WO2023286363A1 - Power generation element, power generation device, electronic device, and method for manufacturing power generation element - Google Patents

Power generation element, power generation device, electronic device, and method for manufacturing power generation element Download PDF

Info

Publication number
WO2023286363A1
WO2023286363A1 PCT/JP2022/011931 JP2022011931W WO2023286363A1 WO 2023286363 A1 WO2023286363 A1 WO 2023286363A1 JP 2022011931 W JP2022011931 W JP 2022011931W WO 2023286363 A1 WO2023286363 A1 WO 2023286363A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
substrate
power generation
generation element
main surface
Prior art date
Application number
PCT/JP2022/011931
Other languages
French (fr)
Japanese (ja)
Inventor
博史 後藤
稔 坂田
健 魯
Original Assignee
株式会社Gceインスティチュート
国立研究開発法人産業技術総合研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Gceインスティチュート, 国立研究開発法人産業技術総合研究所 filed Critical 株式会社Gceインスティチュート
Publication of WO2023286363A1 publication Critical patent/WO2023286363A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J45/00Discharge tubes functioning as thermionic generators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N11/00Generators or motors not provided for elsewhere; Alleged perpetua mobilia obtained by electric or magnetic means

Definitions

  • the present invention relates to a power generation element that converts thermal energy into electrical energy, a power generation device, an electronic device, and a method of manufacturing a power generation element.
  • Patent Document 1 discloses a first substrate having a first main surface, a second substrate having a second main surface facing the first main surface, and a first electrode section and a first electrode section spaced apart from the second substrate. a support portion provided between the second electrode portion having a work function different from that of the first substrate, the first substrate, and the second substrate, separated from the first electrode portion and the second electrode portion, and containing a metal;
  • a thermoelectric element is disclosed that includes an electrode portion and an intermediate portion that is disposed between the second electrode portion and that includes nanoparticles.
  • the present invention has been devised in view of the above-described problems, and its object is to provide a power generating element, a power generating device, an electronic device, and a power generating element capable of suppressing a decrease in power generation efficiency. It is to provide a manufacturing method.
  • a power generation element is a power generation element that converts thermal energy into electrical energy, and includes a first substrate and a second substrate provided apart from each other along a first direction, and the first substrate. a first electrode provided on the main surface; a second electrode provided on the main surface of the second substrate spaced from the first electrode and having a work function higher than that of the first electrode; an intermediate portion provided between the first electrode and the second electrode and containing a solvent in which nanoparticles are dispersed; and an intermediate portion provided between the first substrate and the second substrate and separated from the intermediate portion and a support portion containing metal, and a protection portion provided between the intermediate portion and the support portion, in contact with the intermediate portion, and having insulating properties.
  • a power generation element according to a second invention is characterized in that, in the first invention, the protection portion is provided apart from the support portion.
  • a power generation element is characterized in that, in the second aspect of the invention, the protective portion is provided in contact between the first electrode and the second electrode.
  • a power generation element according to a fourth invention is characterized in that, in the first invention, the support portion is separated from the first electrode and the second electrode.
  • a power generation element is characterized in that, in the first aspect of the invention, a penetrating portion is provided in at least one of the first substrate and the second substrate.
  • a power generation element is characterized in that, in the fifth aspect of the invention, the penetrating portion is separated from the first electrode and the second electrode when viewed from the first direction.
  • a power generating device includes the power generating element according to the first aspect of the invention, a first wiring electrically connected to the first electrode, and a second wiring electrically connected to the second electrode. It is characterized by having
  • An electronic device is characterized by comprising the power generation element according to the first invention and an electronic component driven by using the power generation element as a power supply.
  • a method for manufacturing a power generation element includes forming a first electrode on the main surface of a first substrate, and forming a second electrode having a work function higher than that of the first electrode on the main surface of a second substrate.
  • the supporting portion containing metal and separated from the intermediate portion, and the protective portion provided between the intermediate portion and the supporting portion and in contact with the intermediate portion and having insulating properties are provided. Prepare. Therefore, it is possible to suppress a decrease in the amount of nanoparticles dispersed between the electrodes. As a result, a decrease in power generation efficiency can be suppressed.
  • the protection section is provided apart from the support section. Therefore, when the first substrate and the second substrate are bonded via the supporting portion, it is possible to prevent the bonding strength from being lowered due to, for example, the protective portion coming into contact with the supporting portion. Thereby, the first substrate and the second substrate can be firmly bonded by the supporting portion.
  • the protective portion is provided in contact between the first electrode and the second electrode. Therefore, it is possible to fix the protective portion to the first electrode and the second electrode more firmly than in the case where the protective portion is fixed to the first substrate and the second substrate. As a result, it is possible to suppress the fluctuation of the protective portion.
  • the supporting portion is separated from the first electrode and the second electrode. Therefore, it is possible to prevent short-circuiting of the electrodes through the supporting portion.
  • the penetrating portion provided in at least one of the first substrate and the second substrate is further provided. Therefore, the intermediate portion can be filled and provided between the first electrode and the second electrode through the through portion. As a result, the manufacturing process of the power generation element can be simplified. Further, when it becomes necessary to replace the intermediate portion due to the use of the power generating element, it is possible to easily replace the intermediate portion.
  • the penetrating portion is separated from the first electrode and the second electrode when viewed from the first direction. Therefore, when foreign matter enters between the first electrode and the second electrode through the through portion when filling the intermediate portion, adhesion of the foreign matter to the first electrode and the second electrode is suppressed. be able to. As a result, deterioration of the quality of the power generation element can be suppressed.
  • the intermediate portion containing the solvent in which the nanoparticles are dispersed is formed so as to be in contact with the protective portion and separated from the support portion. Therefore, it is possible to suppress a decrease in the amount of nanoparticles dispersed between the electrodes. As a result, a decrease in power generation efficiency can be suppressed.
  • FIG. 1(a) is a schematic cross-sectional view showing an example of a power generation element and a power generation device in the first embodiment
  • FIG. 1(b) is a schematic plan view along AA in FIG. 1(a).
  • FIG. 2 is a schematic cross-sectional view showing an example of the intermediate portion.
  • FIG. 3 is a flow chart showing an example of a method for manufacturing a power generation element according to the first embodiment.
  • FIGS. 4(a) to 4(d) are schematic diagrams showing an example of the method for manufacturing the power generation element according to the first embodiment.
  • 5(a) to 5(d) are schematic diagrams showing an example of the method for manufacturing the power generating element according to the first embodiment.
  • FIG. 6(a) to 6(d) are schematic diagrams showing an example of the method for manufacturing the power generation element according to the first embodiment.
  • FIG. 7(a) is a schematic cross-sectional view showing an example of the power generation element and the power generation device in the second embodiment
  • FIG. 7(b) is a schematic plan view along BB in FIG. 7(a).
  • FIG. 8 is a flow chart showing an example of a method for manufacturing a power generation element according to the second embodiment.
  • 9(a) to 9(d) are schematic diagrams showing an example of a method for manufacturing a power generation element according to the second embodiment.
  • FIG. 10(a) is a schematic cross-sectional view showing an example of the power generation element and the power generation device in the third embodiment
  • FIG. 10(b) is a schematic plan view along CC in FIG. 10(a). be.
  • FIG. 11 is a flow chart showing an example of a method for manufacturing a power generation element according to the third embodiment.
  • 12(a) to 12(d) are schematic diagrams showing an example of a method for manufacturing a power generation element according to the third embodiment.
  • 13(a) and 13(b) are schematic diagrams showing an example of a method for manufacturing a power generation element according to the third embodiment.
  • FIGS. 14(a) to 14(d) are schematic block diagrams showing examples of electronic devices provided with power generation elements, and FIGS. 14(e) to 14(h) show power generators including power generation elements. It is a schematic block diagram which shows the example of the electronic device provided.
  • the height direction in which each electrode is stacked is defined as a first direction Z
  • one planar direction that intersects, for example, is orthogonal to the first direction Z is defined as a second direction X.
  • a third direction Y is another planar direction that intersects, for example, is orthogonal to each of the directions X.
  • the configuration in each drawing is schematically described for explanation, and for example, the size of each configuration and the comparison of the size of each configuration may differ from those in the drawings.
  • FIG. 1 is a schematic diagram showing an example of a power generation element 1 and a power generation device 100 in this embodiment.
  • FIG. 1(a) is a schematic cross-sectional view showing an example of a power generation element 1 and a power generation device 100 in the present embodiment
  • FIG. 1(b) is a schematic plane along AA in FIG. 1(a). It is a diagram.
  • the power generation device 100 includes a power generation element 1 , first wiring 101 and second wiring 102 .
  • the power generation element 1 converts thermal energy into electrical energy.
  • the power generation device 100 including such a power generation element 1 is mounted or installed on a heat source (not shown), and based on the thermal energy of the heat source, the electrical energy generated from the power generation element 1 is transferred to the first wiring 101 and the second wiring 101. 2 output to the load R via the wiring 102 .
  • One end of the load R is electrically connected to the first wiring 101 and the other end is electrically connected to the second wiring 102 .
  • a load R indicates, for example, an electrical device.
  • the load R is driven, for example, using the generator 100 as a main power source or an auxiliary power source.
  • heat sources for the power generation element 1 include electronic devices or electronic parts such as CPUs (Central Processing Units), light emitting elements such as LEDs (Light Emitting Diodes), engines such as automobiles, production equipment in factories, human bodies, sunlight, and environmental temperature.
  • electronic devices, electronic parts, light-emitting elements, engines, production equipment, etc. are artificial heat sources.
  • the human body, sunlight, ambient temperature, etc. are natural heat sources.
  • the power generation device 100 including the power generation element 1 can be provided inside mobile devices such as IoT (Internet of Things) devices and wearable devices and self-supporting sensor terminals, and can be used as an alternative or supplement to batteries. Furthermore, the power generation device 100 can also be applied to larger power generation devices such as solar power generation.
  • the power generation element 1 converts, for example, thermal energy generated by the artificial heat source or thermal energy possessed by the natural heat source into electrical energy to generate current.
  • the power generation element 1 can be provided not only inside the power generation device 100, but also inside the mobile device, the self-contained sensor terminal, or the like. In this case, the power generation element 1 itself can serve as an alternative or auxiliary part of the battery, such as the mobile device or the self-contained sensor terminal.
  • the power generation element 1 includes a first electrode 11, a second electrode 12, an intermediate portion 14, a first substrate 15, a second substrate 16, a support portion 17, and a protection unit 22 .
  • the power generating element 1 may further include a penetrating portion 18 and a sealing portion 21 .
  • the first substrate 15 and the second substrate 16 are provided apart from each other along the first direction Z.
  • the first electrode 11 is provided on the main surface of the first substrate 15 .
  • the second electrode 12 is spaced apart from the first electrode 11 and provided on the main surface of the second substrate 16 and has a work function higher than that of the first electrode 11 .
  • the first electrode 11 and the second electrode 12 are provided facing each other.
  • the intermediate portion 14 is provided in a space 140 including a gap G between the first electrode 11 and the second electrode 12, as shown in FIG. 2, for example.
  • Middle portion 14 includes nanoparticles 141 and solvent 142 . Nanoparticles 141 are dispersed in a solvent 142 to facilitate electron reception to each electrode 11,12.
  • the supporting portion 17 is provided in contact between the first substrate 15 and the second substrate 16, is separated from the intermediate portion 14, and contains metal.
  • the protective portion 22 is provided between the intermediate portion 14 and the support portion 17, is in contact with the intermediate portion 14, and has insulating properties. Therefore, the nanoparticles 141 do not come into contact with the supporting portion 17 , so that the nanoparticles 141 can be prevented from adhering to the supporting portion 17 .
  • the inventors have discovered that the nanoparticles 141 used in the power generation element 1 tend to adhere more easily to metal materials than to insulator materials. Based on this point, the protection part 22 of the power generating element 1 in this embodiment has insulating properties. Therefore, the amount of nanoparticles 141 adhering to the protective portion 22 can be significantly reduced compared to the support portion 17 . This can suppress a decrease in the amount of nanoparticles 141 dispersed between the electrodes. Therefore, it is possible to suppress a decrease in power generation efficiency.
  • the 1st electrode 11 and the 2nd electrode 12 are spaced apart, for example, as shown to Fig.1 (a).
  • the first electrode 11 and the second electrode 12 are spaced apart in the first direction Z, for example.
  • the first electrode 11 and the second electrode 12 may be spaced apart in the second direction X or the third direction Y, for example.
  • Each of the electrodes 11 and 12 may extend in the second direction X and the third direction Y, for example, and may be provided in plurality.
  • one second electrode 12 may be provided facing the plurality of first electrodes 11 at different positions.
  • one first electrode 11 may be provided facing the plurality of second electrodes 12 at different positions.
  • the first electrode 11 and the second electrode 12 have different work functions, for example.
  • a conductive material is used as the material of the first electrode 11 and the second electrode 12 .
  • materials for the first electrode 11 and the second electrode 12 for example, the same material may be used as the electrodes 11 and 12, and in this case, they may have different work functions.
  • non-metallic conductor As the material of the electrodes 11 and 12, for example, a material composed of a single element such as iron, aluminum, or copper may be used, or an alloy material composed of, for example, two or more elements may be used.
  • a non-metallic conductor for example, may be used as the material of the electrodes 11 and 12 .
  • Examples of nonmetallic conductors include silicon (Si: for example, p-type Si or n-type Si) and carbon-based materials such as graphene.
  • the thickness of the first electrode 11 and the second electrode 12 along the first direction Z is, for example, 4 nm or more and 1 ⁇ m or less.
  • the thickness of the first electrode 11 and the second electrode 12 along the first direction Z may be, for example, 4 nm or more and 50 nm or less.
  • the gap G which indicates the distance between the first electrode 11 and the second electrode 12, indicates the length along the first direction Z, as shown in FIG. 2, for example.
  • the gap G indicates the length along the first direction Z, as shown in FIG. 2, for example.
  • the power generation efficiency of the power generation element 1 can be improved.
  • the thickness of the power generation element 1 along the first direction Z can be reduced. For these reasons, it is desirable that the gap G be as short as possible.
  • the gap G is a finite value of 10 ⁇ m or less, for example.
  • the gap G is, for example, 1 ⁇ m or more and 5 ⁇ m or less, it is possible to suppress the influence of the variation in the gap G on the power generation efficiency.
  • the gap G is, for example, 10 nm or more and 100 nm or less, the power generation efficiency can be improved.
  • the gap G depends on, for example, the thickness of the support portion 17, and also depends on the arrangement conditions of the electrodes 11 and 12 when the electrodes 11 and 12 are provided on the same substrate.
  • the intermediate portion 14 is provided within a space 140 formed between the electrodes 11 , 12 .
  • the intermediate portion 14 may be in contact with the main surfaces of the electrodes 11 and 12 facing each other, and may also be in contact with the side surfaces of the electrodes 11 and 12, for example.
  • the intermediate portion 14 may contain, for example, multiple types of nanoparticles 141 .
  • the particle diameter of the nanoparticles 141 is a finite value smaller than the gap G.
  • the particle diameter of the nanoparticles 141 is a finite value of 1/10 or less of the gap G, for example.
  • the intermediate portion 14 containing the nanoparticles 141 can be easily formed in the space 140 . This makes it possible to improve the workability when generating the power generation element 1 .
  • nanoparticles refer to those containing multiple particles.
  • the nanoparticles 141 include particles having a particle diameter of, for example, 2 nm or more and 100 nm or less.
  • the nanoparticles 141 may include, for example, particles having a median diameter (median diameter: D50) of 3 nm or more and 8 nm or less, or particles having an average particle diameter of 3 nm or more and 8 nm or less. good.
  • the median diameter or average particle diameter can be measured, for example, by using a particle size distribution analyzer.
  • a particle size distribution measuring instrument for example, a particle size distribution measuring instrument using a dynamic light scattering method (eg, Zetasizer Ultra manufactured by Malvern Panalytical, etc.) may be used.
  • the nanoparticles 141 contain, for example, a conductor.
  • the value of the work function of the nanoparticles 141 is, for example, between the value of the work function of the first electrode 11 and the value of the work function of the second electrode 12, and for example, the value of the work function of the first electrode 11. , and the value of the work function of the second electrode 12, and is optional.
  • nanoparticles 141 may include, for example, metal oxides.
  • metal oxides examples include zirconia (ZrO 2 ), titania (TiO 2 ), silica (SiO 2 ), alumina (Al 2 O 3 ), iron oxides (Fe 2 O 3 , Fe 2 O 5 ).
  • the nanoparticles 141 contain a metal oxide, the dispersibility in the solvent 142 can be improved, and the deterioration of the power generation efficiency due to aggregation of the nanoparticles 141 can be suppressed.
  • the nanoparticles 141 contain a metal oxide, the choice of materials can be increased, and the material cost can be reduced.
  • Materials other than magnetic substances may also be used as the nanoparticles 141 .
  • a magnetic material when used as the nanoparticles 141, movement of the nanoparticles 141 may be restricted by a magnetic field generated due to the environment in which the power generation element 1 is installed. Therefore, by using a material other than a magnetic material as the nanoparticles 141, it is possible to suppress deterioration in power generation efficiency over time without being affected by the magnetic field caused by the external environment.
  • the nanoparticles 141 include, for example, a coating 141a on the surface.
  • the thickness of the coating 141a is, for example, a finite value of 20 nm or less.
  • a material having, for example, a thiol group or a disulfide group is used as the coating 141a.
  • Alkanethiol such as dodecanethiol is used as the material having a thiol group.
  • a material having a disulfide group for example, an alkane disulfide or the like is used.
  • the solvent 142 contains, for example, an organic solvent.
  • organic solvents include aromatic hydrocarbon compounds, aromatic ester compounds, aromatic ether compounds, aromatic ketone compounds, aliphatic hydrocarbon compounds, aliphatic ester compounds, aliphatic ether compounds, aliphatic ketone compounds, alcohol compounds, Amide compounds, thiol compounds, other compounds, and the like are used, and one or two or more of them may be used. Since the solvent 142 contains an organic solvent, it is possible to reduce the material cost.
  • dimethylsulfoxide for example, dimethylsulfoxide, acetone, chloroform, methylene chloride, etc. may be used as the solvent 142 .
  • the solvent 142 for example, a liquid with a boiling point of 60°C or higher can be used. Therefore, vaporization of the solvent 142 can be suppressed even when the power generation element 1 is used in an environment of room temperature (for example, 15° C. to 35° C.) or higher. As a result, deterioration of the power generating element 1 due to evaporation of the solvent 142 can be suppressed.
  • the first substrate 15 is in contact with the first electrode 11 and separated from the second electrode 12, as shown in FIG. 1(a), for example.
  • the first substrate 15 fixes the first electrode 11 .
  • the second substrate 16 is in contact with the second electrode 12 and separated from the first electrode 11 .
  • a second substrate 16 fixes the second electrode 12 .
  • the first substrate 15 and the second substrate 16 are spaced apart in the first direction Z with the electrodes 11 and 12 and the intermediate portion 14 therebetween, for example.
  • the power generation element 1 may further include a penetrating portion 18 provided in at least one of the first substrate 15 and the second substrate 16 .
  • the power generation element 1 may further include a sealing portion 21 that seals the penetrating portion 18 .
  • each of the substrates 15 and 16 along the first direction Z is, for example, 10 ⁇ m or more and 2 mm or less.
  • the thickness of each substrate 15, 16 can be set arbitrarily.
  • the shape of each of the substrates 15 and 16 may be, for example, square, rectangular, or disk-like, and can be arbitrarily set according to the application.
  • the substrates 15 and 16 for example, plate-shaped members having insulation properties can be used, and known members such as silicon, quartz, and Pyrex (registered trademark) can be used.
  • a film-like member may be used, and for example, a known film-like member such as PET (polyethylene terephthalate), PC (polycarbonate), polyimide, or the like may be used.
  • a member having conductivity can be used, such as iron, aluminum, copper, or an alloy of aluminum and copper.
  • a member such as a conductive polymer may be used in addition to a conductive semiconductor such as Si or GaN. If conductive members are used for the substrates 15 and 16, wiring for connecting to the electrodes 11 and 12 becomes unnecessary.
  • the support portion 17 supports the first substrate 15 and the second substrate 16 and bonds the first substrate 15 and the second substrate 16 together.
  • the gap G can be formed with high accuracy.
  • the supporting portion 17 contains a metal, it is possible to improve the bonding strength and suppress variations in the gap G.
  • the support part 17 is formed in a hollow rectangular shape when viewed from the first direction Z, and surrounds the electrodes 11 and 12, the intermediate part 14 and the protection part 22.
  • the shape of the support portion 17 is arbitrary as long as it surrounds the protection portion 22 and supports the first substrate 15 and the second substrate 16 .
  • the support portion 17 has a first support portion 17a and a second support portion 17b.
  • the first support portion 17 a is provided on the first substrate 15 .
  • the second support portion 17 b is provided on the second substrate 16 .
  • the first support portion 17a and the second support portion 17b are in contact with each other.
  • a material having insulating properties for example, is used as the support portion 17 .
  • the supporting portion 17 include silicon oxide and polymer.
  • polymers include polyimide, PMMA (polymethyl methacrylate), and polystyrene.
  • metal may be included in, for example, surfaces of the support portions 17a and 17b that are in contact with each other. In this case, it is possible to improve the bonding strength.
  • metal as the support portion 17 .
  • metals are gold, nickel, tungsten, tantalum, molybdenum, lead, platinum, silver or tin, as well as gold and chromium laminates or gold and nickel laminates. Since the support portions 17a and 17b contain metal, the thickness when forming the support portions 17a and 17b can be easily controlled. Thickness variations in the portions 17a and 17b can be prevented. Thereby, the gap G can be formed with high accuracy.
  • the gold portions exposed on the surfaces of the support portions 17a and 17b can be easily bonded using, for example, a thermocompression bonding method. Thereby, the inter-electrode gap can be formed with higher accuracy.
  • the supporting portion 17 may be provided by oxidizing at least a portion of at least one of the first substrate 15 and the second substrate 16, for example.
  • the support portion 17 can be easily provided.
  • metal may be included in the mutually contacting surfaces of the support portions 17a and 17b. In this case, it is possible to improve the bonding strength.
  • the protection portion 22 is provided, for example, apart from the support portion 17 . In this case, it is possible to prevent the protection portion 22 from entering the joint surface when the support portion 17 is formed. In addition, it is possible to prevent heat from being transferred from the intermediate portion 14 to the support portion 17 via the protective portion 22, thereby suppressing consumption of thermal energy.
  • the protection part 22 is provided in contact with, for example, between the first electrode 11 and the second electrode 12 .
  • the protective portion 22 is provided in contact with, for example, between the first electrode 11 and the second electrode 12, so that the intermediate portion 14 can be easily sealed.
  • the protective portion 22 is provided in contact with, for example, between the first electrode 11 and the second electrode 12 , thereby facilitating the formation of the protective portion 22 when manufacturing the power generating element 1 .
  • the protective portion 22 may be provided in contact between the first substrate 15 and the second substrate 16, for example. In this case, compared to the case where the protective portion 22 is provided between the electrodes 11 and 12, the facing areas of the electrodes 11 and 12 can be increased. This makes it possible to improve the amount of current generated between the electrodes 11 and 12 .
  • the protection part 22 is formed in a hollow rectangular shape when viewed from the first direction Z, and surrounds the electrodes 11 and 12 and the intermediate part 14 .
  • the protective portion 22 has an inner surface in contact with the intermediate portion 14 .
  • the protective portion 22 is provided to prevent the nanoparticles 141 from adhering to the support portion 17 and can seal the intermediate portion 14 .
  • the protective part 22 for example, a material having insulating properties can be used. Furthermore, as the protective part 22, for example, a fluororesin such as CYTOP (registered trademark) or Teflon (registered trademark) can be used.
  • CYTOP registered trademark
  • Teflon registered trademark
  • the penetrating portion 18 penetrates the first substrate 15 in the first direction Z, as shown in FIG. 1A, for example.
  • the penetrating part 18 may penetrate at least one of the first substrate 15 and the second substrate 16 in the first direction Z, for example.
  • the penetrating part 18 penetrates the first substrate 15 in the first direction Z, and penetrates the first electrode 11, for example.
  • one or more penetrating portions 18 are provided.
  • the penetrating portion 18 is separated from the first electrode 11 and the second electrode 12 when viewed from the first direction Z, for example.
  • the penetrating portion 18 When viewed from the first direction Z, the penetrating portion 18 may be formed in a circular shape, or may be formed in an elliptical shape or a groove shape, for example.
  • the penetrating portion 18 may be formed in a tapered shape that narrows from the outside to the inside of the power generation element 1, or may be formed in a reverse tapered shape, a bowing shape, or a straight shape, for example.
  • the sealing portion 21 seals the penetrating portion 18 .
  • the sealing portion 21 covers the outer side of the penetrating portion 18 and is provided on the penetrated first substrate 15 .
  • the sealing portion 21 may be provided, for example, at least partially inside the through portion 18 .
  • the sealing portions 21 are provided according to the number of the through portions 18 .
  • an insulating resin is used as the material of the sealing portion 21, and an example of the insulating resin is a fluorine-based insulating resin.
  • the amount of current generated can be increased, for example, by increasing the work function difference between the first electrode 11 and the second electrode 12 and by decreasing the gap between the electrodes.
  • the amount of electrical energy generated by the power generation element 1 can be increased by considering at least one of increasing the work function difference and decreasing the inter-electrode gap.
  • the "work function” indicates the minimum energy required to extract electrons in a solid into a vacuum.
  • the work function can be determined by, for example, the Kelvin method, ultraviolet photoelectron spectroscopy (UPS), X-ray photoelectron spectroscopy (XPS), and Auger electron spectroscopy (AES). can be measured using
  • FIG. 3 is a flow chart showing an example of a method for manufacturing the power generating element 1 according to this embodiment.
  • 4(a) to 6(d) are schematic diagrams showing an example of the method of manufacturing the power generating element according to the first embodiment.
  • the first electrode 11 is formed on the main surface of the first substrate 15, and as shown in FIG. 4B, for example, on the main surface of the second substrate 16.
  • a second electrode 12 is formed (electrode forming step S110).
  • Each of the electrodes 11 and 12 is formed in a square shape when viewed from the first direction Z. As shown in FIG. 4A, for example, the first electrode 11 is formed on the main surface of the first substrate 15, and as shown in FIG. 4B, for example, on the main surface of the second substrate 16.
  • a second electrode 12 is formed (electrode forming step S110).
  • Each of the electrodes 11 and 12 is formed in a square shape when viewed from the first direction Z. As shown in FIG.
  • the electrodes 11 and 12 may be formed using, for example, a sputtering method or a vapor deposition method, or may be formed using, for example, a screen printing method, an inkjet method, a spray printing method, or the like.
  • a sputtering method or a vapor deposition method or may be formed using, for example, a screen printing method, an inkjet method, a spray printing method, or the like.
  • aluminum may be used as the first electrode 11 and platinum may be used as the second electrode 12, or the materials described above may be used.
  • a part of each of the electrodes 11 and 12 may be removed using, for example, a known etching method or the like.
  • a layer (supporting layer) having the same thickness as the electrodes 11 and 12 is formed at a location spaced apart from the layers functioning as the electrodes 11 and 12 .
  • a first supporting portion 17a is formed above the main surface of the first substrate 15, and as shown in FIG. 4D, for example, the main surface of the second substrate 16 is formed.
  • the second support portion 17b is formed above (support portion forming step S120).
  • Each support part 17a, 17b is formed in a hollow quadrangular shape when viewed from the first direction Z.
  • Each support portion 17a, 17b is spaced apart from each electrode 11, 12.
  • FIG. 4C for example, a first supporting portion 17a is formed above the main surface of the first substrate 15, and as shown in FIG. 4D, for example, the main surface of the second substrate 16 is formed.
  • the second support portion 17b is formed above (support portion forming step S120).
  • Each support part 17a, 17b is formed in a hollow quadrangular shape when viewed from the first direction Z.
  • Each support portion 17a, 17b is spaced apart from each electrode 11, 12.
  • the supporting portions 17a and 17b are formed in a vacuum environment using, for example, a sputtering method or a vapor deposition method.
  • Each support 17a, 17b may be formed below.
  • a metal, such as gold, is used for each of the support portions 17a and 17b.
  • chromium or nickel is formed on each substrate 15 and 16, and gold is formed thereon. be. As a result, the gold is exposed on the upper surfaces of the support portions 17a and 17b.
  • the support portion forming step S120 may form the support portion 17 including the support layer by forming the material described above on the support layer formed in the electrode formation step S110.
  • the support portion 17 includes a support layer similar to the material of the electrodes 11 and 12, it is possible to reduce the load acting on the substrates 15 and 16 due to thermal expansion, for example.
  • the supporting portion 17 may be formed on at least one of the main surface of the first substrate 15 and the main surface of the second substrate 16 .
  • the supporting portion 17 may or may not be in contact with the first substrate 15 as long as it is above the main surface of the first substrate 15 .
  • the supporting portion 17 may or may not be in contact with the second substrate 16 as long as it is above the main surface of the second substrate 16 .
  • the protective portion 22 is formed above the main surface of the first electrode 11 (protective portion forming step S130).
  • the protection part 22 is formed in a hollow rectangular shape when viewed from the first direction Z, as shown in FIG. 5B, for example.
  • the protective part 22 has insulating properties, and Cytop (registered trademark) is used, for example.
  • the protection portion 22 is formed in a vacuum environment using, for example, a sputtering method or a vapor deposition method. A portion 22 may be formed.
  • the protective portion 22 may be formed on at least one of the main surface of the first substrate 15 and the main surface of the second substrate 16.
  • the protective portion 22 may or may not be in contact with the first substrate 15 as long as it is above the main surface of the first substrate 15 .
  • the protective portion 22 may or may not be in contact with the second substrate 16 as long as it is above the main surface of the second substrate 16 .
  • the through portion 18 is formed in the first substrate 15 (through portion forming step S140).
  • the penetrating portion 18 is formed in a circular shape when viewed from the first direction Z, as shown in FIG. 5D, for example.
  • the penetrating portion 18 penetrates the first substrate 15 in the first direction Z, and penetrates the first electrode 11, for example.
  • one or more penetrating portions 18 are provided.
  • the penetrating portion 18 is separated from the first electrode 11 when viewed from the first direction Z. As shown in FIG.
  • the penetrating portion 18 may be formed in the first substrate 15 using, for example, a drill, or may be formed using anisotropic etching such as reactive ion etching. In addition, the penetrating portion forming step S140 may form the penetrating portion 18 in the second substrate 16, for example.
  • the first electrode 11 and the second electrode 12 are separated from each other in the first direction Z and face each other with the support portion 17 interposed therebetween. to bond the first substrate 15 and the second substrate 16 (bonding step S150).
  • the bonding step S150 for example, as shown in FIG. 6A, the first electrode 11 and the second electrode 12 are separated from each other in the first direction Z so as to face each other. 22 is provided on the second electrode 12 .
  • the protective portion 22 is provided on the second electrode 12, the first support portion 17a and the second support portion 17b are separated in the first direction Z.
  • the protection portion 22 is crushed in the first direction Z, and the upper surface of the first support portion 17a and the upper surface of the second support portion 17b are joined. do.
  • the intermediate portion 14 can be more easily sealed.
  • the protection portion 22 in contact with the first electrode 11 and the second electrode 12 , the first electrode 11 and the second electrode 11 can be separated from each other more than when the protection portion 22 is fixed to the first substrate 15 and the second substrate 16 .
  • the protective portion 22 can be firmly fixed to the two electrodes 12 . As a result, fluctuations in the protective portion 22 can be suppressed.
  • the protection portion 22 when the protection portion 22 is separated from the support portion 17, for example, in a state where the crushed protection portion 22 is sandwiched between the first support portion 17a and the second support portion 17b, the support portions 17a and 17b are separated from each other. You can prevent it from joining. Therefore, when the first substrate 15 and the second substrate 16 are bonded via the supporting portion 17, the bonding strength can be prevented from being lowered.
  • the upper surfaces of the support portions 17a and 17b are brought into contact with each other and heated by, for example, a thermocompression bonding method, thereby bonding the support portions 17a and 17b.
  • the gap G at each electrode 11, 12 depends on the thickness of each support 17a, 17b.
  • Each supporting part 17a, 17b is sandwiched between each substrate 15, 16, and a gap G is formed.
  • an intermediate portion 14 is formed between the first electrode 11 and the second electrode 12 (intermediate portion forming step S160).
  • the intermediate portion 14 is separated from the support portion 17 and contacts the protection portion 22 .
  • the protection portion 22 is provided between the intermediate portion 14 and the support portion 17 .
  • the protective portion 22 surrounds the first electrode 11 , the second electrode 12 and the intermediate portion 14 .
  • the intermediate portion 14 is filled from at least one through portion 18, and the other through portion 18 is sucked (evacuated) to form the intermediate portion 14. Since the protective portion 22 is formed by being crushed in the first direction Z, it becomes easier to seal the intermediate portion 14 .
  • the penetrating portion 18 is separated from the first electrode 11 and the second electrode 12 . Therefore, when foreign matter enters between the first electrode 11 and the second electrode 12 through the penetrating portion 18 when the intermediate portion 14 is filled, the foreign matter may enter the first electrode 11 and the second electrode 12 . Adhesion can be suppressed. As a result, deterioration of the quality of the power generation element can be suppressed.
  • a sealing portion 21 for sealing the through portion 18 is formed (sealing portion forming step S170). Note that the sealing portion forming step S170 can be omitted.
  • the power generation element 1 in this embodiment is formed through the above-described steps. By connecting the first terminal 111, the second terminal 112, the first wiring 101, the second wiring 102, etc. shown in FIG. 100 can be formed.
  • the order of the electrode formation step S110, the support portion formation step S120, and the protection portion formation step S130 is arbitrary, for example, before the bonding step S150 is performed.
  • the penetrating portion forming step S140 can be omitted.
  • the intermediate portion 14 is formed in a portion of the first electrode 11 surrounded by the protective portion 22 .
  • the first substrate 15 and the second substrate 16 are joined via the supporting portion 17 so that the first electrode 11 and the second electrode 12 are opposed to each other in the first direction Z while being separated from each other.
  • an intermediate portion 14 is formed between the first electrode 11 and the second electrode 12 .
  • the supporting portion 17 containing metal is separated from the intermediate portion 14, and the protective portion 22 is provided between the intermediate portion 14 and the supporting portion 17, is in contact with the intermediate portion 14, and has insulating properties. , provided. Therefore, the decrease in the amount of nanoparticles 141 dispersed between the electrodes 11 and 12 can be suppressed. As a result, a decrease in power generation efficiency can be suppressed.
  • the support portion 17 contains metal. Therefore, variations in the thickness of the support portion 13 along the first direction Z can be suppressed. As a result, the gap G can be formed with high accuracy, and the amount of electrical energy generated can be stabilized.
  • the protection section 22 is provided apart from the support section 17 . Therefore, when the first substrate 15 and the second substrate 16 are bonded via the support portion 17, it is possible to prevent the bonding strength from being lowered due to the protection portion 22 coming into contact with the support portion 17, for example. Thereby, the first substrate 15 and the second substrate 16 can be firmly bonded by the supporting portion 17 .
  • the protective portion 22 is provided in contact between the first electrode 11 and the second electrode 12 . Therefore, the protective portion 22 can be more firmly fixed to the first electrode 11 and the second electrode 12 than when the protective portion 22 is fixed to the first substrate 15 and the second substrate 16 . As a result, fluctuations in the protective portion 22 can be suppressed.
  • the support portion 17 is separated from the first electrode 11 and the second electrode 12 . Therefore, it is possible to prevent the electrodes 11 and 12 from being short-circuited via the supporting portion 17 .
  • the penetrating portion 18 provided in at least one of the first substrate 15 and the second substrate 16 is further provided. Therefore, the intermediate portion 14 can be filled and provided between the first electrode 11 and the second electrode 12 via the penetrating portion 18 . Thereby, simplification of the manufacturing process of the power generation element 1 can be achieved. Further, when it becomes necessary to replace the intermediate portion 14 due to the use of the power generating element 1, the intermediate portion 14 can be easily replaced.
  • the penetrating portion 18 is separated from the first electrode 11 and the second electrode 12 when viewed from the first direction Z. Therefore, when foreign matter enters between the first electrode 11 and the second electrode 12 through the penetrating portion 18 when the intermediate portion 14 is filled, the foreign matter may enter the first electrode 11 and the second electrode 12 . Adhesion can be suppressed. As a result, deterioration of the quality of the power generation element can be suppressed.
  • FIG. 7 is a schematic diagram showing an example of the power generation device 100 and the power generation element 1 according to the second embodiment.
  • FIG. 7A is a schematic cross-sectional view showing an example of the power generation device 100 and the power generation element 1 according to the second embodiment, and
  • FIG. It is a schematic cross-sectional view.
  • the opening 19 penetrates the first substrate 15 in the first direction Z, as shown in FIG. 7A, for example.
  • the opening 19 may penetrate at least one of the first substrate 15 and the second substrate 16 in the first direction Z, for example.
  • the opening 19 penetrates the first substrate 15 in the first direction Z and connects to the space between the supporting portion 17 and the protecting portion 22 .
  • one or more openings 19 are provided.
  • the opening 19 is separated from the first electrode 11 and the second electrode 12 when viewed from the first direction Z, for example.
  • the opening 19 When viewed from the first direction Z, the opening 19 may be circular, or may be elliptical or groove-shaped, for example.
  • the opening 19 may be formed in a tapered shape that narrows from the outside to the inside of the power generation element 1, or may be formed in a reverse tapered shape, a bowing shape, or a straight shape, for example.
  • a sealing portion 21 for sealing the opening 19 may be provided.
  • the sealing portion 21 covers the outside of the opening 19 and is provided on the penetrated first substrate 15 .
  • the sealing portion 21 may be provided, for example, at least partially within the opening portion 19 .
  • the sealing portions 21 are provided according to the number of openings 19 .
  • an insulating resin is used as the material of the sealing portion 21, and an example of the insulating resin is a fluorine-based insulating resin.
  • the opening 19 for example, in the bonding step S150 of the method for manufacturing the power generation element 1 described above, when the first substrate 15 and the second substrate 16 are bonded via the support 17, the support 17 and the protection are protected. Gas such as air in the space between the portion 22 and the portion 22 can be discharged to the outside of the power generation element 1 through the opening portion 19 . Thereby, the bonding between the first substrate 15 and the second substrate 16 via the supporting portion 17 can be easily performed.
  • FIG. 8 is a flow chart showing an example of a method for manufacturing the power generating element 1 according to this embodiment.
  • 9(a) to 9(d) are schematic cross-sectional views showing an example of a method for manufacturing the power generating element 1 according to this embodiment.
  • an electrode forming step S110, a supporting portion forming step S120, a protective portion forming step S130, and a penetrating portion forming step S140 are performed in the same manner as in the above-described embodiment.
  • an opening 19 is formed in the first electrode 11 (opening forming step S210).
  • the opening 19 is formed in a circular shape when viewed from the first direction Z, as shown in FIG. 9B, for example.
  • the opening 19 penetrates the first substrate 15 in the first direction Z and connects to the space between the support portion 17 and the protection portion 22 .
  • one or more openings 19 are provided.
  • the opening 19 may be formed using anisotropic etching such as reactive ion etching.
  • the opening forming step S210 may form the opening 19 in the second substrate 16, for example.
  • the bonding step S150 for example, as shown in FIG. do.
  • the intermediate portion 14 can be more easily sealed.
  • the protection portion 22 in contact with the first electrode 11 and the second electrode 12 , the first electrode 11 and the second electrode 11 can be separated from each other more than when the protection portion 22 is fixed to the first substrate 15 and the second substrate 16 .
  • the protective portion 22 can be firmly fixed to the two electrodes 12 . As a result, it is possible to prevent the protective portion 22 from coming off.
  • the bonding step S ⁇ b>150 when the first substrate 15 and the second substrate 16 are bonded via the support portion 17 , gas such as air in the space between the support portion 17 and the protection portion 22 is discharged from the opening portion 19 . It can be discharged to the outside of the power generation element 1 . This makes it possible to easily bond the first substrate 15 and the second substrate 16 by the supporting portion 17 .
  • the intermediate portion forming step S160 and the sealing portion forming step S170 are performed.
  • At least one of the first substrate 15 and the second substrate 16 has an opening 19 penetrating in the first direction Z, and the opening 19 includes the support portion 17 and the protection portion 22 . It leads to the space between Therefore, when the first substrate 15 and the second substrate 16 are bonded via the support portion 17, gas such as air in the space between the support portion 17 and the protection portion 22 is discharged from the opening portion 19 to the power generation element. 1 can be discharged outside. Thereby, the first substrate 15 and the second substrate 16 can be easily bonded via the supporting portion 17 .
  • FIG. 10 is a schematic diagram showing an example of the power generation device 100 and the power generation element 1 according to the third embodiment.
  • FIG. 10(a) is a schematic cross-sectional view showing an example of the power generation device 100 and the power generation element 1 according to the third embodiment
  • FIG. 10(b) is a cross-sectional view taken along line CC in FIG. It is a schematic plan view.
  • the wiring layer 23 is provided on the outer side (surface) of the power generating element 1, as shown in FIG. 10, for example.
  • the wiring layer 23 has, for example, at least one of a first wiring layer 23a and a second wiring layer 23b.
  • the first wiring layer 23a is provided on the main surface of the first substrate 15 that faces the main surface on which the first electrode 11 is provided. That is, the first substrate 15 is sandwiched between the first wiring layer 23 a and the first electrode 11 .
  • the second wiring layer 23b is provided on the main surface of the second substrate 16 that faces the main surface on which the second electrode 12 is provided. That is, the second substrate 16 is sandwiched between the second wiring layer 23 b and the second electrode 12 .
  • the thickness of the wiring layer 23 along the first direction Z is, for example, 100 nm or more and 10 ⁇ m or less.
  • a conductive material is used, for example, gold is used, and a layered body of gold and chromium or a layered body of gold and nickel is used.
  • connection wiring 24 is provided, for example, in a through hole 25 penetrating through the substrates 15 and 16 in the first direction Z, and electrically connected to the electrodes 11 and 12 and the wiring layer 23 .
  • the connection wiring 24 is provided, for example, by filling each through hole 25 .
  • the connection wiring 24 may be provided, for example, on the inner peripheral surface of each through hole 25 .
  • the connection wiring 24 may be in contact with the intermediate portion 14 .
  • the through hole 25 has a first through hole 25 a penetrating through the first substrate 15 and a second through hole 25 b penetrating through the second substrate 16 .
  • the connection wiring 24 has, for example, at least one of the first connection wiring 24a and the second connection wiring 24b.
  • the first connection wiring 24a is electrically connected to the first electrode 11 and the first wiring layer 23a through a first through hole 25a passing through the first substrate 15 . Therefore, the connection point between the first connection wiring 24 a and the first electrode 11 is provided inside the power generation element 1 .
  • the second connection wiring 24b is electrically connected to the second electrode 12 and the second wiring layer 23b via a second through hole 25b penetrating through the second substrate 16 . Therefore, the connection point between the second connection wiring 24 b and the second electrode 12 is provided inside the power generation element 1 .
  • the connection points are portions of the connection wirings 24a and 24b that are particularly susceptible to deterioration.
  • connection wiring 24 is provided, for example, by filling each through hole 25 .
  • the connection wiring 24 may be provided on the inner peripheral surface of each through-hole 25, for example, and may be formed with a thickness of 100 nm or more and 10 ⁇ m or less.
  • a conductive material such as gold is used as the material of the connection wiring 24 .
  • the sealing portion 21 may cover at least a portion of the first through hole 25a, the first connection wiring 24a, and the first wiring layer 23a. At this time, the connection portion between the first wiring layer 23 a and the first connection wiring 24 a can be covered with the sealing portion 21 .
  • the sealing portion 21 may cover at least a portion of the second through hole 25b, the second connection wiring 24b, and the second wiring layer 23b. At this time, the connection portion between the second wiring layer 23b and the second connection wiring 24b can be covered with the sealing portion 21 .
  • the connection points are portions of the connection wirings 24a and 24b that are particularly susceptible to deterioration, and are provided outside the power generation element 1. Therefore, by covering the connection points with the sealing portion 21, the power generation element 1 can be It becomes possible to improve durability.
  • FIG. 11 is a flow chart showing an example of a method for manufacturing the power generating element 1 according to this embodiment.
  • 12(a) to 13(b) are schematic diagrams showing an example of a method for manufacturing the power generating element 1 according to this embodiment.
  • connection wiring forming step S310 First, as shown in FIG. 12(a), a first through-hole 25a is formed in the first substrate 15, a first connection wiring 24a is formed in the first through-hole 25a, and as shown in FIG. 12(b). A second through hole 25b is formed in the second substrate 16, and a second connection wiring 24b is formed in the second through hole 25b (connection wiring forming step S310). One or more of the through holes 25a, 25b and the connection wirings 24a, 24b are provided.
  • connection wirings 24a and 24b are formed using, for example, a sputtering method. Gold, for example, is used for the connection wirings 24a and 24b.
  • the wiring layers 23a and 23b may be formed using, for example, a sputtering method or a vapor deposition method, or may be formed using, for example, a screen printing method, an inkjet method, a spray printing method, or the like.
  • the first electrode 11 is formed on the main surface of the first substrate 15 opposite to the main surface on which the first wiring layer 23a is formed.
  • the second electrode 12 is formed on the main surface of the second substrate 16 opposite to the main surface on which the second wiring layer 23b is formed (electrode forming step S110).
  • the first electrode 11 is electrically connected to the first wiring layer 23a through the first connection wiring 24a.
  • the second electrode 12 is electrically connected to the second wiring layer 23b through the second connection wiring 24b.
  • a support portion forming step S120, a protection portion forming step S130, a penetrating portion forming step S140, a bonding step S150, an intermediate portion forming step S160, and a sealing portion forming step are performed.
  • S170 is implemented.
  • the first connection wiring 24a is electrically connected to the first electrode 11 and the first wiring layer 23a through the first through holes 25a. Therefore, the first connection wiring 24 a can be connected to the first electrode 11 inside the power generating element 1 . This makes it possible to suppress deterioration of the first connection wiring 24 a connected to the first electrode 11 .
  • the second connection wiring 24b is electrically connected to the second electrode 12 and the second wiring layer 23b via the second through hole 25b. Therefore, the second connection wiring 24b can be connected to the second electrode 12 inside the power generation element 1 . This makes it possible to suppress deterioration of the connection wirings 24 a and 24 b connected to the electrodes 11 and 12 . Moreover, since the second connection wiring 24b can be formed with the same structure as the first connection wiring 24a, the manufacturing process can be simplified.
  • the electrode forming step S110 forms the first connection wiring 24a electrically connected to the first electrode 11 and the first wiring layer 23a through the first through hole 25a. Therefore, the first connection wiring 24 a can be connected to the first electrode 11 inside the power generating element 1 . This makes it possible to suppress deterioration of the first connection wiring 24 a connected to the first electrode 11 .
  • the electrode forming step S110 forms the second connection wiring 24b electrically connected to the second electrode 12 and the second wiring layer 23b through the second through hole 25b. Therefore, the second connection wiring 24b can be connected to the second electrode 12 inside the power generation element 1 . This makes it possible to suppress deterioration of the connection wirings 24 a and 24 b connected to the electrodes 11 and 12 . Moreover, since the second connection wiring 24b can be formed with the same structure as the first connection wiring 24a, the manufacturing process can be simplified.
  • the power generation element 1 and the power generation device 100 described above can be mounted on, for example, an electronic device. Some embodiments of the electronic device are described below.
  • FIG. 14(a) to 14(d) are schematic block diagrams showing an example of an electronic device 500 including the power generation element 1.
  • FIG. 14(e) to 14(h) are schematic block diagrams showing an example of an electronic device 500 having a power generation device 100 including the power generation element 1.
  • FIG. 14(e) to 14(h) are schematic block diagrams showing an example of an electronic device 500 having a power generation device 100 including the power generation element 1.
  • an electronic device 500 (electric product) includes an electronic component 501 (electronic component), a main power supply 502 and an auxiliary power supply 503 .
  • Each of the electronic device 500 and the electronic component 501 is an electrical device.
  • the electronic component 501 is driven using the main power supply 502 as a power supply.
  • Examples of the electronic component 501 include, for example, a CPU, motors, sensor terminals, lighting, and the like. If electronic component 501 is, for example, a CPU, electronic device 500 includes an electronic device that can be controlled by a built-in master (CPU). If the electronic components 501 include at least one of, for example, motors, sensor terminals, and lighting, the electronic device 500 includes electronic devices that can be controlled by an external master or person.
  • the main power supply 502 is, for example, a battery. Batteries also include rechargeable batteries. A plus terminal (+) of the main power supply 502 is electrically connected to a Vcc terminal (Vcc) of the electronic component 501 . A negative terminal ( ⁇ ) of the main power supply 502 is electrically connected to a GND terminal (GND) of the electronic component 501 .
  • Vcc Vcc terminal
  • GND GND terminal
  • the auxiliary power supply 503 is the power generation element 1.
  • the power generation element 1 includes at least one power generation element 1 described above.
  • the auxiliary power supply 503 is used, for example, together with the main power supply 502, and is used as a power supply for assisting the main power supply 502 or as a power supply for backing up the main power supply 502 when the capacity of the main power supply 502 runs out. be able to. If the main power source 502 is a rechargeable battery, the auxiliary power source 503 can also be used as a power source for charging the battery.
  • the main power source 502 may be the power generation element 1.
  • An electronic device 500 shown in FIG. 14B includes a power generation element 1 used as a main power source 502 and an electronic component 501 that can be driven using the power generation element 1 .
  • the power generation element 1 is an independent power supply (for example, an off-grid power supply). Therefore, the electronic device 500 can be, for example, an independent type (standalone type).
  • the power generating element 1 is of the energy harvesting type.
  • the electronic device 500 shown in FIG. 14(b) does not require battery replacement.
  • the electronic component 501 may include the power generation element 1 as shown in FIG. 14(c).
  • the anode of the power generation element 1 is electrically connected to, for example, a GND wiring of a circuit board (not shown).
  • the cathode of the power generation element 1 is electrically connected to, for example, Vcc wiring of a circuit board (not shown).
  • the power generating element 1 can be used as, for example, an auxiliary power source 503 for the electronic component 501 .
  • the power generation element 1 can be used as the main power source 502 of the electronic component 501, for example.
  • the electronic device 500 may include the power generator 100.
  • the power generation device 100 includes a power generation element 1 as a source of electrical energy.
  • the embodiment shown in FIG. 14(d) comprises a power generation element 1 in which an electronic component 501 is used as a main power supply 502.
  • the embodiment shown in FIG. 14(h) comprises a generator 100 in which an electronic component 501 is used as the main power source.
  • electronic component 501 has an independent power source. Therefore, the electronic component 501 can be made self-supporting, for example. Free-standing electronic component 501 can be effectively used, for example, in an electronic device that includes multiple electronic components and in which at least one electronic component is separate from another electronic component.
  • An example of such electronics 500 is a sensor.
  • the sensor has a sensor terminal (slave) and a controller (master) remote from the sensor terminal.
  • Each of the sensor terminals and controller is an electronic component 501 .
  • a sensor terminal can also be regarded as one of the electronic devices 500 .
  • the sensor terminals considered electronic equipment 500 further include, for example, IoT wireless tags, etc., in addition to sensor terminals of sensors.
  • the electronic device 500 includes a power generation element 1 that converts thermal energy into electrical energy, and uses the power generation element 1 as a power source. and an electronic component 501 that can be driven.
  • the electronic device 500 may be an autonomous type with an independent power supply.
  • autonomous electronic devices include, for example, robots.
  • the electronic component 501 with the power generation element 1 or the power generation device 100 may be autonomous with an independent power supply.
  • autonomous electronic components include, for example, movable sensor terminals.
  • Reference Signs List 1 power generating element 11 : first electrode 12 : second electrode 13 : support portion 14 : intermediate portion 15 : first substrate 16 : second substrate 17 : support portion 18 : through portion 19 : opening portion 21 : sealing portion 22 : Protection part 23 : Wiring layer 24 : Connection wiring 25 : Through hole 100 : Power generation device 101 : First wiring 102 : Second wiring 111 : First terminal 112 : Second terminal 140 : Space 141 : Nanoparticles 141a : Coating 142 : Solvent 500 : Electronic device 501 : Electronic component 502 : Main power source 503 : Auxiliary power source G : Gap S110 : Electrode forming step S120 : Supporting portion forming step S130 : Protective portion forming step S140 : Through portion forming step S150 : Bonding step S160 : Intermediate portion forming step S170: Sealing portion forming step S210: Opening portion forming step S310: Connection wiring forming step S320: Wiring layer

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Power Conversion In General (AREA)
  • Photovoltaic Devices (AREA)

Abstract

[Problem] To provide a power generation element, a power generation device, an electronic device, and a method for manufacturing a power generation element, which can suppress a decrease in power generation efficiency due to the adhesion of nanoparticles. [Solution] A power generation element 1 for converting thermal energy into electrical energy comprises: a first substrate 15 and a second substrate 16 spaced apart from each other along a first direction Z; a first electrode 11 provided on the main surface of the first substrate 15; a second electrode 12 spaced apart from the first electrode 11 and provided on the main surface of the second substrate 16, and having a higher work function than the first electrode 11; an intermediate part 14 provided between the first electrode 11 and the second electrode 12 and containing a solvent 142 in which nanoparticles 141 are dispersed; a support part 17 provided in contact with and between the first substrate 15 and the second substrate 16 and spaced apart from the immediate part 14, and containing metal; and a protective part 22 that is provided between the intermediate part 14 and the support part 17, is in contact with the intermediate part 14, and has insulating properties.

Description

発電素子、発電装置、電子機器、及び発電素子の製造方法Power generation element, power generation device, electronic device, and method for manufacturing power generation element
 この発明は、熱エネルギーを電気エネルギーに変換する発電素子、発電装置、電子機器、及び発電素子の製造方法に関する。 The present invention relates to a power generation element that converts thermal energy into electrical energy, a power generation device, an electronic device, and a method of manufacturing a power generation element.
 近年、熱エネルギーを利用して電気エネルギーを生成する発電素子の開発が盛んに行われている。特に、温度差を不要とした発電素子に関し、例えば特許文献1に開示された発電素子等が提案されている。このような発電素子は、電極に与える温度差を利用して電気エネルギーを生成する構成に比べて、様々な用途への利用が期待されている。 In recent years, the development of power generation elements that generate electrical energy using thermal energy has been actively carried out. In particular, regarding a power generation element that does not require a temperature difference, for example, the power generation element disclosed in Patent Document 1 has been proposed. Such a power generation element is expected to be used in various applications as compared with a configuration in which electric energy is generated by utilizing a temperature difference given to electrodes.
 特許文献1には、第1主面を有する第1基板と、第1主面と対向する第2主面を有する第2基板と、第2基板と離間する第1電極部と第1電極部とは異なる仕事関数を有する第2電極部と、第1基板と、第2基板との間に設けられ、第1電極部及び第2電極部と離間し、金属を含む支持部と、第1電極部と、第2電極部との間に設けられ、ナノ粒子を含む中間部と、を備える熱電素子が開示されている。 Patent Document 1 discloses a first substrate having a first main surface, a second substrate having a second main surface facing the first main surface, and a first electrode section and a first electrode section spaced apart from the second substrate. a support portion provided between the second electrode portion having a work function different from that of the first substrate, the first substrate, and the second substrate, separated from the first electrode portion and the second electrode portion, and containing a metal; A thermoelectric element is disclosed that includes an electrode portion and an intermediate portion that is disposed between the second electrode portion and that includes nanoparticles.
特開2020-47631号公報JP 2020-47631 A
 ここで、温度差を不要とした発電素子では、継続的な発電が期待されている一方、金属を含む支持部の側面にナノ粒子が付着するおそれがある。このとき、電極間に分散されるナノ粒子の量が減少するため、経時に伴う発電効率の低下が課題として挙げることができる。この点、特許文献1では、上述した課題を解決することが難しい。 Here, in a power generation element that does not require a temperature difference, continuous power generation is expected, but there is a risk that nanoparticles will adhere to the side surface of the support part containing metal. At this time, since the amount of nanoparticles dispersed between the electrodes is reduced, the problem is that the power generation efficiency decreases over time. In this regard, it is difficult for Patent Document 1 to solve the above-described problems.
 そこで本発明は、上述した問題点に鑑みて案出されたものであり、その目的とするところは、発電効率の低下を抑制することができる発電素子、発電装置、電子機器、及び発電素子の製造方法を提供することにある。 Accordingly, the present invention has been devised in view of the above-described problems, and its object is to provide a power generating element, a power generating device, an electronic device, and a power generating element capable of suppressing a decrease in power generation efficiency. It is to provide a manufacturing method.
 第1発明に係る発電素子は、熱エネルギーを電気エネルギーに変換する発電素子であって、第1方向に沿って互いに離間して設けられた第1基板及び第2基板と、前記第1基板の主面上に設けられた第1電極と、前記第1電極と離間して前記第2基板の主面上に設けられ、前記第1電極よりも高い仕事関数を有する第2電極と、前記第1電極と前記第2電極との間に設けられ、ナノ粒子を分散させた溶媒を含む中間部と、前記第1基板と前記第2基板との間に接して設けられ、前記中間部と離間し、金属を含む支持部と、前記中間部と前記支持部との間に設けられ、前記中間部と接し、絶縁性を有する保護部と、を備えることを特徴とする。 A power generation element according to a first aspect of the invention is a power generation element that converts thermal energy into electrical energy, and includes a first substrate and a second substrate provided apart from each other along a first direction, and the first substrate. a first electrode provided on the main surface; a second electrode provided on the main surface of the second substrate spaced from the first electrode and having a work function higher than that of the first electrode; an intermediate portion provided between the first electrode and the second electrode and containing a solvent in which nanoparticles are dispersed; and an intermediate portion provided between the first substrate and the second substrate and separated from the intermediate portion and a support portion containing metal, and a protection portion provided between the intermediate portion and the support portion, in contact with the intermediate portion, and having insulating properties.
 第2発明に係る発電素子は、第1発明において、前記保護部は、前記支持部と離間して設けられることを特徴とする。 A power generation element according to a second invention is characterized in that, in the first invention, the protection portion is provided apart from the support portion.
 第3発明に係る発電素子は、第2発明において、前記保護部は、前記第1電極と前記第2電極との間に接して設けられることを特徴とする。 A power generation element according to a third aspect of the invention is characterized in that, in the second aspect of the invention, the protective portion is provided in contact between the first electrode and the second electrode.
 第4発明に係る発電素子は、第1発明において、前記支持部は、前記第1電極及び前記第2電極と離間することを特徴とする。 A power generation element according to a fourth invention is characterized in that, in the first invention, the support portion is separated from the first electrode and the second electrode.
 第5発明に係る発電素子は、第1発明において、前記第1基板及び前記第2基板の少なくとも何れかに設けられた貫通部をさらに備えることを特徴とする。 A power generation element according to a fifth aspect of the invention is characterized in that, in the first aspect of the invention, a penetrating portion is provided in at least one of the first substrate and the second substrate.
 第6発明に係る発電素子は、第5発明において、前記第1方向から見て、前記貫通部は、前記第1電極及び前記第2電極と離間することを特徴とする。 A power generation element according to a sixth aspect of the invention is characterized in that, in the fifth aspect of the invention, the penetrating portion is separated from the first electrode and the second electrode when viewed from the first direction.
 第7発明に係る発電装置は、第1発明における発電素子と、前記第1電極と電気的に接続された第1配線と、前記第2電極と電気的に接続された第2配線と、を備えることを特徴とする。 A power generating device according to a seventh aspect of the invention includes the power generating element according to the first aspect of the invention, a first wiring electrically connected to the first electrode, and a second wiring electrically connected to the second electrode. It is characterized by having
 第8発明に係る電子機器は、第1発明における発電素子と、前記発電素子を電源に用いて駆動する電子部品と、を備えることを特徴とする。 An electronic device according to an eighth invention is characterized by comprising the power generation element according to the first invention and an electronic component driven by using the power generation element as a power supply.
 第9発明に係る発電素子の製造方法は、第1基板の主面上に第1電極を形成し、第2基板の主面上に前記第1電極よりも高い仕事関数を有する第2電極を形成する電極形成工程と、前記第1基板の主面上方、及び前記第2基板の主面上方の少なくとも何れかに、金属を含む支持部を形成する支持部形成工程と、前記第1基板の主面上方、及び前記第2基板の主面上方の少なくとも何れかに、絶縁性を有する保護部を形成する保護部形成工程と、前記第1電極と前記第2電極とを第1方向に離間して対向するように、前記支持部を介して前記第1基板と前記第2基板とを接合する接合工程と、前記保護部と接し、前記支持部と離間するように、ナノ粒子が分散された溶媒を含む中間部を形成する中間部形成工程と、を備えることを特徴とする。 A method for manufacturing a power generation element according to a ninth aspect of the present invention includes forming a first electrode on the main surface of a first substrate, and forming a second electrode having a work function higher than that of the first electrode on the main surface of a second substrate. a supporting portion forming step of forming a supporting portion containing a metal on at least one of above the main surface of the first substrate and above the main surface of the second substrate; forming an electrode on the first substrate; a protective portion forming step of forming a protective portion having insulating properties on at least one of the upper main surface and the upper main surface of the second substrate; separating the first electrode and the second electrode in a first direction; a bonding step of bonding the first substrate and the second substrate via the support portion so as to face each other, and nanoparticles are dispersed so as to be in contact with the protection portion and separated from the support portion and an intermediate portion forming step of forming an intermediate portion containing the solvent.
 第1発明~第8発明によれば、中間部と離間し、金属を含む支持部と、中間部と支持部との間に設けられ、中間部と接し、絶縁性を有する保護部と、を備える。このため、各電極の間に分散されるナノ粒子の量の減少を抑制することができる。これにより、発電効率の低下を抑制することができる。 According to the first to eighth inventions, the supporting portion containing metal and separated from the intermediate portion, and the protective portion provided between the intermediate portion and the supporting portion and in contact with the intermediate portion and having insulating properties are provided. Prepare. Therefore, it is possible to suppress a decrease in the amount of nanoparticles dispersed between the electrodes. As a result, a decrease in power generation efficiency can be suppressed.
 特に、第2発明によれば、保護部は、支持部と離間して設けられる。このため、支持部を介して第1基板と第2基板とを接合する際に、例えば保護部が支持部に接することによる接合力の低下を防ぐことができる。これにより、第1基板と第2基板とを支持部により強固に接合することができる。 In particular, according to the second invention, the protection section is provided apart from the support section. Therefore, when the first substrate and the second substrate are bonded via the supporting portion, it is possible to prevent the bonding strength from being lowered due to, for example, the protective portion coming into contact with the supporting portion. Thereby, the first substrate and the second substrate can be firmly bonded by the supporting portion.
 特に、第3発明によれば、保護部は、第1電極と第2電極との間に接して設けられる。このため、第1基板と第2基板とに保護部を固定する場合よりも、第1電極と第2電極とに保護部を強固に固定することができる。これにより、保護部の変動を抑制することができる。 In particular, according to the third invention, the protective portion is provided in contact between the first electrode and the second electrode. Therefore, it is possible to fix the protective portion to the first electrode and the second electrode more firmly than in the case where the protective portion is fixed to the first substrate and the second substrate. As a result, it is possible to suppress the fluctuation of the protective portion.
 特に、第4発明によれば、支持部は、第1電極及び第2電極と離間する。このため、支持部を介して各電極の短絡を防ぐことが可能となる。 In particular, according to the fourth invention, the supporting portion is separated from the first electrode and the second electrode. Therefore, it is possible to prevent short-circuiting of the electrodes through the supporting portion.
 特に、第5発明によれば、第1基板及び第2基板の少なくとも何れかに設けられた貫通部をさらに備える。このため、貫通部を介して、第1電極と第2電極との間に、中間部を充填して設けることができる。これにより、発電素子の製造工程の簡略化を図ることができる。また、発電素子の使用に伴い中間部を交換する必要が発生した場合、容易に中間部の交換を実施することが可能となる。 In particular, according to the fifth invention, the penetrating portion provided in at least one of the first substrate and the second substrate is further provided. Therefore, the intermediate portion can be filled and provided between the first electrode and the second electrode through the through portion. As a result, the manufacturing process of the power generation element can be simplified. Further, when it becomes necessary to replace the intermediate portion due to the use of the power generating element, it is possible to easily replace the intermediate portion.
 特に、第6発明によれば、第1方向から見て、貫通部は、第1電極及び第2電極と離間する。このため、貫通部を介して、第1電極と第2電極との間に、中間部を充填する際に異物が混入したとき、第1電極及び第2電極に異物が付着するのを抑制することができる。これにより、発電素子の品質の劣化を抑制することができる。 In particular, according to the sixth invention, the penetrating portion is separated from the first electrode and the second electrode when viewed from the first direction. Therefore, when foreign matter enters between the first electrode and the second electrode through the through portion when filling the intermediate portion, adhesion of the foreign matter to the first electrode and the second electrode is suppressed. be able to. As a result, deterioration of the quality of the power generation element can be suppressed.
 第9発明によれば、中間部形成工程では、保護部と接し、支持部と離間するように、ナノ粒子が分散された溶媒を含む中間部を形成する。このため、各電極の間に分散されるナノ粒子の量の減少を抑制することができる。これにより、発電効率の低下を抑制することができる。 According to the ninth invention, in the intermediate portion forming step, the intermediate portion containing the solvent in which the nanoparticles are dispersed is formed so as to be in contact with the protective portion and separated from the support portion. Therefore, it is possible to suppress a decrease in the amount of nanoparticles dispersed between the electrodes. As a result, a decrease in power generation efficiency can be suppressed.
図1(a)は、第1実施形態における発電素子及び発電装置の一例を示す模式断面図であり、図1(b)は、図1(a)におけるA-Aに沿った模式平面図である。FIG. 1(a) is a schematic cross-sectional view showing an example of a power generation element and a power generation device in the first embodiment, and FIG. 1(b) is a schematic plan view along AA in FIG. 1(a). be. 図2は、中間部の一例を示す模式断面図である。FIG. 2 is a schematic cross-sectional view showing an example of the intermediate portion. 図3は、第1実施形態における発電素子の製造方法の一例を示すフローチャートである。FIG. 3 is a flow chart showing an example of a method for manufacturing a power generation element according to the first embodiment. 図4(a)~図4(d)は、第1実施形態における発電素子の製造方法の一例を示す模式図である。FIGS. 4(a) to 4(d) are schematic diagrams showing an example of the method for manufacturing the power generation element according to the first embodiment. 図5(a)~図5(d)は、第1実施形態における発電素子の製造方法の一例を示す模式図である。5(a) to 5(d) are schematic diagrams showing an example of the method for manufacturing the power generating element according to the first embodiment. 図6(a)~図6(d)は、第1実施形態における発電素子の製造方法の一例を示す模式図である。FIGS. 6(a) to 6(d) are schematic diagrams showing an example of the method for manufacturing the power generation element according to the first embodiment. 図7(a)は、第2実施形態における発電素子及び発電装置の一例を示す模式断面図であり、図7(b)は、図7(a)におけるB-Bに沿った模式平面図である。FIG. 7(a) is a schematic cross-sectional view showing an example of the power generation element and the power generation device in the second embodiment, and FIG. 7(b) is a schematic plan view along BB in FIG. 7(a). be. 図8は、第2実施形態における発電素子の製造方法の一例を示すフローチャートである。FIG. 8 is a flow chart showing an example of a method for manufacturing a power generation element according to the second embodiment. 図9(a)~図9(d)は、第2実施形態における発電素子の製造方法の一例を示す模式図である。9(a) to 9(d) are schematic diagrams showing an example of a method for manufacturing a power generation element according to the second embodiment. 図10(a)は、第3実施形態における発電素子及び発電装置の一例を示す模式断面図であり、図10(b)は、図10(a)におけるC-Cに沿った模式平面図である。FIG. 10(a) is a schematic cross-sectional view showing an example of the power generation element and the power generation device in the third embodiment, and FIG. 10(b) is a schematic plan view along CC in FIG. 10(a). be. 図11は、第3実施形態における発電素子の製造方法の一例を示すフローチャートである。FIG. 11 is a flow chart showing an example of a method for manufacturing a power generation element according to the third embodiment. 図12(a)~図12(d)は、第3実施形態における発電素子の製造方法の一例を示す模式図である。12(a) to 12(d) are schematic diagrams showing an example of a method for manufacturing a power generation element according to the third embodiment. 図13(a)及び図13(b)は、第3実施形態における発電素子の製造方法の一例を示す模式図である。13(a) and 13(b) are schematic diagrams showing an example of a method for manufacturing a power generation element according to the third embodiment. 図14(a)~図14(d)は、発電素子を備えた電子機器の例を示す模式ブロック図であり、図14(e)~図14(h)は、発電素子を含む発電装置を備えた電子機器の例を示す模式ブロック図である。FIGS. 14(a) to 14(d) are schematic block diagrams showing examples of electronic devices provided with power generation elements, and FIGS. 14(e) to 14(h) show power generators including power generation elements. It is a schematic block diagram which shows the example of the electronic device provided.
 以下、本発明の実施形態としての発電素子、発電装置、電子機器、発電方法、及び発電素子の製造方法の一例について、図面を参照しながら説明する。なお、各図において、各電極が積層される高さ方向を第1方向Zとし、第1方向Zと交差、例えば直交する1つの平面方向を第2方向Xとし、第1方向Z及び第2方向Xのそれぞれと交差、例えば直交する別の平面方向を第3方向Yとする。また、各図における構成は、説明のため模式的に記載されており、例えば各構成の大きさや、構成毎における大きさの対比等については、図とは異なってもよい。 An example of a power generation element, a power generation device, an electronic device, a power generation method, and a method of manufacturing a power generation element as embodiments of the present invention will be described below with reference to the drawings. In each figure, the height direction in which each electrode is stacked is defined as a first direction Z, and one planar direction that intersects, for example, is orthogonal to the first direction Z is defined as a second direction X. A third direction Y is another planar direction that intersects, for example, is orthogonal to each of the directions X. As shown in FIG. Also, the configuration in each drawing is schematically described for explanation, and for example, the size of each configuration and the comparison of the size of each configuration may differ from those in the drawings.
(第1実施形態:発電素子1、発電装置100)
 図1は、本実施形態における発電素子1、及び発電装置100の一例を示す模式図である。図1(a)は、本実施形態における発電素子1、及び発電装置100の一例を示す模式断面図であり、図1(b)は、図1(a)におけるA-Aに沿った模式平面図である。
(First Embodiment: Power Generation Element 1, Power Generation Device 100)
FIG. 1 is a schematic diagram showing an example of a power generation element 1 and a power generation device 100 in this embodiment. FIG. 1(a) is a schematic cross-sectional view showing an example of a power generation element 1 and a power generation device 100 in the present embodiment, and FIG. 1(b) is a schematic plane along AA in FIG. 1(a). It is a diagram.
(発電装置100)
 図1(a)に示すように、発電装置100は、発電素子1と、第1配線101と、第2配線102とを備える。発電素子1は、熱エネルギーを電気エネルギーに変換する。このような発電素子1を備えた発電装置100は、例えば、図示せぬ熱源に搭載又は設置され、熱源の熱エネルギーを元として、発電素子1から発生した電気エネルギーを、第1配線101及び第2配線102を介して負荷Rへ出力する。負荷Rの一端は第1配線101と電気的に接続され、他端は第2配線102と電気的に接続される。負荷Rは、例えば電気的な機器を示す。負荷Rは、例えば発電装置100を主電源又は補助電源に用いて駆動される。
(Power generator 100)
As shown in FIG. 1( a ), the power generation device 100 includes a power generation element 1 , first wiring 101 and second wiring 102 . The power generation element 1 converts thermal energy into electrical energy. For example, the power generation device 100 including such a power generation element 1 is mounted or installed on a heat source (not shown), and based on the thermal energy of the heat source, the electrical energy generated from the power generation element 1 is transferred to the first wiring 101 and the second wiring 101. 2 output to the load R via the wiring 102 . One end of the load R is electrically connected to the first wiring 101 and the other end is electrically connected to the second wiring 102 . A load R indicates, for example, an electrical device. The load R is driven, for example, using the generator 100 as a main power source or an auxiliary power source.
 発電素子1の熱源としては、例えば、CPU(Central Processing Unit)等の電子デバイス又は電子部品、LED(Light Emitting Diode)等の発光素子、自動車等のエンジン、工場の生産設備、人体、太陽光、及び環境温度等が挙げられる。例えば、電子デバイス、電子部品、発光素子、エンジン、及び生産設備等は、人工熱源である。人体、太陽光、及び環境温度等は自然熱源である。発電素子1を備えた発電装置100は、例えばIoT(Internet of Things)デバイス及びウェアラブル機器等のモバイル機器や自立型センサ端末の内部に設けることができ、電池の代替又は補助として用いることができる。さらに、発電装置100は、太陽光発電等のような、より大型の発電装置への応用も可能である。 Examples of heat sources for the power generation element 1 include electronic devices or electronic parts such as CPUs (Central Processing Units), light emitting elements such as LEDs (Light Emitting Diodes), engines such as automobiles, production equipment in factories, human bodies, sunlight, and environmental temperature. For example, electronic devices, electronic parts, light-emitting elements, engines, production equipment, etc. are artificial heat sources. The human body, sunlight, ambient temperature, etc. are natural heat sources. The power generation device 100 including the power generation element 1 can be provided inside mobile devices such as IoT (Internet of Things) devices and wearable devices and self-supporting sensor terminals, and can be used as an alternative or supplement to batteries. Furthermore, the power generation device 100 can also be applied to larger power generation devices such as solar power generation.
(発電素子1)
 発電素子1は、例えば、上記人工熱源が発した熱エネルギー、又は上記自然熱源が持つ熱エネルギーを電気エネルギーに変換し、電流を生成する。発電素子1は、発電装置100内に設けるだけでなく、発電素子1自体を、上記モバイル機器や上記自立型センサ端末等の内部に設けることもできる。この場合、発電素子1自体が、上記モバイル機器又は上記自立型センサ端末等の、電池の代替部品又は補助部品となり得る。
(Power generation element 1)
The power generation element 1 converts, for example, thermal energy generated by the artificial heat source or thermal energy possessed by the natural heat source into electrical energy to generate current. The power generation element 1 can be provided not only inside the power generation device 100, but also inside the mobile device, the self-contained sensor terminal, or the like. In this case, the power generation element 1 itself can serve as an alternative or auxiliary part of the battery, such as the mobile device or the self-contained sensor terminal.
 発電素子1は、例えば図1(a)に示すように、第1電極11と、第2電極12と、中間部14と、第1基板15と、第2基板16と、支持部17と、保護部22と、を備える。発電素子1は、さらに貫通部18と、封止部21と、を備えてもよい。 For example, as shown in FIG. 1A, the power generation element 1 includes a first electrode 11, a second electrode 12, an intermediate portion 14, a first substrate 15, a second substrate 16, a support portion 17, and a protection unit 22 . The power generating element 1 may further include a penetrating portion 18 and a sealing portion 21 .
 第1基板15及び第2基板16は、第1方向Zに沿って互いに離間して設けられる。第1電極11は、第1基板15の主面上に設けられる。第2電極12は、第1電極11と離間して第2基板16の主面上に設けられ、第1電極11よりも高い仕事関数を有する。第1電極11及び第2電極12は、互いに対向して設けられる。中間部14は、例えば図2に示すように、第1電極11と、第2電極12との間(ギャップG)を含む空間140に設けられる。中間部14は、ナノ粒子141及び溶媒142を含む。ナノ粒子141は、溶媒142に分散され、各電極11、12に対する電子の享受を促進する。 The first substrate 15 and the second substrate 16 are provided apart from each other along the first direction Z. The first electrode 11 is provided on the main surface of the first substrate 15 . The second electrode 12 is spaced apart from the first electrode 11 and provided on the main surface of the second substrate 16 and has a work function higher than that of the first electrode 11 . The first electrode 11 and the second electrode 12 are provided facing each other. The intermediate portion 14 is provided in a space 140 including a gap G between the first electrode 11 and the second electrode 12, as shown in FIG. 2, for example. Middle portion 14 includes nanoparticles 141 and solvent 142 . Nanoparticles 141 are dispersed in a solvent 142 to facilitate electron reception to each electrode 11,12.
 支持部17は、第1基板15と第2基板16との間に接して設けられ、中間部14と離間し、金属を含む。保護部22は、中間部14と、支持部17との間に設けられ、中間部14と接し、絶縁性を有する。このため、支持部17に対してナノ粒子141が接しないため、ナノ粒子141が支持部17に付着するのを防ぐことができる。 The supporting portion 17 is provided in contact between the first substrate 15 and the second substrate 16, is separated from the intermediate portion 14, and contains metal. The protective portion 22 is provided between the intermediate portion 14 and the support portion 17, is in contact with the intermediate portion 14, and has insulating properties. Therefore, the nanoparticles 141 do not come into contact with the supporting portion 17 , so that the nanoparticles 141 can be prevented from adhering to the supporting portion 17 .
 ここで、発電素子1に用いられるナノ粒子141は、絶縁体の材料に比べて金属の材料に付着し易い傾向がある点を、発明者らは発見した。この点を踏まえ、本実施形態における発電素子1の保護部22は、絶縁性を有する。このため、ナノ粒子141が保護部22に付着する量を、支持部17に比べて大幅に低減させることができる。これにより、電極間に分散されるナノ粒子141の量の減少を抑制することができる。従って、発電効率の低下を抑制することが可能となる。 Here, the inventors have discovered that the nanoparticles 141 used in the power generation element 1 tend to adhere more easily to metal materials than to insulator materials. Based on this point, the protection part 22 of the power generating element 1 in this embodiment has insulating properties. Therefore, the amount of nanoparticles 141 adhering to the protective portion 22 can be significantly reduced compared to the support portion 17 . This can suppress a decrease in the amount of nanoparticles 141 dispersed between the electrodes. Therefore, it is possible to suppress a decrease in power generation efficiency.
 以下、各構成の詳細について説明する。 The details of each configuration are described below.
 <第1電極11、第2電極12>
 第1電極11及び第2電極12は、例えば図1(a)に示すように、離間して設けられる。第1電極11及び第2電極12は、例えば第1方向Zに離間する。第1電極11及び第2電極12は、例えば第2方向X又は第3方向Yに離間して設けられてもよい。
<First Electrode 11, Second Electrode 12>
The 1st electrode 11 and the 2nd electrode 12 are spaced apart, for example, as shown to Fig.1 (a). The first electrode 11 and the second electrode 12 are spaced apart in the first direction Z, for example. The first electrode 11 and the second electrode 12 may be spaced apart in the second direction X or the third direction Y, for example.
 各電極11、12は、例えば第2方向X及び第3方向Yに延在し、複数設けられてもよい。例えば1つの第2電極12は、複数の第1電極11とそれぞれ異なる位置で対向して設けられてもよい。また、例えば1つの第1電極11は、複数の第2電極12とそれぞれ異なる位置で対向して設けられてもよい。 Each of the electrodes 11 and 12 may extend in the second direction X and the third direction Y, for example, and may be provided in plurality. For example, one second electrode 12 may be provided facing the plurality of first electrodes 11 at different positions. Also, for example, one first electrode 11 may be provided facing the plurality of second electrodes 12 at different positions.
 第1電極11及び第2電極12は、例えばそれぞれ異なる仕事関数を有する。第1電極11及び第2電極12の材料として、導電性を有する材料が用いられる。第1電極11及び第2電極12の材料として、各電極11、12として、例えば同一の材料を用いてもよく、この場合、それぞれ異なる仕事関数を有してもよい。 The first electrode 11 and the second electrode 12 have different work functions, for example. A conductive material is used as the material of the first electrode 11 and the second electrode 12 . As materials for the first electrode 11 and the second electrode 12, for example, the same material may be used as the electrodes 11 and 12, and in this case, they may have different work functions.
 各電極11、12の材料として、例えば鉄、アルミニウム、銅等の単一元素からなる材料が用いられるほか、例えば2種類以上の元素からなる合金の材料が用いられてもよい。各電極11、12の材料として、例えば非金属導電物が用いられてもよい。非金属導電物の例としては、シリコン(Si:例えばp型Si、あるいはn型Si)、及びグラフェン等のカーボン系材料等を挙げることができる。 As the material of the electrodes 11 and 12, for example, a material composed of a single element such as iron, aluminum, or copper may be used, or an alloy material composed of, for example, two or more elements may be used. A non-metallic conductor, for example, may be used as the material of the electrodes 11 and 12 . Examples of nonmetallic conductors include silicon (Si: for example, p-type Si or n-type Si) and carbon-based materials such as graphene.
 第1電極11及び第2電極12の第1方向Zに沿った厚さは、例えば4nm以上1μm以下である。第1電極11及び第2電極12の第1方向Zに沿った厚さは、例えば4nm以上50nm以下でもよい。 The thickness of the first electrode 11 and the second electrode 12 along the first direction Z is, for example, 4 nm or more and 1 μm or less. The thickness of the first electrode 11 and the second electrode 12 along the first direction Z may be, for example, 4 nm or more and 50 nm or less.
 第1電極11と、第2電極12との間の距離を示すギャップGは、例えば図2に示すように、第1方向Zに沿った長さを示す。例えばギャップGを短くすることで、発電素子1の発電効率を向上させることができる。また、例えばギャップGを短くすることで、発電素子1の第1方向Zに沿った厚さを薄くすることができる。これらのため、ギャップGは、短いほうが望ましい。 The gap G, which indicates the distance between the first electrode 11 and the second electrode 12, indicates the length along the first direction Z, as shown in FIG. 2, for example. For example, by shortening the gap G, the power generation efficiency of the power generation element 1 can be improved. Further, for example, by shortening the gap G, the thickness of the power generation element 1 along the first direction Z can be reduced. For these reasons, it is desirable that the gap G be as short as possible.
 ギャップGは、例えば10μm以下の有限値である。ギャップGは、例えば1μm以上5μm以下の場合、ギャップGのバラつきに伴う発電効率の影響を抑制することができる。ギャップGは、例えば10nm以上100nm以下の場合、発電効率の向上を図ることができる。ギャップGは、例えば支持部17の厚さに依存するほか、例えば同一基板上に各電極11、12を設ける場合には、各電極11、12の配置条件に依存する。 The gap G is a finite value of 10 μm or less, for example. When the gap G is, for example, 1 μm or more and 5 μm or less, it is possible to suppress the influence of the variation in the gap G on the power generation efficiency. When the gap G is, for example, 10 nm or more and 100 nm or less, the power generation efficiency can be improved. The gap G depends on, for example, the thickness of the support portion 17, and also depends on the arrangement conditions of the electrodes 11 and 12 when the electrodes 11 and 12 are provided on the same substrate.
 <中間部14>
 中間部14は、各電極11、12の間に形成された空間140内に設けられる。中間部14は、各電極11、12の互いに対向する主面に接するほか、例えば各電極11、12の側面に接してもよい。中間部14は、例えば複数種類のナノ粒子141を含んでもよい。
<Intermediate part 14>
The intermediate portion 14 is provided within a space 140 formed between the electrodes 11 , 12 . The intermediate portion 14 may be in contact with the main surfaces of the electrodes 11 and 12 facing each other, and may also be in contact with the side surfaces of the electrodes 11 and 12, for example. The intermediate portion 14 may contain, for example, multiple types of nanoparticles 141 .
 ナノ粒子141の粒子径は、ギャップGよりも小さい有限値である。ナノ粒子141の粒子径は、例えばギャップGの1/10以下の有限値である。ナノ粒子141の粒子径を、ギャップGの1/10以下とすると、空間140内にナノ粒子141を含む中間部14を、形成し易くすることができる。これにより、発電素子1を生成する際、作業性を向上させることが可能となる。 The particle diameter of the nanoparticles 141 is a finite value smaller than the gap G. The particle diameter of the nanoparticles 141 is a finite value of 1/10 or less of the gap G, for example. When the particle diameter of the nanoparticles 141 is 1/10 or less of the gap G, the intermediate portion 14 containing the nanoparticles 141 can be easily formed in the space 140 . This makes it possible to improve the workability when generating the power generation element 1 .
 ここで、「ナノ粒子」とは、複数の粒子を含んだものを示す。ナノ粒子141は、例えば2nm以上100nm以下の粒子径を有する粒子を含む。ナノ粒子141は、例えば、メディアン径(中央径:D50)が3nm以上8nm以下の粒子径を有する粒子を含んでもよいほか、例えば平均粒径が3nm以上8nm以下の粒子径を有する粒子を含んでもよい。メディアン径又は平均粒径は、例えば粒度分布計測器を用いることで、測定することができる。粒度分布計測器としては、例えば、動的光散乱法を用いた粒度分布計測器(例えばMalvern Panalytical 製ゼータサイザーUltra等)を用いればよい。 Here, "nanoparticles" refer to those containing multiple particles. The nanoparticles 141 include particles having a particle diameter of, for example, 2 nm or more and 100 nm or less. The nanoparticles 141 may include, for example, particles having a median diameter (median diameter: D50) of 3 nm or more and 8 nm or less, or particles having an average particle diameter of 3 nm or more and 8 nm or less. good. The median diameter or average particle diameter can be measured, for example, by using a particle size distribution analyzer. As the particle size distribution measuring instrument, for example, a particle size distribution measuring instrument using a dynamic light scattering method (eg, Zetasizer Ultra manufactured by Malvern Panalytical, etc.) may be used.
 ナノ粒子141は、例えば導電物を含む。ナノ粒子141の仕事関数の値は、例えば、第1電極11の仕事関数の値と、第2電極12の仕事関数の値との間にあるほか、例えば第1電極11の仕事関数の値と、第2電極12の仕事関数の値との間以外であってもよく、任意である。 The nanoparticles 141 contain, for example, a conductor. The value of the work function of the nanoparticles 141 is, for example, between the value of the work function of the first electrode 11 and the value of the work function of the second electrode 12, and for example, the value of the work function of the first electrode 11. , and the value of the work function of the second electrode 12, and is optional.
 ナノ粒子141の材料の例としては、金及び銀の少なくとも1つを選ぶことができる。このほか、ナノ粒子141は、例えば金属酸化物を含んでもよい。金属酸化物を含むナノ粒子141として、例えばジルコニア(ZrO)、チタニア(TiO)、シリカ(SiO)、アルミナ(Al)、酸化鉄(Fe、Fe)、酸化銅(CuO)、酸化亜鉛(ZnO)、イットリア(YO3)、酸化ニオブ(Nb)、酸化モリブデン(MoO)、酸化インジウム(In)、酸化スズ(SnO)、酸化タンタル(Ta)、酸化タングステン(WO)、酸化鉛(PbO)、酸化ビスマス(Bi)、セリア(CeO)、酸化アンチモン(Sb、Sb)などの、金属及びSiからなる群より選ばれる少なくとも何れか1つの元素の金属酸化物が用いられる。 At least one of gold and silver can be selected as an example of the material of the nanoparticles 141 . Additionally, nanoparticles 141 may include, for example, metal oxides. Examples of nanoparticles 141 containing metal oxides include zirconia (ZrO 2 ), titania (TiO 2 ), silica (SiO 2 ), alumina (Al 2 O 3 ), iron oxides (Fe 2 O 3 , Fe 2 O 5 ). , copper oxide (CuO), zinc oxide (ZnO), yttria (Y2O3), niobium oxide ( Nb2O5 ), molybdenum oxide ( MoO3 ), indium oxide ( In2O3 ), tin oxide ( SnO2 ), tantalum oxide (Ta 2 O 5 ), tungsten oxide (WO 3 ), lead oxide (PbO), bismuth oxide (Bi 2 O 3 ), ceria (CeO 2 ), antimony oxide (Sb 2 O 5 , Sb 2 O 3 ), a metal oxide of at least one element selected from the group consisting of metals and Si is used.
 なお、ナノ粒子141が金属酸化物を含むことで、溶媒142に対する分散性を向上させることができ、ナノ粒子141の凝集に伴う発電効率の低下を抑制することが可能となる。また、ナノ粒子141が金属酸化物を含むことで、材料の選択肢を増やすことができるほか、材料コストを低減することが可能となる。 In addition, since the nanoparticles 141 contain a metal oxide, the dispersibility in the solvent 142 can be improved, and the deterioration of the power generation efficiency due to aggregation of the nanoparticles 141 can be suppressed. In addition, when the nanoparticles 141 contain a metal oxide, the choice of materials can be increased, and the material cost can be reduced.
 また、ナノ粒子141として、磁性体を除く材料が用いられてもよい。例えばナノ粒子141として磁性体を用いた場合、発電素子1の設置された環境に起因して発生する磁場により、ナノ粒子141の移動が制限され得る。このため、ナノ粒子141として磁性体を除く材料を用いることで、外部環境に起因する磁場の影響を受けずに、経時に伴う発電効率の低下を抑制することが可能となる。 Materials other than magnetic substances may also be used as the nanoparticles 141 . For example, when a magnetic material is used as the nanoparticles 141, movement of the nanoparticles 141 may be restricted by a magnetic field generated due to the environment in which the power generation element 1 is installed. Therefore, by using a material other than a magnetic material as the nanoparticles 141, it is possible to suppress deterioration in power generation efficiency over time without being affected by the magnetic field caused by the external environment.
 ナノ粒子141は、例えば被膜141aを表面に含む。被膜141aの厚さは、例えば20nm以下の有限値である。このような被膜141aをナノ粒子141の表面に設けることで、例えば空間140内におけるナノ粒子141の凝集を抑制することができる。また、例えば電子が、第1電極11とナノ粒子141との間、及び第2電極12とナノ粒子141との間を、トンネル効果等を利用して移動する可能性を高めることが可能となる。 The nanoparticles 141 include, for example, a coating 141a on the surface. The thickness of the coating 141a is, for example, a finite value of 20 nm or less. By providing such a film 141a on the surfaces of the nanoparticles 141, aggregation of the nanoparticles 141 in the space 140 can be suppressed, for example. In addition, for example, it is possible to increase the possibility of electrons moving between the first electrode 11 and the nanoparticles 141 and between the second electrode 12 and the nanoparticles 141 using the tunnel effect or the like. .
 被膜141aとして、例えばチオール基又はジスルフィド基を有する材料が用いられる。チオール基を有する材料として、例えばドデカンチオール等のアルカンチオールが用いられる。ジスルフィド基を有する材料として、例えばアルカンジスルフィド等が用いられる。 A material having, for example, a thiol group or a disulfide group is used as the coating 141a. Alkanethiol such as dodecanethiol is used as the material having a thiol group. As a material having a disulfide group, for example, an alkane disulfide or the like is used.
 溶媒142は、例えば有機溶媒を含む。有機溶媒として、例えば芳香族炭化水素化合物、芳香族エステル化合物、芳香族エーテル化合物、芳香族ケトン化合物、脂肪族炭化水素化合物、脂肪族エステル化合物、脂肪族エーテル化合物、脂肪族ケトン化合物、アルコール化合物、アミド化合物、チオール化合物、他の化合物等が用いられ、1種のほか2種以上が用いられてもよい。溶媒142が有機溶媒を含むことで、材料コスト低減を図ることが可能となる。 The solvent 142 contains, for example, an organic solvent. Examples of organic solvents include aromatic hydrocarbon compounds, aromatic ester compounds, aromatic ether compounds, aromatic ketone compounds, aliphatic hydrocarbon compounds, aliphatic ester compounds, aliphatic ether compounds, aliphatic ketone compounds, alcohol compounds, Amide compounds, thiol compounds, other compounds, and the like are used, and one or two or more of them may be used. Since the solvent 142 contains an organic solvent, it is possible to reduce the material cost.
 なお、上述した材料のほか、溶媒142として、例えばジメチルスルホキシド、アセトン、クロロホルム、塩化メチレン等が用いられてもよい。 In addition to the materials described above, for example, dimethylsulfoxide, acetone, chloroform, methylene chloride, etc. may be used as the solvent 142 .
 溶媒142には、例えば沸点が60℃以上の液体を用いることができる。このため、室温(例えば15℃~35℃)以上の環境下において、発電素子1を用いた場合であっても、溶媒142の気化を抑制することができる。これにより、溶媒142の気化に伴う発電素子1の劣化を抑制することができる。 For the solvent 142, for example, a liquid with a boiling point of 60°C or higher can be used. Therefore, vaporization of the solvent 142 can be suppressed even when the power generation element 1 is used in an environment of room temperature (for example, 15° C. to 35° C.) or higher. As a result, deterioration of the power generating element 1 due to evaporation of the solvent 142 can be suppressed.
 <第1基板15、第2基板16>
 第1基板15は、例えば図1(a)に示すように、第1電極11と接し、第2電極12と離間する。第1基板15は、第1電極11を固定する。第2基板16は、第2電極12と接し、第1電極11と離間する。第2基板16は、第2電極12を固定する。第1基板15及び第2基板16は、例えば各電極11、12及び中間部14を挟み、第1方向Zに離間して設けられる。発電素子1は、第1基板15及び第2基板16の少なくとも何れかに設けられた貫通部18をさらに備えてもよい。発電素子1は、貫通部18を封止する封止部21をさらに備えてもよい。
<First Substrate 15, Second Substrate 16>
The first substrate 15 is in contact with the first electrode 11 and separated from the second electrode 12, as shown in FIG. 1(a), for example. The first substrate 15 fixes the first electrode 11 . The second substrate 16 is in contact with the second electrode 12 and separated from the first electrode 11 . A second substrate 16 fixes the second electrode 12 . The first substrate 15 and the second substrate 16 are spaced apart in the first direction Z with the electrodes 11 and 12 and the intermediate portion 14 therebetween, for example. The power generation element 1 may further include a penetrating portion 18 provided in at least one of the first substrate 15 and the second substrate 16 . The power generation element 1 may further include a sealing portion 21 that seals the penetrating portion 18 .
 各基板15、16の第1方向Zに沿った厚さは、例えば10μm以上2mm以下である。各基板15、16の厚さは、任意に設定することができる。各基板15、16の形状は、例えば正方形や長方形の四角形のほか、円盤状等でもよく、用途に応じて任意に設定することができる。 The thickness of each of the substrates 15 and 16 along the first direction Z is, for example, 10 μm or more and 2 mm or less. The thickness of each substrate 15, 16 can be set arbitrarily. The shape of each of the substrates 15 and 16 may be, for example, square, rectangular, or disk-like, and can be arbitrarily set according to the application.
 各基板15、16として、例えば絶縁性を有する板状の部材を用いることができ、例えばシリコン、石英、パイレックス(登録商標)等の公知の部材を用いることができる。各基板15、16は、例えばフィルム状の部材が用いられてもよく、例えばPET(polyethylene terephthalate)、PC(polycarbonate)、及びポリイミド等の公知のフィルム状部材が用いられてもよい。 As the substrates 15 and 16, for example, plate-shaped members having insulation properties can be used, and known members such as silicon, quartz, and Pyrex (registered trademark) can be used. For each of the substrates 15 and 16, for example, a film-like member may be used, and for example, a known film-like member such as PET (polyethylene terephthalate), PC (polycarbonate), polyimide, or the like may be used.
 各基板15、16として、例えば導電性を有する部材を用いることができ、例えば鉄、アルミニウム、銅、又はアルミニウムと銅との合金等を挙げることができる。また、各基板15、16としては、例えばSi、GaN等の導電性を有する半導体の他、導電性高分子等の部材を用いてもよい。各基板15、16に導電性を有する部材を用いる場合、各電極11、12に接続するための配線が不要となる。 For the substrates 15 and 16, for example, a member having conductivity can be used, such as iron, aluminum, copper, or an alloy of aluminum and copper. As the substrates 15 and 16, for example, a member such as a conductive polymer may be used in addition to a conductive semiconductor such as Si or GaN. If conductive members are used for the substrates 15 and 16, wiring for connecting to the electrodes 11 and 12 becomes unnecessary.
 <支持部17>
 支持部17は、第1基板15と第2基板16とを支持し、第1基板15と第2基板16とを接合する。支持部17を備えることで、ギャップGを高精度に形成することができる。特に、支持部17が金属を含むことで、接合強度の向上や、ギャップGのバラつきを抑制することができる。
<Support portion 17>
The support portion 17 supports the first substrate 15 and the second substrate 16 and bonds the first substrate 15 and the second substrate 16 together. By providing the support portion 17, the gap G can be formed with high accuracy. In particular, when the supporting portion 17 contains a metal, it is possible to improve the bonding strength and suppress variations in the gap G. FIG.
 支持部17は、例えば図1(b)に示すように、第1方向Zから見て、中空の四角形状に形成され、各電極11、12、中間部14及び保護部22を囲む。支持部17の形状は、保護部22を囲み、第1基板15と第2基板16とを支持するものであれば、任意である。 For example, as shown in FIG. 1(b), the support part 17 is formed in a hollow rectangular shape when viewed from the first direction Z, and surrounds the electrodes 11 and 12, the intermediate part 14 and the protection part 22. The shape of the support portion 17 is arbitrary as long as it surrounds the protection portion 22 and supports the first substrate 15 and the second substrate 16 .
 支持部17は、第1支持部17aと第2支持部17bと、を有する。第1支持部17aは、第1基板15に設けられる。第2支持部17bは、第2基板16に設けられる。第1支持部17aと第2支持部17bとは接する。 The support portion 17 has a first support portion 17a and a second support portion 17b. The first support portion 17 a is provided on the first substrate 15 . The second support portion 17 b is provided on the second substrate 16 . The first support portion 17a and the second support portion 17b are in contact with each other.
 支持部17として、例えば絶縁性を有する材料が用いられる。支持部17として、例えばシリコン酸化物、及びポリマー等を挙げることができる。ポリマーの例としては、ポリイミド、PMMA(Polymethyl methacrylate)、及びポリスチレン等を挙げることができる。支持部17として絶縁性を有する材料が用いられた場合、例えば各支持部17a、17bの互いに接する面に、金属を含んでもよい。この場合、接合強度を向上させることが可能となる。 A material having insulating properties, for example, is used as the support portion 17 . Examples of the supporting portion 17 include silicon oxide and polymer. Examples of polymers include polyimide, PMMA (polymethyl methacrylate), and polystyrene. When a material having insulating properties is used for the support portion 17, metal may be included in, for example, surfaces of the support portions 17a and 17b that are in contact with each other. In this case, it is possible to improve the bonding strength.
 また、支持部17として、例えば金属が用いられることがより好ましい。金属の例としては、例えば金、ニッケル、タングステン、タンタル、モリブデン、鉛、白金、銀、又はスズが用いられるほか、金及びクロムの積層体、又は金及びニッケルの積層体が用いられる。各支持部17a、17bが金属を含むことで、各支持部17a、17bを形成する際の厚さを容易に制御できるほか、例えば各基板15、16からの押圧による変形が抑制され、各支持部17a、17bにおける厚さの変動を防ぐことができる。これにより、ギャップGを高精度に形成することができる。 Further, it is more preferable to use, for example, metal as the support portion 17 . Examples of metals are gold, nickel, tungsten, tantalum, molybdenum, lead, platinum, silver or tin, as well as gold and chromium laminates or gold and nickel laminates. Since the support portions 17a and 17b contain metal, the thickness when forming the support portions 17a and 17b can be easily controlled. Thickness variations in the portions 17a and 17b can be prevented. Thereby, the gap G can be formed with high accuracy.
 例えば各支持部17a、17bの表面に金を用いる場合、各支持部17a、17bの表面に露出した金同士を、例えば熱圧着接合法を用いて容易に接合することができる。これにより、電極間ギャップを更に高精度に形成することができる。 For example, when gold is used for the surfaces of the support portions 17a and 17b, the gold portions exposed on the surfaces of the support portions 17a and 17b can be easily bonded using, for example, a thermocompression bonding method. Thereby, the inter-electrode gap can be formed with higher accuracy.
 なお、支持部17は、例えば第1基板15及び第2基板16の少なくとも何れかの一部を、酸化させて設けられてもよい。この場合、支持部17を容易に設けることができる。また、この場合に、例えば各支持部17a、17bの互いに接する面に、金属を含んでもよい。この場合、接合強度を向上させることが可能となる。 Note that the supporting portion 17 may be provided by oxidizing at least a portion of at least one of the first substrate 15 and the second substrate 16, for example. In this case, the support portion 17 can be easily provided. Further, in this case, for example, metal may be included in the mutually contacting surfaces of the support portions 17a and 17b. In this case, it is possible to improve the bonding strength.
 各電極11、12と支持部17とが離間することで、支持部17を介して各電極11、12の短絡を防ぐことが可能となる。 By separating the electrodes 11 and 12 from the support portion 17 , it is possible to prevent short circuits between the electrodes 11 and 12 via the support portion 17 .
 <保護部22>
 保護部22は、例えば支持部17と離間して設けられる。この場合、支持部17をする際の接合面に、保護部22が侵入することを防ぐことができる。また、中間部14から保護部22を介して、支持部17に熱の伝達を防ぐことができ、熱エネルギーの消耗を抑制することが可能となる。
<Protective part 22>
The protection portion 22 is provided, for example, apart from the support portion 17 . In this case, it is possible to prevent the protection portion 22 from entering the joint surface when the support portion 17 is formed. In addition, it is possible to prevent heat from being transferred from the intermediate portion 14 to the support portion 17 via the protective portion 22, thereby suppressing consumption of thermal energy.
 保護部22は、例えば第1電極11と第2電極12との間に接して設けられる。保護部22は、例えば第1電極11と第2電極12との間に接して設けられることで、中間部14を密閉し易くできる。また、保護部22は、例えば第1電極11と第2電極12との間に接して設けられることで、発電素子1を製造する際に保護部22を形成し易くできる。 The protection part 22 is provided in contact with, for example, between the first electrode 11 and the second electrode 12 . The protective portion 22 is provided in contact with, for example, between the first electrode 11 and the second electrode 12, so that the intermediate portion 14 can be easily sealed. In addition, the protective portion 22 is provided in contact with, for example, between the first electrode 11 and the second electrode 12 , thereby facilitating the formation of the protective portion 22 when manufacturing the power generating element 1 .
 なお、保護部22は、例えば第1基板15と第2基板16との間に接して設けられてもよい。この場合、保護部22が各電極11、12の間に設けられる場合に比べて、各電極11、12の対向する面積を大きくすることができる。これにより、各電極11、12の間に発生する電流量の向上を図ることが可能となる。 Note that the protective portion 22 may be provided in contact between the first substrate 15 and the second substrate 16, for example. In this case, compared to the case where the protective portion 22 is provided between the electrodes 11 and 12, the facing areas of the electrodes 11 and 12 can be increased. This makes it possible to improve the amount of current generated between the electrodes 11 and 12 .
 保護部22は、第1方向Zから見て、中空の四角形状に形成され、各電極11、12及び中間部14を囲む。保護部22は、内面が中間部14と接する。保護部22は、支持部17にナノ粒子141が付着するのを防ぐために設けられ、中間部14を密閉することができる。 The protection part 22 is formed in a hollow rectangular shape when viewed from the first direction Z, and surrounds the electrodes 11 and 12 and the intermediate part 14 . The protective portion 22 has an inner surface in contact with the intermediate portion 14 . The protective portion 22 is provided to prevent the nanoparticles 141 from adhering to the support portion 17 and can seal the intermediate portion 14 .
 保護部22として、例えば絶縁性を有する材料を挙げることができる。さらに保護部22として、例えばサイトップ(登録商標)、テフロン(登録商標)等のフッ素樹脂等が挙げられる。 As the protective part 22, for example, a material having insulating properties can be used. Furthermore, as the protective part 22, for example, a fluororesin such as CYTOP (registered trademark) or Teflon (registered trademark) can be used.
 <<貫通部18>>
 貫通部18は、例えば図1(a)に示すように、第1基板15を第1方向Zに貫通する。貫通部18は、例えば第1基板15及び第2基板16の少なくとも何れかを、第1方向Zに貫通してもよい。
<<Penetration part 18>>
The penetrating portion 18 penetrates the first substrate 15 in the first direction Z, as shown in FIG. 1A, for example. The penetrating part 18 may penetrate at least one of the first substrate 15 and the second substrate 16 in the first direction Z, for example.
 貫通部18は、第1基板15を第1方向Zに貫通し、例えば第1電極11を貫通する。貫通部18は、例えば1つ以上設けられる。貫通部18は、例えば第1方向Zから見て、第1電極11及び第2電極12と離間する。 The penetrating part 18 penetrates the first substrate 15 in the first direction Z, and penetrates the first electrode 11, for example. For example, one or more penetrating portions 18 are provided. The penetrating portion 18 is separated from the first electrode 11 and the second electrode 12 when viewed from the first direction Z, for example.
 貫通部18は、第1方向Zから見て、円状に形成されるほか、例えば楕円状又は溝状に形成されてもよい。貫通部18は、発電素子1の外部側から内部側に向かって狭まるテーパ状に形成されるほか、例えば逆テーパ状、ボーイング状、又はストレート状に形成されてもよい。 When viewed from the first direction Z, the penetrating portion 18 may be formed in a circular shape, or may be formed in an elliptical shape or a groove shape, for example. The penetrating portion 18 may be formed in a tapered shape that narrows from the outside to the inside of the power generation element 1, or may be formed in a reverse tapered shape, a bowing shape, or a straight shape, for example.
 <<封止部21>>
 封止部21は、貫通部18を封止する。封止部21は、貫通部18の外部側を覆い、貫通された第1基板15上に設けられる。封止部21は、例えば少なくとも一部を貫通部18内に設けられてもよい。封止部21は、貫通部18の数に応じて設けられる。
<<sealing portion 21>>
The sealing portion 21 seals the penetrating portion 18 . The sealing portion 21 covers the outer side of the penetrating portion 18 and is provided on the penetrated first substrate 15 . The sealing portion 21 may be provided, for example, at least partially inside the through portion 18 . The sealing portions 21 are provided according to the number of the through portions 18 .
 封止部21の材料として、例えば絶縁性樹脂が用いられ、絶縁性樹脂の例としては、フッ素系絶縁性樹脂を挙げることができる。 For example, an insulating resin is used as the material of the sealing portion 21, and an example of the insulating resin is a fluorine-based insulating resin.
 <発電素子1の動作>
 熱エネルギーが発電素子1に与えられると、第1電極11と第2電極12との間に電流が発生し、熱エネルギーが電気エネルギーに変換される。第1電極11と第2電極12との間に発生する電流量は、熱エネルギーに依存する他、第2電極12の仕事関数と、第1電極11の仕事関数との差に依存する。
<Operation of Power Generation Element 1>
When thermal energy is applied to the power generation element 1, a current is generated between the first electrode 11 and the second electrode 12, and the thermal energy is converted into electrical energy. The amount of current generated between the first electrode 11 and the second electrode 12 depends on thermal energy and also depends on the difference between the work function of the second electrode 12 and the work function of the first electrode 11 .
 発生する電流量は、例えば、第1電極11と第2電極12との仕事関数差を大きくすること、及び電極間ギャップを小さくすることで増やすことができる。例えば、発電素子1が発生させる電気エネルギーの量は、上記仕事関数差を大きくすること、及び上記電極間ギャップを小さくすること、の少なくとも何れか1つを考慮することで増加させることができる。 The amount of current generated can be increased, for example, by increasing the work function difference between the first electrode 11 and the second electrode 12 and by decreasing the gap between the electrodes. For example, the amount of electrical energy generated by the power generation element 1 can be increased by considering at least one of increasing the work function difference and decreasing the inter-electrode gap.
 なお、「仕事関数」とは、固体内にある電子を真空中に取出すために必要な最小限のエネルギーを示す。仕事関数は、例えばケルビン法のほか、紫外光電子分光法(UPS:Ultraviolet Photoelectron Spectroscopy)、X線光電子分光法(XPS:X-ray Photoelectron Spectroscopy)やオージェ電子分光法(AES:Auger Electron Spectroscopy)等を用いて測定することができる。  The "work function" indicates the minimum energy required to extract electrons in a solid into a vacuum. The work function can be determined by, for example, the Kelvin method, ultraviolet photoelectron spectroscopy (UPS), X-ray photoelectron spectroscopy (XPS), and Auger electron spectroscopy (AES). can be measured using
(実施形態:発電素子1の製造方法)
 次に、本実施形態における発電素子1の製造方法の一例を説明する。図3は、本実施形態における発電素子1の製造方法の一例を示すフローチャートである。図4(a)~図6(d) は、第1実施形態における発電素子の製造方法の一例を示す模式図である。
(Embodiment: Method for manufacturing power generation element 1)
Next, an example of a method for manufacturing the power generating element 1 according to this embodiment will be described. FIG. 3 is a flow chart showing an example of a method for manufacturing the power generating element 1 according to this embodiment. 4(a) to 6(d) are schematic diagrams showing an example of the method of manufacturing the power generating element according to the first embodiment.
 <<電極形成工程S110>>
 先ず、例えば図4(a)に示すように、第1基板15の主面上に第1電極11を形成し、例えば図4(b)に示すように、第2基板16の主面上に第2電極12を形成する(電極形成工程S110)。各電極11、12は、第1方向Zから見て、四角形状に形成される。
<<Electrode Forming Step S110>>
First, as shown in FIG. 4A, for example, the first electrode 11 is formed on the main surface of the first substrate 15, and as shown in FIG. 4B, for example, on the main surface of the second substrate 16. A second electrode 12 is formed (electrode forming step S110). Each of the electrodes 11 and 12 is formed in a square shape when viewed from the first direction Z. As shown in FIG.
 電極形成工程S110では、例えばスパッタリング法又は蒸着法を用いて、各電極11、12を形成するほか、例えばスクリーン印刷法、インクジェット法、及びスプレイ印刷法等を用いて形成してもよい。例えば、第1電極11としてアルミニウムが用いられ、第2電極12として白金が用いられるほか、それぞれ上述した材料が用いられてもよい。 In the electrode forming step S110, the electrodes 11 and 12 may be formed using, for example, a sputtering method or a vapor deposition method, or may be formed using, for example, a screen printing method, an inkjet method, a spray printing method, or the like. For example, aluminum may be used as the first electrode 11 and platinum may be used as the second electrode 12, or the materials described above may be used.
 電極形成工程S110では、例えば公知のエッチング法等を用いて、各電極11、12の一部を除去してもよい。この場合、各電極11、12として機能する層と離間した場所に、各電極11、12と同じ厚さの層(支持層)が形成される。 In the electrode forming step S110, a part of each of the electrodes 11 and 12 may be removed using, for example, a known etching method or the like. In this case, a layer (supporting layer) having the same thickness as the electrodes 11 and 12 is formed at a location spaced apart from the layers functioning as the electrodes 11 and 12 .
 <<支持部形成工程S120>>
 次に、例えば図4(c)に示すように、第1基板15の主面上方に第1支持部17aを形成し、例えば図4(d)に示すように、第2基板16の主面上方に第2支持部17bを形成する(支持部形成工程S120)。各支持部17a、17bは、第1方向Zから見て、中空の四角形状に形成される。各支持部17a、17bは、各電極11、12から離間する。
<<Support portion forming step S120>>
Next, as shown in FIG. 4C, for example, a first supporting portion 17a is formed above the main surface of the first substrate 15, and as shown in FIG. 4D, for example, the main surface of the second substrate 16 is formed. The second support portion 17b is formed above (support portion forming step S120). Each support part 17a, 17b is formed in a hollow quadrangular shape when viewed from the first direction Z. As shown in FIG. Each support portion 17a, 17b is spaced apart from each electrode 11, 12. As shown in FIG.
 支持部形成工程S120では、例えばスパッタリング法又は蒸着法等を用いた真空環境下で各支持部17a、17bを形成するほか、例えばスクリーン印刷法、インクジェット法、スプレイ印刷法等を用いた常圧環境下で各支持部17a、17bを形成してもよい。各支持部17a、17bとして、金属が用いられ、例えば金が用いられる。例えば各支持部17a、17bとして、例えば金及びクロムの積層体、又は金及びニッケルの積層体が用いられる場合、各基板15、16上にクロム又はニッケルが形成され、その上に金が形成される。これにより、各支持部17a、17bの上面に、金が露出する。 In the supporting portion forming step S120, the supporting portions 17a and 17b are formed in a vacuum environment using, for example, a sputtering method or a vapor deposition method. Each support 17a, 17b may be formed below. A metal, such as gold, is used for each of the support portions 17a and 17b. For example, when a laminate of gold and chromium or a laminate of gold and nickel is used as each of the supports 17a and 17b, chromium or nickel is formed on each substrate 15 and 16, and gold is formed thereon. be. As a result, the gold is exposed on the upper surfaces of the support portions 17a and 17b.
 例えば支持部形成工程S120は、電極形成工程S110で形成された支持層上に、上述した材料を形成し、支持層を含む支持部17を形成してもよい。この場合、各基板15、16上に直接支持部17を形成するときに比べて、支持部17を形成する位置の精度を向上させることができる。また、支持部17に各電極11、12の材料と同様の支持層が含まれることで、例えば熱膨張に伴い各基板15、16に作用する負荷を軽減させることが可能となる。 For example, the support portion forming step S120 may form the support portion 17 including the support layer by forming the material described above on the support layer formed in the electrode formation step S110. In this case, compared to the case where the support portions 17 are formed directly on the respective substrates 15 and 16, the accuracy of the position of forming the support portions 17 can be improved. In addition, since the support portion 17 includes a support layer similar to the material of the electrodes 11 and 12, it is possible to reduce the load acting on the substrates 15 and 16 due to thermal expansion, for example.
 なお、支持部形成工程S120では、第1基板15の主面上方及び第2基板16の主面上方の少なくとも何れかに支持部17を形成してもよい。支持部17は、第1基板15の主面上方であれば、第1基板15に接してもよいし、接しなくてもよい。支持部17は、第2基板16の主面上方であれば、第2基板16に接してもよいし、接しなくてもよい。 In addition, in the supporting portion forming step S120, the supporting portion 17 may be formed on at least one of the main surface of the first substrate 15 and the main surface of the second substrate 16 . The supporting portion 17 may or may not be in contact with the first substrate 15 as long as it is above the main surface of the first substrate 15 . The supporting portion 17 may or may not be in contact with the second substrate 16 as long as it is above the main surface of the second substrate 16 .
 <<保護部形成工程S130>>
 次に、例えば図5(a)に示すように、第1電極11の主面上方に保護部22を形成する(保護部形成工程S130)。保護部22は、例えば図5(b)に示すように、第1方向Zから見て、中空の四角形状に形成される。保護部22は、絶縁性を有し、例えばサイトップ(登録商標)が用いられる。
<<protection portion forming step S130>>
Next, for example, as shown in FIG. 5A, the protective portion 22 is formed above the main surface of the first electrode 11 (protective portion forming step S130). The protection part 22 is formed in a hollow rectangular shape when viewed from the first direction Z, as shown in FIG. 5B, for example. The protective part 22 has insulating properties, and Cytop (registered trademark) is used, for example.
 保護部形成工程S130では、例えばスパッタリング法又は蒸着法等を用いた真空環境下で保護部22を形成するほか、例えばスクリーン印刷法、インクジェット法、スプレイ印刷法等を用いた常圧環境下で保護部22を形成してもよい。 In the protection portion forming step S130, the protection portion 22 is formed in a vacuum environment using, for example, a sputtering method or a vapor deposition method. A portion 22 may be formed.
 なお、保護部形成工程S130では、第1基板15の主面上方及び第2基板16の主面上方の少なくとも何れかに保護部22を形成してもよい。保護部22は、第1基板15の主面上方であれば、第1基板15に接してもよいし、接しなくてもよい。保護部22は、第2基板16の主面上方であれば、第2基板16に接してもよいし、接しなくてもよい。 In addition, in the protective portion forming step S130, the protective portion 22 may be formed on at least one of the main surface of the first substrate 15 and the main surface of the second substrate 16. FIG. The protective portion 22 may or may not be in contact with the first substrate 15 as long as it is above the main surface of the first substrate 15 . The protective portion 22 may or may not be in contact with the second substrate 16 as long as it is above the main surface of the second substrate 16 .
 <<貫通部形成工程S140>>
 次に、例えば図5(c)に示すように、第1基板15に貫通部18を形成する(貫通部形成工程S140)。貫通部18は、例えば図5(d)に示すように、第1方向Zから見て、円状に形成される。貫通部18は、第1基板15を第1方向Zに貫通し、例えば第1電極11を貫通する。貫通部18は、例えば1つ以上設けられる。貫通部18は、第1方向Zから見て、第1電極11と離間する。
<<Penetration Portion Forming Step S140>>
Next, for example, as shown in FIG. 5C, the through portion 18 is formed in the first substrate 15 (through portion forming step S140). The penetrating portion 18 is formed in a circular shape when viewed from the first direction Z, as shown in FIG. 5D, for example. The penetrating portion 18 penetrates the first substrate 15 in the first direction Z, and penetrates the first electrode 11, for example. For example, one or more penetrating portions 18 are provided. The penetrating portion 18 is separated from the first electrode 11 when viewed from the first direction Z. As shown in FIG.
 貫通部形成工程S140では、例えばドリルを用いて第1基板15に貫通部18を形成するほか、例えば反応性イオンエッチング等の異方性エッチングを用いて、貫通部18を形成してもよい。なお、貫通部形成工程S140は、例えば第2基板16に貫通部18を形成してもよい。 In the penetrating portion forming step S140, the penetrating portion 18 may be formed in the first substrate 15 using, for example, a drill, or may be formed using anisotropic etching such as reactive ion etching. In addition, the penetrating portion forming step S140 may form the penetrating portion 18 in the second substrate 16, for example.
 <<接合工程S150>>
 次に、例えば図6(a)及び図6(b)に示すように、第1電極11と、第2電極12とを第1方向Zに離間して対向するように、支持部17を介して第1基板15と第2基板16とを接合する(接合工程S150)。接合工程S150では、例えば図6(a)に示すように、第1電極11と、第2電極12とを第1方向Zに離間して対向するように、第1電極11に形成した保護部22を第2電極12に設ける。第2電極12に保護部22を設けたとき、第1支持部17aと第2支持部17bとが第1方向Zに離間される。
<<Joining step S150>>
Next, as shown in FIGS. 6A and 6B, for example, the first electrode 11 and the second electrode 12 are separated from each other in the first direction Z and face each other with the support portion 17 interposed therebetween. to bond the first substrate 15 and the second substrate 16 (bonding step S150). In the bonding step S150, for example, as shown in FIG. 6A, the first electrode 11 and the second electrode 12 are separated from each other in the first direction Z so as to face each other. 22 is provided on the second electrode 12 . When the protective portion 22 is provided on the second electrode 12, the first support portion 17a and the second support portion 17b are separated in the first direction Z. As shown in FIG.
 そして、接合工程S150では、例えば図6(b)に示すように、保護部22を第1方向Zに押し潰すとともに、第1支持部17aの上面と、第2支持部17bの上面とを接合する。保護部22が押し潰されることで、中間部14を更に密閉し易くできる。また、保護部22は第1電極11と第2電極12とに接して設けることで、第1基板15と第2基板16とに保護部22を固定する場合よりも、第1電極11と第2電極12とに保護部22を強固に固定することができる。これにより、保護部22の変動を抑制することができる。 Then, in the joining step S150, for example, as shown in FIG. 6B, the protection portion 22 is crushed in the first direction Z, and the upper surface of the first support portion 17a and the upper surface of the second support portion 17b are joined. do. By crushing the protective portion 22, the intermediate portion 14 can be more easily sealed. In addition, by providing the protection portion 22 in contact with the first electrode 11 and the second electrode 12 , the first electrode 11 and the second electrode 11 can be separated from each other more than when the protection portion 22 is fixed to the first substrate 15 and the second substrate 16 . The protective portion 22 can be firmly fixed to the two electrodes 12 . As a result, fluctuations in the protective portion 22 can be suppressed.
 また、保護部22が支持部17と離間する場合、例えば押し潰された保護部22が第1支持部17aと第2支持部17bとの間に挟まった状態で、各支持部17a、17bが接合されることを防ぐことができる。このため、支持部17を介して第1基板15と第2基板16とを接合する際に、接合力の低下を防ぐことができる。 Further, when the protection portion 22 is separated from the support portion 17, for example, in a state where the crushed protection portion 22 is sandwiched between the first support portion 17a and the second support portion 17b, the support portions 17a and 17b are separated from each other. You can prevent it from joining. Therefore, when the first substrate 15 and the second substrate 16 are bonded via the supporting portion 17, the bonding strength can be prevented from being lowered.
 接合工程S150では、例えば熱圧着接合法により各支持部17a、17bの上面同士を当接させて加熱することで、各支持部17a、17bを接合する。この場合、各電極11、12におけるギャップGは、各支持部17a、17bの厚さに依存する。各支持部17a、17bは、各基板15、16に挟まれ、ギャップGが形成される。 In the bonding step S150, the upper surfaces of the support portions 17a and 17b are brought into contact with each other and heated by, for example, a thermocompression bonding method, thereby bonding the support portions 17a and 17b. In this case, the gap G at each electrode 11, 12 depends on the thickness of each support 17a, 17b. Each supporting part 17a, 17b is sandwiched between each substrate 15, 16, and a gap G is formed.
 <<中間部形成工程S160>>
 次に、例えば図6(c)に示すように、第1電極11と第2電極12との間に中間部14を形成する(中間部形成工程S160)。中間部14は、支持部17から離間し、保護部22に接する。保護部22は、中間部14と支持部17との間に設けられる。保護部22は、第1電極11と第2電極12と中間部14とを囲う。
<<Intermediate portion forming step S160>>
Next, for example, as shown in FIG. 6C, an intermediate portion 14 is formed between the first electrode 11 and the second electrode 12 (intermediate portion forming step S160). The intermediate portion 14 is separated from the support portion 17 and contacts the protection portion 22 . The protection portion 22 is provided between the intermediate portion 14 and the support portion 17 . The protective portion 22 surrounds the first electrode 11 , the second electrode 12 and the intermediate portion 14 .
 中間部形成工程S160では、少なくとも1つの貫通部18から中間部14を充填し、他の貫通部18から吸引(真空引き)を行い、中間部14を形成する。保護部22は第1方向Zに押し潰されて形成されるため、中間部14を密閉し易くなる。 In the intermediate portion forming step S160, the intermediate portion 14 is filled from at least one through portion 18, and the other through portion 18 is sucked (evacuated) to form the intermediate portion 14. Since the protective portion 22 is formed by being crushed in the first direction Z, it becomes easier to seal the intermediate portion 14 .
 また、貫通部18は、第1電極11と第2電極12と離間する。このため、貫通部18を介して、第1電極11と第2電極12との間に、中間部14を充填する際に異物が混入したとき、第1電極11及び第2電極12に異物が付着するのを抑制することができる。これにより、発電素子の品質の劣化を抑制することができる。 Also, the penetrating portion 18 is separated from the first electrode 11 and the second electrode 12 . Therefore, when foreign matter enters between the first electrode 11 and the second electrode 12 through the penetrating portion 18 when the intermediate portion 14 is filled, the foreign matter may enter the first electrode 11 and the second electrode 12 . Adhesion can be suppressed. As a result, deterioration of the quality of the power generation element can be suppressed.
 <<封止部形成工程S170>>
 次に、例えば図6(d)に示すように、貫通部18を封止する封止部21を形成する(封止部形成工程S170)。なお、封止部形成工程S170は、省略することもできる。
<<sealing portion forming step S170>>
Next, as shown in FIG. 6D, for example, a sealing portion 21 for sealing the through portion 18 is formed (sealing portion forming step S170). Note that the sealing portion forming step S170 can be omitted.
 上述した工程を経て、本実施形態における発電素子1が形成される。なお、形成された発電素子1に、図1(a)に示す第1端子111、第2端子112、第1配線101、及び第2配線102等を接続することで、本実施形態における発電装置100を形成することができる。 The power generation element 1 in this embodiment is formed through the above-described steps. By connecting the first terminal 111, the second terminal 112, the first wiring 101, the second wiring 102, etc. shown in FIG. 100 can be formed.
 なお、例えば接合工程S150を実施する前であれば、電極形成工程S110、支持部形成工程S120、保護部形成工程S130の順番は任意である。 Note that the order of the electrode formation step S110, the support portion formation step S120, and the protection portion formation step S130 is arbitrary, for example, before the bonding step S150 is performed.
 また、例えば貫通部形成工程S140は、省略することもできる。この場合、例えば第1基板15の主面上方に保護部22を形成した後、第1電極11の保護部22により囲まれた部分に、中間部14を形成する。そして、第1電極11と、第2電極12とを第1方向Zに離間して対向するように、支持部17を介して第1基板15と第2基板16とを接合する。これにより、第1電極11と第2電極12との間に中間部14が形成される。 Also, for example, the penetrating portion forming step S140 can be omitted. In this case, for example, after forming the protective portion 22 above the main surface of the first substrate 15 , the intermediate portion 14 is formed in a portion of the first electrode 11 surrounded by the protective portion 22 . Then, the first substrate 15 and the second substrate 16 are joined via the supporting portion 17 so that the first electrode 11 and the second electrode 12 are opposed to each other in the first direction Z while being separated from each other. Thereby, an intermediate portion 14 is formed between the first electrode 11 and the second electrode 12 .
 本実施形態によれば、中間部14と離間し、金属を含む支持部17と、中間部14と支持部17との間に設けられ、中間部14と接し、絶縁性を有する保護部22と、を備える。このため、各電極11、12の間に分散されるナノ粒子141の量の減少を抑制することができる。これにより、発電効率の低下を抑制することができる。 According to the present embodiment, the supporting portion 17 containing metal is separated from the intermediate portion 14, and the protective portion 22 is provided between the intermediate portion 14 and the supporting portion 17, is in contact with the intermediate portion 14, and has insulating properties. , provided. Therefore, the decrease in the amount of nanoparticles 141 dispersed between the electrodes 11 and 12 can be suppressed. As a result, a decrease in power generation efficiency can be suppressed.
 本実施形態によれば、支持部17は、金属を含む。このため、第1方向Zに沿った支持部13の厚さバラつきを抑制することができる。これにより、ギャップGを高精度に形成することができ、電気エネルギーの発生量の安定化を実現することが可能となる。 According to this embodiment, the support portion 17 contains metal. Therefore, variations in the thickness of the support portion 13 along the first direction Z can be suppressed. As a result, the gap G can be formed with high accuracy, and the amount of electrical energy generated can be stabilized.
 本実施形態によれば、保護部22は、支持部17と離間して設けられる。このため、支持部17を介して第1基板15と第2基板16とを接合する際に、例えば保護部22が支持部17に接することによる接合力の低下を防ぐことができる。これにより、第1基板15と第2基板16とを支持部17により強固に接合することができる。 According to this embodiment, the protection section 22 is provided apart from the support section 17 . Therefore, when the first substrate 15 and the second substrate 16 are bonded via the support portion 17, it is possible to prevent the bonding strength from being lowered due to the protection portion 22 coming into contact with the support portion 17, for example. Thereby, the first substrate 15 and the second substrate 16 can be firmly bonded by the supporting portion 17 .
 本実施形態によれば、保護部22は、第1電極11と第2電極12との間に接して設けられる。このため、第1基板15と第2基板16とに保護部22を固定する場合よりも、第1電極11と第2電極12とに保護部22を強固に固定することができる。これにより、保護部22の変動を抑制することができる。 According to the present embodiment, the protective portion 22 is provided in contact between the first electrode 11 and the second electrode 12 . Therefore, the protective portion 22 can be more firmly fixed to the first electrode 11 and the second electrode 12 than when the protective portion 22 is fixed to the first substrate 15 and the second substrate 16 . As a result, fluctuations in the protective portion 22 can be suppressed.
 本実施形態によれば、支持部17は、第1電極11及び第2電極12と離間する。このため、支持部17を介して各電極11、12の短絡を防ぐことが可能となる。 According to this embodiment, the support portion 17 is separated from the first electrode 11 and the second electrode 12 . Therefore, it is possible to prevent the electrodes 11 and 12 from being short-circuited via the supporting portion 17 .
 本実施形態によれば、第1基板15及び第2基板16の少なくとも何れかに設けられた貫通部18をさらに備える。このため、貫通部18を介して、第1電極11と第2電極12との間に、中間部14を充填して設けることができる。これにより、発電素子1の製造工程の簡略化を図ることができる。また、発電素子1の使用に伴い中間部14を交換する必要が発生した場合、容易に中間部14の交換を実施することが可能となる。 According to this embodiment, the penetrating portion 18 provided in at least one of the first substrate 15 and the second substrate 16 is further provided. Therefore, the intermediate portion 14 can be filled and provided between the first electrode 11 and the second electrode 12 via the penetrating portion 18 . Thereby, simplification of the manufacturing process of the power generation element 1 can be achieved. Further, when it becomes necessary to replace the intermediate portion 14 due to the use of the power generating element 1, the intermediate portion 14 can be easily replaced.
 本実施形態によれば、第1方向Zから見て、貫通部18は、第1電極11及び第2電極12と離間する。このため、貫通部18を介して、第1電極11と第2電極12との間に、中間部14を充填する際に異物が混入したとき、第1電極11及び第2電極12に異物が付着するのを抑制することができる。これにより、発電素子の品質の劣化を抑制することができる。 According to the present embodiment, the penetrating portion 18 is separated from the first electrode 11 and the second electrode 12 when viewed from the first direction Z. Therefore, when foreign matter enters between the first electrode 11 and the second electrode 12 through the penetrating portion 18 when the intermediate portion 14 is filled, the foreign matter may enter the first electrode 11 and the second electrode 12 . Adhesion can be suppressed. As a result, deterioration of the quality of the power generation element can be suppressed.
(第2実施形態:発電素子1、発電装置100)
 次に、第2実施形態に係る発電装置100及び発電素子1について説明する。図7は、第2実施形態に係る発電装置100及び発電素子1の一例を示す模式図である。図7(a)は、第2実施形態に係る発電装置100及び発電素子1の一例を示す模式断面図であり、図7(b)は、図7(a)におけるB-B線に沿った模式断面図である。
(Second Embodiment: Power Generation Element 1, Power Generation Device 100)
Next, the power generation device 100 and the power generation element 1 according to the second embodiment will be described. FIG. 7 is a schematic diagram showing an example of the power generation device 100 and the power generation element 1 according to the second embodiment. FIG. 7A is a schematic cross-sectional view showing an example of the power generation device 100 and the power generation element 1 according to the second embodiment, and FIG. It is a schematic cross-sectional view.
 上述した第1実施形態と、第2実施形態との違いは、開口部19を有する点である。なお、上述した実施形態と同様の構成については、説明を省略する。 The difference between the above-described first embodiment and the second embodiment is that openings 19 are provided. In addition, description is abbreviate|omitted about the structure similar to embodiment mentioned above.
 <<開口部19>>
 開口部19は、例えば図7(a)に示すように、第1基板15を第1方向Zに貫通する。開口部19は、例えば第1基板15及び第2基板16の少なくとも何れかを、第1方向Zに貫通してもよい。
<<opening 19>>
The opening 19 penetrates the first substrate 15 in the first direction Z, as shown in FIG. 7A, for example. The opening 19 may penetrate at least one of the first substrate 15 and the second substrate 16 in the first direction Z, for example.
 開口部19は、第1基板15を第1方向Zに貫通し、支持部17と保護部22との間の空間に繋がる。開口部19は、例えば1つ以上設けられる。開口部19は、例えば第1方向Zから見て、第1電極11及び第2電極12と離間する。 The opening 19 penetrates the first substrate 15 in the first direction Z and connects to the space between the supporting portion 17 and the protecting portion 22 . For example, one or more openings 19 are provided. The opening 19 is separated from the first electrode 11 and the second electrode 12 when viewed from the first direction Z, for example.
 開口部19は、第1方向Zから見て、円状に形成されるほか、例えば楕円状又は溝状に形成されてもよい。開口部19は、発電素子1の外部側から内部側に向かって狭まるテーパ状に形成されるほか、例えば逆テーパ状、ボーイング状、又はストレート状に形成されてもよい。 When viewed from the first direction Z, the opening 19 may be circular, or may be elliptical or groove-shaped, for example. The opening 19 may be formed in a tapered shape that narrows from the outside to the inside of the power generation element 1, or may be formed in a reverse tapered shape, a bowing shape, or a straight shape, for example.
 なお、図示は省略するが、開口部19を封止する封止部21が設けられてもよい。封止部21は、開口部19の外部側を覆い、貫通された第1基板15上に設けられる。封止部21は、例えば少なくとも一部を開口部19内に設けられてもよい。封止部21は、開口部19の数に応じて設けられる。封止部21の材料として、例えば絶縁性樹脂が用いられ、絶縁性樹脂の例としては、フッ素系絶縁性樹脂を挙げることができる。 Although not shown, a sealing portion 21 for sealing the opening 19 may be provided. The sealing portion 21 covers the outside of the opening 19 and is provided on the penetrated first substrate 15 . The sealing portion 21 may be provided, for example, at least partially within the opening portion 19 . The sealing portions 21 are provided according to the number of openings 19 . For example, an insulating resin is used as the material of the sealing portion 21, and an example of the insulating resin is a fluorine-based insulating resin.
 開口部19を有することで、例えば上述した発電素子1の製造方法の接合工程S150において、支持部17を介して第1基板15と第2基板16とを接合する際に、支持部17と保護部22との間の空間の空気等の気体を、開口部19から発電素子1の外側に排出することができる。これにより、支持部17を介した第1基板15と第2基板16との接合を容易に行うことができる。 By having the opening 19, for example, in the bonding step S150 of the method for manufacturing the power generation element 1 described above, when the first substrate 15 and the second substrate 16 are bonded via the support 17, the support 17 and the protection are protected. Gas such as air in the space between the portion 22 and the portion 22 can be discharged to the outside of the power generation element 1 through the opening portion 19 . Thereby, the bonding between the first substrate 15 and the second substrate 16 via the supporting portion 17 can be easily performed.
 <第2実施形態:発電素子1の製造方法>
 次に、発電素子1の製造方法の一例を、説明する。図8は、本実施形態に係る発電素子1の製造方法の一例を示すフローチャートである。図9(a)~図9(d)は、本実施形態に係る発電素子1の製造方法の一例を示す模式断面図である。
<Second Embodiment: Method for Manufacturing Power Generation Element 1>
Next, an example of a method for manufacturing the power generation element 1 will be described. FIG. 8 is a flow chart showing an example of a method for manufacturing the power generating element 1 according to this embodiment. 9(a) to 9(d) are schematic cross-sectional views showing an example of a method for manufacturing the power generating element 1 according to this embodiment.
 図8に示すように、上述した実施形態と同様に、電極形成工程S110、支持部形成工程S120、保護部形成工程S130及び貫通部形成工程S140を実施する。 As shown in FIG. 8, an electrode forming step S110, a supporting portion forming step S120, a protective portion forming step S130, and a penetrating portion forming step S140 are performed in the same manner as in the above-described embodiment.
 <<開口部形成工程S210>>
 次に、例えば図9(a)に示すように、第1電極11に開口部19を形成する(開口部形成工程S210)。開口部19は、例えば図9(b)に示すように、第1方向Zから見て、円状に形成される。開口部19は、第1基板15を第1方向Zに貫通し、支持部17と保護部22との間の空間に繋がる。開口部19は、例えば1つ以上設けられる。
<<opening forming step S210>>
Next, as shown in FIG. 9A, for example, an opening 19 is formed in the first electrode 11 (opening forming step S210). The opening 19 is formed in a circular shape when viewed from the first direction Z, as shown in FIG. 9B, for example. The opening 19 penetrates the first substrate 15 in the first direction Z and connects to the space between the support portion 17 and the protection portion 22 . For example, one or more openings 19 are provided.
 開口部形成工程S210では、例えばドリルを用いて第1基板15に開口部19を形成するほか、例えば反応性イオンエッチング等の異方性エッチングを用いて、開口部19を形成してもよい。なお、開口部形成工程S210は、例えば第2基板16に開口部19を形成してもよい。 In the opening forming step S210, for example, in addition to forming the opening 19 in the first substrate 15 using a drill, the opening 19 may be formed using anisotropic etching such as reactive ion etching. The opening forming step S210 may form the opening 19 in the second substrate 16, for example.
 <<接合工程S150>>
 次に、例えば図9(c)及び図9(d)に示すように、第1電極11と、第2電極12とを第1方向Zに離間して対向するように、支持部17を介して第1基板15と第2基板16とを接合する(接合工程S150)。接合工程S150では、例えば図9(c)に示すように、第1電極11と、第2電極12とを第1方向Zに離間して対向するように、第1電極11に形成した保護部22を第2電極12に設ける。第2電極12に保護部22を設けたとき、第1支持部17aと第2支持部17bとが第1方向Zに離間される。
<<Joining step S150>>
Next, as shown in FIGS. 9(c) and 9(d), the first electrode 11 and the second electrode 12 are separated from each other in the first direction Z so as to face each other with the supporting portion 17 interposed therebetween. to bond the first substrate 15 and the second substrate 16 (bonding step S150). In the joining step S150, for example, as shown in FIG. 22 is provided on the second electrode 12 . When the protective portion 22 is provided on the second electrode 12, the first support portion 17a and the second support portion 17b are separated in the first direction Z. As shown in FIG.
 そして、接合工程S150では、例えば図9(d)に示すように、保護部22を第1方向Zに押し潰すとともに、第1支持部17aの上面と、第2支持部17bの上面とを接合する。保護部22が押し潰されることで、中間部14を更に密閉し易くできる。また、保護部22は第1電極11と第2電極12とに接して設けることで、第1基板15と第2基板16とに保護部22を固定する場合よりも、第1電極11と第2電極12とに保護部22を強固に固定することができる。これにより、保護部22が脱落するのを抑制することができる。 Then, in the bonding step S150, for example, as shown in FIG. do. By crushing the protective portion 22, the intermediate portion 14 can be more easily sealed. In addition, by providing the protection portion 22 in contact with the first electrode 11 and the second electrode 12 , the first electrode 11 and the second electrode 11 can be separated from each other more than when the protection portion 22 is fixed to the first substrate 15 and the second substrate 16 . The protective portion 22 can be firmly fixed to the two electrodes 12 . As a result, it is possible to prevent the protective portion 22 from coming off.
 接合工程S150では、支持部17を介して第1基板15と第2基板16とを接合する際に、支持部17と保護部22との間の空間の空気等の気体を、開口部19から発電素子1の外側に排出することができる。これにより、第1基板15と第2基板16との支持部17による接合を容易に行うことができる。 In the bonding step S<b>150 , when the first substrate 15 and the second substrate 16 are bonded via the support portion 17 , gas such as air in the space between the support portion 17 and the protection portion 22 is discharged from the opening portion 19 . It can be discharged to the outside of the power generation element 1 . This makes it possible to easily bond the first substrate 15 and the second substrate 16 by the supporting portion 17 .
 その後、上述した実施形態と同様に、中間部形成工程S160及び封止部形成工程S170を実施する。 After that, similarly to the embodiment described above, the intermediate portion forming step S160 and the sealing portion forming step S170 are performed.
 本実施形態によれば、上述した実施形態と同様に、中間部14と離間し、金属を含む支持部17と、中間部14と支持部17との間に設けられ、中間部14と接し、絶縁性を有する保護部22と、を備える。このため、各電極11、12の間に分散されるナノ粒子141の量の減少を抑制することができる。これにより、発電効率の低下を抑制することができる。 According to the present embodiment, as in the above-described embodiment, a support portion 17 that is separated from the intermediate portion 14 and contains metal, is provided between the intermediate portion 14 and the support portion 17, is in contact with the intermediate portion 14, and a protective portion 22 having insulating properties. Therefore, the decrease in the amount of nanoparticles 141 dispersed between the electrodes 11 and 12 can be suppressed. As a result, a decrease in power generation efficiency can be suppressed.
 また、本実施形態によれば、第1基板15及び第2基板16の少なくとも何れかに、第1方向Zに貫通する開口部19を有し、開口部19は、支持部17と保護部22との間の空間に繋がる。このため、支持部17を介して第1基板15と第2基板16とを接合する際に、支持部17と保護部22との間の空間の空気等の気体を、開口部19から発電素子1の外側に排出することができる。これにより、支持部17を介した第1基板15と第2基板16との接合を容易に行うことができる。 Further, according to the present embodiment, at least one of the first substrate 15 and the second substrate 16 has an opening 19 penetrating in the first direction Z, and the opening 19 includes the support portion 17 and the protection portion 22 . It leads to the space between Therefore, when the first substrate 15 and the second substrate 16 are bonded via the support portion 17, gas such as air in the space between the support portion 17 and the protection portion 22 is discharged from the opening portion 19 to the power generation element. 1 can be discharged outside. Thereby, the first substrate 15 and the second substrate 16 can be easily bonded via the supporting portion 17 .
(第3実施形態:発電素子1、発電装置100)
 次に、第3実施形態に係る発電装置100及び発電素子1について説明する。図10は、第3実施形態に係る発電装置100及び発電素子1の一例を示す模式図である。図10(a) は、第3実施形態に係る発電装置100及び発電素子1の一例を示す模式断面図であり、図10(b)は、図10(a)におけるC-C線に沿った模式平面図である。
(Third Embodiment: Power Generation Element 1, Power Generation Device 100)
Next, the power generation device 100 and power generation element 1 according to the third embodiment will be described. FIG. 10 is a schematic diagram showing an example of the power generation device 100 and the power generation element 1 according to the third embodiment. FIG. 10(a) is a schematic cross-sectional view showing an example of the power generation device 100 and the power generation element 1 according to the third embodiment, and FIG. 10(b) is a cross-sectional view taken along line CC in FIG. It is a schematic plan view.
 上述した第1実施形態と、第3実施形態との違いは、配線層23と、接続配線24とを有する点である。なお、上述した実施形態と同様の構成については、説明を省略する。 The difference between the above-described first embodiment and the third embodiment is that wiring layers 23 and connection wirings 24 are provided. In addition, description is abbreviate|omitted about the structure similar to embodiment mentioned above.
 <<配線層23>>
 配線層23は、例えば図10に示すように、発電素子1の外部側(表面)に設けられる。
<<wiring layer 23>>
The wiring layer 23 is provided on the outer side (surface) of the power generating element 1, as shown in FIG. 10, for example.
 配線層23は、例えば第1配線層23a及び第2配線層23bの少なくとも何れかを有する。第1配線層23aは、第1基板15における第1電極11が設けられる主面に対向する主面上に設けられる。すなわち、第1基板15は、第1配線層23aと第1電極11との間に挟まれる。第2配線層23bは、第2基板16における第2電極12が設けられる主面に対向する主面上に設けられる。すなわち、第2基板16は、第2配線層23bと第2電極12との間に挟まれる。 The wiring layer 23 has, for example, at least one of a first wiring layer 23a and a second wiring layer 23b. The first wiring layer 23a is provided on the main surface of the first substrate 15 that faces the main surface on which the first electrode 11 is provided. That is, the first substrate 15 is sandwiched between the first wiring layer 23 a and the first electrode 11 . The second wiring layer 23b is provided on the main surface of the second substrate 16 that faces the main surface on which the second electrode 12 is provided. That is, the second substrate 16 is sandwiched between the second wiring layer 23 b and the second electrode 12 .
 配線層23の第1方向Zに沿った厚さは、例えば100nm以上10μm以下である。配線層23の材料として、導電性材料が用いられ、例えば金が用いられるほか、金及びクロムの積層体、又は金及びニッケルの積層体が用いられる。 The thickness of the wiring layer 23 along the first direction Z is, for example, 100 nm or more and 10 μm or less. As a material of the wiring layer 23, a conductive material is used, for example, gold is used, and a layered body of gold and chromium or a layered body of gold and nickel is used.
 <<接続配線24>>
 接続配線24は、例えば各基板15、16に第1方向Zに貫通される貫通孔25に設けられ、各電極11、12及び配線層23と電気的に接続される。接続配線24は、例えば各貫通孔25に充填されて設けられる。また、接続配線24は、例えば各貫通孔25の内周面に設けられてもよい。接続配線24は、中間部14と接してもよい。貫通孔25は、第1基板15を貫通する第1貫通孔25aと、第2基板16を貫通する第2貫通孔25bと、を有する。
<<connection wiring 24>>
The connection wiring 24 is provided, for example, in a through hole 25 penetrating through the substrates 15 and 16 in the first direction Z, and electrically connected to the electrodes 11 and 12 and the wiring layer 23 . The connection wiring 24 is provided, for example, by filling each through hole 25 . Moreover, the connection wiring 24 may be provided, for example, on the inner peripheral surface of each through hole 25 . The connection wiring 24 may be in contact with the intermediate portion 14 . The through hole 25 has a first through hole 25 a penetrating through the first substrate 15 and a second through hole 25 b penetrating through the second substrate 16 .
 接続配線24は、例えば第1接続配線24a及び第2接続配線24bの少なくとも何れかを有する。第1接続配線24aは、第1基板15を貫通する第1貫通孔25aを介して、第1電極11及び第1配線層23aと電気的に接続される。このため、第1接続配線24aと第1電極11との接続箇所は、発電素子1の内部側に設けられる。第2接続配線24bは、第2基板16を貫通する第2貫通孔25bを介して、第2電極12及び第2配線層23bと電気的に接続される。このため、第2接続配線24bと第2電極12との接続箇所は、発電素子1の内部側に設けられる。上記接続箇所は、各接続配線24a、24bのうち特に劣化し易い部分であり、接続箇所を発電素子1の内部側に設けることで、発電素子1の耐久性を高めることが可能となる。 The connection wiring 24 has, for example, at least one of the first connection wiring 24a and the second connection wiring 24b. The first connection wiring 24a is electrically connected to the first electrode 11 and the first wiring layer 23a through a first through hole 25a passing through the first substrate 15 . Therefore, the connection point between the first connection wiring 24 a and the first electrode 11 is provided inside the power generation element 1 . The second connection wiring 24b is electrically connected to the second electrode 12 and the second wiring layer 23b via a second through hole 25b penetrating through the second substrate 16 . Therefore, the connection point between the second connection wiring 24 b and the second electrode 12 is provided inside the power generation element 1 . The connection points are portions of the connection wirings 24a and 24b that are particularly susceptible to deterioration.
 接続配線24は、例えば各貫通孔25に充填されて設けられる。なお、接続配線24は、例えば各貫通孔25の内周面に設けられ、100nm以上10μm以下の厚さで形成されてもよい。接続配線24の材料として、導電性材料が用いられ、例えば金が用いられる。 The connection wiring 24 is provided, for example, by filling each through hole 25 . The connection wiring 24 may be provided on the inner peripheral surface of each through-hole 25, for example, and may be formed with a thickness of 100 nm or more and 10 μm or less. A conductive material such as gold is used as the material of the connection wiring 24 .
 図示は省略するが、例えば封止部21は、第1貫通孔25a、第1接続配線24a、及び第1配線層23aの少なくとも一部を覆ってもよい。このとき、第1配線層23aと、第1接続配線24aとの接続箇所を、封止部21により覆うことができる。例えば封止部21は、第2貫通孔25b、第2接続配線24b、及び第2配線層23bの少なくとも一部を覆ってもよい。このとき、第2配線層23bと、第2接続配線24bとの接続箇所を、封止部21により覆うことができる。上記接続箇所は、各接続配線24a、24bのうち特に劣化し易い部分であり、且つ、発電素子1の外部側に設けられるため、接続箇所を封止部21により覆うことで、発電素子1の耐久性を高めることが可能となる。 Although illustration is omitted, for example, the sealing portion 21 may cover at least a portion of the first through hole 25a, the first connection wiring 24a, and the first wiring layer 23a. At this time, the connection portion between the first wiring layer 23 a and the first connection wiring 24 a can be covered with the sealing portion 21 . For example, the sealing portion 21 may cover at least a portion of the second through hole 25b, the second connection wiring 24b, and the second wiring layer 23b. At this time, the connection portion between the second wiring layer 23b and the second connection wiring 24b can be covered with the sealing portion 21 . The connection points are portions of the connection wirings 24a and 24b that are particularly susceptible to deterioration, and are provided outside the power generation element 1. Therefore, by covering the connection points with the sealing portion 21, the power generation element 1 can be It becomes possible to improve durability.
 <第3実施形態:発電素子1の製造方法>
 次に、発電素子1の製造方法の一例を、説明する。図11は、本実施形態に係る発電素子1の製造方法の一例を示すフローチャートである。図12(a)~図13(b)は、本実施形態に係る発電素子1の製造方法の一例を示す模式図である。
<Third Embodiment: Manufacturing Method of Power Generation Element 1>
Next, an example of a method for manufacturing the power generation element 1 will be described. FIG. 11 is a flow chart showing an example of a method for manufacturing the power generating element 1 according to this embodiment. 12(a) to 13(b) are schematic diagrams showing an example of a method for manufacturing the power generating element 1 according to this embodiment.
 <<接続配線形成工程S310>>
 先ず、図12(a)に示すように、第1基板15に第1貫通孔25aを形成し、第1貫通孔25aに第1接続配線24aを形成し、図12(b)に示すように、第2基板16に第2貫通孔25bを形成し、第2貫通孔25bに第2接続配線24bを形成する(接続配線形成工程S310)。各貫通孔25a、25b及び各接続配線24a、24bは、1つ以上設けられる。
<<connection wiring forming step S310>>
First, as shown in FIG. 12(a), a first through-hole 25a is formed in the first substrate 15, a first connection wiring 24a is formed in the first through-hole 25a, and as shown in FIG. 12(b). A second through hole 25b is formed in the second substrate 16, and a second connection wiring 24b is formed in the second through hole 25b (connection wiring forming step S310). One or more of the through holes 25a, 25b and the connection wirings 24a, 24b are provided.
 接続配線形成工程S310では、例えばスパッタリング法を用いて各接続配線24a、24bを形成する。各接続配線24a、24bとして、例えば金が用いられる。 In the connection wiring forming step S310, the connection wirings 24a and 24b are formed using, for example, a sputtering method. Gold, for example, is used for the connection wirings 24a and 24b.
 <<配線層形成工程S320>>
 次に、図12(c)に示すように、第1基板15における一方の主面に第1配線層23aを形成し、図12(d)に示すように、第2基板16における一方の主面に第2配線層23bを形成する(配線層形成工程S320)。各配線層23a、23bは、例えば第1方向Zから見て、四角形状に形成される。
<<wiring layer forming step S320>>
Next, as shown in FIG. 12C, a first wiring layer 23a is formed on one main surface of the first substrate 15, and as shown in FIG. 12D, one main surface of the second substrate 16 is formed. A second wiring layer 23b is formed on the surface (wiring layer forming step S320). Each wiring layer 23a, 23b is formed in a quadrangular shape when viewed from the first direction Z, for example.
 配線層形成工程S320では、例えばスパッタリング法又は蒸着法を用いて、各配線層23a、23bを形成するほか、例えばスクリーン印刷法、インクジェット法、及びスプレイ印刷法等を用いて形成してもよい。 In the wiring layer forming step S320, the wiring layers 23a and 23b may be formed using, for example, a sputtering method or a vapor deposition method, or may be formed using, for example, a screen printing method, an inkjet method, a spray printing method, or the like.
 <<電極形成工程S110>>
 次に、例えば図13(a)に示すように、第1基板15の第1配線層23aが形成される主面とは反対側の主面上に第1電極11を形成し、例えば図13(b)に示すように、第2基板16の第2配線層23bが形成される主面とは反対側の主面上に第2電極12を形成する(電極形成工程S110)。このとき、第1電極11は、第1接続配線24aを介して第1配線層23aに電気的に接続される。また、第2電極12は、第2接続配線24bを介して第2配線層23bに電気的に接続される。
<<Electrode Forming Step S110>>
Next, as shown in FIG. 13A, for example, the first electrode 11 is formed on the main surface of the first substrate 15 opposite to the main surface on which the first wiring layer 23a is formed. As shown in (b), the second electrode 12 is formed on the main surface of the second substrate 16 opposite to the main surface on which the second wiring layer 23b is formed (electrode forming step S110). At this time, the first electrode 11 is electrically connected to the first wiring layer 23a through the first connection wiring 24a. Also, the second electrode 12 is electrically connected to the second wiring layer 23b through the second connection wiring 24b.
 その後、図11に示すように、上述した実施形態と同様に、支持部形成工程S120、保護部形成工程S130、貫通部形成工程S140、接合工程S150、中間部形成工程S160及び封止部形成工程S170を実施する。 After that, as shown in FIG. 11, similarly to the embodiment described above, a support portion forming step S120, a protection portion forming step S130, a penetrating portion forming step S140, a bonding step S150, an intermediate portion forming step S160, and a sealing portion forming step are performed. S170 is implemented.
 本実施形態によれば、上述した実施形態と同様に、中間部14と離間し、金属を含む支持部17と、中間部14と支持部17との間に設けられ、中間部14と接し、絶縁性を有する保護部22と、を備える。このため、各電極11、12の間に分散されるナノ粒子141の量の減少を抑制することができる。これにより、発電効率の低下を抑制することができる。 According to the present embodiment, as in the above-described embodiment, a support portion 17 that is separated from the intermediate portion 14 and contains metal, is provided between the intermediate portion 14 and the support portion 17, is in contact with the intermediate portion 14, and a protective portion 22 having insulating properties. Therefore, the decrease in the amount of nanoparticles 141 dispersed between the electrodes 11 and 12 can be suppressed. As a result, a decrease in power generation efficiency can be suppressed.
 また、本実施形態によれば、第1接続配線24aは、第1貫通孔25aを介して、第1電極11及び第1配線層23aと電気的に接続される。このため、第1接続配線24aは、発電素子1の内部側で第1電極11と接続させることができる。これにより、第1電極11と接続される第1接続配線24aの劣化を抑制することが可能となる。 Further, according to the present embodiment, the first connection wiring 24a is electrically connected to the first electrode 11 and the first wiring layer 23a through the first through holes 25a. Therefore, the first connection wiring 24 a can be connected to the first electrode 11 inside the power generating element 1 . This makes it possible to suppress deterioration of the first connection wiring 24 a connected to the first electrode 11 .
 また、本実施形態によれば、第2接続配線24bは、第2貫通孔25bを介して、第2電極12及び第2配線層23bと電気的に接続される。このため、第2接続配線24bは、発電素子1の内部側で第2電極12と接続させることができる。これにより、各電極11、12と接続される各接続配線24a、24bの劣化を抑制することが可能となる。また、第2接続配線24bは、第1接続配線24aと同様の構造で形成することができるため、製造工程の簡略化が可能となる。 Also, according to the present embodiment, the second connection wiring 24b is electrically connected to the second electrode 12 and the second wiring layer 23b via the second through hole 25b. Therefore, the second connection wiring 24b can be connected to the second electrode 12 inside the power generation element 1 . This makes it possible to suppress deterioration of the connection wirings 24 a and 24 b connected to the electrodes 11 and 12 . Moreover, since the second connection wiring 24b can be formed with the same structure as the first connection wiring 24a, the manufacturing process can be simplified.
 また、本実施形態によれば、電極形成工程S110は、第1貫通孔25aを介して、第1電極11及び第1配線層23aと電気的に接続される第1接続配線24aを形成する。このため、第1接続配線24aは、発電素子1の内部側で第1電極11と接続させることができる。これにより、第1電極11と接続される第1接続配線24aの劣化を抑制することが可能となる。 Also, according to the present embodiment, the electrode forming step S110 forms the first connection wiring 24a electrically connected to the first electrode 11 and the first wiring layer 23a through the first through hole 25a. Therefore, the first connection wiring 24 a can be connected to the first electrode 11 inside the power generating element 1 . This makes it possible to suppress deterioration of the first connection wiring 24 a connected to the first electrode 11 .
 また、本実施形態によれば、電極形成工程S110は、第2貫通孔25bを介して、第2電極12及び第2配線層23bと電気的に接続される第2接続配線24bを形成する。このため、第2接続配線24bは、発電素子1の内部側で第2電極12と接続させることができる。これにより、各電極11、12と接続される各接続配線24a、24bの劣化を抑制することが可能となる。また、第2接続配線24bは、第1接続配線24aと同様の構造で形成することができるため、製造工程の簡略化が可能となる。 Also, according to the present embodiment, the electrode forming step S110 forms the second connection wiring 24b electrically connected to the second electrode 12 and the second wiring layer 23b through the second through hole 25b. Therefore, the second connection wiring 24b can be connected to the second electrode 12 inside the power generation element 1 . This makes it possible to suppress deterioration of the connection wirings 24 a and 24 b connected to the electrodes 11 and 12 . Moreover, since the second connection wiring 24b can be formed with the same structure as the first connection wiring 24a, the manufacturing process can be simplified.
 (実施形態:電子機器500)
 <電子機器500>
 上述した発電素子1及び発電装置100は、例えば電子機器に搭載することが可能である。以下、電子機器の実施形態のいくつかを説明する。
(Embodiment: electronic device 500)
<Electronic device 500>
The power generation element 1 and the power generation device 100 described above can be mounted on, for example, an electronic device. Some embodiments of the electronic device are described below.
 図14(a)~図14(d)は、発電素子1を備えた電子機器500の例を示す模式ブロック図である。図14(e)~図14(h)は、発電素子1を含む発電装置100を備えた電子機器500の例を示す模式ブロック図である。 14(a) to 14(d) are schematic block diagrams showing an example of an electronic device 500 including the power generation element 1. FIG. 14(e) to 14(h) are schematic block diagrams showing an example of an electronic device 500 having a power generation device 100 including the power generation element 1. FIG.
 図14(a)に示すように、電子機器500(エレクトリックプロダクト)は、電子部品501(エレクトロニックコンポーネント)と、主電源502と、補助電源503と、を備えている。電子機器500及び電子部品501のそれぞれは、電気的な機器(エレクトリカルデバイス)である。 As shown in FIG. 14( a ), an electronic device 500 (electric product) includes an electronic component 501 (electronic component), a main power supply 502 and an auxiliary power supply 503 . Each of the electronic device 500 and the electronic component 501 is an electrical device.
 電子部品501は、主電源502を電源に用いて駆動される。電子部品501の例としては、例えば、CPU、モーター、センサ端末、及び照明等を挙げることができる。電子部品501が、例えばCPUである場合、電子機器500には、内蔵されたマスター(CPU)によって制御可能な電子機器が含まれる。電子部品501が、例えば、モーター、センサ端末、及び照明等の少なくとも1つを含む場合、電子機器500には、外部にあるマスター、あるいは人によって制御可能な電子機器が含まれる。 The electronic component 501 is driven using the main power supply 502 as a power supply. Examples of the electronic component 501 include, for example, a CPU, motors, sensor terminals, lighting, and the like. If electronic component 501 is, for example, a CPU, electronic device 500 includes an electronic device that can be controlled by a built-in master (CPU). If the electronic components 501 include at least one of, for example, motors, sensor terminals, and lighting, the electronic device 500 includes electronic devices that can be controlled by an external master or person.
 主電源502は、例えば電池である。電池には、充電可能な電池も含まれる。主電源502のプラス端子(+)は、電子部品501のVcc端子(Vcc)と電気的に接続される。主電源502のマイナス端子(-)は、電子部品501のGND端子(GND)と電気的に接続される。 The main power supply 502 is, for example, a battery. Batteries also include rechargeable batteries. A plus terminal (+) of the main power supply 502 is electrically connected to a Vcc terminal (Vcc) of the electronic component 501 . A negative terminal (−) of the main power supply 502 is electrically connected to a GND terminal (GND) of the electronic component 501 .
 補助電源503は、発電素子1である。発電素子1は、上述した発電素子1の少なくとも1つを含む。電子機器500において、補助電源503は、例えば主電源502と併用され、主電源502をアシストするための電源や、主電源502の容量が切れた場合、主電源502をバックアップするための電源として使うことができる。主電源502が充電可能な電池である場合には、補助電源503は、さらに、電池を充電するための電源としても使うことができる。 The auxiliary power supply 503 is the power generation element 1. The power generation element 1 includes at least one power generation element 1 described above. In the electronic device 500, the auxiliary power supply 503 is used, for example, together with the main power supply 502, and is used as a power supply for assisting the main power supply 502 or as a power supply for backing up the main power supply 502 when the capacity of the main power supply 502 runs out. be able to. If the main power source 502 is a rechargeable battery, the auxiliary power source 503 can also be used as a power source for charging the battery.
 図14(b)に示すように、主電源502は、発電素子1とされてもよい。図14(b)に示す電子機器500は、主電源502として使用される発電素子1と、発電素子1を用いて駆動されることが可能な電子部品501と、を備えている。発電素子1は、独立した電源(例えばオフグリッド電源)である。このため、電子機器500は、例えば自立型(スタンドアローン型)にできる。しかも、発電素子1は、環境発電型(エナジーハーベスト型)である。図14(b)に示す電子機器500は、電池の交換が不要である。 As shown in FIG. 14(b), the main power source 502 may be the power generation element 1. An electronic device 500 shown in FIG. 14B includes a power generation element 1 used as a main power source 502 and an electronic component 501 that can be driven using the power generation element 1 . The power generation element 1 is an independent power supply (for example, an off-grid power supply). Therefore, the electronic device 500 can be, for example, an independent type (standalone type). Moreover, the power generating element 1 is of the energy harvesting type. The electronic device 500 shown in FIG. 14(b) does not require battery replacement.
 図14(c)に示すように、電子部品501が発電素子1を備えていてもよい。発電素子1のアノードは、例えば、回路基板(図示は省略する)のGND配線と電気的に接続される。発電素子1のカソードは、例えば、回路基板(図示は省略する)のVcc配線と電気的に接続される。この場合、発電素子1は、電子部品501の、例えば補助電源503として使うことができる。 The electronic component 501 may include the power generation element 1 as shown in FIG. 14(c). The anode of the power generation element 1 is electrically connected to, for example, a GND wiring of a circuit board (not shown). The cathode of the power generation element 1 is electrically connected to, for example, Vcc wiring of a circuit board (not shown). In this case, the power generating element 1 can be used as, for example, an auxiliary power source 503 for the electronic component 501 .
 図14(d)に示すように、電子部品501が発電素子1を備えている場合、発電素子1は、電子部品501の、例えば主電源502として使うことができる。 As shown in FIG. 14(d), when the electronic component 501 includes the power generation element 1, the power generation element 1 can be used as the main power source 502 of the electronic component 501, for example.
 図14(e)~図14(h)のそれぞれに示すように、電子機器500は、発電装置100を備えていてもよい。発電装置100は、電気エネルギーの源として発電素子1を含む。 As shown in each of FIGS. 14(e) to 14(h), the electronic device 500 may include the power generator 100. FIG. The power generation device 100 includes a power generation element 1 as a source of electrical energy.
 図14(d)に示した実施形態は、電子部品501が主電源502として使用される発電素子1を備えている。同様に、図14(h)に示した実施形態は、電子部品501が主電源として使用される発電装置100を備えている。これらの実施形態では、電子部品501が、独立した電源を持つ。このため、電子部品501を、例えば自立型とすることができる。自立型の電子部品501は、例えば、複数の電子部品を含み、かつ、少なくとも1つの電子部品が別の電子部品と離れているような電子機器に有効に用いることができる。そのような電子機器500の例は、センサである。センサは、センサ端末(スレーブ)と、センサ端末から離れたコントローラ(マスター)と、を備えている。センサ端末及びコントローラのそれぞれは、電子部品501である。センサ端末が、発電素子1又は発電装置100を備えていれば、自立型のセンサ端末となり、有線での電力供給の必要がない。発電素子1又は発電装置100は環境発電型であるので、電池の交換も不要である。センサ端末は、電子機器500の1つと見なすこともできる。電子機器500と見なされるセンサ端末には、センサのセンサ端末に加えて、例えば、IoTワイヤレスタグ等が、さらに含まれる。 The embodiment shown in FIG. 14(d) comprises a power generation element 1 in which an electronic component 501 is used as a main power supply 502. Similarly, the embodiment shown in FIG. 14(h) comprises a generator 100 in which an electronic component 501 is used as the main power source. In these embodiments, electronic component 501 has an independent power source. Therefore, the electronic component 501 can be made self-supporting, for example. Free-standing electronic component 501 can be effectively used, for example, in an electronic device that includes multiple electronic components and in which at least one electronic component is separate from another electronic component. An example of such electronics 500 is a sensor. The sensor has a sensor terminal (slave) and a controller (master) remote from the sensor terminal. Each of the sensor terminals and controller is an electronic component 501 . If the sensor terminal is provided with the power generation element 1 or the power generation device 100, it becomes a self-supporting sensor terminal and does not require a wired power supply. Since the power generation element 1 or the power generation device 100 is of the energy harvesting type, it is unnecessary to replace the battery. A sensor terminal can also be regarded as one of the electronic devices 500 . The sensor terminals considered electronic equipment 500 further include, for example, IoT wireless tags, etc., in addition to sensor terminals of sensors.
 図14(a)~図14(h)のそれぞれに示した実施形態において共通することは、電子機器500は、熱エネルギーを電気エネルギーに変換する発電素子1と、発電素子1を電源に用いて駆動されることが可能な電子部品501と、を含むことである。 Common to the embodiments shown in FIGS. 14(a) to 14(h) is that the electronic device 500 includes a power generation element 1 that converts thermal energy into electrical energy, and uses the power generation element 1 as a power source. and an electronic component 501 that can be driven.
 電子機器500は、独立した電源を備えた自律型(オートノマス型)であってもよい。自律型の電子機器の例は、例えばロボット等を挙げることができる。さらに、発電素子1又は発電装置100を備えた電子部品501は、独立した電源を備えた自律型であってもよい。自律型の電子部品の例は、例えば可動センサ端末等を挙げることができる。 The electronic device 500 may be an autonomous type with an independent power supply. Examples of autonomous electronic devices include, for example, robots. Furthermore, the electronic component 501 with the power generation element 1 or the power generation device 100 may be autonomous with an independent power supply. Examples of autonomous electronic components include, for example, movable sensor terminals.
 本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら新規な実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲に含まれる。 Although several embodiments of the invention have been described, these embodiments are presented as examples and are not intended to limit the scope of the invention. These novel embodiments can be implemented in various other forms, and various omissions, replacements, and modifications can be made without departing from the scope of the invention. These embodiments and modifications thereof are included in the scope and gist of the invention, and are included in the scope of the invention described in the claims and equivalents thereof.
1     :発電素子
11    :第1電極
12    :第2電極
13    :支持部
14    :中間部
15    :第1基板
16    :第2基板
17    :支持部
18    :貫通部
19    :開口部
21    :封止部
22    :保護部
23    :配線層
24    :接続配線
25    :貫通孔
100   :発電装置
101   :第1配線
102   :第2配線
111   :第1端子
112   :第2端子
140   :空間
141   :ナノ粒子
141a  :被膜
142   :溶媒
500   :電子機器
501   :電子部品
502   :主電源
503   :補助電源
G     :ギャップ
S110  :電極形成工程
S120  :支持部形成工程
S130  :保護部形成工程
S140  :貫通部形成工程
S150  :接合工程
S160  :中間部形成工程
S170  :封止部形成工程
S210  :開口部形成工程
S310  :接続配線形成工程
S320  :配線層形成工程
X     :第2方向
Y     :第3方向
Z     :第1方向
Reference Signs List 1: power generating element 11 : first electrode 12 : second electrode 13 : support portion 14 : intermediate portion 15 : first substrate 16 : second substrate 17 : support portion 18 : through portion 19 : opening portion 21 : sealing portion 22 : Protection part 23 : Wiring layer 24 : Connection wiring 25 : Through hole 100 : Power generation device 101 : First wiring 102 : Second wiring 111 : First terminal 112 : Second terminal 140 : Space 141 : Nanoparticles 141a : Coating 142 : Solvent 500 : Electronic device 501 : Electronic component 502 : Main power source 503 : Auxiliary power source G : Gap S110 : Electrode forming step S120 : Supporting portion forming step S130 : Protective portion forming step S140 : Through portion forming step S150 : Bonding step S160 : Intermediate portion forming step S170: Sealing portion forming step S210: Opening portion forming step S310: Connection wiring forming step S320: Wiring layer forming step X: Second direction Y: Third direction Z: First direction

Claims (9)

  1.  熱エネルギーを電気エネルギーに変換する発電素子であって、
     第1方向に沿って互いに離間して設けられた第1基板及び第2基板と、
     前記第1基板の主面上に設けられた第1電極と、
     前記第1電極と離間して前記第2基板の主面上に設けられ、前記第1電極よりも高い仕事関数を有する第2電極と、
     前記第1電極と前記第2電極との間に設けられ、ナノ粒子を分散させた溶媒を含む中間部と、
     前記第1基板と前記第2基板との間に接して設けられ、前記中間部と離間し、金属を含む支持部と、
     前記中間部と前記支持部との間に設けられ、前記中間部と接し、絶縁性を有する保護部と、
     を備えること
     を特徴とする発電素子。
    A power generation element that converts thermal energy into electrical energy,
    a first substrate and a second substrate spaced apart from each other along a first direction;
    a first electrode provided on the main surface of the first substrate;
    a second electrode provided on the main surface of the second substrate spaced apart from the first electrode and having a work function higher than that of the first electrode;
    an intermediate portion provided between the first electrode and the second electrode and containing a solvent in which nanoparticles are dispersed;
    a supporting portion provided in contact between the first substrate and the second substrate, spaced apart from the intermediate portion, and containing a metal;
    a protective portion provided between the intermediate portion and the support portion, in contact with the intermediate portion, and having insulating properties;
    A power generation element comprising:
  2.  前記保護部は、前記支持部と離間して設けられること
     を特徴とする請求項1記載の発電素子。
    The power generation element according to claim 1, wherein the protection portion is provided apart from the support portion.
  3.  前記保護部は、前記第1電極と前記第2電極との間に接して設けられること
     を特徴とする請求項2記載の発電素子。
    3. The power generation element according to claim 2, wherein the protection portion is provided in contact between the first electrode and the second electrode.
  4.  前記支持部は、前記第1電極及び前記第2電極と離間すること
     を特徴とする請求項1記載の発電素子。
    The power generating element according to claim 1, wherein the supporting portion is separated from the first electrode and the second electrode.
  5.  前記第1基板及び前記第2基板の少なくとも何れかに設けられた貫通部をさらに備えること
     を特徴とする請求項1記載の発電素子。
    2. The power generation element according to claim 1, further comprising a penetrating portion provided in at least one of the first substrate and the second substrate.
  6.  前記第1方向から見て、前記貫通部は、前記第1電極及び前記第2電極と離間すること
     を特徴とする請求項5記載の発電素子。
    6. The power generating element according to claim 5, wherein the through portion is separated from the first electrode and the second electrode when viewed from the first direction.
  7.  請求項1記載の発電素子と、
     前記第1電極と電気的に接続された第1配線と、
     前記第2電極と電気的に接続された第2配線と、
     を備えること
     を特徴とする発電装置。
    The power generation element according to claim 1;
    a first wiring electrically connected to the first electrode;
    a second wiring electrically connected to the second electrode;
    A power generation device comprising:
  8.  請求項1記載の発電素子と、
     前記発電素子を電源に用いて駆動する電子部品と、
     を備えること
     を特徴とする電子機器。
    The power generation element according to claim 1;
    an electronic component driven by using the power generation element as a power supply;
    An electronic device comprising:
  9.  熱エネルギーを電気エネルギーに変換する発電素子の製造方法であって、
     第1基板の主面上に第1電極を形成し、第2基板の主面上に前記第1電極よりも高い仕事関数を有する第2電極を形成する電極形成工程と、
     前記第1基板の主面上方、及び前記第2基板の主面上方の少なくとも何れかに、金属を含む支持部を形成する支持部形成工程と、
     前記第1基板の主面上方、及び前記第2基板の主面上方の少なくとも何れかに、絶縁性を有する保護部を形成する保護部形成工程と、
     前記第1電極と前記第2電極とを第1方向に離間して対向するように、前記支持部を介して前記第1基板と前記第2基板とを接合する接合工程と、
     前記保護部と接し、前記支持部と離間するように、ナノ粒子が分散された溶媒を含む中間部を形成する中間部形成工程と、を備えること
     を特徴とする発電素子の製造方法。
    A method for manufacturing a power generation element that converts thermal energy into electrical energy,
    an electrode forming step of forming a first electrode on the main surface of a first substrate and forming a second electrode having a work function higher than that of the first electrode on the main surface of a second substrate;
    a supporting portion forming step of forming a supporting portion containing metal on at least one of above the main surface of the first substrate and above the main surface of the second substrate;
    a protective portion forming step of forming a protective portion having insulating properties above at least one of the main surface of the first substrate and the main surface of the second substrate;
    a bonding step of bonding the first substrate and the second substrate via the support portion such that the first electrode and the second electrode are opposed to each other in a first direction;
    and an intermediate portion forming step of forming an intermediate portion containing a solvent in which nanoparticles are dispersed so as to be in contact with the protective portion and separate from the support portion.
PCT/JP2022/011931 2021-07-12 2022-03-16 Power generation element, power generation device, electronic device, and method for manufacturing power generation element WO2023286363A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-115256 2021-07-12
JP2021115256 2021-07-12

Publications (1)

Publication Number Publication Date
WO2023286363A1 true WO2023286363A1 (en) 2023-01-19

Family

ID=84919950

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/011931 WO2023286363A1 (en) 2021-07-12 2022-03-16 Power generation element, power generation device, electronic device, and method for manufacturing power generation element

Country Status (2)

Country Link
TW (1) TW202304018A (en)
WO (1) WO2023286363A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017143198A (en) * 2016-02-11 2017-08-17 株式会社デンソー Thermionic power generation element
JP2020047630A (en) * 2018-09-14 2020-03-26 株式会社Gceインスティチュート Thermoelectric element, power generation device, electronic device, and manufacturing method of thermoelectric element
US20200274046A1 (en) * 2019-02-25 2020-08-27 Birmingham Technologies, Inc. Nano-Scale Energy Conversion Device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017143198A (en) * 2016-02-11 2017-08-17 株式会社デンソー Thermionic power generation element
JP2020047630A (en) * 2018-09-14 2020-03-26 株式会社Gceインスティチュート Thermoelectric element, power generation device, electronic device, and manufacturing method of thermoelectric element
US20200274046A1 (en) * 2019-02-25 2020-08-27 Birmingham Technologies, Inc. Nano-Scale Energy Conversion Device

Also Published As

Publication number Publication date
TW202304018A (en) 2023-01-16

Similar Documents

Publication Publication Date Title
US20220190748A1 (en) Power generation element, power generation device, electronic apparatus, and method for manufacturing power generation element
WO2019088001A1 (en) Thermoelectric element, power generation device, and thermoelectric element production method
WO2019088002A1 (en) Thermoelectric element, power generation device, and thermoelectric element production method
JP7473222B2 (en) Power generating element, power generating device, electronic device, and method for manufacturing power generating element
JP7197857B2 (en) Thermoelectric element, power generator, electronic device, and method for manufacturing thermoelectric element
JP7384401B2 (en) Power generation element, power generation device, electronic equipment, and manufacturing method of power generation element
WO2023286363A1 (en) Power generation element, power generation device, electronic device, and method for manufacturing power generation element
JP7197855B2 (en) Thermoelectric element manufacturing method
WO2023038106A1 (en) Method for manufacturing power generation element, power generation element, power generation device, and electronic device
WO2023038104A1 (en) Method for manufacturing power generation element, power generation element, power generation device, and electronic apparatus
WO2023038099A1 (en) Method for manufacturing power generation element, power generation element, power generation device, and electronic apparatus
JP2020145303A (en) Thermoelectric element, semiconductor integrated circuit device with electric generator, electronic apparatus, and method of manufacturing thermoelectric element
WO2023038107A1 (en) Power generation element, method for manufacturing power generation element, power generation device, and electronic apparatus
TW202209715A (en) Power generation element, power generation device, electronic apparatus, and manufacturing method for power generation element
JP7244819B2 (en) Thermoelectric element, power generator, electronic device, and method for manufacturing thermoelectric element
WO2023038108A1 (en) Method for manufacturing power generation element, power generation element, power generation device, and electronic apparatus
JP7244043B2 (en) Thermoelectric element, power generator, electronic device, and method for manufacturing thermoelectric element
WO2023038103A1 (en) Power generation element, method for manufacturing power generation element, power generation device, and electronic apparatus
WO2023038102A1 (en) Method for manufacturing power generation element, power generation element, power generation device, and electronic device
WO2023038105A1 (en) Method for producing power generation element, power generation element, power generation device and electronic device
JP7197856B2 (en) Thermoelectric element manufacturing method
JP2020068238A (en) Thermoelectric element, power generator, electronic apparatus, and manufacturing method for thermoelectric element
WO2022097419A1 (en) Power generation element, control system, power generation device, electronic apparatus, and power generation method
JP2020064947A (en) Thermoelectric element, power generator, electronic device, and manufacturing method of thermoelectric element
JP2022052523A (en) Power generation element, power generation device, electronic apparatus, and manufacturing method for power generation element

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE