TW202245057A - Method for improving semiconductor bonding quality - Google Patents

Method for improving semiconductor bonding quality Download PDF

Info

Publication number
TW202245057A
TW202245057A TW110117516A TW110117516A TW202245057A TW 202245057 A TW202245057 A TW 202245057A TW 110117516 A TW110117516 A TW 110117516A TW 110117516 A TW110117516 A TW 110117516A TW 202245057 A TW202245057 A TW 202245057A
Authority
TW
Taiwan
Prior art keywords
dielectric layer
substrate
rich
dangling bond
plasma
Prior art date
Application number
TW110117516A
Other languages
Chinese (zh)
Other versions
TWI769814B (en
Inventor
楊晉嘉
林大鈞
蔡馥郁
蔡濱祥
Original Assignee
聯華電子股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 聯華電子股份有限公司 filed Critical 聯華電子股份有限公司
Priority to TW110117516A priority Critical patent/TWI769814B/en
Application granted granted Critical
Publication of TWI769814B publication Critical patent/TWI769814B/en
Publication of TW202245057A publication Critical patent/TW202245057A/en

Links

Images

Abstract

The invention provides a method for improving semiconductor bonding quality, which comprises the following steps: providing a first substrate, carrying out multiple alternating deposition steps and multiple cycles of plasma steps, each deposition step deposits a dielectric layer, each plasma step carries out a plasma impact on the surface of the deposited dielectric layer to form a dangling bond-rich surface on the surface of the dielectric layer, and carrying out a planarization step to remove part of the dielectric layer and expose a dangling bond-rich surface.

Description

改善半導體鍵合品質的方法Methods for Improving the Quality of Semiconductor Bonding

本發明係有關於半導體製程領域,尤其是關於一種提高鍵合品質的方法。The invention relates to the field of semiconductor manufacturing process, in particular to a method for improving bonding quality.

在半導體製程中,為了節省晶片使用面積,經常以堆疊的方式,在垂直方向上形成多層堆疊的電子元件結構,如此一來可以有效降低總面積,有利於晶片的微小化。In the semiconductor manufacturing process, in order to save the area used by the wafer, a multi-layer stacked electronic component structure is often formed in the vertical direction in a stacked manner, which can effectively reduce the total area and facilitate the miniaturization of the wafer.

另外,也可以分別在不同的晶片上各自形成所需的電子元件後,再將不同的晶片鍵合在一起,同樣達到堆疊的效果。因此,晶片之間的鍵合品質的好壞,將會影響最終半導體元件的良率。提高晶片之間的鍵合品質,也是本領域的發展目標之一。In addition, the required electronic components can also be formed on different wafers, and then the different wafers can be bonded together to achieve the same effect of stacking. Therefore, the quality of the bonding between the wafers will affect the yield of the final semiconductor device. Improving the bonding quality between wafers is also one of the development goals in this field.

本發明提供一種改善半導體鍵合品質的方法,包含提供一第一基底,進行多次交替的沉積步驟以及多次電漿步驟的循環,其中每一次沉積步驟沉積一介電層,每一次電漿步驟在所沉積的該介電層表面進行一電漿衝擊,並在該介電層表面形成一富含懸鍵表面,以及進行一平坦化步驟,移除部分該介電層,並曝露一富含懸鍵表面。The present invention provides a method for improving the quality of semiconductor bonding, comprising providing a first substrate, performing a plurality of alternating deposition steps and a plurality of cycles of plasma steps, wherein each deposition step deposits a dielectric layer, and each plasma step performing a plasma impact on the surface of the deposited dielectric layer to form a dangling bond-rich surface on the surface of the dielectric layer, and performing a planarization step to remove part of the dielectric layer and expose a rich Surface with dangling bonds.

本發明的特徵在於,半導體晶片的接合層在與另一個接合層進行鍵合之前,該接合層的表面愈平坦、且表面所包含有的懸鍵(dangling )數量愈多,愈有利於提高鍵合的品質。然而,若使用平坦化步驟降低表面粗糙度,卻同時會讓表面的懸鍵數量降低。因此本發明提出的方法中,以交替的方式依序進行介電層沉積與電漿衝擊,因此形成交替堆疊的介電層與富懸鍵層。如此一來在後續的平坦化步驟後,很容易將表面停在富懸鍵層,因此表面的懸鍵數量較多,有利於後續的鍵合品質。The present invention is characterized in that before the bonding layer of the semiconductor wafer is bonded with another bonding layer, the flatter the surface of the bonding layer and the more danglings the surface contains, the more favorable it is to improve the bond strength. suitable quality. However, reducing the surface roughness using a planarization step also reduces the number of dangling bonds on the surface. Therefore, in the method proposed by the present invention, dielectric layer deposition and plasma impact are sequentially performed in an alternating manner, thereby forming alternately stacked dielectric layers and dangling bond-rich layers. In this way, after the subsequent planarization step, it is easy to park the surface in the dangling bond-rich layer, so the number of dangling bonds on the surface is large, which is beneficial to the subsequent bonding quality.

為使熟習本發明所屬技術領域之一般技藝者能更進一步了解本發明,下文特列舉本發明之較佳實施例,並配合所附圖式,詳細說明本發明的構成內容及所欲達成之功效。In order to enable those who are familiar with the general skills in the technical field of the present invention to further understand the present invention, the preferred embodiments of the present invention are enumerated below, together with the accompanying drawings, the composition of the present invention and the desired effects are described in detail. .

為了方便說明,本發明之各圖式僅為示意以更容易了解本發明,其詳細的比例可依照設計的需求進行調整。在文中所描述對於圖形中相對元件之上下關係,在本領域之人皆應能理解其係指物件之相對位置而言,因此皆可以翻轉而呈現相同之構件,此皆應同屬本說明書所揭露之範圍,在此容先敘明。For the convenience of description, the drawings of the present invention are only schematic diagrams for easier understanding of the present invention, and the detailed proportions thereof can be adjusted according to design requirements. As for the up-down relationship of relative elements in the figures described in the text, those skilled in the art should understand that they refer to the relative positions of objects, so they can be reversed to present the same components, which should all belong to this specification. The scope of disclosure is described here first.

請參考第1圖,第1圖繪示根據本發明一較佳實施例的一鍵合前的半導體結構的部分剖面示意圖。如第1圖所示,提供一第一介電層10,且在第一介電層10中形成一導線12。其中第一介電層10材質例如是氧化矽,其可能是位於一基底(圖未示)上多層堆疊的介電層中,形成有導線層的最頂部一層。可理解的是,在第一介電層10的下方可能還包含有其他介電層或是導線,在此為了圖式簡潔並未繪出。導線14例如是銅或是其他導電性良好的金屬。接著在第一介電層10與導線12上,依序形成有第二介電層14、第三介電層16與第四介電層18。其中本實施例中,第二介電層14例如為碳氮化矽(SiCN),第三介電層16例如為四乙氧基矽烷(TEOS)、第四介電層18例如為碳氮化矽(SiCN),但不限於此。Please refer to FIG. 1 , which is a partial cross-sectional view of a semiconductor structure before bonding according to a preferred embodiment of the present invention. As shown in FIG. 1 , a first dielectric layer 10 is provided, and a wire 12 is formed in the first dielectric layer 10 . The material of the first dielectric layer 10 is, for example, silicon oxide, which may be the topmost layer of a multi-layer stacked dielectric layer on a substrate (not shown in the figure), where a wiring layer is formed. It can be understood that there may be other dielectric layers or wires under the first dielectric layer 10 , which are not shown here for the sake of brevity. The wire 14 is, for example, copper or other metals with good electrical conductivity. Next, a second dielectric layer 14 , a third dielectric layer 16 and a fourth dielectric layer 18 are sequentially formed on the first dielectric layer 10 and the wire 12 . In this embodiment, the second dielectric layer 14 is, for example, silicon carbon nitride (SiCN), the third dielectric layer 16 is, for example, tetraethoxysilane (TEOS), and the fourth dielectric layer 18 is, for example, carbon nitride Silicon (SiCN), but not limited thereto.

其中,第四介電層18為最頂層的一層結構,也是主要與其他的基底上的介電層進行鍵合的表面,在本發明中也可以將第四介電層18定義為接合層18。Wherein, the fourth dielectric layer 18 is the topmost layer structure, and it is also the surface that is mainly bonded with other dielectric layers on the substrate. In the present invention, the fourth dielectric layer 18 can also be defined as the bonding layer 18. .

在習知技術中,以沉積等方式形成接合層18後,通常最後會進行一電漿步驟在接合層18的表面,以將接合層18表面的化學鍵打斷,並且形成富含懸鍵(dangling bond)表面,也就是提高接合層18的表面的懸鍵數量。當懸鍵的數量愈多,在後續的鍵合步驟中愈能抓取更多例如OH基等自由鍵結,因此鍵合的品質也會愈穩固。In the conventional technology, after the bonding layer 18 is formed by deposition etc., a plasma step is usually carried out on the surface of the bonding layer 18 to break the chemical bonds on the surface of the bonding layer 18 and form dangling-rich bonds. bond) surface, that is, to increase the number of dangling bonds on the surface of the bonding layer 18. When the number of dangling bonds is larger, more free bonds such as OH groups can be captured in the subsequent bonding steps, so the bonding quality will be more stable.

申請人發現,當接合層18的表面愈平坦時,鍵合後的品質也會愈好。然而,通常以化學機械研磨(CMP)等方式來提高接合層18表面的平坦度(降低粗糙度)時,會移除一部分的接合層18表面。在此同時,也會將上述步驟中進行電漿處理後所形成的富含懸鍵的表面也一併移除。The applicant found that when the surface of the bonding layer 18 is flatter, the quality of the bonding is also better. However, when the flatness of the surface of the bonding layer 18 is increased (the roughness is reduced) by chemical mechanical polishing (CMP) or the like, a part of the surface of the bonding layer 18 will be removed. At the same time, the surface rich in dangling bonds formed after the plasma treatment in the above steps is also removed.

因此本發明提供一種改善半導體鍵合品質的方法,藉由本發明的方法所製作的接合層,同時兼具有平坦且富含懸鍵的特性,因此本發明具有改善鍵合品質的優點。Therefore, the present invention provides a method for improving the bonding quality of semiconductors. The bonding layer produced by the method of the present invention has the characteristics of being flat and rich in dangling bonds, so the present invention has the advantage of improving the bonding quality.

第2圖繪示第1圖中的半導體結構的一最頂面接合層的剖面示意圖。在本發明的實施例中,沉積第四介電層(接合層)18的過程中,以重複交替的方式依序進行沉積步驟與電漿步驟。也就是說,將第四介電層18分成多段沉積,且每沉積一定厚度的介電層後就進行一次電漿步驟,接著再繼續沉積介電層以及進行電漿步驟,重複以上步驟多次。此處所述的電漿步驟類似於上述段落所述的電漿步驟,具有將材料層表面的化學鍵打斷而形成懸鍵(也就是矽鍵,(Si-))的功能,因此會在表面形成富含懸鍵表面20。因此,當上述重複交替進行沉積步驟與電漿步驟完成後,從剖面圖來看,會形成由介電層19與富含懸鍵表面20交互的堆疊結構,其中介電層19以及富含懸鍵表面20的材質與上述第四介電層18的材質相同,但是富含懸鍵表面20經過電漿處理而具有更多的懸鍵。此外本實施例中,進行電漿步驟時可能會破壞一部分的介電層表面,因此富含懸鍵表面20的表面可能是一粗糙表面22(為了圖式簡單,只繪出最頂面的富含懸鍵表面20具有粗糙表面22,實際上可能每一個富含懸鍵表面20都具有粗糙表面22)。FIG. 2 is a schematic cross-sectional view of a topmost bonding layer of the semiconductor structure in FIG. 1 . In an embodiment of the present invention, during the process of depositing the fourth dielectric layer (bonding layer) 18 , the deposition step and the plasma step are sequentially performed in a repeating and alternating manner. That is to say, the fourth dielectric layer 18 is deposited in multiple stages, and a plasma step is performed after depositing a certain thickness of the dielectric layer, and then the dielectric layer and the plasma step are continued to be deposited, and the above steps are repeated several times . The plasma step described here is similar to the plasma step described in the above paragraph, and has the function of breaking the chemical bonds on the surface of the material layer to form dangling bonds (that is, silicon bonds, (Si-)), so the surface A dangling bond rich surface 20 is formed. Therefore, when the above-mentioned repeated and alternately performing the deposition step and the plasma step are completed, a stacked structure in which the dielectric layer 19 interacts with the dangling bond-rich surface 20 will be formed, wherein the dielectric layer 19 and the dangling bond-rich surface 20 are formed. The bond surface 20 is made of the same material as the fourth dielectric layer 18 , but the dangling bond-rich surface 20 has more dangling bonds after plasma treatment. In addition, in this embodiment, a part of the surface of the dielectric layer may be damaged during the plasma step, so the surface rich in dangling bonds 20 may be a rough surface 22 (for the sake of simplicity in the drawing, only the top rich surface 22 is drawn. The dangling bond-containing surface 20 has a rough surface 22, and indeed every dangling bond-rich surface 20 may have a rough surface 22).

本實施例中所述的電漿步驟並不限定執行時間長短,依照申請人的實驗結果,每次電漿步驟的執行時間大於1秒。The execution time of the plasma steps described in this embodiment is not limited. According to the applicant's experimental results, the execution time of each plasma step is greater than 1 second.

接著如第3圖所示,進行一平坦化步驟P1,例如為一化學機械研磨(CMP)步驟,以移除一部分的介電層19與部分的富含懸鍵表面20。平坦化步驟的作用目的在於提高接合層18表面的平坦度,也就是降低接合層18表面的粗糙度,因此平坦化步驟P1執行後,若停在富含懸鍵表面20,將會讓粗糙表面22被移除而成為平坦表面。值得注意的是,本實施例中,由於上述過程中已經藉由多次的電漿步驟形成多個富含懸鍵表面20在整個第四介電層(接合層18)內,因此當平坦化步驟P1完成後,將表面停在富含懸鍵表面20的機率變大,也就是說提高富含懸鍵表面20被曝露的機率。此外,在本發明的其他實施例中,還可以藉由觀察平坦化步驟P1所移除的大約厚度,預測平坦化步驟P1後被留下的介電層厚度範圍,並且在沉積與電漿步驟進行時(第2圖),於該範圍附近區域進行更加密集的電漿處理步驟,以進一步提高富含懸鍵表面20被曝露的機率。Next, as shown in FIG. 3 , a planarization step P1 is performed, such as a chemical mechanical polishing (CMP) step, to remove a portion of the dielectric layer 19 and a portion of the dangling bond-rich surface 20 . The purpose of the planarization step is to increase the flatness of the surface of the bonding layer 18, that is, to reduce the roughness of the surface of the bonding layer 18. Therefore, after the planarization step P1 is executed, if it stops at the dangling bond-rich surface 20, the rough surface will 22 is removed to become a flat surface. It should be noted that, in this embodiment, since the above-mentioned process has already formed a plurality of dangling bond-rich surfaces 20 in the entire fourth dielectric layer (bonding layer 18) through multiple plasma steps, when the planarization After step P1 is completed, the probability of stopping the surface on the dangling bond-rich surface 20 becomes greater, that is to say, the probability of the dangling bond-rich surface 20 being exposed increases. In addition, in other embodiments of the present invention, the thickness range of the dielectric layer left after the planarization step P1 can also be predicted by observing the approximate thickness removed by the planarization step P1, and the deposition and plasma steps In doing so (FIG. 2), a more intensive plasma treatment step is performed in the vicinity of this range to further increase the probability of the dangling bond-rich surface 20 being exposed.

後續再如第4圖所示,將接合層18與另一接合層28以面對面的方式進行鍵合。其中,另一接合層28可能是形成在另外一基底上的多層結構的最頂層,同樣可以包含有介電層19與富含懸鍵表面20,其製作方法與材料等特徵可能與上述段落(第1圖至第3圖)所述方法類似,在此不多加贅述。Subsequently, as shown in FIG. 4 , the bonding layer 18 is bonded face-to-face with another bonding layer 28 . Wherein, another bonding layer 28 may be the topmost layer of a multi-layer structure formed on another substrate, and may also include a dielectric layer 19 and a dangling bond-rich surface 20, and its manufacturing method and materials may be the same as those in the above paragraph ( The methods described in Fig. 1 to Fig. 3) are similar and will not be repeated here.

上述鍵合的方法例如包含進行一表面電漿活化(surface plasma activation,SPA)步驟,來再次提高富含懸鍵表面的懸鍵含量。接著可能依序進行通入水氣(提供OH鍵)、高溫脫水(移除水氣以留下Si-O鍵 或 Si-Si鍵)、彼此面對面鍵合等步驟。由於該些技術屬於本領域的習知技術,在此不多加贅述。The aforementioned bonding method includes, for example, performing a surface plasma activation (SPA) step to increase the dangling bond content of the dangling bond-rich surface again. Then, the steps of passing water vapor (providing OH bonds), high-temperature dehydration (removing water vapor to leave Si-O bonds or Si-Si bonds), and face-to-face bonding may be performed in sequence. Since these technologies belong to the known technologies in the art, details are not repeated here.

綜合以上各段落與圖式,本發明一種改善半導體鍵合品質的方法,包含提供一第一基底,進行多次交替的沉積步驟以及多次電漿步驟的循環,其中每一次沉積步驟沉積一介電層,每一次電漿步驟在所沉積的該介電層表面進行一電漿衝擊,並在該介電層表面形成一富含懸鍵表面,以及進行一平坦化步驟,移除部分該介電層,並曝露一富含懸鍵表面。Based on the above paragraphs and drawings, the present invention provides a method for improving the bonding quality of semiconductors, which includes providing a first substrate, performing a plurality of alternate deposition steps and a plurality of cycles of plasma steps, wherein each deposition step deposits a substrate electric layer, each plasma step performs a plasma impact on the surface of the deposited dielectric layer, and forms a dangling bond-rich surface on the surface of the dielectric layer, and performs a planarization step to remove part of the dielectric layer electrical layer, and expose a surface rich in dangling bonds.

在一些實施例中,其中每次該電漿步驟的執行時間大於1秒。In some embodiments, the execution time of each plasma step is greater than 1 second.

在一些實施例中,其中該介電層的材質為碳氮化矽(SiCN)。In some embodiments, the material of the dielectric layer is silicon carbonitride (SiCN).

在一些實施例中,其中該平坦化步驟包含化學機械研磨(CMP),且該平坦化步驟降低該曝露的該富含懸鍵表面的粗糙度。In some embodiments, wherein the planarizing step comprises chemical mechanical polishing (CMP), and the planarizing step reduces the roughness of the exposed dangling bond-rich surface.

在一些實施例中,其中該懸鍵包含矽鍵(Si-)。In some embodiments, the dangling bonds include silicon bonds (Si-).

在一些實施例中,其中更包含將該第一基底與一第二基底進行鍵合。In some embodiments, further comprising bonding the first substrate to a second substrate.

在一些實施例中,其中將該第一基底與一第二基底進行鍵合的步驟包含對該第一基底的該富含懸鍵表面進行一表面電漿活化步驟,再次提高該富含懸鍵表面所包含的懸鍵的數量,對該第二基底的一富含懸鍵表面進行一表面電漿活化步驟,再次提高該富含懸鍵表面所包含的懸鍵的數量,以及將該第一基底與一第二基底各自的該富含懸鍵表面,以面對面方式進行鍵合In some embodiments, the step of bonding the first substrate to a second substrate comprises performing a surface plasmon activation step on the dangling bond-rich surface of the first substrate, again increasing the dangling bond-rich surface. the number of dangling bonds contained in the surface, a surface plasmon activation step is performed on a dangling bond-rich surface of the second substrate, again increasing the number of dangling bonds contained in the dangling bond-rich surface, and the first The dangling bond-rich surfaces of the substrate and a second substrate are bonded in a face-to-face manner

在一些實施例中,其中該第一基底上包含有交替形成的該介電層以及富含懸鍵表面。In some embodiments, the first substrate includes alternately formed dielectric layers and dangling bond-rich surfaces.

本發明的特徵在於,半導體晶片的接合層在與另一個接合層進行鍵合之前,該接合層的表面愈平坦、且表面所包含有的懸鍵(dangling )數量愈多,愈有利於提高鍵合的品質。然而,若使用平坦化步驟降低表面粗糙度,卻同時會讓表面的懸鍵數量降低。因此本發明提出的方法中,以交替的方式依序進行介電層沉積與電漿衝擊,因此形成交替堆疊的介電層與富懸鍵層。如此一來在後續的平坦化步驟後,很容易將表面停在富懸鍵層,因此表面的懸鍵數量較多,有利於後續的鍵合品質。 以上所述僅為本發明之較佳實施例,凡依本發明申請專利範圍所做之均等變化與修飾,皆應屬本發明之涵蓋範圍。 The present invention is characterized in that before the bonding layer of the semiconductor wafer is bonded with another bonding layer, the flatter the surface of the bonding layer and the more danglings the surface contains, the more favorable it is to improve the bond strength. suitable quality. However, reducing surface roughness using a planarization step also reduces the number of dangling bonds on the surface. Therefore, in the method proposed by the present invention, dielectric layer deposition and plasma impact are sequentially performed in an alternating manner, thereby forming alternately stacked dielectric layers and dangling bond-rich layers. In this way, after the subsequent planarization step, it is easy to park the surface in the dangling bond-rich layer, so the number of dangling bonds on the surface is large, which is beneficial to the subsequent bonding quality. The above descriptions are only preferred embodiments of the present invention, and all equivalent changes and modifications made according to the scope of the patent application of the present invention shall fall within the scope of the present invention.

10:第一介電層 12:導線 14:第二介電層 16:第三介電層 18:第四介電層 (接合層) 19:介電層 20:富含懸鍵表面 22:粗糙表面 28:接合層 P1:平坦化步驟 10: The first dielectric layer 12: wire 14: Second dielectric layer 16: The third dielectric layer 18: The fourth dielectric layer (bonding layer) 19: Dielectric layer 20: dangling bond-rich surface 22: rough surface 28: Bonding layer P1: Planarization step

第1圖繪示根據本發明一較佳實施例的一鍵合前的半導體結構的部分剖面示意圖。 第2圖繪示第1圖中的半導體結構的一最頂面接合層的剖面示意圖。 第3圖繪示進行一平坦化步驟後的接合層的剖面示意圖。 第4圖繪示一接合層與另一接合層進行鍵合的剖面示意圖。 FIG. 1 is a schematic partial cross-sectional view of a semiconductor structure before bonding according to a preferred embodiment of the present invention. FIG. 2 is a schematic cross-sectional view of a topmost bonding layer of the semiconductor structure in FIG. 1 . FIG. 3 is a schematic cross-sectional view of the bonding layer after a planarization step. FIG. 4 is a schematic cross-sectional view of a bonding layer bonding with another bonding layer.

18:第四介電層(接合層) 18: The fourth dielectric layer (bonding layer)

19:介電層 19: Dielectric layer

20:富含懸鍵表面 20: dangling bond-rich surface

P1:平坦化步驟 P1: Planarization step

Claims (8)

一種改善半導體鍵合品質的方法,包含: 提供一第一基底; 進行多次交替的沉積步驟以及多次電漿步驟的循環,其中每一次沉積步驟沉積一介電層,每一次電漿步驟在所沉積的該介電層表面進行一電漿衝擊,並在該介電層表面形成一富含懸鍵表面; 進行一平坦化步驟,移除部分該介電層,並曝露一富含懸鍵表面。 A method for improving semiconductor bonding quality, comprising: providing a first base; performing a plurality of alternating deposition steps and a plurality of cycles of plasma steps, wherein each deposition step deposits a dielectric layer, each plasma step performs a plasma impact on the surface of the deposited dielectric layer, and A surface rich in dangling bonds is formed on the surface of the dielectric layer; A planarization step is performed to remove a portion of the dielectric layer and expose a dangling bond rich surface. 如申請專利範圍第1項所述的方法,其中每次該電漿步驟的執行時間大於1秒。The method described in item 1 of the patent claims, wherein the execution time of each plasma step is greater than 1 second. 如申請專利範圍第1項所述的方法,其中該介電層的材質為碳氮化矽(SiCN)。The method described in claim 1, wherein the material of the dielectric layer is silicon carbonitride (SiCN). 如申請專利範圍第1項所述的方法,其中該平坦化步驟包含化學機械研磨(CMP),且該平坦化步驟降低該曝露的該富含懸鍵表面的粗糙度。The method of claim 1, wherein the planarizing step comprises chemical mechanical polishing (CMP), and the planarizing step reduces the roughness of the exposed dangling bond-rich surface. 如申請專利範圍第1項所述的方法,其中該懸鍵包含矽鍵(Si-)。The method described in claim 1, wherein the dangling bonds include silicon bonds (Si-). 如申請專利範圍第1項所述的方法,其中更包含將該第一基底與一第二基底進行鍵合。The method described in claim 1, further comprising bonding the first substrate to a second substrate. 如申請專利範圍第6項所述的方法,其中將該第一基底與一第二基底進行鍵合的步驟包含: 對該第一基底的該富含懸鍵表面進行一電漿步驟,再次提高該富含懸鍵表面所包含的懸鍵的數量; 對該第二基底的一富含懸鍵表面進行一電漿步驟,再次提高該富含懸鍵表面所包含的懸鍵的數量;以及 將該第一基底與一第二基底各自的該富含懸鍵表面,以面對面方式進行鍵合。 The method described in item 6 of the scope of the patent application, wherein the step of bonding the first substrate to a second substrate comprises: performing a plasma step on the dangling bond-rich surface of the first substrate, again increasing the amount of dangling bonds contained in the dangling bond-rich surface; performing a plasma step on a dangling bond-rich surface of the second substrate, again increasing the amount of dangling bonds contained in the dangling bond-rich surface; and The dangling bond-rich surfaces of the first substrate and a second substrate are bonded face-to-face. 如申請專利範圍第1項所述的方法,其中該第一基底上包含有交替形成的該介電層以及富含懸鍵表面。The method according to claim 1, wherein the first substrate includes the dielectric layer and the dangling bond-rich surface alternately formed.
TW110117516A 2021-05-14 2021-05-14 Method for improving semiconductor bonding quality TWI769814B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW110117516A TWI769814B (en) 2021-05-14 2021-05-14 Method for improving semiconductor bonding quality

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW110117516A TWI769814B (en) 2021-05-14 2021-05-14 Method for improving semiconductor bonding quality

Publications (2)

Publication Number Publication Date
TWI769814B TWI769814B (en) 2022-07-01
TW202245057A true TW202245057A (en) 2022-11-16

Family

ID=83439554

Family Applications (1)

Application Number Title Priority Date Filing Date
TW110117516A TWI769814B (en) 2021-05-14 2021-05-14 Method for improving semiconductor bonding quality

Country Status (1)

Country Link
TW (1) TWI769814B (en)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI741988B (en) * 2015-07-31 2021-10-11 日商新力股份有限公司 Stacked lens structure, method of manufacturing the same, and electronic apparatus
CN109671614B (en) * 2017-08-10 2020-08-21 长江存储科技有限责任公司 Wafer bonding method
US10861808B2 (en) * 2018-11-21 2020-12-08 Taiwan Semiconductor Manufacturing Company, Ltd. Bonding structure of dies with dangling bonds
JP2022518352A (en) * 2019-02-05 2022-03-15 フェイスブック・テクノロジーズ・リミテッド・ライアビリティ・カンパニー Process flow for hybrid TFT-based microdisplay projectors
US10879111B1 (en) * 2019-09-16 2020-12-29 Taiwan Semiconductor Manufacturing Co., Ltd. Dielectric plugs

Also Published As

Publication number Publication date
TWI769814B (en) 2022-07-01

Similar Documents

Publication Publication Date Title
US20230187264A1 (en) Methods for bonding semiconductor elements
US7371662B2 (en) Method for forming a 3D interconnect and resulting structures
US10141284B2 (en) Method of bonding semiconductor substrates
JP2003188254A5 (en)
US20180047682A1 (en) Composite bond structure in stacked semiconductor structure
US20080191310A1 (en) By-product removal for wafer bonding process
CN1909206A (en) Method for manufacturing interconnect structure for semiconductor devices
CN101064251A (en) Method for forming semiconductor structure and semiconductor structure
CN1523656A (en) Method of manufacturing semiconductor device
CN111987006B (en) Semiconductor structure and manufacturing method thereof
TW201830594A (en) Package structure and manufacturing method thereof
TWI229918B (en) Method of forming an inter-metal dielectric layer in an interconnect structure
TW202245057A (en) Method for improving semiconductor bonding quality
CN101295656B (en) Semiconductor device and manufacturing method thereof
CN1855473A (en) Multiple etch-stop layer deposition scheme and materials
CN100388480C (en) Thin film in low dielectric constant and fabricating method
KR100960934B1 (en) Metal wiring of semiconductor device and method of manufacturing the same
TW515006B (en) Method for removing moistured part of FSG layer after polishing treatment
KR100850137B1 (en) Method for manufacturing the inter metal dielectric layers of semiconductor device
TW498485B (en) Method to improve the adhesion of low-k material layer
KR20090128133A (en) Method of forming a semiconductor device
KR100953016B1 (en) Method of manufacturing a semiconductor device
US20080157372A1 (en) Metal Line of Semiconductor Device and Manufacturing Method Thereof
KR100417687B1 (en) Pre-metal dielectric layer forming method of semiconductor device
TWI234848B (en) Method utilizing photoresist layers to form multiple interconnects