TW202245388A - 功率轉換裝置和包括此功率轉換裝置的系統 - Google Patents
功率轉換裝置和包括此功率轉換裝置的系統 Download PDFInfo
- Publication number
- TW202245388A TW202245388A TW111114960A TW111114960A TW202245388A TW 202245388 A TW202245388 A TW 202245388A TW 111114960 A TW111114960 A TW 111114960A TW 111114960 A TW111114960 A TW 111114960A TW 202245388 A TW202245388 A TW 202245388A
- Authority
- TW
- Taiwan
- Prior art keywords
- circuit board
- gan hemt
- elements
- power conversion
- pair
- Prior art date
Links
- 238000006243 chemical reaction Methods 0.000 claims description 56
- 239000003990 capacitor Substances 0.000 claims description 11
- JMASRVWKEDWRBT-UHFFFAOYSA-N Gallium nitride Chemical compound [Ga]#N JMASRVWKEDWRBT-UHFFFAOYSA-N 0.000 description 127
- 229910002601 GaN Inorganic materials 0.000 description 126
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 10
- 229910052710 silicon Inorganic materials 0.000 description 10
- 239000010703 silicon Substances 0.000 description 10
- 230000007935 neutral effect Effects 0.000 description 9
- 238000010586 diagram Methods 0.000 description 4
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 description 4
- 229910010271 silicon carbide Inorganic materials 0.000 description 4
- 230000001934 delay Effects 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 230000005670 electromagnetic radiation Effects 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 230000003071 parasitic effect Effects 0.000 description 1
- 230000001360 synchronised effect Effects 0.000 description 1
- 229910000859 α-Fe Inorganic materials 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03K—PULSE TECHNIQUE
- H03K17/00—Electronic switching or gating, i.e. not by contact-making and –breaking
- H03K17/08—Modifications for protecting switching circuit against overcurrent or overvoltage
- H03K17/081—Modifications for protecting switching circuit against overcurrent or overvoltage without feedback from the output circuit to the control circuit
- H03K17/0814—Modifications for protecting switching circuit against overcurrent or overvoltage without feedback from the output circuit to the control circuit by measures taken in the output circuit
- H03K17/08142—Modifications for protecting switching circuit against overcurrent or overvoltage without feedback from the output circuit to the control circuit by measures taken in the output circuit in field-effect transistor switches
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M7/00—Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
- H02M7/003—Constructional details, e.g. physical layout, assembly, wiring or busbar connections
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M1/00—Details of apparatus for conversion
- H02M1/0067—Converter structures employing plural converter units, other than for parallel operation of the units on a single load
- H02M1/0077—Plural converter units whose outputs are connected in series
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M1/00—Details of apparatus for conversion
- H02M1/44—Circuits or arrangements for compensating for electromagnetic interference in converters or inverters
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M7/00—Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
- H02M7/02—Conversion of ac power input into dc power output without possibility of reversal
- H02M7/04—Conversion of ac power input into dc power output without possibility of reversal by static converters
- H02M7/12—Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
- H02M7/21—Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
- H02M7/217—Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
- H02M7/219—Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only in a bridge configuration
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K1/00—Printed circuits
- H05K1/02—Details
- H05K1/14—Structural association of two or more printed circuits
- H05K1/144—Stacked arrangements of planar printed circuit boards
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K2201/00—Indexing scheme relating to printed circuits covered by H05K1/00
- H05K2201/04—Assemblies of printed circuits
- H05K2201/042—Stacked spaced PCBs; Planar parts of folded flexible circuits having mounted components in between or spaced from each other
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K2201/00—Indexing scheme relating to printed circuits covered by H05K1/00
- H05K2201/09—Shape and layout
- H05K2201/09209—Shape and layout details of conductors
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K2201/00—Indexing scheme relating to printed circuits covered by H05K1/00
- H05K2201/20—Details of printed circuits not provided for in H05K2201/01 - H05K2201/10
- H05K2201/2036—Permanent spacer or stand-off in a printed circuit or printed circuit assembly
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02B—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
- Y02B70/00—Technologies for an efficient end-user side electric power management and consumption
- Y02B70/10—Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Dc-Dc Converters (AREA)
- Rectifiers (AREA)
- Power Conversion In General (AREA)
Abstract
本發明涉及一種功率轉換裝置(1),包括:第一電路板(100),所述第一電路板包括第一驅動器(102)和至少四個成對(103、104)佈置的 GaN HEMT 元件(101),所述對並聯連接;第二電路板(200),所述第二電路板包括第二驅動器(202)和至少四個成對(203、204)佈置的 MOSFET 元件(201),所述對並聯連接;功率轉換裝置包括兩個電路板之間的至少兩個電連接(20);其中第一電路板在第一平面中延伸並且第二電路板在第二平面中延伸,並且第一和第二電路板佈置成一個在另一個之上,使得兩個平面平行延伸並且兩個電路之間的電連接板沿基本垂直於所述第一和第二平面的方向延伸;並且其中所述至少四個 GaN HEMT 元件(101)與所述第一驅動器(102)等距地電連接。本發明還涉及一種包括這種功率轉換裝置的系統(2、3)及其用途。
Description
本發明涉及一種功率轉換裝置,尤其涉及一種包括 GaN HEMT 元件的功率轉換裝置。
矽 MOSFET是常關(normally-off)元件,即在一定的正閾值電壓下它們會導通。氮化鎵(GaN)高電子遷移率電晶體(high-electron-mobility transistor,HEMT)元件通常是常開的,但也可以是常關的。GaN HEMT 元件的優越特性是其導通電阻低,GaN HEMT 的 Rds(on) 值低於矽 MOSFET,從而降低了傳導損耗。GaN HEMT 元件通常具有負閾值電壓,即它在零柵極電壓下常開。如果電晶體處於導通狀態並打開電源,則可能會出現短路。GaN HEMT 元件具有比矽更低的開關損耗和傳導損耗,但由於它們的常開行為(除非專門製造增強模式 GaN HEMT),它們在電力電子應用中容易發生短路。這種短路在電力電子設備中是毀滅性的,但在例如低壓射頻應用中問題不大。
與通常工作頻率約為 ~100 Hz 的矽 MOSFET 相比,GaN 元件可以在更高的工作頻率下驅動,例如 1 MHz,用於電力電子應用。但是,高於 ~66 Hz 的頻率會引入導致電磁兼容性(electromagnetic compatibility,EMC)問題的二次諧波。儘管可以使用大型 LC 濾波器對其進行濾波,但這樣的濾波器是不切實際的,因為它變得笨重並且違背了使用 GaN 的目的,因為 GaN 可能會使用更小的無源元件來減小系統尺寸。
此外,GaN HEMT 的開關時間比矽 MOSFET 快得多並且會產生電磁輻射。快速開關時間以及低輸入和輸出電容較為可取。與矽 MOSFET 相比,GaN HEMT 元件具有不同的反向電流特性(即 ID 與 VGS 圖中的第三象限傳導)。當處於關閉狀態時,要求 GaN HEMT 可以傳導反向電流,而半橋的另一個 GaN HEMT 在典型的半橋配置中處於開啟狀態。反向電流傳導通常可以由矽 MOSFET 的體二極體(body diode)處理。
此外,GaN HEMT 元件通常受限於低於碳化矽的電壓,即低於 1200V。因此,碳化矽 MOSFET 一直是高功率和高電壓應用電晶體的首選。然而,對於 AC-DC 轉換,GaN 的能效比碳化矽高約 30%,這導致人們對 GaN 在高功率電子設備中的應用產生了興趣。
GaN 電晶體元件可在電力電子中用作級聯(cascode)元件或增強型 HEMT 元件。級聯由集成了驅動 HEMT 的矽 MOSFET 的 HEMT 組成。HEMT 元件是常開的,集成的 MOSFET 控制 HEMT 的行為就好像它常關但實際是常開一樣。
到目前為止,即使 GaN 元件已顯示出高功率應用的前景,GaN 元件的應用也僅限於中等功率(大約 4 kW)。為了達到更高的功率,可能需要並聯 GaN 元件。然而,並聯許多電晶體可能會導致電晶體階梯上的電壓降。此電壓降大到足以導致單個元件發熱更多,從而增加導通電阻,並且可能會燒毀一個或多個元件,從而導致電子設備故障。由於 GaN HEMT 元件的開關時間極快,任何兩個 GaN HEMT 元件都可能接收到不同量的電流,從而導致元件故障。這是因為每個單獨的電晶體與其他電晶體不一致。
級聯 GaN 元件的一種解決方案是使用在工作頻率下充當電感器的鐵氧體,這會減慢級聯元件的開關速度,以確保在 GaN 元件並聯運行時適當的電流共享。
使用增強模式 (e-mode) GaN HEMT 元件可讓元件以常關模式運行。在 HEMT 結構的製造過程中,可以通過 pGaN 柵極接觸來配置常關操作。增強模式 GaN HEMT 元件的開關速度非常快,但增強模式 GaN HEMT 元件之間不正確的電流共享可能會導致元件燒毀。與矽和碳化矽 MOSFET 相比,減慢增強模式 GaN HEMT 元件的速度違背了使用 GaN 的目的。
首先使用並聯 GaN 元件的替代方法是可以使用更大的 GaN 元件。然而,此類元件的輸入電流分佈對使用盡可能多的元件接觸面積作為源極接觸變得敏感。
因此,需要一種解決方案來克服現有元件的這些缺點。
美國專利申請 No. 2005/189566 A1 公開了一種開關電源模塊,包括兩個電路板、驅動電路部分和執行整流操作的二極體。
本發明的一個目的是提供一種改進的解決方案,以減輕現有元件的上述缺點。此外,本發明的另一個目的是提供一種可靠的、適用於高功率電子元件的、能夠實現高開關頻率的功率轉換裝置。
本發明由所附獨立請求項限定,實施例在所附從屬請求項、以下描述和附圖中闡述。
根據本發明的第一方面,提供了一種功率轉換裝置,包括:第一電路板,所述第一電路板包括第一驅動器和至少四個成對佈置的 GaN HEMT 元件,其中每一 GaN HEMT 元件對是所述至少四個 GaN HEMT 元件的半橋,所述 GaN HEMT 元件對並聯連接;第二電路板,所述第二電路板包括第二驅動器和至少四個成對佈置的 MOSFET 元件,其中每一 MOSFET 元件對是所述至少四個 MOSFET 元件的半橋,所述 MOSFET 元件對並聯連接;其中所述功率轉換裝置還包括在所述第一電路板和所述第二電路板之間的至少兩個板間電連接,其中所述第一電路板上的所述 GaN HEMT 元件對的源極輸出通過所述至少兩個板間電連接而電連接到所述第二電路板上的所述 MOSFET 元件對的源極輸出,並且所述第一電路板上的所述 GaN HEMT 元件對的汲極輸出通過所述至少兩個板間電連接而電連接到所述第二電路板上的所述 MOSFET 元件對的汲極輸出;其中所述第一電路板在第一平面中延伸,所述第二電路板在第二平面中延伸,並且所述第一電路板和所述第二電路板其中之一佈置成在另一之上,使得所述第一平面和所述第二平面平行延伸,並且所述第一電路板和所述第二電路板之間的所述至少兩個板間電連接沿基本垂直於所述第一平面和所述第二平面的方向延伸;其中所述至少四個 GaN HEMT 元件與所述第一驅動器等距地電連接。
發明人已經意識到使用多個 GaN 元件來實現更高的功率轉換是有利的,其中多個 GaN 元件表現為單個元件。此外,通過提供一種對稱構建的功率轉換裝置,其中兩個電路板彼此垂直排列並且在 GaN HEMT 元件和第一驅動器之間具有等距連接,提高了可靠性且避免了由於 GaN HEMT 元件在高工作頻率下的工作差異而導致的故障。
此外,本發明的優點可能在於,GaN HEMT 元件共享與驅動器相等的距離,GaN HEMT 元件與驅動器的距離相等,避免了 GaN HEMT 元件之間的電流共享的延遲和變化,結合到 MOSFET 元件的電路板的板間電連接,提供了兩個電路板表現為單個功率轉換裝置。
成對的兩個 GaN HEMT 元件可以佈置為 GaN HEMT 元件的半橋。功率轉換裝置可以耦合到電源,例如交流電源。第一電路板可以耦合到電源的線電壓輸出。第二電路板可以耦合到電源的中性線輸出。
第一和第二電路板可以是單獨的印刷電路板。
GaN HEMT 元件和第一驅動器之間的等距電連接可能意味著從每個 GaN HEMT 的極到第一驅動器上的相應連接點的距離可以相等。所述相等可以表示在 ±1% 的容差範圍內。
第一電路板可以在第一 X-Y 平面中限定的第一平面中延伸。第二電路板可以在第二 X-Y 平面中限定的第二平面中延伸。第一平面和第二平面平行佈置。此外,兩個平面可以在 Z 方向上分開。Z 方向對於第一和第二 X-Y 平面可以是共同的。兩個電路板之間的至少兩個板間電連接可以在所述 Z 方向上延伸以電連接兩個電路板。
中性線上的 MOSFET 與線電壓上的 GaN HEMT 元件的長距離連接可能會干擾以最高開關速度驅動 GaN HEMT 元件。這可以通過根據本發明的功率轉換裝置來緩解。
在實施例中,兩個電路板之間的板間電連接可以提供為電路板之間的機械支撐。機械支撐可以分別基本上垂直於電路板延伸的平面延伸。機械支撐既可以用作佈置在另一電路板上方的電路板之一的支撐件,也可以用作兩個電路板之間的電連接。機械支撐可以佈置在相應電路板的邊緣部分。機械支撐可以沿著電路板的周邊對稱地佈置。兩個電路板的尺寸可以基本相等。機械支撐的長度可以設定兩個電路板之間的距離。機械支撐的長度可以選擇得盡可能短,這取決於物理限制,例如兩個電路板可以佈置成多靠近彼此。兩個電路板上的每一個上的機械支撐可以佈置在與相對應的成對 GaN HEMT 或 MOSFET 元件的電連接所在的點處,從而通過機械支撐提供電連接。在實施例中,可以有 2、4、6、8、10、12、14、16、18 或 20 個佈置在兩個電路板之間的機械支撐。優選地,可以提供偶數個沿電路板的周邊對稱分佈的機械支撐。在實施例中,除了提供兩個電路板之間的電連接的至少兩個機械支撐外,還可以有一個、兩個或多個機械支撐不提供兩個支架之間的電連接,而僅用作電路板之間的物理支撐。在所有提供的機械支撐中,至少兩個(例如兩個、四個或八個)機械支撐可以提供電路板之間的電連接。所有機械支撐可以一起沿電路板的周邊對稱分佈。
在實施例中,兩個電路板之間的板間電連接可以通過螺釘連接來提供。這種螺釘連接例如可以是如上所述的機械連接,其通過螺釘附接到電路板上。
在實施例中,兩個電路板之間的至少兩個板間電連接可以提供 GaN HEMT 元件對和 MOSFET 元件對之間的等距電連接。為了進一步提高功率轉換裝置的對稱性和性能,兩個電路板之間的板間電連接可以提供為從兩 GaN HEMT 元件對到兩 MOSFET 元件對的電連接,使得每一 GaN HEMT 元件對和 MOSFET 元件對的連接長度相等。因此,從第一對的 GaN HEMT 元件到第一對的 MOSFET 元件的連接距離可以等於從第二對的 GaN HEMT 元件到第二對的 MOSFET 元件的連接距離。這同樣適用於第一對的 GaN HEMT 元件到第二對的 MOSFET 元件以及第二對的 GaN HEMT 元件到第一對的 MOSFET 元件。
在實施例中,任一 GaN HEMT 元件對中的兩個 GaN HEMT 元件可以串聯佈置。這同樣適用於第二電路板中的 MOSFET 元件對中的 MOSFET 元件。電路板之間的板間電連接可以從分別串聯佈置的 GaN HEMT 元件對的每一端到分別串聯佈置的 MOSFET 元件對的每一端提供。在這樣的實施例中,在兩個電路板之間可以存在至少四個板間電連接。 在實施例中,所有這樣的四個板間電連接可以從成對的 GaN HEMT 元件的一端到對應的成對的 MOSFET 元件的一端等距。
在實施例中,每一 GaN HEMT 元件對可以是單片集成的。兩個 GaN HEMT 元件的半橋的單片集成的優點可以是可以有效地降低寄生電感和寄生電容。半橋是電力電子中電晶體的常見配置。因此,可能優選將兩個 GaN HEMT 元件單片集成為半橋,以應用於多種電力電子應用。
在實施例中,第一電路板包括為 GaN HEMT 元件配置的一個或多個去耦電容器。去耦電容器可以與兩 GaN HEMT 元件對並聯連接。在實施例中,去耦電容器可以與兩 GaN HEMT 元件對中的每一對並聯對稱地佈置。去耦電容器的電容可以是10-50 pF。當第二 GaN HEMT 元件對中的次級側 GaN HEMT 元件進行開關時,可能會導致不穩定的 DC+ 電壓,而這是不利的。去耦電容可以穩定 DC+ 電壓,因此能夠使用更薄的電連接,並確保 GaN HEMT 元件在驅動器切換時能夠正確共享電流。厚的電連接可能是不切實際的,而且成本更高。
在實施例中,第一驅動器可以被配置為驅動 GaN HEMT 元件,其中第一驅動器可以具有多個接腳並且每個 GaN HEMT 元件與所述多個接腳中的一個直接電連接。驅動器可以是單通道電隔離柵極驅動器 IC(single-channel galvanically isolated gate driver IC),例如英飛凌 1EDF5673F。在實施例中,每個 GaN HEMT 元件直接佈置在多個接腳之一上。通過將每個 GaN HEMT 元件直接佈置在第一驅動器的一個接腳上,可以通過將由於 GaN HEMT 元件的非同步操作導致的故障風險最小化而進一步提高功率轉換裝置的可靠性。
在實施例中,MOSFET 元件可以與第二驅動器等距地電連接。因此,如上文針對第一電路板所述,出於與 GaN HEMT 元件相同的原因,第二電路板的 MOSFET 元件可以與第二驅動器等距離佈置。
在實施例中,功率轉換裝置還可以包括電連接在每一 GaN HEMT 元件對的兩個 GaN HEMT 元件之間的電感器。電感器可以被配置為直接向兩 GaN HEMT 元件對供電。電感器可以佈置在 AC 電源和第一電路板之間。
在實施例中,電感器可以與 GaN HEMT 元件對等距地電連接。電感器由此可以佈置成與兩 GaN HEMT 元件對中的每一對具有相等的連接距離。從而可以確保提供給兩 GaN HEMT 元件對的功率盡可能相等,以防止可能導致故障的 GaN HEMT 元件的任何操作差異。
根據本發明的第二方面,提供了一種系統,包括兩個根據上述實施例中的任一個的功率轉換裝置,其中所述兩個功率轉換裝置並聯電連接。此外,兩個功率轉換裝置的第一和第二驅動器中的每一個可以被配置為與相同的數位時脈同步。在實施例中,所述系統可以包括連接到每個驅動器的數位時脈。
在實施例中,所述系統可以包括三個或六個根據上述實施例中的任一個的功率轉換裝置。功率轉換裝置可以被佈置和配置用於三相主電源的三相。
根據本發明的第三方面,提供根據上述實施例中的任一實施例的功率轉換裝置或系統的用途,用於對電動車輛進行充電。本發明的功率轉換器或系統的可靠性和功能性可以適用於電動車輛的充電。由於快速運行的 GaN HEMT 元件的可靠運行,與已知充電器相比,這種充電器的性能可以得到改進。
下文將參照附圖更全面地描述本發明,其中示出了本發明的優選實施例。然而,本發明可以以許多不同的形式體現,並且不應被解釋為限於本文所闡述的實施例;相反,提供這些實施例是為了使本公開徹底和完整,並將本發明的範圍充分傳達給本領域技術人員。在附圖中,相同的數字指代相同的元件。
圖 1 示出了包括第一電路板 100 和第二電路板 200 的功率轉換裝置 1 的方塊圖。功率轉換裝置 1 連接到 AC 電源 10。第一電路板 100 連接到電源 10 的線電壓輸出 L,第二電路板 200 連接到電源 10 的中性線輸出 N。
第一電路板 100 包括第一驅動器 102、第一對 103 的 GaN HEMT 元件 101 和第二對 104 的 GaN HEMT 元件 101。第一對 103 和第二對 104 並聯連接。每個第一對 103 和第二對 104 包括兩個 GaN HEMT 元件 101。每個第一對 103 和第二對 104 中的兩個 GaN HEMT 元件 101 串聯連接。具有成對的 GaN HEMT 元件 101 的第一對 103 和第二對 104 經由電感器 105 耦合到電源 10 的線電壓輸出 L。電感器 105 在串聯連接的兩個 GaN HEMT元件 101 之間連接到成對的 GaN HEMT 元件 101 的第一對 103 和第二對 104。
每個 GaN HEMT 元件 101 連接到第一驅動器 102。每個 GaN HEMT 元件 101 以其柵極連接到第一驅動器 102。所述四個 GaN HEMT 元件 101 等距連接到第一驅動器 102。每個第一對 103 和第二對 104 中的兩個 GaN HEMT 元件 101 中,其中之一的 GaN HEMT 元件 101 的源極連接到另一個 GaN HEMT 元件 101的汲極。來自每個第一對 103 和第二對 104 的輸出端由此是一個源極、一個汲極和兩個柵極。
第一驅動器 102 被配置為驅動 GaN HEMT 元件 101 並且 GaN HEMT 元件 101 電連接到第一驅動器 102 的接腳。在優選實施例中,與第一驅動器 102 等距連接的 GaN HEMT 元件 101 直接佈置在第一驅動器 102 的接腳上,或者基本上鄰接第一驅動器 102 的接腳。這樣的佈置是有利的,因為靠近第一驅動器 102 的 GaN HEMT 元件 101 的相等接近確保了 GaN HEMT 元件 101 的相等電流共享。
第二電路板 200 包括第二驅動器 202、第一對 203 的 MOSFET 元件 201 和第二對 204 的 MOSFET 元件 201。第一對 203 和第二對 204 並聯連接。每個第一對 203 和第二對 204 包括兩個 MOSFET 元件 201。每個第一對 203 和第二對 204 中的兩個 MOSFET 元件 201 串聯連接。具有成對的 MOSFET 元件 201 的第一對 203 和第二對 204耦合到電源 10 的中性線輸出 N。
每個 MOSFET 元件 201 連接到第二驅動器 202。每個 MOSFET 元件 201 以其柵極連接到第二驅動器 202。所述四個 MOSFET 元件 201 等距連接到第二驅動器 202。每個第一對 203 和第二對 204 中的兩個 MOSFET 元件 201 中,其中之一的 MOSFET 元件 201 的源極連接到另一個 MOSFET 元件 201的汲極。來自每個第一對 203 和第二對 204 的輸出端由此是一個源極、一個汲極和兩個柵極。
第一對 103 和第二對 104 中成對的 GaN HEMT 元件 101 平行佈置在來自電源 10 的線電壓上,而成對的慢開關(矽)MOSFET 元件 201 佈置在來自電源 10 的中性線上。優選的 GaN HEMT 元件 101 的源極和汲極在第一電路板 100 和第二電路板 200 之間佈置有交替的 DC+ 和 DC- 連接,以將 GaN HEMT 元件 101 的源極和汲極電連接到第二電路板 200 上的 MOSFET 元件 201 的源極和汲極。
GaN HEMT 元件 101 的源極和汲極電連接到第二電路板 200 上的 MOSFET 元件 201 的源極和汲極是由第一電路板 100 和第二電路板 200 之間的板間電連接 20 提供。第一對 103 和第二對 104 中成對的 GaN HEMT 元件 101 的源極輸出經由第一電路板 100 和第二電路板 200 之間的板間電連接 20 而電連接到在第二電路板 200 上的第一對 203 和第二對 204 中成對的 MOSFET 元件 201 的源極輸出。類似地,第一對 103 和第二對 104 中成對的 GaN HEMT 元件 101 的汲極輸出經由第一電路板 100 和第二電路板 200 之間的板間電連接 20 而電連接到在第二電路板 200 上的第一對 203 和第二對 204 中成對的 MOSFET 元件 201 的汲極輸出。
去耦電容器 106 與第一電路板 100 上的第一對 103 和第二對 104 中成對的 GaN HEMT 元件 101 並聯佈置。去耦電容器 206 與第二電路板 200 上的第一對 203 和第二對 204 中成對的 MOSFET 元件 101 並聯佈置。
圖 2 示出了佈置在第二電路板 200 頂部的第一電路板 100,其中四個板間電連接 20 也提供作為第一電路板 100 和第二電路板 200之間的機械連接。第一電路板 100 在第一平面 X1-Y1 中延伸。第二電路板 200 在第二平面 X2-Y2 中延伸。板間電連接 20 至少部分地在第一平面 X1-Y1 和第二平面 X2-Y2 之間的 Z 方向上延伸。Z 方向垂直於平第一平面 X1-Y1 和第二平面 X2-Y2。通過這樣的佈置,可以在第一電路板 100 和第二電路板 200 之間的元件之間的電連接方面實現對稱。
圖 3 示出了根據本發明實施例的第一電路板 100 和第二電路板 200 的佈局示例。在第一電路板 100 上,GaN HEMT 元件 101 被佈置成在每個GaN HEMT 元件 101 的柵極和第一驅動器 102 的接腳之間具有第一板內第一板電連接 111。這四個第一板內第一板電連接 111 是等距的。因此,這四個第一板內第一板電連接 111 在四個 GaN HEMT 元件 101 的柵極和第一驅動器 102 之間提供相等的距離。此外,每個 GaN HEMT 元件 101 具有到第一電路板 100 和第二電路板 200 之間的板間電連接 20 的第二板內第一板電連接 112。每個 GaN HEMT 元件 101 和板間電連接 20 之間的第二板內第一板電連接 112 是等距的。因此,第二板內第一板電連接 112 為所有 GaN HEMT 元件 101 提供到第一電路板 100 和第二電路板 200 之間的板間電連接 20 的相等距離。
在第二電路板 200 上,MOSFET 元件 201 被佈置成在每個 MOSFET 元件 201 的柵極和第二驅動器 202 的接腳之間具有第一板內第二板電連接 211。這四個第一板內第二板電連接 211是等距的。因此,這四個第一板內第二板電連接 211 在四個 MOSFET 元件 201 的柵極和第二驅動器 202 之間提供相等的距離。此外,每個 MOSFET 元件 201 具有到第一電路板 100 和第二電路板 200 之間的板間電連接 20 的第二板內第二板電連接 212。每個 MOSFET 元件 201 和板間電連接 20 之間的第二板內第二板電連接 212 是等距的。因此,第二板內第二板電連接 212 為所有 MOSFET 元件 201 提供到第一電路板 100 和第二電路板 200 之間的板間電連接 20 的相等距離。
圖 4 示出了根據本發明實施例的第一電路板 100 和第二電路板 200 的另一個佈局示例。在第一電路板 100 中,GaN HEMT 元件 101 直接佈置在第一驅動器 102 的接腳上。GaN HEMT 元件 101 和第一驅動器 102 之間的第一板內第一板電連接由此有效地製成等距,並且在同時縮短了第一板內第一板電連接,而進一步提高了組件之間的連接穩定性。此外,第一對 103 和第二對 104 中成對的 GaN HEMT 元件 101 一體形成。一體形成的成對的 GaN HEMT 元件 101 可以是單片集成(monolithically integrated)的。第一對 103 和第二對 104 中成對的 GaN HEMT 元件 101 由此直接在第一驅動器 102 的相應接腳上彼此一體形成。每個 GaN HEMT 元件 101和第一電路板 100 和第二電路板 200 之間的板間電連接 20 之間的第二板內第一板電連接 112 保持等距。
在第二電路板 200 中,MOSFET 元件 201 直接佈置在第二驅動器 202 的接腳上。MOSFET 元件 201 和第二驅動器 202 之間的第一板內第二板電連接由此有效地製成等距,並且在同時縮短了第一板內第二板電連接,而進一步提高了組件之間的連接穩定性。此外,第一對 203 和第二對 204 中成對的 MOSFET 元件 201 一體形成。一體形成的成對的 MOSFET 元件 201 可以是單片集成的。第一對 203 和第二對 204 中成對的 MOSFET 元件 201 由此直接在第二驅動器 202 的相應接腳上彼此一體形成。每個 MOSFET 元件 201和第一電路板 100 和第二電路板 200 之間的板間電連接 20 之間的第二板內第二板電連接 212 保持等距。
圖 5 示出了根據本發明實施例的系統 2,其中所述系統包括並聯連接的兩個功率轉換裝置 1a、1b。系統 2 包括提供線電壓輸出 L 和中性線輸出 N 的電源 10。線電壓輸出 L 被提供給功率轉換裝置 1a、1b 的各第一電路板 100a、100b。中性線輸出 N 被提供給功率轉換裝置 1a、1b 的各第二電路板 200a、200b。
系統 2 的每個功率轉換裝置 1a、1b 可以分別佈置成:具有 GaN HEMT 元件 101 的第一電路板 100a、100b 分別在具有 MOSFET 元件 201 的第二電路板 200a、200b 的頂部或下方,並且在每個 GaN HEMT 元件 101 和相應的第一驅動器 102 之間具有等距的電連接。
圖 6 圖示了根據本發明實施例的系統 3,其中系統 3 被提供為包括六個功率轉換裝置 1a、1b、1c、1d、1e、1f 的三相 AC-DC 轉換器。系統 3 具有提供三相 AC 輸入的電源 12。第一相被提供給並聯佈置的功率轉換裝置 1a、1b。第二相被提供給並聯佈置的功率轉換裝置 1c、1d。第三相被提供給並聯佈置的功率轉換裝置 1e、1f。系統 3 可用作充電站大功率快速充電器的 AC-DC 轉換器或電動汽車的車載充電器。
系統 3 的每個功率轉換裝置 1a、1b、1c、1d、1e、1f 可以分別被佈置為:具有 GaN HEMT 元件 101 的第一電路板 100 在具有 MOSFET 元件 201 的第二電路板 200 的頂部或下方,並且在每個 GaN HEMT 元件 101 和相應的第一驅動器 102 之間具有等距的電連接。
在附圖和說明書中,已經公開了本發明的優選實施例和示例,並且儘管使用了特定術語,但它們僅用於一般和描述性意義,而不是為了限制的目的,本發明的範圍被設定 在以下權利要求中提出。
1、1a、1b、1c、1d、1e、1f:功率轉換裝置
10、12:電源
100、100a、100b:第一電路板
101:GaN HEMT 元件
102:第一驅動器
103、203:第一對
104、204:第二對
105:電感器
106、206:去耦電容器
111:第一板內第一板電連接
112:第二板內第一板電連接
2、3:系統
20:板間電連接
200、200a、200b:第二電路板
201:MOSFET 元件
202:第二驅動器
211:第一板內第二板電連接
212:第二板內第二板電連接
L:線電壓輸出
N:中性線輸出
X1-Y1:第一平面
X2-Y2:第二平面
Z:方向
以下結合附圖闡述本申請的優選實施例,其中
圖 1 示出了功率轉換裝置的電路方塊圖。
圖 2 示出了功率轉換裝置的透視圖。
圖 3 示出了功率轉換裝置的兩個電路板的示意性俯視圖。
圖 4 示出了功率轉換裝置的兩個電路板的示意性俯視圖。
圖 5 示出了系統的電路方塊圖。
圖 6 示出了用於三相功率轉換的系統的電路方塊圖。
1:功率轉換裝置
10:電源
100:第一電路板
101:GaN HEMT元件
102:第一驅動器
103、203:第一對
104、204:第二對
105:電感器
106、206:去耦電容器
20:板間電連接
200:第二電路板
201:MOSFET元件
202:第二驅動器
L:線電壓輸出
N:中性線輸出
Claims (16)
- 一種功率轉換裝置,包括; 第一電路板,包括: 第一驅動器;以及 至少四個成對佈置的 GaN HEMT 元件,其中每一 GaN HEMT 元件對是所述至少四個 GaN HEMT 元件的半橋,所述 GaN HEMT 元件對並聯連接; 第二電路板,包括: 第二驅動器;以及 至少四個成對佈置的 MOSFET 元件,其中每一 MOSFET 元件對是所述至少四個 MOSFET 元件的半橋,所述 MOSFET 元件對並聯連接; 其中所述功率轉換裝置還包括在所述第一電路板和所述第二電路板之間的至少兩個板間電連接,其中所述第一電路板上的所述 GaN HEMT 元件對的源極輸出通過所述至少兩個板間電連接而電連接到所述第二電路板上的所述 MOSFET 元件對的源極輸出,並且所述第一電路板上的所述 GaN HEMT 元件對的汲極輸出通過所述至少兩個板間電連接而電連接到所述第二電路板上的所述 MOSFET 元件對的汲極輸出; 其中所述第一電路板在第一平面中延伸,所述第二電路板在第二平面中延伸,並且所述第一電路板和所述第二電路板其中之一佈置成在另一之上,使得所述第一平面和所述第二平面平行延伸,並且所述第一電路板和所述第二電路板之間的所述至少兩個板間電連接沿基本垂直於所述第一平面和所述第二平面的方向延伸;以及 其中所述至少四個 GaN HEMT 元件與所述第一驅動器等距地電連接。
- 如請求項 1 所述的功率轉換裝置,其中所述第一電路板和所述第二電路板之間的所述至少兩個板間電連接設置為所述第一電路板和所述第二電路板之間的機械支撐。
- 如請求項 1 所述的功率轉換裝置,其中所述第一電路板和所述第二電路板之間的所述至少兩個板間電連接為螺釘連接。
- 如請求項 1 所述的功率轉換裝置,其中所述第一電路板和所述第二電路板之間的所述至少兩個板間電連接提供所述 GaN HEMT 元件對和成所述 MOSFET 元件對之間的等距電連接。
- 如請求項 1 所述的功率轉換裝置,其中所述 GaN HEMT 元件對是單片集成的。
- 如請求項 1 所述的功率轉換裝置,其中所述第一電路板包括為所述 GaN HEMT 元件配置的去耦電容器。
- 如請求項 6 所述的功率轉換裝置,其中所述去耦電容器對稱地並聯連接每一所述 GaN HEMT 元件對。
- 如請求項 1 所述的功率轉換裝置,其中所述第一驅動器被配置為驅動所述 GaN HEMT 元件,其中所述第一驅動器具有多個接腳,並且每一所述 GaN HEMT 元件與所述多個接腳中的一個直接連接。
- 如請求項 8 所述的功率轉換裝置,其中每一所述 GaN HEMT 元件直接佈置在所述多個接腳之一上。
- 如請求項 1 所述的功率轉換裝置,其中所述 MOSFET 元件與所述第二驅動器等距離地電連接。
- 如請求項 1 所述的功率轉換裝置,還包括至少一個電感器,電連接在所述至少四個 GaN HEMT 元件的公共節點和電源之間。
- 如請求項 11 所述的功率轉換裝置,其中所述電感器等距地與所述 GaN HEMT 元件對電連接。
- 一種系統,包括兩個根據請求項 1 所述的功率轉換裝置,其中所述兩個功率轉換裝置並聯電連接,其中每一所述第一驅動器和所述第二驅動器被配置為與相同的數位時脈同步。
- 如請求項 13 所述的系統,包括三個或六個根據請求項 1 所述的功率轉換裝置,其中所述功率轉換裝置被配置用於三相主電源的三相。
- 為電動車輛充電的根據請求項 1 所述的電力轉換裝置的用途。
- 為電動車輛充電的根據請求項 13 所述的系統的用途。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP21172959.5A EP4090139B1 (en) | 2021-05-10 | 2021-05-10 | Power converter device |
EP21172959.5 | 2021-05-10 |
Publications (1)
Publication Number | Publication Date |
---|---|
TW202245388A true TW202245388A (zh) | 2022-11-16 |
Family
ID=75887871
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW111114960A TW202245388A (zh) | 2021-05-10 | 2022-04-20 | 功率轉換裝置和包括此功率轉換裝置的系統 |
Country Status (6)
Country | Link |
---|---|
US (1) | US20240235412A1 (zh) |
EP (2) | EP4090139B1 (zh) |
JP (1) | JP2024516899A (zh) |
CN (1) | CN117242687A (zh) |
TW (1) | TW202245388A (zh) |
WO (1) | WO2022238231A1 (zh) |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004222486A (ja) * | 2002-12-27 | 2004-08-05 | Murata Mfg Co Ltd | スイッチング電源モジュール |
-
2021
- 2021-05-10 EP EP21172959.5A patent/EP4090139B1/en active Active
-
2022
- 2022-04-20 TW TW111114960A patent/TW202245388A/zh unknown
- 2022-05-05 JP JP2023569747A patent/JP2024516899A/ja active Pending
- 2022-05-05 US US18/560,299 patent/US20240235412A1/en active Pending
- 2022-05-05 EP EP22727341.4A patent/EP4338272A1/en active Pending
- 2022-05-05 CN CN202280031866.1A patent/CN117242687A/zh active Pending
- 2022-05-05 WO PCT/EP2022/062158 patent/WO2022238231A1/en active Application Filing
Also Published As
Publication number | Publication date |
---|---|
US20240235412A1 (en) | 2024-07-11 |
EP4090139B1 (en) | 2023-10-25 |
EP4338272A1 (en) | 2024-03-20 |
JP2024516899A (ja) | 2024-04-17 |
EP4090139A1 (en) | 2022-11-16 |
CN117242687A (zh) | 2023-12-15 |
EP4090139C0 (en) | 2023-10-25 |
WO2022238231A1 (en) | 2022-11-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6158210B2 (ja) | 半導体モジュール及びその製造方法 | |
TW201711364A (zh) | 電力轉換裝置及驅動裝置 | |
US10784235B2 (en) | Silicon carbide power module | |
US10243477B2 (en) | Semiconductor device having a bypass capacitor | |
US7019996B2 (en) | Power converter employing a planar transformer | |
CN106796930B (zh) | 具有分布式栅极的功率晶体管 | |
WO2015015721A1 (ja) | 半導体装置、および電力変換装置 | |
US11901835B2 (en) | Low inductance bus assembly and power converter apparatus including the same | |
US11126773B2 (en) | Method for paralleled SiC power switching devices based on wiring optimization | |
US11336188B2 (en) | Power conversion circuit | |
US8675379B2 (en) | Power converting apparatus having improved electro-thermal characteristics | |
US20230207451A1 (en) | Transfering informations across a high voltage gap using capactive coupling with dti integrated in silicon technology | |
US20240305184A1 (en) | Decoupled pcb structure to parallel power transistors | |
TW202245388A (zh) | 功率轉換裝置和包括此功率轉換裝置的系統 | |
WO2020152036A1 (en) | Power module comprising an active miller clamp | |
TW202011674A (zh) | 緩衝器電路及功率半導體模組以及感應加熱用電源裝置 | |
US10218257B2 (en) | Power converter having parallel-connected semiconductor switches | |
WO2021056592A1 (zh) | 半导体装置、用于功率转换的设备和提供半导体装置的方法 | |
JP6638477B2 (ja) | 半導体装置 | |
JP6624643B2 (ja) | 半導体モジュールおよび該モジュールを用いた電力変換装置 | |
TW201915636A (zh) | 電源變換器模組 | |
US20240313667A1 (en) | Integrated rectifier module | |
JP2013504999A (ja) | パワー半導体モジュール、および、パワー半導体回路装置 | |
EP3419157A1 (en) | Power converter assembly comprising parasitic inductance balancing between multiple inverter stages | |
JP2001250665A (ja) | 半導体式高周波電源装置 |