TW202244603A - 防護組件及形成倍縮光罩組件及增加防護薄膜壽命的方法 - Google Patents

防護組件及形成倍縮光罩組件及增加防護薄膜壽命的方法 Download PDF

Info

Publication number
TW202244603A
TW202244603A TW110128706A TW110128706A TW202244603A TW 202244603 A TW202244603 A TW 202244603A TW 110128706 A TW110128706 A TW 110128706A TW 110128706 A TW110128706 A TW 110128706A TW 202244603 A TW202244603 A TW 202244603A
Authority
TW
Taiwan
Prior art keywords
pellicle
protective
film layer
nanotube
film
Prior art date
Application number
TW110128706A
Other languages
English (en)
Other versions
TWI776625B (zh
Inventor
許倍誠
連大成
李信昌
高蔡勝
林進祥
Original Assignee
台灣積體電路製造股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 台灣積體電路製造股份有限公司 filed Critical 台灣積體電路製造股份有限公司
Application granted granted Critical
Publication of TWI776625B publication Critical patent/TWI776625B/zh
Publication of TW202244603A publication Critical patent/TW202244603A/zh

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F1/00Originals for photomechanical production of textured or patterned surfaces, e.g., masks, photo-masks, reticles; Mask blanks or pellicles therefor; Containers specially adapted therefor; Preparation thereof
    • G03F1/62Pellicles, e.g. pellicle assemblies, e.g. having membrane on support frame; Preparation thereof

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Preparing Plates And Mask In Photomechanical Process (AREA)

Abstract

一種防護組件包括防護薄膜及在防護薄膜之外表面上的保形塗層。防護薄膜可由多個層形成且具有高透射率、低偏轉及小微孔尺寸之組合。保形塗層旨在保護防護薄膜免受可能由於EUV曝光期間所產生之熱量及氫電漿而發生的損壞。

Description

多層防護薄膜
光微影圖案化製程使用包括期望遮罩圖案之倍縮光罩(reticle)(亦即光罩)。倍縮光罩可為反射遮罩或透射遮罩。在製程中,紫外線光自倍縮光罩之表面反射(對於反射遮罩而言)或透射穿過倍縮光罩(對於透射遮罩而言),以將圖案轉印至半導體晶圓上之光阻劑。以光化學方式改質光阻劑之已曝光部分。在曝光之後,使阻劑顯影以限定阻劑中之開口,且針對晶圓表面由阻劑中的開口暴露的彼些區域執行一或多個半導體處理步驟(例如,蝕刻、磊晶層沉積、金屬化等)。在此半導體處理之後,藉由適當的阻劑剝離劑或其類似者去除阻劑。
圖案之最小特徵尺寸受光波長限制。深紫外線(ultraviolet,UV)微影(例如,在一些標準深UV平臺中使用193 nm或248 nm之波長)通常採用透射遮罩,且和更長波長下的微影相比可提供更小的最小特徵尺寸。目前使用自124奈米(nm)小至10 nm之波長的極紫外光(extreme ultraviolet,EUV)來提供更小的最小特徵尺寸。在更短波長下,倍縮光罩上之顆粒污染物可導致轉印圖案中之缺陷。因此,使用防護組件(pellicle assembly)(或簡單防護)來保護倍縮光罩免受此些顆粒影響。防護組件包括附接至安裝框架之防護薄膜。安裝框架支撐倍縮光罩之上的防護薄膜。以此方式,落在防護薄膜上之任何污染顆粒皆被擋在倍縮光罩的焦平面之外,從而減少或防止了由污染顆粒引起之轉印圖案的缺陷。
為了實現提及主題的不同特徵,以下公開內容提供了許多不同的實施例或示例。以下描述組件、配置等的具體示例以簡化本公開。當然,這些僅僅是示例,而不是限制性的。其他組件、數值、操作、材料、配置等也在考慮中。例如,在以下的描述中,在第二特徵之上或上方形成第一特徵可以包括第一特徵和第二特徵以直接接觸形成的實施例,並且還可以包括在第一特徵和第二特徵之間形成附加特徵,使得第一特徵和第二特徵可以不直接接觸的實施例。另外,本公開可以在各種示例中重複參考數字和/或字母。此重複是為了簡單和清楚的目的,並且本身並不表示所討論的各種實施例和/或配置之間的關係。
此外,本文可以使用空間相對術語,諸如「在…下面」、「在…下方」、「下部」、「在…上面」、「上部」等,以便於描述一個元件或特徵與如圖所示的另一個元件或特徵的關係。除了圖中所示的取向之外,空間相對術語旨在包括使用或操作中的裝置的不同取向。裝置可以以其他方式定向(旋轉90度或在其他方向上),並且同樣可以相應地解釋在此使用的空間相對描述符號。
應將本說明書及申請專利範圍中之數值理解為包括當減少至有效數字之同一數時相同的數值及與規定值的差小於本申請案中所述類型之用以確定此值之習知量測技術的實驗誤差之數值。本文所揭示之所有範圍皆包括所敘述的端點。
本公開可能引用用於特定方法步驟之溫度。應注意,此些引用通常是指設定熱源之溫度,且並非具體代表特定材料暴露在熱量中所必須達到之溫度。
第1圖根據一些實施例繪示在微影中有用之示例性倍縮光罩組件105的橫截面圖。倍縮光罩組件105包括倍縮光罩100及防護組件120。說明性倍縮光罩100(此項技術中亦稱作遮罩、光罩或類似用語)為通常用於EUV微影中之反射性類型的遮罩,且包括基板102、交替的反射層104及間隔層106、覆蓋層108、經圖案化以限定遮罩圖案之EUV吸收層110、抗反射塗層(anti-reflective coating,ARC)112,及導電背側層114。說明性倍縮光罩100僅為非限制性示例。更大體而言,如本文中所揭示之防護組件可與大體上任何類型之反射或透射倍縮光罩一起使用。作為另一示例(未示出),倍縮光罩可為透射倍縮光罩,在此情形下,基板對執行微影之波長為透光的。大體而言,反射或透射倍縮光罩包括基板(例如,基板102)及安置在基板上之遮罩圖案(例如,EUV吸收層110)。防護組件120包括安裝框架122、黏合層124及防護薄膜130。在一些非限制說明性實施例中,倍縮光罩及防護組件旨在與EUV光波長一起使用,例如自124 nm至10 nm(包括約13.5 nm)的光波長。
在實施例中,基板102由低熱膨脹材料(low thermal expansion material,LTEM)製成,諸如,可以是購自康寧(Corning)(商標ULE)之石英或二氧化鈦矽酸鹽玻璃。此減少或防止了倍縮光罩由於吸收能量及後續加熱引起之翹曲(warping)。反射層104及間隔層106協作以形成用於反射EUV光之布拉格(Bragg)反射體。在一些實施例中,反射層104可包括鉬(Mo)。在一些實施例中,間隔層106可包括矽(Si)。覆蓋層108用以保護由反射層104及間隔層106形成之反射體,例如免於氧化。在一些實施例中,覆蓋層108包括釕(Ru)。EUV吸收層110吸收EUV波長,且藉由期望圖案進行圖案化。在一些實施例中,EUV吸收層110包括鉭硼氮化物。抗反射塗層112進一步減少自EUV吸收層110之反射。在一些實施例中,抗反射塗層112包括經氧化的鉭硼氮化物。導電背側層114准許將說明性倍縮光罩安裝在靜電卡盤(electrostatic chuck)上並允許對安裝的基板102進行溫度調節。在一些實施例中,導電背側層114包括氮化鉻。
安裝框架122在足以將防護薄膜130置於微影的焦平面之外的高度處支撐防護薄膜130,例如,在一些非限制說明性實施例中是在倍縮光罩之上的幾毫米(mm)處。安裝框架122自身可由適當材料製成,諸如,陽極氧化(anodized)的鋁、不鏽鋼、塑膠、矽(Si)、鈦、二氧化矽、氧化鋁(Al 2O 3)或二氧化鈦(TiO 2)。安裝框架122中可能存在排氣孔,用於均衡防護薄膜130之兩側上的壓力。
黏合層124用以將防護薄膜130緊固至安裝框架122。適當黏合層124可包括矽、丙烯酸、環氧樹脂、熱塑性彈性體橡膠、丙烯酸聚合物或共聚物,或其組合。在一些實施例中,黏合層124可具有結晶及/或非晶的結構。在一些實施例中,黏合層124可具有玻璃轉變溫度(glass transition temperature,Tg)高於光微影系統之最大工作溫度,以防止黏合層124在系統操作期間超過Tg。
通常在安裝框架122之上拉伸防護薄膜130以獲得均勻且平直之表面。然而,可能發生防護薄膜130的下垂,從而導致薄膜自所期望之平坦且均勻的定向明顯偏轉。此種偏轉可影響自倍縮光罩反射之光和所得的轉印圖案。
使用複雜的製造製程而自諸如多孔矽(porous silicon,pSi)、SiN、SiC、MoSi或MoSi xN y之習知防護材料製成防護薄膜。當暴露於大的壓力差時,由此些材料製成之薄膜亦容易破裂。此些材料亦需要在其上塗佈金屬層,以增大熱導率(thermal conductivity)。完全由碳奈米管製成之薄膜在EUV曝光期間可能被氫損壞。碳奈米管薄膜亦通常為非均勻的,且因此亦具有非均勻的透射率及反射率。低密度碳奈米管薄膜通常具有很大的開口/微孔,此些開口/微孔具有足夠大的尺寸,因此可能准許顆粒污染物穿透遮罩而落在倍縮光罩上並引發臨界尺寸(critical dimension,CD)誤差。由於EUV曝光期間奈米管在真空系統中之單束振動(single bundle vibration),低密度碳奈米管薄膜亦可能是顆粒污染物之來源。
另外,為了在微影圖案化及其他製程期間之安全性及保護性,將倍縮光罩(及其保護性防護組件)維持在倍縮光罩艙(pod)中。當前EUV微影系統通常使用雙艙配置,其由處於真空下之內部金屬艙及近接至大氣環境之外部艙組成。內部艙僅在處於工具內部時打開。壓力差、重力及其他外力可能導致防護薄膜偏轉或下垂。若防護薄膜下垂足夠遠而接觸其中持有倍縮光罩之內部金屬艙的內表面,則可能發生對防護薄膜的污染,或防護薄膜自身可能破裂。
本公開因此是關於旨在減少防護薄膜的偏轉而同時維持EUV光的高透射率及防護薄膜的顆粒防護能力之防護薄膜及用於產生防護薄膜的方法。在一些實施例中,防護薄膜為單層結構,且在其他實施例中,防護薄膜為多層結構。在一些實施例中,多層結構之層可由相同材料製成,且在其他實施例中,多層結構之層可由出於特定目的選擇且視需要按次序佈置之不同材料製成。舉例而言,在一些實施例中,防護薄膜可包括一或多個奈米管薄膜層及一或多個石墨烯薄膜層。防護薄膜可附接至邊框(border)或附接至適當成形之安裝框架。接著將保形塗層塗覆至防護薄膜(其可為單層或多層結構)之外表面。可接著將經塗佈的防護薄膜/邊框固定至安裝框架(視需要)以形成可安裝至倍縮光罩之防護組件。可使用若干低密度薄膜層之組合以獲得具有高透射率、小的微孔尺寸及最小化任何潛在偏轉之剛度(stiffness)的組合之防護薄膜。防護薄膜可能適合與EUV光源以及深紫外線(deep ultraviolet,DUV)光源或其他類型的光微影光源一起使用。
第2圖為根據本公開之防護薄膜130、防護薄膜組件170及防護組件120的第一實施例之分解圖。在此第一實施例中,防護薄膜130為由第一奈米管薄膜層150及第二奈米管薄膜層152形成之多層結構。如此處所說明,第一奈米管薄膜層150及第二奈米管薄膜層152是由隨機定向之奈米管形成,且兩個層彼此接觸。在一些實施例中,每一奈米管薄膜層具有約10 nm至約100 nm之厚度。
本文中,第二奈米管薄膜層152亦被視為防護薄膜130之外表面132,其上塗覆有保形塗層。保形塗層可被視為形成防護薄膜130之最外層172。在一些實施例中,最外層172具有約1奈米(nm)至約10 nm之厚度。第一奈米管薄膜層150亦被視為防護薄膜130之內表面134,且附接至邊框128。邊框128沿防護薄膜130之周邊延伸。邊框128亦附接至安裝框架122。
本文中,最外層(保形塗層)172之組合及防護薄膜130一起被稱作防護薄膜組件170。本文中,防護薄膜組件170、邊框128及安裝框架122之組合被稱作防護組件120。
第3圖為根據本公開之防護薄膜130、防護薄膜組件170及防護組件120的第二實施例之分解圖。與第2圖相反,第一奈米管薄膜層154及第二奈米管薄膜層156是由方向定向之奈米管形成。在一些實施例中,方向定向之奈米管薄膜層相對於彼此以一定的角度對準。此處,兩個奈米管薄膜層(第一奈米管薄膜層154、第二奈米管薄膜層156)相對於彼此以90°對準。
第4圖為根據本公開之防護薄膜130、防護薄膜組件170及防護組件120的第三實施例之分解圖。此處,防護薄膜130為石墨烯薄膜層160、第一奈米管薄膜層150及第二奈米管薄膜層152形成之多層結構。石墨烯薄膜層160亦被視為防護薄膜130之外表面132。在一些實施例中,石墨烯薄膜層160可為多孔膜或無微孔之連續膜。第一奈米管薄膜層150亦被視為防護薄膜130之內表面134,且附接至邊框128。第一奈米管薄膜層150及第二奈米管薄膜層152由隨機定向之奈米管形成。在一些實施例中,石墨烯薄膜層160、第一奈米管薄膜層150及第二奈米管薄膜層152彼此直接接觸。
第5圖為根據本公開之防護薄膜130、防護薄膜組件170及防護組件120的第四實施例之分解圖。此防護薄膜130類似於第4圖之防護薄膜130,不同之處在於,第一奈米管薄膜層154及第二奈米管薄膜層156由方向定向之奈米管形成,如第3圖之實施例中所示。
第6圖為根據本公開之防護薄膜130、防護薄膜組件170及防護組件120的第五實施例之分解圖。此處,與第4圖相反,石墨烯薄膜層160形成防護薄膜130之內表面134,且附接至邊框128。第二奈米管薄膜層152將被視為防護薄膜130之外表面132。第一奈米管薄膜層150、第二奈米管薄膜層152均由隨機定向之奈米管形成,且兩者彼此接觸。
第7圖為根據本公開之防護薄膜130、防護薄膜組件170及防護組件120的第六實施例之分解圖。此處,與第6圖相反,第一奈米管薄膜層154、第二奈米管薄膜層156均由方向定向之奈米管形成,且兩者彼此接觸。
第8圖為根據本公開之防護薄膜130、防護薄膜組件170及防護組件120的第七實施例之分解圖。此處,防護薄膜130為石墨烯薄膜層160、第一奈米管薄膜層150及第二奈米管薄膜層152形成之多層結構。石墨烯薄膜層160位於第一奈米管薄膜層150、第二奈米管薄膜層152之間。第一奈米管薄膜層150亦被視為防護薄膜130之內表面134,且附接至邊框128。第二奈米管薄膜層152被視為防護薄膜130之外表面132。第一奈米管薄膜層150及第二奈米管薄膜層152由隨機定向之奈米管形成。
第9圖為根據本公開之防護薄膜130、防護薄膜組件170及防護組件120的第八實施例之分解圖。此處,與第8圖相反,第一奈米管薄膜層154、第二奈米管薄膜層156均由方向定向之奈米管形成。
第10圖為附接至EUV倍縮光罩之防護組件的側視圖。如此處所說明,EUV倍縮光罩100包括經圖案化的影像107。防護組件120包括附接至邊框128之防護薄膜130。邊框128經由黏合層129接合至安裝框架122,並保護經圖案化的影像107免受顆粒污染。如此處所見,安裝框架122可包括排氣孔123。
第11A圖至第11C圖為根據本公開之一些實施例之安裝框架122的不同視圖。第11A圖為截面切割穿過排氣孔123之平面橫截面圖,第11B圖為第一側視圖,且第11C圖為正視圖。排氣孔123在安裝框架122之所有側上皆可見。然而,可考量將排氣孔123僅存在安裝框架122之一側、兩側或三側上。
邊框及安裝框架各自可由適當材料製成,諸如陽極氧化的鋁、不鏽鋼、塑膠、矽(Si)、鈦、二氧化矽、氧化鋁(Al 2O 3)或二氧化鈦(TiO 2)。如此處所見,安裝框架122中可存在排氣孔123,用於均衡防護薄膜之兩側上的壓力。在一些實施例中,排氣孔123之總面積的範圍可自零至約100平方毫米(mm 2)。注意,防護薄膜自身相對屬於多孔的,且因此自身可提供排氣功能。排氣孔123可視需要彼此間隔開。
如上所述,在一些實施例中,防護薄膜之一或多個層由奈米管形成。在一些實施例中,奈米管可為碳奈米管(carbon nanotube,CNT)或氮化硼奈米管(boron nitride nanotube,BNNT)或碳化矽奈米管(silicon carbide nanotube,SiCNT)。在一些實施例中,奈米管可為單壁奈米管或多壁奈米管。多壁奈米管可以由不同材料製成,例如CNT在BNNT內部,或反之亦然。在一些實施例中,奈米管可為金屬、半導體或電絕緣的材料。個別奈米管之長度及直徑並不重要。可藉由已知合成方法製作奈米管,諸如,電弧放電、石墨之雷射汽化(laser vaporization)、在金屬催化劑上之碳氫化合物的催化化學氣相沉積(chemical vapor deposition,CVD)、石墨粉末的球磨及退火、擴散火焰合成、電解、低溫固體熱解(pyrolysis)、浮動催化劑化學氣相沉積,或高壓一氧化碳(High Pressure Carbon Monoxide,HiPco)製程。碳奈米管可具有約1.33 TPa之楊氏模量、約100 GPa之最大拉伸強度、約3000至約40000 W/mK之熱導率,及在空氣中高達約400℃之溫度下穩定。氮化硼奈米管可具有約1.18 TPa之楊氏模量、約30 GPa之最大拉伸強度、約3000 W/mK之熱導率,及在空氣中高達約800℃之溫度下穩定。
大體而言,每一個奈米管薄膜層之奈米管可為隨機定向的,或可在期望方向上為方向定向的。可視需要組合奈米管薄膜層,無論為隨機定向的還是方向定向的。在一些實施例中,防護薄膜中之奈米管薄膜層皆為隨機定向的。在一些實施例中,防護薄膜中之奈米管薄膜層皆為方向定向的。在此些實施例中,方向定向之奈米管薄膜層相對於彼此以一定的角度對準。此角度可為在0°與180°之間的任何角度,且例如可為0°、30°、45°、60°、75°、90°、120°、135°、145°、160°或180°。
另外,在一些實施例中,防護薄膜之一或多個層由石墨烯或石墨形成。與由奈米管形成之層相比較而言,石墨烯或石墨形成的層可提供更大的剛度。石墨由堆疊之石墨烯層構成,且因此在本公開中應視為與石墨烯等效。與奈米管相對而言,石墨烯及石墨呈平坦薄板或多孔薄板的形狀。石墨烯具有大約1000 GPa之楊氏模量。
在一些實施例中,奈米管薄膜層、石墨烯薄膜層及所得防護薄膜通常應不包括任何其他材料。舉例而言,薄膜不應含有任何濕氣或任何其他黏合劑、金屬、塑料、表面活性劑、酸或可能存在於前驅物材料中或用於先前處理步驟中之其他化合物。在一些實施例中,每一個奈米管薄膜層可具有範圍自約10奈米(nm)至約100 nm之厚度,然而也可考慮在此範圍以外之厚度。在一些實施例中,每一個石墨烯薄膜層可具有範圍自約1 nm至約10 nm之厚度,然而也可考慮在此範圍以外之厚度。
可使用若干不同製造製程形成奈米管薄膜層及石墨烯薄膜層。舉例而言,此些製造製程可包括諸如流動式催化劑CVD或電漿增強CVD的化學氣相沉積、電泳沉積、分散在溶液中並藉由去除溶劑濃縮、真空過濾,及其類似者。
第12圖為繪示用於製備奈米管薄膜層之方法的一些實施例之流程圖。在步驟200中,形成奈米管(諸如,碳奈米管或氮化硼奈米管)之懸浮液。奈米管可懸浮在水或某種其他適當液體中。亦可存在其他成分(諸如表面活性劑)以均勻地分散奈米管。超聲波亦可有用於奈米管之均勻分散。接著可適當地過濾、處理及/或清潔奈米管。舉例而言,可在實現分散之後經由過濾去除表面活性劑。可使用弱酸(諸如,鹽酸或硝酸)來去除諸如非晶碳之顆粒。
接下來,在步驟210中,藉由將懸浮液沉積在表面上並將液體與奈米管分離而形成初始奈米管薄膜。舉例而言,如此處所說明,可將懸浮液傾倒流經過濾紙,諸如具有約0.02微米(μm)至約1.2 μm之微孔尺寸的聚四氟乙烯(polytetrafluoroethylene,PTFE)薄膜。可將吸力(suction)施加至過濾紙之相對側以獲得在過濾紙上之均勻分散的奈米管。
最後,在步驟220中,處理初始奈米管薄膜以減少其厚度並獲得奈米管薄膜層。此可以多種方式進行。在一些實施例中,藉由向初始奈米管薄膜施加壓縮壓力(例如單軸壓縮)減少厚度,從而減少初始奈米管薄膜之厚度。在一些實施例中,所施加之壓縮壓力為自約0.1巴(bar)至約20巴(約0.01 MPa至約2 MPa)。在一些實施例中,施加壓縮壓力歷時約1分鐘至約60分鐘之時間週期。可在此時間週期期間改變壓力程度。舉例而言,施力可逐漸增大至給定力度並接著維持在此力度等級。
在一些其他實施例中,藉由將初始奈米管薄膜浸沒在溶液中,接著使溶液穿過初始奈米管薄膜(例如,藉由施加吸力)來減少厚度。注意,所得奈米管薄膜層是由隨機定向之奈米管製成。
在一個實施例中,第13A圖至第13D圖為繪示第12圖的方法之一組圖式。第13A圖繪示奈米管之懸浮液。奈米管230懸浮在容器234內之液體232中。在第13B圖中,藉由將懸浮液沉積在表面236(諸如,過濾紙)上而形成初始奈米管薄膜240。
在第13C圖中,繪示用於處理初始奈米管薄膜以減少其厚度並獲得奈米管薄膜層之第一方法。如圖所示,初始奈米管薄膜240及表面236被放置在壓機(pressing machine)250內,此壓機250包括墊板(bolster plate)252及壓頭(ram)254。在墊板252與壓頭254之間壓縮初始奈米管薄膜240以獲得奈米管薄膜層260。奈米管薄膜層260亦具有比初始奈米管薄膜240高的密度,且奈米管薄膜層260比初始奈米管薄膜240薄(亦即,厚度減少)。在不受理論限制的情況下,據信在藉由凡得瓦力去除壓縮力之後,得以維持單軸壓縮所引入之奈米管薄膜層變形。換言之,在去除壓縮力之後,奈米管薄膜層不會恢復至其原始厚度。
在第13D圖中,繪示用於處理初始奈米管薄膜以減少其厚度並獲得奈米管薄膜層之第二方法。如圖所示,將初始奈米管薄膜240及表面236浸沒在溶液238中。接著使溶液238穿過初始奈米管薄膜240以減少其厚度。在一些實施例中,溶液238中之溶劑為去離子水或諸如異丙醇(isopropyl alcohol,IPA)的醇類。與初始奈米管薄膜240相比較而言,所得奈米管薄膜層260亦具有更高的密度。
第14圖為繪示用於製備奈米管薄膜層之方法的一些額外實施例之流程圖。在步驟300中,產生奈米管纖維,諸如由碳奈米管或氮化硼奈米管製成之纖維。接下來,在步驟310中,從奈米管纖維形成初始奈米管薄膜。在一些實施例中,藉由將奈米管纖維彼此相鄰佈置而形成初始奈米管薄膜。在不受理論限制的情況下,據信奈米管纖維藉由足夠強度之凡得瓦力維持在一起以形成初始奈米管薄膜。初始奈米管薄膜可經退火。退火可發生在約1000℃至約2000℃之溫度下。最後,在步驟320中,處理初始奈米管薄膜以減少其厚度並獲得奈米管薄膜層。此可如先前所述來進行,例如藉由壓縮或浸沒在溶液中。注意,所得奈米管薄膜層是由方向定向之奈米管製成。
在一個實施例中,第15A圖至第15C圖為繪示第14圖的方法之一組圖式。第15A圖繪示可用以使用流動式催化劑CVD產生奈米管纖維之裝置的一個實施例。繪示反應容器330,其具有用於加熱經過反應容器之材料的熱源332。反應物334、催化劑336及載流氣體338進入反應容器。呈氣凝膠形式之奈米管發生成核、生長及聚集,且接著將氣凝膠紡成纖維339。在一些實施例中,此製程發生在約1100℃至約1300℃之溫度下。此導致奈米管方向定向(亦即,定向在同一方向上)。將有機溶劑用於緻密化(densification)纖維。在一些實施例中,有機溶劑可為丙酮或諸如異丙醇之醇類。在第15B圖中,由奈米管纖維形成初始奈米管薄膜240。此可如上所述來進行。初始奈米管薄膜240中之碳奈米管方向定向。在第15C圖中,處理初始奈米管薄膜240以減少其厚度並獲得奈米管薄膜層260。如此處所說明,初始奈米管薄膜240受表面342支撐,此表面342被放置在壓機250內,此壓機250包括墊板252及壓頭254。在墊板252與壓頭254之間壓縮初始奈米管薄膜240以獲得奈米管薄膜層260。
第16圖為繪示用於製備石墨烯薄膜層之方法的一個實施例之流程圖。在步驟400中,藉由將相對小的石墨烯薄片或薄板分散在表面上而形成初始石墨烯層,以獲得相對大的初始薄膜。可佈置較小薄片或薄板以使得在較小薄片/薄板之間存在期望尺寸的微孔。注意,此種初始薄膜可能容易散開,因為個別薄片/薄板彼此未牢固地接合。最後,在步驟410中,處理初始石墨烯層以減少其厚度並獲得石墨烯薄膜層。在一些實施例中,藉由向初始石墨烯層施加壓縮壓力(例如單軸壓縮)減少厚度,從而減少初始石墨烯層之體積。可接著將所得石墨烯薄膜層固定至邊框或另一薄膜層。
在一個實施例中,第17A圖及第17B圖為繪示第16圖的方法之一組圖式。在第17A圖中,藉由將石墨烯薄片或薄板432分散在表面434上而形成初始石墨烯層430。如第17B圖中所繪示,藉由在壓機250之墊板252及壓頭254之間壓縮初始石墨烯層430來製備石墨烯薄膜層160。
在一些實施例中,各個初始奈米管或石墨烯薄膜在處理之前具有至少0.7微米(700 nm)之厚度,且執行處理步驟以減少厚度,從而產生具有200 nm或更小之厚度的個別奈米管或石墨烯薄膜層。在一些實施例中,初始薄膜可各自具有範圍自約1微米(µm)至約10 µm之厚度。在一些實施例中,所得奈米管或石墨烯薄膜層具有自約10 奈米(nm)至約100 nm之厚度。在更高的厚度下,可能會以非所期望之方式改變機械性質。
在製成用於防護薄膜之薄膜層之後,接著將薄膜層接合在一起以形成防護薄膜。在一些實施例中,由一或多個薄膜層製成之最終防護薄膜應具有自約10奈米(nm)至約100 nm之厚度。
第18圖為繪示用於製備防護薄膜的多層結構之方法的一個實施例之流程圖。一般而言,在步驟500中,將邊框放置成與第一薄膜層之表面相鄰。接下來,在步驟510中,施加壓力以將第一薄膜層固定至邊框。經由凡得瓦力使第一薄膜層及邊框保持附接。若需要由一個以上的層來製成防護薄膜,則在步驟520中,將邊框和任一已附接之薄膜層鋪設在額外的薄膜層之表面上。最外部的已附接薄膜層接觸額外的薄膜層之表面。接下來,在步驟530中,再次施加壓力以將額外的薄膜層固定至已附接薄膜層。可藉由額外的薄膜層重複步驟520及步驟530,直至組裝成防護薄膜之期望多層結構為止。在步驟535中,將保形塗層塗覆至防護薄膜。
在一個實施例中,第19A圖至第19C圖為繪示第18圖的方法之一組圖式。在第19A圖中,經由包括墊板252及壓頭254之壓機250所施加的壓力將第一奈米管薄膜層150固定至邊框128。在第19B圖中,接著將邊框128及第一奈米管薄膜層150(已附接至邊框128)鋪設在石墨烯薄膜層160上。在第19C圖中,再次經由壓機250施加壓力以將石墨烯薄膜層160附接至第一奈米管薄膜層150。因此可成功建構多層防護薄膜。值得注意的是,多層防護薄膜之厚度在防護薄膜的中心與防護薄膜的邊緣(其中已使用壓力將層附接至邊框)之間可能略有變化。
第20圖為繪示用於製備防護薄膜的多層結構之方法的另一實施例之流程圖。一般而言,在步驟540中,將個別薄膜層按其期望次序彼此堆疊。接下來,在步驟550中,施加壓力以減少厚度並將個別層接合在一起以獲得多層防護薄膜。在此單一壓縮步驟中,可將兩個或更多個別層接合在一起。接下來,在步驟560中,將安裝框架或邊框放置成與防護薄膜之表面相鄰。接下來,在步驟570中,施加壓力以將防護薄膜固定至安裝框架或邊框。在步驟575中,將保形塗層塗覆至防護薄膜。
在一個實施例中,第21A圖至第21C圖為繪示第20圖的方法之一組圖式。在第21A圖中,繪示兩個方向定向之初始奈米管薄膜240。其可相對於彼此以任何角度放置,範圍自0°至100°及介於之間的任何範圍,儘管相對角度並不重要。在第21B圖中,同時在墊板252與壓頭254之間壓縮兩個初始奈米管薄膜240,從而形成多層防護薄膜130。在第21C圖中,將邊框128鋪設在防護薄膜130上,並施加壓縮壓力以將其接合在一起。
一旦防護薄膜已附接至邊框,則將保形塗層塗覆至防護薄膜之外表面。在一個實施例中,在第22A圖至第22D圖中繪示出此情形。第22A圖示出邊框128及防護薄膜130之組件,此防護薄膜130包括奈米管薄膜層150及石墨烯薄膜層160。邊框128直接附接至奈米管薄膜層150,奈米管薄膜層150作為防護薄膜130之內表面134。石墨烯薄膜層160作為防護薄膜130之外表面132。如第22B圖中所見,將塗層塗覆至防護薄膜130之外表面132以形成最外層172。值得注意的是,塗層被繪示為亦塗覆至防護薄膜130之側面,且塗層亦可由於塗覆製程而終止於邊框128上。在第22C圖中,接著例如經由黏合層129將已塗佈之防護薄膜130及邊框128附接至安裝框架122,以形成防護組件120。在第22D圖中,藉由將安裝框架緊固至倍縮光罩而將防護組件120安裝至倍縮光罩100(具有期望的遮罩圖案),其中防護薄膜安置在遮罩圖案之上,以產生最終倍縮光罩組件,諸如在第1圖中由非限制說明性示例所示。
可藉由此項技術中所已知之習知方法來塗覆保形塗層,方法諸如噴塗、浸塗等。保形塗層與防護薄膜之經暴露表面應一致,以使得防護薄膜中存在之微孔保持存在且不被保形塗層填充。此些經暴露表面可存在於多層防護表面之任何或所有的不同層中。另外,保形塗層將穿透至防護薄膜中,而非成為在防護薄膜上之單個分離層。舉例而言,當將保形塗層塗覆至第4圖中所繪示之防護薄膜(其具有石墨烯薄膜層160及第一奈米管薄膜層150、第二奈米管薄膜層152)時,預期兩個奈米管薄膜層之一些奈米管的側面亦可被保形塗層所覆蓋。
保形塗層旨在保護防護薄膜免受可能由於EUV曝光期間所產生之熱及氫電漿而發生的損壞。大體而言,用於塗層之材料應具有低折射係數,亦即,當在13.5 nm之波長處量測時應儘可能地接近於1。用於塗層之材料亦應具有在13.5 nm之波長處的低消光係數(extinction coefficient)。消光係數是量測材料可被波長穿透之難易程度。理想而言,當在1奈米與10奈米之間的厚度下量測,且在13.5 nm之EUV波長處量測時,用於保形塗層之材料具有大於90%、大於92%、大於94%或大於95%之透射率(transmittance,T%)。此減少了保形塗層的EUV吸收(准許進一步的下游處理)而同時保護了防護薄膜。
在一些實施例中,塗層包括B、BN、B 4C、B 2O 3、SiN、Si 3N 4、SiN 2、SiC、SiC xN y、Nb、NbN、NbSi、NbSiN、Nb 2O 5、NbTi xN y、ZrN x、ZrY xO y、ZrF 4、YN、Y 2O 3、YF、Mo、Mo 2N、MoSi、MoSiN、Ru、RuNb、RuSiN、TiN、TiC xN y、HfO 2、HfN x、HfF 4或VN。在一些實施例中,最外層具有約1奈米(nm)至約10 nm之厚度。此厚度應量測為防護薄膜中每一層之個別組件上的塗層厚度,例如,在碳奈米管上之塗層厚度。塗層可比此厚度更深地穿透至防護薄膜中。
一起參考第11A圖至第11C圖及第22B圖,值得注意的是,邊框128與安裝框架122之間的一個顯著區別在於安裝框架122包括排氣孔123。此些排氣孔123通常具有非常小的直徑,可藉由第22B圖中所繪示之塗佈製程容易地填充或堵塞此些排氣孔。邊框128的使用更便於將保形塗層塗覆至防護薄膜,同時亦保護了安裝框架122之排氣孔123。視需要,可省略邊框128的使用,其中將防護薄膜直接附接至適當結構之安裝框架122上。舉例而言,在此些安裝框架之一些實施例中,排氣孔存在於安裝框架之與防護薄膜所附接的端部相對之端部處。參考第10圖,可將此種安裝框架設想為單獨組件(安裝框架122、黏合層129及邊框128)之組合。
因為防護薄膜處在倍縮光罩與晶圓(經轉印圖案將在此晶圓上成像)之間的光學路徑中,所以防護薄膜需要某些光學性質。舉例而言,防護薄膜應具有對EUV波長之高透射率(亦即光學透明)、對EUV波長之低反射率、低不均勻性及低散射。在曝光及常規操作期間,防護薄膜將暴露在高溫下,且因此亦需要某些熱學性質。舉例而言,防護薄膜應具有低的熱膨脹、高的熱導率及高的熱發射率。防護薄膜亦應具有良好的機械性質,諸如高剛度(亦即低下垂或偏轉)及穩定性。本公開之防護薄膜具有此些期望性質之組合。
本文所述方法提供具有EUV透射率、微孔尺寸、剛度及使用壽命之改良組合的防護薄膜。本公開之防護薄膜維持在EUV波長範圍內之高透射率。此對於給定曝光能量而言准許更多光到達光罩,且亦減少防護薄膜中之熱積聚。在一些實施例中,當在13.5 nm之EUV波長下量測時,防護薄膜具有大於90%、大於95%、大於96%或大於97%之透射率。
獲得高透射率之一種手段為在防護薄膜中存在微孔,因為微孔不反射或吸收EUV波長。本公開之防護薄膜具有足夠小以防止顆粒經過防護薄膜並落在倍縮光罩/光罩上之平均微孔尺寸。在一些實施例中,就直徑而言,防護薄膜中之微孔之最大微孔尺寸小於30 nm(在已塗覆了保形塗層之後)。在此方面,微孔被視為完全穿過防護薄膜之任何筆直路徑。微孔可能由於奈米管之間或石墨烯或石墨的薄片/薄板之間的空間而存在。微孔尺寸為此筆直路徑之最小直徑(因為僅必須在顆粒穿過防護薄膜之前俘獲顆粒,並非必須將顆粒停留在防護薄膜之外表面處)。在多層防護薄膜中,防護薄膜之微孔尺寸通常小得多,因為給定薄膜層之微孔不與另一薄膜層之微孔對準。可使用習知方法量測微孔尺寸,例如,藉由使薄膜成像並量測每一微孔之尺寸。
防護薄膜增大之剛度最小化了可能隨時間而發生之任何潛在下垂或偏轉。舉例而言,防護薄膜之尺寸(長度及寬度)為大約100毫米。本公開之防護薄膜在兩帕斯卡(Pa)之施加壓力差下可在700微米或更小之範圍中下垂或偏轉。在實施例中,防護薄膜可具有範圍自約10奈米(nm)至約100 nm之厚度。
本公開之防護薄膜亦具有對EUV波長之低反射率。相同地,此對於給定曝光能量而言准許更多光到達光罩,且亦減少臨界尺寸誤差。在一些實施例中,當在13.5 nm之EUV波長處量測時,防護薄膜具有5%或更小、3%或更小、2%或更小、1%或更小、0.5%或更小之反射率(reflectivity,R%)。
本公開之防護薄膜亦在EUV波長處具有低的非均勻性,或換言之具有高均勻性。此減少了可能發生之局部臨界尺寸誤差。在一些實施例中,當在13.5 nm之EUV波長下量測時,防護薄膜具有1%或更小、0.5%或更小、0.3%或更小、0.1%或更小之非均勻性(non-uniformity,U%)。
本公開之一些實施例因此描述一種防護薄膜,其包括具有外表面及內表面之防護薄膜,以及在此防護薄膜之至少外表面上的保形塗層。
本公開之其他實施例描述一種包括倍縮光罩及防護組件之倍縮光罩組件,及一種用於形成此種倍縮光罩組件之方法。倍縮光罩具有在其上之遮罩圖案。防護組件設置在遮罩圖案之上並安裝/緊固至倍縮光罩。防護組件包括多層防護薄膜,此多層防護薄膜在其外表面上具有保形塗層。
本公開之其他實施例是關於一種用於增加防護薄膜之使用壽命的方法。將保形塗層塗覆至防護薄膜之至少外表面。當在13.5 nm之EUV波長處及在1 nm與10 nm之間的厚度下量測時,此保形塗層具有大於90%之透射率。
前面概述一些實施例的特徵,使得本領域技術人員可更好地理解本公開的觀點。本領域技術人員應該理解,他們可以容易地使用本公開作為設計或修改其他製程和結構的基礎,以實現相同的目的和/或實現與本文介紹之實施例相同的優點。本領域技術人員還應該理解,這樣的等同構造不脫離本公開的精神和範圍,並且在不脫離本公開的精神和範圍的情況下,可以進行各種改變、替換和變更。
100:倍縮光罩 102:基板 104:反射層 105:倍縮光罩組件 106:間隔層 107:影像 108:覆蓋層 110:EUV吸收層 112:抗反射塗層 114:導電背側層 120:防護組件 122:安裝框架 123:排氣孔 124:黏合層 128:邊框 129:黏合層 130:防護薄膜 132:外表面 134:內表面 150,152,154,156:奈米管薄膜層 160:石墨烯薄膜層 170:防護薄膜組件 172:最外層 200,210,220:步驟 230:奈米管 232:液體 236:表面 238:溶液 240:初始奈米管薄膜 250:壓機 252:墊板 254:壓頭 260:奈米管薄膜層 300,310,320:步驟 330:反應容器 332:熱源 334:反應物 336:催化劑 338:載流氣體 339:纖維 342:表面 400,410:步驟 430:初始石墨烯層 432:石墨烯薄片或薄板 434:表面 500,510,520,530,535,540,550,560,570,575:步驟
當結合附圖閱讀時,從以下詳細描述中可以最好地理解本公開的各方面。應注意,根據工業中的標準方法,各種特徵未按比例繪製。實際上,為了清楚地討論,可任意增加或減少各種特徵的尺寸。 第1圖為根據一些實施例之示例性倍縮光罩及防護組件的橫截面圖。 第2圖為根據一些實施例之防護薄膜、防護薄膜組件及防護組件的第一實施例之分解圖。 第3圖為根據一些實施例之防護薄膜、防護薄膜組件及防護組件的第二實施例之分解圖。 第4圖為根據一些實施例之防護薄膜、防護薄膜組件及防護組件的第三實施例之分解圖。 第5圖為根據一些實施例之防護薄膜、防護薄膜組件及防護組件的第四實施例之分解圖。 第6圖為根據一些實施例之防護薄膜、防護薄膜組件及防護組件的第五實施例之分解圖。 第7圖為根據一些實施例之防護薄膜、防護薄膜組件及防護組件的第六實施例之分解圖。 第8圖為根據一些實施例之防護薄膜、防護薄膜組件及防護組件的第七實施例之分解圖。 第9圖為根據一些實施例之防護薄膜、防護薄膜組件及防護組件的第八實施例之分解圖。 第10圖為根據一些實施例之附接至EUV倍縮光罩的防護組件之側視圖。 第11A圖至第11C圖為根據一些實施例之安裝框架的不同視圖。第11A圖為平面橫截面圖,第11B圖為第一側視圖,且第11C圖為正視圖。 第12圖為根據一些實施例繪示用於製備奈米管薄膜層的第一方法之流程圖。 第13A圖至第13D圖為根據一些實施例繪示第12圖的方法之一組圖式。第13A圖為第一圖式,第13B圖為第二圖式,第13C圖為第三圖式,且第13D圖為第四圖式。 第14圖為根據一些實施例繪示用於製備奈米管薄膜層的第二方法之流程圖。 第15A圖至第15C圖為根據一些實施例繪示第14圖的方法之一組圖式。第15A圖為第一圖式,第15B圖為第二圖式,且第15C圖為第三圖式。 第16圖為根據一些實施例繪示用於製備石墨烯薄膜層的方法之流程圖。 第17A圖至第17B圖為根據一些實施例繪示第16圖的方法之一組圖式。第17A圖為第一圖式,且第17B圖為第二圖式。 第18圖為根據一些實施例繪示用於製備防護薄膜之多層結構的方法之流程圖。 第19A圖至第19C圖為根據一些實施例繪示第18圖的方法之一組圖式。第19A圖為第一圖式,第19B圖為第二圖式,且第19C圖為第三圖式。 第20圖為根據一些實施例繪示用於製備防護薄膜之多層結構的另一方法之流程圖。第21A圖至第21C圖為根據一些實施例繪示第20圖的方法之一組圖式。第21A圖為第一圖式,第21B圖為第二圖式,且第21C圖為第三圖式。 第22A圖至第22D圖為根據一些實施例繪示用於塗佈防護薄膜之外表面的方法之一組圖式。第22A圖為第一圖式,第22B圖為第二圖式,第22C圖為第三圖式,且第22D圖為第四圖式。
國內寄存資訊(請依寄存機構、日期、號碼順序註記) 無 國外寄存資訊(請依寄存國家、機構、日期、號碼順序註記) 無
500,510,520,530,535:步驟

Claims (20)

  1. 一種防護組件,包括: 一防護薄膜,具有一外表面及一內表面;以及 一保形塗層,至少在該防護薄膜之該外表面上。
  2. 如請求項1所述之防護組件,其中該防護薄膜包括至少一個奈米管薄膜層。
  3. 如請求項2所述之防護組件,其中該至少一個奈米管薄膜層具有10 nm至100 nm之一厚度。
  4. 如請求項2所述之防護組件,其中該至少一個奈米管薄膜層包括碳奈米管或氮化硼奈米管。
  5. 如請求項2所述之防護組件,其中該至少一個奈米管薄膜層包括隨機定向之奈米管或方向定向之奈米管。
  6. 如請求項1所述之防護組件,其中該防護薄膜包括至少一個石墨烯薄膜層。
  7. 如請求項1所述之防護組件,其中該防護薄膜包括至少一第一奈米管薄膜層及一第二奈米管薄膜層。
  8. 如請求項7所述之防護組件,其中該防護薄膜進一步包括一石墨烯薄膜層。
  9. 如請求項8所述之防護組件,其中該石墨烯薄膜層形成該薄膜之該外表面或該內表面。
  10. 如請求項8所述之防護組件,其中該石墨烯薄膜層位於該第一奈米管薄膜層與該第二奈米管薄膜層之間。
  11. 如請求項1所述之防護組件,其中該保形塗層包括B、BN、B 4C、B 2O 3、SiN、Si 3N 4、SiN 2、SiC、SiC xN y、Nb、NbN、NbSi、NbSiN、Nb 2O 5、NbTi xN y、ZrN x、ZrY xOy、ZrF 4、YN、Y 2O 3、YF、Mo、Mo 2N、MoSi、MoSiN、Ru、RuNb、RuSiN、TiN、TiC xN y、HfO 2、HfN x、HfF 4、VN或上述之組合。
  12. 如請求項1所述之防護組件,其中該保形塗層具有1奈米至10奈米之一厚度。
  13. 如請求項1所述之防護組件,進一步包括一邊框或一安裝框架接觸該防護薄膜之該內表面。
  14. 如請求項1所述之防護組件,進一步包括一安裝框架附接至一邊框,該邊框接觸該防護薄膜之該內表面。
  15. 如請求項14所述之防護組件,其中該安裝框架包括排氣孔且該邊框不包括排氣孔。
  16. 如請求項1所述之防護組件,其中該防護薄膜在13.5 nm波長處具有至少90%之EUV透射率、700 µm之最大偏轉,及30奈米之最大微孔尺寸。
  17. 一種形成一倍縮光罩組件的方法,包括: 將一防護組件設置在一倍縮光罩之一遮罩圖案之上方, 其中該防護組件包括一多層防護薄膜,該多層防護薄膜在其一外表面上具有一保形塗層。
  18. 如請求項17所述之方法,其中該多層防護薄膜在13.5 nm波長處具有至少90%之EUV透射率、700 µm之最大偏轉,及30奈米之最大微孔尺寸。
  19. 一種增加一防護薄膜之使用壽命的方法,包括: 將一保形塗層塗覆至一防護薄膜之至少一外表面, 其中當在13.5 nm之一EUV波長處及在1 nm與10 nm之間的一厚度下量測時,該保形塗層具有大於90%之一透射率。
  20. 如請求項19所述之方法,其中該保形塗層包括B、BN、B 4C、B 2O 3、SiN、Si 3N 4、SiN 2、SiC、SiC xN y、Nb、NbN、NbSi、NbSiN、Nb 2O 5、NbTi xN y、ZrN x、ZrY xO y、ZrF 4、YN、Y 2O 3、YF、Mo、Mo 2N、Ru、RuNb、RuSiN、TiN、TiC xN y、HfO 2、HfN x、HfF 4或VN。
TW110128706A 2021-05-12 2021-08-04 防護組件及形成倍縮光罩組件及增加防護薄膜壽命的方法 TWI776625B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US17/318,487 US20220365420A1 (en) 2021-05-12 2021-05-12 Multi-layer pellicle membrane
US17/318,487 2021-05-12

Publications (2)

Publication Number Publication Date
TWI776625B TWI776625B (zh) 2022-09-01
TW202244603A true TW202244603A (zh) 2022-11-16

Family

ID=83118376

Family Applications (1)

Application Number Title Priority Date Filing Date
TW110128706A TWI776625B (zh) 2021-05-12 2021-08-04 防護組件及形成倍縮光罩組件及增加防護薄膜壽命的方法

Country Status (3)

Country Link
US (1) US20220365420A1 (zh)
CN (1) CN115032861A (zh)
TW (1) TWI776625B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11735889B1 (en) * 2022-02-01 2023-08-22 Mellanox Technologies, Ltd. Sealed optoelectronic components and associated optical devices
US20240248391A1 (en) * 2023-01-20 2024-07-25 Applied Mateials, Inc. Extreme ultraviolet pellicles and method of manufacturing

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6084681B2 (ja) * 2013-03-15 2017-02-22 旭化成株式会社 ペリクル膜及びペリクル
WO2015160185A1 (ko) * 2014-04-17 2015-10-22 한양대학교 산학협력단 Euv 리소그래피용 펠리클
JP6781864B2 (ja) * 2016-07-05 2020-11-11 三井化学株式会社 ペリクル膜、ペリクル枠体、ペリクル、その製造方法、露光原版、露光装置、半導体装置の製造方法
KR101813186B1 (ko) * 2016-11-30 2017-12-28 삼성전자주식회사 포토마스크용 펠리클과 이를 포함하는 레티클 및 리소그래피용 노광 장치
EP3404486B1 (en) * 2017-05-15 2021-07-14 IMEC vzw A method for forming a pellicle
JP7139133B2 (ja) * 2018-04-03 2022-09-20 信越化学工業株式会社 ペリクルフレーム、ペリクル、及びペリクルフレームの製造方法
KR102634748B1 (ko) * 2018-06-15 2024-02-13 삼성전자주식회사 포토 마스크용 펠리클 및 이의 제조 방법
JP7040427B2 (ja) * 2018-12-03 2022-03-23 信越化学工業株式会社 ペリクル、ペリクル付露光原版、露光方法及び半導体の製造方法
EP3671342B1 (en) * 2018-12-20 2021-03-17 IMEC vzw Induced stress for euv pellicle tensioning
US11314169B2 (en) * 2019-10-30 2022-04-26 Taiwan Semiconductor Manufacturing Co., Ltd. Robust, high transmission pellicle for extreme ultraviolet lithography systems
JP7434810B2 (ja) * 2019-11-05 2024-02-21 Toppanホールディングス株式会社 ペリクル膜及びペリクル
EP3842861A1 (en) * 2019-12-23 2021-06-30 Imec VZW A method for forming an euvl pellicle

Also Published As

Publication number Publication date
CN115032861A (zh) 2022-09-09
US20220365420A1 (en) 2022-11-17
TWI776625B (zh) 2022-09-01

Similar Documents

Publication Publication Date Title
CN109416503B (zh) 防护膜、防护膜组件框体、防护膜组件、其制造方法、曝光原版、曝光装置、半导体装置的制造方法
US9599912B2 (en) Lithographic apparatus
JP6084681B2 (ja) ペリクル膜及びペリクル
US11262648B2 (en) Pellicle for photomask and method of fabricating the same
TWI776625B (zh) 防護組件及形成倍縮光罩組件及增加防護薄膜壽命的方法
KR20160145073A (ko) 펠리클막, 펠리클, 노광 원판, 노광 장치 및 반도체 장치의 제조 방법
US20220413379A1 (en) Pellicle membrane, pellicle, membrane, graphene sheet, and method for producing the graphene sheet
JP2019028462A (ja) フォトマスク用ペリクル、及びそれを含むレチクル、並びにフォトマスク用ペリクルの製造方法
KR102209853B1 (ko) 반도체 제조용 막 및 이에 대한 제조 방법
KR102185991B1 (ko) 반도체 제조용 막
US20220244634A1 (en) Network type pellicle membrane and method for forming the same
US12050399B2 (en) Pellicle assembly and method of making same
US20230135538A1 (en) Methods to improve mechanical properties of pellicle membrane
US20240004284A1 (en) Pellicle membrane with improved properties
KR20230146663A (ko) 펠리클, 노광 원판, 노광 장치, 펠리클의 제조 방법, 및 반도체 장치의 제조 방법
TWI845855B (zh) 防護膜、曝光原版、曝光裝置、防護膜的製造方法及半導體裝置的製造方法
US20230161261A1 (en) Optical assembly with coating and methods of use
CN115735160A (zh) 防护膜组件、曝光原版、曝光装置、防护膜组件的制造方法和半导体装置的制造方法
CN115004108A (zh) 防护膜、防护膜组件、曝光原版、曝光装置、防护膜组件的制造方法及半导体装置的制造方法

Legal Events

Date Code Title Description
GD4A Issue of patent certificate for granted invention patent