between the first electrode and the second electrode. Therefore, the protective portion can be fixed more firmly to the first electrode and the second electrode than in the case of fixing the protective portion to the first substrate and the second substrate. Thereby, fluctuation|variation of a protection part can be suppressed.

特別是若根據第4發明,則支撐部是與第1電極及第2電極隔離。因此,可防止各電極經由支撐部而短路。In particular, according to the fourth invention, the supporting portion is separated from the first electrode and the second electrode. Therefore, it is possible to prevent the electrodes from being short-circuited via the support portion.

特別是若根據第5發明,則更具備:被設在第1基板及第2基板的至少任一者的貫通部。因此,可經由貫通部,在第1電極與第2電極之間,充填中間部而設。藉此,可謀求發電元件的製造工序的簡略化。又,隨著發電元件的使用,發生需要更換中間部時,可容易實施中間部的更換。In particular, according to the fifth invention, the penetrating portion provided on at least one of the first substrate and the second substrate is further provided. Therefore, the intermediate portion can be filled between the first electrode and the second electrode via the penetrating portion. Thereby, the simplification of the manufacturing process of a power generating element can be aimed at. Also, when the intermediate portion needs to be replaced as the power generating element is used, the intermediate portion can be easily replaced.

特別是若根據第6發明,則從第1方向看,貫通部是與第1電極及第2電極隔離。因此,經由貫通部,在第1電極與第2電極之間,充填中間部時異物混入時,可抑制異物附著於第1電極及第2電極。藉此,可抑制發電元件的品質的劣化。In particular, according to the sixth invention, the penetrating portion is isolated from the first electrode and the second electrode when viewed from the first direction. Therefore, when foreign matter is mixed into the intermediate portion between the first electrode and the second electrode through the penetrating portion, it is possible to suppress foreign matter from adhering to the first electrode and the second electrode. Thereby, deterioration of the quality of a power generating element can be suppressed.

若根據第9發明,則就中間部形成工序而言,是以和保護部接觸,和支撐部隔離的方式,形成含有奈米粒子被分散的溶媒之中間部。因此,可抑制被分散於各電極之間的奈米粒子的量的減少。藉此,可抑制發電效率的降低。According to the ninth invention, in the intermediate portion forming step, the intermediate portion containing the medium in which the nanoparticles are dispersed is formed so as to be in contact with the protective portion and separated from the support portion. Therefore, reduction in the amount of nanoparticles dispersed between the electrodes can be suppressed. Thereby, reduction in power generation efficiency can be suppressed.

以下,邊參照圖面邊說明作為本發明的實施形態的發電元件、發電裝置、電子機器、發電方法及發電元件的製造方法之一例。另外,在各圖中,將層疊各電極的高度方向設為第1方向Z,將與第1方向Z交叉例如正交的1個的平面方向設為第2方向X,將與第1方向Z及第2方向X的各者交叉例如正交的別的平面方向設為第3方向Y。又,各圖的構成是為了說明而被模式性地記載,例如有關各構成的大小或每個構成的大小的對比等是亦可與圖不同。Hereinafter, an example of a power generation element, a power generation device, an electronic device, a power generation method, and a method of manufacturing a power generation element according to an embodiment of the present invention will be described with reference to the drawings. In addition, in each figure, let the height direction of stacking each electrode be the first direction Z, let a plane direction intersecting with the first direction Z, for example, be perpendicular to the second direction X, and let the first direction Z Another planar direction intersecting, for example, perpendicular to each of the second direction X is referred to as a third direction Y. In addition, the structure of each figure is shown schematically for description, For example, the size of each structure, the comparison of the size of each structure, etc. may differ from a figure.

(第1實施形態:發電元件1、發電裝置100) 圖1是表示本實施形態的發電元件1及發電裝置100之一例的模式圖。圖1(a)是表示本實施形態的發電元件1及發電裝置100之一例的模式剖面圖,圖1(b)是沿著圖1(a)的A-A的模式平面圖。 (First embodiment: power generating element 1, power generating device 100) FIG. 1 is a schematic diagram showing an example of a power generating element 1 and a power generating device 100 according to the present embodiment. Fig. 1(a) is a schematic sectional view showing an example of a power generating element 1 and a power generating device 100 according to the present embodiment, and Fig. 1(b) is a schematic plan view along line A-A of Fig. 1(a).

(發電裝置100) 如圖1(a)所示般,發電裝置100是具備發電元件1、第1配線101及第2配線102。發電元件1是將熱能量變換成電氣能量。具備如此的發電元件1的發電裝置100是例如被搭載或設置於未圖示的熱源,以熱源的熱能量為起源,將從發電元件1產生的電氣能量經由第1配線101及第2配線102來輸出至負荷R。負荷R的一端是與第1配線101電性連接,另一端是與第2配線102電性連接。負荷R是例如表示電性的機器。負荷R是例如將發電裝置100用在主電源或輔助電源而被驅動。 (power generation device 100) As shown in FIG. 1( a ), the power generating device 100 includes a power generating element 1 , a first wiring 101 , and a second wiring 102 . The power generating element 1 converts thermal energy into electrical energy. The power generating device 100 including such a power generating element 1 is, for example, mounted or installed on a heat source (not shown), and uses the thermal energy of the heat source as a source to transmit electrical energy generated from the power generating element 1 through the first wiring 101 and the second wiring 102. to output to load R. One end of the load R is electrically connected to the first wiring 101 , and the other end is electrically connected to the second wiring 102 . The load R is, for example, an electrical device. The load R is driven, for example, by using the power generator 100 as a main power source or an auxiliary power source.

作為發電元件1的熱源,例如可舉CPU (Central Processing Unit)等的電子裝置或電子零件、LED (Light Emitting Diode)等的發光元件、汽車等的引擎、工廠的生產設備、人體、太陽光及環境溫度等。例如,電子裝置、電子零件、發光元件、引擎及生產設備等是人工熱源。人體、太陽光及環境溫度等是自然熱源。具備發電元件1的發電裝置100是例如可設在IoT(Internet of Things)裝置及可穿戴(wearable)機器等的攜帶機器或自立型感測器終端裝置的內部,可做為電池的替代或輔助使用。進一步,發電裝置100是太陽光發電等之類的更大型的發電裝置的應用也為可能。As the heat source of the power generating element 1, for example, an electronic device or electronic component such as a CPU (Central Processing Unit), a light emitting element such as an LED (Light Emitting Diode), an engine such as an automobile, production equipment in a factory, the human body, sunlight, and ambient temperature, etc. For example, electronic devices, electronic parts, light-emitting elements, engines, and production equipment are artificial heat sources. The human body, sunlight and ambient temperature are natural heat sources. The power generating device 100 including the power generating element 1 can be installed inside portable devices such as IoT (Internet of Things) devices and wearable devices, or self-supporting sensor terminal devices, and can be used as a battery replacement or auxiliary device. use. Furthermore, it is also possible to apply the power generation device 100 to a larger power generation device such as photovoltaic power generation.

(發電元件1) 發電元件1是例如將上述人工熱源所發出的熱能量或上述自然熱源所持有的熱能量變換成電氣能量,產生電流。發電元件1是不僅被設在發電裝置100內,亦可將發電元件1本身設在上述攜帶機器或上述自立型感測器終端裝置等的內部。此情況,發電元件1本身可成為上述攜帶機器或上述自立型感測器終端裝置等的電池的替代零件或輔助零件。 (generating element 1) The power generating element 1 converts, for example, the thermal energy emitted by the artificial heat source or the thermal energy held by the natural heat source into electrical energy to generate electric current. The power generating element 1 is not only installed in the power generating device 100, but the power generating element 1 itself may be installed inside the above-mentioned portable device or the above-mentioned self-supporting sensor terminal device. In this case, the power generating element 1 itself can be used as a replacement part or an auxiliary part of a battery of the above-mentioned portable device or the above-mentioned self-supporting sensor terminal device.

發電元件1是例如圖1(a)所示般,具備:第1電極11、第2電極12、中間部14、第1基板15、第2基板16、支撐部17及保護部22。發電元件1是亦可更具備貫通部18及密封部21。The power generating element 1 is, for example, as shown in FIG. The power generating element 1 may further include a penetration portion 18 and a sealing portion 21 .

第1基板15及第2基板16是沿著第1方向Z來彼此隔離而設。第1電極11是被設在第1基板15的主面上。第2電極12是與第1電極11隔離而被設在第2基板16的主面上,具有比第1電極11更高的功函數。第1電極11及第2電極12是彼此對向而設。中間部14是例如圖2所示般,被設置於包含第1電極11與第2電極12之間(間隙(gap)G)的空間140。中間部14是含有奈米粒子141及溶媒142。奈米粒子141是被分散於溶媒142,促進電子對於各電極11、12的供給。The first substrate 15 and the second substrate 16 are separated from each other along the first direction Z. The first electrode 11 is provided on the main surface of the first substrate 15 . The second electrode 12 is provided on the main surface of the second substrate 16 in isolation from the first electrode 11 , and has a higher work function than that of the first electrode 11 . The first electrode 11 and the second electrode 12 are provided to face each other. The intermediate portion 14 is provided, for example, in a space 140 including a space (gap G) between the first electrode 11 and the second electrode 12 as shown in FIG. 2 . The middle part 14 contains nanoparticles 141 and a solvent 142 . The nanoparticles 141 are dispersed in the solvent 142 and promote the supply of electrons to the respective electrodes 11 and 12 .

支撐部17是接觸於第1基板15與第2基板16之間而設,和中間部14隔離,含有金屬。保護部22是被設在中間部14與支撐部17之間,和中間部14接觸,具有絕緣性。因此,奈米粒子141對於支撐部17不接觸,所以可防止奈米粒子141附著於支撐部17。The supporting portion 17 is provided in contact with the first substrate 15 and the second substrate 16 , is separated from the intermediate portion 14 , and contains metal. The protection part 22 is provided between the intermediate part 14 and the support part 17, contacts the intermediate part 14, and has insulation. Therefore, the nanoparticles 141 are not in contact with the support portion 17 , so the nanoparticles 141 can be prevented from adhering to the support portion 17 .

在此,發明者們發現被用在發電元件1的奈米粒子141相較於絕緣體的材料,有容易附著於金屬的材料的傾向。考慮到此點,本實施形態的發電元件1的保護部22是具有絕緣性。因此,可使奈米粒子141附著於保護部22的量相較於支撐部17大幅度地減低。藉此,可抑制被分散於電極間的奈米粒子141的量的減少。因此,可抑制發電效率的降低。Here, the inventors found that the nanoparticles 141 used in the power generating element 1 tend to adhere more easily to metal materials than to insulator materials. In consideration of this point, the protection portion 22 of the power generating element 1 of the present embodiment has insulating properties. Therefore, the amount of nanoparticles 141 attached to the protection part 22 can be greatly reduced compared with the support part 17 . Thereby, the decrease of the amount of the nanoparticles 141 dispersed between the electrodes can be suppressed. Therefore, reduction in power generation efficiency can be suppressed.

以下,說明有關各構成的詳細。Hereinafter, details about each configuration will be described.

<第1電極11、第2電極12> 第1電極11及第2電極12是例如圖1(a)所示般,隔離設置。第1電極11及第2電極12是例如在第1方向Z隔離。第1電極11及第2電極12是亦可例如在第2方向X或第3方向Y隔離設置。 <First electrode 11, second electrode 12> The first electrode 11 and the second electrode 12 are spaced apart as shown in FIG. 1( a ), for example. The first electrode 11 and the second electrode 12 are separated in the first direction Z, for example. The first electrode 11 and the second electrode 12 may be spaced apart in the second direction X or the third direction Y, for example.

各電極11、12是例如延伸於第2方向X及第3方向Y,亦可設置複數個。例如1個的第2電極12是亦可在與複數的第1電極11分別不同的位置對向而設。又,例如1個的第1電極11是亦可在與複數的第2電極12分別不同的位置對向而設。Each of the electrodes 11 and 12 extends in, for example, the second direction X and the third direction Y, and a plurality of them may be provided. For example, one second electrode 12 may be provided to face each of the plurality of first electrodes 11 at different positions. Also, for example, one first electrode 11 may be provided to face each of the plurality of second electrodes 12 at different positions.

第1電極11及第2電極12是例如分別具有不同的功函數。作為第1電極11及第2電極12的材料,可使用具有導電性的材料。作為第1電極11及第2電極12的材料,亦可例如使用相同的材料,作為各電極11、12,此情況,亦可分別具有不同的功函數。The first electrode 11 and the second electrode 12 have different work functions, for example. As the material of the first electrode 11 and the second electrode 12, a material having conductivity can be used. As the material of the first electrode 11 and the second electrode 12 , for example, the same material may be used as the electrodes 11 and 12 , and in this case, each may have a different work function.

作為各電極11、12的材料,除了可使用例如由鐵、鋁、銅等的單一元素所組成的材料,亦可使用例如由2種類以上的元素所組成的合金的材料。作為各電極11、12的材料,例如亦可使用非金屬導電物。作為非金屬導電物的例子,可舉矽(Si:例如p型Si或n型Si)及石墨烯等的碳系材料等。As a material of each electrode 11, 12, for example, a material composed of a single element such as iron, aluminum, copper or the like may be used, for example, an alloy material composed of two or more types of elements may be used. As a material of each electrode 11, 12, for example, a non-metallic conductor can also be used. Examples of non-metallic conductors include carbon-based materials such as silicon (Si: eg, p-type Si or n-type Si) and graphene.

沿著第1電極11及第2電極12的第1方向Z的厚度是例如4nm以上1μm以下。沿著第1電極11及第2電極12的第1方向Z的厚度是例如4nm以上50nm以下。The thickness along the first direction Z of the first electrode 11 and the second electrode 12 is, for example, not less than 4 nm and not more than 1 μm. The thickness along the first direction Z of the first electrode 11 and the second electrode 12 is, for example, not less than 4 nm and not more than 50 nm.

表示第1電極11與第2電極12之間的距離的間隙G是例如圖2所示般,顯示沿著第1方向Z的長度。例如藉由縮短間隙G,可使發電元件1的發電效率向上。又,例如藉由縮短間隙G,可將發電元件1的沿著第1方向Z的厚度變薄。為了該等,間隙G是最好短。The gap G indicating the distance between the first electrode 11 and the second electrode 12 is, for example, the length along the first direction Z as shown in FIG. 2 . For example, by shortening the gap G, the power generation efficiency of the power generating element 1 can be increased. Also, for example, by shortening the gap G, the thickness of the power generating element 1 along the first direction Z can be reduced. For this purpose, the gap G is preferably short.

間隙G是例如10μm以下的有限值。間隙G是例如1μm以上5μm以下時,可抑制隨著間隙G的偏差影響發電效率。間隙G是例如10nm以上100nm以下時,可謀求發電效率的提升。間隙G是例如依據支撐部17的厚度以外,例如在同一基板上設置各電極11、12時,依據各電極11、12的配置條件而定。The gap G is, for example, a limited value of 10 μm or less. When the gap G is, for example, 1 μm or more and 5 μm or less, it is possible to suppress the influence of the variation of the gap G on the power generation efficiency. When the gap G is, for example, not less than 10 nm and not more than 100 nm, power generation efficiency can be improved. The gap G is determined not only by the thickness of the supporting portion 17 but also by the arrangement conditions of the electrodes 11 and 12 when the electrodes 11 and 12 are provided on the same substrate, for example.

<中間部14> 中間部14是被設在各電極11、12之間所形成的空間140內。中間部14是接觸於各電極11、12的彼此對向的主面以外,亦接觸於例如各電極11、12的側面。中間部14是亦含有例如複數種類的奈米粒子141。 Middle part 14> The intermediate portion 14 is provided in a space 140 formed between the electrodes 11 , 12 . The intermediate portion 14 is in contact with, for example, the side surfaces of the electrodes 11 and 12 in addition to the opposing main surfaces of the electrodes 11 and 12 . The middle part 14 also contains, for example, a plurality of types of nanoparticles 141 .

奈米粒子141的粒子徑是比間隙G更小的有限值。奈米粒子141的粒子徑是例如間隙G的1/10以下的有限值。若將奈米粒子141的粒子徑設為間隙G的1/10以下,則可容易形成在空間140內含有奈米粒子141的中間部14。藉此,產生發電元件1時,可使作業性提升。The particle diameter of the nanoparticles 141 is a finite value smaller than the gap G. The particle diameter of the nanoparticles 141 is, for example, a finite value of 1/10 or less of the gap G. If the particle size of the nanoparticles 141 is set to be 1/10 or less of the gap G, the intermediate portion 14 including the nanoparticles 141 in the space 140 can be easily formed. Thereby, workability can be improved when generating the power generating element 1 .

在此,所謂「奈米粒子」是表示含有複數的粒子者。奈米粒子141是例如含有2nm以上100nm以下的粒子徑的粒子。奈米粒子141是亦可含有例如中間徑(中央徑:D50)為3nm以上8nm以下的粒子徑的粒子以外,亦可含有例如平均粒徑為3nm以上8nm以下的粒子徑的粒子。中間徑或平均粒徑是可藉由使用例如粒度分佈計測器來測定。作為粒度分佈計測器,是例如使用動態光散射法的粒度分佈計測器(例如Malvern Panalytical製Zetasizer Ultra等)即可。Here, the term "nanoparticles" means those containing plural particles. The nanoparticles 141 are, for example, particles having a particle diameter of 2 nm to 100 nm. Nanoparticles 141 may contain, for example, particles with a median diameter (central diameter: D50) of 3 nm to 8 nm, and particles with an average particle diameter of 3 nm to 8 nm. The median diameter or average particle diameter can be measured by using, for example, a particle size distribution analyzer. As the particle size distribution measuring device, for example, a particle size distribution measuring device using a dynamic light scattering method (for example, Zetasizer Ultra manufactured by Malvern Panalytical, etc.) may be used.

奈米粒子141是例如含有導電物。奈米粒子141的功函數的值是除了例如位於第1電極11的功函數的值與第2電極12的功函數的值之間,亦可例如為第1電極11的功函數的值與第2電極12的功函數的值之間以外,為任意。The nanoparticles 141 contain, for example, a conductive material. The value of the work function of the nanoparticles 141 is, for example, between the value of the work function of the first electrode 11 and the value of the work function of the second electrode 12, and can also be, for example, between the value of the work function of the first electrode 11 and the value of the work function of the second electrode 12. Any value other than the value of the work function of the 2 electrodes 12 is between.

作為奈米粒子141的材料的例子,可選擇金及銀的至少1個。除此以外,奈米粒子141是亦可例如含有金屬氧化物。作為含有金屬氧化物的奈米粒子141,例如可使用氧化鋯(ZrO 2)、二氧化鈦(TiO 2)、二氧化矽(SiO 2)、氧化鋁(Al 2O 3)、氧化鐵(Fe 2O 3、Fe 2O 5)、氧化銅(CuO)、氧化鋅(ZnO)、氧化釔(Y 2O3)、氧化鈮(Nb 2O 5)、氧化鉬(MoO 3)、氧化銦(In 2O 3)、氧化錫(SnO 2)、氧化鉭(Ta 2O 5)、氧化鎢(WO 3)、氧化鉛(PbO)、氧化鉍(Bi 2O 3)、氧化鈰(CeO 2)、氧化銻(Sb 2O 5、Sb 2O 3)等的由金屬及Si所組成的群來選擇的至少任一者的元素的金屬氧化物。 As an example of the material of the nanoparticles 141, at least one of gold and silver can be selected. In addition, the nanoparticles 141 may also contain metal oxides, for example. As nanoparticles 141 containing metal oxides, for example, zirconia (ZrO 2 ), titanium dioxide (TiO 2 ), silicon dioxide (SiO 2 ), aluminum oxide (Al 2 O 3 ), iron oxide (Fe 2 O 3. Fe 2 O 5 ), copper oxide (CuO), zinc oxide (ZnO), yttrium oxide (Y 2 O3), niobium oxide (Nb 2 O 5 ), molybdenum oxide (MoO 3 ), indium oxide (In 2 O 3 ), tin oxide (SnO 2 ), tantalum oxide (Ta 2 O 5 ), tungsten oxide (WO 3 ), lead oxide (PbO), bismuth oxide (Bi 2 O 3 ), cerium oxide (CeO 2 ), antimony oxide A metal oxide of at least any one element selected from the group consisting of metal and Si such as (Sb 2 O 5 , Sb 2 O 3 ).

另外,藉由奈米粒子141含有金屬氧化物,可使對於溶媒142的分散性提升,可抑制隨著奈米粒子141的凝集造成發電效率的降低。又,藉由奈米粒子141含有金屬氧化物,可增加材料的選擇項以外,還可降低材料成本。In addition, when the nanoparticles 141 contain metal oxides, the dispersibility to the solvent 142 can be improved, and the reduction in power generation efficiency due to the aggregation of the nanoparticles 141 can be suppressed. In addition, since the nanoparticles 141 contain metal oxides, not only the options of materials can be increased, but also the cost of materials can be reduced.

又,亦可使用磁性體除外的材料作為奈米粒子141。例如使用磁性體作為奈米粒子141時,藉由起因於發電元件1的被設置的環境而產生的磁場,奈米粒子141的移動會被限制。因此,藉由使用磁性體除外的材料作為奈米粒子141,可不受起因於外部環境的磁場的影響,抑制隨著時間經過造成發電效率的降低。In addition, materials other than magnetic substances may also be used as the nanoparticles 141 . For example, when a magnetic substance is used as the nanoparticles 141 , the movement of the nanoparticles 141 is restricted by a magnetic field generated due to the environment in which the power generating element 1 is installed. Therefore, by using a material other than a magnetic substance as the nanoparticle 141, it is possible to suppress a decrease in power generation efficiency over time without being affected by a magnetic field caused by the external environment.

奈米粒子141是例如在表面含有被膜141a。被膜141a的厚度是例如20nm以下的有限值。藉由將如此的被膜141a設在奈米粒子141的表面,例如可抑制空間140內的奈米粒子141的凝集。又,例如可提高電子利用隧道效應等來移動於第1電極11與奈米粒子141之間及第2電極12與奈米粒子141之間的可能性。The nanoparticles 141 include, for example, a coating 141a on the surface. The thickness of the coating film 141a is, for example, a limited value of 20 nm or less. By providing such a film 141 a on the surface of the nanoparticles 141 , for example, aggregation of the nanoparticles 141 in the space 140 can be suppressed. In addition, for example, the possibility of electrons moving between the first electrode 11 and the nanoparticles 141 and between the second electrode 12 and the nanoparticles 141 can be increased by utilizing the tunneling effect or the like.

例如可使用具有硫醇基或二硫化物基的材料,作為被膜141a。例如可使用十二烷硫醇等的烷烴硫醇,作為具有硫醇基的材料。例如可使用烷烴二硫化物等,作為具有二硫化物基的材料。For example, a material having a thiol group or a disulfide group can be used as the coating film 141a. For example, alkanethiol such as dodecanethiol can be used as the material having a thiol group. For example, alkane disulfide or the like can be used as the material having a disulfide group.

溶媒142是例如含有機溶媒。有機溶媒是例如可使用芳香族碳化氫化合物、芳香族酯化合物、芳香族乙醚化合物、芳香族酮化合物、脂肪族碳化氫化合物、脂肪族酯化合物、脂肪族乙醚化合物、脂肪族酮化合物、乙醇化合物、醯胺化合物、硫醇化合物、其他的化合物等,1種以外亦可使用2種以上。藉由溶媒142含有機溶媒,可謀求材料成本減低。The solvent 142 is, for example, an organic solvent. As the organic solvent, for example, aromatic hydrocarbon compounds, aromatic ester compounds, aromatic ether compounds, aromatic ketone compounds, aliphatic hydrocarbon compounds, aliphatic ester compounds, aliphatic ether compounds, aliphatic ketone compounds, and ethanol compounds can be used , amide compound, thiol compound, other compounds, etc., instead of one type, two or more types may be used. Since the solvent 142 contains an organic solvent, material cost can be reduced.

另外,上述的材料以外,亦可例如使用二甲基亞碸、丙酮、氯仿、二氯甲烷等,作為溶媒142。In addition, other than the above-mentioned materials, for example, dimethylsulfone, acetone, chloroform, dichloromethane, etc. can also be used as the solvent 142 .

溶媒142是可使用例如沸點為60℃以上的液體。因此,即使是在室溫(例如15℃~35℃)以上的環境下,使用發電元件1的情況,也可抑制溶媒142的氣化。藉此,可抑制隨著溶媒142的氣化造成發電元件1的劣化。The solvent 142 is, for example, a liquid having a boiling point of 60° C. or higher. Therefore, even when the power generating element 1 is used in an environment above room temperature (for example, 15° C. to 35° C.), vaporization of the solvent 142 can be suppressed. Thereby, deterioration of the power generating element 1 due to vaporization of the solvent 142 can be suppressed.

<第1基板15、第2基板16> 第1基板15是例如圖1(a)所示般,和第1電極11接觸,和第2電極12隔離。第1基板15是將第1電極11固定。第2基板16是與第2電極12接觸,和第1電極11隔離。第2基板16是將第2電極12固定。第1基板15及第2基板16是例如夾著各電極11、12及中間部14,在第1方向Z隔離而設。發電元件1是亦可更具備被設在第1基板15及第2基板16的至少任一者的貫通部18。發電元件1是亦可更具備將貫通部18密封的密封部21。 <First substrate 15, second substrate 16> The first substrate 15 is, for example, as shown in FIG. 1( a ), is in contact with the first electrode 11 and is separated from the second electrode 12 . The first substrate 15 fixes the first electrode 11 . The second substrate 16 is in contact with the second electrode 12 and is separated from the first electrode 11 . The second substrate 16 fixes the second electrode 12 . The first substrate 15 and the second substrate 16 are spaced apart in the first direction Z between the electrodes 11 , 12 and the intermediate portion 14 , for example. The power generating element 1 may further include a penetrating portion 18 provided on at least one of the first substrate 15 and the second substrate 16 . The power generating element 1 may further include a sealing portion 21 that seals the penetration portion 18 .

各基板15、16的沿著第1方向Z的厚度是例如10μm以上2mm以下。各基板15、16的厚度是可任意地設定。各基板15、16的形狀是例如正方形或長方形的四角形以外,亦可為圓盤狀等,可按照用途來任意地設定。The thickness of each of the substrates 15 and 16 along the first direction Z is, for example, not less than 10 μm and not more than 2 mm. The thickness of each substrate 15, 16 can be set arbitrarily. The shape of each substrate 15 , 16 is, for example, not a square or a rectangular quadrangle, but also a disc shape, etc., and can be arbitrarily set according to the application.

可使用例如具有絕緣性的板狀的構件,例如可使用矽、石英、派熱克斯玻璃(註冊商標)等的周知的構件,作為各基板15、16。各基板15、16是亦可使用例如薄膜狀的構件,亦可使用例如PET(polyethylene terephthalate)、PC(polycarbonate)及聚醯亞胺等的周知的薄膜狀構件。For example, an insulating plate-shaped member, for example, a well-known member such as silicon, quartz, and Pyrex (registered trademark), can be used as the respective substrates 15 and 16 . For each of the substrates 15 and 16 , for example, film-like members can be used, and well-known film-like members such as PET (polyethylene terephthalate), PC (polycarbonate), and polyimide can also be used.

可使用例如具有導電性的構件,例如可舉鐵、鋁、銅或鋁與銅的合金等,作為各基板15、16。又,作為各基板15、16是例如Si、GaN等的具有導電性的半導體以外,亦可使用導電性高分子等的構件。在各基板15、16使用具有導電性的構件時,不需要用以連接至各電極11、12的配線。For example, a conductive member such as iron, aluminum, copper, or an alloy of aluminum and copper can be used as the substrates 15 and 16 . In addition, as the respective substrates 15 and 16 , other than conductive semiconductors such as Si and GaN, members such as conductive polymers may be used. When a conductive member is used for each of the substrates 15 , 16 , wiring for connecting to each of the electrodes 11 , 12 is unnecessary.

<支撐部17> 支撐部17是支撐第1基板15及第2基板16,接合第1基板15與第2基板16。藉由具備支撐部17,可高精度形成間隙G。特別是藉由支撐部17含金屬,可提升接合強度,或抑制間隙G的偏差。 <Support part 17> The supporting portion 17 supports the first substrate 15 and the second substrate 16 , and bonds the first substrate 15 and the second substrate 16 . By providing the supporting portion 17, the gap G can be formed with high precision. In particular, when the support portion 17 contains metal, the joint strength can be improved, and the variation of the gap G can be suppressed.

支撐部17是例如圖1(b)所示般,從第1方向Z看,被形成中空的四角形狀,包圍各電極11、12、中間部14及保護部22。支撐部17的形狀為任意,只要是包圍保護部22,支撐第1基板15及第2基板16者。The supporting portion 17 is formed in a hollow quadrangular shape when viewed from the first direction Z, as shown in FIG. The shape of the supporting portion 17 is arbitrary as long as it surrounds the protecting portion 22 and supports the first substrate 15 and the second substrate 16 .

支撐部17是具有第1支撐部17a及第2支撐部17b。第1支撐部17a是被設在第1基板15。第2支撐部17b是被設在第2基板16。第1支撐部17a與第2支撐部17b是接觸。The support part 17 has the 1st support part 17a and the 2nd support part 17b. The first support portion 17 a is provided on the first substrate 15 . The second support portion 17 b is provided on the second substrate 16 . The 1st support part 17a and the 2nd support part 17b are in contact.

例如可使用具有絕緣性的材料,作為支撐部17。例如可舉矽氧化物及聚合物等,作為支撐部17。可舉聚醯亞胺、PMMA(Polymethyl methacrylate)及聚苯乙烯等,作為聚合物的例子。使用具有絕緣性的材料作為支撐部17時,亦可例如在各支撐部17a、17b的彼此接觸的面含有金屬。此情況,可使接合強度提升。For example, an insulating material can be used as the supporting portion 17 . For example, silicon oxide, polymer, etc. can be used as the supporting portion 17 . Examples of the polymer include polyimide, PMMA (polymethyl methacrylate), and polystyrene. When using an insulating material as the support part 17, you may contain metal, for example in the contact surface of each support part 17a, 17b. In this case, bonding strength can be improved.

又,作為支撐部17,例如使用金屬更為理想。作為金屬的例子,是例如使用金、鎳、鎢、鉭、鉬、鉛、白金、銀或錫以外,可使用金及鉻的層疊體或金及鎳的層疊體。藉由各支撐部17a、17b含有金屬,可容易控制形成各支撐部17a、17b時的厚度以外,例如來自各基板15、16的推壓所致的變形會被抑制,可防止各支撐部17a、17b的厚度的變動。藉此,可高精度形成間隙G。Moreover, it is more preferable to use metal as the support part 17, for example. Examples of the metal include, for example, gold, nickel, tungsten, tantalum, molybdenum, lead, platinum, silver, or tin, and a laminate of gold and chromium or a laminate of gold and nickel can be used. Since each supporting portion 17a, 17b contains metal, the thickness when forming each supporting portion 17a, 17b can be easily controlled, for example, deformation caused by pressing from each substrate 15, 16 is suppressed, and each supporting portion 17a can be prevented from being deformed. , The variation of the thickness of 17b. Thereby, the gap G can be formed with high precision.

例如在各支撐部17a、17b的表面使用金時,可例如使用熱壓接合法來容易接合露出於各支撐部17a、17b的表面的金彼此間。藉此,可更高精度形成電極間間隙。For example, when gold is used on the surface of each support part 17a, 17b, gold exposed on the surface of each support part 17a, 17b can be bonded easily, for example using a thermocompression bonding method. Thereby, the inter-electrode gap can be formed with higher precision.

另外,支撐部17是亦可使例如第1基板15及第2基板16的至少任一部分氧化而設。此情況,可容易設置支撐部17。又,此情況,亦可例如在各支撐部17a、17b的彼此接觸的面含有金屬。此情況,可使接合強度提升。In addition, the supporting portion 17 may be provided by oxidizing at least one part of, for example, the first substrate 15 and the second substrate 16 . In this case, the support portion 17 can be easily provided. In addition, in this case, for example, metal may be contained in the surfaces of the respective supporting parts 17a and 17b that are in contact with each other. In this case, bonding strength can be improved.

藉由各電極11、12與支撐部17隔離,可防止各電極11、12經由支撐部17而短路。By isolating the electrodes 11 , 12 from the support portion 17 , it is possible to prevent the electrodes 11 , 12 from being short-circuited via the support portion 17 .

<保護部22> 保護部22是例如與支撐部17隔離設置。此情況,可防止保護部22侵入至接合支撐部17時的接合面。又,可防止熱從中間部14經由保護部22傳達至支撐部17,可抑制熱能量的消耗。 Protection 22> The protection part 22 is provided separately from the support part 17, for example. In this case, it is possible to prevent the protection portion 22 from penetrating into the bonding surface when the supporting portion 17 is bonded. In addition, it is possible to prevent heat from being transmitted from the intermediate portion 14 to the support portion 17 via the protective portion 22, and to suppress the consumption of thermal energy.

保護部22是例如接觸於第1電極11與第2電極12之間而設。藉由保護部22例如接觸於第1電極11與第2電極12之間而設,可容易密閉中間部14。又,藉由保護部22例如接觸於第1電極11與第2電極12之間而設,可在製造發電元件1時容易形成保護部22。The protection part 22 is provided, for example, in contact between the first electrode 11 and the second electrode 12 . Since the protective portion 22 is provided in contact with, for example, between the first electrode 11 and the second electrode 12 , the intermediate portion 14 can be easily sealed. Furthermore, since the protective portion 22 is provided in contact with, for example, between the first electrode 11 and the second electrode 12 , the protective portion 22 can be easily formed when the power generating element 1 is manufactured.

另外,保護部22是亦可例如接觸於第1基板15與第2基板16之間而設。此情況,相較於保護部22被設在各電極11、12之間的情況,可擴大各電極11、12的對向的面積。藉此,可謀求在各電極11、12之間產生的電流量的提升。In addition, the protection part 22 may be provided, for example, in contact between the first substrate 15 and the second substrate 16 . In this case, compared with the case where the protective portion 22 is provided between the electrodes 11, 12, the facing area of the electrodes 11, 12 can be enlarged. Thereby, the amount of electric current generated between the electrodes 11 and 12 can be improved.

保護部22是從第1方向Z看,形成中空的四角形狀,包圍各電極11、12及中間部14。保護部22是內面會與中間部14接觸。保護部22是為了防止奈米粒子141附著於支撐部17而設,可密閉中間部14。The protective portion 22 is formed in a hollow quadrangular shape when viewed from the first direction Z, and surrounds the respective electrodes 11 , 12 and the intermediate portion 14 . The inner surface of the protective portion 22 is in contact with the intermediate portion 14 . The protection part 22 is provided to prevent the nanoparticles 141 from adhering to the support part 17 and can seal the middle part 14 .

作為保護部22,例如可舉具有絕緣性的材料。進一步,作為保護部22,例如可舉CYTOP(註冊商標)、Teflon(註冊商標)等的氟樹脂等。As the protection part 22, an insulating material is mentioned, for example. Furthermore, as the protection part 22, a fluororesin, such as CYTOP (registered trademark) and Teflon (registered trademark), etc. are mentioned, for example.

<<貫通部18>> 貫通部18是例如圖1(a)所示般,將第1基板15貫通於第1方向Z。貫通部18是亦可例如將第1基板15及第2基板16的至少任一者貫通於第1方向Z。 <<Penetration part 18>> The penetrating portion 18 penetrates the first substrate 15 in the first direction Z, as shown in FIG. 1( a ), for example. The penetration portion 18 may penetrate at least one of the first substrate 15 and the second substrate 16 in the first direction Z, for example.

貫通部18是將第1基板15貫通於第1方向Z,例如貫通第1電極11。貫通部18是例如設置1個以上。貫通部18是例如從第1方向Z看,和第1電極11及第2電極12隔離。The penetrating portion 18 penetrates the first substrate 15 in the first direction Z, for example, penetrates the first electrode 11 . For example, one or more penetration portions 18 are provided. The penetrating portion 18 is isolated from the first electrode 11 and the second electrode 12 as viewed in the first direction Z, for example.

貫通部18是從第1方向Z看,形成圓狀以外,亦可例如形成橢圓狀或溝狀。貫通部18是形成從發電元件1的外部側朝向內部側變窄的錐狀以外,亦可例如形成倒錐狀、弓狀或筆直狀。The penetrating portion 18 may be formed, for example, in an oval shape or a groove shape instead of a circular shape when viewed in the first direction Z. The penetrating portion 18 may be formed in an inverted tapered shape, an arcuate shape, or a straight shape, for example, instead of being tapered from the outer side toward the inner side of the power generating element 1 .

<<密封部21>> 密封部21是密封貫通部18。密封部21是覆蓋貫通部18的外部側,被設在被貫通的第1基板15上。密封部21是亦可例如將至少一部分設在貫通部18內。密封部21是按照貫通部18的數量而設。 <<Sealing part 21>> The sealing portion 21 is to seal the penetration portion 18 . The sealing portion 21 covers the outer side of the penetration portion 18 and is provided on the first substrate 15 penetrated therethrough. For example, at least a part of the sealing portion 21 may be provided in the penetration portion 18 . The sealing portion 21 is provided according to the number of the through portions 18 .

密封部21的材料,例如可使用絕緣性樹脂,絕緣性樹脂的例子,可舉氟系絕緣性樹脂。The material of the sealing portion 21 may be, for example, an insulating resin, and an example of the insulating resin may be a fluorine-based insulating resin.

<發電元件1的動作> 一旦熱能量給予發電元件1,則在第1電極11與第2電極12之間產生電流,熱能量會被變換成電氣能量。在第1電極11與第2電極12之間產生的電流量是依據熱能量以外,還依據第2電極12的功函數與第1電極11的功函數的差。 <Operation of power generation element 1> When thermal energy is given to the power generating element 1, an electric current is generated between the first electrode 11 and the second electrode 12, and the thermal energy is converted into electrical energy. The amount of current generated between the first electrode 11 and the second electrode 12 depends not only on thermal energy but also on the difference between the work function of the second electrode 12 and the work function of the first electrode 11 .

產生的電流量是例如藉由擴大第1電極11與第2電極12的功函數差及縮小電極間間隙,可増加。例如,發電元件1所使產生的電氣能量的量是藉由擴大上述功函數差及縮小上述電極間間隙的至少任一者,可使增加。The amount of generated current can be increased, for example, by increasing the difference in work function between the first electrode 11 and the second electrode 12 and reducing the gap between the electrodes. For example, the amount of electrical energy generated by the power generating element 1 can be increased by at least one of enlarging the above-mentioned work function difference and narrowing the above-mentioned inter-electrode gap.

另外,所謂「功函數」是表示為了將位於固體內的電子取出至真空中所必要的最小限的能量。功函數是例如卡爾文(Kelvin)法以外,可使用紫外光電子分光法(UPS:Ultraviolet Photoelectron Spectroscopy)、X線光電子分光法(XPS:X-ray Photoelectron Spectroscopy)或歐傑電子能譜術(AES:Auger Electron Spectroscopy)等來測定。In addition, the term "work function" means the minimum energy necessary to extract electrons in a solid into a vacuum. For example, other than the Kelvin method, UV photoelectron spectroscopy (UPS: Ultraviolet Photoelectron Spectroscopy), X-ray photoelectron spectroscopy (XPS: X-ray Photoelectron Spectroscopy), or AES: Auger Electron Spectroscopy) etc. to determine.

(實施形態:發電元件1的製造方法) 其次,說明本實施形態的發電元件1的製造方法之一例。圖3是表示本實施形態的發電元件1的製造方法之一例的流程圖。圖4(a)~圖6(d)是表示第1實施形態的發電元件的製造方法之一例的模式圖。 (Embodiment: Manufacturing method of power generating element 1) Next, an example of a method of manufacturing the power generating element 1 of the present embodiment will be described. FIG. 3 is a flowchart showing an example of a method of manufacturing the power generating element 1 of the present embodiment. 4(a) to 6(d) are schematic diagrams showing an example of the method of manufacturing the power generating element according to the first embodiment.

<<電極形成工序S110>> 首先,例如圖4(a)所示般,在第1基板15的主面上形成第1電極11,例如圖4(b)所示般,在第2基板16的主面上形成第2電極12(電極形成工序S110)。各電極11、12是從第1方向Z看,形成四角形狀。 <<Electrode Formation Step S110>> First, for example, as shown in FIG. 4(a), the first electrode 11 is formed on the main surface of the first substrate 15, and the second electrode 11 is formed on the main surface of the second substrate 16, for example, as shown in FIG. 4(b). 12 (electrode forming step S110). The electrodes 11 and 12 form a quadrangular shape when viewed in the first direction Z.

就電極形成工序S110而言,是例如使用濺射法或蒸鍍法來形成各電極11、12以外,亦可例如使用網版印刷法、噴墨法及噴霧印刷法等來形成。例如,使用鋁作為第1電極11,使用白金作為第2電極12以外,亦可分別使用上述的材料。In the electrode forming step S110 , the electrodes 11 and 12 may be formed using, for example, a sputtering method or a vapor deposition method, but may also be formed using, for example, a screen printing method, an inkjet method, or a spray printing method. For example, instead of using aluminum as the first electrode 11 and platinum as the second electrode 12 , the above-mentioned materials may be used respectively.

就電極形成工序S110而言,是亦可例如使用周知的蝕刻法等來除去各電極11、12的一部分。此情況,在與作為各電極11、12機能的層隔離的場所形成與各電極11、12相同厚度的層(支撐層)。In the electrode forming step S110, a part of each electrode 11, 12 may be removed, for example, using a known etching method or the like. In this case, a layer (support layer) having the same thickness as the respective electrodes 11 and 12 is formed at a place isolated from the layer that functions as the respective electrodes 11 and 12 .

<<支撐部形成工序S120>> 其次,例如圖4(c)所示般,在第1基板15的主面上方形成第1支撐部17a,例如圖4(d)所示般,在第2基板16的主面上方形成第2支撐部17b(支撐部形成工序S120)。各支撐部17a、17b是從第1方向Z看,形成中空的四角形狀。各支撐部17a、17b是自各電極11、12隔離。 <<Support portion forming process S120>> Next, as shown in Figure 4 (c), for example, form the first supporting portion 17a above the principal surface of the first substrate 15, and form the second supporting portion 17a above the principal surface of the second substrate 16, such as shown in Figure 4 (d). The support part 17b (support part forming process S120). Each support part 17a, 17b is seen from the 1st direction Z, and forms a hollow quadrangular shape. Each supporting part 17a, 17b is isolated from each electrode 11, 12.

就支撐部形成工序S120而言,是在例如使用濺射法或蒸鍍法等的真空環境下形成各支撐部17a、17b以外,亦可在例如使用網版印刷法、噴墨法、噴霧印刷法等的常壓環境下形成支撐部17a、17b。可使用金屬,例如可使用金,作為各支撐部17a、17b。例如使用金及鉻的層疊體或金及鎳的層疊體,作為各支撐部17a、17b時,在各基板15、16上形成鉻或鎳,且在其上形成金。藉此,在各支撐部17a、17b的上面露出金。In the support portion forming step S120, the support portions 17a, 17b may be formed in a vacuum environment such as sputtering or vapor deposition, for example, by screen printing, inkjet, or spray printing. The support portions 17a, 17b are formed under normal pressure environment such as the method. Metal, such as gold, can be used as the respective support portions 17a, 17b. For example, when a laminate of gold and chromium or a laminate of gold and nickel is used as the support portions 17a, 17b, chromium or nickel is formed on each substrate 15, 16, and gold is formed thereon. Thereby, gold is exposed on the upper surface of each support part 17a, 17b.

例如支撐部形成工序S120是亦可在電極形成工序S110所形成的支撐層上形成上述的材料,形成含有支撐層的支撐部17。此情況,相較於在各基板15、16上直接形成支撐部17時,可使形成支撐部17的位置的精度提升。並且,藉由在支撐部17含有與各電極11、12的材料同樣的支撐層,可使例如隨著熱膨脹而作用於各基板15、16的負荷減輕。For example, in the supporting portion forming step S120 , the aforementioned materials may be formed on the supporting layer formed in the electrode forming step S110 to form the supporting portion 17 including the supporting layer. In this case, compared with the case where the support portion 17 is directly formed on each substrate 15 , 16 , the accuracy of the position where the support portion 17 is formed can be improved. In addition, by including a support layer of the same material as that of the electrodes 11 and 12 in the support portion 17, the load acting on the substrates 15 and 16 due to thermal expansion, for example, can be reduced.

另外,就支撐部形成工序S120而言,是亦可在第1基板15的主面上方及第2基板16的主面上方的至少任一者形成支撐部17。支撐部17是亦可接觸於第1基板15或不接觸,只要是第1基板15的主面上方。支撐部17是亦可接觸於第2基板16或不接觸,只要是第2基板16的主面上方。In addition, in the support portion forming step S120 , the support portion 17 may be formed on at least any one of the upper surface of the first substrate 15 and the upper surface of the second substrate 16 . The supporting portion 17 may or may not be in contact with the first substrate 15 as long as it is above the main surface of the first substrate 15 . The supporting portion 17 may or may not be in contact with the second substrate 16 as long as it is above the main surface of the second substrate 16 .

<<保護部形成工序S130>> 其次,例如圖5(a)所示般,在第1電極11的主面上方形成保護部22(保護部形成工序S130)。保護部22是例如圖5(b)所示般,從第1方向Z看,形成中空的四角形狀。保護部22是具有絕緣性,例如可使用CYTOP(註冊商標)。 <<Protection part forming process S130>> Next, for example, as shown in FIG. 5( a ), the protective portion 22 is formed on the main surface of the first electrode 11 (protective portion forming step S130 ). The protection portion 22 is, for example, as shown in FIG. 5( b ), and is formed in a hollow quadrangular shape when viewed from the first direction Z. As shown in FIG. The protective part 22 has insulating properties, for example, CYTOP (registered trademark) can be used.

就保護部形成工序S130而言,是例如在使用濺射法或蒸鍍法等的真空環境下形成保護部22以外,亦可例如在使用網版印刷法、噴墨法、噴霧印刷法等的常壓環境下形成保護部22。In the protective portion forming step S130, for example, the protective portion 22 may be formed in a vacuum environment using, for example, sputtering or vapor deposition, or may be formed using, for example, a screen printing method, an inkjet method, or a spray printing method. The protective portion 22 is formed under normal pressure environment.

另外,就保護部形成工序S130而言,是亦可在第1基板15的主面上方及第2基板16的主面上方的至少任一者形成保護部22。保護部22是亦可接觸於第1基板15或不接觸,只要是第1基板15的主面上方。保護部22是亦可接觸於第2基板16或不接觸,只要是第2基板16的主面上方。In addition, in the protective portion forming step S130 , the protective portion 22 may be formed on at least any one of the upper surface of the first substrate 15 and the upper surface of the second substrate 16 . The protection portion 22 may or may not be in contact with the first substrate 15 as long as it is above the main surface of the first substrate 15 . The protection portion 22 may be in contact with the second substrate 16 or not, as long as it is above the main surface of the second substrate 16 .

<<貫通部形成工序S140>> 其次,例如圖5(c)所示般,在第1基板15形成貫通部18(貫通部形成工序S140)。貫通部18是例如圖5(d)所示般,從第1方向Z看,形成圓狀。貫通部18是將第1基板15貫通於第1方向Z,例如貫通第1電極11。貫通部18是例如設置1個以上。貫通部18是從第1方向Z看,和第1電極11隔離。 <<Penetration part forming process S140>> Next, for example, as shown in FIG. 5( c ), the penetrating portion 18 is formed on the first substrate 15 (penetrating portion forming step S140 ). The penetrating portion 18 is formed in a circular shape when viewed from the first direction Z, for example, as shown in FIG. 5( d ). The penetrating portion 18 penetrates the first substrate 15 in the first direction Z, for example, penetrates the first electrode 11 . For example, one or more penetration portions 18 are provided. The penetrating portion 18 is isolated from the first electrode 11 as viewed from the first direction Z.

就貫通部形成工序S140而言,例如使用鑽頭(drill)在第1基板15形成貫通部18以外,亦可例如使用反應性離子蝕刻等的異方性蝕刻來形成貫通部18。另外,貫通部形成工序S140是亦可例如在第2基板16形成貫通部18。In the through portion forming step S140 , for example, the through portion 18 may be formed by using an anisotropic etching such as reactive ion etching instead of forming the through portion 18 on the first substrate 15 using a drill. In addition, in the penetrating portion forming step S140 , the penetrating portion 18 may be formed on the second substrate 16 , for example.

<<接合工序S150>> 其次,例如圖6(a)及圖6(b)所示般,以將第1電極11及第2電極12隔離於第1方向Z而對向的方式,經由支撐部17來接合第1基板15與第2基板16(接合工序S150)。就接合工序S150而言,例如圖6(a)所示般,以將第1電極11及第2電極12隔離於第1方向Z而對向的方式,將形成於第1電極11的保護部22設在第2電極12。在第2電極12設置保護部22時,第1支撐部17a與第2支撐部17b會被隔離於第1方向Z。 <<Joining process S150>> Next, as shown in FIG. 6(a) and FIG. 6(b), for example, the first substrate 11 and the second electrode 12 are separated and opposed in the first direction Z, and the first substrate is bonded via the support portion 17. 15 and the second substrate 16 (bonding step S150). In the bonding step S150, for example, as shown in FIG. 22 is provided on the second electrode 12 . When the protection portion 22 is provided on the second electrode 12 , the first support portion 17 a and the second support portion 17 b are separated in the first direction Z.

而且,就接合工序S150而言,是例如圖6(b)所示般,將保護部22解壓於第1方向Z,且接合第1支撐部17a的上面與第2支撐部17b的上面。藉由保護部22被擠壓,可更容易密閉中間部14。又,藉由保護部22接觸於第1電極11及第2電極12而設,比將保護部22固定於第1基板15及第2基板16的情況更可將保護部22牢固地固定於第1電極11及第2電極12。藉此,可抑制保護部22的變動。Furthermore, in the joining step S150, as shown in FIG. 6(b), for example, the protection part 22 is decompressed in the first direction Z, and the upper surface of the first support part 17a and the upper surface of the second support part 17b are joined. By the protection part 22 being squeezed, it is easier to seal the middle part 14 . Moreover, since the protection part 22 is provided in contact with the first electrode 11 and the second electrode 12, the protection part 22 can be fixed more firmly to the first substrate 15 and the second substrate 16 than when the protection part 22 is fixed to the first substrate 15 and the second substrate 16. 1st electrode 11 and 2nd electrode 12. Thereby, fluctuation|variation of the protection part 22 can be suppressed.

又,保護部22與支撐部17隔離時,例如在被擠壓的保護部22夾於第1支撐部17a與第2支撐部17b之間的狀態下,可防止各支撐部17a、17b被接合。因此,經由支撐部17來接合第1基板15與第2基板16時,可防止接合力的降低。Moreover, when the protection part 22 is separated from the support part 17, for example, in a state where the pressed protection part 22 is sandwiched between the first support part 17a and the second support part 17b, each support part 17a, 17b can be prevented from being joined. . Therefore, when the first substrate 15 and the second substrate 16 are bonded via the support portion 17 , it is possible to prevent a decrease in bonding force.

就接合工序S150而言,是例如藉由熱壓接合法來使各支撐部17a、17b的上面彼此間抵接而加熱,藉此接合各支撐部17a、17b。此情況,各電極11、12的間隙G是依據各支撐部17a、17b的厚度。各支撐部17a、17b是被夾在各基板15、16,形成間隙G。In the bonding step S150, for example, the upper surfaces of the supporting parts 17a, 17b are brought into contact with each other and heated by thermocompression bonding, thereby bonding the supporting parts 17a, 17b. In this case, the gap G between the electrodes 11 and 12 depends on the thickness of the supporting parts 17a and 17b. Each support part 17a, 17b is sandwiched between each board|substrate 15, 16, and the gap G is formed.

<<中間部形成工序S160>> 其次,例如圖6(c)所示般,在第1電極11與第2電極12之間形成中間部14(中間部形成工序S160)。中間部14是自支撐部17隔離,接觸於保護部22。保護部22是被設在中間部14與支撐部17之間。保護部22是包圍第1電極11、第2電極12及中間部14。 <<Middle part forming process S160>> Next, for example, as shown in FIG. 6( c ), an intermediate portion 14 is formed between the first electrode 11 and the second electrode 12 (intermediate portion forming step S160 ). The middle portion 14 is isolated from the support portion 17 and contacts the protection portion 22 . The protection part 22 is provided between the middle part 14 and the supporting part 17 . The protection portion 22 surrounds the first electrode 11 , the second electrode 12 and the intermediate portion 14 .

就中間部形成工序S160而言,是至少從1個貫通部18充填中間部14,從其他的貫通部18進行吸引(抽真空),形成中間部14。保護部22是被擠壓於第1方向Z而形成,因此容易密閉中間部14。In the intermediate portion forming step S160 , the intermediate portion 14 is filled from at least one penetrating portion 18 , and the intermediate portion 14 is formed by suction (evacuation) from the other penetrating portions 18 . Since the protective portion 22 is formed by pressing in the first direction Z, it is easy to seal the intermediate portion 14 .

又,貫通部18是與第1電極11和第2電極12隔離。因此,經由貫通部18,在第1電極11與第2電極12之間,充填中間部14時異物混入時,可抑制異物附著於第1電極11及第2電極12。藉此,可抑制發電元件的品質的劣化。Also, the penetrating portion 18 is isolated from the first electrode 11 and the second electrode 12 . Therefore, when foreign matter enters between the first electrode 11 and the second electrode 12 when filling the intermediate portion 14 via the penetrating portion 18 , it is possible to suppress foreign matter from adhering to the first electrode 11 and the second electrode 12 . Thereby, deterioration of the quality of a power generating element can be suppressed.

<<密封部形成工序S170>> 其次,例如圖6(d)所示般,形成密封貫通部18的密封部21(密封部形成工序S170)。另外,密封部形成工序S170是亦可省略。 <<Sealing part forming process S170>> Next, for example, as shown in FIG. 6( d ), the sealing portion 21 for sealing the penetration portion 18 is formed (seal portion forming step S170 ). In addition, the sealing portion forming step S170 may also be omitted.

經由上述的工序來形成本實施形態的發電元件1。另外,藉由在被形成的發電元件1連接圖1(a)所示的第1端子111、第2端子112、第1配線101及第2配線102等,可形成本實施形態的發電裝置100。The power generating element 1 of this embodiment is formed through the above-mentioned steps. In addition, the power generating device 100 of this embodiment can be formed by connecting the first terminal 111, the second terminal 112, the first wiring 101, the second wiring 102, etc. shown in FIG. .

另外,電極形成工序S110、支撐部形成工序S120、保護部形成工序S130的順序為任意,只要是例如實施接合工序S150之前。In addition, the order of the electrode forming step S110 , the supporting part forming step S120 , and the protecting part forming step S130 is arbitrary as long as it is, for example, before the bonding step S150 is performed.

又,例如貫通部形成工序S140是亦可省略。此情況,例如在第1基板15的主面上方形成保護部22之後,在第1電極11的藉由保護部22所包圍的部分形成中間部14。然後,以將第1電極11及第2電極12隔離於第1方向Z而對向的方式,經由支撐部17來接合第1基板15與第2基板16。藉此,在第1電極11與第2電極12之間形成中間部14。In addition, for example, the through portion forming step S140 may also be omitted. In this case, for example, after the protective portion 22 is formed on the main surface of the first substrate 15 , the intermediate portion 14 is formed on the portion of the first electrode 11 surrounded by the protective portion 22 . Then, the first substrate 15 and the second substrate 16 are bonded via the support portion 17 so that the first electrode 11 and the second electrode 12 face each other while being spaced apart in the first direction Z. Thereby, an intermediate portion 14 is formed between the first electrode 11 and the second electrode 12 .

若根據本實施形態,則具備:與中間部14隔離,含有金屬的撐部17;及被設在中間部14與支撐部17之間,和中間部14接觸,具有絕緣性的保護部22。因此,可抑制被分散於各電極11、12之間的奈米粒子141的量的減少。藉此,可抑制發電效率的降低。According to the present embodiment, there are provided: a metal-containing support portion 17 isolated from the intermediate portion 14; and an insulating protective portion 22 provided between the intermediate portion 14 and the support portion 17 and in contact with the intermediate portion 14. Therefore, reduction in the amount of nanoparticles 141 dispersed between the electrodes 11 and 12 can be suppressed. Thereby, reduction in power generation efficiency can be suppressed.

若根據本實施形態,則支撐部17是含有金屬。因此,可抑制沿著第1方向Z的支撐部13的厚度偏差。藉此,可高精度形成間隙G,可實現電氣能量的產生量的安定化。According to the present embodiment, the supporting portion 17 contains metal. Therefore, variation in the thickness of the support portion 13 along the first direction Z can be suppressed. Thereby, the gap G can be formed with high precision, and the amount of electric energy generated can be stabilized.

若根據本實施形態,則保護部22是與支撐部17隔離而設。因此,經由支撐部17來接合第1基板15與第2基板16時,可防止例如保護部22接觸於支撐部17所致的接合力的降低。藉此,可藉由支撐部17來牢固地接合第1基板15與第2基板16。According to this embodiment, the protection part 22 is provided separately from the support part 17 . Therefore, when the first substrate 15 and the second substrate 16 are bonded via the support portion 17 , it is possible to prevent, for example, a decrease in bonding force caused by the protection portion 22 coming into contact with the support portion 17 . Thereby, the first substrate 15 and the second substrate 16 can be firmly bonded by the support portion 17 .

若根據本實施形態,則保護部22是接觸於第1電極11與第2電極12之間而設。因此,比將保護部22固定於第1基板15及第2基板16的情況更可將保護部22牢固地固定於第1電極11及第2電極12。藉此,可抑制保護部22的變動。According to this embodiment, the protection part 22 is provided in contact between the first electrode 11 and the second electrode 12 . Therefore, the protection portion 22 can be fixed more firmly to the first electrode 11 and the second electrode 12 than in the case of fixing the protection portion 22 to the first substrate 15 and the second substrate 16 . Thereby, fluctuation|variation of the protection part 22 can be suppressed.

若根據本實施形態,則支撐部17是與第1電極11及第2電極12隔離。因此,可防止各電極11、12經由支撐部17而短路。According to the present embodiment, the supporting portion 17 is separated from the first electrode 11 and the second electrode 12 . Therefore, it is possible to prevent the electrodes 11 , 12 from being short-circuited via the support portion 17 .

若根據本實施形態,則更具備被設在第1基板15及第2基板16的至少任一者的貫通部18。因此,可經由貫通部18,在第1電極11與第2電極12之間,充填中間部14而設。藉此,可謀求發電元件1的製造工序的簡略化。又,隨著發電元件1的使用,發生需要更換中間部14時,可容易實施中間部14的更換。According to this embodiment, the penetration part 18 provided in at least any one of the 1st board|substrate 15 and the 2nd board|substrate 16 is further provided. Therefore, the intermediate portion 14 can be filled between the first electrode 11 and the second electrode 12 via the penetrating portion 18 . Thereby, the manufacturing process of the power generating element 1 can be simplified. Also, when the intermediate portion 14 needs to be replaced as the power generating element 1 is used, the intermediate portion 14 can be easily replaced.

若根據本實施形態,則從第1方向Z看,貫通部18是與第1電極11及第2電極12隔離。因此,經由貫通部18,在第1電極11與第2電極12之間,充填中間部14時異物混入時,可抑制異物附著於第1電極11及第2電極12。藉此,可抑制發電元件的品質的劣化。According to the present embodiment, when viewed in the first direction Z, the penetrating portion 18 is separated from the first electrode 11 and the second electrode 12 . Therefore, when foreign matter enters between the first electrode 11 and the second electrode 12 when filling the intermediate portion 14 via the penetrating portion 18 , it is possible to suppress foreign matter from adhering to the first electrode 11 and the second electrode 12 . Thereby, deterioration of the quality of a power generating element can be suppressed.

(第2實施形態:發電元件1、發電裝置100) 其次,說明有關第2實施形態的發電裝置100及發電元件1。圖7是表示第2實施形態的發電裝置100及發電元件1之一例的模式圖。圖7(a)是表示第2實施形態的發電裝置100及發電元件1之一例的模式剖面圖,圖7(b)是沿著圖7(a)的B-B線的模式剖面圖。 (Second embodiment: power generating element 1, power generating device 100) Next, the power generating device 100 and the power generating element 1 according to the second embodiment will be described. FIG. 7 is a schematic diagram showing an example of a power generating device 100 and a power generating element 1 according to the second embodiment. 7( a ) is a schematic cross-sectional view showing an example of the power generating device 100 and the power generating element 1 according to the second embodiment, and FIG. 7( b ) is a schematic cross-sectional view along line B-B in FIG. 7( a ).

與上述的第1實施形態及第2實施形態的不同是具有開口部19的點。另外,有關與上述的實施形態同樣的構成是省略說明。The difference from the first embodiment and the second embodiment described above is that the opening 19 is provided. In addition, the description of the same structure as the above-mentioned embodiment is omitted.

<<開口部19>> 開口部19是例如圖7(a)所示般,將第1基板15貫通於第1方向Z。開口部19是亦可例如將第1基板15及第2基板16的至少任一者貫通於第1方向Z。 <<Opening part 19>> The opening 19 penetrates the first substrate 15 in the first direction Z, as shown in FIG. 7( a ), for example. The opening 19 may pass through at least one of the first substrate 15 and the second substrate 16 in the first direction Z, for example.

開口部19是將第1基板15貫通於第1方向Z,連接至支撐部17與保護部22之間的空間。開口部19是例如設置1個以上。開口部19是例如從第1方向Z看,和第1電極11及第2電極12隔離。The opening 19 penetrates the first substrate 15 in the first direction Z and is connected to a space between the supporting portion 17 and the protecting portion 22 . For example, one or more openings 19 are provided. The opening 19 is separated from the first electrode 11 and the second electrode 12 as viewed in the first direction Z, for example.

開口部19是從第1方向Z看,形成圓狀以外,例如亦可形成橢圓狀或溝狀。開口部19是形成從發電元件1的外部側朝向內部側變窄的錐狀以外,亦可例如形成倒錐狀、弓狀、或筆直狀。The opening 19 may be formed in, for example, an ellipse or a groove instead of a circle as viewed from the first direction Z. The opening 19 may be formed in an inverted tapered shape, an arcuate shape, or a straight shape, for example, instead of being tapered from the outer side toward the inner side of the power generating element 1 .

另外,圖示雖省略,但亦可設有密封開口部19的密封部21。密封部21是覆蓋開口部19的外部側,設在被貫通的第1基板15上。密封部21是亦可例如將至少一部分設在開口部19內。密封部21是按照開口部19的數量而設。密封部21的材料是例如可使用絕緣性樹脂,絕緣性樹脂的例子是可舉氟系絕緣性樹脂。In addition, although illustration is omitted, a sealing portion 21 for sealing the opening portion 19 may be provided. The sealing portion 21 covers the outer side of the opening portion 19 and is provided on the first substrate 15 penetrated therethrough. For example, at least a part of the sealing portion 21 may be provided in the opening portion 19 . The sealing portion 21 is provided according to the number of openings 19 . The material of the sealing portion 21 is, for example, an insulating resin, and an example of the insulating resin is a fluorine-based insulating resin.

藉由具有開口部19,例如在上述的發電元件1的製造方法的接合工序S150中,經由支撐部17來接合第1基板15與第2基板16時,可將支撐部17與保護部22之間的空間的空氣等的氣體從開口部19排出至發電元件1的外側。藉此,可容易進行經由支撐部17的第1基板15與第2基板16的接合。By having the opening 19, for example, when the first substrate 15 and the second substrate 16 are bonded through the support portion 17 in the bonding step S150 of the above-mentioned manufacturing method of the power generating element 1, the gap between the support portion 17 and the protection portion 22 can be separated. Gases such as air in the space between them are discharged from the opening 19 to the outside of the power generating element 1 . Thereby, the bonding of the first substrate 15 and the second substrate 16 via the support portion 17 can be easily performed.

<第2實施形態:發電元件1的製造方法> 其次,說明發電元件1的製造方法之一例。圖8是表示本實施形態的發電元件1的製造方法之一例的流程圖。圖9(a)~圖9(d)是表示本實施形態的發電元件1的製造方法之一例的模式剖面圖。 <Second Embodiment: Manufacturing Method of Power Generating Element 1> Next, an example of a method of manufacturing the power generating element 1 will be described. FIG. 8 is a flowchart showing an example of a method of manufacturing the power generating element 1 according to this embodiment. 9( a ) to 9( d ) are schematic cross-sectional views showing an example of a method of manufacturing the power generating element 1 of the present embodiment.

如圖8所示般,與上述的實施形態同樣,實施電極形成工序S110、支撐部形成工序S120、保護部形成工序S130及貫通部形成工序S140。As shown in FIG. 8 , the electrode forming step S110 , the supporting portion forming step S120 , the protecting portion forming step S130 , and the penetrating portion forming step S140 are performed similarly to the above-mentioned embodiment.

<<開口部形成工序S210>> 其次,例如圖9(a)所示般,在第1電極11形成開口部19(開口部形成工序S210)。開口部19是例如圖9(b)所示般,從第1方向Z看,形成圓狀。開口部19是將第1基板15貫通於第1方向Z,連接至支撐部17與保護部22之間的空間。開口部19是例如設置1個以上。 <<Opening part forming process S210>> Next, for example, as shown in FIG. 9( a ), an opening 19 is formed in the first electrode 11 (opening forming step S210 ). The opening 19 is formed in a circular shape when viewed from the first direction Z, for example, as shown in FIG. 9( b ). The opening 19 penetrates the first substrate 15 in the first direction Z and is connected to a space between the supporting portion 17 and the protecting portion 22 . For example, one or more openings 19 are provided.

就開口部形成工序S210而言,例如使用鑽頭(drill)在第1基板15形成開口部19以外,亦可例如使用反應性離子蝕刻等的異方性蝕刻來形成開口部19。另外,開口部形成工序S210是亦可例如在第2基板16形成開口部19。In the opening forming step S210 , for example, the opening 19 may be formed in the first substrate 15 using a drill, or anisotropic etching such as reactive ion etching may be used to form the opening 19 . In addition, in the opening forming step S210 , for example, the opening 19 may be formed in the second substrate 16 .

<<接合工序S150>> 其次,例如圖9(c)及圖9(d)所示般,以將第1電極11及第2電極12隔離於第1方向Z而對向的方式,經由支撐部17來接合第1基板15與第2基板16(接合工序S150)。就接合工序S150而言,是例如圖9(c)所示般,以將第1電極11及第2電極12隔離於第1方向Z而對向的方式,將形成於第1電極11的保護部22設在第2電極12。在第2電極12設置保護部22時,第1支撐部17a及第2支撐部17b會被隔離於第1方向Z。 <<Joining process S150>> Next, as shown in FIG. 9(c) and FIG. 9(d), for example, the first electrode 11 and the second electrode 12 are separated and opposed in the first direction Z, and the first substrate is bonded via the support portion 17. 15 and the second substrate 16 (bonding step S150). In the bonding step S150, for example, as shown in FIG. The portion 22 is provided on the second electrode 12 . When the protection portion 22 is provided on the second electrode 12 , the first support portion 17 a and the second support portion 17 b are separated in the first direction Z.

而且,就接合工序S150而言,是例如圖9(d)所示般,將保護部22擠壓於第1方向Z,且接合第1支撐部17a的上面與第2支撐部17b的上面。藉由保護部22被擠壓,可更容易密閉中間部14。又,藉由保護部22接觸於第1電極11及第2電極12而設,比將保護部22固定於第1基板15及第2基板16的情況更可將保護部22牢固地固定於第1電極11及第2電極12。藉此,可抑制保護部22脱落。In addition, in the bonding step S150 , as shown in FIG. 9( d ), for example, the protection portion 22 is pressed in the first direction Z, and the upper surface of the first support portion 17 a and the upper surface of the second support portion 17 b are joined. By the protection part 22 being squeezed, it is easier to seal the middle part 14 . Moreover, since the protection part 22 is provided in contact with the first electrode 11 and the second electrode 12, the protection part 22 can be fixed more firmly to the first substrate 15 and the second substrate 16 than when the protection part 22 is fixed to the first substrate 15 and the second substrate 16. 1st electrode 11 and 2nd electrode 12. Thereby, the protection part 22 can be suppressed from coming off.

就接合工序S150而言,是在經由支撐部17來接合第1基板15與第2基板16時,可將支撐部17與保護部22之間的空間的空氣等的氣體從開口部19排出至發電元件1的外側。藉此,可容易進行第1基板15與第2基板16的支撐部17所致的接合。In the bonding step S150, when the first substrate 15 and the second substrate 16 are bonded via the support portion 17, gas such as air in the space between the support portion 17 and the protection portion 22 can be discharged from the opening 19 to the The outer side of the power generating element 1. This facilitates bonding of the first substrate 15 and the support portion 17 of the second substrate 16 .

然後,與上述的實施形態同樣,實施中間部形成工序S160及密封部形成工序S170。Thereafter, the intermediate portion forming step S160 and the sealing portion forming step S170 are performed similarly to the above-mentioned embodiment.

若根據本實施形態,則與上述的實施形態同樣,具備:與中間部14隔離,含有金屬的支撐部17;及被設在中間部14與支撐部17之間,和中間部14接觸,具有絕緣性的保護部22。因此,可抑制被分散於各電極11、12之間的奈米粒子141的量的減少。藉此,可抑制發電效率的降低。According to the present embodiment, it is the same as the above-mentioned embodiment, and it is equipped with: a support portion 17 that is isolated from the middle portion 14 and contains metal; Insulative protective portion 22 . Therefore, reduction in the amount of nanoparticles 141 dispersed between the electrodes 11 and 12 can be suppressed. Thereby, reduction in power generation efficiency can be suppressed.

又,若根據本實施形態,則在第1基板15及第2基板16的至少任一者具有貫通於第1方向Z的開口部19,開口部19是連接至支撐部17與保護部22之間的空間。因此,在經由支撐部17來接合第1基板15與第2基板16時,可將支撐部17與保護部22之間的空間的空氣等的氣體從開口部19排出至發電元件1的外側。藉此,可容易進行經由支撐部17的第1基板15與第2基板16的接合。Moreover, according to the present embodiment, at least one of the first substrate 15 and the second substrate 16 has an opening 19 penetrating in the first direction Z, and the opening 19 is connected to the support portion 17 and the protection portion 22. space between. Therefore, when the first substrate 15 and the second substrate 16 are bonded via the support portion 17 , gas such as air in the space between the support portion 17 and the protective portion 22 can be discharged to the outside of the power generating element 1 through the opening 19 . Thereby, the bonding of the first substrate 15 and the second substrate 16 via the support portion 17 can be easily performed.

(第3實施形態:發電元件1、發電裝置100) 其次,說明有關第3實施形態的發電裝置100及發電元件1。圖10是表示第3實施形態的發電裝置100及發電元件1之一例的模式圖。圖10(a)是表示第3實施形態的發電裝置100及發電元件1之一例的模式剖面圖,圖10(b)是沿著圖10(a)的C-C線的模式平面圖。 (Third embodiment: power generating element 1, power generating device 100) Next, the power generating device 100 and the power generating element 1 according to the third embodiment will be described. Fig. 10 is a schematic diagram showing an example of a power generating device 100 and a power generating element 1 according to a third embodiment. Fig. 10(a) is a schematic sectional view showing an example of the power generating device 100 and the power generating element 1 according to the third embodiment, and Fig. 10(b) is a schematic plan view along line C-C in Fig. 10(a).

上述的第1實施形態與第3實施形態的不同是具有配線層23及連接配線24的點。另外,與上述的實施形態同樣的構成是省略說明。The above-mentioned first embodiment differs from the third embodiment in that it has the wiring layer 23 and the connection wiring 24 . In addition, the description of the same structure as the above-mentioned embodiment is abbreviate|omitted.

<<配線層23>> 配線層23是例如圖10所示般,被設在發電元件1的外部側(表面)。 <<Wiring layer 23>> The wiring layer 23 is provided, for example, on the outer side (surface) of the power generating element 1 as shown in FIG. 10 .

配線層23是例如具有第1配線層23a及第2配線層23b的至少任一者。第1配線層23a是被設在與第1基板15的設有第1電極11的主面對向的主面上。亦即,第1基板15是被夾於第1配線層23a與第1電極11之間。第2配線層23b是被設在與第2基板16的設有第2電極12的主面對向的主面上。亦即,第2基板16是被夾於第2配線層23b與第2電極12之間。The wiring layer 23 has, for example, at least any one of the first wiring layer 23a and the second wiring layer 23b. The first wiring layer 23 a is provided on the main surface of the first substrate 15 facing the main surface on which the first electrode 11 is provided. That is, the first substrate 15 is sandwiched between the first wiring layer 23 a and the first electrode 11 . The second wiring layer 23b is provided on the main surface of the second substrate 16 that faces the main surface on which the second electrode 12 is provided. That is, the second substrate 16 is sandwiched between the second wiring layer 23 b and the second electrode 12 .

配線層23的沿著第1方向Z的厚度是例如100nm以上10μm以下。作為配線層23的材料,可使用導電性材料,例如使用金以外,可使用金及鉻的層疊體或金及鎳的層疊體。The thickness of the wiring layer 23 along the first direction Z is, for example, not less than 100 nm and not more than 10 μm. As the material of the wiring layer 23, a conductive material can be used, for example, instead of gold, a laminated body of gold and chromium or a laminated body of gold and nickel can be used.

<<連接配線24>> 連接配線24是例如設在各基板15、16被貫通於第1方向Z的貫通孔25,與各電極11、12及配線層23電性連接。連接配線24是例如被充填於各貫通孔25而設。又,連接配線24是亦可例如被設在各貫通孔25的內周面。連接配線24是亦可與中間部14接觸。貫通孔25是具有貫通第1基板15的第1貫通孔25a及貫通第2基板16的第2貫通孔25b。 <<Connection wiring 24>> The connection wiring 24 is, for example, a through-hole 25 provided in each substrate 15 , 16 penetrating in the first direction Z, and is electrically connected to each electrode 11 , 12 and the wiring layer 23 . The connection wiring 24 is provided, for example, to be filled in each through-hole 25 . In addition, the connection wiring 24 may be provided, for example, on the inner peripheral surface of each through hole 25 . The connection wiring 24 may also be in contact with the intermediate portion 14 . The through hole 25 has a first through hole 25 a penetrating the first substrate 15 and a second through hole 25 b penetrating the second substrate 16 .

連接配線24是例如具有第1連接配線24a及第2連接配線24b的至少任一者。第1連接配線24a是經由貫通第1基板15的第1貫通孔25a來與第1電極11及第1配線層23a電性連接。因此,第1連接配線24a與第1電極11的連接處是被設在發電元件1的內部側。第2連接配線24b是經由貫通第2基板16的第2貫通孔25b來與第2電極12及第2配線層23b電性連接。因此,第2連接配線24b與第2電極12的連接處是被設在發電元件1的內部側。上述連接處是各連接配線24a、24b之中特別容易劣化的部分,藉由將連接處設在發電元件1的內部側,可提高發電元件1的耐久性。The connection wiring 24 has, for example, at least any one of the first connection wiring 24a and the second connection wiring 24b. The first connection wiring 24 a is electrically connected to the first electrode 11 and the first wiring layer 23 a through the first through hole 25 a penetrating the first substrate 15 . Therefore, the connection point between the first connection wiring 24 a and the first electrode 11 is provided inside the power generating element 1 . The second connection wiring 24 b is electrically connected to the second electrode 12 and the second wiring layer 23 b through the second through hole 25 b penetrating the second substrate 16 . Therefore, the connection point between the second connection wiring 24 b and the second electrode 12 is provided inside the power generating element 1 . The above connection is a portion that is particularly prone to deterioration among the connecting wires 24a, 24b, and by providing the connection on the inner side of the power generating element 1, the durability of the power generating element 1 can be improved.

連接配線24是例如被充填於各貫通孔25而設。另外,連接配線24是亦可例如被設在各貫通孔25的內周面,以100nm以上10μm以下的厚度形成。作為連接配線24的材料,可使用導電性材料,例如可使用金。The connection wiring 24 is provided, for example, to be filled in each through-hole 25 . In addition, the connection wiring 24 may be provided, for example, on the inner peripheral surface of each through-hole 25, and may be formed with a thickness of not less than 100 nm and not more than 10 μm. As a material of the connection wiring 24, a conductive material can be used, for example, gold can be used.

圖示雖省略,但例如密封部21是亦可覆蓋第1貫通孔25a、第1連接配線24a及第1配線層23a的至少一部分。此時,可藉由密封部21來覆蓋第1配線層23a與第1連接配線24a的連接處。例如密封部21是亦可覆蓋第2貫通孔25b、第2連接配線24b及第2配線層23b的至少一部分。此時,可藉由密封部21來覆蓋第2配線層23b與第2連接配線24b的連接處。上述連接處是各連接配線24a、24b之中特別容易劣化的部分,且被設在發電元件1的外部側,因此藉由密封部21來覆蓋連接處,可提高發電元件1的耐久性。Although illustration is omitted, for example, the sealing portion 21 may cover at least a part of the first through hole 25a, the first connection wiring 24a, and the first wiring layer 23a. At this time, the joint between the first wiring layer 23 a and the first connection wiring 24 a can be covered by the sealing portion 21 . For example, the sealing part 21 may cover at least a part of the 2nd through-hole 25b, the 2nd connection wiring 24b, and the 2nd wiring layer 23b. At this time, the joint between the second wiring layer 23 b and the second connection wiring 24 b can be covered by the sealing portion 21 . The connection is a part that is particularly susceptible to deterioration among the connection wires 24a, 24b, and is provided on the outside of the power generating element 1. Therefore, the durability of the power generating element 1 can be improved by covering the connection with the sealing portion 21.

<第3實施形態:發電元件1的製造方法> 其次,說明發電元件1的製造方法之一例。圖11是表示本實施形態的發電元件1的製造方法之一例的流程圖。圖12(a)~圖13(b)是表示本實施形態的發電元件1的製造方法之一例的模式圖。 <Third Embodiment: Manufacturing Method of Power Generating Element 1> Next, an example of a method of manufacturing the power generating element 1 will be described. FIG. 11 is a flowchart showing an example of a method of manufacturing the power generating element 1 according to this embodiment. 12(a) to 13(b) are schematic diagrams showing an example of a method of manufacturing the power generating element 1 of the present embodiment.

<<連接配線形成工序S310>> 首先,如圖12(a)所示般,在第1基板15形成第1貫通孔25a,在第1貫通孔25a形成第1連接配線24a,如圖12(b)所示般,在第2基板16形成第2貫通孔25b,在第2貫通孔25b形成第2連接配線24b(連接配線形成工序S310)。各貫通孔25a、25b及各連接配線24a、24b是設置1個以上。 <<Connection wiring forming process S310>> First, as shown in FIG. 12(a), a first through hole 25a is formed in the first substrate 15, and a first connection wiring 24a is formed in the first through hole 25a. As shown in FIG. The substrate 16 is formed with the second through hole 25b, and the second connection wiring 24b is formed in the second through hole 25b (connection wiring forming step S310). One or more of each through-hole 25a, 25b and each connection wiring 24a, 24b are provided.

就連接配線形成工序S310而言,例如使用濺射法來形成各連接配線24a、24b。各連接配線24a、24b例如可使用金。In connection wiring formation process S310, each connection wiring 24a, 24b is formed using a sputtering method, for example. Gold can be used for each connection wiring 24a, 24b, for example.

<<配線層形成工序S320>> 其次,如圖12(c)所示般,在第1基板15的一方的主面形成第1配線層23a,如圖12(d)所示般,在第2基板16的一方的主面形成第2配線層23b(配線層形成工序S320)。各配線層23a、23b是例如從第1方向Z看,被形成四角形狀。 <<Wiring layer forming step S320>> Next, as shown in FIG. 12(c), a first wiring layer 23a is formed on one main surface of the first substrate 15, and a first wiring layer 23a is formed on one main surface of the second substrate 16, as shown in FIG. 12(d). The second wiring layer 23b (wiring layer forming step S320). Each wiring layer 23a, 23b is formed in a quadrangular shape when viewed from the first direction Z, for example.

就配線層形成工序S320而言,是例如使用濺射法或蒸鍍法來形成各配線層23a、23b以外,亦可例如使用網版印刷法、噴墨法及噴霧印刷法等來形成。In the wiring layer forming step S320, the wiring layers 23a, 23b may be formed using, for example, a sputtering method or a vapor deposition method, or may be formed using, for example, a screen printing method, an inkjet method, or a spray printing method.

<<電極形成工序S110>> 其次,例如圖13(a)所示般,在第1基板15的與形成有第1配線層23a的主面相反側的主面上形成第1電極11,例如圖13(b)所示般,在第2基板16的與形成有第2配線層23b的主面相反側的主面上形成第2電極12(電極形成工序S110)。此時,第1電極11是經由第1連接配線24a來電性連接至第1配線層23a。又,第2電極12是經由第2連接配線24b來電性連接至第2配線層23b。 <<Electrode Formation Step S110>> Next, as shown in FIG. 13(a), for example, the first electrode 11 is formed on the main surface of the first substrate 15 opposite to the main surface on which the first wiring layer 23a is formed, as shown in FIG. 13(b), for example. Then, the second electrode 12 is formed on the main surface of the second substrate 16 opposite to the main surface on which the second wiring layer 23 b is formed (electrode forming step S110 ). At this time, the first electrode 11 is electrically connected to the first wiring layer 23a via the first connection wiring 24a. In addition, the second electrode 12 is electrically connected to the second wiring layer 23b via the second connection wiring 24b.

然後,如圖11所示般,與上述的實施形態同樣,實施支撐部形成工序S120、保護部形成工序S130、貫通部形成工序S140、接合工序S150、中間部形成工序S160及密封部形成工序S170。Then, as shown in FIG. 11, similarly to the above-mentioned embodiment, the supporting portion forming step S120, the protecting portion forming step S130, the through portion forming step S140, the joining step S150, the intermediate portion forming step S160, and the sealing portion forming step S170 are performed. .

若根據本實施形態,則與上述的實施形態同樣,具備:與中間部14隔離,含有金屬的支撐部17;及被設在中間部14與支撐部17之間,和中間部14接觸,具有絕緣性的保護部22。因此,可抑制被分散於各電極11、12之間的奈米粒子141的量的減少。藉此,可抑制發電效率的降低。According to the present embodiment, it is the same as the above-mentioned embodiment, and it is equipped with: a support portion 17 that is isolated from the middle portion 14 and contains metal; Insulative protective portion 22 . Therefore, reduction in the amount of nanoparticles 141 dispersed between the electrodes 11 and 12 can be suppressed. Thereby, reduction in power generation efficiency can be suppressed.

又,若根據本實施形態,則第1連接配線24a是經由第1貫通孔25a來與第1電極11及第1配線層23a電性連接。因此,第1連接配線24a是可使在發電元件1的內部側與第1電極11連接。藉此,可抑制與第1電極11連接的第1連接配線24a的劣化。Moreover, according to the present embodiment, the first connection wiring 24a is electrically connected to the first electrode 11 and the first wiring layer 23a through the first through hole 25a. Therefore, the first connection wiring 24 a can be connected to the first electrode 11 inside the power generating element 1 . Thereby, the deterioration of the 1st connection wiring 24a connected to the 1st electrode 11 can be suppressed.

又,若根據本實施形態,則第2連接配線24b是經由第2貫通孔25b來與第2電極12及第2配線層23b電性連接。因此,第2連接配線24b是可使在發電元件1的內部側與第2電極12連接。藉此,可抑制與各電極11、12連接的各連接配線24a、24b的劣化。又,第2連接配線24b是可用與第1連接配線24a同樣的構造形成,因此製造工序可簡略化。Moreover, according to the present embodiment, the second connection wiring 24b is electrically connected to the second electrode 12 and the second wiring layer 23b through the second through hole 25b. Therefore, the second connection wiring 24 b can be connected to the second electrode 12 inside the power generating element 1 . Thereby, deterioration of each connection wiring 24a, 24b connected to each electrode 11, 12 can be suppressed. Also, the second connection wiring 24b can be formed with the same structure as the first connection wiring 24a, so the manufacturing process can be simplified.

又,若根據本實施形態,則電極形成工序S110是形成經由第1貫通孔25a來與第1電極11及第1配線層23a電性連接的第1連接配線24a。因此,第1連接配線24a是可使在發電元件1的內部側與第1電極11連接。藉此,可抑制與第1電極11連接的第1連接配線24a的劣化。In addition, according to the present embodiment, the electrode forming step S110 is to form the first connection wiring 24a electrically connected to the first electrode 11 and the first wiring layer 23a through the first through hole 25a. Therefore, the first connection wiring 24 a can be connected to the first electrode 11 inside the power generating element 1 . Thereby, the deterioration of the 1st connection wiring 24a connected to the 1st electrode 11 can be suppressed.

又,若根據本實施形態,則電極形成工序S110是形成經由第2貫通孔25b來與第2電極12及第2配線層23b電性連接的第2連接配線24b。因此,第2連接配線24b是可使在發電元件1的內部側與第2電極12連接。藉此,可抑制與各電極11、12連接的各連接配線24a、24b的劣化。又,第2連接配線24b是可用與第1連接配線24a同樣的構造形成,因此製造工序可簡略化。Moreover, according to the present embodiment, the electrode forming step S110 is to form the second connection wiring 24b electrically connected to the second electrode 12 and the second wiring layer 23b through the second through hole 25b. Therefore, the second connection wiring 24 b can be connected to the second electrode 12 inside the power generating element 1 . Thereby, deterioration of each connection wiring 24a, 24b connected to each electrode 11, 12 can be suppressed. Also, the second connection wiring 24b can be formed with the same structure as the first connection wiring 24a, so the manufacturing process can be simplified.

(實施形態:電子機器500) <電子機器500> 上述的發電元件1及發電裝置100是例如可搭載於電子機器。以下,說明電子機器的實施形態的幾個。 (Embodiment: electronic device 500) <Electronic Equipment 500> The power generating element 1 and the power generating device 100 described above can be mounted on, for example, electronic equipment. Hereinafter, some embodiments of the electronic equipment will be described.

圖14(a)~圖14(d)是表示具備發電元件1的電子機器500的例子的模式方塊圖。圖14(e)~圖14(h)是表示具備含有發電元件1的發電裝置100的電子機器500的例子的模式方塊圖。FIGS. 14( a ) to 14 ( d ) are schematic block diagrams showing an example of an electronic device 500 including the power generating element 1 . FIGS. 14( e ) to 14 ( h ) are schematic block diagrams showing an example of an electronic device 500 including the power generating device 100 including the power generating element 1 .

如圖14(a)所示般,電子機器500(Electric Product)是具備電子零件501(Electronic Components)、主電源502及輔助電源503。電子機器500及電子零件501的各者是電性的機器(Electrical device)。As shown in FIG. 14( a ), an electronic device 500 (Electric Product) includes electronic components 501 (Electronic Components), a main power supply 502 , and an auxiliary power supply 503 . Each of the electronic device 500 and the electronic component 501 is an electrical device (Electrical device).

電子零件501是將主電源502用在電源而被驅動。作為電子零件501的例子,例如可舉CPU、馬達、感測器終端裝置及照明等。電子零件501為例如CPU時,電子機器500是包含可藉由內藏的主控站(Master)(CPU)來控制的電子機器。電子零件501為例如包括馬達、感測器終端裝置及照明等的至少1個時,電子機器500是包含可藉由位於外部的主控站或人來控制的電子機器。The electronic component 501 is driven by using the main power supply 502 as a power supply. As an example of the electronic component 501, a CPU, a motor, a sensor terminal device, lighting, etc. are mentioned, for example. When the electronic component 501 is, for example, a CPU, the electronic device 500 includes an electronic device that can be controlled by a built-in master control station (Master) (CPU). When the electronic component 501 includes, for example, at least one of a motor, a sensor terminal device, and a lighting, the electronic device 500 includes an electronic device that can be controlled by an external master control station or a person.

主電源502是例如電池。電池也包含可充電的電池。主電源502的正端子(+)是與電子零件501的Vcc端子(Vcc)電性連接。主電源502的負端子(-)是與電子零件501的GND端子(GND)電性連接。The main power source 502 is, for example, a battery. The batteries also include rechargeable batteries. The positive terminal (+) of the main power supply 502 is electrically connected to the Vcc terminal (Vcc) of the electronic component 501 . The negative terminal (−) of the main power supply 502 is electrically connected to the GND terminal (GND) of the electronic component 501 .

輔助電源503是發電元件1。發電元件1是包含上述的發電元件1的至少1個。在電子機器500中,輔助電源503是例如與主電源502併用,可作為用以協助主電源502的電源或當主電源502的容量用盡時用以支援主電源502的電源使用。主電源502為可充電的電池時,輔助電源503是進一步亦可作為用以將電池充電的電源使用。The auxiliary power supply 503 is the power generating element 1 . The power generating element 1 includes at least one of the power generating elements 1 described above. In the electronic device 500 , the auxiliary power supply 503 is used together with the main power supply 502 , and can be used as a power supply for assisting the main power supply 502 or as a power supply for supporting the main power supply 502 when the capacity of the main power supply 502 is exhausted. When the main power source 502 is a rechargeable battery, the auxiliary power source 503 can also be used as a power source for charging the battery.

如圖14(b)所示般,主電源502是亦可作為發電元件1。圖14(b)所示的電子機器500是具備:作為主電源502使用的發電元件1;及可使用發電元件1來驅動的電子零件501。發電元件1是獨立的電源(例如離線型(off-grid)電源)。因此,電子機器500是例如可形成自立型(獨立(Stand alone)型)。而且,發電元件1是環境發電型(Energy harvesting型)。圖14(b)所示的電子機器500是不需要電池的更換。As shown in FIG. 14( b ), the main power source 502 can also be used as the power generating element 1 . An electronic device 500 shown in FIG. 14( b ) includes: a power generating element 1 used as a main power supply 502 ; and an electronic component 501 that can be driven using the power generating element 1 . The power generating element 1 is an independent power source (for example, an off-grid power source). Therefore, the electronic device 500 can be formed into a self-supporting type (stand alone type), for example. Furthermore, the power generating element 1 is an environmental power generation type (Energy harvesting type). The electronic device 500 shown in FIG. 14(b) does not require battery replacement.

如圖14(c)所示般,電子零件501亦可具備發電元件1。發電元件1的陽極是例如與電路基板(圖示省略)的GND配線電性連接。發電元件1的陰極是例如與電路基板(圖示省略)的Vcc配線電性連接。此情況,發電元件1是可作為電子零件501的例如輔助電源503使用。As shown in FIG. 14( c ), the electronic component 501 may include the power generating element 1 . The anode of the power generating element 1 is electrically connected to, for example, a GND wiring of a circuit board (not shown). The cathode of the power generating element 1 is electrically connected to, for example, a Vcc wiring of a circuit board (not shown). In this case, the power generating element 1 can be used as, for example, the auxiliary power supply 503 of the electronic component 501 .

如圖14(d)所示般,電子零件501具備發電元件1時,發電元件1是可作為電子零件501的例如主電源502使用。As shown in FIG. 14( d ), when the electronic component 501 includes the power generating element 1 , the power generating element 1 can be used as, for example, the main power supply 502 of the electronic component 501 .

如圖14(e)~圖14(h)的各者所示般,電子機器500是亦可具備發電裝置100。發電裝置100是含有發電元件1作為電氣能量的來源。As shown in each of FIG. 14( e ) to FIG. 14( h ), the electronic device 500 may also include the power generating device 100 . The power generating device 100 includes the power generating element 1 as a source of electrical energy.

圖14(d)所示的實施形態是電子零件501具備作為主電源502使用的發電元件1。同樣,圖14(h)所示的實施形態是電子零件501具備作為主電源使用的發電裝置100。就該等的實施形態而言,電子零件501持有獨立的電源。因此,可將電子零件501設為例如自立型。自立型的電子零件501是例如可有效地用在含有複數的電子零件,且至少1個的電子零件會與別的電子零件分離之類的電子機器。如此的電子機器500的例子是感測器。感測器是具備感測器終端裝置(從動裝置(slave))及離開感測器終端裝置的控制器(主控站(master))。感測器終端裝置及控制器的各者是電子零件501。若感測器終端裝置具備發電元件1或發電裝置100,則成為自立型的感測器終端裝置,不需要有線的電力供給。由於發電元件1或發電裝置100是環境發電型,因此電池的更換也不需要。感測器終端裝置是亦可視為電子機器500之一。在被視為電子機器500的感測器終端裝置是除了感測器的感測器終端裝置之外,例如更包含IoT WIRELESS-TAG等。In the embodiment shown in FIG. 14( d ), an electronic component 501 includes a power generating element 1 used as a main power supply 502 . Similarly, in the embodiment shown in FIG. 14( h ), the electronic component 501 includes the power generator 100 used as the main power source. In these embodiments, the electronic component 501 has an independent power supply. Therefore, the electronic component 501 can be made into a self-supporting type, for example. The self-supporting electronic component 501 can be effectively used, for example, in an electronic device including a plurality of electronic components, and at least one electronic component is separated from other electronic components. An example of such an electronic device 500 is a sensor. The sensor is a controller (master) provided with a sensor terminal device (slave) and a remote sensor terminal device. Each of the sensor terminal device and the controller is an electronic component 501 . If the sensor terminal device includes the power generating element 1 or the power generating device 100, it becomes an independent sensor terminal device and does not require wired power supply. Since the power generating element 1 or the power generating device 100 is an environmental power generation type, battery replacement is also unnecessary. The sensor terminal device can also be regarded as one of the electronic devices 500 . The sensor terminal device regarded as the electronic device 500 is a sensor terminal device other than a sensor, and includes, for example, IoT WIRELESS-TAG and the like.

在圖14(a)~圖14(h)的各者所示的實施形態中,共通的是電子機器500包含:將、熱能量變換成電氣能量的發電元件1,及可將發電元件1用在電源而被驅動的電子零件501。In the embodiments shown in each of Fig. 14(a) to Fig. 14(h), what is common is that the electronic equipment 500 includes: a power generating element 1 that converts thermal energy into electrical energy, and the power generating element 1 can be used to An electronic component 501 driven by a power source.

電子機器500是亦可為具備獨立的電源的自律型(Autonomous型)。自律型的電子機器的例子是例如可舉機器人等。進一步,具備發電元件1或發電裝置100的電子零件501是亦可為具備獨立的電源的自律型。自律型的電子零件的例子是例如可舉可動感測器終端裝置等。The electronic device 500 may be an autonomous type (autonomous type) provided with an independent power supply. Examples of autonomous electronic devices include, for example, robots. Furthermore, the electronic component 501 provided with the power generating element 1 or the power generating device 100 may be an autonomous type provided with an independent power supply. Examples of autonomous electronic components are, for example, movable sensor terminal devices and the like.

說明了本發明的幾個的實施形態,但該等的實施形態是作為例子提示者,不是意圖限定發明的範圍。該等新穎的實施形態是可被實施於其他各種的形態,可在不脫離發明主旨的範圍進行各種的省略、置換、變更。該等實施形態或其變形為發明的範圍或主旨所包含,且為申請專利範圍記載的發明及其均等的範圍所包含。Although some embodiments of the present invention have been described, these embodiments are presented as examples and are not intended to limit the scope of the invention. These novel embodiments can be implemented in other various forms, and various omissions, substitutions, and changes can be made without departing from the gist of the invention. These embodiments and modifications thereof are included in the scope or gist of the invention, and are included in the inventions described in the claims and their equivalent scopes.

1:發電元件 11:第1電極 12:第2電極 13:支撐部 14:中間部 15:第1基板 16:第2基板 17:支撐部 18:貫通部 19:開口部 21:密封部 22:保護部 23:配線層 24:連接配線 25:貫通孔 100:發電裝置 101:第1配線 102:第2配線 111:第1端子 112:第2端子 140:空間 141:奈米粒子 141a:被膜 142:溶媒 500:電子機器 501:電子零件 502:主電源 503:輔助電源 G:間隙 S110:電極形成工序 S120:支撐部形成工序 S130:保護部形成工序 S140:貫通部形成工序 S150:接合工序 S160:中間部形成工序 S170:密封部形成工序 S210:開口部形成工序 S310:連接配線形成工序 S320:配線層形成工序 X:第2方向 Y:第3方向 Z:第1方向 1: Generating components 11: 1st electrode 12: 2nd electrode 13: Support part 14: middle part 15: 1st substrate 16: Second substrate 17: Support part 18: Penetrating part 19: Opening 21: sealing part 22: Ministry of Protection 23: Wiring layer 24: Connect wiring 25: Through hole 100: Generator 101: 1st wiring 102: 2nd wiring 111: 1st terminal 112: 2nd terminal 140: space 141:Nanoparticles 141a: film 142:Solvent 500: electronic equipment 501: Electronic parts 502: Main power supply 503: Auxiliary power supply G: Gap S110: Electrode forming process S120: Support portion forming process S130: Protection portion forming process S140: Penetration portion forming process S150: Joining process S160: Middle part forming process S170: Sealing part forming process S210: Opening part forming process S310: Connection wiring forming process S320: Wiring layer forming process X: 2nd direction Y: 3rd direction Z: 1st direction

[圖1(a)]是表示第1實施形態的發電元件及發電裝置之一例的模式剖面圖,[圖1(b)]是沿著圖1(a)的A-A的模式平面圖。 [圖2]是表示中間部之一例的模式剖面圖。 [圖3]是表示第1實施形態的發電元件的製造方法之一例的流程圖。 [圖4(a)~圖4(d)]是表示第1實施形態的發電元件的製造方法之一例的模式圖。 [圖5(a)~圖5(d)]是表示第1實施形態的發電元件的製造方法之一例的模式圖。 [圖6(a)~圖6(d)]是表示第1實施形態的發電元件的製造方法之一例的模式圖。 [圖7(a)]是表示第2實施形態的發電元件及發電裝置之一例的模式剖面圖,圖7(b)是沿著圖7(a)的B-B的模式平面圖。 [圖8]是表示第2實施形態的發電元件的製造方法之一例的流程圖。 [圖9(a)~圖9(d)]是表示第2實施形態的發電元件的製造方法之一例的模式圖。 [圖10(a)]是表示第3實施形態的發電元件及發電裝置之一例的模式剖面圖,圖10(b)是沿著圖10(a)的C-C的模式平面圖。 [圖11]是表示第3實施形態的發電元件的製造方法之一例的流程圖。 [圖12(a)~圖12(d)]是表示第3實施形態的發電元件的製造方法之一例的模式圖。 [圖13(a)及圖13(b)]是表示第3實施形態的發電元件的製造方法之一例的模式圖。 [圖14(a)~圖14(d)]是表示具備發電元件的電子機器的例子的模式方塊圖,圖14(e)~圖14(h)是表示包含發電元件的發電裝置的電子機器的例子的模式方塊圖。 [FIG. 1(a)] is a schematic sectional view showing an example of a power generating element and a power generating device according to the first embodiment, and [FIG. 1(b)] is a schematic plan view along line A-A of FIG. 1(a). [ Fig. 2 ] is a schematic cross-sectional view showing an example of an intermediate portion. [ Fig. 3 ] is a flow chart showing an example of the method of manufacturing the power generating element according to the first embodiment. [FIG. 4(a)-FIG. 4(d)] are schematic diagrams showing an example of the method of manufacturing the power generating element according to the first embodiment. [FIG. 5(a) to FIG. 5(d)] are schematic diagrams showing an example of the method of manufacturing the power generating element according to the first embodiment. [FIG. 6(a) to FIG. 6(d)] are schematic diagrams showing an example of the method of manufacturing the power generating element according to the first embodiment. [FIG. 7(a)] is a schematic sectional view showing an example of a power generating element and a power generating device according to the second embodiment, and FIG. 7(b) is a schematic plan view along line B-B of FIG. 7(a). [ Fig. 8] Fig. 8 is a flowchart showing an example of a method of manufacturing a power generating element according to a second embodiment. [FIG. 9(a)-FIG. 9(d)] are schematic diagrams showing an example of the method of manufacturing the power generating element according to the second embodiment. [FIG. 10(a)] is a schematic sectional view showing an example of a power generating element and a power generating device according to a third embodiment, and FIG. 10(b) is a schematic plan view along line C-C of FIG. 10(a). [ Fig. 11 ] is a flowchart showing an example of a method of manufacturing a power generating element according to a third embodiment. [FIG. 12(a) to FIG. 12(d)] are schematic diagrams showing an example of a method of manufacturing a power generating element according to the third embodiment. [FIG. 13(a) and FIG. 13(b)] are schematic diagrams showing an example of the method of manufacturing the power generating element according to the third embodiment. [FIG. 14(a) to FIG. 14(d)] are schematic block diagrams showing examples of electronic equipment equipped with power generating elements, and FIG. 14(e) to FIG. 14(h) are electronic equipment showing power generating devices including power generating elements An example of a schema block diagram.

1:發電元件 1: Generating components

11:第1電極 11: 1st electrode

12:第2電極 12: 2nd electrode

14:中間部 14: middle part

15:第1基板 15: 1st substrate

16:第2基板 16: Second substrate

17:支撐部 17: Support part

17a:第1支撐部 17a: the first support part

17b:第2支撐部 17b: The second support part

18:貫通部 18: Penetrating part

21:密封部 21: sealing part

22:保護部 22: Ministry of Protection

100:發電裝置 100: Generator

101:第1配線 101: 1st wiring

102:第2配線 102: 2nd wiring

111:第1端子 111: 1st terminal

112:第2端子 112: 2nd terminal

R:負荷 R: load

Claims (9)

一種發電元件,係將熱能量變換成電氣能量的發電元件,其特徵係具備: 沿著第1方向來彼此隔離而設的第1基板及第2基板; 被設在前述第1基板的主面上之第1電極; 與前述第1電極隔離而設在前述第2基板的主面上,具有比前述第1電極更高的功函數之第2電極; 被設在前述第1電極與前述第2電極之間,含有使奈米粒子分散的溶媒之中間部; 接觸於前述第1基板與前述第2基板之間而設,和前述中間部隔離,含有金屬之支撐部;及 被設在前述中間部與前述支撐部之間,和前述中間部接觸,具有絕緣性之保護部。 A power generation element, which is a power generation element that converts thermal energy into electrical energy, is characterized by: a first substrate and a second substrate arranged in isolation from each other along the first direction; a first electrode provided on the main surface of the first substrate; A second electrode having a higher work function than the first electrode, provided on the main surface of the second substrate separated from the first electrode; An intermediate part that is provided between the first electrode and the second electrode and contains a medium for dispersing the nanoparticles; a metal-containing support portion provided in contact with the first substrate and the second substrate, and isolated from the intermediate portion; and An insulating protective portion provided between the intermediate portion and the support portion, in contact with the intermediate portion. 如請求項1記載的發電元件,其中,前述保護部係與前述支撐部隔離而設。The power generating element according to claim 1, wherein the protection part is provided in isolation from the support part. 如請求項2記載的發電元件,其中,前述保護部係接觸於前述第1電極與前述第2電極之間而設。The power generating element according to claim 2, wherein the protection portion is provided in contact between the first electrode and the second electrode. 如請求項1記載的發電元件,其中,前述支撐部係與前述第1電極及前述第2電極隔離。The power generating element according to claim 1, wherein the support portion is separated from the first electrode and the second electrode. 如請求項1記載的發電元件,其中,更具備被設在前述第1基板及前述第2基板的至少任一者的貫通部。The power generating element according to claim 1, further comprising a penetrating portion provided on at least one of the first substrate and the second substrate. 如請求項5記載的發電元件,其中,從前述第1方向看,前述貫通部係與前述第1電極及前述第2電極隔離。The power generating element according to claim 5, wherein the penetrating portion is isolated from the first electrode and the second electrode when viewed from the first direction. 一種發電裝置,其特徵係具備: 請求項1記載的發電元件; 與前述第1電極電性連接的第1配線;及 與前述第2電極電性連接的第2配線。 A power generating device, characterized in that it has: The power generation element described in Claim 1; a first wiring electrically connected to the aforementioned first electrode; and A second wiring electrically connected to the second electrode. 一種電子機器,其特徵係具備: 請求項1記載的發電元件;及 將前述發電元件用在電源而被驅動的電子零件。 An electronic machine characterized by: The power generating element described in Claim 1; and An electronic component that is driven by using the aforementioned power generating element as a power source. 一種發電元件的製造方法,係將熱能量變換成電氣能量之發電元件的製造方法,其特徵係具備: 電極形成工序,其係在第1基板的主面上形成第1電極,且在第2基板的主面上形成比前述第1電極更高的功函數之第2電極; 支撐部形成工序,其係在前述第1基板的主面上方及前述第2基板的主面上方的至少任一者形成含有金屬的支撐部; 保護部形成工序,其係在前述第1基板的主面上方及前述第2基板的主面上方的至少任一者形成具有絕緣性的保護部; 接合工序,其係以將前述第1電極及前述第2電極隔離於第1方向而對向的方式,經由前述支撐部來接合前述第1基板與前述第2基板;及 中間部形成工序,其係以和前述保護部接觸,和前述支撐部隔離的方式,形成含有奈米粒子被分散的溶媒之中間部。 A method of manufacturing a power generating element, which is a method of manufacturing a power generating element that converts thermal energy into electrical energy, and is characterized by: An electrode forming step of forming a first electrode on the main surface of the first substrate, and forming a second electrode having a higher work function than the first electrode on the main surface of the second substrate; a support portion forming step of forming a metal-containing support portion on at least one of above the main surface of the first substrate and above the main surface of the second substrate; A protective portion forming step of forming an insulating protective portion on at least one of the upper surface of the first substrate and the upper surface of the second substrate; a bonding step of bonding the first substrate and the second substrate through the supporting portion in such a manner that the first electrode and the second electrode face each other in a first direction; and The intermediate part forming step is to form the intermediate part containing the medium in which the nanoparticles are dispersed in such a manner that it is in contact with the protective part and separated from the support part.
TW111111916A 2021-07-12 2022-03-29 Power generation element, power generation device, electronic device, and method for manufacturing power generation element TW202304018A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021115256A JP2024120126A (en) 2021-07-12 2021-07-12 Power generating element, power generating device, electronic device, and method for manufacturing power generating element
JP2021-115256 2021-07-12

Publications (1)

Publication Number Publication Date
TW202304018A true TW202304018A (en) 2023-01-16

Family

ID=84919950

Family Applications (1)

Application Number Title Priority Date Filing Date
TW111111916A TW202304018A (en) 2021-07-12 2022-03-29 Power generation element, power generation device, electronic device, and method for manufacturing power generation element

Country Status (3)

Country Link
JP (1) JP2024120126A (en)
TW (1) TW202304018A (en)
WO (1) WO2023286363A1 (en)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017143198A (en) * 2016-02-11 2017-08-17 株式会社デンソー Thermionic power generation element
JP7197855B2 (en) * 2018-09-14 2022-12-28 株式会社Gceインスティチュート Thermoelectric element manufacturing method
US11101421B2 (en) * 2019-02-25 2021-08-24 Birmingham Technologies, Inc. Nano-scale energy conversion device

Also Published As

Publication number Publication date
WO2023286363A1 (en) 2023-01-19
JP2024120126A (en) 2024-09-04

Similar Documents

Publication Publication Date Title
US20220190748A1 (en) Power generation element, power generation device, electronic apparatus, and method for manufacturing power generation element
JP7473222B2 (en) Power generating element, power generating device, electronic device, and method for manufacturing power generating element
JP7197857B2 (en) Thermoelectric element, power generator, electronic device, and method for manufacturing thermoelectric element
JP2020068238A (en) Thermoelectric element, power generator, electronic apparatus, and manufacturing method for thermoelectric element
TW202304018A (en) Power generation element, power generation device, electronic device, and method for manufacturing power generation element
JP7197855B2 (en) Thermoelectric element manufacturing method
WO2023038104A1 (en) Method for manufacturing power generation element, power generation element, power generation device, and electronic apparatus
WO2023038106A1 (en) Method for manufacturing power generation element, power generation element, power generation device, and electronic device
WO2023038099A1 (en) Method for manufacturing power generation element, power generation element, power generation device, and electronic apparatus
TW202209715A (en) Power generation element, power generation device, electronic apparatus, and manufacturing method for power generation element
JP2020145303A (en) Thermoelectric element, semiconductor integrated circuit device with electric generator, electronic apparatus, and method of manufacturing thermoelectric element
WO2023038107A1 (en) Power generation element, method for manufacturing power generation element, power generation device, and electronic apparatus
JP7244819B2 (en) Thermoelectric element, power generator, electronic device, and method for manufacturing thermoelectric element
JP7244043B2 (en) Thermoelectric element, power generator, electronic device, and method for manufacturing thermoelectric element
WO2023038108A1 (en) Method for manufacturing power generation element, power generation element, power generation device, and electronic apparatus
WO2023038105A1 (en) Method for producing power generation element, power generation element, power generation device and electronic device
JP7197856B2 (en) Thermoelectric element manufacturing method
WO2023038102A1 (en) Method for manufacturing power generation element, power generation element, power generation device, and electronic device
WO2023038103A1 (en) Power generation element, method for manufacturing power generation element, power generation device, and electronic apparatus
WO2022097419A1 (en) Power generation element, control system, power generation device, electronic apparatus, and power generation method
WO2023038109A1 (en) Power generation function-equipped secondary battery
JP2023157549A (en) Power generating device
JP2022052523A (en) Power generation element, power generation device, electronic apparatus, and manufacturing method for power generation element
JP2023100560A (en) Secondary battery with power generation function
JP2022060936A (en) Method for manufacturing power generation element, power generation element member, power generation device, and electronic apparatus