WO2022097419A1 - Power generation element, control system, power generation device, electronic apparatus, and power generation method - Google Patents

Power generation element, control system, power generation device, electronic apparatus, and power generation method Download PDF

Info

Publication number
WO2022097419A1
WO2022097419A1 PCT/JP2021/037291 JP2021037291W WO2022097419A1 WO 2022097419 A1 WO2022097419 A1 WO 2022097419A1 JP 2021037291 W JP2021037291 W JP 2021037291W WO 2022097419 A1 WO2022097419 A1 WO 2022097419A1
Authority
WO
WIPO (PCT)
Prior art keywords
power generation
heat
generation element
heat conductive
conductive portion
Prior art date
Application number
PCT/JP2021/037291
Other languages
French (fr)
Japanese (ja)
Inventor
博史 後藤
Original Assignee
株式会社Gceインスティチュート
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Gceインスティチュート filed Critical 株式会社Gceインスティチュート
Publication of WO2022097419A1 publication Critical patent/WO2022097419A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J45/00Discharge tubes functioning as thermionic generators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N11/00Generators or motors not provided for elsewhere; Alleged perpetua mobilia obtained by electric or magnetic means
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N15/00Thermoelectric devices without a junction of dissimilar materials; Thermomagnetic devices, e.g. using the Nernst-Ettingshausen effect

Definitions

  • the present invention relates to a power generation element, a control system, a power generation device, an electronic device, and a power generation method that generate power by using heat generated from a heat source.
  • thermoelectric element disclosed in Patent Documents 1 and 2 has been proposed.
  • Such a thermoelectric element is expected to be used for various purposes as compared with a configuration in which electric energy is generated by utilizing a temperature difference given to an electrode.
  • Patent Document 1 describes a power generation element that converts thermal energy into electrical energy, and has a first substrate having a first main surface and a first housing having a first electrode portion provided on the first main surface. A portion, a second substrate having a second main surface facing the first main surface in the first direction, and a work provided on the second main surface, separated from the first electrode portion, and different from the first electrode portion. A second housing portion having a second electrode portion having a function, a first electrode portion, and a work function of the first electrode portion and a work function of the second electrode portion provided between the second electrode portion and the second electrode portion.
  • An intermediate portion containing nanoparticles having a work function between them, and a first main surface is a first separation surface that is in contact with a first electrode portion and is separated from a second housing portion, and a first separation surface. It has a first joint surface that is continuously provided, is separated from the first electrode portion, and is in contact with the second housing portion, and the second main surface is in contact with the second electrode portion and is in contact with the first housing portion. It has a second separation surface that is separated and a second joint surface that is continuously provided with the second separation surface, is separated from the second electrode portion, and is in contact with the first housing portion, and is viewed from the first direction.
  • the intermediate portion is surrounded by the first joint surface and the second joint surface, and the first joint surface is a first substrate joint surface in contact with the second joint surface and a first electrode joint surface in contact with the second electrode portion.
  • the power generation element having the second substrate joint surface in contact with the first substrate joint surface and the second electrode joint surface in contact with the first electrode portion is disclosed.
  • Patent Document 2 in order to suppress the heat conduction of the Zeebeck power generation element, the electric and heat conduction paths of the element are made linear, or the electric and heat conduction paths of the element are provided with a constriction to generate heat.
  • the first feature is to narrow the conduction path and cover the circumference of the element with a heat insulating material, and in order to increase the total amount of power generation, the Zeebeck power generation element in which multiple Zeebeck power generation elements are stacked and arranged in series by multi-layering is disclosed. Has been done.
  • the temperature of the electrode is a factor that determines the amount of thermionic emissions.
  • the power generation element is composed of a plurality of members including electrodes, and when the heat from the heat source is sequentially transferred to each member, a time difference occurs between the member near the heat source and the member far from the heat source until the temperature reaches the same. It ends up. That is, it takes a long time for the entire power generation element to reach a uniform temperature. Therefore, there is a concern that the power generation efficiency will decrease until the temperature of the entire power generation element becomes uniform. In this regard, the above-mentioned concerns are also raised in the disclosed techniques of Patent Documents 1 and 2. Therefore, improvement in power generation efficiency has been required.
  • the present invention has been devised in view of the above-mentioned problems, and an object thereof is a power generation element, a control system, a power generation device, an electronic device, and a power generation method capable of improving power generation efficiency. To provide.
  • the power generation element according to the first invention is a power generation element that generates power by utilizing heat generated from a heat source, and is provided in contact with at least one element, the heat source, and the element, and is electrically connected to the element.
  • the element comprises a pair of electrodes having different work functions, and an intermediate portion provided between the pair of electrodes and separated from the heat conductive portion. And.
  • the power generation element according to the second invention includes a laminated body in which a plurality of the elements are laminated, the heat conductive portion is provided in contact with the side surface of the laminated body, and the heat conductive portion is laminated. It is characterized by including a heat conductive layer sandwiched between the pair of the elements.
  • the power generation element according to the third invention includes a pair of substrates provided with the pair of electrodes interposed therebetween, and the thermal conductivity of the heat conductive portion is the heat of the pair of substrates. It is characterized by having a higher conductivity.
  • the power generation element according to the fourth invention is provided in the first aspect in contact with the pair of substrates provided with the pair of electrodes interposed therebetween and the pair of substrates or the pair of electrodes.
  • the heat conductive portion includes a support portion, and the heat conductive portion is provided in contact with the support portion, and the thermal conductivity of the heat conductive portion is higher than that of the support portion.
  • the power generation element according to the fifth invention is characterized in that, in the first invention, the element is provided in contact with the heat source.
  • the power generation element according to the sixth invention is characterized in that, in the first invention, the thermal conductivity of the heat conductive portion is higher than the thermal conductivity of at least one of the pair of electrodes.
  • the power generation element according to the seventh invention includes a laminated body including a first element in contact with the heat source and a second element laminated on the first element and separated from the heat source, and the heat is described.
  • the conducting portion is characterized in that it is provided in contact with the side surfaces of the first element and the second element.
  • the power generation element according to the eighth aspect of the invention is characterized in that, in the first invention, the power generation element is provided with a heat conductive portion and a heat insulating portion that are in contact with the heat source and covers the element.
  • the control system is a control system for controlling the amount of heat released from the heat source based on the power generation element of the first invention, a measurement unit for measuring the amount of power generated by the power generation element, and the measurement results of the measurement unit. It is characterized by having a part and.
  • the power generation device is characterized by including the power generation element of the first invention and a pair of wirings electrically connected to the pair of electrodes.
  • the electronic device according to the eleventh invention is characterized by including the power generation element of the first invention and an electronic component that can be driven by using the power generation element as a power source.
  • the power generation method according to the twelfth invention is characterized in that the power generation element of the first invention uses the heat generated from the heat source to generate power.
  • the heat conductive portion is provided in contact with the heat source and the element. Therefore, the heat from the heat source is easily transferred to each member of the power generation element via the heat conductive portion, and the time until the member near the heat source and the member far from the heat source reach the same temperature can be shortened. .. This makes it possible to improve the power generation efficiency.
  • the heat conductive portion is provided in contact with the side surface of the laminated body. Therefore, the heat from the heat source can be easily transferred to the entire laminated body via the heat conductive portion. As a result, even when a plurality of elements having different distances from the heat source are used, the temperature difference between the elements can be suppressed, and the power generation efficiency can be further improved.
  • the heat conductive portion includes a heat conductive layer sandwiched between a pair of laminated elements. Therefore, the heat from the heat source is easily transferred between the pair of elements via the heat conductive portion and the heat conductive layer. This makes it possible to further improve the power generation efficiency of the power generation element.
  • the thermal conductivity of the heat conductive portion is higher than the thermal conductivity of the pair of substrates. Therefore, it becomes difficult for heat to be released from the pair of substrates to the heat conductive portion side. This makes it possible to further improve the power generation efficiency.
  • the thermal conductivity of the heat conductive portion is higher than the thermal conductivity of the support portion. Therefore, it becomes difficult for heat to be released from the support portion to the heat conduction portion side. This makes it possible to further improve the power generation efficiency.
  • the heat conductive portion is provided in contact with the support portion. Therefore, the heat from the heat source is easily transferred to the electrodes via the support portion. This makes it possible to further improve the power generation efficiency.
  • the element is provided in contact with the heat source. Therefore, heat is transferred to the element from the surface in contact with the heat conductive portion and the surface in contact with the heat source. This makes it possible to increase the amount of heat transferred to the element.
  • the thermal conductivity of the heat conductive portion is higher than the thermal conductivity of at least one of the pair of electrodes. Therefore, it becomes difficult for heat to be released from the electrode to the heat conductive portion side. This makes it possible to further improve the power generation efficiency.
  • the heat conductive portion is provided in contact with the side surfaces of the first element and the second element. Therefore, it is possible to easily transfer the heat from the heat source to the second element separated from the heat source. This makes it possible to further improve the power generation efficiency of the power generation element.
  • the heat insulating portion is in contact with the heat source and covers the heat conductive portion and the element. Therefore, after the heat from the heat source is transferred to the inside of the element, it is difficult to be discharged from the inside of the element to the outside. This makes it possible to further improve the power generation efficiency.
  • the control system includes the power generation elements of the first to eighth inventions, a measuring unit for measuring the power generation amount of the power generation element, and a heat amount released from the heat source based on the measurement results of the measurement unit. It is provided with a control unit for controlling the above. Therefore, it is possible to control the amount of heat released from the heat source according to the amount of power generated by the power generation element. This makes it possible to easily realize control suitable for the state of the heat source.
  • FIG. 1A is a schematic cross-sectional view showing an example of a power generation element and a power generation device according to the first embodiment
  • FIG. 1B is a schematic plan view of the power generation element and the power generation device.
  • FIG. 2 is a schematic cross-sectional view showing an example of the intermediate portion.
  • FIG. 3A is a schematic cross-sectional view showing a first modification of the power generation element in the first embodiment
  • FIG. 3B is a schematic cross section showing a second modification of the power generation element in the first embodiment. It is a figure.
  • FIG. 4A is a schematic cross-sectional view showing an example of the power generation element in the second embodiment
  • FIG. 4B is a schematic cross-sectional view showing a first modification of the power generation element in the second embodiment.
  • FIG. 5A is a block diagram showing an example of the control system according to the third embodiment
  • FIG. 5B is a block diagram showing a first modification of the control system according to the third embodiment
  • 6 (a) to 6 (d) are schematic block diagrams showing an example of an electronic device provided with a power generation element
  • FIGS. 6 (e) to 6 (h) show a power generation device including the power generation element. It is a schematic block diagram which shows the example of the electronic device provided.
  • the height direction of the power generation element is defined as the first direction Z
  • the plane direction intersecting with the first direction Z for example, one orthogonal plane direction
  • the second direction X is defined.
  • Another plane direction that intersects with each other, for example, is orthogonal to each other is referred to as a third direction Y.
  • the configurations in each figure are schematically described for the sake of explanation, and for example, the size of each configuration, the comparison of the sizes in each configuration, and the like may be different from those in the figure.
  • FIG. 1 (a) is a schematic view showing an example of a power generation element 1 and a power generation device 100 in the first embodiment
  • FIG. 1 (b) is a schematic plan view of FIG. 1 (a).
  • the power generation device 100 includes a power generation element 1, a first wiring 101, and a second wiring 102.
  • the power generation element 1 converts thermal energy into electrical energy.
  • the power generation device 100 provided with such a power generation element 1 is mounted or installed on the heat source 60, for example, and the electric energy generated by the power generation element 1 based on the heat energy of the heat source 60 is used in the first wiring 101 and the first wiring 101. 2 Output to the load R via the wiring 102.
  • the load R indicates an electrical device including, for example, a rechargeable battery. One end of the load R is electrically connected to the first wiring 101, and the other end is electrically connected to the second wiring 102.
  • the load R is driven by using the power generation device 100 as a main power source or an auxiliary power source.
  • the heat source 60 includes, for example, an electronic device or electronic component such as a CPU (Central Processing Unit), a light emitting element such as an LED (Light Emitting Diode), an engine such as an automobile, a factory production facility, a human body, sunlight, and an environmental temperature. Etc. can be used.
  • electronic devices, electronic components, light emitting elements, engines, production equipment, and the like are artificial heat sources.
  • the human body, sunlight, environmental temperature, etc. are natural heat sources.
  • the power generation device 100 provided with the power generation element 1 can be provided inside a mobile device such as an IoT (Internet of Things) device and a wearable device, or a self-standing sensor terminal, and can be used as a substitute for or an auxiliary of a battery. Further, the power generation device 100 can also be applied to a larger power generation device such as solar power generation.
  • the power generation element 1 generates power by using the heat generated from the heat source 60.
  • the power generation element 1 can be provided not only in the power generation device 100 but also in the side surface of the heat exhaust pipe in the factory, the inside of the mobile device, or the like. In this case, the power generation element 1 itself becomes a substitute part or an auxiliary part of the battery such as the mobile device or the self-supporting sensor terminal.
  • the power generation element 1 may be used in a battery of an electric vehicle or an electrical system device.
  • the power generation element 1 includes at least one element 10 and a heat conductive portion 20.
  • the element 10 includes a pair of electrode portions 12 and an intermediate portion 14.
  • the element 10 may include a pair of substrates 11 and a support portion 13.
  • the substrate 11 has a first substrate 11a and a second substrate 11b.
  • the pair of first substrates 11a and the second substrate 11b are provided with the pair of electrode portions 12 interposed therebetween.
  • the first substrate 11a has a first main surface 11af and a first laminated surface 11as that intersect with the first direction Z.
  • the first main surface 11af is located on the second substrate 11b side of the first substrate 11a.
  • the second substrate 11b has a second main surface 11bf and a second laminated surface 11bs that intersect the first direction Z.
  • the second main surface 11bf is located on the first substrate 11a side of the second substrate 11b.
  • the second substrate 11b is located below the first substrate 11a in the first direction Z, that is, the first substrate 11a is arranged farther from the heat source 60 than the second substrate 11b. I will be there.
  • a plate-shaped material having an insulating property can be selected.
  • the insulating material include silicon, quartz, glass such as Pyrex (registered trademark), and an insulating resin.
  • the substrate 11 may be made of a conductive metal material such as stainless steel (SUS), tungsten, or aluminum, a conductive semiconductor such as Si or GaN, or a carbon-based material or a conductive polymer material. good.
  • the shape of the substrate 11 may be square, rectangular, or other disc-shaped. Further, the substrate 11 may have a structure in which an insulating material, a semiconductor material, and a metal material are mixed. When the substrate 11 has conductivity, the substrate 11 can be electrically separated from the heat conductive portion 20 to prevent conduction from the element 10 to the heat source 60.
  • the substrate 11 is a semiconductor, and may have a degenerate portion and a non-degenerate portion provided on at least one of the first main surface 11af and the second main surface 11bf. Therefore, the contact resistance between the first electrode portion 12a and the like and other configurations such as wiring can be reduced. This makes it possible to suppress an increase in the resistance of the entire power generation element 1.
  • the electrode portion 12 has a pair of first electrode portions 12a and second electrode portions 12b having different work functions.
  • the first electrode portion 12a is provided in contact with the first main surface 11af.
  • the first electrode portion 12a is separated from the second substrate 11b.
  • the second electrode portion 12b is provided in contact with the second main surface 11bf.
  • the second electrode portion 12b faces the first substrate 11a and the first electrode portion 12a apart from each other.
  • the second electrode portion 12b has a work function different from that of the first electrode portion 12a.
  • the first electrode portion 12a is electrically connected to the second wiring 102 via, for example, a wiring (not shown) inserted through the first substrate 11a.
  • the second electrode portion 12b is electrically connected to the first wiring 101 via, for example, a wiring inserted through a second substrate 11b (not shown). Further, the wiring arrangement location and the like (not shown) are arbitrary.
  • thermions are emitted from the first electrode portion 12a and the second electrode portion 12b.
  • the power generation element 1 utilizes thermionic emission from the first electrode portion 12a or the second electrode portion 12b having a work function difference, and the higher the absolute temperature, the greater the amount of electrons.
  • the material of the first electrode portion 12a and the material of the second electrode portion 12b can be selected from, for example, the metals shown below. Platinum (Pt) Tungsten (W) Aluminum (Al) Titanium (Ti) Niobium (Nb) Molybdenum (Mo) Tantalum (Ta) Rhenium (Re)
  • Pt Platinum
  • W Aluminum
  • Al Titanium
  • Niobium Niobium
  • Mo Molybdenum
  • Tantalum Ti
  • a metal other than the above As the material of the first electrode portion 12a and the second electrode portion 12b, in addition to the metal, an alloy, an intermetallic compound, and a metal compound can be selected.
  • a metallic compound is a combination of a metallic element and a non-metallic element. Examples of such metal compounds include, for example, lanthanum hexaboride (LaB 6 ).
  • the support portion 13 is provided in contact with the pair of substrates, the first substrate 11a and the second substrate 11b, or the pair of electrodes, the first electrode portion 12a and the second electrode portion 12b.
  • the support portion 13 is connected to, for example, the first main surface 11af and the second main surface 11bf.
  • the support portion 13 may be separated from the first electrode portion 12a and the second electrode portion 12b.
  • the support portion 13 may be a partially oxidized substrate 11. Specifically, a part of the silicon oxide film formed by oxidizing the substrate 11 made of silicon may be used as the support portion 13. In this case, the height of the support portion 13 can be controlled with high accuracy and the size of the gap G between the electrodes can be set with high accuracy as compared with the case where the support portion 13 is newly formed. This makes it possible to stabilize the power generation efficiency.
  • the material of the support portion 13 a material having an insulating property can be selected.
  • the insulating material include silicon, a silicon oxide film, glass such as quartz, and an insulating resin.
  • the support portion 13 may be in the form of a flexible film, for example, and PET (polyethylene terephthalate), PC (polycarbonate), polyimide, or the like can be used.
  • FIG. 2 is a schematic cross-sectional view showing an example of the intermediate portion 14.
  • the intermediate portion 14 is provided between the first electrode portion 12a and the second electrode portion 12b, and is separated from the heat conduction portion 20.
  • the intermediate portion 14 includes nanoparticles 141 having a work function between the work function of the first electrode portion 12a and the work function of the second electrode portion 12b.
  • a gap G between electrodes is set between the first electrode portion 12a and the second electrode portion 12b along the first direction Z.
  • the gap G between the electrodes is set by the thickness of the support portion 13 along the first direction Z.
  • An example of the width of the gap G between electrodes is, for example, a finite value of 10 ⁇ m or less.
  • the narrower the width of the gap G between the electrodes the higher the power generation efficiency of the power generation element 1. Further, the narrower the width of the gap G between the electrodes is, the thinner the thickness of the power generation element 1 along the first direction Z can be. Therefore, for example, the width of the gap G between the electrodes should be narrow.
  • the width of the gap G between the electrodes is more preferably, for example, 10 nm or more and 1 ⁇ m or less.
  • the width of the gap G between the electrodes and the thickness of the support portion 13 along the first direction Z are substantially equivalent.
  • the intermediate portion 14 contains, for example, a plurality of nanoparticles 141 and a solvent 142.
  • the plurality of nanoparticles 141 are dispersed in the solvent 142.
  • the intermediate portion 14 is obtained, for example, by filling the gap portion 140 with a solvent 142 in which nanoparticles 141 are dispersed.
  • the particle size of the nanoparticles 141 is smaller than the gap G between the electrodes.
  • the particle diameter of the nanoparticles 141 is, for example, a finite value of 1/5 or less of the gap G between electrodes. When the particle diameter of the nanoparticles 141 is set to 1/5 or less of the gap G between the electrodes, it becomes easy to form the intermediate portion 14 including the nanoparticles 141 in the gap portion 140. As a result, workability is improved in the production of the power generation element 1.
  • the nanoparticles 141 contain, for example, a conductive material.
  • the value of the work function of the nanoparticles 141 is, for example, between the value of the work function of the first electrode portion 12a and the value of the work function of the second electrode portion 12b, but the value of the work function of the first electrode portion 12a. It does not have to be between the value and the value of the work function of the second electrode portion 12b.
  • the value of the work function of the nanoparticles 141 is in the range of 3.0 eV or more and 5.5 eV or less. This makes it possible to further increase the amount of electrical energy generated as compared with the case where the nanoparticles 141 are not present in the intermediate portion 14.
  • nanoparticles 141 As an example of the material of nanoparticles 141, at least one of gold or an alloy of gold can be selected. As the material of the nanoparticles 141, it is also possible to select a conductive material other than gold and silver.
  • the particle size of the nanoparticles 141 is, for example, 2 nm or more and 10 nm or less. Further, the nanoparticles 141 may have, for example, an average particle size (for example, D50) of 3 nm or more and 8 nm or less.
  • the average particle size can be measured, for example, by using a particle size distribution measuring instrument.
  • a particle size distribution measuring instrument using a laser diffraction / scattering method for example, Nanotrac Wave II-EX150 manufactured by Microtrac BEL may be used.
  • the nanoparticles 141 have, for example, an insulating film 141a on the surface thereof.
  • an insulating metal compound and an insulating organic compound can be selected.
  • the insulating metal compound include silicon oxide and alumina.
  • the insulating organic compound include alkanethiol (for example, dodecanethiol) and the like.
  • the thickness of the insulating film 141a is, for example, a finite value of 20 nm or less.
  • the electrons e are, for example, between the first electrode portion 12a and the nanoparticles 141, and between the nanoparticles 141 and the second electrode portion 12b. Can be moved using the tunnel effect and hopping conduction. Therefore, for example, improvement in the power generation efficiency of the power generation element 1 can be expected.
  • the solvent 142 for example, a liquid having a boiling point of 60 ° C. or higher can be used. Therefore, it is possible to suppress the vaporization of the solvent 142 even when the power generation element 1 is used in an environment of room temperature (for example, 15 ° C. to 35 ° C.) or higher. As a result, deterioration of the power generation element 1 due to the vaporization of the solvent 142 can be suppressed.
  • the liquid at least one of an organic solvent and water can be selected. Examples of the organic solvent include methanol, ethanol, toluene, xylene, tetradecane, alkanethiol and the like.
  • the solvent 142 is preferably a liquid having a high electrical resistance value and an insulating property.
  • the intermediate portion 14 may contain only the nanoparticles 141 without containing the solvent 142. Since the intermediate portion 14 contains only the nanoparticles 141, for example, even when the power generation element 1 is used in a high temperature environment, it is not necessary to consider the vaporization of the solvent 142. This makes it possible to suppress deterioration of the power generation element 1 in a high temperature environment. Further, the intermediate portion 14 may include an insulator supporting the nanoparticles 141 instead of the solvent 142, for example.
  • the heat conductive portion 20 is provided in contact with the heat source 60 and the element 10, and is electrically separated from the element 10.
  • the heat conductive portion 20 is, for example, a plate-shaped member arranged on the heat source 60 and extending in the first direction Z and the second direction X.
  • the height of the heat conductive portion 20 may be, for example, equal to or less than the height of the second substrate 11b. That is, at least a part of the surface of the second substrate 11b extending in the first direction Z may be in contact with the heat conductive portion 20.
  • the heat from the heat source 60 is transferred to the second substrate 11b via the heat conductive portion 20. That is, heat is transferred to the second substrate 11b from the surface in contact with the heat conductive portion 20 in addition to the surface in contact with the heat source 60. Therefore, the amount of heat transferred to the element 10 can be increased as compared with the case where the heat conductive portion 20 is not provided. Thereby, the power generation efficiency of the power generation element 1 can be improved.
  • the height of the heat conductive portion 20 may be higher than, for example, the height of the second substrate 11b, and may be lower than the height of the first substrate 11a. That is, at least a part of the surface of the first substrate 11a extending in the first direction Z may be in contact with the heat conductive portion 20.
  • the heat conductive portion 20 is in contact with the first substrate 11a and the second substrate 11b, and the heat from the heat source 60 is transferred to the first substrate 11a and the second substrate 11b via the heat conductive portion 20. Therefore, the contact area between the heat conductive portion 20 and the element 10 is larger than that in the case where the heat conductive portion 20 is in contact with only the second substrate 11b. Further, the heat generated from the heat source 60 can be easily transferred to the member separated from the heat source 60. Thereby, the power generation efficiency of the power generation element 1 can be further improved.
  • the heat conductive portion 20 may be provided beyond the first substrate 11a in the first direction Z. That is, the heat conductive portion 20 may be in contact with the entire first direction Z. Therefore, the heat from the heat source 60 is sequentially transferred to the second substrate 11b and the first substrate 11a via the heat conductive portion 20. Thereby, the power generation efficiency of the power generation element 1 can be further improved.
  • the element 10 may be in contact with the heat conductive portion 20, and as shown in FIG. 1A, both sides of the element 10 may be in contact with the heat conductive portion 20.
  • the height of each heat conductive portion 20 may be different.
  • the heat conductive portion 20 may be in contact with the entire periphery of the element 10, or may be arranged in contact with the element 10 so as to cover the first laminated surface 11as. As the contact area between the element 10 and the heat conductive portion 20 increases, the heat from the heat source 60 is more likely to be transferred to the element 10, so that the power generation efficiency of the power generation element 1 can be further improved.
  • a part of the element 10 (board 11) may be in contact with the heat conductive portion 20 along the third direction Y, and the entire element 10 (board 11) may be in contact with the third. It may be in contact with the heat conductive portion 20 along the direction Y.
  • the contact area between the heat conductive portion 20 and the element 10 is large, and therefore it is desirable that the length of the heat conductive portion 20 is equal to or larger than the width of the element 10.
  • the heat conductive portion 20 may be provided in contact with the support portion 13, for example. Specifically, as shown in FIG. 1A, the heat conductive portion 20 is arranged so as to be in contact with the entire outer surface of the support portion 13. When the heat conductive portion 20 is in contact with the support portion 13, the heat from the heat source 60 is efficiently transferred to the support portion 13, so that the power generation efficiency of the power generation element 1 can be improved.
  • the thermal conductivity of the heat conductive portion 20 may be higher than the thermal conductivity of the substrate 11.
  • the material of the substrate 11 is stainless steel (SUS)
  • copper having a higher thermal conductivity than the substrate 11 is used for the heat conductive portion 20, and the heat conductive portion 20 is relative to the substrate 11.
  • a material having high thermal conductivity may be used.
  • the thermal conductivity of the heat conductive section 20 may be higher than that of the support section 13 so that the heat transferred from the heat source 60 to the power generation element 1 is less likely to be released to the outside. Further, the thermal conductivity of the heat conductive portion 20 may be higher than the thermal conductivity of at least one of the pair of first electrode portions 12a and the second electrode portion 12b.
  • the heat conductive portion 20 has conductivity and is made of, for example, a metal material.
  • the heat conductive portion 20 is not limited to the metal material, and may be made of any material as long as it has a high conductivity. Specifically, it is desirable that the material having high conductivity has a thermal conductivity of 10 W / (m ⁇ k) or more measured in accordance with ASTM E1530.
  • the material having high conductivity may be, for example, a metal material such as gold, silver, copper, or aluminum, and is preferably made of copper or aluminum.
  • FIG. 3A shows a first modification of the power generation element 1 in the first embodiment.
  • the substrate 11 is attached to the pair of heat conductive portions 20 from both sides in the second direction X. You may touch it while being sandwiched. That is, the heat conductive portion 20 is in contact with the first substrate 11a and the second substrate 11b in a state where the element 10 is rotated 90 degrees from the state shown in FIG. 1A and the substrate 11 is erected with respect to the heat source 60. May be good.
  • the heat conductive portion 20 is arranged so as to be in contact with at least a part of the first laminated surface 11as and the second laminated surface 11bs.
  • the heat conductive portion 20 may be provided so as to be in contact with the entire first laminated surface 11as and the second laminated surface 11bs, or may be provided so as to be in contact with the entire element 10.
  • the power generation efficiency of the power generation element 1 can be further improved as compared with the case where the heat conductive portion 20 is in contact with at least a part of the first laminated surface 11as and the second laminated surface 11bs.
  • a plurality of elements 10 in a state where the substrate 11 is erected may be arranged on the heat source 60.
  • FIG. 3B shows a second modification of the power generation element 1 in the first embodiment.
  • the power generation element 1 includes a laminated body 30 in which a plurality of elements 10 are laminated, and the heat conductive portion 20 may be provided in contact with the side surface of the laminated body 30.
  • the heat source 60 is provided with a laminated body 30 and heat conductive portions 20 on both sides thereof. The heat generated from the heat source 60 is sequentially transferred to each element 10 via the heat conductive portion 20. As a result, when a plurality of elements 10 are stacked, the heat generated from the heat source 60 can be efficiently transferred to the elements 10 arranged apart from the heat source 60.
  • the heat conductive portion 20 may be provided in contact with the entire laminated body 30.
  • a heat conductive layer 21 may be provided between the stacked 10s.
  • FIG. 3B shows an example in which the heat conductive layer 21 is provided between the element 10 located at the uppermost portion and the element 10 located below the element 10 of the laminated body 30.
  • the heat conductive layer 21 is provided in contact with the heat conductive portion 20 in the second direction X. This is to ensure that the heat from the heat source 60 is transferred to the heat conductive layer 21 via the heat conductive portion 20.
  • the heat conductive layer 21 may be provided between the elements 10.
  • ⁇ Operation of power generation element 1> When thermal energy is applied to the power generation element 1, a current is generated between the first electrode portion 12a and the second electrode portion 12b, and the thermal energy is converted into electrical energy.
  • the amount of current generated between the first electrode portion 12a and the second electrode portion 12b depends on the thermal energy, and the difference between the work function of the first electrode portion 12a and the work function of the second electrode portion 12b. It depends on the temperature of the element 10.
  • the amount of current generated is increased, for example, by increasing the work function difference between the first electrode portion 12a and the second electrode portion 12b, reducing the gap between the electrodes, increasing the absolute temperature of the element 10, and the like. be able to.
  • the heat conductive portion 20 is provided in contact with the heat source 60 and the element 10. Therefore, the heat from the heat source 60 is likely to be sequentially transferred to the plurality of members constituting the power generation element 1 via the heat conductive portion 20, and the time until the member near the heat source 60 and the member far from the heat source 60 reach the same temperature. Can be shortened. Thereby, the power generation efficiency of the power generation element 1 can be improved.
  • the heat conductive portion 20 is provided in contact with the side surface of the laminated body 30. Therefore, the heat from the heat source 60 can be easily transferred to the entire laminated body 30 via the heat conductive portion 20. As a result, even when a plurality of elements 10 having different distances from the heat source 60 are used, the temperature difference between the elements 10 can be suppressed, and the power generation efficiency can be further improved.
  • the heat conductive portion 20 includes a heat conductive layer 21 sandwiched between a pair of laminated elements 10. Therefore, the heat from the heat source 60 is easily transferred between the pair of elements 10 via the heat conductive portion 20 and the heat conductive layer 21. Thereby, the power generation efficiency of the power generation element 1 can be further improved.
  • the thermal conductivity of the heat conductive portion 20 is higher than the thermal conductivity of the pair of substrates 11. Therefore, it becomes difficult for heat to be released from the pair of substrates 11 to the heat conductive portion 20 side. Thereby, the power generation efficiency of the power generation element 1 can be further improved.
  • the thermal conductivity of the heat conductive portion 20 is higher than the thermal conductivity of the support portion 13. Therefore, it becomes difficult for heat to be released from the support portion 13 to the heat conduction portion 20 side. Thereby, the power generation efficiency of the power generation element 1 can be further improved.
  • the heat conductive portion 20 is provided in contact with the support portion 13. Therefore, the heat from the heat source 60 is easily transferred to the electrode portion 12 via the support portion 13. Thereby, the power generation efficiency of the power generation element 1 can be further improved.
  • the element 10 is provided in contact with the heat source 60. Therefore, heat is transferred to the element 10 from the surface in contact with the heat conductive portion 20 and the surface in contact with the heat source 60. This makes it possible to increase the amount of heat transferred to the element 10.
  • the thermal conductivity of the heat conductive portion 20 is higher than the thermal conductivity of at least one of the pair of electrode portions 12 (first electrode portion 12a and second electrode portion 12b). Therefore, it becomes difficult for heat to be released from the pair of electrodes to the heat conductive portion 20 side. Thereby, the power generation efficiency of the power generation element 1 can be further improved.
  • the heat conductive portion 20 is provided in contact with the side surfaces of the first element 10 and the second element 10. Therefore, the heat from the heat source 60 can be easily transferred to the second element 10 separated from the heat source 60. Thereby, the power generation efficiency of the power generation element 1 can be further improved.
  • FIG. 4 is a schematic diagram showing an example of the power generation element 1 in the second embodiment.
  • the entire element 10 is covered with the heat insulating portion 40. That is, the heat insulating portion 40 is in contact with the heat source 60 and covers the heat conductive portion 20 and the element 10.
  • the shape of the heat insulating portion 40 may be any shape as long as it can cover the element 10.
  • the element 10 may have a range in which a part thereof is not covered by the heat insulating portion 40. The larger the area of the heat insulating portion 40 covering the element 10, the more difficult it is for the heat transferred from the heat source 60 to the element 10 to be released to the outside, so that the heat insulating effect is improved and the power generation efficiency of the power generation element 1 is improved.
  • the heat insulating portion 40 may cover the laminated body 30 and the heat conductive portion 20 provided in contact with the side surface thereof. That is, the heat insulating portion 40 may be in contact with the heat source 60 and may cover the heat conductive portion 20 and the laminated body 30 in which the plurality of elements 10 are laminated.
  • the heat conductive layer 21 may be arranged between the elements 10.
  • the heat insulating portion 40 has a heat insulating property (insulating property) and is made of, for example, a resin.
  • the heat insulating portion 40 is not limited to these, and may be made of any material as long as it has a low thermal conductivity.
  • the material having a low thermal conductivity is preferably a material having a thermal conductivity of 10 W / (m ⁇ k) or less measured in accordance with ASTM E1530.
  • the material having a low thermal conductivity may be, for example, ceramic, tile, pottery, etc., and is preferably composed of a resin material such as polyurethane, polyimide, styrene, vinyl chloride, glass, and air.
  • the heat insulating portion 40 may be composed of a plurality of layers of members made of different materials.
  • the heat insulating portion 40 is in contact with the heat source 60 and covers the heat conductive portion 20 and the element 10. Therefore, the heat from the heat source 60 is easily transferred between the pair of elements 10 via the heat conductive portion 20 and the heat conductive layer 21. Thereby, the power generation efficiency of the power generation element 1 can be further improved.
  • FIG. 5A is a block diagram showing an example of a control system according to a third embodiment. It is a block diagram which shows an example of the control system 70 in 3rd Embodiment. As shown in FIG. 5A, the control system 70 includes a power generation element 1, a measurement unit 71, and a control unit 72, and the control system 70 is connected to a heat source 60.
  • the measurement unit 71 measures the amount of power generated by the power generation element 1, and outputs information on the amount of power generation, which is the measurement result, to the control unit 72.
  • the measuring unit 71 periodically measures the power generation amount of the power generation element 1 so that the power generation amount of the power generation element 1 becomes constant, and outputs information on the power generation amount to the control unit 72.
  • the control unit 72 controls the electric energy based on the measurement result received from the measurement unit 71. Since the amount of power generated by the power generation element 1 increases or decreases according to the amount of heat from the heat source 60, for example, when the amount of power generated by the power generation element 1 is insufficient, the amount of heat of the heat source 60 is increased so that the amount of power generation increases. When the amount of power generated by the power generation element 1 is excessive, the amount of heat generated by the heat source 60 is controlled to be reduced so that the amount of power generation is reduced.
  • FIG. 5B is a block diagram showing a first modification of the control system according to the third embodiment.
  • the device 61 has a heat source 60.
  • the control unit 72 may control the device 61 so as to reduce the amount of heat of the heat source 60.
  • the device 61 is a device such as a personal computer, and the heat source 60 is a CPU included in the device 61, for example.
  • the control system 70 includes a power generation element 1 and controls the amount of heat released from the heat source 60 based on the measurement results of the measurement unit 71 for measuring the power generation amount of the power generation element 1 and the measurement unit 71.
  • the control unit 72 is provided. Therefore, the amount of heat released from the heat source 60 can be controlled according to the amount of power generated by the power generation element 1. As a result, the heat source 60 and the equipment including the heat source 60 can be appropriately protected, and the amount of heat released from the heat source 60 can be easily controlled.
  • 6 (a) to 6 (d) are schematic block diagrams showing an example of an electronic device 500 provided with a power generation element 1.
  • 6 (e) to 6 (h) are schematic block diagrams showing an example of an electronic device 500 provided with a power generation device 100 including a power generation element 1.
  • the electronic device 500 (electric product) includes an electronic component 501 (electronic component), a main power supply 502, and an auxiliary power supply 503.
  • Each of the electronic device 500 and the electronic component 501 is an electrical device (electrical device).
  • the electronic component 501 is driven by using the main power supply 502 as a power source.
  • Examples of the electronic component 501 include a CPU, a motor, a sensor terminal, lighting, and the like.
  • the electronic device 500 includes an electronic device that can be controlled by a built-in master (CPU).
  • the electronic component 501 includes, for example, at least one such as a motor, a sensor terminal, and lighting
  • the electronic device 500 includes an external master or a human-controllable electronic device.
  • a part of the electronic component 501 may function as a heat source 60.
  • the main power source 502 is, for example, a battery. Batteries also include rechargeable batteries.
  • the positive terminal (+) of the main power supply 502 is electrically connected to the Vcc terminal (Vcc) of the electronic component 501.
  • the negative terminal (-) of the main power supply 502 is electrically connected to the GND terminal (GND) of the electronic component 501.
  • the electronic component 501 may include a secondary battery that is charged by the electric power generated by the power generation element 1.
  • the auxiliary power supply 503 is a power generation element 1.
  • the power generation element 1 includes at least one of the above-mentioned power generation elements 1.
  • the anode of the power generation element 1 (for example, the first electrode portion 12a) has a GND terminal (GND) of the electronic component 501, a negative terminal (-) of the main power supply 502, or a GND terminal (GND) and a negative terminal (-). It is electrically connected to the wiring to be connected.
  • the cathode of the power generation element 1 (for example, the second electrode portion 12b) has a Vcc terminal (Vcc) of the electronic component 501, a positive terminal (+) of the main power supply 502, or a Vcc terminal (Vcc) and a positive terminal (+).
  • the auxiliary power supply 503 is used in combination with the main power supply 502, for example, as a power source for assisting the main power supply 502 or as a power source for backing up the main power supply 502 when the capacity of the main power supply 502 is exhausted. be able to.
  • the main power source 502 is a rechargeable battery
  • the auxiliary power source 503 can also be used as a power source for charging the battery.
  • the main power source 502 may be the power generation element 1.
  • the anode of the power generation element 1 is electrically connected to the GND terminal (GND) of the electronic component 501.
  • the cathode of the power generation element 1 is electrically connected to the Vcc terminal (Vcc) of the electronic component 501.
  • the electronic device 500 shown in FIG. 6B includes a power generation element 1 used as a main power source 502 and an electronic component 501 that can be driven by the power generation element 1.
  • the power generation element 1 is an independent power source (for example, an off-grid power source). Therefore, the electronic device 500 can be made, for example, a self-standing type (stand-alone type).
  • the power generation element 1 is an energy harvesting type (energy harvesting type).
  • the electronic device 500 shown in FIG. 6B does not require battery replacement.
  • the electronic component 501 may include the power generation element 1.
  • the anode of the power generation element 1 is electrically connected to, for example, the GND wiring of the circuit board (not shown).
  • the cathode of the power generation element 1 is electrically connected to, for example, a Vcc wiring of a circuit board (not shown).
  • the power generation element 1 can be used as an electronic component 501, for example, an auxiliary power supply 503.
  • the power generation element 1 can be used as, for example, the main power source 502 of the electronic component 501.
  • the electronic device 500 may include a power generation device 100.
  • the power generation device 100 includes a power generation element 1 as a source of electric energy.
  • the embodiment shown in FIG. 6D includes a power generation element 1 in which the electronic component 501 is used as the main power source 502.
  • the embodiment shown in FIG. 6 (h) includes a power generation device 100 in which the electronic component 501 is used as a main power source.
  • the electronic component 501 has an independent power source. Therefore, the electronic component 501 can be made, for example, a self-standing type.
  • the self-supporting electronic component 501 can be effectively used, for example, in an electronic device including a plurality of electronic components and in which at least one electronic component is separated from another electronic component.
  • An example of such an electronic device 500 is a sensor.
  • the sensor includes a sensor terminal (slave) and a controller (master) away from the sensor terminal.
  • Each of the sensor terminal and the controller is an electronic component 501. If the sensor terminal includes the power generation element 1 or the power generation device 100, it becomes a self-supporting sensor terminal and does not need to be supplied with electric power by wire. Since the power generation element 1 or the power generation device 100 is an energy harvesting type, it is not necessary to replace the battery.
  • the sensor terminal can also be regarded as one of the electronic devices 500. In addition to the sensor terminal of the sensor, the sensor terminal regarded as the electronic device 500 further includes, for example, an IoT wireless tag and the like.
  • the electronic device 500 includes a power generation element 1 and a power generation element 1 that generate power by using the heat generated from the heat source 60. It includes an electronic component 501 that can be driven by using it as a power source.
  • the electronic device 500 may be an autonomous type (autonomous type) having an independent power supply. Examples of autonomous electronic devices include robots and the like. Further, the electronic component 501 provided with the power generation element 1 or the power generation device 100 may be an autonomous type having an independent power source. Examples of autonomous electronic components include movable sensor terminals and the like.
  • Power generation element 10 Element 11: Substrate 11a: First substrate 11af: First main surface 11as: First laminated surface 11b: Second substrate 11bf: Second main surface 11bs: Second laminated surface 12: Electrode portion 12a: 1st electrode part 12b: 2nd electrode part 13: Support part 14: Intermediate part 20: Heat conduction part 30: Laminated body 40: Insulation part 60: Heat source 140: Gap part 141: Nanoparticle 142: Solvent 100: Power generation device 101 : 1st wiring 102: 2nd wiring 500: Electronic device G: Gap R: Load Z: 1st direction X: 2nd direction Y: 3rd direction

Abstract

[Problem] To provide a power generation element, a control system, a power generation device, an electronic apparatus and a power generation method which are capable of improving power generation efficiency. [Solution] The present invention comprises at least one element 10, and a thermally conductive portion 20 provided in contact with a heat source 60 and the element 10 and electrically separated from the element 10. The element 10 includes a pair of electrodes 12a, 12b having different work functions, and an intermediate portion 14 provided between the pair of electrodes 12a, 12b and separated from the thermal conductive portion 20.

Description

発電素子、制御システム、発電装置、電子機器及び発電方法Power generation elements, control systems, power generation devices, electronic devices and power generation methods
 この発明は、熱源から発生する熱を利用して発電する発電素子、制御システム、発電装置、電子機器及び発電方法に関する。 The present invention relates to a power generation element, a control system, a power generation device, an electronic device, and a power generation method that generate power by using heat generated from a heat source.
 近年、熱エネルギーを利用して電気エネルギーを生成する発電素子の開発が盛んに行われている。特に、電極の有する仕事関数の差分を利用した電気エネルギーの生成に関し、例えば特許文献1、2に開示された熱電素子等が提案されている。このような熱電素子は、電極に与える温度差を利用して電気エネルギーを生成する構成に比べて、様々な用途への利用が期待されている。 In recent years, the development of power generation elements that generate electrical energy using thermal energy has been actively carried out. In particular, regarding the generation of electric energy using the difference in the work function of the electrodes, for example, the thermoelectric element disclosed in Patent Documents 1 and 2 has been proposed. Such a thermoelectric element is expected to be used for various purposes as compared with a configuration in which electric energy is generated by utilizing a temperature difference given to an electrode.
 特許文献1には、熱エネルギーを電気エネルギーに変換する発電素子であって、第1主面を有する第1基板、及び第1主面上に設けられた第1電極部を有する第1筐体部と、第1主面と第1方向に対向する第2主面を有する第2基板、及び第2主面上に設けられ、第1電極部と離間し、第1電極部とは異なる仕事関数を有する第2電極部を有する第2筐体部と、第1電極部と、第2電極部との間に設けられ、第1電極部の仕事関数と、第2電極部の仕事関数との間の仕事関数を有するナノ粒子を含む中間部と、を備え、第1主面は、第1電極部と接し、第2筐体部と離間する第1離間面と、第1離間面と連続して設けられ、第1電極部と離間し、第2筐体部と接する第1接合面と、を有し、第2主面は、第2電極部と接し、第1筐体部と離間する第2離間面と、第2離間面と連続して設けられ、第2電極部と離間し、第1筐体部と接する第2接合面と、を有し、第1方向から見て、中間部は、第1接合面及び第2接合面によって囲まれ、第1接合面は、第2接合面と接する第1基板接合面と、第2電極部と接する第1電極接合面と、を有し、第2接合面は、第1基板接合面と接する第2基板接合面と、第1電極部と接する第2電極接合面と、を有する発電素子が開示されている。 Patent Document 1 describes a power generation element that converts thermal energy into electrical energy, and has a first substrate having a first main surface and a first housing having a first electrode portion provided on the first main surface. A portion, a second substrate having a second main surface facing the first main surface in the first direction, and a work provided on the second main surface, separated from the first electrode portion, and different from the first electrode portion. A second housing portion having a second electrode portion having a function, a first electrode portion, and a work function of the first electrode portion and a work function of the second electrode portion provided between the second electrode portion and the second electrode portion. An intermediate portion containing nanoparticles having a work function between them, and a first main surface is a first separation surface that is in contact with a first electrode portion and is separated from a second housing portion, and a first separation surface. It has a first joint surface that is continuously provided, is separated from the first electrode portion, and is in contact with the second housing portion, and the second main surface is in contact with the second electrode portion and is in contact with the first housing portion. It has a second separation surface that is separated and a second joint surface that is continuously provided with the second separation surface, is separated from the second electrode portion, and is in contact with the first housing portion, and is viewed from the first direction. The intermediate portion is surrounded by the first joint surface and the second joint surface, and the first joint surface is a first substrate joint surface in contact with the second joint surface and a first electrode joint surface in contact with the second electrode portion. The power generation element having the second substrate joint surface in contact with the first substrate joint surface and the second electrode joint surface in contact with the first electrode portion is disclosed.
 また、特許文献2には、ゼーベック発電素子の熱伝導を抑制するため、素子の電気及び熱の伝導路を線状にする、又は素子の電気及び熱の伝導路にくびれを設けることで、熱伝導路を狭くすること、及び素子の周りを断熱材で覆うことを第一の特徴とし、発電総量を増加するため、ゼーベック発電素子を複数積層し、多層化による直列配置したゼーベック発電素子が開示されている。 Further, in Patent Document 2, in order to suppress the heat conduction of the Zeebeck power generation element, the electric and heat conduction paths of the element are made linear, or the electric and heat conduction paths of the element are provided with a constriction to generate heat. The first feature is to narrow the conduction path and cover the circumference of the element with a heat insulating material, and in order to increase the total amount of power generation, the Zeebeck power generation element in which multiple Zeebeck power generation elements are stacked and arranged in series by multi-layering is disclosed. Has been done.
特許第6598339号公報Japanese Patent No. 6598339 特開2018-182272号公報Japanese Unexamined Patent Publication No. 2018-182272
 ところで、熱電子の放出量を決める因子として、電極の温度がある。この温度をより高く維持するには、電極が設けられる発電素子全体の温度を高くすることが求められる。しかしながら、発電素子は電極を含む複数の部材により構成されており、熱源からの熱が各部材に順次伝達される際、熱源に近い部材と遠い部材とでは、同じ温度になるまでに時間差が生じてしまう。即ち、発電素子全体が均一な温度になるまで長時間を要する。このため、発電素子全体の温度が均一になるまでの間、発電効率が低下する点が、懸念として挙げられる。この点、特許文献1、2の開示技術においても、上述した懸念点があげられる。このため、発電効率の向上が求められていた。 By the way, the temperature of the electrode is a factor that determines the amount of thermionic emissions. In order to maintain this temperature higher, it is required to raise the temperature of the entire power generation element provided with the electrodes. However, the power generation element is composed of a plurality of members including electrodes, and when the heat from the heat source is sequentially transferred to each member, a time difference occurs between the member near the heat source and the member far from the heat source until the temperature reaches the same. It ends up. That is, it takes a long time for the entire power generation element to reach a uniform temperature. Therefore, there is a concern that the power generation efficiency will decrease until the temperature of the entire power generation element becomes uniform. In this regard, the above-mentioned concerns are also raised in the disclosed techniques of Patent Documents 1 and 2. Therefore, improvement in power generation efficiency has been required.
 そこで本発明は、上述した問題点に鑑みて案出されたものであり、その目的とするところは、発電効率を向上させることができる発電素子、制御システム、発電装置、電子機器及び発電方法を提供することにある。 Therefore, the present invention has been devised in view of the above-mentioned problems, and an object thereof is a power generation element, a control system, a power generation device, an electronic device, and a power generation method capable of improving power generation efficiency. To provide.
 第1発明に係る発電素子は、熱源から発生する熱を利用して発電する発電素子であって、少なくとも1つの素子と、前記熱源、及び前記素子に接して設けられ、前記素子と電気的に離間した熱伝導部と、を備え、前記素子は、それぞれ仕事関数の異なる一対の電極と、前記一対の電極の間に設けられ、前記熱伝導部と離間する中間部と、を含むことを特徴とする。 The power generation element according to the first invention is a power generation element that generates power by utilizing heat generated from a heat source, and is provided in contact with at least one element, the heat source, and the element, and is electrically connected to the element. The element comprises a pair of electrodes having different work functions, and an intermediate portion provided between the pair of electrodes and separated from the heat conductive portion. And.
 第2発明に係る発電素子は、第1発明において、複数の前記素子を積層した積層体を備え、前記熱伝導部は、前記積層体の側面に接して設けられ、前記熱伝導部は、積層された一対の前記素子の間に挟まれた熱伝導層を含むことを特徴とする。 In the first invention, the power generation element according to the second invention includes a laminated body in which a plurality of the elements are laminated, the heat conductive portion is provided in contact with the side surface of the laminated body, and the heat conductive portion is laminated. It is characterized by including a heat conductive layer sandwiched between the pair of the elements.
 第3発明に係る発電素子は、第1発明において、前記素子は、前記一対の電極を挟んで設けられた一対の基板を含み、前記熱伝導部の熱伝導率は、前記一対の基板の熱伝導率よりも高いことを特徴とする。 In the first invention, the power generation element according to the third invention includes a pair of substrates provided with the pair of electrodes interposed therebetween, and the thermal conductivity of the heat conductive portion is the heat of the pair of substrates. It is characterized by having a higher conductivity.
 第4発明に係る発電素子は、第1発明において、前記素子は、前記一対の電極を挟んで設けられた一対の基板と、前記一対の基板又は前記一対の電極の間に接して設けられた支持部と、を含み、前記熱伝導部は、前記支持部に接して設けられ、前記熱伝導部の熱伝導率は、前記支持部の熱伝導率よりも高いことを特徴とする。 The power generation element according to the fourth invention is provided in the first aspect in contact with the pair of substrates provided with the pair of electrodes interposed therebetween and the pair of substrates or the pair of electrodes. The heat conductive portion includes a support portion, and the heat conductive portion is provided in contact with the support portion, and the thermal conductivity of the heat conductive portion is higher than that of the support portion.
 第5発明に係る発電素子は、第1発明において、前記素子は、前記熱源に接して設けられることを特徴とする。 The power generation element according to the fifth invention is characterized in that, in the first invention, the element is provided in contact with the heat source.
 第6発明に係る発電素子は、第1発明において、前記熱伝導部の熱伝導率は、前記一対の電極の少なくとも何れかの熱伝導率よりも高いことを特徴とする。 The power generation element according to the sixth invention is characterized in that, in the first invention, the thermal conductivity of the heat conductive portion is higher than the thermal conductivity of at least one of the pair of electrodes.
 第7発明に係る発電素子は、第1発明において、前記熱源に接する第1素子と、前記第1素子に積層されて前記熱源と離間する第2素子と、を含む積層体を備え、前記熱伝導部は、前記第1素子及び前記第2素子の側面に接して設けられることを特徴とする。 In the first invention, the power generation element according to the seventh invention includes a laminated body including a first element in contact with the heat source and a second element laminated on the first element and separated from the heat source, and the heat is described. The conducting portion is characterized in that it is provided in contact with the side surfaces of the first element and the second element.
 第8発明に係る発電素子は、第1発明において、前記熱源に接し、前記熱伝導部及び前記素子を覆う断熱部を備えることを特徴とする。 The power generation element according to the eighth aspect of the invention is characterized in that, in the first invention, the power generation element is provided with a heat conductive portion and a heat insulating portion that are in contact with the heat source and covers the element.
 第9発明に係る制御システムは、第1発明の発電素子と、前記発電素子の発電量を計測する計測部と、前記計測部の計測結果に基づき、前記熱源から放出される熱量を制御する制御部と、を備えることを特徴とする。 The control system according to the ninth aspect of the invention is a control system for controlling the amount of heat released from the heat source based on the power generation element of the first invention, a measurement unit for measuring the amount of power generated by the power generation element, and the measurement results of the measurement unit. It is characterized by having a part and.
 第10発明に係る発電装置は、第1発明の発電素子と、前記一対の電極と電気的に接続された一対の配線と、を備えることを特徴とする。 The power generation device according to the tenth invention is characterized by including the power generation element of the first invention and a pair of wirings electrically connected to the pair of electrodes.
 第11発明に係る電子機器は、第1発明の発電素子と、前記発電素子を電源に用いて駆動させることが可能な電子部品と、を備えることを特徴とする。 The electronic device according to the eleventh invention is characterized by including the power generation element of the first invention and an electronic component that can be driven by using the power generation element as a power source.
 第12発明に係る発電方法は、第1発明の発電素子が、前記熱源から発生した熱を利用して発電することを特徴とする。 The power generation method according to the twelfth invention is characterized in that the power generation element of the first invention uses the heat generated from the heat source to generate power.
 第1発明~第8発明によれば、熱伝導部は、熱源及び素子に接して設けられる。このため、熱源からの熱が、熱伝導部を介して発電素子の各部材に順次伝達され易くなり、熱源に近い部材と遠い部材とが同じ温度になるまでの時間を、短くすることができる。これにより、発電効率を向上させることができる。 According to the first to eighth inventions, the heat conductive portion is provided in contact with the heat source and the element. Therefore, the heat from the heat source is easily transferred to each member of the power generation element via the heat conductive portion, and the time until the member near the heat source and the member far from the heat source reach the same temperature can be shortened. .. This makes it possible to improve the power generation efficiency.
 特に第2発明によれば、熱伝導部は、積層体の側面に接して設けられる。このため、熱源からの熱を、熱伝導部を介して積層体全体に伝達させ易くすることができる。これにより、熱源からの距離が異なる複数の素子を用いた場合であっても、各素子の温度差を抑制でき、発電効率の更なる向上を図ることが可能となる。また、熱伝導部は、積層された一対の素子の間に挟まれた熱伝導層を含む。このため、熱源からの熱は、熱伝導部及び熱伝導層を介して、一対の素子の間に伝達され易くなる。これにより、発電素子の発電効率を更に向上させることができる。 In particular, according to the second invention, the heat conductive portion is provided in contact with the side surface of the laminated body. Therefore, the heat from the heat source can be easily transferred to the entire laminated body via the heat conductive portion. As a result, even when a plurality of elements having different distances from the heat source are used, the temperature difference between the elements can be suppressed, and the power generation efficiency can be further improved. Further, the heat conductive portion includes a heat conductive layer sandwiched between a pair of laminated elements. Therefore, the heat from the heat source is easily transferred between the pair of elements via the heat conductive portion and the heat conductive layer. This makes it possible to further improve the power generation efficiency of the power generation element.
 特に第3発明によれば、熱伝導部の熱伝導率は、一対の基板の熱伝導率よりも高い。このため、一対の基板から熱伝導部側に熱が放出され難くなる。これにより、発電効率を更に向上させることができる。 In particular, according to the third invention, the thermal conductivity of the heat conductive portion is higher than the thermal conductivity of the pair of substrates. Therefore, it becomes difficult for heat to be released from the pair of substrates to the heat conductive portion side. This makes it possible to further improve the power generation efficiency.
 特に第4発明によれば、熱伝導部の熱伝導率は、支持部の熱伝導率よりも高い。このため、支持部から熱伝導部側に熱が放出され難くなる。これにより、発電効率を更に向上させることができる。また、熱伝導部は、支持部に接して設けられる。このため、熱源からの熱は、支持部を介して電極に伝達され易くなる。これにより、発電効率を更に向上させることができる。 In particular, according to the fourth invention, the thermal conductivity of the heat conductive portion is higher than the thermal conductivity of the support portion. Therefore, it becomes difficult for heat to be released from the support portion to the heat conduction portion side. This makes it possible to further improve the power generation efficiency. Further, the heat conductive portion is provided in contact with the support portion. Therefore, the heat from the heat source is easily transferred to the electrodes via the support portion. This makes it possible to further improve the power generation efficiency.
 特に第5発明によれば、素子は、熱源に接して設けられる。このため、素子には、熱伝導部と接する面、及び熱源に接する面から熱が伝達される。これにより、素子に伝達させる熱量を増加させることが可能となる。 In particular, according to the fifth invention, the element is provided in contact with the heat source. Therefore, heat is transferred to the element from the surface in contact with the heat conductive portion and the surface in contact with the heat source. This makes it possible to increase the amount of heat transferred to the element.
 特に第6発明によれば、熱伝導部の熱伝導率は、一対の電極の少なくとも何れかの熱伝導率よりも高い。このため、電極から熱伝導部側に熱が放出され難くなる。これにより、発電効率を更に向上させることができる。 In particular, according to the sixth invention, the thermal conductivity of the heat conductive portion is higher than the thermal conductivity of at least one of the pair of electrodes. Therefore, it becomes difficult for heat to be released from the electrode to the heat conductive portion side. This makes it possible to further improve the power generation efficiency.
 特に第7発明によれば、熱伝導部は、第1素子及び第2素子の側面に接して設けられる。このため、熱源と離間した第2素子に対し、熱源からの熱を伝達し易くすることができる。これにより、発電素子の発電効率を更に向上させることができる。 In particular, according to the seventh invention, the heat conductive portion is provided in contact with the side surfaces of the first element and the second element. Therefore, it is possible to easily transfer the heat from the heat source to the second element separated from the heat source. This makes it possible to further improve the power generation efficiency of the power generation element.
 特に第8発明によれば、断熱部は、熱源に接し、熱伝導部及び素子を覆う。このため、熱源からの熱が、素子内に伝達されたあと、素子内から外部に放出され難くなる。これにより、発電効率を更に向上させることができる。 In particular, according to the eighth invention, the heat insulating portion is in contact with the heat source and covers the heat conductive portion and the element. Therefore, after the heat from the heat source is transferred to the inside of the element, it is difficult to be discharged from the inside of the element to the outside. This makes it possible to further improve the power generation efficiency.
 第9発明によれば、制御システムは、第1発明から第8発明の発電素子を備え、発電素子の発電量を計測する計測部と、計測部の計測結果に基づき、熱源から放出される熱量を制御する制御部とを備える。このため、発電素子の発電量に応じて熱源から放出される熱量を制御することができる。これにより、熱源の状態に適した制御を容易に実現することが可能となる。 According to the ninth invention, the control system includes the power generation elements of the first to eighth inventions, a measuring unit for measuring the power generation amount of the power generation element, and a heat amount released from the heat source based on the measurement results of the measurement unit. It is provided with a control unit for controlling the above. Therefore, it is possible to control the amount of heat released from the heat source according to the amount of power generated by the power generation element. This makes it possible to easily realize control suitable for the state of the heat source.
 第10発明によれば、発電効率を改善した発電装置を実現することが可能となる。 According to the tenth invention, it is possible to realize a power generation device having improved power generation efficiency.
 第11発明によれば、発電効率を改善した電子機器を実現することが可能となる。 According to the eleventh invention, it is possible to realize an electronic device with improved power generation efficiency.
 第12発明によれば、発電効率を改善した発電素子を用いた発電方法を実現することができる。 According to the twelfth invention, it is possible to realize a power generation method using a power generation element having improved power generation efficiency.
図1(a)は、第1実施形態における発電素子及び発電装置の一例を示す模式断面図であり、図1(b)は、発電素子及び発電装置の模式平面図である。FIG. 1A is a schematic cross-sectional view showing an example of a power generation element and a power generation device according to the first embodiment, and FIG. 1B is a schematic plan view of the power generation element and the power generation device. 図2は、中間部の一例を示す模式断面図である。FIG. 2 is a schematic cross-sectional view showing an example of the intermediate portion. 図3(a)は、第1実施形態における発電素子の第1変形例を示す模式断面図であり、図3(b)は、第1実施形態における発電素子の第2変形例を示す模式断面図である。FIG. 3A is a schematic cross-sectional view showing a first modification of the power generation element in the first embodiment, and FIG. 3B is a schematic cross section showing a second modification of the power generation element in the first embodiment. It is a figure. 図4(a)は、第2実施形態における発電素子の一例を示す模式断面図であり、図4(b)は、第2実施形態における発電素子の第1変形例を示す模式断面図である。FIG. 4A is a schematic cross-sectional view showing an example of the power generation element in the second embodiment, and FIG. 4B is a schematic cross-sectional view showing a first modification of the power generation element in the second embodiment. .. 図5(a)は、第3実施形態における制御システムの一例を示すブロック図であり、図5(b)は、第3実施形態における制御システムの第1変形例を示すブロック図である。FIG. 5A is a block diagram showing an example of the control system according to the third embodiment, and FIG. 5B is a block diagram showing a first modification of the control system according to the third embodiment. 図6(a)~図6(d)は、発電素子を備えた電子機器の例を示す模式ブロック図であり、図6(e)~図6(h)は、発電素子を含む発電装置を備えた電子機器の例を示す模式ブロック図である。6 (a) to 6 (d) are schematic block diagrams showing an example of an electronic device provided with a power generation element, and FIGS. 6 (e) to 6 (h) show a power generation device including the power generation element. It is a schematic block diagram which shows the example of the electronic device provided.
 以下、本発明の実施形態としての発電素子、制御システム、発電装置、電子機器及び発電方法それぞれの一例について、図面を参照しながら説明する。なお、各図において、発電素子の高さ方向を第1方向Zとし、第1方向Zと交差、例えば直交する1つの平面方向を第2方向Xとし、第1方向Z及び第2方向Xのそれぞれと交差、例えば直交する別の平面方向を第3方向Yとする。また、各図における構成は、説明のため模式的に記載されており、例えば各構成の大きさや、構成毎における大きさの対比等については、図とは異なってもよい。 Hereinafter, examples of each of the power generation element, the control system, the power generation device, the electronic device, and the power generation method as the embodiment of the present invention will be described with reference to the drawings. In each figure, the height direction of the power generation element is defined as the first direction Z, the plane direction intersecting with the first direction Z, for example, one orthogonal plane direction is defined as the second direction X, and the first direction Z and the second direction X are defined. Another plane direction that intersects with each other, for example, is orthogonal to each other, is referred to as a third direction Y. Further, the configurations in each figure are schematically described for the sake of explanation, and for example, the size of each configuration, the comparison of the sizes in each configuration, and the like may be different from those in the figure.
(第1実施形態)
 図1(a)は、第1実施形態における発電素子1、発電装置100の一例を示す模式図であり、図1(b)は、図1(a)の模式平面図である。図1(a)に示すように、発電装置100は、発電素子1と、第1配線101と、第2配線102とを備える。発電素子1は、熱エネルギーを電気エネルギーに変換する。このような発電素子1を備えた発電装置100は、例えば、熱源60に搭載又は設置され、熱源60の熱エネルギーを元として、発電素子1が発生させた電気エネルギーを、第1配線101及び第2配線102を介して負荷Rへ出力する。負荷Rは、例えば充電可能な電池を含む電気的な機器を示している。負荷Rの一端は第1配線101と電気的に接続され、他端は第2配線102と電気的に接続される。負荷Rは、発電装置100を主電源又は補助電源に用いて駆動される。
(First Embodiment)
1 (a) is a schematic view showing an example of a power generation element 1 and a power generation device 100 in the first embodiment, and FIG. 1 (b) is a schematic plan view of FIG. 1 (a). As shown in FIG. 1A, the power generation device 100 includes a power generation element 1, a first wiring 101, and a second wiring 102. The power generation element 1 converts thermal energy into electrical energy. The power generation device 100 provided with such a power generation element 1 is mounted or installed on the heat source 60, for example, and the electric energy generated by the power generation element 1 based on the heat energy of the heat source 60 is used in the first wiring 101 and the first wiring 101. 2 Output to the load R via the wiring 102. The load R indicates an electrical device including, for example, a rechargeable battery. One end of the load R is electrically connected to the first wiring 101, and the other end is electrically connected to the second wiring 102. The load R is driven by using the power generation device 100 as a main power source or an auxiliary power source.
 熱源60としては、例えば、CPU(Central Processing Unit)等の電子デバイス又は電子部品、LED(Light Emitting Diode)等の発光素子、自動車等のエンジン、工場の生産設備、人体、太陽光、及び環境温度等を利用することができる。例えば、電子デバイス、電子部品、発光素子、エンジン、及び生産設備等は人工熱源である。人体、太陽光、及び環境温度等は自然熱源である。発電素子1を備えた発電装置100は、例えばIoT(Internet of Things)デバイス及びウェアラブル機器等のモバイル機器や自立型センサ端末の内部に設けることができ、電池の代替又は補助として用いることができる。さらに、発電装置100は、太陽光発電等のような、より大型の発電装置への応用も可能である。 The heat source 60 includes, for example, an electronic device or electronic component such as a CPU (Central Processing Unit), a light emitting element such as an LED (Light Emitting Diode), an engine such as an automobile, a factory production facility, a human body, sunlight, and an environmental temperature. Etc. can be used. For example, electronic devices, electronic components, light emitting elements, engines, production equipment, and the like are artificial heat sources. The human body, sunlight, environmental temperature, etc. are natural heat sources. The power generation device 100 provided with the power generation element 1 can be provided inside a mobile device such as an IoT (Internet of Things) device and a wearable device, or a self-standing sensor terminal, and can be used as a substitute for or an auxiliary of a battery. Further, the power generation device 100 can also be applied to a larger power generation device such as solar power generation.
<発電素子1>
 発電素子1は、熱源60から発生する熱を利用して発電する。発電素子1は、発電装置100内に設けるだけでなく、発電素子1自体を、上記工場における排熱パイプの側面や、モバイル機器の内部等に設けることもできる。この場合、発電素子1自体が、上記モバイル機器又は上記自立型センサ端末等の、電池の代替部品又は補助部品となる。発電素子1は、電気自動車のバッテリや電装系装置に用いられてもよい。
<Power generation element 1>
The power generation element 1 generates power by using the heat generated from the heat source 60. The power generation element 1 can be provided not only in the power generation device 100 but also in the side surface of the heat exhaust pipe in the factory, the inside of the mobile device, or the like. In this case, the power generation element 1 itself becomes a substitute part or an auxiliary part of the battery such as the mobile device or the self-supporting sensor terminal. The power generation element 1 may be used in a battery of an electric vehicle or an electrical system device.
 発電素子1は、少なくとも1つの素子10と、熱伝導部20とを備える。素子10は、一対の電極部12と、中間部14とを含む。なお、素子10は、一対の基板11及び支持部13を含んでもよい。 The power generation element 1 includes at least one element 10 and a heat conductive portion 20. The element 10 includes a pair of electrode portions 12 and an intermediate portion 14. The element 10 may include a pair of substrates 11 and a support portion 13.
<基板11>
 基板11は、第1基板11aと、第2基板11bとを有する。一対の第1基板11aと、第2基板11bは、一対の電極部12を挟んで設けられる。第1基板11aは、第1方向Zと交わる第1主面11af及び第1積層面11asを有する。第1主面11afは、第1基板11aにおいて、第2基板11b側に位置する。第2基板11bは、第1方向Zと交わる第2主面11bf及び第2積層面11bsを有する。第2主面11bfは、第2基板11bにおいて、第1基板11a側に位置する。なお、以下の説明では、第1方向Zにおいて第2基板11bが第1基板11aよりも下方側にある、即ち、第1基板11aは第2基板11bよりも熱源60から離間して配置されていることとする。
<Board 11>
The substrate 11 has a first substrate 11a and a second substrate 11b. The pair of first substrates 11a and the second substrate 11b are provided with the pair of electrode portions 12 interposed therebetween. The first substrate 11a has a first main surface 11af and a first laminated surface 11as that intersect with the first direction Z. The first main surface 11af is located on the second substrate 11b side of the first substrate 11a. The second substrate 11b has a second main surface 11bf and a second laminated surface 11bs that intersect the first direction Z. The second main surface 11bf is located on the first substrate 11a side of the second substrate 11b. In the following description, the second substrate 11b is located below the first substrate 11a in the first direction Z, that is, the first substrate 11a is arranged farther from the heat source 60 than the second substrate 11b. I will be there.
 基板11の材料としては、絶縁性を有する板状の材料を選ぶことができる。絶縁性の材料の例としては、シリコン、石英、パイレックス(登録商標)等のガラス、及び絶縁性樹脂等を挙げることができる。なお、基板11には、ステンレス(SUS)、タングステン、アルミニウム等の導電性を有する金属材料、Si、GaN等の導電性を有する半導体の他、カーボン系材料や導電性高分子材料を用いてもよい。基板11の形状は、正方形、長方形、その他、円盤状であってもよい。また、基板11は、絶縁性の材料、半導体材料、金属材料が混合された構成であってもよい。なお、基板11が導電性を有する場合、基板11は、熱伝導部20と電気的に離間させることで、素子10から熱源60への導通を防ぐことができる。 As the material of the substrate 11, a plate-shaped material having an insulating property can be selected. Examples of the insulating material include silicon, quartz, glass such as Pyrex (registered trademark), and an insulating resin. The substrate 11 may be made of a conductive metal material such as stainless steel (SUS), tungsten, or aluminum, a conductive semiconductor such as Si or GaN, or a carbon-based material or a conductive polymer material. good. The shape of the substrate 11 may be square, rectangular, or other disc-shaped. Further, the substrate 11 may have a structure in which an insulating material, a semiconductor material, and a metal material are mixed. When the substrate 11 has conductivity, the substrate 11 can be electrically separated from the heat conductive portion 20 to prevent conduction from the element 10 to the heat source 60.
 なお、基板11は半導体であり、第1主面11af及び第2主面11bfの少なくとも何れかに設けられた縮退部と、非縮退部とを有してもよい。このため、第1電極部12a等と配線等の他の構成との接触抵抗を低減させることができる。これにより、発電素子1全体の抵抗の増加を抑制することが可能となる。 The substrate 11 is a semiconductor, and may have a degenerate portion and a non-degenerate portion provided on at least one of the first main surface 11af and the second main surface 11bf. Therefore, the contact resistance between the first electrode portion 12a and the like and other configurations such as wiring can be reduced. This makes it possible to suppress an increase in the resistance of the entire power generation element 1.
<第1電極部12a、第2電極部12b>
 電極部12は、仕事関数の異なる一対の第1電極部12a、第2電極部12bを有する。第1電極部12aは、第1主面11af上に接して設けられる。第1電極部12aは、第2基板11bと離間する。第2電極部12bは、第2主面11bf上に接して設けられる。第2電極部12bは、第1基板11a及び第1電極部12aと離間して対向する。第2電極部12bは、第1電極部12aとは異なる仕事関数を有する。
<1st electrode portion 12a, 2nd electrode portion 12b>
The electrode portion 12 has a pair of first electrode portions 12a and second electrode portions 12b having different work functions. The first electrode portion 12a is provided in contact with the first main surface 11af. The first electrode portion 12a is separated from the second substrate 11b. The second electrode portion 12b is provided in contact with the second main surface 11bf. The second electrode portion 12b faces the first substrate 11a and the first electrode portion 12a apart from each other. The second electrode portion 12b has a work function different from that of the first electrode portion 12a.
 第1電極部12aは、例えば第1基板11aに挿通された図示しない配線を介して第2配線102と電気的に接続される。第2電極部12bは、例えば図示しない第2基板11bに挿通された配線を介して第1配線101と電気的に接続される。また、図示しない配線の配置箇所等は、任意である。 The first electrode portion 12a is electrically connected to the second wiring 102 via, for example, a wiring (not shown) inserted through the first substrate 11a. The second electrode portion 12b is electrically connected to the first wiring 101 via, for example, a wiring inserted through a second substrate 11b (not shown). Further, the wiring arrangement location and the like (not shown) are arbitrary.
 発電素子1では、第1電極部12aと第2電極部12bから熱電子が放出される。発電素子1は、仕事関数差を有する第1電極部12aあるいは第2電極部12bからの熱電子放出を利用しており、絶対温度が高いほど電子の量が増加する。 In the power generation element 1, thermions are emitted from the first electrode portion 12a and the second electrode portion 12b. The power generation element 1 utilizes thermionic emission from the first electrode portion 12a or the second electrode portion 12b having a work function difference, and the higher the absolute temperature, the greater the amount of electrons.
  第1電極部12aの材料、及び第2電極部12bの材料は、例えば、以下に示す金属から選ぶことができる。
    白金(Pt)
    タングステン(W)
    アルミニウム(Al)
    チタン(Ti)
    ニオブ(Nb)
    モリブデン(Mo)
    タンタル(Ta)
    レニウム(Re)
  発電素子1では、第1電極部12aと第2電極部12bとの間に仕事関数差が生じればよい。したがって、第1電極部12a及び第2電極部12bの材料には、上記以外の金属を選ぶことが可能である。第1電極部12a及び第2電極部12bの材料として、金属のほか、合金、金属間化合物、及び金属化合物を選ぶことも可能である。金属化合物は、金属元素と非金属元素とが化合したものである。このような金属化合物の例としては、例えば六ホウ化ランタン(LaB)を挙げることができる。
The material of the first electrode portion 12a and the material of the second electrode portion 12b can be selected from, for example, the metals shown below.
Platinum (Pt)
Tungsten (W)
Aluminum (Al)
Titanium (Ti)
Niobium (Nb)
Molybdenum (Mo)
Tantalum (Ta)
Rhenium (Re)
In the power generation element 1, it is sufficient that a work function difference occurs between the first electrode portion 12a and the second electrode portion 12b. Therefore, it is possible to select a metal other than the above as the material of the first electrode portion 12a and the second electrode portion 12b. As the material of the first electrode portion 12a and the second electrode portion 12b, in addition to the metal, an alloy, an intermetallic compound, and a metal compound can be selected. A metallic compound is a combination of a metallic element and a non-metallic element. Examples of such metal compounds include, for example, lanthanum hexaboride (LaB 6 ).
<支持部13>
 支持部13は、一対の基板である第1基板11a及び第2基板11b、又は一対の電極である第1電極部12a、第2電極部12bの間に接して設けられる。支持部13は、例えば第1主面11af及び第2主面11bfと連接する。支持部13は、例えば第2方向Xにおいて第1電極部12a及び第2電極部12bと接しているが、第1電極部12a及び第2電極部12bと離間してもよい。
<Support part 13>
The support portion 13 is provided in contact with the pair of substrates, the first substrate 11a and the second substrate 11b, or the pair of electrodes, the first electrode portion 12a and the second electrode portion 12b. The support portion 13 is connected to, for example, the first main surface 11af and the second main surface 11bf. Although the support portion 13 is in contact with the first electrode portion 12a and the second electrode portion 12b in the second direction X, for example, the support portion 13 may be separated from the first electrode portion 12a and the second electrode portion 12b.
 なお、支持部13は、基板11の一部が酸化したものであってもよい。具体的には、シリコンより構成された基板11を酸化させて形成されたシリコン酸化膜の一部を支持部13としてもよい。この場合、新たに支持部13を形成する場合に比べて、支持部13の高さを高精度に制御することができ、電極間ギャップGの大きさを高精度に設定することができる。これにより、発電効率の安定化を図ることが可能となる。 The support portion 13 may be a partially oxidized substrate 11. Specifically, a part of the silicon oxide film formed by oxidizing the substrate 11 made of silicon may be used as the support portion 13. In this case, the height of the support portion 13 can be controlled with high accuracy and the size of the gap G between the electrodes can be set with high accuracy as compared with the case where the support portion 13 is newly formed. This makes it possible to stabilize the power generation efficiency.
 支持部13の材料としては、絶縁性を有する材料を選ぶことができる。絶縁性の材料の例としては、シリコン、シリコン酸化膜、石英等のガラス、及び絶縁性樹脂等を挙げることができる。上記のほか、支持部13は、例えば、フレキシブルなフィルム状でもよく、PET(polyethylene terephthalate)、PC(polycarbonate)、及びポリイミド等を用いることができる。 As the material of the support portion 13, a material having an insulating property can be selected. Examples of the insulating material include silicon, a silicon oxide film, glass such as quartz, and an insulating resin. In addition to the above, the support portion 13 may be in the form of a flexible film, for example, and PET (polyethylene terephthalate), PC (polycarbonate), polyimide, or the like can be used.
<中間部14>
 図2は、中間部14の一例を示す模式断面図である。図1(a)に示すように、中間部14は、第1電極部12aと第2電極部12bとの間に設けられ、熱伝導部20と離間する。中間部14は、第1電極部12aの仕事関数と第2電極部12bの仕事関数との間の仕事関数を有するナノ粒子141を含む。
<Middle part 14>
FIG. 2 is a schematic cross-sectional view showing an example of the intermediate portion 14. As shown in FIG. 1A, the intermediate portion 14 is provided between the first electrode portion 12a and the second electrode portion 12b, and is separated from the heat conduction portion 20. The intermediate portion 14 includes nanoparticles 141 having a work function between the work function of the first electrode portion 12a and the work function of the second electrode portion 12b.
 第1電極部12aと第2電極部12bとの間には、第1方向Zに沿って電極間ギャップGが設定される。発電素子1では、電極間ギャップGは、支持部13の第1方向Zに沿った厚さによって設定される。電極間ギャップGの幅の一例は、例えば、10μm以下の有限値である。電極間ギャップGの幅は狭いほど、発電素子1の発電効率が向上する。また、電極間ギャップGの幅は狭いほど、発電素子1の第1方向Zに沿った厚さを薄くできる。このため、例えば、電極間ギャップGの幅は狭い方がよい。電極間ギャップGの幅は、例えば、10nm以上1μm以下であることがより好ましい。なお、電極間ギャップGの幅と、支持部13の、第1方向Zに沿った厚さとは、ほぼ等価である。 A gap G between electrodes is set between the first electrode portion 12a and the second electrode portion 12b along the first direction Z. In the power generation element 1, the gap G between the electrodes is set by the thickness of the support portion 13 along the first direction Z. An example of the width of the gap G between electrodes is, for example, a finite value of 10 μm or less. The narrower the width of the gap G between the electrodes, the higher the power generation efficiency of the power generation element 1. Further, the narrower the width of the gap G between the electrodes is, the thinner the thickness of the power generation element 1 along the first direction Z can be. Therefore, for example, the width of the gap G between the electrodes should be narrow. The width of the gap G between the electrodes is more preferably, for example, 10 nm or more and 1 μm or less. The width of the gap G between the electrodes and the thickness of the support portion 13 along the first direction Z are substantially equivalent.
 中間部14は、例えば、複数のナノ粒子141と、溶媒142と、を含む。複数のナノ粒子141は、溶媒142内に分散されている。中間部14は、例えば、ナノ粒子141が分散された溶媒142を、ギャップ部140内に充填することで得られる。ナノ粒子141の粒子径は、電極間ギャップGよりも小さい。ナノ粒子141の粒子径は、例えば、電極間ギャップGの1/5以下の有限値とされる。ナノ粒子141の粒子径を、電極間ギャップGの1/5以下とすると、ギャップ部140内に、ナノ粒子141を含む中間部14を形成しやすくなる。これにより、発電素子1の生産に際し、作業性が向上する。 The intermediate portion 14 contains, for example, a plurality of nanoparticles 141 and a solvent 142. The plurality of nanoparticles 141 are dispersed in the solvent 142. The intermediate portion 14 is obtained, for example, by filling the gap portion 140 with a solvent 142 in which nanoparticles 141 are dispersed. The particle size of the nanoparticles 141 is smaller than the gap G between the electrodes. The particle diameter of the nanoparticles 141 is, for example, a finite value of 1/5 or less of the gap G between electrodes. When the particle diameter of the nanoparticles 141 is set to 1/5 or less of the gap G between the electrodes, it becomes easy to form the intermediate portion 14 including the nanoparticles 141 in the gap portion 140. As a result, workability is improved in the production of the power generation element 1.
 ナノ粒子141は、例えば導電物を含む。ナノ粒子141の仕事関数の値は、例えば、第1電極部12aの仕事関数の値と、第2電極部12bの仕事関数の値との間にあるが、第1電極部12aの仕事関数の値と第2電極部12bの仕事関数の値との間に無くてもよい。例えば、ナノ粒子141の仕事関数の値は、3.0eV以上5.5eV以下の範囲とされる。これにより、中間部14内にナノ粒子141がない場合に比較して、電気エネルギーの発生量を、さらに増加させることが可能となる。 The nanoparticles 141 contain, for example, a conductive material. The value of the work function of the nanoparticles 141 is, for example, between the value of the work function of the first electrode portion 12a and the value of the work function of the second electrode portion 12b, but the value of the work function of the first electrode portion 12a. It does not have to be between the value and the value of the work function of the second electrode portion 12b. For example, the value of the work function of the nanoparticles 141 is in the range of 3.0 eV or more and 5.5 eV or less. This makes it possible to further increase the amount of electrical energy generated as compared with the case where the nanoparticles 141 are not present in the intermediate portion 14.
 ナノ粒子141の材料の例としては、金あるいは金の合金の少なくとも1つを選ぶことができる。なお、ナノ粒子141の材料には、金及び銀以外の導電性材料を選ぶことも可能である。 As an example of the material of nanoparticles 141, at least one of gold or an alloy of gold can be selected. As the material of the nanoparticles 141, it is also possible to select a conductive material other than gold and silver.
 ナノ粒子141の粒子径は、例えば、2nm以上10nm以下である。また、ナノ粒子141は、例えば、平均粒径(例えばD50)3nm以上8nm以下の粒子径を有してもよい。平均粒径は、例えば粒度分布計測器を用いることで、測定することができる。粒度分布計測器としては、例えば、レーザー回折散乱法を用いた粒度分布計測器(例えばMicrotracBEL製Nanotrac WaveII-EX150等)を用いればよい。 The particle size of the nanoparticles 141 is, for example, 2 nm or more and 10 nm or less. Further, the nanoparticles 141 may have, for example, an average particle size (for example, D50) of 3 nm or more and 8 nm or less. The average particle size can be measured, for example, by using a particle size distribution measuring instrument. As the particle size distribution measuring instrument, for example, a particle size distribution measuring instrument using a laser diffraction / scattering method (for example, Nanotrac Wave II-EX150 manufactured by Microtrac BEL) may be used.
 ナノ粒子141は、その表面に、例えば絶縁膜141aを有する。絶縁膜141aの材料の例としては、絶縁性金属化合物及び絶縁性有機化合物の少なくとも1つを選ぶことができる。絶縁性金属化合物の例としては、例えば、シリコン酸化物及びアルミナ等を挙げることができる。絶縁性有機化合物の例としては、アルカンチオール(例えばドデカンチオール)等を挙げることができる。絶縁膜141aの厚さは、例えば20nm以下の有限値である。このような絶縁膜141aをナノ粒子141の表面に設けておくと、電子eは、例えば、第1電極部12aとナノ粒子141との間、並びにナノ粒子141と第2電極部12bとの間を、トンネル効果やホッピング伝導を利用して移動できる。このため、例えば、発電素子1の発電効率の向上が期待できる。 The nanoparticles 141 have, for example, an insulating film 141a on the surface thereof. As an example of the material of the insulating film 141a, at least one of an insulating metal compound and an insulating organic compound can be selected. Examples of the insulating metal compound include silicon oxide and alumina. Examples of the insulating organic compound include alkanethiol (for example, dodecanethiol) and the like. The thickness of the insulating film 141a is, for example, a finite value of 20 nm or less. When such an insulating film 141a is provided on the surface of the nanoparticles 141, the electrons e are, for example, between the first electrode portion 12a and the nanoparticles 141, and between the nanoparticles 141 and the second electrode portion 12b. Can be moved using the tunnel effect and hopping conduction. Therefore, for example, improvement in the power generation efficiency of the power generation element 1 can be expected.
 溶媒142には、例えば、沸点が60℃以上の液体を用いることができる。このため、室温(例えば15℃~35℃)以上の環境下において、発電素子1を用いた場合であっても、溶媒142の気化を抑制することができる。これにより、溶媒142の気化に伴う発電素子1の劣化を抑制することができる。液体の例としては、有機溶媒及び水の少なくとも1つを選ぶことができる。有機溶媒の例としては、メタノール、エタノール、トルエン、キシレン、テトラデカン、及びアルカンチオール等を挙げることができる。なお、溶媒142は、電気的抵抗値が高く、絶縁性である液体がよい。 For the solvent 142, for example, a liquid having a boiling point of 60 ° C. or higher can be used. Therefore, it is possible to suppress the vaporization of the solvent 142 even when the power generation element 1 is used in an environment of room temperature (for example, 15 ° C. to 35 ° C.) or higher. As a result, deterioration of the power generation element 1 due to the vaporization of the solvent 142 can be suppressed. As an example of the liquid, at least one of an organic solvent and water can be selected. Examples of the organic solvent include methanol, ethanol, toluene, xylene, tetradecane, alkanethiol and the like. The solvent 142 is preferably a liquid having a high electrical resistance value and an insulating property.
 なお、中間部14は、溶媒142を含まず、ナノ粒子141のみを含むようにしてもよい。中間部14が、ナノ粒子141のみを含むことで、例えば、発電素子1を、高温環境下で用いる場合であっても、溶媒142の気化を考慮する必要が無い。これにより、高温環境下における発電素子1の劣化を抑制することが可能となる。また、中間部14は、例えば溶媒142の代わりに、ナノ粒子141を支持する絶縁体を含んでもよい。 The intermediate portion 14 may contain only the nanoparticles 141 without containing the solvent 142. Since the intermediate portion 14 contains only the nanoparticles 141, for example, even when the power generation element 1 is used in a high temperature environment, it is not necessary to consider the vaporization of the solvent 142. This makes it possible to suppress deterioration of the power generation element 1 in a high temperature environment. Further, the intermediate portion 14 may include an insulator supporting the nanoparticles 141 instead of the solvent 142, for example.
<熱伝導部20>
 熱伝導部20は、図1(a)に示すように、熱源60及び素子10に接して設けられ、素子10と電気的に離間する。熱伝導部20は、例えば熱源60上に配置され、第1方向Z及び第2方向Xに延在する板状の部材である。
<Heat conduction part 20>
As shown in FIG. 1A, the heat conductive portion 20 is provided in contact with the heat source 60 and the element 10, and is electrically separated from the element 10. The heat conductive portion 20 is, for example, a plate-shaped member arranged on the heat source 60 and extending in the first direction Z and the second direction X.
 熱伝導部20の高さ(第1方向Zにおける高さ)は、例えば第2基板11bの高さ以下であってもよい。即ち、少なくとも第2基板11bの第1方向Zに延びる面の少なくとも一部が熱伝導部20に接していればよい。この場合、熱源60からの熱は熱伝導部20を介して第2基板11bに伝達される。即ち、第2基板11bには、熱源60と接する面に加え、熱伝導部20と接する面から熱が伝達される。このため、熱伝導部20を設けない場合に比べ、素子10に伝達される熱量を増加させることができる。これにより、発電素子1の発電効率を向上させることができる。 The height of the heat conductive portion 20 (height in the first direction Z) may be, for example, equal to or less than the height of the second substrate 11b. That is, at least a part of the surface of the second substrate 11b extending in the first direction Z may be in contact with the heat conductive portion 20. In this case, the heat from the heat source 60 is transferred to the second substrate 11b via the heat conductive portion 20. That is, heat is transferred to the second substrate 11b from the surface in contact with the heat conductive portion 20 in addition to the surface in contact with the heat source 60. Therefore, the amount of heat transferred to the element 10 can be increased as compared with the case where the heat conductive portion 20 is not provided. Thereby, the power generation efficiency of the power generation element 1 can be improved.
 熱伝導部20の高さは、例えば第2基板11bの高さよりも高く、第1基板11aの高さ以下であってもよい。即ち、少なくとも第1基板11aの第1方向Zに延びる面の少なくとも一部が熱伝導部20に接していればよい。この場合、熱伝導部20は、第1基板11a及び第2基板11bに接しており、熱源60からの熱は熱伝導部20を介して第1基板11a及び第2基板11bに伝達される。このため、熱伝導部20が第2基板11bのみに接している場合と比較して熱伝導部20と素子10の接触面積が大きくなる。また、熱源60と離間した部材に対し、熱源60から発生した熱を伝達し易くすることができる。これにより、発電素子1の発電効率をさらに向上させることができる。 The height of the heat conductive portion 20 may be higher than, for example, the height of the second substrate 11b, and may be lower than the height of the first substrate 11a. That is, at least a part of the surface of the first substrate 11a extending in the first direction Z may be in contact with the heat conductive portion 20. In this case, the heat conductive portion 20 is in contact with the first substrate 11a and the second substrate 11b, and the heat from the heat source 60 is transferred to the first substrate 11a and the second substrate 11b via the heat conductive portion 20. Therefore, the contact area between the heat conductive portion 20 and the element 10 is larger than that in the case where the heat conductive portion 20 is in contact with only the second substrate 11b. Further, the heat generated from the heat source 60 can be easily transferred to the member separated from the heat source 60. Thereby, the power generation efficiency of the power generation element 1 can be further improved.
 熱伝導部20は、第1方向Zにおいて第1基板11aを超えて設けられてもよい。即ち、熱伝導部20は、第1方向Z全体に亘って接してもよい。このため、熱源60からの熱は、熱伝導部20を介して第2基板11b、第1基板11aへと順次伝達される。これにより、発電素子1の発電効率をさらに向上させることができる。 The heat conductive portion 20 may be provided beyond the first substrate 11a in the first direction Z. That is, the heat conductive portion 20 may be in contact with the entire first direction Z. Therefore, the heat from the heat source 60 is sequentially transferred to the second substrate 11b and the first substrate 11a via the heat conductive portion 20. Thereby, the power generation efficiency of the power generation element 1 can be further improved.
 なお、素子10の片側のみが熱伝導部20に接してもよく、図1(a)に示すように、素子10の両側が熱伝導部20に接してもよい。熱伝導部20が複数設けられる場合には、各熱伝導部20の高さは異なっていてもよい。更に、熱伝導部20は、素子10の周囲全体に接してもよく、第1積層面11asを覆うように素子10上に接して配置されてもよい。素子10と熱伝導部20との接触面積が増加すればするほど熱源60からの熱が素子10に伝わり易くなるため、発電素子1の発電効率をさらに向上させることができる。 Note that only one side of the element 10 may be in contact with the heat conductive portion 20, and as shown in FIG. 1A, both sides of the element 10 may be in contact with the heat conductive portion 20. When a plurality of heat conductive portions 20 are provided, the height of each heat conductive portion 20 may be different. Further, the heat conductive portion 20 may be in contact with the entire periphery of the element 10, or may be arranged in contact with the element 10 so as to cover the first laminated surface 11as. As the contact area between the element 10 and the heat conductive portion 20 increases, the heat from the heat source 60 is more likely to be transferred to the element 10, so that the power generation efficiency of the power generation element 1 can be further improved.
 また、図1(b)に示すように、素子10(基板11)の一部が第3方向Yに沿って熱伝導部20と接してもよく、素子10(基板11)の全体が第3方向Yに沿って熱伝導部20と接してもよい。発電素子1の発電効率を向上させるためには、熱伝導部20と素子10の接触面積が大きいことが望ましく、従って熱伝導部20の長さが素子10の幅以上であることが望ましい。 Further, as shown in FIG. 1 (b), a part of the element 10 (board 11) may be in contact with the heat conductive portion 20 along the third direction Y, and the entire element 10 (board 11) may be in contact with the third. It may be in contact with the heat conductive portion 20 along the direction Y. In order to improve the power generation efficiency of the power generation element 1, it is desirable that the contact area between the heat conductive portion 20 and the element 10 is large, and therefore it is desirable that the length of the heat conductive portion 20 is equal to or larger than the width of the element 10.
 熱伝導部20は、例えば支持部13に接して設けられてもよい。具体的には、図1(a)に示すように、熱伝導部20は、支持部13の外側の面全体に接するように配置されている。熱伝導部20が支持部13に接することにより、熱源60からの熱が効率よく支持部13にも伝わるため、発電素子1の発電効率を向上させることができる。 The heat conductive portion 20 may be provided in contact with the support portion 13, for example. Specifically, as shown in FIG. 1A, the heat conductive portion 20 is arranged so as to be in contact with the entire outer surface of the support portion 13. When the heat conductive portion 20 is in contact with the support portion 13, the heat from the heat source 60 is efficiently transferred to the support portion 13, so that the power generation efficiency of the power generation element 1 can be improved.
 熱伝導部20の熱伝導率は、基板11の熱伝導率よりも高くてもよい。例えば、基板11の材料がステンレス(SUS)である場合には、熱伝導部20には基板11よりも熱伝導率の高い銅を使用する等、熱伝導部20には基板11よりも相対的にも熱伝導率の高い材料を用いればよい。これにより、このため、熱源60から発電素子1に伝わる熱が外部に放出し難くなり、発電素子1の発電効率の向上を図ることができる。 The thermal conductivity of the heat conductive portion 20 may be higher than the thermal conductivity of the substrate 11. For example, when the material of the substrate 11 is stainless steel (SUS), copper having a higher thermal conductivity than the substrate 11 is used for the heat conductive portion 20, and the heat conductive portion 20 is relative to the substrate 11. Also, a material having high thermal conductivity may be used. As a result, the heat transferred from the heat source 60 to the power generation element 1 is less likely to be released to the outside, and the power generation efficiency of the power generation element 1 can be improved.
 なお、熱源60から発電素子1に伝わる熱が外部に放出し難くなるためには、熱伝導部20の熱伝導率は、支持部13の熱伝導率よりも高くてもよい。また、熱伝導部20の熱伝導率は、一対の第1電極部12a、第2電極部12bの少なくとも何れかの熱伝導率よりも高くてもよい。 The thermal conductivity of the heat conductive section 20 may be higher than that of the support section 13 so that the heat transferred from the heat source 60 to the power generation element 1 is less likely to be released to the outside. Further, the thermal conductivity of the heat conductive portion 20 may be higher than the thermal conductivity of at least one of the pair of first electrode portions 12a and the second electrode portion 12b.
 熱伝導部20は、導電性を有し、例えば金属材料により構成されている。なお、熱伝導部20は、金属材料に限定されることなく、導電率が高い材料であれば如何なる材料により構成されてもよい。導電率が高い材料とは、具体的にはASTM  E1530に準拠して測定された熱伝導率が、10W/(m・k)以上の値であることが望ましい。導電率が高い材料としては、例えば、金、銀、銅、アルミ等の金属材料であればよく、銅又はアルミより構成されていることが好ましい。 The heat conductive portion 20 has conductivity and is made of, for example, a metal material. The heat conductive portion 20 is not limited to the metal material, and may be made of any material as long as it has a high conductivity. Specifically, it is desirable that the material having high conductivity has a thermal conductivity of 10 W / (m · k) or more measured in accordance with ASTM E1530. The material having high conductivity may be, for example, a metal material such as gold, silver, copper, or aluminum, and is preferably made of copper or aluminum.
 図3(a)に、第1実施形態における発電素子1の第1変形例を示す。図3(a)に示すように、基板11が第1方向Z延在するように素子10が熱源60に配置された場合、基板11は第2方向Xにおいて両側から一対の熱伝導部20に挟まれた状態で接してもよい。即ち、図1(a)に示す状態から素子10を90度回転させて基板11が熱源60に対して立設した状態で、第1基板11a及び第2基板11bに熱伝導部20が接してもよい。この場合、熱伝導部20は、第1積層面11as及び第2積層面11bsの少なくとも一部に接するように配置される。なお、熱伝導部20は、第1積層面11as及び第2積層面11bsの全体に接するように設けられてもよく、更には素子10全体に接するように設けられてもよい。この場合、熱伝導部20が第1積層面11as及び第2積層面11bsの少なくとも一部に接している場合と比較して、より発電素子1の発電効率の向上を図ることができる。なお、基板11が立設した状態の素子10は、熱源60上に複数配置されてもよい。 FIG. 3A shows a first modification of the power generation element 1 in the first embodiment. As shown in FIG. 3A, when the element 10 is arranged in the heat source 60 so that the substrate 11 extends in the first direction Z, the substrate 11 is attached to the pair of heat conductive portions 20 from both sides in the second direction X. You may touch it while being sandwiched. That is, the heat conductive portion 20 is in contact with the first substrate 11a and the second substrate 11b in a state where the element 10 is rotated 90 degrees from the state shown in FIG. 1A and the substrate 11 is erected with respect to the heat source 60. May be good. In this case, the heat conductive portion 20 is arranged so as to be in contact with at least a part of the first laminated surface 11as and the second laminated surface 11bs. The heat conductive portion 20 may be provided so as to be in contact with the entire first laminated surface 11as and the second laminated surface 11bs, or may be provided so as to be in contact with the entire element 10. In this case, the power generation efficiency of the power generation element 1 can be further improved as compared with the case where the heat conductive portion 20 is in contact with at least a part of the first laminated surface 11as and the second laminated surface 11bs. A plurality of elements 10 in a state where the substrate 11 is erected may be arranged on the heat source 60.
 図3(b)に、第1実施形態における発電素子1の第2変形例を示す。図3(b)に示すように、発電素子1は、複数の素子10を積層した積層体30を備え、熱伝導部20は積層体30の側面に接して設けられてもよい。熱源60には、積層体30と、その両側に熱伝導部20が設けられている。熱源60から発生した熱は、熱伝導部20を介して各素子10に順次伝達される。これにより、素子10が複数積層された場合、熱源60から離間して配置された素子10に対しても熱源60から発生する熱を効率良く伝えることができる。なお、熱伝導部20は積層体30全体に接して設けられてもよい。 FIG. 3B shows a second modification of the power generation element 1 in the first embodiment. As shown in FIG. 3B, the power generation element 1 includes a laminated body 30 in which a plurality of elements 10 are laminated, and the heat conductive portion 20 may be provided in contact with the side surface of the laminated body 30. The heat source 60 is provided with a laminated body 30 and heat conductive portions 20 on both sides thereof. The heat generated from the heat source 60 is sequentially transferred to each element 10 via the heat conductive portion 20. As a result, when a plurality of elements 10 are stacked, the heat generated from the heat source 60 can be efficiently transferred to the elements 10 arranged apart from the heat source 60. The heat conductive portion 20 may be provided in contact with the entire laminated body 30.
 積層された10間には、熱伝導層21が設けられてもよい。図3(b)には、積層体30のうち、最上部に位置する素子10とその下側に位置する素子10との間に熱伝導層21が設けられる例を示す。熱伝導層21は、第2方向Xにおいて熱伝導部20と接した状態で設けられている。これは、熱源60からの熱が熱伝導部20を介して確実に熱伝導層21に伝達されるようにするためである。なお、熱伝導層21は、各素子10間に設けられてもよい。 A heat conductive layer 21 may be provided between the stacked 10s. FIG. 3B shows an example in which the heat conductive layer 21 is provided between the element 10 located at the uppermost portion and the element 10 located below the element 10 of the laminated body 30. The heat conductive layer 21 is provided in contact with the heat conductive portion 20 in the second direction X. This is to ensure that the heat from the heat source 60 is transferred to the heat conductive layer 21 via the heat conductive portion 20. The heat conductive layer 21 may be provided between the elements 10.
<発電素子1の動作>
 熱エネルギーが発電素子1に与えられると、第1電極部12aと第2電極部12bとの間に電流が発生し、熱エネルギーが電気エネルギーに変換される。第1電極部12aと第2電極部12bとの間に発生する電流量は、熱エネルギーに依存する他、第1電極部12aの仕事関数と、第2電極部12bの仕事関数との差、素子10の温度に依存する。
<Operation of power generation element 1>
When thermal energy is applied to the power generation element 1, a current is generated between the first electrode portion 12a and the second electrode portion 12b, and the thermal energy is converted into electrical energy. The amount of current generated between the first electrode portion 12a and the second electrode portion 12b depends on the thermal energy, and the difference between the work function of the first electrode portion 12a and the work function of the second electrode portion 12b. It depends on the temperature of the element 10.
 発生する電流量は、例えば、第1電極部12aと第2電極部12bとの仕事関数差を大きくすること、電極間ギャップを小さくすること、素子10の絶対温度を上昇させること等により増加させることができる。 The amount of current generated is increased, for example, by increasing the work function difference between the first electrode portion 12a and the second electrode portion 12b, reducing the gap between the electrodes, increasing the absolute temperature of the element 10, and the like. be able to.
 本実施形態によれば、熱伝導部20は、熱源60及び素子10に接して設けられる。このため、熱源60からの熱が、熱伝導部20を介して発電素子1を構成する複数の部材に順次伝達され易くなり、熱源60に近い部材と遠い部材とが同じ温度になるまでの時間を短くすることができる。これにより、発電素子1の発電効率を向上させることができる。 According to this embodiment, the heat conductive portion 20 is provided in contact with the heat source 60 and the element 10. Therefore, the heat from the heat source 60 is likely to be sequentially transferred to the plurality of members constituting the power generation element 1 via the heat conductive portion 20, and the time until the member near the heat source 60 and the member far from the heat source 60 reach the same temperature. Can be shortened. Thereby, the power generation efficiency of the power generation element 1 can be improved.
 また、本実施形態によれば、熱伝導部20は、積層体30の側面に接して設けられる。このため、熱源60からの熱を、熱伝導部20を介して積層体30全体に伝達させ易くすることができる。これにより、熱源60からの距離が異なる複数の素子10を用いた場合であっても、各素子10の温度差を抑制でき、発電効率の更なる向上を図ることが可能となる。また、熱伝導部20は、積層された一対の素子10の間に挟まれた熱伝導層21を含む。このため、熱源60からの熱は、熱伝導部20及び熱伝導層21を介して、一対の素子10の間に伝達され易くなる。これにより、発電素子1の発電効率を更に向上させることができる。 Further, according to the present embodiment, the heat conductive portion 20 is provided in contact with the side surface of the laminated body 30. Therefore, the heat from the heat source 60 can be easily transferred to the entire laminated body 30 via the heat conductive portion 20. As a result, even when a plurality of elements 10 having different distances from the heat source 60 are used, the temperature difference between the elements 10 can be suppressed, and the power generation efficiency can be further improved. Further, the heat conductive portion 20 includes a heat conductive layer 21 sandwiched between a pair of laminated elements 10. Therefore, the heat from the heat source 60 is easily transferred between the pair of elements 10 via the heat conductive portion 20 and the heat conductive layer 21. Thereby, the power generation efficiency of the power generation element 1 can be further improved.
 また、本実施形態によれば、熱伝導部20の熱伝導率は、一対の基板11の熱伝導率よりも高い。このため、一対の基板11から熱伝導部20側に熱が放出され難くなる。これにより、発電素子1の発電効率を更に向上させることができる。 Further, according to the present embodiment, the thermal conductivity of the heat conductive portion 20 is higher than the thermal conductivity of the pair of substrates 11. Therefore, it becomes difficult for heat to be released from the pair of substrates 11 to the heat conductive portion 20 side. Thereby, the power generation efficiency of the power generation element 1 can be further improved.
 また、本実施形態によれば、熱伝導部20の熱伝導率は、支持部13の熱伝導率よりも高い。このため、支持部13から熱伝導部20側に熱が放出され難くなる。これにより、発電素子1の発電効率を更に向上させることができる。また、熱伝導部20は、支持部13に接して設けられる。このため、熱源60からの熱は、支持部13を介して電極部12に伝達され易くなる。これにより、発電素子1の発電効率を更に向上させることができる。 Further, according to the present embodiment, the thermal conductivity of the heat conductive portion 20 is higher than the thermal conductivity of the support portion 13. Therefore, it becomes difficult for heat to be released from the support portion 13 to the heat conduction portion 20 side. Thereby, the power generation efficiency of the power generation element 1 can be further improved. Further, the heat conductive portion 20 is provided in contact with the support portion 13. Therefore, the heat from the heat source 60 is easily transferred to the electrode portion 12 via the support portion 13. Thereby, the power generation efficiency of the power generation element 1 can be further improved.
 また、本実施形態によれば、素子10は、熱源60に接して設けられる。このため、素子10には、熱伝導部20と接する面、及び熱源60に接する面から熱が伝達される。これにより、素子10に伝達させる熱量を増加させることが可能となる。 Further, according to the present embodiment, the element 10 is provided in contact with the heat source 60. Therefore, heat is transferred to the element 10 from the surface in contact with the heat conductive portion 20 and the surface in contact with the heat source 60. This makes it possible to increase the amount of heat transferred to the element 10.
 また、本実施形態によれば、熱伝導部20の熱伝導率は、一対の電極部12(第1電極部12a及び第2電極部12b)の少なくとも何れかの熱伝導率よりも高い。このため、一対の電極から熱伝導部20側に熱が放出され難くなる。これにより、発電素子1の発電効率を更に向上させることができる。 Further, according to the present embodiment, the thermal conductivity of the heat conductive portion 20 is higher than the thermal conductivity of at least one of the pair of electrode portions 12 (first electrode portion 12a and second electrode portion 12b). Therefore, it becomes difficult for heat to be released from the pair of electrodes to the heat conductive portion 20 side. Thereby, the power generation efficiency of the power generation element 1 can be further improved.
 また、本実施形態によれば、熱伝導部20は、第1素子10及び第2素子10の側面に接して設けられる。このため、熱源60と離間した第2素子10に対し、熱源60からの熱を伝達し易くすることができる。これにより、発電素子1の発電効率を更に向上させることができる。 Further, according to the present embodiment, the heat conductive portion 20 is provided in contact with the side surfaces of the first element 10 and the second element 10. Therefore, the heat from the heat source 60 can be easily transferred to the second element 10 separated from the heat source 60. Thereby, the power generation efficiency of the power generation element 1 can be further improved.
(第2実施形態)
 次に、第2実施形態における発電素子1について説明する。上述した第1実施形態との違いは、素子10に断熱部40が設けられる点であり、その他の点は共通している。従って、以下の説明では、第1実施形態と異なっている点を主に説明し、共通する部分については同一符号を付して説明を省略する。
(Second Embodiment)
Next, the power generation element 1 in the second embodiment will be described. The difference from the first embodiment described above is that the element 10 is provided with the heat insulating portion 40, and other points are common. Therefore, in the following description, the points different from those of the first embodiment will be mainly described, and the common parts will be designated by the same reference numerals and the description thereof will be omitted.
 図4は、第2実施形態における発電素子1の一例を示す模式図である。図4(a)に示すように、素子10の全体は、断熱部40に覆われている。即ち、断熱部40は、熱源60に接し、熱伝導部20及び素子10を覆う。断熱部40の形状は、素子10を覆うことができるのであれば、如何なる形状であってもよい。なお、素子10は、一部が断熱部40に覆われていない範囲があってもよい。素子10を覆う断熱部40の面積が大きければ大きいほど、熱源60から素子10に伝達された熱が外部に放出され難いため、断熱効果が向上し、発電素子1の発電効率が向上する。 FIG. 4 is a schematic diagram showing an example of the power generation element 1 in the second embodiment. As shown in FIG. 4A, the entire element 10 is covered with the heat insulating portion 40. That is, the heat insulating portion 40 is in contact with the heat source 60 and covers the heat conductive portion 20 and the element 10. The shape of the heat insulating portion 40 may be any shape as long as it can cover the element 10. The element 10 may have a range in which a part thereof is not covered by the heat insulating portion 40. The larger the area of the heat insulating portion 40 covering the element 10, the more difficult it is for the heat transferred from the heat source 60 to the element 10 to be released to the outside, so that the heat insulating effect is improved and the power generation efficiency of the power generation element 1 is improved.
 また、図4(b)に示すように、断熱部40は、積層体30及びその側面に接して設けられる熱伝導部20を覆ってもよい。即ち、断熱部40は、熱源60に接し、熱伝導部20及び複数の素子10を積層した積層体30を覆ってもよい。なお、素子10間には熱伝導層21が配置されていてもよい。 Further, as shown in FIG. 4B, the heat insulating portion 40 may cover the laminated body 30 and the heat conductive portion 20 provided in contact with the side surface thereof. That is, the heat insulating portion 40 may be in contact with the heat source 60 and may cover the heat conductive portion 20 and the laminated body 30 in which the plurality of elements 10 are laminated. The heat conductive layer 21 may be arranged between the elements 10.
 断熱部40は、断熱性(絶縁性)を有し、例えば樹脂により構成されている。なお、断熱部40は、これらに限定されることなく、熱伝導率が低い材料であれば如何なる材料により構成されてもよい。熱伝導率が低い材料とは、具体的にはASTM  E1530に準拠して測定された熱伝導率が、10W/(m・k)以下の値であることが望ましい。熱伝導率が低い材料としては、例えば、セラミック、タイル、陶器等であればよく、ポリウレタン、ポリイミド、スチレン、塩化ビニル等の樹脂材料、ガラス、空気により構成されていることが好ましい。更に、断熱部40は、異なる素材により構成された複数層の部材により構成されてもよい。 The heat insulating portion 40 has a heat insulating property (insulating property) and is made of, for example, a resin. The heat insulating portion 40 is not limited to these, and may be made of any material as long as it has a low thermal conductivity. The material having a low thermal conductivity is preferably a material having a thermal conductivity of 10 W / (m · k) or less measured in accordance with ASTM E1530. The material having a low thermal conductivity may be, for example, ceramic, tile, pottery, etc., and is preferably composed of a resin material such as polyurethane, polyimide, styrene, vinyl chloride, glass, and air. Further, the heat insulating portion 40 may be composed of a plurality of layers of members made of different materials.
 本実施形態によれば、断熱部40は、熱源60に接し、熱伝導部20及び素子10を覆う。このため、熱源60からの熱は、熱伝導部20及び熱伝導層21を介して、一対の素子10の間に伝達され易くなる。これにより、発電素子1の発電効率を更に向上させることができる。 According to the present embodiment, the heat insulating portion 40 is in contact with the heat source 60 and covers the heat conductive portion 20 and the element 10. Therefore, the heat from the heat source 60 is easily transferred between the pair of elements 10 via the heat conductive portion 20 and the heat conductive layer 21. Thereby, the power generation efficiency of the power generation element 1 can be further improved.
(第3実施形態)
 図5は、図5(a)は、第3実施形態における制御システムの一例を示すブロック図である。第3実施形態における制御システム70の一例を示すブロック図である。図5(a)に示すように、制御システム70は、発電素子1と、計測部71と、制御部72とを備え、制御システム70は熱源60に接続されている。
(Third Embodiment)
5A is a block diagram showing an example of a control system according to a third embodiment. It is a block diagram which shows an example of the control system 70 in 3rd Embodiment. As shown in FIG. 5A, the control system 70 includes a power generation element 1, a measurement unit 71, and a control unit 72, and the control system 70 is connected to a heat source 60.
 計測部71は、発電素子1の発電量を計測し、制御部72に計測結果である発電量の情報を出力する。計測部71は、例えば発電素子1の発電量が一定となるように、定期的に発電素子1の発電量を計測し、制御部72に発電量の情報を出力する。 The measurement unit 71 measures the amount of power generated by the power generation element 1, and outputs information on the amount of power generation, which is the measurement result, to the control unit 72. The measuring unit 71 periodically measures the power generation amount of the power generation element 1 so that the power generation amount of the power generation element 1 becomes constant, and outputs information on the power generation amount to the control unit 72.
 制御部72は、計測部71から受けた計測結果に基づいて、電力量制御を行う。発電素子1で発電される電力量は、熱源60からの熱量に応じて増減するため、例えば、発電素子1による発電量が不足する場合には、発電量が増加するように熱源60の熱量を増加させ、発電素子1による発電量が過剰な場合には、発電量が減少するように熱源60の熱量を減少させるように制御する。 The control unit 72 controls the electric energy based on the measurement result received from the measurement unit 71. Since the amount of power generated by the power generation element 1 increases or decreases according to the amount of heat from the heat source 60, for example, when the amount of power generated by the power generation element 1 is insufficient, the amount of heat of the heat source 60 is increased so that the amount of power generation increases. When the amount of power generated by the power generation element 1 is excessive, the amount of heat generated by the heat source 60 is controlled to be reduced so that the amount of power generation is reduced.
 図5(b)は、第3実施形態における制御システムの第1変形例を示すブロック図である。図5(b)に示すように、機器61は熱源60を有する。制御部72は、機器61を制御することにより、熱源60の熱量を減少させるように制御してもよい。この場合の機器61は、例えばパソコン等のデバイスであり、熱源60は、例えば機器61が有するCPUである。 FIG. 5B is a block diagram showing a first modification of the control system according to the third embodiment. As shown in FIG. 5B, the device 61 has a heat source 60. The control unit 72 may control the device 61 so as to reduce the amount of heat of the heat source 60. In this case, the device 61 is a device such as a personal computer, and the heat source 60 is a CPU included in the device 61, for example.
 本実施形態によれば、制御システム70は、発電素子1を備え、発電素子1の発電量を計測する計測部71と、計測部71の計測結果に基づき、熱源60から放出される熱量を制御する制御部72とを備える。このため、発電素子1の発電量に応じて熱源60から放出される熱量を制御することができる。これにより、熱源60及び熱源60を含む機器等を適切に保護することができるとともに、熱源60から放出される熱量の制御を容易に実現することができる。 According to the present embodiment, the control system 70 includes a power generation element 1 and controls the amount of heat released from the heat source 60 based on the measurement results of the measurement unit 71 for measuring the power generation amount of the power generation element 1 and the measurement unit 71. The control unit 72 is provided. Therefore, the amount of heat released from the heat source 60 can be controlled according to the amount of power generated by the power generation element 1. As a result, the heat source 60 and the equipment including the heat source 60 can be appropriately protected, and the amount of heat released from the heat source 60 can be easily controlled.
(第4実施形態:電子機器500)
 <電子機器500>
 上述した発電素子1及び発電装置100は、例えば電子機器に搭載することが可能である。以下、電子機器の実施形態のいくつかを説明する。
(Fourth Embodiment: electronic device 500)
<Electronic device 500>
The power generation element 1 and the power generation device 100 described above can be mounted on, for example, an electronic device. Hereinafter, some embodiments of the electronic device will be described.
 図6(a)~図6(d)は、発電素子1を備えた電子機器500の例を示す模式ブロック図である。図6(e)~図6(h)は、発電素子1を含む発電装置100を備えた電子機器500の例を示す模式ブロック図である。 6 (a) to 6 (d) are schematic block diagrams showing an example of an electronic device 500 provided with a power generation element 1. 6 (e) to 6 (h) are schematic block diagrams showing an example of an electronic device 500 provided with a power generation device 100 including a power generation element 1.
 図6(a)に示すように、電子機器500(エレクトリックプロダクト)は、電子部品501(エレクトロニックコンポーネント)と、主電源502と、補助電源503と、を備えている。電子機器500及び電子部品501のそれぞれは、電気的な機器(エレクトリカルデバイス)である。 As shown in FIG. 6A, the electronic device 500 (electric product) includes an electronic component 501 (electronic component), a main power supply 502, and an auxiliary power supply 503. Each of the electronic device 500 and the electronic component 501 is an electrical device (electrical device).
 電子部品501は、主電源502を電源に用いて駆動される。電子部品501の例としては、例えば、CPU、モーター、センサ端末、及び照明等を挙げることができる。電子部品501が、例えばCPUである場合、電子機器500には、内蔵されたマスター(CPU)によって制御可能な電子機器が含まれる。電子部品501が、例えば、モーター、センサ端末、及び照明等の少なくとも1つを含む場合、電子機器500には、外部にあるマスター、あるいは人によって制御可能な電子機器が含まれる。なお、電子部品501の一部が熱源60として機能してもよい。 The electronic component 501 is driven by using the main power supply 502 as a power source. Examples of the electronic component 501 include a CPU, a motor, a sensor terminal, lighting, and the like. When the electronic component 501 is, for example, a CPU, the electronic device 500 includes an electronic device that can be controlled by a built-in master (CPU). When the electronic component 501 includes, for example, at least one such as a motor, a sensor terminal, and lighting, the electronic device 500 includes an external master or a human-controllable electronic device. A part of the electronic component 501 may function as a heat source 60.
 主電源502は、例えば電池である。電池には、充電可能な電池も含まれる。主電源502のプラス端子(+)は、電子部品501のVcc端子(Vcc)と電気的に接続される。主電源502のマイナス端子(-)は、電子部品501のGND端子(GND)と電気的に接続される。なお、電子部品501には、発電素子1が発電する電力により充電される二次電池が含まれていてもよい。 The main power source 502 is, for example, a battery. Batteries also include rechargeable batteries. The positive terminal (+) of the main power supply 502 is electrically connected to the Vcc terminal (Vcc) of the electronic component 501. The negative terminal (-) of the main power supply 502 is electrically connected to the GND terminal (GND) of the electronic component 501. The electronic component 501 may include a secondary battery that is charged by the electric power generated by the power generation element 1.
 補助電源503は、発電素子1である。発電素子1は、上述した発電素子1の少なくとも1つを含む。発電素子1のアノード(例えば第1電極部12a)は、電子部品501のGND端子(GND)、又は主電源502のマイナス端子(-)、又はGND端子(GND)とマイナス端子(-)とを接続する配線と、電気的に接続される。発電素子1のカソード(例えば第2電極部12b)は、電子部品501のVcc端子(Vcc)、又は主電源502のプラス端子(+)、又はVcc端子(Vcc)とプラス端子(+)とを接続する配線と、電気的に接続される。電子機器500において、補助電源503は、例えば主電源502と併用され、主電源502をアシストするための電源や、主電源502の容量が切れた場合、主電源502をバックアップするための電源として使うことができる。主電源502が充電可能な電池である場合には、補助電源503は、さらに、電池を充電するための電源としても使うことができる。 The auxiliary power supply 503 is a power generation element 1. The power generation element 1 includes at least one of the above-mentioned power generation elements 1. The anode of the power generation element 1 (for example, the first electrode portion 12a) has a GND terminal (GND) of the electronic component 501, a negative terminal (-) of the main power supply 502, or a GND terminal (GND) and a negative terminal (-). It is electrically connected to the wiring to be connected. The cathode of the power generation element 1 (for example, the second electrode portion 12b) has a Vcc terminal (Vcc) of the electronic component 501, a positive terminal (+) of the main power supply 502, or a Vcc terminal (Vcc) and a positive terminal (+). It is electrically connected to the wiring to be connected. In the electronic device 500, the auxiliary power supply 503 is used in combination with the main power supply 502, for example, as a power source for assisting the main power supply 502 or as a power source for backing up the main power supply 502 when the capacity of the main power supply 502 is exhausted. be able to. When the main power source 502 is a rechargeable battery, the auxiliary power source 503 can also be used as a power source for charging the battery.
 図6(b)に示すように、主電源502は、発電素子1とされてもよい。発電素子1のアノードは、電子部品501のGND端子(GND)と電気的に接続される。発電素子1のカソードは、電子部品501のVcc端子(Vcc)と電気的に接続される。図6(b)に示す電子機器500は、主電源502として使用される発電素子1と、発電素子1を用いて駆動されることが可能な電子部品501と、を備えている。発電素子1は、独立した電源(例えばオフグリッド電源)である。このため、電子機器500は、例えば自立型(スタンドアローン型)にできる。しかも、発電素子1は、環境発電型(エナジーハーベスト型)である。図6(b)に示す電子機器500は、電池の交換が不要である。 As shown in FIG. 6B, the main power source 502 may be the power generation element 1. The anode of the power generation element 1 is electrically connected to the GND terminal (GND) of the electronic component 501. The cathode of the power generation element 1 is electrically connected to the Vcc terminal (Vcc) of the electronic component 501. The electronic device 500 shown in FIG. 6B includes a power generation element 1 used as a main power source 502 and an electronic component 501 that can be driven by the power generation element 1. The power generation element 1 is an independent power source (for example, an off-grid power source). Therefore, the electronic device 500 can be made, for example, a self-standing type (stand-alone type). Moreover, the power generation element 1 is an energy harvesting type (energy harvesting type). The electronic device 500 shown in FIG. 6B does not require battery replacement.
 図6(c)に示すように、電子部品501が発電素子1を備えていてもよい。発電素子1のアノードは、例えば、回路基板(図示は省略する)のGND配線と電気的に接続される。発電素子1のカソードは、例えば、回路基板(図示は省略する)のVcc配線と電気的に接続される。この場合、発電素子1は、電子部品501の、例えば補助電源503として使うことができる。 As shown in FIG. 6C, the electronic component 501 may include the power generation element 1. The anode of the power generation element 1 is electrically connected to, for example, the GND wiring of the circuit board (not shown). The cathode of the power generation element 1 is electrically connected to, for example, a Vcc wiring of a circuit board (not shown). In this case, the power generation element 1 can be used as an electronic component 501, for example, an auxiliary power supply 503.
 図6(d)に示すように、電子部品501が発電素子1を備えている場合、発電素子1は、電子部品501の、例えば主電源502として使うことができる。 As shown in FIG. 6D, when the electronic component 501 includes the power generation element 1, the power generation element 1 can be used as, for example, the main power source 502 of the electronic component 501.
 図6(e)~図6(h)のそれぞれに示すように、電子機器500は、発電装置100を備えていてもよい。発電装置100は、電気エネルギーの源として発電素子1を含む。 As shown in each of FIGS. 6 (e) to 6 (h), the electronic device 500 may include a power generation device 100. The power generation device 100 includes a power generation element 1 as a source of electric energy.
 図6(d)に示した実施形態は、電子部品501が主電源502として使用される発電素子1を備えている。同様に、図6(h)に示した実施形態は、電子部品501が主電源として使用される発電装置100を備えている。これらの実施形態では、電子部品501が、独立した電源を持つ。このため、電子部品501を、例えば自立型とすることができる。自立型の電子部品501は、例えば、複数の電子部品を含み、かつ、少なくとも1つの電子部品が別の電子部品と離れているような電子機器に有効に用いることができる。そのような電子機器500の例は、センサである。センサは、センサ端末(スレーブ)と、センサ端末から離れたコントローラ(マスター)と、を備えている。センサ端末及びコントローラのそれぞれは、電子部品501である。センサ端末が、発電素子1又は発電装置100を備えていれば、自立型のセンサ端末となり、有線での電力供給の必要がない。発電素子1又は発電装置100は環境発電型であるので、電池の交換も不要である。センサ端末は、電子機器500の1つと見なすこともできる。電子機器500と見なされるセンサ端末には、センサのセンサ端末に加えて、例えば、IoTワイヤレスタグ等が、さらに含まれる。 The embodiment shown in FIG. 6D includes a power generation element 1 in which the electronic component 501 is used as the main power source 502. Similarly, the embodiment shown in FIG. 6 (h) includes a power generation device 100 in which the electronic component 501 is used as a main power source. In these embodiments, the electronic component 501 has an independent power source. Therefore, the electronic component 501 can be made, for example, a self-standing type. The self-supporting electronic component 501 can be effectively used, for example, in an electronic device including a plurality of electronic components and in which at least one electronic component is separated from another electronic component. An example of such an electronic device 500 is a sensor. The sensor includes a sensor terminal (slave) and a controller (master) away from the sensor terminal. Each of the sensor terminal and the controller is an electronic component 501. If the sensor terminal includes the power generation element 1 or the power generation device 100, it becomes a self-supporting sensor terminal and does not need to be supplied with electric power by wire. Since the power generation element 1 or the power generation device 100 is an energy harvesting type, it is not necessary to replace the battery. The sensor terminal can also be regarded as one of the electronic devices 500. In addition to the sensor terminal of the sensor, the sensor terminal regarded as the electronic device 500 further includes, for example, an IoT wireless tag and the like.
 図6(a)~図6(h)のそれぞれに示した実施形態において共通することは、電子機器500は、熱源60から発生する熱を利用して発電する発電素子1と、発電素子1を電源に用いて駆動されることが可能な電子部品501と、を含むことである。 What is common to the embodiments shown in FIGS. 6 (a) to 6 (h) is that the electronic device 500 includes a power generation element 1 and a power generation element 1 that generate power by using the heat generated from the heat source 60. It includes an electronic component 501 that can be driven by using it as a power source.
 電子機器500は、独立した電源を備えた自律型(オートノマス型)であってもよい。自律型の電子機器の例は、例えばロボット等を挙げることができる。さらに、発電素子1又は発電装置100を備えた電子部品501は、独立した電源を備えた自律型であってもよい。自律型の電子部品の例は、例えば可動センサ端末等を挙げることができる。 The electronic device 500 may be an autonomous type (autonomous type) having an independent power supply. Examples of autonomous electronic devices include robots and the like. Further, the electronic component 501 provided with the power generation element 1 or the power generation device 100 may be an autonomous type having an independent power source. Examples of autonomous electronic components include movable sensor terminals and the like.
 本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら新規な実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲に含まれる。 Although some embodiments of the present invention have been described, these embodiments are presented as examples and are not intended to limit the scope of the invention. These novel embodiments can be implemented in various other embodiments, and various omissions, replacements, and changes can be made without departing from the gist of the invention. These embodiments and modifications thereof are included in the scope and gist of the invention, and are also included in the scope of the invention described in the claims and the equivalent scope thereof.
1     :発電素子
10    :素子
11    :基板
11a   :第1基板
11af  :第1主面
11as  :第1積層面
11b   :第2基板
11bf  :第2主面
11bs  :第2積層面
12    :電極部
12a   :第1電極部
12b   :第2電極部
13    :支持部
14    :中間部
20    :熱伝導部
30    :積層体
40    :断熱部
60    :熱源
140   :ギャップ部
141   :ナノ粒子
142   :溶媒
100   :発電装置
101   :第1配線
102   :第2配線
500   :電子機器
G     :ギャップ
R     :負荷
Z     :第1方向
X     :第2方向
Y     :第3方向
1: Power generation element 10: Element 11: Substrate 11a: First substrate 11af: First main surface 11as: First laminated surface 11b: Second substrate 11bf: Second main surface 11bs: Second laminated surface 12: Electrode portion 12a: 1st electrode part 12b: 2nd electrode part 13: Support part 14: Intermediate part 20: Heat conduction part 30: Laminated body 40: Insulation part 60: Heat source 140: Gap part 141: Nanoparticle 142: Solvent 100: Power generation device 101 : 1st wiring 102: 2nd wiring 500: Electronic device G: Gap R: Load Z: 1st direction X: 2nd direction Y: 3rd direction

Claims (12)

  1.  熱源から発生する熱を利用して発電する発電素子であって、
     少なくとも1つの素子と、
     前記熱源、及び前記素子に接して設けられ、前記素子と電気的に離間した熱伝導部と、
     を備え、
     前記素子は、
      それぞれ仕事関数の異なる一対の電極と、
      前記一対の電極の間に設けられ、前記熱伝導部と離間する中間部と、
     を含むこと
     を特徴とする発電素子。
    A power generation element that uses the heat generated by a heat source to generate electricity.
    With at least one element,
    A heat source, a heat conductive portion provided in contact with the element and electrically separated from the element, and a heat conductive portion.
    Equipped with
    The element is
    A pair of electrodes, each with a different work function,
    An intermediate portion provided between the pair of electrodes and separated from the heat conductive portion,
    A power generation element characterized by containing.
  2.  複数の前記素子を積層した積層体を備え、
     前記熱伝導部は、前記積層体の側面に接して設けられ、
     前記熱伝導部は、積層された一対の前記素子の間に挟まれた熱伝導層を含むこと
     を特徴とする請求項1記載の発電素子。
    A laminated body in which a plurality of the above elements are laminated is provided.
    The heat conductive portion is provided in contact with the side surface of the laminated body.
    The power generation element according to claim 1, wherein the heat conductive portion includes a heat conductive layer sandwiched between a pair of laminated elements.
  3.  前記素子は、前記一対の電極を挟んで設けられた一対の基板を含み、
     前記熱伝導部の熱伝導率は、前記一対の基板の熱伝導率よりも高いこと
     を特徴とする請求項1記載の発電素子。
    The element includes a pair of substrates provided with the pair of electrodes interposed therebetween.
    The power generation element according to claim 1, wherein the thermal conductivity of the thermal conductive portion is higher than the thermal conductivity of the pair of substrates.
  4.  前記素子は、
      前記一対の電極を挟んで設けられた一対の基板と、
      前記一対の基板又は前記一対の電極の間に接して設けられた支持部と、
    を含み、
     前記熱伝導部は、前記支持部に接して設けられ、
     前記熱伝導部の熱伝導率は、前記支持部の熱伝導率よりも高いこと
     を特徴とする請求項1記載の発電素子。
    The element is
    A pair of substrates provided with the pair of electrodes sandwiched between them,
    A support portion provided in contact between the pair of substrates or the pair of electrodes,
    Including
    The heat conductive portion is provided in contact with the support portion and is provided.
    The power generation element according to claim 1, wherein the thermal conductivity of the heat conductive portion is higher than the thermal conductivity of the support portion.
  5.  前記素子は、前記熱源に接して設けられること
     を特徴とする請求項1記載の発電素子。
    The power generation element according to claim 1, wherein the element is provided in contact with the heat source.
  6.  前記熱伝導部の熱伝導率は、前記一対の電極の少なくとも何れかの熱伝導率よりも高いこと
     を特徴とする請求項1記載の発電素子。
    The power generation element according to claim 1, wherein the thermal conductivity of the heat conductive portion is higher than that of at least one of the pair of electrodes.
  7.  前記熱伝導部は、前記熱源に接する第1素子と、前記第1素子に積層されて前記熱源と離間する第2素子と、を含む積層体を備え、前記熱伝導部は、前記第1素子及び前記第2素子の側面に接して設けられること
     を特徴とする請求項1記載の発電素子。
    The heat conductive portion includes a laminated body including a first element in contact with the heat source and a second element laminated on the first element and separated from the heat source, and the heat conductive portion is the first element. The power generation element according to claim 1, wherein the power generation element is provided in contact with the side surface of the second element.
  8.  前記熱源に接し、前記熱伝導部及び前記素子を覆う断熱部を備えること
     を特徴とする請求項1記載の発電素子。
    The power generation element according to claim 1, further comprising a heat insulating portion that is in contact with the heat source and covers the heat conductive portion and the element.
  9.  請求項1記載の発電素子と、
     前記発電素子の発電量を計測する計測部と、
     前記計測部の計測結果に基づき、前記熱源から放出される熱量を制御する制御部と、を備えること
     を特徴とする制御システム。
    The power generation element according to claim 1 and
    A measuring unit that measures the amount of power generated by the power generation element,
    A control system including a control unit that controls the amount of heat released from the heat source based on the measurement result of the measurement unit.
  10.  請求項1記載の発電素子と、
     前記一対の電極と電気的に接続された一対の配線と、
     を備えることを特徴とする発電装置。
    The power generation element according to claim 1 and
    A pair of wires electrically connected to the pair of electrodes and
    A power generation device characterized by being equipped with.
  11.  請求項1記載の発電素子と、
     前記発電素子を電源に用いて駆動させることが可能な電子部品と、
     を備えることを特徴とする電子機器。
    The power generation element according to claim 1 and
    Electronic components that can be driven by using the power generation element as a power source,
    An electronic device characterized by being equipped with.
  12.  請求項1記載の発電素子が、前記熱源から発生した熱を利用して発電すること
     を特徴とする発電方法。
    A power generation method according to claim 1, wherein the power generation element uses the heat generated from the heat source to generate power.
PCT/JP2021/037291 2020-11-05 2021-10-08 Power generation element, control system, power generation device, electronic apparatus, and power generation method WO2022097419A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-185347 2020-11-05
JP2020185347A JP6942394B1 (en) 2020-11-05 2020-11-05 Power generation elements, control systems, power generation devices, electronic devices and power generation methods

Publications (1)

Publication Number Publication Date
WO2022097419A1 true WO2022097419A1 (en) 2022-05-12

Family

ID=77847073

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/037291 WO2022097419A1 (en) 2020-11-05 2021-10-08 Power generation element, control system, power generation device, electronic apparatus, and power generation method

Country Status (3)

Country Link
JP (2) JP6942394B1 (en)
TW (1) TW202236703A (en)
WO (1) WO2022097419A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014141581A1 (en) * 2013-03-12 2014-09-18 パナソニック株式会社 Thermoelectric generation unit and thermoelectric generation system
WO2016199484A1 (en) * 2015-06-09 2016-12-15 株式会社村田製作所 Thermoelectric conversion element, thermoelectric conversion module, and electrical device
JP2019083290A (en) * 2017-10-31 2019-05-30 株式会社Gceインスティチュート Thermoelectric element, power generator, and method of manufacturing thermoelectric element
JP2020061325A (en) * 2018-10-12 2020-04-16 株式会社Gceインスティチュート Light emitting device with power generation function, lighting device, and display device
JP2020177999A (en) * 2019-04-17 2020-10-29 株式会社Gceインスティチュート Power generation element, power generation device, electronic equipment, and method for manufacturing power generation element

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014141581A1 (en) * 2013-03-12 2014-09-18 パナソニック株式会社 Thermoelectric generation unit and thermoelectric generation system
WO2016199484A1 (en) * 2015-06-09 2016-12-15 株式会社村田製作所 Thermoelectric conversion element, thermoelectric conversion module, and electrical device
JP2019083290A (en) * 2017-10-31 2019-05-30 株式会社Gceインスティチュート Thermoelectric element, power generator, and method of manufacturing thermoelectric element
JP2020061325A (en) * 2018-10-12 2020-04-16 株式会社Gceインスティチュート Light emitting device with power generation function, lighting device, and display device
JP2020177999A (en) * 2019-04-17 2020-10-29 株式会社Gceインスティチュート Power generation element, power generation device, electronic equipment, and method for manufacturing power generation element

Also Published As

Publication number Publication date
JP6942394B1 (en) 2021-09-29
TW202236703A (en) 2022-09-16
JP2022074916A (en) 2022-05-18
JP2022075502A (en) 2022-05-18

Similar Documents

Publication Publication Date Title
US20220190748A1 (en) Power generation element, power generation device, electronic apparatus, and method for manufacturing power generation element
US20220328746A1 (en) Power generation element, power generation device, electronic apparatus, and method for manufacturing power generation element
JP2019083289A (en) Thermoelectric element, power generator, method of manufacturing thermoelectric element
JP7384401B2 (en) Power generation element, power generation device, electronic equipment, and manufacturing method of power generation element
WO2022097419A1 (en) Power generation element, control system, power generation device, electronic apparatus, and power generation method
JP7197857B2 (en) Thermoelectric element, power generator, electronic device, and method for manufacturing thermoelectric element
US20230108795A1 (en) Power generation element, power generation device, electronic apparatus, and manufacturing method for power generation element
JP7197855B2 (en) Thermoelectric element manufacturing method
JP2022052523A (en) Power generation element, power generation device, electronic apparatus, and manufacturing method for power generation element
WO2023038107A1 (en) Power generation element, method for manufacturing power generation element, power generation device, and electronic apparatus
WO2023038108A1 (en) Method for manufacturing power generation element, power generation element, power generation device, and electronic apparatus
JP7244043B2 (en) Thermoelectric element, power generator, electronic device, and method for manufacturing thermoelectric element
JP2020064947A (en) Thermoelectric element, power generator, electronic device, and manufacturing method of thermoelectric element
JP6779555B1 (en) Power generation elements, power generation equipment, electronic devices, and methods for manufacturing power generation elements
JP2020145303A (en) Thermoelectric element, semiconductor integrated circuit device with electric generator, electronic apparatus, and method of manufacturing thermoelectric element
JP7197856B2 (en) Thermoelectric element manufacturing method
WO2023038106A1 (en) Method for manufacturing power generation element, power generation element, power generation device, and electronic device
WO2023038104A1 (en) Method for manufacturing power generation element, power generation element, power generation device, and electronic apparatus
JP2020145302A (en) Method of manufacturing thermoelectric element, thermoelectric element, power generation device, and electronic apparatus
WO2023038110A1 (en) Power generation system
WO2023038109A1 (en) Power generation function-equipped secondary battery
WO2023038099A1 (en) Method for manufacturing power generation element, power generation element, power generation device, and electronic apparatus
JP7244819B2 (en) Thermoelectric element, power generator, electronic device, and method for manufacturing thermoelectric element
JP7477075B2 (en) Power generating element, power generating device, electronic device, and method for manufacturing power generating element
WO2023286363A1 (en) Power generation element, power generation device, electronic device, and method for manufacturing power generation element

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21888972

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21888972

Country of ref document: EP

Kind code of ref document: A1